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Abstract: Biodegradable blends based on plasticized poly(lactic acid) PLA and thermoplastic starch
(TPS) have been obtained. The influence of the PLA plasticizer as a compatibility agent has been
studied by using two different plasticizers such as neat oligomeric lactic acid (OLA) and functional-
ized with maleic acid (mOLA). In particular, the morphological, thermal, and mechanical properties
have been studied as well as the shape memory ability of the melt-processed materials. Therefore,
the influence of the interaction between different plasticizers and the PLA matrix as well as the com-
patibility between the two polymeric phases on the thermally-activated shape memory properties
have been studied. It is very interesting to use the same additive able to act as both plasticizer and
compatibilizer, decreasing the glass transition temperature of PLA to a temperature close to the
physiological one, obtaining a material suitable for potential biomedical applications. In particular,
we obtain that OLA-plasticized blend (oPLA/TPS) show very good thermally-activated capability
at 45 ◦C and 50% deformation, while the blend obtained by using maleic OLA (moPLA/TPS) did
not show shape memory behavior at 45 ◦C and 50% deformation. This fact is due to their mor-
phological changes and the loss of two well-distinguished phases, one acting as fixed phase and
the other one acting as switching phase to typically obtain shape memory response. Therefore, the
thermally-activated shape memory results show that it is very important to make a balance between
plasticizer and compatibilizer, considering the need of two well-established phases to obtain shape
memory response.

Keywords: shape memory; PLA; TPS; plasticizers; polymer blends; compatibilization; biodegradable
polymers

1. Introduction

In the last decades, environmental, economic, and safety challenges have focused
the attention of scientists and companies to produce new biodegradable materials able
to partially or totally substitute petrochemical-based plastics [1]. In this context, one of
the most promising biodegradable polymer in the market, also produced by renewable
resources, is the poly(lactic acid) (PLA) [2,3], an aliphatic thermoplastic polyester with
several advantages such as biodegradability, biocompatibility, and compostability which
promote its use in many applications from commodities to engineering plastics [4–6]. How-
ever, the mechanical response of PLA is low due to its high brittleness, low stretchability,
and relatively poor impact strength which can limit its use in specific areas [7,8]. Many
strategies have been explored in both academic and industrial fields to improve the me-
chanical properties of PLA and enhance its performances, such as copolymerization [9],
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addition of additives [10], blending with other polymers [11] as well as by the incorporation
of nanofillers [12]. As expected, from the industrial point of view, polymer blending and
the addition of additives can be considered as the most effective and cost-efficient methods
to enhance PLA performances and use it in different applications where higher toughness
is required [4,13]. Therefore, with the scope of preserving the sustainability of the final
material, increasing attention has been given to the use of bio-based and renewable poly-
mers and additives to obtain complete biodegradable and bio-based blends with improved
mechanical and thermal properties with respect to the neat PLA.

In this regard, among bio-based polymers we can find starch, a biodegradable and
biocompatible polysaccharide derived from renewable resources such as potatoes, peas,
maize, etc., composed of the sequence α-D-glucose linked with each other through (1 → 4)
glycosidic bonds. Two different structures are characteristic for starch, amylose which is
linear and a branched one called amylopectin [14]. Starch can be used as nanofillers in the
form of starch nanocrystals, preserving its native crystalline form or as a matrix, in the
form of thermoplastic matrix when processed with water and/or plasticizer, destructuring
its granules [15]. In the recent years, blends of PLA and thermoplastic starch (TPS) have
been studied as environmentally friendly materials of great interest for food packaging
and biomedical applications [16–18]. However, the major drawback of processing PLA
blends through simple physical blending is their immiscibility, poor compatibility, and the
weak interfacial bonding of the blend components [19–21]. In particular, PLA and TPS
are immiscible due to the incompatibility between the hydrophobic nature of PLA and
hydrophilic nature of starch. However, the addition of additives such as compatibilizer,
plasticizer, coupling agent, etc., is used to reduce the interfacial tension and therefore
improve the mechanical performances of the blends [13]. Nowadays, the effect of compati-
bilizers and plasticizers on the morphology and mechanical properties of PLA/TPS blends
using different additives have been studied demonstrating that more homogeneous mor-
phology improved the mechanical properties and thermal stability of plasticized PLA/TPS
blends [22–24].

