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Chapter 1

Introduction

Most physical theories take the number of spacetime dimensions for granted, they are
constructed according to the number of dimensions perceived by us: three spatial ones,
and a single time one. The aim of this study is to analyse proposals which question this
assumption, either by stating that our universe could have a different number of dimen-
sions, or by arguing that the number in fact agrees with our perception. Bearing in mind
that the majority of theories involving a different dimensionality of spacetime refer to the
spatial dimensions, these are the ones which will be focused on. Two radically different
approaches have been chosen for this purpose. On the one hand, attempts to formulate
a unified theory of physics have been considered, which often postulate additional spatial
dimensions. This approach has had a significant impact on our understanding of spatial
dimensions, and has led to a thorough consideration of extra compact dimensions. On
the other hand, the reasoning induced by the anthropic principle will be studied, and its
specific application on the number of dimensions.

Firstly, unified theories will be discussed in a chapter composed of two sections, the
Kaluza-Klein theory will be explained in the former, and string theory, in the latter. The
Kaluza-Klein theory postulates an extra spatial dimension, in order to construct a unified
theory of electromagnetism and gravitation. As regards to string theory, the focus will be
on a single calculation, due to a particularity of the theory under question: the number
of spacetime dimensions is not postulated, it is a requirement of the theory.

Secondly, regarding the anthropic principle, as forementioned, the actual reasoning
it entails is what the chapter will be centred on. Therefore, its historical development
will be exposed, that is to say, the precedents from which it arose will be explained, and
subsequently, the application of this reasoning on the number of spatial dimensions will
be considered.
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Chapter 2

Unified theories of physics and
spatial dimensions

Our aim in this chapter is to study the changes in our understanding of the spatial
dimensions (or at least, in the number of dimensions the universe is thought to have)
under the influence of the development of theories seeking to give way to a unification
of different branches of physics. No matter the variety of points of view on this type of
theories, one cannot overlook the fact that the search for unification has very often led to
valuable insight into the physical world. For instance, take the unification of electricity
and magnetism achieved as a result of Maxwell and Faraday’s work, and how it changed
our understanding of light. Or the synthesis of the concepts of space and time, expressed
in the new idea of spacetime, within Einstein’s special relativity. Moreover, we must also
refer to the further unification of those two concepts attained by means of his brilliant
theory of general relativity, in which spacetime is considered to be dynamical. There
are many other examples, such as the wave-particle duality in quantum physics, but
what is important to us now is to study the theories which, in return for unification,
involve additional spatial dimensions, that is, theories which demand a universe with
more than three spatial dimensions. Therefore, the Kaluza Klein theory will be studied
first, due to it being one of the first proposals of its kind, followed by a brief overview of
the dimensionality of spacetime in string theory, on account of it being a contemporary
proposal which may still have a broad path ahead.

2.1 Kaluza-Klein theory

Theories involving extra dimensions have been significantly developed in the last decades,
becoming more and more complex, but it can be said that we may find their foundation
in the Kaluza-Klein theory, named after the work of Theodor Kaluza and Oskar Klein.
So as Kaluza was one of the first who made an attempt to construct such a theory, we
will begin by overviewing his original paper, “On the Unification Problem in Physics” [1],
which he wrote in 1919 and was published in 1921 by Albert Einstein. It is important
to point out that when this paper was published, there was no knowledge whatsoever
concerning the weak or strong interactions, and also that quantum mechanics had hardly
been developed. Therefore, the search for unification that will be studied only concerns
gravitation and electromagnetism.

Five years after Einstein published Kaluza’s paper, Klein, who by that time had been
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2.1. Kaluza-Klein theory

able to study quantum physics, improved Kaluza’s proposal by adapting it to quantum
mechanics on the one hand, and by speculating about the geometry of the extra dimension
on the other (Kaluza had not explicitly mentioned this aspect of the extra dimension).
As to the note made about Kaluza’s theory regarding the weak and strong interactions,
the same holds for Klein’s version: the years in which he developed his modifications
were still far from the discovery of these interactions. Klein published his version of the
five-dimensional theory in the articles “Quantum Theory and Five-Dimensional Relativity
Theory” [2] and “The Atomicity of Electricity as a Quantum Theory Law” [3]. They were
both published in 1926; the former in April, and the latter, in October.

The general procedure followed by Kaluza and Klein consists in writing the metric
tensor of spacetime with an extra dimension, including an electromagnetic four-potential
in it. Then, the condition known as the cylinder condition is applied, which will be defined
later on, and the five-dimensional analogues of the following expressions are obtained: the
Christoffel symbols of the first kind, which are first order derivatives of the metric; the
Riemann curvature tensor, which consists of derivatives of the Christoffel symbols; the
Ricci tensor, obtained by contracting the Riemann tensor; and the Ricci scalar, which is a
contraction of the Ricci tensor. Kaluza and Klein show that all the resulting expressions
can be rewritten in terms of the usual four-dimensional tensors, together with obtaining
both the equations for electromagnetism and for gravitation; that is to say, they prove it
possible to unify these two branches of physics by considering one extra spatial dimension.

