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Abstract
Lower limb motor impairment affects greatly the autonomy and quality of life of those people suffering from it. Recent

studies have shown that an appropriate rehabilitation can significantly improve their condition, but, for this purpose, it is

essential to know the patient’s functional state and to be able to detect any changes that occur in it as soon as possible.

Traditionally, standardized clinical scales have been used to make that assessment, however, as the number of patients to

be assessed is high, assessment frequency is usually low. In response to this problem, the aim of the present work is to

design a new personalized methodology for developing a Machine Learning-based gait anomaly detector that is able to

detect significant changes in the functional state of patients based on data provided by a sensorized tip; a system that will

serve as support for the therapist who is treating the monitored patient’s case. Taking into account the variability that exists

among patients, the proposed design focuses on an individualized approach, so that the system characterizes the state

change of each patient case only on his/her own data. Once developed, the proposed methodology has been validated in ten

healthy people of different complexions, achieving an average accuracy of 87.5%. Finally, five case studies have been

analyzed, in which data from five multiple sclerosis patients have been captured and studied, obtaining an average accuracy

of 82.5%.
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1 Introduction

Neurological diseases, trauma injuries or even aging have a

significant impact on the gait performance and therefore,

also in quality of life. Recent studies [20, 22, 52] have

shown the importance of rehabilitation therapies to alle-

viate these effects. However, for that purpose, therapies

must be adapted to each individual, which requires to

define approaches to determine the functional state and

detect possible changes.

Traditionally, standardized clinical scales have been

used to assess the functional state of an individual. How-

ever, both the workload that entails performing the asso-

ciated tests and the limited number of resources, lead to a

reduced frequency of assessment sessions, which compli-

cates proper individualization of the therapy [16]. In order

to overcome these limitations, in recent works

[2, 15, 24, 33, 39, 40, 46, 47] the use of technological

approaches to monitor individuals’ gait, and extract indi-

cators that can be used to detect changes in the functional

state, has been proposed as a decision-making support

approach to the therapist.

Among the different technological solutions proposed

[40], wearable devices based on inertial sensors (ac-

celerometers, gyroscopes) are currently the most popular

ones [24, 29, 38]. However, the methods used to keep them

attached to the body can be uncomfortable to certain

individuals [7, 36, 42], especially those with reduced

mobility. In response to this problem, less invasive wear-

able alternatives such as wristbands, watches or smart-

phones have been proposed more recently [3, 26, 41].

Nevertheless, in these cases, parasitic motions have hin-

dered their applicability. Given the problems mentioned

above, recent studies have proposed including sensors in
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Assistive Devices for Walking (ADW) such as crutches,

canes or walkers [6, 8, 14, 18, 43, 51]. The use of ADW is

common in individuals with motor impairment, which

avoids user-rejection and makes this solution the most

suitable for monitoring these people’s gait.

In terms of application of the captured gait data, most of

the studies focus on classifying gait patterns of specific

neurological diseases or distinguishing these individuals

from healthy ones [1, 5, 12, 21, 29]. However, once a

diagnosis has been made and the functional state of the

patient characterized, the effectiveness of a particular

rehabilitation therapy depends on being able to adapt it to

the specific evolution of each individual, which the afore-

mentioned applications are not designed for. In this con-

text, anomaly detection approaches based on the use of

personalized gait pattern models have been proposed as a

solution to aid the decision-making process of the therapist.

However, existing published works [4, 10, 32, 34, 44] are

mainly based on wearable sensors and are designed for

people that do not require ADW.

Hence, in this work, an individualized Machine Learn-

ing-based approach to detect significant changes in the

functional state of individuals that require the use of

Assistive Devices for Walking is proposed. The proposed

approach, different to the ones proposed in the literature,

provides three main contributions: (1) A methodology to

create an individualized model for each person based on

current gait pattern data that is used to detect anomalies or

significant deviations; (2) An approach focused on people

that require Assistive Devices for Walking and specific

devices to monitor their gait; and (3) A validation based on

real data of people with multiple sclerosis.

The rest of the article is organized as follows: Sect. 2

provides an insight into the most relevant works related to

anomaly detection approaches, and their application to gait

patterns. Section 3 presents the sensorized tip used for data

acquisition; Sect. 4 details the methodology for the

development of a gait anomaly detector; in Sect. 5 the

validation of the methodology in healthy people is shown;

while Sect. 6 presents five case studies based on people

with multiple sclerosis where the methodology has been

tested; finally, the most important ideas are summarized in

Sect. 7.

2 Related work

The goal of anomaly detection (AD) techniques is to detect

data that do not fit into a normal pattern. AD applications

are multiple, being of special interest in areas such as fraud

detection, intrusion detection, network anomaly detection

or industrial fault detection. In the context of this work, an

anomaly is considered a deviation from a normal gait

pattern for a specific individual.

Among the different types of anomalies that are distin-

guished in the literature, point anomalies, which are

defined as instances that can be considered as abnormal

with respect to the rest of the data, are the most studied [9].

Gait anomalies are included in this group, as a change in

the gait pattern is constituted by samples that differ from

others considered as normal.

In order to detect this type of anomalies, multiple

techniques are proposed in the literature, which can be

classified into two main groups: Machine Learning (ML)-

based techniques, and non-ML-based techniques. Among

the latter, statistical techniques stand out [37], as they

provide statistically justifiable solutions. However, they

rely on the assumption that the data is generated from a

particular distribution, which is not applicable in many

cases [9].

In recent years, the use of ML-based techniques has

increased significantly in the field of anomaly detection,

due to their ability to deal with nonlinear and multidi-

mensional data, such as human gait data [15]. These

techniques are used to build models that distinguish

between normal and anomalous classes. Thus, according to

[37], anomaly detection can be split into three broad cat-

egories based on the training data function used to build

these models: supervised, semi-supervised and unsuper-

vised anomaly detection.