Between the additives, oligomeric lactic acid (OLA) is proposed as a renewable alter-
native to common plasticizers for PLA, taking advantage of their similar chemical structure
that ensures high miscibility [25]. In 2001, Martin and Averous [26] reported that 20 wt.% of
OLA with respect to neat PLA was enough to efficiently improve the mechanical properties
of PLA and result in a decrease of about 20 ◦C in its glass transition temperature (Tg). Later,
Burgos et al. [27] found that amount of OLA higher than 20 wt.% can be incorporated into
PLA obtaining more ductile homogeneous materials. However, they reported that PLA
with 20 wt.% was the more stable formulation maintaining constant its thermal, mechanical,
and oxygen barrier properties for at least 90 days at fixed conditions. Leones et al. [28]
reported that electrospun PLA-OLA fibers mats, with 20 wt.% OLA, show shape memory
behavior at 40 ◦C and 45 ◦C, and Sonseca et al. [29] confirmed that extruded PLA-OLA
formulation with the same content of OLA also show shape-memory at a temperature
close to the physiological one. This point is very important, taking into account that one
of the most promising application fields of shape memory biopolymers is the biomedical
sector [30]. In particular, shape memory materials are smart materials able to respond to an
external stimulus such as temperature, humidity, or light, recovering their original shape
from a temporary shape previously programmed. These materials are composed of two
different phases, a permanent one, responsible for recovering the original shape during the
recovery stage and the switching one responsible for fixing the temporary shape during the
programming stage [30]. For thermally-activated shape memory polymers, the switching
phase is activated at a specific transition temperature (Ttrans) that generally is associated
with its Tg or its melting temperature (Tm) [30].

Nowadays, the use of PLA-based materials with shape memory properties in biomed-
ical applications is still a challenge due to different reasons that limit the use of these
materials in real applications [31]. The shape memory effect in PLA is calculated for
deformation of about 50% reaching maximum values of programming strains of about
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150% [32]. Moreover, the Ttrans of PLA-based materials is related in general with its Tg
that is around 60 ◦C. For this reason, when related to biomedical applications, it is highly
desirable to have the Ttrans slightly above body temperature to safely activate the shape
memory capability avoiding the potential tissue damage due to a too high temperature. In
this regard, in this work, with the main objective of increasing the flexibility of PLA without
losing its shape memory effect at a temperature close to the physiological one, blends
of plasticized PLA and TPS have been processed using a one-step method for potential
application as resorbable implants. In particular, two lactic acid oligomers (OLA8), neat
one (OLA8) and functionalized with maleic acid (mOLA8), were used to modulate physical
and mechanical properties of PLA and its blends with 40% of TPS. An interesting approach
is the use of an additive that could be used as both plasticizer and compatibilizer for the
same blend. Mechanical, thermal, and morphological properties were studied. However,
the attention was focused on their thermally-activated shape memory capability as well as
on the compatibilizing effect of both plasticizers on the PLS/TPS blends, both being effects
strongly correlated within themselves.

2. Materials

Poly(lactic acid) pellets (PLA3052) were supplied by NatureWork® (NatureWorks LLC,
Minnetonka, MN, USA). Both PLA plasticizers, GLYPLAST OLA8 (OLA8) and GLYPLAST
OLA 8 MALEATE (mOLA8), were kindly provided by Condensia Quimica (Barcelona,
Spain) with a Mn of about 1100 g/mol. Native pea starch was obtained from Cosucra groupe
Warcoing SA, (Warcoing, Belgium), with a dry content of 85 wt.%, including 60.7 wt.%
amylopectin, 35.7 wt.% amylose, 3.4 wt.% fiber, and 0.24 wt.% protein, as determined by
colorimetric methods and Prosky and DUMAS methods. Starch was used as received.
Glycerol (purity 97%) was purchased from VWR International (Radnor, PA, USA) and was
used as starch plasticizer.

