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Abstract: Block copolymers (BCPs) as solid electrolytes for batteries are usually designed to have
an ion-solvating block for ion conduction and an ionophobic block for providing mechanical
strength. Here, we show a novel solid polymer electrolyte (SPE) for sodium batteries based on
a poly(vinyl benzoate)-b-poly(diallyldimethyl ammonium bis(trifluoromethanesulfonyl)imide) PVBx-
b-PDADMATFSIy-b-PVBx ABA triblock copolymer. The SPE triblock copolymer comprises a poly-
merized ionic liquid (PIL) ion-solvating block combined with NaFSI salt as an internal block and
an ionophilic PVB as an external block. Four distinct compositions with varying chain lengths of
the blocks were synthesized by reversible addition−fragmentation chain-transfer (RAFT) polymer-
ization. The neat copolymers were subsequently mixed with NaFSI in a 2:1 mol ratio of Na to ionic
monomer units. Through comprehensive analysis using differential scanning calorimetry (DSC),
Fourier-transform infrared spectroscopy (FTIR), and nuclear magnetic resonance (NMR), it was
revealed that the ion coordination within the polymer–salt mixtures undergoes changes based on
the composition of the starting neat polymer. Electrochemical evaluations identified the optimal
composition for practical application as PVB11.5K-b-PDADMATFSI33K-b-PVB11.5K, showing an ionic
conductivity at 70 ◦C of 4.2 × 10−5 S cm−1. This polymer electrolyte formulation was investigated for
sodium in Na|Na symmetrical cells, showing an overpotential of 200 mV at 70 ◦C at 0.1 mA cm−2.
When applied in a sodium–air battery, the polymer electrolyte membrane achieved a discharge
capacity of 1.59 mAh cm−2 at 50 ◦C.

Keywords: polymer electrolytes; block copolymers; sodium batteries; sodium-air batteries

1. Introduction

The landscape of energy harvesting and storage is rapidly evolving, driven by the
need to transition from fossil fuels to renewable energy sources. Among the various energy
storage solutions, battery technology has been drawing much attention in research. On
the one hand, a lot of effort is being put into achieving batteries that exhibit enhanced
performance, particularly in terms of their overall capacity [1]. This necessity arises from the
growing demand for energy storage solutions across various industries and applications [2].
On the other hand, the current political scenario demands that safety, cost, and sustainability
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of battery life cycles be imperative characteristics when investigating new battery concepts
and designs [3–6]. The potential problems related to battery use and disposal are becoming
more and more obvious as batteries are integrated into every aspect of our daily lives.

Due to the great source of raw materials, sodium-based batteries are emerging as
a competitive technology in the field of energy storage to supplement the rising need
for higher energy densities and storage capacities, currently sustained primarily by the
well-established lithium ion technology [7–10]. Current sodium-based batteries share with
lithium ion technology the safety concerns linked to flammable and toxic liquid electrolytes.
Because of their simplicity of processing and low flammability, polymer electrolytes have
found a growing research interest [11–16]. Furthermore, polymers have a number of
structural choices that span from linear homopolymers to more complex architectures like
block copolymers, which allow for tailoring of properties and application to a variety of
applications [15–23].

Among the diverse options within polymer electrolytes, block copolymer electrolytes
(BCEs) have emerged as particularly promising. BCEs exhibit phase-separated nanos-
tructured morphologies, offering independent tuning of thermal, mechanical, and electro-
chemical properties—a key advantage for adapting to varied applications [24–28]. This
innovative approach involves the synthesis of polymer electrolytes containing a ‘soft’ block
that coordinates with metal ions (i.e., Li and Na) for ionic transport and a ‘rigid’ block
for mechanical strength and structural support [18,19,29]. The need for precisely tailored
blocks requires synthetic methods that can achieve the targeted molecular weights and
distributions with accuracy. Some polymerization techniques defined as living or con-
trolled, including anionic, cationic, ring-opening metathesis polymerization (ROMP), atom
transfer radical polymerization (ATRP), and RAFT, enable the achievement of consistent
and measurable structure–property relationships [25]. Among these techniques, RAFT
has gained popularity for its versatility in monomer and condition selection, accommo-
dating various initiation methods [30–33]. For the mechanical block, a “rigid” polymer
with a high glass transition, such as polystyrene and polymethylmethacrylate, is typi-
cally chosen [29,34–36]. The immiscibility of individual blocks results in phase-separated
nanostructured morphologies, enhancing the mechanical properties of these copolymers.