In order to understand Kaluza and Klein’s results, we must first revise what Maxwell’s
equations look like in the relativistic notation, because this is the form in which the
electromagnetic equations will arise.

2.1.1 Relativistic formulation of Maxwell’s equations

The source-free Maxwell equations in the Heaviside-Lorentz system of units are:

∇× E⃗ = −1

c

∂B⃗

∂t
, (2.1)

∇ · B⃗ = 0. (2.2)

The ones involving sources:
∇ · E⃗ = ρ, (2.3)

∇× B⃗ =
1

c
j⃗ − 1

c

∂E⃗

∂t
. (2.4)

As the magnetic field B⃗ is divergenceless, it can be written as the curl of a vector, the
well-known vector potential A⃗:

B⃗ = ∇× A⃗. (2.5)

Substituting this expression into (2.1),

∇×

(
E⃗ +

1

c

∂A⃗

∂t

)
= 0. (2.6)
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2.1. Kaluza-Klein theory

By setting the object between brackets equal to −∇ϕ, the electric field E⃗ can be written
as:

E⃗ = −1

c

∂A⃗

∂t
−∇ϕ. (2.7)

It is worth noting that the source-free Maxwell equations are automatically satisfied with
the introduction of potentials.

We construct a four-vector by combining the scalar potential ϕ with the vector poten-
tial A⃗:

Aµ =
(
ϕ,A1, A2, A3

)
, (2.8)

Aµ =
(
−ϕ,A1, A2, A3

)
. (2.9)

We will rewrite the equations in terms of the electromagnetic field strength Fµν :

Fµν ≡ ∂µAν − ∂νAµ, where ∂µ =
∂

∂xµ
. (2.10)

We can see that Fµν is antisymmetric, Fµν = −Fνµ. By computing all the components,
one obtains:

Fµν =


0 −Ex −Ey −Ez

Ex 0 Bz −By

Ey −Bz 0 Bx

Ez By −Bx 0

 . (2.11)

Considering the combination ∂λFµν + ∂µFνλ + ∂νFλµ, we can see that it vanishes when

Fµν is given by (2.10) [4]. Recalling that the use of potentials to represent E⃗ and B⃗
automatically implies the source-free Maxwell equations being satisfied, it follows that
they are both encoded by the following set of differential equations for the field strength:

∂λFµν + ∂µFνλ + ∂νFλµ = 0. (2.12)

A current four-vector must be introduced in order to describe the Maxwell equations (2.3)
and (2.4),

jµ =
(
cρ, j1, j2, j3

)
, (2.13)

where ρ is the charge density and j⃗ = (j1, j2, j3) is the current density.

The field tensor with upper indices is

F µν = ηµαηνβFαβ. (2.14)

Considering i and j as spatial indexes (they can take the values 1, 2 and 3), it can be
shown that [4]:

F µν = −F νµ, (2.15)

F 0i = −F0i, F ij = Fij, (2.16)

F µν =


0 Ex Ey Ez

−Ex 0 Bz −By

−Ey −Bz 0 Bx

−Ez By −Bx 0

 . (2.17)
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2.1. Kaluza-Klein theory

(2.3) and (2.4) can now be encapsulated as

∂F µν

∂xν
=

1

c
jµ. (2.18)

In the absence of sources, this becomes ∂νF
µν = 0. In short, the equivalent of Maxwell’s

equations in a more compact way is given by

∂λFµν + ∂µFνλ + ∂νFλµ = 0, (2.19a)

∂F µν

∂xν
=

1

c
jµ. (2.19b)

2.1.2 Kaluza’s theory

Kaluza’s main aim is to show that the equations for both the gravitational and the
electromagnetic fields could stem from a single universal tensor, by considering an extra
fourth spatial dimension. He is motivated by the apparent similarity between Fχλ and

the Christoffel symbols of the first kind

[
iλ
χ

]
1:

1

2
Fχλ =

1

2
(Aχ,λ − Aλ,χ) , (2.20)[

iλ
χ

]
=

1

2
(giχ,λ + gχλ,i − giλ,χ) . (2.21)

He introduces the factor 1/2 in the first expression simply due to the correspondence with[
iλ
χ

]
. In his paper, he actually uses qχ instead of Aχ, but even so, we will still stick to

Aχ. As ususal, indices after a comma represent partial derivatives with respect to one of

the coordinates, for example, Aχ,λ = ∂Aχ

∂xλ .

In order to construct the five-dimensional theory, Kaluza sets the Christoffel symbols
of the first kind just as the usual four dimensional ones, but allowing the index values to
run from 0 to 4. Latin indices will run from 0 to 4, and Greek ones from 0 to 3 (the extra
dimensional coordinate will be referred to as x4)2, which means that the Greek indices
will correspond to the common spacetime dimensions, and the Latin ones, to the new
five-dimensional constructions. Therefore, Kaluza writes the five-dimensional Christoffel
symbols as [

ik
l

]
=

1

2
(gli,k + gkl,i − gik,l) . (2.22)

1In this section, the Christoffel symbols will be referred to in accordance with the notation used by
Kaluza, even though when introducing the form Γikl, this notation and the one used today differ by a
minus sign.