3. Methods
3.1. Preparation of Plasticized PLA

Two different plasticizers, OLA8 and mOLA8 have been used in order to process
plasticized PLA. Since PLA is very hygroscopic, PLA pellets, OLA8, and mOLA8 were
previously dried in a vacuum oven at 60 ◦C, overnight. The blends were obtained by mixing
PLA pellets and 20 wt.% of plasticizer by a microextruder equipped with twin conical
corotating screws (MiniLab Haake Rheomex CTW5, Thermo Scientific (Waltham, MA, USA)
with a capacity of 7 cm3. A screw rotation rate of 100 rpm, temperature of 160 ◦C, and
residence time of 3 min were used. Therefore, two plasticized PLA-based materials were
obtained and named oPLA and moPLA when OLA8 or mOLA8 was used, respectively.

3.2. PLA/TPS Blends Preparation

Two different plasticized PLA/TPS blends have been processed and characterized.
First, the thermo-mechanical destructuration of native starch granules with liquid glycerol
and distilled water (in the wt.% ratio of 100:25:20) was performed in a Brabender® internal
kneader (for 3 min at 110 ◦C with a rotor speed of 100 rpm) in order to obtain thermoplastic
starch, as reported previously [33]. Once TPS was obtained, it was melt-blended with
both PLA and the plasticizer, in one step, with a twin-screw DSM microcompounder for
3 min at 160 ◦C with a screw speed of 100 rpm. Therefore, two blends with 40 wt.% of
TPS, with respect to PLA, were obtained and named oPLA/TPS and moPLA/TPS when
oPLA and moPLA were used, respectively. The amount of plasticizer with respect to PLA
was maintained constant at 20 wt.% for all the formulations, while the TPS amount was
calculated at 40% with respect to the total amount of PLA and plasticizer. This choice
is based on the importance of considering plasticized PLA as the base material for the
thermally-activated shape memory response at a physiological temperature. Moreover,
as reported in the literature, blends with 40% of TPS can be considered thermally and
mechanically stable and good [34].
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4. Characterization

Differential scanning calorimetry (DSC) experiments were carried out in a Mettler
Toledo DSC822e instrument, under nitrogen flow (30 mL/min). The typical sample weight
was around 10 mg. The cycle program consisted of a first heating stage from −90 to 180 ◦C
at a rate of 10 ◦C min−1, followed by cooling to −90 ◦C and subsequent heating up to
180 ◦C at 10 ◦C min−1. The Tg was calculated from the first heating and was taken at the
mid-point of heat capacity changes. The melting temperature (Tm) and cold crystallization
temperature (Tcc) were obtained from the second heating, and the degree of crystallinity
(χc) was determined by using Equation (1).

χc = 100 ×
[

∆Hm − ∆Hcc

∆H0
m

◦

]
1

1 − mf
(1)

where ∆Hm is the enthalpy of fusion, ∆Hcc is the enthalpy of cool crystallization, is the
enthalpy of fusion of a 100% crystalline PLA, taken as 93 J/g, and 1 − mf is the weight
fraction of PLA in the sample [35].

Dynamic Mechanical Thermal Analysis (DMTA) of the samples was carried out using
a DMA Q800 from TA Instrument in film tension mode with an amplitude of 5 µm, a
frequency of 1 Hz, a force track of 125%, and a heating rate of 2 ◦C·min−1. Samples
subjected to DMA were cut from compression-molded thin films into regular specimens of
approximately 20 mm × 4 mm × 0.50 mm.

Thermogravimetric analysis (TGA) was carried out using a TA-TGA Q500 thermal an-
alyzer. The different materials were analyzed by dynamic mode using about 10 milligrams
of sample from room temperature to 800 ◦C at 10 ◦C min−1 under nitrogen atmosphere
with a flow of 60 mL min−1. Temperatures at the maximum degradation rate (Tmax) were
calculated from the first derivative of the TGA curves (DTG).

Mechanical properties were determined using an Instron Universal Testing Machine at
a strain rate of 50 mm min−1. Tensile test measurements were performed on five dog-bone
specimens with a width of 2 mm, thickness of 0.50 mm, and leaving an initial length
between the clamps of 20 mm. From these experiments were obtained the Young Modulus,
as the slope of the curve between 0% and 2% deformation, the elongation at break, and the
maximum stress were reached.

