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Introduction

Bose-Einstein Condensation (BEC) is a phenomenon that emerges at very low tem-
peratures with bosonic particles. These particles are defined as having integer spin val-
ues, must have symmetric wave-functions under interchange of particles and obey Bose-
Einstein statistics. Bosons may be fundamental particles that mediate the fundamental
forces such as photons or they can also be bigger particles like bosonic isotopes of atoms
such as Helium, Sodium or Rubidium. Unlike Fermions, they do not obey the Fermi
exclusion principle, and therefore they are free to occupy the same quantum state [1].
This way, the the condensate becomes a macroscopic state of matter in which quantum
phenomena become apparent.

One of such quantum characteristics is superfluidity, and it was first theorized for liquid
Helium at almost the absolute zero (0K). Superfluids exhibit several unique features such
as zero viscosity, which means that they can flow without any resistance, or quantised
vortices, which implies certain discrete allowed values for the circulation around a region
with an absence of superfluids [2].

In the 1920s, Satyendra Nath Bose [3] and Albert Einstein [4] theorized about this
kind of occurrence in an ideal (uniform and non interacting) bosonic gas, but the existence
of the BEC was not experimentally verified until 1995, when Eric Cornell, Carl Wieman,
and Wolfgang Ketterle successfully produced a condensate using ultra-cold alkali metal
atoms; specifically 87Rb in the case of Cornell and Wieman [5], and 23Na for Ketterle [6].
They were awarded the Nobel Prize in 2001 for these findings.

There are a few principles that permit the existence of this condensate. First of all,
the particles with an integer spin obey Bose-Einstein statistics and can occupy the same
quantum state. Secondly, particles at extremely low temperatures occupy the lowest
energy level of a given system due to their low thermal energy. Because of that, the wave-
functions of these particles start behaving in a coherent way, so we are able to describe
them with a single wave-function that, in fact, describes the matter distribution of the
atoms in the condensate.

This state of matter is specially optimal to observe phenomena such as superfluidity
or quantised vortices, and it is useful to simulate quantum states or do interferometry [7].
Besides, it is relatively easy to manipulate condensates using lasers or magnetic traps,
and hence, they represent a good platform to study said quantum events.

The main goal of this thesis is to numerically simulate the free expansion a rotating
Bose-Einstein condensate, in order to analyze the effects of superfluidity. A non-rotating
Bose-Einstein condensate in a cigar shape created by the axial symmetry of the trapping
potential expands very differently from a usual thermal cloud: instead of reaching a
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spherical symmetrical configuration, the BEC will expand from the short axis much faster
than from the long axis, so after passing a symmetrical shape, the original short axis will
be the expanded one. If the condensate is rotating, then the moment of inertia is quenched
with respect to the rigid body value. The important consequence of it is that due to the
conservation of energy and angular momentum, the moment of inertia cannot be zero
and therefore during the evolution the condensate can never pass through a symmetric
(circular) configuration. Instead a rapid rotation of the long and short axes is performed
when close to the forbidden configuration and the BEC continues to expand from the
initial long axis instead of the initial short one.

We will also compare the rotating condensate with simulations of thermal clouds
over the critical temperature needed to create the BEC and simulations of non-rotating
condensates, so that we can see the differences compared to the main objective of the
thesis.

This work is divided in four chapters, plus a concluding section and an Appendix. In
the first part a theoretical introduction to Bose-Einstein condensates will be made, specif-
ically mentioning the Gross-Pitaevskii theory and the Thomas-Fermi approximation. In
the second chapter, the method for solving the equations numerically will be introduced.
In the third chapter a theoretical hypothesis will be made of how each case will evolve,
and in the last chapter the results of different simulations will be described and compared.
Lastly, the key conclusions will be stated about the work done. At the end, some mathe-
matical derivations will be developed and numerical methods will be explained which are
useful both in the second chapter and in the numerical resolution of the problem in hand.
This last part will also include code snippets to ease the replication of simulations.
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Chapter 1

Theory of Bose-Einstein
condensation

In this chapter, we provide a general discussion of basic concepts of Bose-Einstein
condensation in order to study the expanding gas. This discussion is inspired mainly on
the following sources: [8], [9], [10], [11], [12].

1.1 The non-interacting BEC

We are interested in studying a system of ultra-cold bosons trapped in an external
magnetic potential, and in order to do that, we will first analyze the situation in which
the particles do not interact with each other.

Although there are many possibilities for the external potential, a usual way to trap
the atoms is by using a quadratic potential, similar to a harmonic oscillator potential,
which may be different in every direction. Therefore, for a system of N particles with
mass m, the trapping potential considered will be,

Vext(r) =
1

2
m
(
ωxx

2 + ωyy
2 + ωzz

2
)
=

1

2
m

3∑
i=1

ωir
2
i . (1.1)

Using the previous potential, the Hamiltonian of the system is expressed as follows,

H =
N∑
j=1

Hj, (1.2)

where Hi is the harmonic oscillator Hamiltonian for a single particle,

Hj = − ℏ2

2m
∇2

j + Vext(rj). (1.3)

It is known that the energy spectrum of the Hamiltonian for each individual boson, since
particles are not interacting, is the following,

εnx,ny ,nz = ℏωx

Å
nx +

1

2

ã
+ ℏωy

Å
ny +

1

2

ã
+ ℏωz

Å
nz +

1

2

ã
, (1.4)
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where ni = 0, 1, ....

Due to the bosonic nature of the particles we are working with, the general wave-
function Ψ(r1, ..., rn) has to be symmetric when two components are interchanged, i.e.
ri ↔ rj, and all bosons will occupy the ground state of the harmonic oscillator if T = 0.
Therefore, we can express the many-body wave-function as a Hartree product of individual
wave-functions,

Ψ(r1, ..., rn) =
N∏
j=1

ψ0(rj), (1.5)

where the individual wave-functions are the following,

ψ0(r) =
(mωho

πℏ

)3/4
e−

m
2ℏ(ωxx2+ωyy2+ωzz2). (1.6)

The harmonic oscillator frequency ωho = 3
√
ωxωyωz is the geometric average of the oscil-

lator frequencies.