Various polymer chemistries have been explored for ion solvation, with polyethylene
oxides, polycarbonates, and poly(ionic liquid)s among the most investigated [8,17,37].
In particular, the poly(ionic liquid) backbone poly(diallyldimethyl ammonium bis tri-
fluoromethanesulfonimide), known as PDADMATFSI, has been demonstrated to have
great versatility for lithium and sodium batteries [38,39]. Interestingly, previous stud-
ies have shown the potential of block copolymers with PDADMA-based ion solvation
blocks [11,29,38,40–42]. Thus, Malunavar et al. [29] reported a free-standing polymer elec-
trolyte membrane composed of a polystyrene (PS) block and PS-b-PDADMATFSI-b-PS
block copolymer and NaFSI salt mixture, which demonstrated an ionic conductivity of
10−3 S cm−1 and sodium transference number of 0.34 at 70 ◦C using a mol ratio of DAD-
MATFSI:NaFSI of 1:2. The polymer electrolyte also achieved a stable overpotential of
300 mV when cycled in Na-symmetric systems up to 0.2 mA cm−2 and a specific capac-
ity of 118 mAh g−1 at a C/20 rate at 70 ◦C in a Na|NaFePO4 cell. However, in that
investigation, it was suggested that the mechanical stability of the polymer electrolyte
membrane is compromised by the low molecular weight of the polystyrene mechanical
block (2000 g mol−1) and the lack of control and high dispersity observed in the RAFT
copolymerization process. With such low molecular weights and high dispersity values,
the mechanical properties would be limited by the inability of the short polystyrene chains
to achieve molecular entanglement.

To overcome the mechanical issues encountered by Malunavar et al., high-molecular-
weight mechanical blocks need to be investigated. For example, Makhlooghiazd et al. [43]
reported a solid polymer electrolyte membrane composed of another poly(ionic liquid)
block copolymer NaFSI salt and polystyrene-block-poly(acrylethyl(butylimidazoliumbis
(trifluoromethanesulfonyl)imide)) (PS–PEA(BuImTFSI)) AB block copolymer, with a polystyrene
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mechanical block having a molecular weight of 24,000 g mol−1. When the molar ra-
tio between NaFSI and polymer was 1:2.5, the SPE attained an ionic conductivity of
4.2 × 10−5 S cm−1 at 70 ◦C. The ionic conductivity obtained in Makhlooghiazd’s work was,
however, significantly lower than that of Malunavar et al. (10−5 vs. 10−3 S cm−1 at 70 ◦C,
respectively). The difference in ionic conductivity observed can be related to the lower
volume fraction of the conductive domain. This hypothesis was investigated by Young
and Epps [44], who reported a decrease in ionic conductivity in PS-b-PEO/Li salt polymer
electrolytes as the volume fraction of PEO (conducting block) decreased. To overcome
the issues related to the difficult ion conduction stemming from the presence of a non-
conductive mechanical block, Cao et al. [45] investigated block copolymer electrolytes with
double conductive nanophases. The LiTFSI-doped poly(propylene monothiocarbonate)-b-
poly(ethylene oxide) (PPMTC-b-PEO) block copolymers achieved high ionic conductivity
at room temperature (10−4 S cm−1) and storage moduli 1–4 orders of magnitude higher
than LiTFSI/PEO electrolytes.

In this article, we explore an ABA triblock copolymer electrolyte (BCE) designed for
sodium battery applications, consisting of poly(vinyl benzoate)-b-poly(diallyldimethylammonium
bis(trifluoromethanesulfonyl)imide)-b-poly(vinyl benzoate) (PVB-b-PDADMATFSI-b-PVB).
The choice of poly(vinyl benzoate) for the mechanical block stems from two key factors.
The presence of a benzoate ring in the backbone confers rigidity and mechanical strength
to the polymer system. In addition, we anticipate the possibility of coordination of Na ions
with the oxygen in the vinyl benzoate block. To study the influence of PVB as a “conduc-
tive” mechanical block on the physiochemical and electrochemical properties of polymer
electrolytes, we synthesized four different samples with different chain lengths of PVB and
PDADMATFSI, and NaFSI was added for evaluation of the polymer compositions in solid
polymer electrolytes. The choice of mixed anions (FSI/TFSI) in the system is motivated
by previous research showing the superior physiochemical and electrochemical proper-
ties of mixed anions systems in ionic liquid-based and polymer electrolytes [29,43,46–48].
The various compositions of neat block copolymers with different chain lengths of PVB
and PDADMATFSI were mixed with NaFSI in a fixed NaFSI:DADMATFSI ratio, and the
physiochemical properties of the electrolyte membranes were explored via DSC, solid-state
NMR, FTIR, and EIS. The most promising formulation was then further studied to evaluate
the potential applicability of this solid polymer electrolyte in symmetrical sodium metal
cells and a sodium–air battery as a probe of concept.