Supervised anomaly detection assumes the availability

of a training data set which includes labeled instances for

both normal and anomalous classes. However, in this

mode, two issues arise: on the one hand, the database is

usually not balanced, and more data corresponding to

normality are typically available; on the other hand, in

some applications, such as gait anomaly detection, it is

difficult to obtain a training data set which covers every

possible anomalous behavior that occur in the data [9]. In

this situation, the most common practice in anomaly

detection is to use semi-supervised or unsupervised tech-

niques. In the former case, the training data set includes

only data corresponding to the normal class; in the latter

case, the labels are unknown and there is an implicit

assumption that anomalous samples are less frequent than

normal ones.

Among the various ML techniques, Support Vector

Machine (SVM) is the most widely used in anomaly

detection [37]. There are studies that use this technique in a

supervised manner [17, 28]; however, it is common to use

the One Class Support Vector Machine (OC-SVM) variant

trained only with samples corresponding to normal

behavior, that is, in a semi-supervised mode. This tech-

nique has been widely studied and used in areas such as

computer networks [49] or intrusion detection [30].
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In the particular field of gait analysis, although some

statistical analysis-based approaches exist [32, 34, 44],

most works are focused on the use of ML-based approaches

[4, 10, 31, 48] that allow handling gait pattern analysis

considering multidimensional data. In this field, techniques

such as K-Nearest Neighbor (KNN) or Support Vector

Machine (SVM) are used, being SVM the most commonly

used technique, due to its remarkable generalization

capability even on small to medium data sets [15, 27].

However, it should be noted that most of these works

focus on distinguishing healthy people from those with an

impairment by using a multi-class classification approach,

in which at least two classes (healthy or not) are considered

for training the developed model. In fact, few studies focus

on developing gait anomaly detection in which only one

class data are available (the one considered as normal).

[48] follows this approach, in which a OC-SVM is used to

distinguish healthy people from people with mobility

problems. There, a model is trained with data corre-

sponding only to healthy people, and it is tested with other

subjects’ data, without prior knowledge about their physi-

ological state. Moreover, all previous studies are based on

data provided by wearable sensors, and works related to

people that require ADW are very limited. Among the

latter, in [19], a cane is used as the acquisition system and

changes in gait are studied, although the aim of the work is

to evaluate the effectiveness of the device, and not

detecting anomalies in gait pattern.

In conclusion, the analyzed related works indicate that

(1) most of the works are focused on multi-class classifi-

cation, in which at least two data sets related to healthy

people and people suffering a particular disease or

impairment are considered; (2) studies focus mainly on the

data provided by wearable sensors, and very few exist

related to people that need ADW; (3) most approaches do

not consider an individualized approach, as a model is

defined considering all available population; and (4) most

works only validate their approach considering healthy

people with simulated impairments. Hence, it can be con-

cluded that there is a lack of works related to (a) individ-

ualized gait pattern anomaly detection, in which a single

class is considered (normal state); (b) people that require

ADW; and (c) validation with people that suffer diseases or

impairments. The current work by the authors contributes

by covering all these gaps, as illustrated in the following

sections.

3 Sensorized tip

Considering the advantages of using ADW for monitoring

the gait performance of patients, in this work, the sen-

sorized tip presented in [6] (Fig. 1) is used to capture data.

It is worth mentioning that, unlike sensorized crutches or

canes presented in [8, 14, 18, 43, 51], the proposed sen-

sorized tip can be attached to the personal assistive device

of each individual.

The sensorized tip includes a data acquisition device and

three sensors (a force sensor, a barometer and an Inertial

Measurement Unit) integrated in an aluminum enclosure.

The force sensor provides information on the axial load

exerted by the patient, and the barometer indicates the

atmospheric pressure, which can be used to estimate the

relative height of the device, and finally, the Inertial

Measurement Unit provides linear acceleration data,

angular speed and magnetic field in the local x, y, z axes of

the crutch. This last sensor, apart from providing the

aforementioned signals, integrates an algorithm [6] to

estimate the Euler angles in the global reference frame,

which are used to estimate the anteroposterior and latero-

medial crutch angles that can be used to define the relative

3D motion of the crutch (Fig. 1).

4 A new methodology for a personalized
gait anomaly detector based
on sensorized tip data

This section details the methodology defined to develop the

individualized gait anomaly detector, which allows to

detect significant changes in the functional state of an

individual. This detector will be designed considering the

data provided by the sensorized tip detailed in the previous

section. Note that the system is designed to serve as a

support on the decision-making process of the therapist that

is treating the monitored patient.

The proposed methodology is based on the literature on

anomaly detection and gait recognition systems [15].

Although there are researches that work directly with raw

captured data [13, 50], most of the works in the area

Fig. 1 Sensorized tip
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propose a feature engineering-based approach, in which the

data are processed to obtain a reduced set of features that

can be used to characterize them [15, 27, 37]. This

approach is generally divided into three phases: (1) feature

generation, (2) feature extraction for dimensionality

reduction and (3) pattern classification.

Based on this analysis, in this work, the design

methodology summarized in Fig. 2 is proposed. This

approach requires to define a model of the current state of

the specific individual, which is tuned by using data from

his/her current and previous states. This model is used to

train a SVM-based anomaly detector, which is the most

widely used technique in anomaly detection and gait

recognition due to its generalization capability, even with a

limited training data set [15, 27], as stated in Sect. 2.