Since bosons follow Bose-Einstein statistics, from a statistical-mechanical point of view
the system can be described with a grand-canonical ensemble, in which

N =
∑

nxnynz

1

eβ(εnxnynz−µ) − 1
, (1.7)

where N is the total amount of particles, µ is the chemical potential and β = 1/kT .
This predicts a critical temperature TC that corresponds to the maximum temperature at
which there are sufficient particles in the ground state energy so that there is a macroscopic
occupation. In the case of a harmonic potential, we define N0 as the number of particles
in the ground state. With that, if we let the chemical potential µ = (3/2)ωho , which is
when the number of particles in the ground state becomes macroscopic, we may rewrite
Eq. (1.7) as

N −N0 =
∑

nx,ny ,nz ̸=0

1

e[βℏ(ωxnx+ωyny+ωznz)] − 1
. (1.8)

Since the energy level gaps grow smaller when N → ∞, we can replace the sum with an
integral, and evaluating that integral yields

N −N0 = ζ(3)

Å
kT

ℏωho

ã3
, (1.9)

where ζ(x) is the Riemann zeta function. To calculate the critical value, we let N0 = 0,
so we obtain the following equality:

kTc =
ℏω̄N1/3

ζ(3)1/3
≈ 0.94ℏωhoN

1/3. (1.10)

If the collection of atoms is at a temperature higher than the critical one, we would
consider there is no condensate but a thermal cloud with no properties that are charac-
teristic to the BEC. Nevertheless, for the purposes of this work, we are going to consider
the ground state of a perfect BEC as our initial condition; so we will take T = 0, therefore
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N0 = N , and the normalization condition the many-body wave-function needs to satisfy
is

ψ(r) =
√
Nψ0(r) −→

∫
R3

|ψ(r)|2dr = N. (1.11)

From that equation we can deduce that the density distribution of the non-interacting
condensate is

n(r) = |ψ(r)|2 = N |ψ0(r)|2. (1.12)

It can be seen that the density scales linearly with N , even though the size of the con-
densate in each direction does not depend on it,

R0j =
ahoj√
2
, ahoj =

 
ℏ

mωj

. (1.13)

Therefore, a non interacting BEC can be characterized by the trapping potential ωj. For
some experimental insight, the characteristic length scale aho is usually of the order of
microns, and ℏωho is of the order of nanokelvins.

1.2 Mean-field theory for an interacting condensate

Even though the previous discussion has been interesting from a theoretical point of
view, in reality particles interact with each other, so in this section we will analyze the
situation in which a Hartree approximation can be made with the mean-field g. The
mean-field energy is used in various many-body systems to represent the average inter-
action energy between the particles of the system. It captures the dominant interaction
neglecting small details for individual particles, and therefore it provides an interesting
simplification from the complex potentials we have for each boson in the system, while
maintaining good overall approximations. If we use the momentum representation ψ(p) of
the wave-function the mean-field will be a constant, but not in our spatial representation.

There are two conditions to be met for this approximation to be valid:

• The probability of finding two particles in the characteristic range r0 of the inter-
particle interactions has to be much lower than the average distance between the
particles d, namely d ≫ r0. This is called the diluteness condition and holds even
in classical situations.

• The thermal wavelength of particles, λT =
√

2πℏ2/ (mkBT ), has to be much larger
than the interaction range in order to average the effects of said interactions. When
λT is sufficiently large, the details of the interactions do not matter that much so the
particle feels an average effect of the potential. This is due to the position of quan-
tum particles not being defined perfectly but spread over a distance proportional to
their thermal wavelength.

In this case, the initial wave-function will not change from the previous section, Eq.
(1.5), but the Hamiltonian changes to

H =
N∑
i=1

ï
p2
i

2m
+ Vext (ri)

ò
+ g

∑
i<j

δ (ri − rj) , g =
4πℏ2a
m

, (1.14)
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where a is the s-wave scattering length of bosons. Keep in mind this is an approximation,
and that the real potential V (rij) would be made up of all interactions between the
particle being solved for and all other particles in the BEC. That would not be possible
to solve analytically and would be computationally expensive to approach; besides, the
approximation proposed gives a really good picture of the condensate.

Once the Hamiltonian has been set, the energy of the system can be written as

E [ψ] = N

∫
dr

ï
ℏ2

2m
|∇ψ(r)|2 + Vext(r)|ψ(r)|2 +

(N − 1)

2
g|ψ(r)|4

ò
. (1.15)

Notice how the interaction potential term is divided by 2 to avoid counting each interaction
twice. Moreover, taking into account that N ≫ 1, we can rewrite the energy of interaction
as the following:

E =
N(N − 1)

2V
g ≈ 1

2
V n2g, (1.16)

and we can neglect the terms containing 1/N due to the large volume of particles in the
BEC. Therefore, Eq. (1.15) becomes

E [ψ] =

∫
dr

ï
ℏ2

2m
|∇ψ(r)|2 + Vext(r)|ψ(r)|2 +

1

2
g|ψ(r)|4

ò
. (1.17)

Consequently, if we take the functional derivative of the expression above to minimize the
energy, we arrive to the known Gross-Pitaevskii (GP) equation:

δE

δψ∗ = iℏ
∂

∂t
ψ(r, t) =

ï
− ℏ2

2m
∇2 + Vext(r) + g|ψ(r, t)|2

ò
ψ(r, t). (1.18)

This is a modified Schrödinger equation, with an added non-linearity to account for
the inter-particle interactions, and it is the basic equation used to analyze the behavior
of Bose-Einstein condensates. The probability density associated to the wave-function is
actually a particle density distribution,

n(r, t) = |ψ(r, t)|2. (1.19)

The ground state of the condensate can be defined when we have stationary solutions
that are of the following kind:

ψ(r, t) = ψ(r)e−iµt/ℏ, (1.20)

so we get the stationary GP equation,ï
− ℏ2

2m
∇2 + V (r) + g|ψ(r)|2

ò
ψ(r) = µψ(r), (1.21)

where the chemical potential can be expressed as

∂E

∂N
= µ, (1.22)

and can be understood as the energy required to add a particle to the condensate. Notice
this expression is identical to the one used in statistical-mechanics.
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1.3 The Thomas-Fermi limit