SEM micrographs of the cryo-fracture surface of neat PLA and plasticized PLA were
obtained by Scanning Electron Microscopy (SEM PHILIPS XL30 with a tungsten filament)
in order to study their morphology. The polymer samples were frozen using liquid N2
and then cryo-fractured. All the samples were gold/palladium coated by an automatic
sputter-coated Polaron SC7640. The investigated blends were analyzed also by Atomic
Force Microscopy (AFM) operating in tapping mode with a scanning probe microscope
(Icon form Bruker with Nanoscope V controller). All blends were cut using an ultra-
microtome Leica Ultracut R with a diamond blade. Height and phase images were obtained
under ambient conditions with typical scan speed of 0.5–1 line/s using a scan head with
a maximum range of 16 µm × 16 µm. Surface roughness (the roughness average (Ra)
and root mean square roughness (Rq)) of each investigated system was calculated using
5 µm × 5 µm AFM height image.

Samples for the thermally-activated shape memory studies were cut from compression-
molded thin films into rectangular specimens of approximately 20 mm × 4 mm × 0.60 mm.
All thermo-mechanical cycles were carried out using a stress-controlled DMA Q800 from
TA Instruments in film tension mode. The samples were heated at the Ttrans (for neat
PLA the Ttrans was 75 ◦C while for the rest of the materials, it was 45 ◦C) for 5 min and
stretched until 50% by applying a constant deformation stress. They were then quenched
at the fixing temperature, Tfix, (neat PLA, Tfix = 25 ◦C; rest of materials Tfix = 0 ◦C) under
the same constant stress. The temporary shape, as characterized by an elongation of εm,
was recovered after releasing the stress, and the permanent shape, characterized by an
elongation of εp, was recovered upon heating (2 ◦C·min−1) to Ttrans.
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Therefore, to get a quantitative estimation of the shape memory properties of the mate-
rial, the strain fixity ratio (Rf), and the strain recovery ratio (Rr) have been calculated [35]. In
particular, Rr, the ability to recover the initial shape, was taken as the ratio of the recovered
strain to the total strain, as given by the following equation:

Rr(N) =

(
εm − εp(N)

)
εm − εp(N − 1)

× 100% (2)

Rf, the ability to fix the temporary shape, is the amplitude ratio of the fixed strain to
the total strain, as presented by Equation (3):

Rf(N) =
εu(N)

εm
× 100% (3)

where εm is the deformed strain, εu the fixed strain, εp the recovered strain, and N is the
number of cycles.

5. Results and Discussion

The effect of two different plasticizers on the thermal and mechanical properties
of PLA-based blends was first studied to evaluate their miscibility and their effects as
plasticizers for PLA, and as compatibilizers for PLA/TPS blends with the ultimate scope to
study their thermally-activated shape memory response. Based on previous results, we
fixed the amount of plasticizer at 20 wt.% with respect to PLA [27,36], considering that
this amount is enough to decrease Tg of PLA to a temperature close to the physiological
one, with the purpose of obtaining materials with a shape memory response suitable for
biomedical applications avoiding migration phenomena [27]. The preparation of blends
with a composition of 40 wt.% of TPS was chosen following previous reports by Nazrin
et al. [34].

In order to understand the properties of the processed blends, it is necessary to study
their morphology. Figure 1 shows the SEM images of cryo-fractured surfaces of the samples
corresponding to neat PLA, plasticized PLA with both OLA8 and mOLA8, and their
respective blends obtained by adding 40 wt.% of TPS with respect to the plasticized PLA.
Therefore, it is easy to note that PLA showed the typical brittle fracture with a smooth
fracture surface due to its very low plastic deformation. In the case of oPLA and moPLA, no
evidence of phase separation was detected. Indeed, plasticized PLAs/TPS blends showed
different roughness with respect to neat PLA, also confirmed by further AFM analysis
(Figure 2). This fact can be due to the difference in the hydrophilic nature of PLA and TPS
phases. However, from the SEM analysis, moPLA/TPS seems to present a better dispersion
of the TPS phase obtaining a more homogeneous material. This is possibly due to the
improvement in interfacial adhesion between the two phases thanks to the compatibilizer
effect of the plasticizer mOLA8.