The detailed procedure is defined in the next subsections

and briefly summarized next. First, a database for the

specific patient has to be developed based on a series of

simple experimental tests related to both the current state

(CS) of the individual and the previous one (PS)

(Sect. 4.1). Then, based on the captured data, a set of

features is generated (Sect. 4.2). In a third step, the pre-

viously defined set of features and their relative importance

to detect the changes from the previous to the current state

are analyzed, and those features that are not relevant or

provide redundant information are removed (Sect. 4.3). For

this purpose, correlation analysis and the Random Forest

technique are used. Once the most relevant features are

selected, the set of optimal hyperparameters for the SVM-

based anomaly detector are identified (Sect. 4.4). Then,

using the selected hyperparameters, a One Class SVM is

trained using the current state data to implement the gait

anomaly detector (Sect. 4.5). Finally, the developed

detector is used to evaluate new/future data, determining

whether patient’s state has changed significantly or not

(Sect. 4.6).

4.1 Database generation

In order to develop the gait anomaly detector, a model of

the current functional state of the individual is required.

This will enable to detect anomalies based on significant

changes over the current state. For this purpose, a proper

data set is required, which will be based on the data

extracted from experimental tests with the individual.

As the focus of this work are individuals that require

ADW, the tests to be performed have to be simple to

perform and non invasive. This way, and based on previous

works [6], the database will be generated by the data

obtained by walking in a straight line at a comfort-

able speed according to the individual’s condition, with the

sensorized tip (Sect. 3) attached to the personal assistive

device of the individual. This test allows to easily evaluate

the gait performance to detect anomalies.

As detailed in Fig. 2, several data sets are defined for

this purpose. In order to model the current state and design

the gait anomaly detector, the Initialization Set, composed

by the Previous State and Current State data sets is defined.

These data sets are related to different functional states of

the patient that has been previously identified by the ther-

apist (i.e., significant changes exist on the patient condition

from the previous (PS) to the current state (CS)). Each of

these data sets are composed by different straight-line-

walking tests captured on different dates and times, in

order to capture the variability that may exist within the

same functional state. As will be analyzed later, although

Fig. 2 Gait anomaly detector design methodology
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only current state data will be used to train the detector

(Training Set), previous state data are used for identifying

the hyperparameters of the detector, among them the most

relevant features to detect state changes. Hence, this

approach requires a previously detected anomaly by a

therapist for its initialization.

The new data captured once the system is operational

will be included in the New Data data set (future state),

which will be introduced in the detector to evaluate whe-

ther it belongs to the Current State or not. In the latter case,

an anomaly will be automatically detected, i.e., a signifi-

cant state change.

4.2 Feature set generation

A feature-based approach is applied to the database with

the aim of creating and selecting useful features that help

identifying individualized anomaly patterns in gait

[15, 27, 37]. In this case, the proposed process is divided in

three phases: (1) trimming the signals; (2) performing a

segmentation process; and (3) generating the features that

characterize each segment.

The first phase lays in removing the signals captured

during approximately the first and the last meter of each

test. This is carried out to avoid the acceleration or

deceleration phases related to the execution of the tests.

Then, in a second step, signal segmentation is performed

using the procedure defined in [35]. This procedure is

based on the cycles of use of the crutch, which are com-

posed of a stance phase (in which the crutch is in contact

with the ground) and a swing phase (in which there is no

contact between the crutch and the ground). This way, the

signals provided by the tip sensors are divided into

sequential windows that are associated with those cycles.

The instant at which the crutch comes in contact with the

ground defines the start of each window and therefore, the

segmentation. This can be easily detected by considering

the force sensor signal, as illustrated in Fig. 3.

The aforementioned segments are small time windows,

in which each variable captured by the sensorized tip has a

time evolution. In the last phase of the feature generation, a

set of statistical, time or frequency-based operators can be

applied to each crutch cycle or segment to characterize

them with a set of features [12, 29]. In this case, the set of

operators used is based on the one proposed in [35] and is

summarized in the first column of Table 1. These operators

are applied to the different variables captured by the sen-

sorized tip: x, y, z linear accelerations—measured by the

3D accelerometer—xx, xy, xz angular speed—measured

by the gyroscope—lateromedial and anteroposterior

angles—estimated using the algorithms of the sensorized

tip—and the normalized force (the measured force vs

individual weight related force ratio)—measured by the

force sensor. Note that, different from [35], the magne-

tometer and Euler angles signals are left out from the

characterization, as they deal with absolute angles that can

lead to errors. Similarly, the barometer signal is neither

used, since its relative accuracy (0,12 hPa � 1 m) is not

high enough to detect variations in a short straight line test.

After performing the three phases of the defined process,

90 features (presented in Table 1) associated with each

cycle of use of the crutch are obtained.

4.3 Feature selection

The set of 90 features obtained in the previous section

enables to characterize the gait of each individual. How-

ever, not all of them are relevant in detecting gait

anomalies; moreover, changes in each individual may be

reflected in different features, which highlights the need for

an individual approach. Furthermore, some of the features

may be correlated and provide redundant information.

In order to optimize the anomaly detector, in this sec-

tion, feature selection is performed, eliminating those that

are not relevant or provide redundant information. In fact,

several studies in anomaly detection state that feature

selection and extraction enhance and improve the accuracy

and computational efficiency of the models [15, 27, 37].

According to these studies, Principal Component Analysis

(PCA) is one of the most used features extraction tech-

niques; however, this algorithm transforms the initial fea-

tures into new ones, so the physical meaning of the initial

information, which is needed for proper diagnosis and

results interpretation in multiple applications, gets lost.

Based on this statement, in this work, correlation analysis

and Random Forest techniques have been used for features

selection, an approach that allows the explainability of the

results and has proven to be effective for feature selection

[35].

Fig. 3 Cycle of use of an ADW and its phases
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4.3.1 Correlation analysis

The feature set obtained in the previous step (Sect. 4.2) is

processed by carrying out a correlation analysis, in which

features that may be correlated are analyzed. For that

purpose, a correlation matrix is calculated using the sam-

ples contained into the Initialization Set (composed of the

Previous State and Current State databases defined in

Sect. 4.1), and the features whose correlation coefficient is

greater than 0.95 are identified, as it is considered that the

pair of features is highly correlated. From the correlated

features, only one is kept in the feature set, removing the

rest.