2Kaluza (and Klein) denoted the new coordinate by x0. However, the extra dimensional component
will be thought of as the fifth one, because we are currently used to x0 denoting the time coordinate
x0 = ct, and also due to the fact that all subsequent reviews tend to take it to be the fifth one. As a
consequence, the new coordinate will be x4. This will also be applied in the section on Klein’s work.
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2.1. Kaluza-Klein theory

He denotes

[
ik
l

]
by −Γikl (as previously mentioned, Kaluza’s notation differs from the

one used today).

Taking into account that there has been no experimental evidence which suggests an
extra dimension, Kaluza proposes the cylinder condition, making the derivatives of all
vector and tensor quantities with respect to the new coordinate vanish (or be sufficiently
small). So by applying this condition (in this case, by using gik,4 = 0), and explicitly
distinguishing the extra dimension from the ordinary ones, the new three-index quantities
become

Γχλµ =
1

2
(gχλ,µ − gλµ,χ − gµχ,λ) , (2.23a)

Γ4χλ =
1

2
(g4χ,λ − g4λ,χ) , (2.23b)

Γχλ4 = −1

2
(g4χ,λ + g4λ,χ) , (2.23c)

Γ44χ =
1

2
g44,χ, (2.23d)

Γ444 = 0. (2.23e)

In order to keep Γ4χλ proportional to the terms of the electromagnetic field tensor, that
is, to Fχλ, he sets

g4χ = 2αAχ, (2.24)

where α is just a proportionality constant. He also chooses

g44 = 2g. (2.25)

g is an additional scalar field, whose role remains undetermined for the time being3.

Hence, the five-dimensional fundamental metric tensor is now the usual four-dimensional
metric tensor framed by the electromagnetic four-potential:

gik =


g00 g01 g02 g03 2αA0

g10 g11 g12 g13 2αA1

g20 g21 g22 g23 2αA2

g30 g31 g32 g33 2αA3

2αA0 2αA1 2αA2 2αA3 2g

 . (2.26)

With such a fundamental metric tensor, bearing in mind that Fχλ = Aχ,λ − Aλ,χ and
introducing Σχλ = Aχ,λ + Aλ,χ,

Γ4χλ = αFχλ, (2.27a)

Γχλ4 = −αΣχλ, (2.27b)

Γ44χ = −Γ4χ4 = g,χ. (2.27c)

Now, we shall see that the following expressions arise:

Fχλ,µ + Fλµ,χ + Fµχ,λ = 0 and g,χλ = g,λχ. (2.28)

3In the first works based on this idea (including Klein’s), g is usually taken to be a constant, and
normalised as g44 = 1, in spite of Kaluza’s choice. Further on, the scalar field is reconsidered, and
commonly denoted as ϕ.
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2.1. Kaluza-Klein theory

Derivation of (2.28)

Firstly, it will be proved that (Γikl + Γkli + Γlik),m = Γmik,l+Γmkl,i+Γmli,k, as it is a useful
expression for the derivation. [5]

(Γikl + Γkli + Γlik),m =
1

2
(gik,l − gkl,i − gli,k),m +

1

2
(gkl,i − gli,k − gik,l),m +

+
1

2
(gli,k − gik,l − gkl,i),m = −1

2
(gkl,im + gli,km + gik,lm) .

Assuming that the order of metric derivations is irrelevant, we will add three pairs of
opposite terms:

(Γikl + Γkli + Γlik),m =
1

2
(−gkl,mi − gli,mk − gik,ml + gmi,kl − gim,lk − gkm,il + gmk,li

−glm,ki + gml,ik) =
1

2
(gmi,k − gik,m − gkm,i),l +

1

2
(gmk,l − gkl,m − glm,k),i +

1

2
(gml,i

−gli,m − gim,l),k = Γmik,l + Γmkl,i + Γmli,k.

Now, we shall take m = 4 in this expression,

(Γikl + Γkli + Γlik)4 = Γ4ik,l + Γ4kl,i + Γ4li,k.

Due to the cylinder condition, (Γikl + Γkli + Γlik)4 = 0, so

Γ4ik,l + Γ4kl,i + Γ4li,k = 0,

which is also true if we only consider the Greek indices, hence,

Γ4χλ,µ + Γ4λµ,χ + Γ4µχ,λ = 0.

We also know from (2.27) that Γ4χλ = αFχλ, which means:

α (Fχλ,µ + Fλµ,χ + Fµχ,λ) = 0.

α ̸= 0 → Fχλ,µ + Fλµ,χ + Fµχ,λ = 0.