However, the effect of the addition of both OLA8 and mOLA8 on the morphology
of PLA/TPS blend was deeply studied by AFM. The obtained AFM height and phase
images are shown in Figure 2. The cross-section AFM phase image of PLA indicated
its homogeneous morphology, which also confirmed the very low surface roughness of
PLA. The addition of OLA8 and mOLA8 into PLA resulted in changes in the morphology
observed for PLA. In the case of oPLA, the regular crystalline-like structure with separated
domains of around 200 nm was detected while moPLA showed a different regular structure
with small spherulites of the size of 400 ± 50 nm. The surface roughness of oPLA was
eight times higher than the surface roughness of PLA and moPLA was four times higher,
suggesting that both OLA8 and mOLA8 are good plasticizers for PLA.
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Figure 1. SEM images of neat TPS (a) PLA (b), plasticized PLAs (c,d), and plasticized PLA/TPS
blends (e,f).
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Figure 2. Cross-section AFM height (left) and phase (right) images (3 µm × 3 µm) of neat PLA,
plasticized PLAs, and PLA/TPS blends. Ra and Rq values are given in the inset of each AFM
height image.

In the case of PLA/TPS blends, the addition of OLA8 led to the regular structure
which was very similar to the morphology of PLA. The only difference was the presence of
small-in-size (~20 nm) spherical domains. The moPLA/TPS blend demonstrates still very
regular spherulites-like structures well detected for moPLA with clearly visible small-in-
size (~35 nm) spherical domains.

Figure 3 shows the DSC thermograms reporting the first heating scan for the neat
materials and plasticized PLA on the left, and plasticized PLA/TPS blends on the right.
The first heating scan is taken into account for the thermally activated shape memory study,
considering that no further thermal treatments are applied to the samples before being
tested by thermo-mechanical cycles. Therefore, from the DSC analysis, we can point out
that both plasticized PLA-based materials, with OLA8 and mOLA8, showed a single Tg,
indicating the absence of macroscopic phase separation, confirming the morphological
analysis, and a consequent good miscibility between the components. As expected, the
incorporation of the plasticizer induced an increment in the free volume between PLA
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chains, consequently increasing the chain mobility which resulted in a reduction in Tg
values for plasticized PLA-based materials in comparison with neat PLA. In particular, for
plasticized PLA-based materials a Tg of about 25 ◦C is obtained, an increase of about 10 ◦C,
when mixed with TPS. Moreover, only oPLA shows a quite high degree of crystallinity
(28%) and moPLA presents a quite small degree of crystallinity (6%), the other samples
being almost amorphous. However, when mixed with TPS, the degree of crystallinity
of oPLA/TPS decreases up to 5%, a decrease of about 80%. For moPLA, the degree of
crystallinity is quite low (6%) however, when mixed with TPS, the degree of crystallinity
increases up to 20%, confirming the crystalline structure obtained by AFM.
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The behavior observed when mOLA8 was used as plasticizer could be attributed to
the presence of a better dispersed and compatibilized TPS phase into the PLA matrix.

Moreover, the thermal stability of the materials was studied by TGA. Figure 4 shows
the weight loss and the first derivate (DTG) for all the samples, while the main results are
summarized in Table 1. Neat PLA decomposed in a single-step process with a maximum
degradation rate (Tmax) at 375 ◦C, in agreement with values previously reported [27,37].

Table 1. Mechanical properties of all the samples.

Sample E (MPa) Ts (MPa) ε (%)

PLA 1930 ± 130 a 48 ± 5 a 7 ± 3 a

TPS 25 ± 8 b 1.7 ± 0.1 b 60 ± 10 b

oPLA 450 ± 20 c 33 ± 3 c 248 ± 17 c

moPLA 490 ± 88 c 35 ± 1 c 261 ± 24 c

oPLA/TPS 1568 ± 126 d 23 ± 1 d 2 ± 1 a

moPLA/TPS 1573 ± 87 d 24 ± 3 d 2 ± 1 a

F ratio 5.30 3.82 4.65
p-Value 0.00847 * 0.02974 * 0.01588 *

Different letters in the column indicate significant differences according to Tukey’s test (p < 0.05). * Values are
significant at p < 0.05.