4.3.2 Random forest-based ordering

Random Forest is a Machine Learning technique widely

used in various applications to perform regression or

classification tasks and which includes an approach to

estimate the relative importance of the features for classi-

fication [11].

In this work, Random Forest is used to identify the gait-

related features that are more significant to detect a change

of state in an individual. For that purpose, the samples

contained into the Initialization Set (composed of the

Previous State and Current State databases defined in

Sect. 4.1) are used as input. The algorithm is implemented

using MATLAB’s Statistics and Machine Learning

Toolbox.

Once the results are obtained, the features are sorted in

decreasing order considering their contribution for distin-

guishing the samples corresponding to the previous and

current states. Features with a positive relative importance

contribute to the classification, whereas a negative weight

means that the feature is detrimental to it. The latter are

removed from the set of features.

Note that the results of the Random Forest will vary

from one patient to another, as not all patients change their

gait in the same way. Knowing which features are most

significant for each patient is also a useful information for

the therapist, so in this phase, apart from optimizing the

process by removing irrelevant features, potential infor-

mation for the specialist is also obtained.

Following this two-step procedure, a relevance-ordered

representative feature set, with relevant and non-redundant

information is achieved, which will be used as the basis to

train the detector.

Table 1 Features generated

from the data provided by the

sensorized tip

Operator # Source !

Accel (X,Y,Z) Gyro (X,Y,Z) Angles (A,L) Norm. force

Mean X X X X

SD X X X X

Kurtosis X X X X

CC XY X X

CC XZ X X

CC YZ X X

CC AL X

25th perc. X X X X

50th perc. X X X X

75th perc. X X X X

Area X X X X

IQR X X X X

Stance start value X

Value at max. force X X

Stance end value X

Amplitude X

Cycle time X

Stance phase % X

F. number 27 27 25 11

Accel = Accelerometer, Gyro = Gyroscope, Norm. force = Normalized force, A = Anteroposterior, L =

Lateromedial, SD = Standard Deviation, CC = Correlation Coefficient, IQR = Interquartile range, F. =

Feature
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4.4 Optimal hyperparameter selection

Given the current state of the patient (normal state), the

purpose is to determine whether the new/future data belong

to the same group, or on the contrary, correspond to a new

one, which means that the patient’s state has changed

(anomalous state). Thus, the detector can be designed

considering a classification problem between these two

states.

Note that, although there are two groups (normal state

and anomalous state), this problem cannot be treated as a

supervised binary classification, since within the anoma-

lous state there may be multiple groups, belonging to dif-

ferent patient’s states. In this situation, a binary approach

could lead to errors, as not all the samples belonging to the

anomalous state have to be similar. Therefore, in this case,

One Class Support Vector Machine (OC-SVM) semi-su-

pervised Machine Learning technique has been selected to

implement the detector, as the only data known for the

detector is the one related to the normal state. This

approach has been widely used in anomaly detection

[23, 48].

An OC-SVM model is trained using only the data cor-

responding to one class (usually the normal class which in

this work is the data corresponding to the Current State, as

seen in Fig. 2). During the training process, the algorithm

defines a boundary around the areas comprising the train-

ing data, and once the process has finished, the model can

be used to classify new data as normal (those inside the

boundary, related to the normal state) or different (those

outside the boundary, related to the anomalous state). In

general, the distribution of the training set is complex and

the anomalies are not linearly separable from the normal

data; in such cases, kernel functions are used to project the

samples into a multidimensional space, where a linear

separation is feasible.

In this work, an OC-SVM with a radial basis function

(RBF) kernel is used, as it is suitable for data with a

complex distribution. When using this kernel, it is neces-

sary to define an hyperparameter called c, which controls

the bandwidth of the kernel. The larger this parameter, the

smaller the kernel width, and therefore, the more the model

fits to the training data, existing risk of overfitting. The

main challenge when using SVM-based techniques is to

define the hyperparameters [15], for which cross-validation

is a common practice [30].

According to the literature [25], the value of gamma can

vary significantly in a range between 10�2 and 102. Based

on experimental tests, in this case, three values have been

proposed: 0.01, 0.1 and 1, from which the methodology

itself will select the optimal value for each patient. Apart

from this hyperparameter, the methodology will also

optimize the number of features to be used in each case, by

selecting a subset of the n most relevant features from the

ordered feature set obtained in feature selection step

(Sect. 4.3).

Figure 4 summarizes the procedure developed to opti-

mize the two hyperparameters mentioned above. For this

purpose, the data from the Initialization Set are used as it

contains the data of two different states of the individual.

Since the main objective of the work is to classify a test on

the basis of information provided by other tests that are

taken as a reference, first, a Leave One Out (LOO)

approach is applied to the Current State database, thus

generating several training sets, formed by all the samples

into this database except those corresponding to one test.

Once these sets are generated, for each combination of

parameters, m classifiers are trained (m being the number of

tests in the Current State database, and therefore, the

number of sets obtained by the LOO approach) using the

training sets previously generated. Each classifier is eval-

uated using the tests from the Initialization Set that has not

been used in the training. These tests are validated sepa-

rately, obtaining in each case the percentage of correctly

identified samples; then, the geometric mean is calculated

with the obtained percentages, evaluating this way the

performance of each classifier. Note that the geometric

mean penalizes the misidentification of each test, thus

assessing the ability of the classifiers to identify correctly

both similar and dissimilar tests to those in the training set.

Once the m classifiers have been evaluated, the geo-

metric mean is calculated again with the obtained results,

in order to determine the effect that the training data have

on the classifier performance. This way, a single value is

obtained for each combination of hyperparameters that

allow to evaluate and compare the different combinations

in order to determine the best performing configuration.

4.5 One class SVM training

Given the optimal hyperparameters obtained from the

aforementioned proposed procedure, the One Class SVM

classifier is trained. For this purpose, only the samples in

the Current State database are used.