Despite the implementation of certain simplifications, it is convenient to undertake
a comprehensive examination of the scenarios in which the Gross-Pitaevskii equation
undergoes further simplification. For condensates that are sufficiently large and have
repulsive interactions, the limit in whichNa/aho ≫ 1 becomes relevant. In this regime, the
kinetic term of the GP equation, which is proportional to ∇2

√
n and relates to quantum

pressure, becomes negligible. This is known as the Thomas-Fermi (TF) regime, and it is
the one used in laboratory conditions for experiments. Making use of this limit, the GP
equation can be simplified to the following:[

V (r) + g|ψ(r)|2
]
ψ(r) = µψ(r), (1.23)

where solving for the density yields

n(r) = |ψ(r)|2 = µ− V (r)

g
, (1.24)

for when µ > V (r), and 0 elsewhere. We can solve for the chemical potential analyti-
cally for quadratic potentials. In order to do that, we must remember the normalization
condition of Eq. (1.11) and that we may write

|ψ(r)|2 = µ

g

(
1−

3∑
i

mω2
i

2µ
r2i

)
. (1.25)

Therefore,

N =

∫
|ψ(r)|2dr =

µ

g

∫ (
1−

3∑
i

mω2
i

2µ
r2i

)
dr. (1.26)

Solving the integral in 3 dimensions yields

µ =
ℏωho

2

Å
15N

a

aho

ã2/5
. (1.27)

It is important to mention that the extension condensate in the TF limit can be
characterized by its three semi-axes, called the Thomas-Fermi radii, and defined as

RTFi
=

 
2µ

mω2
i

= aho

Å
ωho

ωi

ãÅ
15N

a

aho

ã1/5
. (1.28)

Unlike in a non-interacting scenario, the Thomas-Fermi radius in each direction exhibits
a dependence on the number of particles, so the more particles in the BEC, the larger the
Thomas-Fermi radius will be.

1.4 Hydrodynamic formulation

The time dependent GP equation can be rewritten as two coupled differential equa-
tions. For this, it is convenient to rewrite the wave-function of the BEC as a function of
the density and phase:

ψ(r, t) =
»
n(r, t)eiS(r,t). (1.29)
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Using this expression, the velocity field can be obtained, yielding the following:

v(r, t) =
ℏ
m
∇S(r, t). (1.30)

A full derivation to reach that equation can be seen in [11].

Plugging Eq. (1.29) in the GP Eq. (1.18) we obtain:

• On the left hand side of the GP equation,

iℏ
Å
∂

∂t

√
n

ã
eiS − ℏ

√
n

Å
∂

∂t
S

ã
eiS. (1.31)

• The kinetic term becomes

− ℏ2

2m
∇[ (∇

√
n)eiS + i(∇S)

√
neiS

]
= − ℏ2

2m
eiS
[(
∇2

√
n
)

+ i(∇S)(∇
√
n) + i

(
∇2S

)√
n+ i(∇S)(∇

√
n)− (∇S)2

√
n ] .

(1.32)

• The potential term becomes

V
√
neiS + gn

√
neiS. (1.33)

Therefore, equating the real and imaginary parts of the left and right side of the GP
equation, 

ℏ
∂

∂t

√
n = − ℏ2

2m

(
2(∇

√
n)∇S +

√
n∇2S

)
,

−ℏ
√
n
∂

∂t
S = − ℏ2

2m

(
∇2

√
n−

√
n(∇S)2

)
+ V

√
n+ gn

√
n.

(1.34)

From the first equation we can derive the continuity equation, which ensures the conser-
vation of the probability:

∂n

∂t
+∇(nv) = 0, (1.35)

and from the second equation we obtain an equation similar to the hydrodynamic Euler
equation for a superfluid, which describes a fluid without viscosity:

m
∂

∂t
v +∇

ï
− ℏ2

2m

(∇2
√
n)√
n

+
1

2
mv2 + V + gn

ò
= 0. (1.36)

The term with − (ℏ2/2m) (∇2
√
n) /

√
n is called the quantum pressure term, and can

be neglected in the Thomas Fermi regime due to the electrostatic screening being dominant
over the quantum pressure.

Therefore the hydrodynamical formulation of the GP equation reduces to
∂n

∂t
+∇(nv) = 0,

m
∂v

∂t
+∇
Å
1

2
mv2 + V (r, t) + gn

ã
= 0.

(1.37)

These two equations will be crucial to investigate non-linear phenomena with a simplified
scheme. In fact, they describe very interesting properties of Bose-Einstein condensation,
specially the irrotationality of the superfluid, ∇× v = 0, which will be important in our
analysis of rotating condensates.
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Chapter 2

Scaling solutions

In this work we will analyze the free expansion of a rotating BEC, using the Thomas-
Fermi limit. In order to do that and simulate the evolution of the condensate, there
exist self-similar solutions that simplify the hydrodynamic partial differential equations
to a system of ordinary differential equations by describing a solution that maintains an
overall shape and structure under scaling operations. The goal of this simplification is to
ease the numerical computations needed to accurately simulate the desired situation.

Generally, if we use the scaling hypothesis, we predict that the evolution of the density
can be given by a scaling coefficient λ(t) which is the only term that depends on time, so,

n(r, t) =
1∏

j λj(t)
n0

Å
ri
λi(t)

ã
, (2.1)

where the first term is due to the normalization and each λi corresponds to the scaling
factor in the axis ri. It is clear that the spacial dependence is given by ri but, as mentioned
before, λi(t) describes the time evolution of the BEC, and acts as a scaling factor. In fact,
we can complete the hypothesis by substituting the previous expression in the continuity
equation to get the scaling for the velocity field

vi(r, t) =
λ̇i
λi
ri. (2.2)

Until now no assumptions have been made for the external potential or the initial
density profile, so the equations are valid for all situations. We will analyze the cases of
a thermal gas and a condensate, to verify the differences.