2. Results and Discussion
2.1. Synthesis and Characterization of Poly(vinyl benzoate)-b-poly(diallyldimethyl ammonium
TFSI) PVB-b-PDADMTFSI-b-PVB Triblock Copolymers

For the synthesis of the PVB-b-PDADMATFSI-b-PVB triblock copolymers, we used
a similar strategy to the one previously reported for the synthesis of triblock copolymers
based on polystyrene [29] (Figure 1a). The triblock copolymers were synthesized by RAFT
polymerization employing a macrochain transfer agent (MacroCTA) initiator based on a
water-soluble xanthogenate-based chain transfer agent (CTA) with a short polyacrylamide
unit. This difunctional CTA was used to initiate the controlled radical polymerization of
the diallyldimethylammonium chloride (DADMACl) monomer as reported before (see
the methods in the Supplementary Materials) [39]. Once the poly(diallyldiammonium
chloride) PDADMACl polymer was obtained, an anion exchange reaction was carried
out with LiTFSI to yield poly(diallyldiammonium bis(trifluoromethanesulfonyl)imide)
(PDADMATFSI). Two chain lengths of PDADMATFSI were investigated in this work: 33 K
(named as long) and 17.5 K (named as short), as shown in Table 1. The obtained gas
permeation chromatography (GPC) traces of PDADMACl− shown in Figure 1b showed
that the molecular weight corresponded to the expected values and the dispersity of the
PDADMACl− was low. In the final step, the difunctional PDADMATFSI was used as macro-
CTA for the polymerization of vinyl benzoate, as shown in Figure 1. After polymerization,
the final PVB-b-PDADMTFSI-b-PVB triblock copolymers were isolated in high yields.
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Table 1 shows the synthesized triblock copolymer with the nomenclature assigned to each
sample. The triblocks were named BCP-XXYY, where XX is the molecular weight of PVB
and YY is the molecular weight of PDADMATFSI, expressed in Kg mol−1 and rounded to
the highest integer. The composition of the triblock copolymers was calculated by 1H-NMR
by integrating the signals associated with each block, as shown in Figures S4–S7. FTIR
analyses (Figure 1c) confirmed the chemical structure, and signals associated with each
block were identified. The FTIR absorption bands for each block [PDADMA][TFSI] and
PVB are shown in the figure and summarized in Table S1. Regarding [PDADMA][TFSI], the
bands assigned to the polymeric cation [P(DADMA)]+ are 1670 (βC−N) and 1476 (δCH3)
cm−1 [49], while the bands related to the anion [TFSI]− are observed at 1349 and 1332
(νasSO2), 1175 (νasCF3), 1132 (νsSO2), 1053 (δCF3), 789 (S−N stretch/δCF3), 741 (νs(S−N-
S)), and 656 (δ(SNS)) cm−1, as reported also in the literature [50]. The bands assigned to
PVB are 1711 (C=O), 1584 (C=C of the benzoate ring), 1451 (C-C of the benzoate ring), 1269
(C-O), and 707 (C-Hoop) cm−1 [51,52].
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Figure 1. (a) Synthesis scheme of PVB-b-PDADMATFSI-PVB block copolymers through RAFT
polymerization. GPC chromatograms versus elution time are shown for PDADMACl and final
triblock copolymers; (b) GPC traces of the two chain lengths of PDADMACl−; (c) FTIR spectra of the
four compositions of neat BCPs.

Table 1. Conversion, theoretical, and experimental molecular weight for all steps of PVB-b-
PDADMATFSI-b-PVB synthesis.

Sample Conversion a (%) Mn, th (kg mol−1) Mn, exp (kg mol−1) PI (Mn/Mw) Name
X-PAm-DiEst-PAm-X 66 2.8 1.9 b - -
PDADMACl-high Mn 50 21.5 17.7 c 1.7 -
PDADMACl-low Mn 50 11.4 5.4 c 1.9 -
PDADMATFSI-high Mn 90 36.8 33.1 - -
PDADMATFSI-low Mn 95 18.4 17.5 - -
PVB11.5K—b—PDADMATFSI33K—b—
PVB11.5K

80 13 10.4 a 2.1 BCP-1233

PVB11.5K—b—PDADMATFSI17.5K—b—
PVB11.5K

99 13 12.8 a 2.5 BCP-1218

PVB22.5K—b—PDADMATFSI33K—b—
PVB22.5K

87 26 20.8 a 2.2 BCP-2333

VB22.5K—b—PDADMATFSI17.5K—b—
PVB22.5K

94 26 24.4 a 2.2 BCP-2318

a Determined by 1H NMR. b Determined by MALDI-TOF. c Determined by SEC.
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Thermal characterization of all BCPs was carried out by DSC and TGA. DSC results
can be observed in Figure 2a, where a single glass transition temperature (Tg) was observed
within the temperature range of 60 to 70 ◦C for all triblocks, which is attributed to the
poly(vinyl benzoate) (PVB) block, while the Tg of PDADMATFSI could not be observed. It
has already been shown in the literature that it is difficult to observe the Tg of PDADMA-
based ionomers. Yunis et al. employed DMA to be able to observe the Tg of PDADMATFSI
at 116 ◦C [53]. Notably, compositions characterized by longer PVB chains, namely BCP-
2333 and BCP-2318, exhibited elevated glass transition temperatures, consistently hovering
around 69 ◦C. In contrast, compositions BCP-1233 and BCP-1218, featuring shorter PVB
chains, displayed comparatively lower Tg values of 60 ◦C and 62 ◦C, respectively. TGA
results can be seen in Figure 2b, where a degradation higher than 5 wt% can be observed
at temperatures higher than 263 ◦C for all BCPs, demonstrating the excellent thermal
stability of these polymers. A clear contribution of PVB and PDADMATFSI is shown
in the thermogravimetric analysis, where PVB degrades at lower temperatures than the
PDADMATFSI block ones. The decomposition of PVB starts at 263 ◦C for all samples
and reaches a plateau at weight loss % correlated to the PVB chain length and mol ratio:
samples with short chains of PVB and a lower PVB mol ratio undergo a smaller weight loss
(BCP-1233 > BCP-1218 > BCP-2333 > BCP-2318). The second sharp weight loss occurs in
the range of 365–380 ◦C, with all samples reaching a remaining weight of 5–7 wt%.
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Figure 2. (a) DSC traces of the four compositions of neat BCP from −50 ◦C to 150 ◦C, second heating
at 40 K/min; (b) TGA traces of the four compositions of neat BCP up to 600 ◦C, 10 K/min.