Note that, although unusual, in some cases, there may be

multiple optimal combinations of hyperparameters. In

these cases, one classifier is trained for each optimal

combination, and the trained classifiers are used to imple-

ment the detector, combining their outputs as analyzed in

the next section.

4.6 New/future data evaluation

The off-line trained OC-SVM classifier is operational so as

it can be periodically used with new data captured from the
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particular patient based on the procedure detailed in

Sect. 4.1.

The OC-SVM classifier will provide an output for each

of the new segments or crutch cycles, labeling them as part

of the normal state or not (thus, an anomalous state). As

multiple cycles exist on a test, a voting strategy will be

used to determine the main class of the test. This way, the

predominant label will be assigned to the test, determining

whether the patient’s functional state has changed or not. In

case, there are multiple optimal hyperparameter configu-

rations, and therefore, multiple trained classifiers, the

classification made by all of them will be taken into

account, assigning the test the label that is most repeated

among all of them.

Note that the proposed approach is designed to be

updated each time a new test is identified, improving this

way its performance. Figure 5 shows the updating process:

once the new test is evaluated, if it belongs to the current

state, it will be included in the Current State database,

completing it. On the contrary, if it belongs to another

class, the databases are reordered, removing the data from

the Previous State, moving the data from the Current State

to the Previous State database and introducing the new test

into the Current State database.

Note that the previous state data would be removed for

classification purposes, but not from the original database

as long as all the historical data about the patient must be

preserved for clinical monitoring. It must be highlighted

that this is a support system for the therapist, so if a change

is detected, the specialist will have to carry out a study with

the patient, confirming that the detected change is relevant.

If so, more tests corresponding to that state will be per-

formed in order to complete the Current State database.

5 Validation in healthy people

In order to validate the proposed detector, first, a set of tests

are carried out with healthy people in a controlled envi-

ronment with the approval of the University of the Basque

Country’s (UPV/EHU) Ethics Committee (Code M10/

2021/325). The aim of these tests is to verify the potential

of the proposed approach.

Note that since the anomaly detector is based on

obtaining a personalized model for each individual, in the

design of the validation tests, participants of different

characteristics are considered. In particular, ten participants

have been selected for these tests, whose main data are

summarized in Table 2.

In this section, the validation procedure is detailed: First,

the tests are described, and then, the results are shown and

analyzed.

Fig. 4 Hyperparameter optimization
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5.1 Test setup

In order to make the tests carried out with healthy people as

similar as possible to real cases, these tests have been

designed in such a way that the participants are required to

use a crutch out of necessity. Based on specialists exper-

tise, 3D impediments have been designed and manufac-

tured together with an insole, which, being located on the

sole of a foot, generate discomfort that makes the partici-

pant have to use a crutch to walk.

As the aim of the methodology is to identify gait

changes, three types of impediments have been designed

(Fig. 6). The degree of discomfort generated by each of

these impediment configurations is different, with the first

state being the slightest, and the third being the most

critical, where the use of the crutch becomes essential. This

way, three different states can be simulated.

For each configuration of impediments, the participants

use the assistive device in the way that seems most

appropriate to them; this way, the results are not condi-

tioned, and simulate an evolution similar to that of a

rehabilitation process, in which the patient’s ability to set

the foot on the ground changes gradually.

Based on this test design, the participants have per-

formed 4 independent 10-meter tests in each state. The data

of each test have been processed as detailed in Sect. 4.2,

thus obtaining approximately six or seven samples (seg-

ments or cycles) per test. As mentioned in Sect. 4.1, each

Fig. 5 System update process

Table 2 Participants’ main data

Gender Age Weight (kg) Height (cm)

Participant 1 Female 48 60 170

Participant 2 Female 26 63 163

Participant 3 Male 26 84 185

Participant 4 Male 27 63 185

Participant 5 Male 29 75 180

Participant 6 Female 26 67 167

Participant 7 Male 30 71 173

Participant 8 Male 24 74 179

Participant 9 Female 23 58 160

Participant 10 Female 59 47 158

Fig. 6 Impediments
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test consists of walking in a straight line at a comfort-

able speed, with the sensorized tip attached to the assistive

device.

Six out of 12 tests performed per patient have been used

to initialize the system: three tests of the same state con-

stitute the Previous State database, and three tests corre-

sponding to another state form the Current State database.

Once the data sets are defined, the procedure defined in the

previous section is applied to train an One Class SVM.

In reality, the patients’ functional state evolves over

time, and therefore, the last test performed will always be

the one to classify. However, in this validation process,

being the states simulated, each test has been treated as

independent, and multiple scenarios have been generated,

representing a different evolution in each of them, by

ordering the tests in all possible combinations. This allows

a more comprehensive analysis of the performance of the

proposed design approach.

Using the aforementioned approach, and considering the

possible test and state combinations, 96 different Initial-

ization Sets are obtained, and in each of them 6 tests

remain to be classified and are used to evaluate the

designed detector. Thus, for each patient, 576 scenarios are

analyzed, 480 in which a significant change exists between

the Current State database tests and the test to be classified,

and 96 in which the test to be classified is similar to those

in the Current State database. Evaluating all possible sce-

narios, a set of overall performance results has been

obtained, as analyzed in the next subsection.

5.2 Results and discussion

Table 3 summarizes the overall results, showing the

specificity, sensitivity, accuracy, precision and F-score data

for each participant. When obtaining these values, state

changes have been considered as a positive event, while no

change has been taken as a negative event.

The results show that, the proposed approach provides

an average accuracy of 87.5%, which is slightly higher

compared to the ’ 84% of accuracy obtained in other

studies with a similar approach based on wearable sensors

[4, 10]. These results are more specific than sensitive, and

they show a high precision. This means that if the system

detects a change, there is a high probability that the change

has occurred, which is desirable in order not to overload

the therapist with false positives.