2.1 Thermal gas

To obtain scaling solutions for a thermal gas, we will consider the non-interacting limit
(g = 0) for the case in which the condensate is trapped by a harmonic potential. In this
situation, the initial density is given by Eq. (1.24), while the scaling solution is given by
the following differential equation [10]:

λ̈i(t) =
ω2
i (0)

λ3i
− ω2

i (t)λi. (2.3)
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That equation can be easily solved if we take into account that when we release the
condensate ωi = 0, so

ωi =

®
ωi(0) = ωi, t ≤ 0,

0, t > 0,
(2.4)

with initial conditions for the scaling parameters being set to λi(0) = 1 and λ̇i(0) = 0. It
follows that with those initial conditions Eq. (2.3) becomes

λ̈i(t) =
ω2
i

λ3i
, (2.5)

and solving that,

λi(t) =
»

1 + ω2
i t

2. (2.6)

Upon conducting a first analysis on these scaling equations, it is clear that since they
are decoupled for all directions, the expansion of each axis will be dependent only on the
initial trap frequency in that direction.

2.2 Bose-Einstein condensate

For our case, we will also create the initial shape using a quadratic potential, which
will be different in the axial coordinate compared to the z coordinate. We can characterize
that potential as

V (r, t) ≡ 1

2
mω2

ho

3∑
ij=1

xiWij(t)xj, (2.7)

where Wij is a symmetric 3 × 3 matrix. The scaling solution ansatz for the potential
above is also quadratic, and using the formulation of the wave-function from Eq. (1.29),
we get the following pair of equations:

n(r, t) =
mω2

ho

g

(
n0(t)−

1

2

3∑
i,j=1

xiAij(t)xj

)
, (2.8)

S(r, t) = mωho

(
s0(t)−

1

2

3∑
i,j=1

xiBij(t)xj

)
. (2.9)

Here, Aij, Bij, n0 and s0 are the scaling factors. The matrices are also symmetrical due
to the properties of the initial potential. These equations are somewhat simplified from
the general potential, which may include linear or constant terms, and consequently the
solutions would also include linear or constant terms in both the density and the phase.
Nevertheless, to set the initial condition we need in this work, the quadratic term is
sufficient.

Using this ansatz, we can derive the following ordinary differential equations to simu-

11



late the expanding condensate,

dn0

dτ
= Tr(B) n0,

ds0
dτ

= n0,

dA

dτ
= Tr(B) A− {A,B},

dB

dτ
= B2 +W − A,

(2.10)

for which τ = ωhot. Note that these equations only depend on the initial number of atoms
and scattering length through the initial density [13].

The previous derivation is expanded in the Appendix.
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Chapter 3

Theoretical description of expanding
gases

After getting to know the underlying theory of Bose-Einstein condensation, we will now
analyze the situation we are going to investigate more in depth. To do so, it is interesting
to define the aspect ratio of the BEC as the ratio between the widths along the axes of
the condensate. In particular, for an axially symmetric trap, we define ω⊥ ≡ ωx = ωy,
and the following quantity characterizing the asymmetry of the trap,

λ =
ωz

ω⊥
. (3.1)

We will analyze three different situations in order to visualize the interesting properties
of rotating BECs. First we are going to see what would happen to a thermal cloud in
which a BEC is not formed. After that, a non-rotating condensate will be considered,
and lastly the rotating situation will be analyzed.

3.1 Thermal Cloud

A thermal cloud, as explained earlier, is formed when the gas is not cold enough to
form a Bose-Einstein condensate, namely when the gas is above the critical temperature
Tc. Therefore the expansion it follows is a rather simple one. The equations governing its
dynamics are, as explained earlier, Eqs. (2.1) and (2.6).

If we set the potential as an axially symmetric quadratic potential, the initial shape
of the gas will be a cigar shape if ω⊥ ≫ ωz, and a disk shape if ωz ≫ ω⊥. We will choose
the former one. When we release the cloud, the aspect ratio of the thermal gas during
the time-of-flight can be computed as [8]

AR(t) =

√
⟨x2z(t)⟩√
⟨x2⊥(t)⟩

=
ω⊥

ωz

√
1 + ω2

zt
2√

1 + ω2
⊥t

2
. (3.2)

After an asymptotically large time has passed in which t ≫ ω−1
ho , it is clear that

AR → 1, so the thermal gas will be expanded more from the short direction. In fact, the
expansion on each axis only depends on itself and not the other parameters. Therefore,
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as we can see in Fig. 3.1a, the thermal cloud goes from the cigar shape to an isotropic
configuration.

(a) Thermal cloud.

(b) Non-rotating BEC.

(c) Rotating BEC with an angular velocity φ.
Notice the orientation change of the axes.

Figure 3.1: Diagrams of the time evolution of the three cases discussed,
initially in a cigar shaped configuration.
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3.2 Non-rotating BEC

The starting situation of the BEC is created by an axially symmetric quadratic po-
tential as well. We choose the y − z plane to display and analyze our condensate, even
though we shall remember the 3D nature of the condensate. Nevertheless, the analysis
for the x− z plane would be identical, and the x− y plane would just display a circular
shape due to ωx = ωy

If we release the condensate in this conditions, the expansion will follow these steps:

1. In the beginning, the aspect ratio of the BEC is [8]

AR(t = 0) =
1√
λ
. (3.3)

2. The condensate will start expanding when we set the potential V = 0, and like the
normal thermal cloud we have seen before, the BEC will start expanding from the
short axis faster than the long axis.

3. After a long time-of-flight, the aspect ratio of the Bose-Einstein condensate becomes
AR =

√
λ, so it will have passed from a perfectly spherical configuration in which

AR = 1, and then the long and short axes will have changed, expanding on the
perpendicular direction on a higher rate. An important conclusion in this case is
that after the condensate has passed from the vertical shape to an horizontal one,
the axis that once was long now is the short one, while the opposite happens with
the axis that was short in the initial configuration.

A diagram of the y − z plane projection of the evolution of the non-rotating BEC is
shown in Fig. 3.1b, where we can see that the initial short axis is the one expanding
rapidly.