Finally, TEM analyses (Figure S8) were performed on two copolymers with different
compositions: long PDADMATFSI/short PVB (BCP-1233) vs. short PDADMATFSI/long
PVB (BCP-2318). In both compositions, two main structures are visible: light gray ag-
gregates and elongated wormlike fibril-like structures. These materials were difficult to
section, and thus the expected phase separation of block copolymers was not obvious from
the TEM analysis.

Solid Polymer Electrolytes Based on Blends of NaFSI and PVB-b-PDADMATFSI-b-PVB
Triblock Copolymers

Solid polymer electrolytes were prepared by solvent-casting solutions of the block
copolymers and the salt NaFSI, as represented in Figure 3a, resulting in flexible solid
membranes. Four triblock copolymers with different lengths and compositions were mixed
with NaFSI (in a mol ratio of 2:1 with respect to the DADMATFSI unit vs. NaFSI). The
2:1 molar ratio between NaFSI and DADMATFSI monomer units was chosen based on
previous studies [29], which showed that this specific ratio yielded improved transport
properties, characterized by notable Na+ ion dynamics, as observed through NMR analyses,
coupled with high ionic conductivity. The samples were named BCP-XXYY-Na, where
BCP-XXYY refers to the neat polymer used.



Batteries 2024, 10, 125 6 of 15

Batteries 2024, 10, x FOR PEER REVIEW 6 of 15 
 

Solid Polymer Electrolytes Based on Blends of NaFSI and PVB-b-PDADMATFSI-b-PVB 

Triblock Copolymers 

Solid polymer electrolytes were prepared by solvent-casting solutions of the block 

copolymers and the salt NaFSI, as represented in Figure 3a, resulting in flexible solid 

membranes. Four triblock copolymers with different lengths and compositions were 

mixed with NaFSI (in a mol ratio of 2:1 with respect to the DADMATFSI unit vs. NaFSI). 

The 2:1 molar ratio between NaFSI and DADMATFSI monomer units was chosen based 

on previous studies [29], which showed that this specific ratio yielded improved transport 

properties, characterized by notable Na+ ion dynamics, as observed through NMR anal-

yses, coupled with high ionic conductivity. The samples were named BCP-XXYY-Na, 

where BCP-XXYY refers to the neat polymer used. 

 

Figure 3. (a) Casting method for NaFSI/PVB-b-PDADMATFSI-b-PVB BCP polymer electrolyte 

membranes. (b) Temperature-dependent ionic conductivity of membrane with a 2:1 Na:PDADMAT-

FSI mol ratio for all four compositions of neat polymer between 30 and 90 °C. (c) DSC traces of 

membrane with a 2:1 Na:PDADMATFSI mol ratio for all four compositions of neat polymer from 

−50 °C to 150 °C, second heating at 40 K/min. 

Figure 3b shows the ionic conductivity of the four BCP compositions with a 2:1 

Na:PDADMA mol ratio in the range of temperature between 30 °C and 90 °C. At 50 °C, 

the trend in ionic conductivity is observed as follows: BCP-1233-Na exhibits the highest 

value at 6.9 × 10−6 S cm−1, followed by BCP-2333-Na and BCP-1218-Na with identical values 

of 6.2 × 10−7 S cm−1, and BCP-2318-Na displaying the lowest conductivity at 3.8 × 10−8 S 

cm−1. Compared to previous works with PDADMATFSI, the ionic conductivity observed 

in this work is lower by an order of magnitude [11,29]. Notably, low values of glass tran-

sition temperature are deemed crucial for achieving polymer materials with elevated ionic 

conductivity. Interestingly, BCP-1233-Na showed the highest Tg values for both the 

PDADMATFSI block (2 °C) and PVB (60 °C) (Figure 3c). These results suggest the occur-

rence of a decoupled behavior, as previously reported by Malunavar et al. [29], where the 

ion conductivity occurs via ion hopping or structural rearrangement ion diffusion. 

    

 

                      

     

                      

                

                   

                        

                     

  

Figure 3. (a) Casting method for NaFSI/PVB-b-PDADMATFSI-b-PVB BCP polymer electrolyte mem-
branes. (b) Temperature-dependent ionic conductivity of membrane with a 2:1 Na:PDADMATFSI
mol ratio for all four compositions of neat polymer between 30 and 90 ◦C. (c) DSC traces of membrane
with a 2:1 Na:PDADMATFSI mol ratio for all four compositions of neat polymer from −50 ◦C to
150 ◦C, second heating at 40 K/min.