In order to further analyze the performance of the pro-

posed approach, a set of individual examples is analyzed

next. Figure 7 shows three cases where the designed

detector has successfully identified normal and anomalous

states. In the selected examples, the designed One Class

SVM models have as their optimal configuration only the

two most relevant features (according to the methodology

described in Sect. 4.4), allowing a 2D representation of the

classifier (in the first shown case—participant 4—the 75th

percentile of normalized force and the cycle time; in the

second case—participant 5—the 50th percentile of linear

acceleration in x axis and the maximum value of normal-

ized force; and in the last case—participant 9—the stance

end value of anteroposterior angle and the 75th percentile

of normalized force).

In each figure, the different shapes represent the 3 dif-

ferent states emulated by the impediments, while colors are

used to distinguish the different tests (except those that

form the Previous State or Current State database, which,

as part of the same set, have been represented with the

same color). A small shape means that the sample has been

labeled as normal, whereas a large shape is the one that has

been identified as anomaly.

As it can be seen in Fig. 7, the developed detectors have

been able to identify changes through the two features

considered to be the most important ones. It must be

highlighted that as the methodology is individualized, those

relevant features can be different in each scenario. In the

three cases in Fig. 7, features associated with the force

signal are identified as some of the most relevant. This is

because the 3D impediments used to simulate motor

impairments make it difficult to set the foot on the ground,

so the participants use the crutch for support, as in a

rehabilitation process. The greater the discomfort, the

greater the force exerted on the crutch, and therefore, the

features associated with this variable are related to the

simulated state changes. Although force is a relevant fea-

ture in these cases, it is not enough for the system, which

has determined that the 2-feature configuration is the best.

This second feature is different for each participant, and it

represents that as discomfort increases, apart from exerting

more load on the crutch, some participants may change

Table 3 Performance of the methodology in validation with healthy

people

Sp (%) Se (%) Ac (%) P (%) F (%)

Part. 1 97.92 81.46 84.20 99.49 89.58

Part. 2 93.75 94.17 94.10 98.69 96.38

Part. 3 93.75 78.33 80.90 98.43 87.24

Part. 4 87.50 84.79 85.24 97.14 90.55

Part. 5 94.79 95.21 95.14 98.92 97.03

Part. 6 93.75 82.92 84.72 98.51 90.05

Part. 7 96.88 81.25 83.85 99.24 89.35

Part. 8 91.67 83.54 84.90 98.04 90.21

Part. 9 91.67 84.58 85.76 98.07 90.83

Part. 10 97.92 95.83 96.18 99.57 97.66

Sp = Specificity, Se = Sensitivity, Ac = Accuracy, P = Precision, F =

F-score, Part. = Participant
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their gait speed, others the crutch tilt, or even acceleration

or angular speed of the crutch may be varied. This high-

lights the importance of the individual approach, through

which state changes have been well identified despite the

variability that exists between participants.

Although cases with good performance predominate

(with an average accuracy of 87.5%), there are also cases

where the designed detectors have misclassified some tests;

Fig. 8 shows three of these cases. As in the previous case,

in order to illustrate the performed classification, the cases

in which a set of two features form the optimal configu-

ration for the One Class SVM detector design have been

selected (in the first shown case—participant 2—25th

percentile of the normalized force and the 25th percentile

of acceleration in y axis; in the second case—participant

7—75th percentile of acceleration in x axis and the cor-

relation coefficient between the angular speed in y and

z axes of the crutch; and in the last case—participant 10—

the lateromedial angle value in the maximum force

moment and the kurtosis of the angular speed in y axis).

Results shown in these cases illustrate the cases in

which, using the selected features, the detector fails to

detect the anomalies and considers them as part of the

normal state. This phenomenon may occur if the patient

changes his or her gait pattern in a way that is different

from what is known. In that case, since the methodology

has not characterized that type of change, the system may

not be able to perform a good classification. However, note

Fig. 7 Graphical representation of one class SVM performance in three successful cases

Fig. 8 Graphical representation of one class SVM performance in three unfavorable cases
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that this system is designed to be updated as detailed in

Sect. 4.6, and therefore, it will always have information on

the latest changes, minimizing this way the risk of

misclassification.

In addition, it should be highlighted that in the cases

shown in Fig. 8, there is a large difference between the

states represented by the Previous State and Current State

databases, being the tests corresponding to the intermediate

state the ones to be classified. The larger the difference

between the initialization samples, the more features will

undergo variations, and therefore, those selected as the

most important ones will be able to properly classify the

samples of those known states, but may fail when an

intermediate state has to be classified. However, in real

cases, if the patient is well monitored, it would be unusual

to find such cases, especially in rehabilitation processes

(like the one simulated in this work), where changes occur

gradually.

6 Validation in people with multiple
sclerosis

In this section, the performance of the proposed approach

with a set of people with multiple sclerosis is evaluated.

The aim of this section is to proof the validity of the

approach with real patient’s data.

Multiple sclerosis is a chronic, neurodegenerative dis-

ease that affects people from a very young age (average 30

years) and progresses over many years. Fatigue and motor

impairment are the most common symptoms, in fact, 15

years after the first outbreak, 80% of patients need an

assistive technical device to walk [45]. In many cases, the

functional state of these patients is reflected in their gait

pattern; therefore, the methodology developed in this work

is also suitable for these case studies.

In this section, the test procedure is detailed: First, the

tests carried out with patients are described, and then, the

obtained results are shown and analyzed.

6.1 Test setup

Tests have been performed with five people with multiple

sclerosis (PwMS) who use a crutch in their daily life. The

basic data of these patients are detailed in Table 4. These

tests have been carried out at the Multiple Sclerosis

Association of Bizkaia (ADEMBI) with the approval of the

Basque Government PS2018017 Ethics Committee.