3.3 Rotating BEC

Now we will see a more interesting situation. Before releasing the condensate from
the trap, we will give it an angular velocity, so that when we switch off the potential, it
will start expanding while it is rotating. There are some ways to do that operation. Since
we have seen that v = ∇S/m, we can set an initial phase that will induce a rotation.
Alternatively, a more common way to execute the rotation experimentally is to rotate
the potential so that the initial configuration no longer is at the minimum, and hence
it will start oscillating around the new potential. Another reason this last one is the
most common way of rotating the initial BEC is that we can release it from the trap at
different times to analyze the effects under various initial angular velocities. A diagram
of the rotated potential and the new minimum configuration can be seen in Fig. 3.2.
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Figure 3.2: Diagram showing the initial configuration of the cigar shaped
BEC, and the condensate under rotated potential conditions. In the second
diagram the red axes are the original unrotated ones and the black ones
(x′, y′) are the rotated ones. Both BECs are shown in the minimum of the
potential.

After letting the condensate turn for some time, we release it from the potential. Due
to the lack of potential and the superfluid nature, the energy and angular momentum must
be conserved, so while the initial evolution is very similar to a non rotating condensate
but with a rotation, things change as soon as the aspect ratio approaches unity.

The moment of inertia of a BEC is given by

Θ =
⟨x2 − y2⟩2

⟨x2 + y2⟩2
Θrig, (3.4)

where Θrig is the rigid body value. We see that the real moment of inertia is quenched or
deformed with respect to the rigid body. It is clear from that equation that the moment
of inertia of the rotating BEC will be zero when it has a cylindrical symmetry. Due to the
peculiarity of the superfluid and the conservation of energy and angular momentum, if
the Bose-Einstein condensate is rotating, Θ cannot be 0. Therefore, in order not to break
conservation laws, the spatial configuration never reaches cylindrical symmetry and the
the aspect ratio, although close, never reaches unity. What happens is that close to this
situation, the condensate performs a rapid rotation so that the initial long axis is now
perpendicular to the initial configuration and is the one that keeps expanding [13] [14].
This will be better understood once the simulations and numerical results are presented.

Therefore, to sum up all three cases, for a thermal cloud an isotropic spherical config-
uration will be achieved for asymptotically large times; for a non-rotating BEC the long
axis and the short axis will switch and the expansion after some time has passed will be
in the opposite direction from the initial long axis; and for a rotating BEC, the axes will
not be switched and even though it would seem that the final configuration is the same
as in the non-rotating case, this time the long axis will be the one expanding after a fast
rotation. The three cases can be visualized in Fig. 3.1.
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Chapter 4

Numerical solutions

Now that we have understood the problem and have had an in depth view of the the-
oretical evolution the condensate should have, we shall proceed to analyze the numerical
solutions of the simulated the gas. We will divide this section in two parts: the first one
will show that, as described above, the thermal cloud will lead to an spherical configu-
ration, and after that we will look at the evolution of the condensate. The numerical
methods used in the calculations are explained in the Appendix.

4.1 Thermal cloud

The simulations of the thermal cloud are pretty straightforward. Since we are only
interested in a qualitative view of the dynamical evolution of the thermal cloud, we are
permitted to simulate a generic gas with arbitrary initial conditions.

We will take the initial configuration of the gas to be that of the cigar shaped, and to
model that we will use a Gaussian function:

n0(r, 0) = e−x2−y2−λ2z2 , λ =
ωz

ω⊥
. (4.1)

The results can be seen in Fig. 4.1, where we take λ = 16.3/200 to have the same
conditions as in the following sections. It is clear that what was theoretically described
is correct. The thermal cloud begins in a very elongated shape but after 15 ms it has the
characteristic symmetrical configuration in which AR ≈ 1 and if we let it expand for a
longer time, it will asymptotically reach the expected aspect ratio AR ≡ 1.

Figure 4.1: Frames of the distribution of a thermal cloud. Axes are arbi-
trarily normalized in order to ease visualization. The density is normalized
to the value of the origin.
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4.2 Bose-Einstein condensate

There are other interesting calculations to be made besides the dynamics of the density
of the condensate. Mainly, we will focus on the angle of rotation, the visualization of the
main axes of the BEC and its aspect ratio. To calculate these parameters, it is of utmost
importance the correct representation of the density with the matrix A we have in Eq.
(2.8).

Before beginning with the simulation, the initial condition for the density must be
determined by setting A11 = A22 < A33. The exact values to be used are A11 = A22 = 1.0
and A33 = λ2 (recall Eq. (3.1)), and this will create the cigar shape. Then, we will set
the initial potential. It is crucial for the matrix W to have the same values as A before
the rotation in order to avoid deformations on the condensate before the free expansion.
These would be caused by the shifted position of the BEC with respect to the minimum
state of the potential.

After having our matrices set, we apply the RK-4 method with a timestep of dt = 0.025
ms. The smaller dt, the lower the error will be.

The simulations will be made in order to replicate the experiments done in [13]; thus,
the values of the initial density will be set using the values for 87Rb atoms, with the
anharmonicity of ωz = 2π × 16.3 Hz and ω⊥ = 2π × 200 Hz.

4.2.1 Non-rotating BEC

Now that we have described the initial configuration to be used, we will first consider
turning off the trap at t = 0, effectively not rotating the condensate and therefore ana-
lyzing that situation. Various frames of this simulations are shown in Fig. 4.2. There
we can see that the axes (represented by the colored lines) do not rotate and it has no
problems to pass the AR = 1 position to further expand from the short axis. Therefore,
in this case, the theoretical description matches the computational results.

Figure 4.2: Frames of the distribution of a expanding non-rotating BEC.
Axes are arbitrarily normalized in order to ease visualization and the density
is normalized the value of the origin. The red and blue lines represent the
initial long and short axes, respectively. Notice that asymptotically the BEC
becomes elongated along the direction in which it is initially more confined.
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4.2.2 Rotating BEC

We are interested in analyzing the effect of the fast rotation, and therefore simulations
will be made for four different initial angular velocities for each angle θ we rotate the
potential. For that we will release the BEC at different times. The first one will be after
t = 0.125 ms, when the release angular velocity φ is still very small; the second one will
be at t = 0.625 ms; the third one will be at 1.25 ms, which is when the condensate is close
to the minimum of the potential and therefore has its maximum velocity; and the last
one will be made at t = 2.5 ms, which is when the condensate has a very small velocity
at the other side of the potential. We can see the evolution of the condensate under the
rotated potential in Fig. 4.3, where each point represents a different release time and
thus a different velocity. It is also clear the oscillatory nature of the evolution under the
potential.