Figure 3b shows the ionic conductivity of the four BCP compositions with a 2:1
Na:PDADMA mol ratio in the range of temperature between 30 ◦C and 90 ◦C. At 50 ◦C,
the trend in ionic conductivity is observed as follows: BCP-1233-Na exhibits the highest
value at 6.9 × 10−6 S cm−1, followed by BCP-2333-Na and BCP-1218-Na with identical
values of 6.2 × 10−7 S cm−1, and BCP-2318-Na displaying the lowest conductivity at
3.8 × 10−8 S cm−1. Compared to previous works with PDADMATFSI, the ionic conductiv-
ity observed in this work is lower by an order of magnitude [11,29]. Notably, low values
of glass transition temperature are deemed crucial for achieving polymer materials with
elevated ionic conductivity. Interestingly, BCP-1233-Na showed the highest Tg values for
both the PDADMATFSI block (2 ◦C) and PVB (60 ◦C) (Figure 3c). These results suggest the
occurrence of a decoupled behavior, as previously reported by Malunavar et al. [29], where
the ion conductivity occurs via ion hopping or structural rearrangement ion diffusion. Ad-
ditionally, the observed trend in ionic conductivity aligns with observations made from the
investigation of the Na environment through NMR spectroscopy, as they will be discussed
further later.

The temperature-dependent ionic conductivity curve obtained for the samples could
be fitted using Equation (1):

σ = σ0

(
−Ea

kT

)
(1)

where σ0 is the pre-exponential factor, Ea represents the activation energy, k denotes the
Boltzmann constant, and T is the absolute temperature. The calculated values for the
activation energy of the sample were in the range of 85–90 kJ/mole. The activation energy
obtained from the Arrhenius plot of ionic conductivity can be related to the energy barrier
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for the ions in the system to diffuse. Compared to other systems, the activation energy
calculated for these samples is larger (values are in general found to be <50 kJ/mol),
suggesting the diffusion of Na+ ions in our systems is more difficult [54–56]. The high
activation energy and hindered diffusion of ions in the systems investigated could affect
the electrochemical performance, with an increased overpotential for Na plating/stripping,
reducing the limiting current for cycling, for example.

From the DSC analysis shown in Figure 3c, we appreciate the presence of two Tg
values in each sample, one related to PDADMATFSI and one related to PVB. This confirms
the phase separation expected in block copolymer electrolytes, with each block maintaining
distinct properties, as observed from TEM analysis of the polymer electrolyte membranes
(Figure S9). The temperature range in which the glass transitions occur appears to be broad;
thus, Tg values were obtained from the onset of the first derivative of the thermograph.

As mentioned earlier for the neat BCP measurements, the Tg of PDADMATFSI was
found in the literature to be 116 ◦C. As expected, the addition of NaFSI significantly lowers
the Tg of PDADMATFSI, as it has been previously reported the plasticizing effect of the
Na salt in PDADMATFSI polymers, where a decrease in the TFSI-DADMA interactions
resulted in a large decrease in Tg to values around 0 ◦C [11,29]. For all four membranes,
a distinct glass transition temperature related to the PDADMATFSI block is consistently
observed between −9 and 2 ◦C. The influence of PDADMATFSI chain length on Tg becomes
evident, with longer chains correlating to higher temperatures: BCP-1233-Na > BCP-2333-
Na > BCP-1218-Na > BCP-2318-Na. Moreover, the trend in Tg of PDADMATFSI seems
linked to the PDADMATFSI:PVB mol ratio, suggesting that higher mol ratios result in
higher Tg values. Regarding PVB, its Tg in the electrolyte membranes generally occurs at
lower temperatures compared to neat polymers, except for BCP-1233-Na, where the Tg
of the PVB chain aligns with that of the neat polymer BCP-1233. The Tg of PVB follows
a specific order: BCP-1233-Na > BCP-2318-Na > BCP-2333-Na > BCP-1218-Na. Notably,
the addition of NaFSI has a pronounced effect on PVB Tg, especially when the chains are
longer (BCP-2333-Na and BCP-2318-Na), with the most significant variation observed in
BCP-2333-Na, where the Tg decreases from 69 ◦C to 51 ◦C. From this investigation, we
can see how two different behaviors are observed by varying the chain length of the two
blocks and, explicitly, how longer PVB chains result in partial coordination with Na ions.
As will be discussed later, this behavior was also found during the investigations of the
interactions between Na salt and polymer via FTIR analysis, where the PVB chain is found
to interact to some extent with Na+ in these block copolymers.

NMR spectroscopy serves as a comprehensive tool to investigate both the chemical
environment surrounding ionic species and their dynamics in these block copolymer
electrolytes. The focus of these methods was to probe the structure and ion transport as
they were influenced by the chain lengths of the polymer blocks. Figure 4a presents the
solid-state magic angle spinning (MAS) NMR spectra for 23Na, revealing two major peaks
across all samples.