As expected, the maximum degradation temperature for both plasticized PLA is
much smaller than neat PLA, being, however, higher than the temperature shown for
the processing of these materials, which is 160 ◦C. These results demonstrate that both
plasticizers can be processed at the same melt processing window of neat PLA avoiding
their thermal degradation. The same occurs for TPS, with a Tmax, of about 300 ◦C. Moreover,
from Figure 4, it is possible to note the different stages of the thermal decomposition
mechanism of TPS. In particular, the first stage is related to the physical dehydration of
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water, volatile compounds, and glycerol decomposition while the second stage is related to
the chemical dehydration of bonded water and the thermal decomposition of starch [38].
Analyzing the thermal stability of the plasticized PLA/TPS blends, it is easy to note that it is
composed of a two-step degradation and that they presented intermediate thermal stability
compared with both neat polymers. In particular, the DTG curves show a main peak of
degradation related to PLA decomposition, and a small shoulder at lower temperatures
related to the TPS thermal decomposition. Regarding the blends, moPLA/TPS showed the
highest thermal stability in terms of Tmax, about 340 ◦C, ten degrees higher than oPLA/TPS
Tmax. These results indicate that mOLA8 is able to increase the compatibility of plasticized
PLA/TPS blends, as previously observed in the morphology analysis.
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Figure 5 shows the DMTA curves for neat PLA and TPS, plasticized PLAs, on the left
and their blends, on the right. The variation in the E’ values of neat PLA (Figure 5a) showed
a dramatic drop between 55 ◦C and 80 ◦C, which is representative of the relaxation process
of the PLA chains due to the glass transition temperature. A second transition is observed
at around 110 ◦C that reflects the cold crystallization of PLA. Adding both plasticizers, the
E’ curves and consequently their drop, shifted to lower temperatures indicating a decrease
in Tg and the Tcc, as previously observed by DSC analysis. Furthermore, the addition of
both plasticizers leads to a broadening of the Tg peak (Figure 5b,c) indicating a wide range
of relaxation times. Moreover, the E’ values decreased with the addition of both plasticizers,
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suggesting a decrease in rigidity and an increased ductility of the materials. More accurate
Tg values can be obtained by determining the peak maximum of tanδ and loss modulus
(Figure 5b,c). Observing the tanδ curve, neat PLA showed a Tg of 65 ◦C and the plasticized
PLA reached the values of 44 ◦C and 42 ◦C for moPLA and oPLA, respectively. These
results are in agreement with the results obtained by the DSC characterization.
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Moreover, according to the literature [39], TPS shows two relaxations due to a phase-
separated system. The first one below −40 ◦C, termed β-relaxation, which is ascribed to a
starch-poor phase rich in glycerol–water content while the relaxation at around 25 ◦C is
termed α-relaxation and is ascribed to a starch-rich phase. Both TPS relaxations are highly
dependent on the amount of bonded and non-bonded water enclosed in the starch chains,
which can act as a plasticizer decreasing their temperatures.
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Regarding the blends based on plasticized PLA and TPS, it is easy to note that the
characteristic relaxations of PLA are shifted to higher temperatures compared with those of
plasticized PLA. In this case, the plasticizers are acting partly as plasticizer for PLA and as
compatibilizer for the blends, interacting with both PLA and TPS. The typical interactions
in these systems are hydrogen bonding between the hydroxyl groups from PLA or starch
and hydroxyl, as well as oxygen, from the OLA units, which caused the broadening of
the PLA glass transition peak, as previously reported [40]. Moreover, the E’ values of the
blends at 25 ◦C significantly increased compared with those of plasticized PLAs, reaching
values close to that of neat PLA.

Mechanical properties of neat PLA, plasticized PLAs, and their blends with 40 wt.%
of TPS were measured by tensile test. The tensile mechanical behavior of all the materials
can be observed in Figure 6a. When looking at the mechanical properties, plasticizers
increase the ductility of the PLA-based materials leading to a higher elongation at break
and reducing their stiffness and brittleness. As mentioned before, the mechanism involved
in the plasticization process can be described by the interaction of the plasticizer molecules
with the PLA chains, reducing the intermolecular forces, which results in an increase in
free volume and chain mobility. The results of tensile tests are resumed in Table 1.
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It is easy to notice that plasticized PLA-based materials are more flexible than neat
PLA. At the same time, a high decrease in the elastic modulus as well as in the tensile
strength is observed compared with neat PLA. Therefore, the use of both plasticizers could
lead to plasticized PLA-based materials with better performance for applications where
high ductility is required compared with other plasticizers [27]. Therefore, both plasticizers
showed similar effects on tensile properties giving comparable values of tensile strength,
elastic modulus, and elongation at break.