In order to monitor the temporal evolution of these

patients, three sessions have been carried out, one every

three months. In each of them, patients have performed two

repetitions of a single test consisting of walking 10 m in a

straight line at a comfortable speed according to their

condition, with the sensorized tip attached to their own

assistive device.

Table 5 shows the number of samples or crutch cycles

obtained in each test. Note that in a 10 m test, only few

samples are obtained, which means that a wrong step (one

that does not correspond to the real patient’s state) could

condition the results. Testing over longer distances would

increase the number of samples, thus minimizing this risk

and obtaining a more robust system. However, it must also

be taken into account that PwMS have mobility problems,

which prevents them from being able to walk long dis-

tances without aid. Based on this situation, in this case, it

has been decided to carry out tests of 10 m, which is the

minimum distance for the system to work as determined in

the validation phase.

Apart from capturing data, in each session, the func-

tional state of the PwMS has also been assessed by a

specialist using for this purpose the standardized Short

Physical Performance Battery (SPPB) scale. This scale

consists of several tests to assess the patient’s balance,

strength and gait speed. The score that can be obtained

ranges from 0 to 12, with 12 being the best score. Table 6

shows the results obtained in this assessment.

It must be taken into account that multiple sclerosis is a

complex disease, whose evolution is very unstable. This

explains the variations that are observed in patients’ states.

Once the tests have been carried out, the methodology

detailed in Sect. 4 is applied. In this case, as real study

Table 4 Patients’ main data

Gender Weight (kg) ADW

S1 S2 S3

Patient 1 Male 91.5 92.4 95.6 Cane

Patient 2 Female 57.2 55.3 54.6 Crutch

Patient 3 Male 94.3 97.1 96.1 Crutch

Patient 4 Female 58.2 59.8 57.5 Crutch

Patient 5 Male 65.7 65.2 64.4 Crutch

Table 5 Number of samples (crutch cycles) per test

P1 P2 P3 P4 P5

Session 1 Test 1 8 7 7 7 10

Test 2 7 6 7 8 11

Session 2 Test 3 6 6 7 7 11

Test 4 6 5 7 7 10

Session 3 Test 5 6 5 7 6 8

Test 6 6 6 6 6 9
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cases with a real temporal evolution are analyzed, the four

tests of the first two sessions should be used to initialize the

system. After the initialization, the system’s objective

would be to determine whether the patient’s functional

state has changed from the second to the third testing

session. However, since the anomaly detection approach

presented in this work is not subject to temporal evolution,

in this validation process, the test sessions have been

treated as independent, and they have been ordered in all

possible combinations as detailed in Sect. 5. Thus, a more

comprehensive analysis of the proposed system’s perfor-

mance is carried out.

Note that, according to the performed assessment

(Table 6), there are three patients (patient 2, patient 3 and

patient 5) whose SPPB value has changed in all three

session, reflecting a significant state change; in the case of

patient 1 and patient 4, on the contrary, sessions with the

same SPPB value are observed. As the methodology

requires the current and the previous states (between which

there has been a change of state) for the initialization, in the

case of patients 1 and 4, four cases have been analyzed. In

the case of patients 2, 3 and 5, on the contrary, six possible

initialization combinations have been studied. In each of

them, the remaining two tests (the ones that have not been

used in the initialization phase) have been evaluated.

Table 7 shows all the possible combinations used in this

validation phase.

6.2 Results and discussion

After applying the developed approach to the data obtained

in the aforementioned tests, the results shown in Table 7

have been obtained. Each row represents a case study, in

which the tests used as Previous State and Current State

databases are defined. In each of these case studies, the

remaining two tests have been evaluated as normal or as

anomaly. Thus, cells in italics are those that have been

correctly identified by the system, while those in bold are

the ones that have been mislabeled.

Based on the results shown in Table 7, the accuracy of

the approach for each patient has been calculated. Table 8

presents the obtained values.

Results show that in general, the methodology identifies

correctly the validation tests; however, there are cases in

which misclassification has occurred.

On the one hand, there are cases where one of the val-

idation tests indicates that there has been an anomaly,

while the other determines that the state corresponds to the

Current State. This phenomenon is due in part to the small

number of samples available. Note that the methodology

classifies each sample (gait cycle) as either normal or

anomalous, and it is the predominant label that is assigned

to the test. Therefore, a reduced number of gait cycles

Table 6 SPPB values

P1 P2 P3 P4 P5

Session 1 8 8 8 7 3

Session 2 9 11 11 8 5

Session 3 9 10 10 7 4

Table 7 Results of the methodology in validation in people with

multiple sclerosis

Previous state Current state Validation

P1 T1/T2 T3/T4 NORMAL NORMAL

T3/T4 T1/T2 ANOMALY ANOMALY

T1/T2 T5/T6 ANOMALY NORMAL

T5/T6 T1/T2 ANOMALY ANOMALY

P2 T1/T2 T3/T4 ANOMALY ANOMALY

T3/T4 T1/T2 ANOMALY ANOMALY

T1/T2 T5/T6 ANOMALY ANOMALY

T5/T6 T1/T2 NORMAL ANOMALY

T3/T4 T5/T6 ANOMALY ANOMALY

P3 T5/T6 T3/T4 NORMAL NORMAL

T1/T2 T3/T4 ANOMALY ANOMALY

T3/T4 T1/T2 ANOMALY ANOMALY

T1/T2 T5/T6 ANOMALY NORMAL

T5/T6 T1/T2 ANOMALY ANOMALY

T3/T4 T5/T6 ANOMALY ANOMALY

P4 T5/T6 T3/T4 NORMAL ANOMALY

T1/T2 T3/T4 ANOMALY ANOMALY

T3/T4 T1/T2 NORMAL NORMAL

T3/T4 T5/T6 NORMAL NORMAL

T5/T6 T3/T4 ANOMALY ANOMALY

T1/T2 T3/T4 NORMAL NORMAL

P5 T3/T4 T1/T2 ANOMALY ANOMALY

T1/T2 T5/T6 NORMAL NORMAL

T5/T6 T1/T2 ANOMALY ANOMALY

T3/T4 T5/T6 ANOMALY ANOMALY

T5/T6 T3/T4 ANOMALY ANOMALY

Table 8 Performance of the methodology in validation in people with

multiple sclerosis

P1 P2 P3 P4 P5

Accuracy (%) 87.50 75.00 83.33 100 66.67
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makes each sample carry more weight in the final decision.