If instead of taking m = 4 we now choose i = k = 4,

(Γ44l + Γ4l4 + Γl44)m = Γm44,l + Γm4l,4 + Γml4,4 = Γm44,l → (Γ44l + Γ4l4 + Γl44)m = Γm44,l,

where the cylinder condition has been used in the second step. Further developing those
four terms,

Γm44 = −1

2
g44,m

(2.25)

= −g,m (and Γl44 = −g,l) ,

Γ44l = g,l,

Γ4l4 = −g,l.

Finally,

(Γ44l + Γ4l4 + Γl44)m = (g,l − g,l − g,l)m = −g,ml → g,lm = g,ml → g,χλ = g,λχ.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Therefore, it has been shown that Fχλ,µ+Fλµ,χ+Fµχ,λ = 0, which is precisely the compact
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2.1. Kaluza-Klein theory

form of two of the Maxwell equations, equations (2.1) and (2.2), as seen in the section
Relativistic Formulation of Maxwell’s Equations.

In order to continue with the calculations, Kaluza is forced to make two approxima-
tions so that the complexity is reduced: on the one hand, he only considers the case in
which the fields are weak, that is to say, the case in which gik = ηik + hik, where |h| << 1
and η44 = 1; and on the other hand, he also restricts himself to small velocities.4

Next, he calculates the components of the five-dimensional analogue of the Ricci cur-
vature tensor (under the forementioned approximations), Rik, which is a contraction of
the (five-dimensional equivalent of the) Riemann curvature tensor Ri

jkl:

Ri
jkl = Γi

jk,l − Γi
jl,k + Γm

jlΓ
i
mk − Γm

jkΓ
i
ml, (2.29)

Rjk = Ri
jki. (2.30)

Kaluza then shows that the four-dimensional components of the new Ricci curvature
tensor, Rµν , can lead us to the ordinary equations of gravitation, whilst R0µ gives way
to the remaining electromagnetic equations, and R00, to an equation for the scalar field
g (R00 = −□g, where □ = ∂µ∂µ). In his book On the unification problem in physics -
the paper of Theodor Kaluza [5], aiming for further clarification, Samir Lipovaca rewrites
Kaluza’s result for R0µ as

R0µ = −αF µρ
,ρ . (2.31)

Thus, by comparing this equation to (2.18), we can see how R0µ can provide the remaining
Maxwell equations, i.e., (2.3) and (2.4). Kaluza also concludes that g is equal to minus
a gravitational potential, but it must said that further works on this issue either ignore
the indicated term (that is, consider it a constant), and take it to be equal to 1, or give
a completely different interpretation.

It is interesting to refer to Einstein’s reaction once he had read Kaluza’s paper. When
he first replied to Kaluza’s letter on April 21, 1919, he said:

“The idea of achieving a unified theory by means of a five-dimensional
cylinder world never dawned on me... At first glance I like your idea

enormously.”a

aA. Einstein in a letter to T. Kaluza as quoted in “‘Subtle is the Lord...’: The
Science and the Life of Albert Einstein” [6], on page 330.

However, about a week later, he added [7]: “I have read through your paper and find
it really interesting. Nowhere, so far, can I see an impossibility. On the other hand, I have
to admit that the arguments brought forward so far do not appear convincing enough”.
More than two years later, on October 14, 1921:

“I am having second thoughts about having restrained you from
publishing your idea on a unification of gravitation and electricity two
years ago.... If you wish, I shall present your paper to the academy

after all.”a

aA. Einstein in a letter to T. Kaluza as quoted in “The Hidden Dimensions of
Spacetime” [7], on page 78.

4These approximations are not considered in Klein’s work.

9



2.1. Kaluza-Klein theory

And we know how that ended, or else it is probable that we would not be studying
this proposal in the first place! Kaluza was aware of his theory’s limits considering the
set of phenomena which classical physics failed to explain at the time (quantum effects),
that would soon lead to the developed formulation of quantum mechanics.

“At the moment the consequence of this hypotheses is not yet
examined sufficiently; other possibilities should also be searched for.
After all, what threatens all the ansatz which demand universal
validity is the sphinx of modern physics - quantum theory.” [1]

2.1.3 Klein’s improvements

As already stated, the Kaluza-Klein theory arose from Kaluza’s proposal, and Oskar Klein
held on to the same procedure: to consider an extra spatial dimension in order to construct
a new (five-dimensional) fundamental metric tensor and thus obtain a unified theory of
electromagnetism and Einstein’s gravitation. Klein divided his paper “Quantum Theory
and Five-Dimensional Relativity Theory” [2] into two sections: “Five-Dimensional Theory
of Relativity” and “The Wave Equation of the Quantum Theory”, and his paper “The
Atomicity of Electricity as a Quantum Theory Law”[3] cannot be left aside, in which
he refers to the geometrical aspect of the theory. The order in which his work will be
addressed will therefore follow his own arrangement: firstly, we shall attempt to stress
the main features developed in the two sections of his first paper on this issue, and then
the geometrical side of the problem will be tackled.