Moreover, when the plasticized PLA-based materials are blended with TPS, they are
able to considerably increase the elastic modulus, slightly decrease their tensile strength,
and dramatically drop down the elongation at break reaching values similar to that of
neat PLA. Finally, the effect of the PLA plasticization and the compatibilization of its
blends with TPS on the thermally-activated shape memory properties were studied in
order to evaluate if these materials can overcome the PLA limitation and open up its
potential application in biomedical field [31]. Therefore, knowing the morphology of
the materials as well as their mechanical and thermal properties, and considering that
in general a Ttrans ≈ Tg + 15 ◦C [31,32] is shown to study the thermally-activated shape
memory response, we chose two different transition temperatures, one for neat PLA and
one for the plasticized systems, closer to the human body temperature. In particular, the
shape memory of neat PLA was thermally-activated at 75 ◦C while that of plasticized
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PLA-based materials and their blends with TPS was activated at 45 ◦C for comparison. A
visualization test, Figure 7, of the thermally-activated shape memory properties of neat PLA
was done by bending the sample at the Ttrans in the temporary shape then fixed at room
temperature and recovered at the same temperature. The mechanism proposed involved
a permanent network, composed of PLA chains physically entangled or linked thanks
to the PLA crystals, able to memorize the permanent shape and store the driving energy
needed to recover it. On the other hand, the switching phase, characterized by the Ttrans, is
formed by the amorphous PLA chains which can be frozen below their Tg in order to fix
the temporary shape and reheated above their Tg to gain high mobility and activate the
recovery of the permanent shape.
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Figure 7. Visual appearance of the thermally activated shape memory process for the sample studied
indicating the selected Ttrans (75 ◦C for PLA and 45 ◦C for the rest of materials) as well as the selected
Tfix, in particular 25 ◦C for PLA and 0 ◦C for the rest of materials. The arrows indicate the sample
during its deformation/recuperation stage.

The thermo-mechanical cycles were performed at 50% elongation. The programming
step was designed with a uniaxial stretching at the selected Ttrans (75 ◦C for PLA and 45 ◦C
for the rest of materials), followed by a fast quenching of the stretched state at the Tfix, in
particular 25 ◦C for PLA and 0 ◦C for the rest of materials. For PLA, it is not necessary bring
down the fix temperature to 0 ◦C. However, for plasticized systems, taking into account that
the transition temperature is only 45 ◦C, we have to choose a fix temperature lower than
25 ◦C in order to fix the temporary shape, choosing a difference of about 50 ◦C between
both temperatures, in both cases, therefore a Tfix of 0 ◦C for the plasticized samples.