The first image in Fig. 9 shows one of these cases (patient

1, case study 3), in which the methodology has determined

that a single feature—the standard deviation of the linear

acceleration in x axis—forms the optimal configuration. In

this case, the tests to be evaluated correspond to the Cur-

rent State, however, it can be seen that some validation

samples are slightly different from those samples used for

training, so the system labels them as anomalous. This

reflects that, in this particular case, the samples acquired in

the 10-meter tests performed have not been sufficient to

capture the variability of a specific state or to adequately

characterize it. In fact, if the two validation tests are con-

sidered together and not as separate tests, the system

determines that they belong to the CS, as indicated by the

SPPB value. Longer tests would be appropriate in this case

in order to optimize the results, but as noted in Sect. 6.1,

people with multiple sclerosis have mobility problems,

which prevent them from walking long distances without

aid. Moreover, it should be noted that in most cases,

10-meter tests have been shown to be sufficient, obtaining

an average accuracy of 82.5%, so increasing the distance

would have to be analyzed taking into account each

patient’s impairment.

As in Figs. 7 and 8, shapes are also used in this one to

represent states, colors to distinguish the tests (except those

that form the Previous State or Current State databases,

which have been represented with the same color) and size

to differentiate the samples labeled as normal (the small

shapes) and the ones classified as anomalies (the large

shapes).

On the other hand, there are cases in which both vali-

dation tests have the wrong label, such as the case study 6

of patient 2, or case studies 1 and 3 of patient 5. The second

and the third images in Fig. 9 shows two of these case

studies: the case study 6 of patient 2 (where, the standard

deviation of angular speed in x axis and the standard

deviation of angular speed in z axis form the optimal

configuration) and the case study 3 of patient 5 (where the

50th percentile of linear acceleration in x axis is the most

relevant feature). In these cases, according to the most

relevant features, there has been no change between the CS

and the new tests, but the SPPB value has changed.

This phenomenon may be due to several reasons. On the

one hand, there may be some features that represent the

change between these states that the methodology has not

been able to identify. However, on the other hand, it may

also be that the actual gait of the patients between these

tests has not changed much even though the value on the

SPPB scale is different. In fact, in the case of patient 5, the

results are consistent, and the two scenarios in which the

methodology has failed are indicating that in sessions 2 and

3, the patient’s gait pattern is similar. In the case of patient

2, something similar occurs, and even though one of the

tests indicates an anomaly, if all of the validation samples

were taken into account together, the methodology would

conclude that in the sessions 1 and 2, the gait pattern has

not changed.

Despite these unfavorable cases, the overall perfor-

mance of the system is acceptable with an average accu-

racy of 82.5%. Figure 10 shows some of the cases in which

the One Class SVM classifier has performed accurately. In

the case of patient 1, the correlation coefficient between the

angular speed in x and y axes is used; in the case of patient

2, the correlation coefficient between the angular speed in

x and y axes and the lateromedial angle in the stance end

Fig. 9 Graphical representation of one class SVM performance in three unfavorable real cases
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moment are the most relevant features; and in the case of

patient 3, the lateromedial angle in the stance end moment,

the 25th percentile of the lateromedial angle, and the

standard deviation of the angular speed in x axis form the

optimal configuration).

Note that in these validation cases, the force does not

appear among the most important features. Instead, angles

and the gyroscope related angular speeds are the ones that

predominate. It is to be noted that among PwMS, some use

the crutch to support, and others use it to maintain balance,

so state changes can be reflected in different variables

depending on the participant. This highlights once again

the need for an individual approach when carrying out this

type of studies.

In conclusion, the overall results demonstrate that the

proposed approach to design gait anomaly detectors is

promising when applied to real scenarios. Also, it must be

highlighted that this work proposes an individualized

approach and consequently, the results cannot be taken as

representative of the whole population.

7 Conclusions

In this work, a new ML-based methodology for the design

of personalized gait anomaly detectors to detect gait pattern

changes in people who need an assistive device for walking

is proposed. These gait pattern variations may reflect

changes in the patients’ functional state, and therefore, an

early detection is important so that the specialist can

redesign the rehabilitation according to the patient’s new

functional state, thus improving his/her quality of life.

For this purpose, in this case, a sensorized tip that can be

attached to the patient’s own assistive device for walking

has been used as monitoring system. Once defined the data

acquisition technology, a methodology to design the ML-

based detector has been proposed. Taking into account the

variability that exists among patients, the proposed

approach creates an individualized model of the patient to

detect the state changes.

The approach has been tested with healthy people and

people with multiple sclerosis, obtaining an average

accuracy of 87.5% and 82.5%, respectively. These results

have emphasized the need to use individualized approaches

for anomaly detection in complex and individual evolution

dependent diseases. This proposal will be extended to

longer monitoring periods in order to enrich and validate a

time adaptive approach.

It is to be noted that the proposed approach requires for

its initialization a previously detected anomaly, in order to

determine the most important features to be included in the

individualized ML-model. Furthermore, as analyzed, in

some specific cases the length of the tests may condition

the results, and further research is advisable to determine

the optimal test length to capture the variability of the gait

pattern for a specific state. Hence, future work by the

authors includes to explore new initialization approaches in

order to reduce the amount of previous data required to

initialize the anomaly detector and analyze the effects of

the test length on the results.
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