Five-Dimensional Theory of Relativity

First of all, Klein slightly modifies Kaluza’s theory, starting with the fundamental metric
tensor.

“I begin by giving a short description of the five-dimensional relativity
theory which connects closely to Kaluza’s theory but differs in some

points from it.” [3]

In order to better visualise the new metric, a new notation will be adopted. The five-
dimensional metric will be denoted by g̃ik, and the four-dimensional one by gµν (Klein
actually denotes the new metric by γik).

Whilst Kaluza’s five dimensional metric has the following form,

g̃ik =


g00 g01 g02 g03 2αA0

g10 g11 g12 g13 2αA1

g20 g21 g22 g23 2αA2

g30 g31 g32 g33 2αA3

2αA0 2αA1 2αA2 2αA3 2g

 , (2.32)

Klein revised it, suggesting what is now known as the Kaluza Klein metric, by also
including second-order terms:

g̃ik =


g00 + αβ2A0A0 g01 + αβ2A0A1 g02 + αβ2A0A2 g03 + αβ2A0A3 αβA0

g10 + αβ2A1A0 g11 + αβ2A1A1 g12 + αβ2A1A2 g13 + αβ2A1A3 αβA1

g20 + αβ2A2A0 g21 + αβ2A2A1 g22 + αβ2A2A2 g23 + αβ2A2A3 αβA2

g30 + αβ2A3A0 g31 + αβ2A3A1 g32 + αβ2A3A2 g33 + αβ2A3A3 αβA3

αβA0 αβA1 αβA2 αβA3 α

 .
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2.1. Kaluza-Klein theory

Or, in a more compact notation,

g̃ik =

(
gµν + αβ2AµAν αβAµ

αβAν α

)
. (2.33)

The term corresponding to g̃44 is considered constant by Klein, he calls it α. β is also a
constant, whose value is given further on. He subsequently takes α to be 1, but even so,
it will maintained for the time being. The inverse metric takes the form

g̃ik =


g00 g01 g02 g03 −βA0

g10 g11 g12 g13 −βA1

g20 g21 g22 g23 −βA2

g30 g31 g32 g33 −βA3

−βA0 −βA1 −βA2 −βA3 1
α
+ β2AµA

µ

 , (2.34)

giving rise to the correct property
g̃ikg̃

kl = δki . (2.35)

He forms the invariant:

P = g̃ik

∂
{
iµ
µ

}
∂xk

−
∂

{
ik
µ

}
∂xµ

+

{
iµ
ν

}{
kν
µ

}
−
{
ik
µ

}{
µν
ν

} , (2.36)

in which

{
iµ
µ

}
stands for the Christoffel symbols of the second kind,

{
rs
i

}
=

1

2
g̃iµ
(
∂g̃µr
∂xs

+
∂g̃µs
∂xr

− ∂g̃rs
∂xµ

)
. (2.37)

Then, he considers the integral:

J =

∫
P
√

−g̃dx0dx1dx2dx3dx4, (2.38)

where g̃ is the determinant of g̃ik. Klein naturally assumed that integral should be the
five-dimensional action (P is just the five-dimensional analogue of the scalar curvature
R). Therefore, the application of the variational principle on the action J , that is,

δJ = 0, (2.39)

leads him to the following equations:

Rµν − 1

2
gµνR +

αβ2

2
T µν = 0, (2.40a)

∂
√
−gF νµ

∂xµ
= 0. (2.40b)

The calculations needed in order to obtain those equations are very long, they involve
rewriting everything in terms of the usual four-dimensional quantities. Rµν represent
the contravariant components of the Ricci curvature tensor; R is the scalar curvature,

11



2.1. Kaluza-Klein theory

R = gµνRµν); T
µν are the contravariant components of the electromagnetic energy-

momentum tensor, in SI units, T µν = 1
µ0

(
F µνFα

ν − 1
4
gµνFαβFαβ

)
; and F µν are the con-

travariant components of the electromagnetic field tensor (all of these tensors being four-
dimensional). By setting

αβ2

2
= κ, (2.41)

κ being the Einstein gravitational constant, the obtained equations are thus equivalent to
the gravitational field equations on the one hand, and to the source-free Maxwell equations
on the other5.

The Wave Equation of the Quantum Theory

As Klein says, Kaluza connects Einstein’s gravitation to the electromagnetic potentials,
by considering a five dimensional spacetime. “The equations of motion of charged parti-
cles then take the form of equations of geodesic lines also in electromagnetic fields” [2].
However, Klein had been able to study Schrödinger and de Broglie’s then recent work.
Therefore, intending to modify Kaluza’s proposal in accordance with his knowledge on
the quantum theory, he continues:

“When these are interpreted as wave equations by considering the
matter as a kind of propagating wave, then one is led to a partial
differential equation of second order which can be regarded as a

generalization of the usual wave equation. If, now, such solutions to
these equations are considered in which the fifth dimension appears

with a definite period related to Planck’s constant, one comes directly
to the above mentioned quantum theoretical methods.”