Figure 4.3: Evolution of the angle of the condensate with respect to the
original axis as a function of time, and different release times when the po-
tential minimum is at θ = 10 mrad.

For a clear view of what is happening with the rotating BEC, Figs. 4.4 and 4.5 show
different instances of the condensate on the y− z plane released at 0.625 ms and 1.25 ms.
The frames are all separated by 1.375 ms, and we have decided to omit the initial pictures
so as to center on the timespace in which the rapid rotation happens. The values have
been normalized, but in reality the expansion is significant. In the first frame in which the
BEC is released, its long axis length is around 100 µm, while at the end it has expanded
by more than three orders of magnitude. We believe that the visualization is easier if the
axes of the figures are fixed at an arbitrary value and the condensate is normalized. We
clearly see an expansion but it does not reflect reality with precision. Besides, the density
n(r, t) has been normalized to its center value n0 = n(0, t), which starts at n0 ∼ 10−13 kg
m−3 and ends at n0 ∼ 10−15 kg m−3.
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Figure 4.4: Frames of the distribution of the BEC density at different times
when released at t = 0.625 ms. The blue line represents the orientation of
the short axis while the red one represents the long one. Spatial axes are
arbitrarily normalized to ease visualization ans the density is normalized to
that of the central value.

Figure 4.5: Frames of the distribution of the BEC density at different times
when released at t = 1.25 ms. The blue line represents the orientation of
the short axis while the red one represents the long one. Spatial axes are
arbitrarily normalized to ease visualization ans the density is normalized to
that of the central value.

The previous figures clearly show a fast rotation occurring around 13 − 15 ms. To
have an in depth view of this phenomenon, in Fig. 4.6 we present the aspect ratios and
angles for the release times specified in Fig. 4.3, and therefore for different initial angular
velocities. The analysis will be done with three rotation angles for the initial potential:
θ = 0.005, 0.01, 0.1 rad.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.6: Aspect ratios in a logarithmic scale and angles of the rotating
BEC with the rotated potential at θ = 0.005, 0.01, 0.1 rad respectively in
each row, for different release times as a function of time.

Let us discuss the results. First of all, qualitatively the results for the angles θ = 0.005
rad and θ = 0.01 rad seem similar. It is very clear that the bigger the initial angular
velocity, the smaller the effect will be. This is due to the fact that the BEC needs to
reach the 90º rotation, and if the initial angular velocity is bigger it will reach the final
state faster so it does not need to rotate at a higher velocity. It is also true that for
those high angular velocity releases, the aspect ratio is not too close to the forbidden
symmetrical shape. On the contrary, the smaller the initial angular velocity the closer it
gets to AR = 1, so it needs to rapidly rotate in order to avoid it. Therefore, when the
aspect ratio reaches its minimum value (even though it never reaches 0 in the log scale)
the angular velocity is maximum.

Looking at Figs. 4.6e and 4.6f, it is clear the behavior of the BEC is different. In this
case we have 3 kinds of evolution. When the condensate is released early, even though it
has a smaller φ than the t = 0.625 ms and t = 1.25 ms releases, the effect is quite small.
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This is because the potential angle is much larger than in Figs. 4.6a, 4.6b and 4.6c, 4.6d,
so it never gets too close to AR = 1 and the angular velocity does not have a spike. When
we release the BEC after more time, we clearly see that there is no rapid rotation and we
cannot see the effect described earlier: the condensate has enough angular velocity to turn
90º faster than it gets close the critical aspect ratio so there is no need for a fast rotation,
and φ is reduced in a gradual manner. This effect is also described in [14]. Lastly, it is
interesting to review what happens when we release the BEC at t = 2.5 ms. Here it has
already reached the angle 2θ by the time we release it, so the angular velocity is reversed
and it goes through 0 before rotating the other way, again, rapidly.

Another interesting phenomenon worth mentioning is that after the fast rotation has
been performed, the condensate approaches the angle θ = π/2 rad asymptotically. The
rotation must continue but as the angular momentum has to be conserved, due to the
expansion of the BEC the angular velocity tends to zero. This happens after the rotation
has been performed because even though the condensate is always growing, the expansion
of the short axis compensates the one of the long one in the beginning, so it is only when
it stops expanding from the short axis that the BEC expands extremely rapidly and the
velocity decreases drastically.

Figure 4.7: Comparison between a rotating BEC and a rotating thermal
cloud, in the case of θ = 0.01 and release at t = 1.25 ms.

Comparing this behavior with the one of the thermal cloud, in Fig. 4.7 it appears
that both the rotating BEC and the gas have the same trend during the slow rotating
phase, but when the aspect ratio gets close to unity, the rotating thermal cloud does not
change its rotation rate and keeps going almost linearly. Therefore, it is clear that this
rapid rotation effect happens only in Bose-Einstein condensates.

22



Conclusions

The goal of this thesis has been to analyze the intriguing behavior of a superfluid BEC
when it is released from a harmonic trap with an angular velocity, and to compare it to
a non-rotating case and a thermal cloud.

As our most important conclusion, we have specially focused on the case for the
rotating BEC, in which the effects of superfluidity are clear. We have investigated the
rapid rotation it undergoes in order to avoid breaking the conservation of energy and
angular momentum. Since those conservation laws cannot be broken and the moment of
inertia of a rotating Bose-Einstein condensate is quenched comparing it with the value of
the rigid body, a symmetrical configuration is not possible as it would render the moment
of inertia to be zero. This phenomenon only happens due to the fact that Bose-Einstein
condensates exhibit superfluid properties and the rotation.

In order to execute this work, several steps have been undertaken:

1. First of all, acquiring a basic knowledge of the mathematical formalism of Bose-
Einstein condensation has been a prerequisite. That includes the understanding of
the Gross-Pitaevskii equation, the hydrodynamic formulation of the GP equation,
and the non-interacting and Thomas-Fermi limits.