The stretched state was maintained after quenching and subsequent removal of the
stress at the same temperature. Finally, the recovery of the permanent shape was activated
at the Ttrans. Figure 8 presents the evolution of strain, stress, and temperature in function of
time during the dual-shape memory programming step for all the materials. The results
related to the sample moPLA/TPS at 45 ◦C are not shown because it was not possible to
perform the thermo-mechanical cycle due to the breaking of the sample.
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It is worth noting that PLA showed an increase in the applied stress increasing the
number of cycles, probably due to the induced crystallization as a consequence of the
annealing process triggered at the Ttrans during the recovery stage of the thermo-mechanical
cycle. The effect of the annealing process was already reported in the literature for PLA/PCL
blends demonstrating that the increase in the degree of crystallinity can increase the
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mechanical properties [32]. The effect of PLA annealing is also visible in the values of Rr
obtained for PLA by the thermo-mechanical cycles. In Table 2, the results of the shape
memory properties characterization, in terms of Rr and Rf, are summarized for all the
samples. As it is easy to notice, PLA showed an excellent ability to fix the temporary
shape, showing maximum values as high as 100%. On the other hand, the Rr values
of PLA decreased, increasing the number of cycles and reaching minimum values of
28%. As mentioned above, this was probably due to the induced crystallization at the
Ttrans used, which is largely above the Tg of PLA. Thus, the mobility of the chains is
increased and during the recovery step they might have the time to organize themselves in
ordered crystals avoiding complete recovery. This behavior is due to the lack of stiffness of
the permanent network that compose the PLA sample which is characterized mainly by
physical entanglement that at the Ttrans might not store all the driving energy needed to
recover the permanent shape in the following step. Recently, Leones et al. [28] reported the
shape memory ability of neat electrospun PLA fibers thermally-activated at 60 ◦C showing
excellent values of Rr and Rf. In their case, a part to adapt the Ttrans used to be equal to the
Tg of neat PLA, avoiding in this way the relaxation of the permanent network, and the neat
PLA electrospun fibers showed a 5% of degree of crystallinity, being enough to increase the
stiffness of the physical network of the sample at the Ttrans.

Table 2. Rr and Rf values for all the sample tested by the thermo-mechanical cycles.

Sample Ttrans
(◦C) Tfix

Rf (%)
Cycle

Rr (%)
Cycle

1st 2nd 3rd 4th 1st 2nd 3rd 4th

PLA 75 25 100 100 100 - 79 53 28 -
oPLA 45 0 97 98 97 97 57 70 74 75

moPLA 45 0 98 97 - - 43 62 - -
oPLA/TPS 45 0 99 99 99 - 55 61 61 -

Therefore, in our systems, oPLA showed excellent values of Rf and high values of Rr.
This improvement is due to the fact that the permanent network of this sample is composed
by physical entanglement together with crystals that increase the stiffness of the network
that has to store the stretching energy during the programming step.

Looking at the shape memory ability of moPLA, we can easily notice that it was
not possible to complete more than 2 consecutive cycles with the same sample. The
applied stress needed to reach the elongation of 50% at the Ttrans was higher compared
with oPLA. Evaluating the cycles obtained, it was possible to observe that the sample
showed a higher Rr value in the second cycle while excellent Rf values were obtained
for both cycles. Moreover, oPLA/TPS showed excellent Rf values and good Rr values.
Compared with its counterpart without TPS, we can state that the thermally-activated
shape memory ability depending on the PLA-based phase was almost totally preserved
even while using 40 wt.% of TPS. Finally, as we mentioned above, it was not possible
to perform the thermo-mechanical cycles with the compatibilized blend, moPLA/TPS.
The high degree of crystallinity of the blend (20%) probably designed a stiff and brittle
permanent network to be stretched at the Ttrans used, leading to the breaking of the sample.
We can conclude that plasticized PLA/TPS blends show good thermally-activated shape
memory response in the case of oPLA/TPS but the improvement of their compatibility in
the moPLA/TPS leads to the loss of this property.

6. Conclusions

Biodegradable blends based on plasticized PLA and thermoplastic starch have been
obtained and characterized. It is very interesting to use the same additive able to act as
both plasticizer and compatibilizer, decreasing the glass transition temperature of PLA to
a temperature close to the physiological one, obtaining a material suitable for potential
biomedical applications. However, the thermally-activated shape memory results show that
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it is very important to make a balance between plasticizer and compatibilizer, considering
the need of two well-established phases to obtain shape memory response, the fix one
and the shift one. The blend moPLA/TPS does not show thermally-activated shape
memory response, while oPLA/TPS is able to present thermally-activate shape memory
capability at 45 ◦C and 50% deformation. Thus, OLA8t plasticizing effect leads to different
improvements such as the decrease in the system Tg to a temperature close to the human
body temperature and the consequent use of a Ttrans suitable for biomedical application.
On the other hand, the plasticizer addition increases the degree of crystallinity of the
sample, improving the properties of the permanent network which is essential to reach
good shape memory response. Finally, oPLA/TPS presents optimal values of Rf and Rr
at a deformation of 50%. Therefore, this analysis opens the way to a deeper study on
the shape memory response of this biodegradable and biocompatible system for further
biomedical application.
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