He considers the following five-dimensional differential equation as a generalisation of
the wave equation:

g̃ik
(

∂2ψ

∂xi∂xk
−
{
ik
r

}
∂ψ

∂xr

)
= 0, (2.42)

ψ being the five-dimensional wave function. The wave function can be written as a
complex quantity for which the action S is the phase of the wave, that is,

ψ = CeiS/ℏ. (2.43)

Let us consider the Lagrangian for a free particle in the five-dimensional spacetime,

L =
1

2
gikẋ

iẋk, (2.44)

H = ẋipi − L, where pi =
∂L

∂ẋi
. (2.45)

In our case, the canonical momentum becomes pi = gikẋ
k. Due to the lack of dependence

on the extra dimension, i.e., due to the cylinder condition, it follows that the extra di-
mension component of the momentum is constant.

5Just as Klein pointed out, equation (2.40b) is another way in which W. Pauli expressed (2.12) in
Theory of Relativity, which first appeared in 1921, as can be seen on page 79 of [8].
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2.1. Kaluza-Klein theory

Setting

pi =
∂S

∂xi
, (2.46)

as p4 is constant, S must satisfy S (x0, x1, x2, x3, x4) = p4x4 + S (x0, x1, x2, x3). So taking
(2.43) into account, the wave function may be written as

ψ (x0, x1, x2, x3, x4) = eip4x4/ℏϕ (x0, x1, x2, x3) . (2.47)

Here ϕ should be regarded as the wave function in four-dimensional spacetime. Ignoring

the terms proportional to

{
ik
r

}
in (2.42) [2] [9], the following equation is obtained:

[(
∂µ −

i

ℏ
eAµ

)(
∂µ − i

ℏ
eAµ

)
+
(mc

ℏ

)2]
ψ = 0, (2.48)

which takes the well-known form of the Klein-Gordon equation when the vector potential
is set to 0: (

□+m2
)
ψ = 0, where □ = ∂µ∂µ. (2.49)

The latter equation actually owes its name to the fact that Oskar Klein and Walter Gordon
derived the equation independently in the same year. However, in spite of Klein having
considered the extra dimension, Gordon did not. The equation is still used today for
relativistic particles without spin.

A curled up dimension

Whilst Kaluza did not explicitly mention the geometrical aspect of the extra dimension,
in 1926, Klein refers to the geometry of the extra dimension in his article “The Atomicity
of Electricity as a Quantum Theory Law” [3] published in Nature. He assumes the extra
dimension to be closed and periodic, and obtains the following estimated value for its
length, which he denotes by l:

l =
hc
√
2κ

e
= 0.8× 10−30 cm. (2.50)

“The small value of this length together with the periodicity in the
fifth dimension may perhaps be taken as a support of the theory of
Kaluza in the sense that they may explain the non-appearance of the
fifth dimension in ordinary experiments as the result of averaging over

the fifth dimension.” [3]

Klein’s derivation of (2.50)

On the one hand, the quantization of p4, the component of the momentum in the extra
dimension, shall be studied, following from the periodicity of the extra dimension [10].
On the other hand, another expression for p4 will be given, needed in order for the system
of equations to adopt the usual form. Finally, by comparing these two expressions, the
approximate value of the length corresponding to the extra dimension given by Klein will
be obtained.
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2.1. Kaluza-Klein theory

First of all, let us infer the implications of the extra dimension being periodic. Con-
sidering the forementioned to be closed with a period r, its coordinate may be described
mathematically via the identification

x4 ∼ x4 + 2πr. (2.51)

On account of this, the wavefunction ψ must satisfy the boundary condition

ψ
(
x4, xµ

)
= ψ

(
x4 + 2πr, xµ

)
. (2.52)

As it is periodic, the following expansion for ψ can be given:

ψ
(
x4, xµ

)
=
∑
n

ψn (x
µ) e

inx4

r . (2.53)

From quantum mechanics, the exponential term will be equal to the next expression:

e
inx4

r = eik4x
4

= e
ip4x

4

ℏ → n

r
=
p4
ℏ
. (2.54)

Hence, in order for the condition (2.52) to be satisfied, the momentum in the extra
dimension must be quantized in this manner:

p4 = n
ℏ
r
. (2.55)

Secondly, the form that the component of the momentum in the extra dimension should
take according to Klein shall be examined.