2. A set of ordinary differential equations have been derived to ease the complexity of
simulating the condensate using directly the GP equation. In order to do that, we
have had to understand the self-similar or scaling solutions and successfully apply
them to the harmonic potential we have used.

3. An initial description of the phenomena occurring has been made based on the
formalism explained in the first two chapters, and the evolution of each case has
been theorized as well as their differences.

4. A program has also been written to calculate various parameters for the cases of the
thermal cloud and the rotating and non-rotating condensates using the direct scaling
solution for the first case and the numerical iterative method Runge-Kutta of 4th

order for the others. We have also created various figures to ease the understanding
of the phenomena happening.

Besides the main effect, we have also found more interesting outcomes. Firstly, the
theoretical part has been specially useful to understand the underlying physics of a Bose-
Einstein condensate, and therefore the reasoning behind the superfluidity they can exhibit
and the effects we have observed.

Moreover, in the case of the rotating BEC the fact that it reaches an asymptotic angle
due to the expansion has been verified. We have outlined the differences of that case with
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a thermal cloud and seen that even though the in the first instances the evolution seems
similar it changes after the condensate gets close to a symmetrical configuration. We have
also mentioned the differences of the BEC being rotating or not and how that affects to
its expansion.

Lastly, although the case for the thermal cloud has been a more qualitative result
rather than an exact reproduction of experiments, the cases for the BEC, both the rotating
and non-rotating case, recreate the results obtained in previous experiments such as the
one described in [13]. They accurately describe the singular phenomena occurring in
rotating condensates.
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Appendix A

Mathematical derivations and code
snippets

A.1 Self-similar solutions of the hydrodynamic equa-

tions

We are going to derive the ODEs mentioned as the evolution of scaling solutions for
BECs, namely Eq. (2.10). We shall take the hydrodynamic equations for the Thomas-
Fermi regime as our basic equations,

∂n

∂t
+

1

m
∇ (n∇S) = 0,

∂S

∂t
+

1

2m
(∇S)2 + V + gn = 0.

(A.1)

Calculating the spatial derivative of the ansatz Eqs. (2.8) and (2.9),
∂xk

n = −mω
2
ho

g

∑
i

xiAik,

∂xk
S = −mωho

∑
i

xiBik.
(A.2)

Therefore, we can calculate each part of Eq. (A.1). Since ∇(n∇S) = ∇n · ∇S + n∇2S,
we get 

∇n · ∇S =
m2ω3

ho

g

3∑
ij=1

xi(A ·B)ijxj,

∇2S = −mωho

∑
i

Bii = −mωho Tr(B),

n∇2S = −m
2ω3

ho

g
Tr(B)

(
n0 −

1

2

3∑
ij=1

xiAijxj

)
.

(A.3)
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Now substituting in the first Eq. (A.1) and simplifying terms,(
ṅ0 −

1

2

3∑
ij=1

xiȦijxj

)
+

ωho

(
3∑

ij=1

xi(A ·B)ijxj − Tr(B)

[
n0 −

1

2

3∑
ij=1

xiAijxj

])
= 0. (A.4)

Since the matrices A and B are symmetrical, if we write (A ·B) = 1
2
[A,B]+ 1

2
{A,B}, the

first term that indicates the commutation of the matrices is equal to 0, so it simplifies to
the anticommutation term.

If we now focus on the second expression of Eq. (A.1), using the equations we got
earlier and simplifying,(

ṡ0 −
1

2

3∑
ij=1

xiḂijxj

)
+
ωho

2

(
3∑

ij=1

xiB
2
ijxj

)

+
ωho

2

(
3∑

ij=1

xiWijxj

)
+ ωho

(
n0 −

1

2

3∑
ij=1

xiAijxj

)
= 0. (A.5)

Equalling the matricial parts and the scalars separately, and defining a new variable
τ = ωhot, we have gone from the GP equation to the hydrodynamic equations in the first
chapter, and from there we have simplified our problem from 2 PDEs to 4 coupled ODEs
(in reality we have one ODE for each value i, j in the matrices A and B):

dn0

dτ
= Tr(B) n0,

ds0
dτ

= n0,

dA

dτ
= Tr(B) A− {A,B},

dB

dτ
= B2 +W − A.

(A.6)

A.2 A brief explanation of the Runge-Kutta method

Since we are dealing with ODEs, one of the most efficient ways to calculate the time
evolution of the condensate is using the Runge-Kutta 4 (RK-4) iterative method. To use
an iterative method such as Runge-Kutta, the initial value of the function y(t) has to be
known and its time evolution needs to be described as

dy

dt
= f(t, y). (A.7)

Therefore, we need to know f(t, y), t0 and y(t0). From there, the method consists on
discretising the time derivative into finite timesteps. The simplest RK method called
the Euler method is the most straightforward to explain. Since the initial conditions are
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known and the derivative is defined as f , if a small timestep h is taken the new value for
y1(t1) will be close to the real value. Therefore, the full method for ti+1 will be®

ti+1 = ti + h,

yi+1 = yi + hf(ti, y).
(A.8)

This method can be proven by using the Taylor expansion of the function y,

y (t0 + h) = y (t0) + hẏ (t0) +O(h2) (A.9)

If we ignore the terms of order h2 or higher, and since we know that ẏ = f(t, y), we
recover Eqs. (A.8).

It is straightforward to see how the total error in this method is O(h) due to the fact
that the number of steps taken depends on 1/h and the truncating error on the Taylor
expansion is O(h2). This error is too large for a simulation with almost 1000 steps as we
will be performing.

To reduce the error in our calculation, we shall proceed with the RK-4 method. From
a theoretical point of view it is pretty similar to the Euler method explained earlier but
this time, terms up to the order O(h5) are taken into account from the Taylor expansion,
so the total error O(h4) is much lower than in the one explained earlier [15]. This method
can be explicitly written asti+1 = ti + h,

yi+1 = yi +
h

6
(k1 + 2k2 + 2k3 + k4) ,

(A.10)

where, 

k1 = f (ti, yn) ,

k2 = f

Å
ti +

h

2
, yi + h

k1
2

ã
,

k3 = f

Å
ti +

h

2
, yi + h

k2
2

ã
,

k4 = f

Å
ti +

h

2
, yi + hk3

ã
.