The 23Na NMR analysis reveals intriguing coordination environments and ion dynam-
ics. Two prominent peaks consistently appear across all samples. The peak at 7.3 ppm
(peak 1) is attributed to sodium coordination with the oxygen in polyvinyl benzoate (PVB),
due to its proximity to the chemical shift observed in sodium carbonate. Remarkably, the
chemical shift at 7.3 ppm remains invariant throughout the diverse samples, indicating a
stable coordination environment. The width of the peak also remains relatively narrow,
indicating that the Na+ environment is symmetric.

The width at half-maximum (FWHM) for 23Na can also be used as an indicator of
the mobility of Na ions and fast ion exchange in the system [57]. The investigation into
the FWHM frequencies of the resonance at around −20 ppm reveals an interesting trend
(black line in Figure 4b); the peak narrows from BCP-1233-Na to BCP-2333-Na, reaching a
minimum, and then perceptibly widens in BCP-2318-Na. This suggests that the mobility of
these ions is compromised in BCP-2318-Na, as reflected by a significantly larger FWHM.
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Figure 4. (a) 23Na MAS-NMR spectra of the membranes with a 2:1 Na:DADMATFSI mol ratio for all
four compositions of neat polymer at 50 ◦C; (b) full width half-maximum (fwhm) frequencies of 23Na
as a function composition (black represents the Na-PVB resonance and red Na-FSI/TFSI).

This second peak is associated with Na+ ions that are coordinated by the anions
(FSI/TFSI). This peak shows a characteristic second-order quadrupolar line shape for sam-
ple BCP-1233(2) (short PVB, long PDADMATFSI), indicating a well-defined Na+ solvation
environment. These quadrupolar features are broadened in the other samples, which may
result from an increased variation in Na+ solvation environments and/or changes in the
dynamics of the sodium ion in these systems. The trend in FWHM, depicted by the red line
in Figure 4b, shows that BCP-2318-Na exhibits a significantly wider peak (3111 Hz) com-
pared to BCP-1233-Na, BCP-1218-Na, and BCP-2333-Na, indicating diminished sodium ion
mobility in BCP-2318-Na consistent with the lowest ionic conductivity. The peak positions
of the Na-FSI/TFSI peaks fall between −18 and −20 ppm for all samples. This position,
which will result from a combination of chemical shift and second-order quadrupolar shift,
is situated at less negative values compared to other systems utilizing NaFSI and PDAD-
MATFSI [29]. It was observed in previous works that the TFSI anion generally interacts
more strongly with Na than the FSI anion [57]. The difference in chemical shift observed
in the systems under investigation here suggests stronger coordination of sodium with
the FSI anion in this case. Moreover, among the different systems in this study, it appears
that the chain length of the PDADMATFSI block influences the coordination of the sodium
ion. In the samples with longer PDADMATFSI chains (BCP-1233-Na and BCP-2333-Na),
the peak appears at −18 ppm, while in the samples with shorter PDADMATFSI chains
(BCP1218-Na and BCP-2318-Na), the peak is situated at slightly lower chemical shifts.
This result aligns with the hypothesis that the Na ion coordination environment is shared
between PDADMATFSI and PVB when the former has shorter chains and the latter longer
chains, as anticipated in the explanation of the DSC thermograms and consistent with the
FTIR analysis below.

The ratio between the integrals of the two peaks (Figure S10) provides a quantification
of the two observed sodium coordination environments. This ratio remains constant in
BCP-1233-Na, BCP-1218-Na, and BCP-2333-Na (0.05) but conspicuously increases in BCP-
2318-Na (0.35), indicative of the larger share of Na ions coordinating with the PVB chain.
Finally, it should be noted that the resolution of these separate peaks indicates that these
two distinct populations of sodium ions do not undergo any appreciable exchange on the
time scale of the NMR experiment (ms).

From these observations, we can see that the main coordination of sodium is with FSI
and TFSI, making the PDADMATFSI the major ion conductor in the polymer electrolyte
samples, as expected.
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Infrared spectroscopy (Figure 5 and Figure S11) has been employed to investigate
the possible interactions/complexation between the different constituents in the block
copolymer electrolyte. The spectroscopic analysis investigated the variation in interactions
occurring when the same mol ratio of Na:PDADMA (2:1) was added to the different
formulations of the neat block copolymers. Specifically, the study focused on how the
chain length of the two main components (PDADMATFSI and PVB) and their mol ratio
(PDADMATFSI:PVB) influence the coordination of the Na cation when introduced as
NaFSI. BCP-1233-Na and BCP-2318-Na materials have been the focus of this study based
on their antithetical compositions of the starting polymer: BCP-1233 has long chains of
PDADMATFSI and short chains of PVB; BCP-2318 has short chains of PDADMATFSI and
long chains of PVB.
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Figure 5. FTIR spectra of neat BCP and BCP-NaFSI mixtures with a 2:1 Na:DADMA mol ratio for
BCP-1233(-Na) and BCP-2318(-Na). Star symbols denote bands arising from the NaFSI salt.