It was previously mentioned that Klein eventually takes α to be 1, and it must be
noted that in this derivation (which he develops in the article [3]), he already considers

it like so. The line element is dσ =
√

(dx4 + βAidxi)
2 + gikdxidxk, where the constant β

is now given by β =
√
2κ (the expression for the line element is obtained by choosing the

positive root from dσ2 = gikdx
idxk). Taking dτ as the differential of proper time for a

particle with mass m and charge q, the Lagrange function L for the geodetics representing
the particle’s motion:

L =
1

2
m

(
dσ

dτ

)2

. (2.56)

Momentum is defined in the ordinary way:

pi =
∂L

∂ (dxi/dτ)
. (2.57)

According to Klein, the system corresponding to (2.56) indeed becomes identical to the
equations of motion for the particle if we set

p4 =
q

βc
, (2.58)

and, assuming that the charge has to be a multiple of the elementary charge, that is,
assuming q = ne (where n is a whole number, and e has the value of e = 1.602×10−19C),

p4 =
ne

βc
. (2.59)
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2.1. Kaluza-Klein theory

Finally, taking into account both (2.55) and (2.59), the size that Klein gave for the
compact dimension is obtained,

l =
hc
√
2κ

e
= 0.8× 10−30 cm.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Klein’s suggestion concerning the geometry of the extra dimension provides a way of
imagining how it could be possible for another spatial dimension to exist without us ever
having noticed it. A simple analogy is often used to explain this fact: picture a cable
placed far away from somebody. For such an observer, the cable will just seem a one-
dimensional line. Now, imagine that an acrobat is walking along the cable (see Figure
2.1); if we asked our observer to specify the acrobat’s location, they would only give us
one piece of information: the distance at which we can find the acrobat, taking either
the left or the right end of the cable as a reference [11]. However, we do know that the
cable also has width. We shall now consider another observer, which is much closer to
our setting, so nearby that this one can even identify an ant moving along the cable. The
new observer will then be able not only to see how the ant can walk along the cable,
but moreover, that it may also crawl around it, which means that they will perceive the
cable’s surface as a two-dimensional one, unlike the first observer who was placed far from
it. Hence, if we now ask where the ant is, the answer we will get will include two pieces
of information: not only the distance relative to one of the ends, but also the distance
regarding the circular section; because the ant can move in two independent directions.6

Figure 2.1: When looked at from far away, it will seem that the cable
the acrobat is walking along is just a one-dimensional line, but

zooming in to the insect’s scale, we would be able to see how the insect
can also crawl around the cable, not just along it, that is to say, the
cable’s second dimension would become visible to us. Taken from [12].

On that note, there is an essential difference between the two dimensions: the di-
rection along the length of the cable is long, and easy to see. However, the direction
surrounding the width of the cable is curled up, and the precision needed in order to spot
this circular dimension is much higher. Accordingly, two types of spatial dimensions are
distinguished: on the one hand, there are those which are broad and extended, whilst on

6We are considering that the ant is on the surface of the cable, and not anywhere inside it, otherwise
we would need one more piece of information to specify its location.
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2.1. Kaluza-Klein theory

the other hand, there are curled up dimensions. Within the Kaluza-Klein theory, three
spatial dimensions would be extended, and the additional one would be curled up. If this
extra curled up dimension were sufficiently small, we currently have no means of prov-
ing its existence to be physically impossible. Consequently, in order to picture Klein’s
idea of the extra dimension, we should think of all points in the three-dimensional space
with an additional circular dimension which we cannot perceive. Any point in the usual
space would then actually be a circle, located where the three usual coordinates lead us to.

Figure 2.2: A curled up circular dimension represented on certain
points of a two-dimensional plane. Taken from [11].

Figure 2.3: The lowest image represents the two-dimensional plane’s
apparent structure, and the higher the images are, they are more

detailed, which means that the length scale is shorter. Taken from [11].

Obviously, it is difficult to represent the extra dimension in our three-dimensional
space, that is why we limit ourselves to giving the two-dimensional example, that is, to
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2.2. The number of spacetime dimensions in string theory

picturing a two-dimensional plane with the extra dimension. This idea is represented in
Figure 2.2: the figure should be thought of as a close-up image of the plane, in which the
grid lines would be the two extended directions, and the circles drawn on the intersections
of these lines should be regarded as the curled up direction. In the images there are only
a few regularly spaced out representations, but they should be generalised to all points
on the plane, as well as to the third extended dimension which has not been drawn; just
as the cable has width in each of its lengthwise points, all spacetime points would also
include this additional dimension.

Furthermore, Figure 2.3 represents the changes in the apparent geometry of the two-
dimensional plane, according to the scale at which it is looked upon: at further distances,
we would only be able to perceive the extended dimensions (two, in this example, but
three in the Kaluza-Klein theory when speaking of spacetime), and the more we magnified
the picture, the easier we would distinguish the circular dimension.

The smallest distance that has been explored with particle accelerators is roughly
10−16cm [4]. As the length of the compact dimension that Klein obtained is so small that
we cannot reach it experimentally, the fact that we have not detected it until today ceases
to be a problem.

Despite the fact that the small size of the compact dimension could be a possible
explanation for why we have not ever detected it, there are a few problems which entail
a more complex theory. The first to arise was that of including matter to the theory:
for example, the values obtained for the ratio between the electron’s mass and its charge
were far from the experimental ones [9], thereby resulting in a period in which extra-
dimensional theories were mostly left aside. Nevertheless, the Kaluza-Klein theory was
an important precedent of the attempts to find a unified theory of physics (which were
eventually revitalised); it can be considered a fundamental start for the development of
more complicated theories also involving compact extra dimensions, such as string theory.