(A.11)

In our case, since we are dealing with 4 coupled ODEs, we shall calculate ki for each
step in order: first k1 for all our ODEs, then k2, ... The following code demonstrates how
it can be implemented in Fortran 90. This coding language has been chosen due to its
fast calculations and easy matrix manipulation1.

1The full program will not be included, just snippets of relevant code.
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1 subroutine rk4(t, y, h, W)

2 implicit none

3 real(kind=dp), dimension (7,3), intent(inout) :: y

4 real(kind=dp), intent(inout) :: t

5 real(kind=dp), intent(in) :: h

6 real(kind=dp), dimension (3,3), intent(in) :: W

7 real(kind=dp), dimension (7,3) :: k1 , k2 , k3 , k4 ,

y_ph

8

9 call deribatu(y, W, k1)

10 y_ph (:,:) = y(:,:) +0.5*h*k1(:,:)

11 call deribatu(y_ph , W, k2)

12 y_ph (:,:) = y(:,:) +0.5*h*k2(:,:)

13 call deribatu(y_ph , W, k3)

14 y_ph (:,:) = y(:,:)+h*k3(:,:)

15 call deribatu(y_ph , W, k4)

16

17 y(:,:) = y(:,:)+(h/6.0) *(k1(:,:)+2*k2(:,:)+2*k3(:,:)+k4(:,:))

18 end subroutine rk4

19

20 subroutine deribatu(y, W, dy)

21 implicit none

22 real(kind=dp), dimension (7,3), intent(in) :: y

23 real(kind=dp), dimension (3,3), intent(in) :: W

24 real(kind=dp), dimension (7,3), intent(out) :: dy

25 real(kind=dp), dimension (3,3) :: A, B, dA , dB ,

anticommutator , B2

26 real(kind=dp) :: rho0 , drho0 , s0 ,

ds0 , tr_b

27

28 tr_b = 0.0

29 A(:,:) = y(1:3 ,:)

30 B(:,:) = y(4:6 ,:)

31 rho0 = y(7,1)

32 s0 = y(7,2)

33

34 tr_b = B(1,1)+B(2,2)+B(3,3)

35 anticommutator = matmul(A,B)+matmul(B,A)

36 B2 = matmul(B,B)

37

38 drho0 = (rho0*tr_b)

39 ds0 = rho0

40

41 dA(:,:) = (2.0 _dp*tr_b*A(:,:)+anticommutator (:,:))

42 dB(:,:) = (W(:,:)-A(:,:)+B2(:,:))

43

44 dy(1:3 ,:) = dA(:,:)

45 dy(4:6 ,:) = dB(:,:)

46 dy(7,1) = drho0

47 dy(7,2) = ds0

48 dy(7,3) = 0.0

49 end subroutine deribatu

Notice the subroutine deribatu contains the differential equations Eq. (2.10), while
the subroutine RK4 calculates each timestep. The vector y has all relevant information
about the previous iteration.
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A.3 Rotated potential and condensate eigenaxes

Even though the matrix A is symmetrical during the whole expansion, in the beginning
it is diagonal, with each eigenvector representing the direction of the axes and with the
eigenvalues representing how deformed it is in each direction. When the condensate starts
rotating, A23 and A32 will start having non zero values. With that in mind, to know the
direction of the long and short axes, we will have to diagonalize A each iteration, and to
know the angle we will just have to calculate the arc-tangent between the eigenvectors.
To do so is straightforward, since all symmetrical matrices are diagonalizable and we are
only interested in the y− z plane so we need to perform the operation on the 2x2 matrixÅ

A22 A23

A32 A33

ã
. (A.12)

The following code is an example of how the diagonalization can be made.

1 subroutine diag(matrix , eigenvalues , eigenvectors)

2 implicit none

3 real(kind=dp), dimension (2,2), intent(inout) :: matrix (2,2)

4 real(kind=dp), dimension (2), intent(out) :: eigenvalues (2)

5 real(kind=dp), dimension (2,2), intent(out) :: eigenvectors (2,2)

6 real(kind=dp) :: tr , det , ph

7

8 eigenvectors (1,:) = 1.0

9

10 tr = matrix (1,1) + matrix (2,2)

11 det = matrix (1,1) * matrix (2,2) - matrix (1,2) * matrix (2,1)

12

13 eigenvalues (1) = (tr + sqrt(tr**2 - 4.0 * det)) / 2.0

14 eigenvalues (2) = (tr - sqrt(tr**2 - 4.0 * det)) / 2.0

15

16 eigenvectors (2,1) = (eigenvalues (1) - matrix (2,2)) / matrix (2,1)

17 eigenvectors (2,2) = (eigenvalues (2) - matrix (2,2)) / matrix (2,1)

18

19 ph = sqrt(eigenvectors (1,1)**2 + eigenvectors (2,1) **2)

20 eigenvectors (:,1) = eigenvectors (:,1) / ph

21

22 ph = sqrt(eigenvectors (1,2)**2 + eigenvectors (2,2) **2)

23 eigenvectors (:,2) = eigenvectors (:,2) / ph

24 end subroutine diag

Besides, we need to turn the potential matrix for the condensate to start rotating.
Once the initial W matrix has been set, we will rotate it some angle θ. To do this, we
will perform the following operation:

RTWR =

Ñ
1 0 0
0 cos θ sin θ
0 − sin θ cos θ

éÑ
W11 0 0
0 W22 0
0 0 W33

éÑ
1 0 0
0 cos θ − sin θ
0 sin θ cos θ

é
. (A.13)

Using the values for W11 = W12 = 1 and W33 = λ2, which are the ones set in the matrix
A as well, we obtain Ñ

1 0 0
0 cos2 θ + λ2 sin2 θ sin θ cos θ(1− λ2)
0 sin θ cos θ(1− λ2) sin2 θ + λ2 cos2 θ

é
. (A.14)
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It is clear that the rotated matrix maintains the symmetric shape of the initial matrix
W , and therefore so will the matrix A during the time evolution and the expansion.
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