For the BCP-1233-Na (black solid line), the bands from the [TFSI]− anion show a shift
in the peak as expected, with the most discernible changes being associated with the SO2
moiety. The peaks observed in the neat polymer at 1333 cm−1 and 1349 cm−1 have been
previously related to the stretching in-phase and out-of-phase of the two sulfonyl groups
in the TFSI anion. The peak at 1333 cm−1 has been assigned to the cis conformer, while the
peak at 1349 cm−1 is assigned to the trans conformer of the anion [58–60]. When NaFSI is
added to the neat polymer in the SPE, these two peaks both show a peak shift: the νaSO2
OP shifts from 1333 to 1322 cm−1 and νaSO2 OP shifts from 1349 to 1337 cm−1. Moreover,
it is possible to see a change in the relative intensity of the two peaks, with the bands of
the cis conformer becoming more intense than the band related to the trans conformer.
Moreover, other peaks related to the TFSI− anion show interaction when NaFSI is added;
specifically, we can appreciate the shift of the band related to CF3 (1051 to 1056 cm−1) and
S-N stretching (780 to 799 cm−1). The shift in these peaks has already been observed in the
literature for Na and Li systems [29,61]. In the FTIR region assigned to the bands of C=O
and C-O (Figure 6), it is interesting to observe how the relative intensity of the peaks for
the neat polymer is very low, making it difficult to identify the peak positions. However,
when Na salt is added, both peaks show an increase in intensity, although no peak shift can
be appreciated. A shift was also observed for this material in bands related to the cation
groups in the [PDADMA]+ region, where a shift in the peak related to the C-N environment
is seen, namely the peak of C-N bending (from 1669 to 1663 cm−1) (Figure S11).
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Figure 6. (a) I vs. time of the symmetric Na|BCP-1233-Na|Na cell at 70 ◦C, polarized with a potential
of 10 mV (inset: EIS spectra before and after polariation); (b) galvanostatic cycling of sodium symmet-
rical cells using BCP-1233-Na at 70 ◦C; (c) discharge curve with BCP-1233-Na as polymer electrolyte
at 50 ◦C. The surface of the air cathode was wetted with 50 uL of NaTFSI/DGME/C4mpyrTFSI.
Applied current: 75 µA cm−2; cut-off potential: 1.6 V.

In the spectrum of BCP-2318-Na (pink solid line), we observe the same shift observed
in BCP-1233-Na for the PDADMATFSI block, but we can see changes in the peaks related to
the PVB block as well. Notably, the peak related to the C-O at 1264 cm−1 shifts to 1270 cm−1,
and there is the appearance of a shoulder at higher wavenumbers. The peak related to
C=O shows changes as well, with the relative intensity of the peak sensibly decreasing
when NaFSI is added to the neat BCP-1218 polymer. Contrary to the observations made
for BCP-1233-Na, in this case, the peaks lessen in intensity when Na salt is added to the
neat polymer.

Moving on to BCP-2333-Na and BCP-1218-Na (Figure S11), similar behavior as ob-
served for BCP-2318-Na can be appreciated, as can the shifting and variation in relative
intensity of the same peaks for both PDADMATFSI and PVB blocks.

Looking at the results obtained from FTIR analysis, we can find a trend across all four
samples, where BCP-1233 behaves differently from all other polymers. When NaFSI is
added to BCP-1233, only the PDADMATFSI coordination with the Na ion is apparent. On
the other hand, when NaFSI is added to BCP-1218, BCP-2333, and BCP-2318 in the same
NaFSI:PDADMATFSI (2:1) mol ratio, the change in the FTIR peaks of the PVB block suggests
a coordination of Na ions with this block as well (Figure S11). It is, however, interesting
to note that the 23Na NMR suggests the population of sodium ions coordinated with the
PVB is similar for all systems apart from the BCP-2318, which is a little contradictory to the
NMR. This difference could be associated with different time scales for vibrational versus
NMR spectroscopies.

2.2. Electrochemical Properties and Applicability of Triblock Polymer Electrolytes in a
Na–O2 Battery

From the physicochemical characterization studies above, it was shown that the
polymer electrolyte BCP-1233-Na, featuring extended chains of PDADMATFSI and shorter
chains of PVB and with a Na:DADMATFSI molar ratio of 2:1, exhibited the highest ionic
conductivity at 70 ◦C among the various compositions explored, prompting the exploration
of its electrochemical properties.

The Na+ transference number (tNa+) is a crucial parameter in the development of
polymer electrolytes, as an optimal transference number is imperative for ensuring stable
charge–discharge performance and prolonged cell cyclability. Employing the Bruce–Vincent
method, the Na+ transference number for the 1:2 composition was determined. Figure 6a
illustrates the current–time curve plot employed for transference number calculation, and
the impedance spectrum of Na/1:2 electrolyte/Na before and after this polarization step
as an inset in Figure 6a. The obtained transference number at 70 ◦C was found to be 0.33,
comparable to, or higher than, other systems. For instance, sodium (fluorosulfonyl)(n-
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nonafluorobutanesulfonyl)imide (Na[(FSO2)(n-C4F9SO2)N], NaFNFSI) mixed with PEO
(EO:Na+ = 15) and PDADMATFSI: NaFSI (1:2) exhibited tNa+ values of 0.24 at 80 ◦C and
0.34 at 70 ◦C, respectively [29,62].

Notably, the EIS spectra before and after polarization show high charge transfer (Rct)
and interfacial (Rint) resistance, which are represented by the second and third semicircles
at mid- and low-frequency ranges, respectively. Rct and Rint are respectively related to
the ion diffusion and/or formation of a passivation layer at the surface of the Na metal
surface [43].

To further assess cycling stability with reactive Na metal electrodes, Na|Na sym-
metrical cells were constructed. Figure 6b depicts Na|BCP1233-Na|Na symmetrical cells
undergoing galvanostatic cycling at 70 ◦C for 0.05 and 0.1 mA cm−2. The overpotential
at 0.05 and 0.1 mA cm−2 was 100 mV and 200 mV, respectively. However, at a higher
current density (0.2 mA cm−2), the cells experienced rapid short-circuiting. After 17 cycles
at 0.1 mA cm−2, the cells underwent a short circuit, as depicted in Figure S12, revealing
the presence of prominent dendrites, highlighted by red circles in Figure S13. This phe-
nomenon is likely linked to the heterogeneity of the membrane surface observed through
SEM (Figures S14 and S15), leading to poor electric field distribution during cycling and
thus promoting specific sites for sodium accumulation and facilitating dendrite formation.
As mentioned previously, the cell shows Rct and Rint, which may also be related to poor
contact or the formation of an interlayer between the polymer electrolyte and the Na metal,
further explaining the rapid decay in the electrochemical performance.

Nevertheless, the cycling performance of the Na metal electrode was sufficient to
allow us to study the potential applicability of this block copolymer electrolyte membrane,
BCP-1233-Na, in a sodium–oxygen cell.

Figure S16 shows the cell configuration of the Na–O2 system used. The surface of the
air cathode was wetted with 50 µL of NaTFSI/DGME/C4mpyrTFSI. The liquid electrolyte
chosen to improve the contact between the cathode and the polymer electrolyte was chosen
because prior studies indicated that this hybrid electrolyte resulted in good stability against
superoxide anion, oxygen, and moisture, and more importantly, the discharge products
were more homogeneous in size (≈3.5 µm) and coverage (3.1 cubes mm−2) [63]. Figure 6c
shows the deep discharge curves with BCP-1233-Na as a polymer electrolyte at 50 ◦C.
The discharge profile presents an initial spike, followed by a plateau at 2.0 V, resembling
the typical discharge profile of Na–O2 [63–65]. The cell shows a discharge capacity of
1.59 mAh cm−2 with a current density of 75 µA cm−2. The discharge capacity observed
is higher than that of other quasi-solid-state Na–O2 systems, demonstrating the potential
of the solid polymer electrolyte investigated based on the PVB-PDADMATFSI-PVB block
copolymer for application in Na–O2. For example, a bilayer electrolyte composed of an iono-
gel and an ionic liquid (0.5 M NaTFSI in [C4mpyr][TFSI], in poly(ethylene glycol) diacrylate
(PEGDA) (90:10 wt%)) showed a discharge capacity of 0.19 mAh cm−2 [66]. Another
quasi-solid-state Na–O2 cell employing NASICON as electrolyte and single-walled carbon
nanotubes (SWNTs) and 1-ethyl-3-methylimidazolium ([C2C1im]) bis (trifluoromethylsul-
fonyl) imide ([NTf2]) showed 1.57 mA cm−2 discharge capacity with a 1 V cut-off potential
at 0.5 mA cm−2 [67].

3. Conclusions

In this work, we have prepared and investigated novel triblock copolymers based on
PDADMA TFSI as the ionophilic block and PVB as the more ionophobic structural block. It
was revealed that the relative chain length of each block had a significant impact on the Tg
and conductivity of the polymer electrolytes prepared by adding a 2:1 NaFSI:PDADMA
to the copolymer. From FTIR and NMR analyses, it was shown that the PVB blocks also
coordinated to some extent with the Na+ ions, in particular when MW was higher than that
of the PDADMA, as in the BCP-2318-Na material. The highest conductivity was achieved
with a higher MW of the PDADMATFSI block (BCP-1233-Na), with the greatest mobility
suggested by the 23Na NMR spectra for this system. Finally, the electrochemical behavior
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in this latter system was investigated in a Na/Na symmetric cell at 70 ◦C and at 50 ◦C
for a Na–O2 cell, indicating the considerable promise and viability of the investigated
polymer electrolyte for sodium batteries. This research further opens new avenues for
designing novel polymer electrolytes based on block copolymers and reiterates the impor-
tance of careful choice of the Mw of each block. Additional engineering to improve the
membrane homogeneity as well as the electrode/solid electrolyte interface for optimizing
their potential is under current investigation.
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