2.2 The number of spacetime dimensions in string

theory

Theories speculating about extra dimensions were left aside soon after Kaluza and Klein’s
proposals, due to the successful development of quantum mechanics and quantum field
theory. This period could be described as a time in which experimental physics was guided
by theoretical advances, and vice versa; detailed properties of the atom were obtained and
confirmed experimentally, leading to the formulation of the standard model [11]. Why
would any theorist be interested in speculative theories such as extra-dimensional ones,
whose validity is not even possible to test because the difference they imply would be at a
length scale which is not even accessible to us? It seems natural that scientists should be
interested in more reliable theories whose predictions can actually be tested experimen-
tally.

By the early 1970s, the standard model had almost completely been crystallised theo-
retically, and several of its predictions would not need long to be confirmed; a great num-
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2.2. The number of spacetime dimensions in string theory

ber of particle physicists believed that the remaining predictions would also inevitably be
verified, leading to a complete understanding of strong, weak and electromagnetic interac-
tions [11]. Considering the success of a quantum theory including the forementioned three
forces, the task of also bringing the remaining force, gravitation, into play was resumed,
and proposals such as the Kaluza-Klein theory were reconsidered. However, more than six
decades had gone by since the original idea, unified theories had to face a thoroughly de-
veloped theory of quantum mechanics, together with another two forces still unknown at
Kaluza’s time. It seemed straightforward to at least consider more dimensions accounting
for the higher amount of forces [11]. In order to understand how we could picture more
than one additional dimension, once again, an illustrative example given by Brian Greene
will be taken. Considering two extra dimensions and only two extended dimensions, and
representing the curled up ones in regularly spaced points, Figure 2.4a and Figure 2.4b
provide a way of visualising them. They are both considered to stress the fact that there
are many options concerning their geometry, as long as their spatial extent is small enough
so as not to have been detected yet.

(a) Two extra dimensions curled up into the
surface of a sphere. Taken from [11].

(b) Two extra dimensions curled up into the
surface of a torus. Taken from [11].

Figure 2.4: Different geometric configurations for two extra dimensions.

The fundamental property of string theory is that particles are replaced by elementary
one-dimensional strings ; each particle is identified with a particular vibrational mode of
a string. They can be classified into open strings, with two endpoints, and closed strings,
with no endpoints. On the other hand, there is an important division between bosonic
string theories and superstring theories ; within bosonic theories, all vibrations represent
bosons, whilst the spectrum of superstrings also includes fermions [4]. Even though they
are not realistic, bosonic theories will be focused on, due to their simplicity in comparison
with superstrings, and only open strings will be used. The aim of this chapter is to explain
that within string theory, the dimensionality of spacetime is determined by a calculation,
that is, instead of postulating this number, it is a requirement of the theory. The number
of dimensions obtained in each type of theory is different: D = 26 is obtained in bosonic
theories, whilst the result using superstrings is D = 10, yet as already mentioned, only
the first case will be developed.7

In an attempt to explain how these calculations arise, the procedure that appears in
the textbook A first course in string theory [4], by Barton Zwiebach, will be followed.
The set of coordinates needed to describe the strings will be introduced, followed by the
equations of motion and their solution in the light-cone gauge, and lastly, the classical
theory will be quantized. String theory is an incredibly broad field, but only the necessary

7Throughout this section, D will be used to refer to the number of spacetime dimensions, and d for
the number of spatial ones (D = d+ 1).
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2.2. The number of spacetime dimensions in string theory

steps in order to define the so-called quantum Lorentz generators will be studied, which
will lead to the calculation which is aimed for: the one that determines the number of
spacetime dimensions (in this case, within bosonic string theories).

2.2.1 Light-cone coordinates

The light-cone gauge will be used, which involves using the light-cone coordinate system
together with a set of conditions, specified later on. Therefore, the light-cone coordinate
system should be defined. Two light-cone coordinates are set, x+ and x−, defined as
independent linear combinations of the time coordinate x0 and one spatial coordinate,
usually taken to be x1:

x+ ≡ 1√
2

(
x0 + x1

)
,

x− ≡ 1√
2

(
x0 − x1

)
.

(2.60)

The remaining coordinates do not play a special role, we merely keep their usual defini-

Figure 2.5: The light-cone coordinates x±, together with x0 and x1.
Taken from [4].

tion. Consequently, the set of coordinates is
(
x+, x−, x2, x3, ..., xd

)
, and

ηµν =


0 −1 0 . . . 0
−1 0 0 . . . 0

0 0 1 0
...

...
...

. . . . . . 0
0 0 . . . 0 1

 . (2.61)

Regarding the name of the two new coordinates, a brief explanation can be given. The
two associated coordinate axes are actually the world-lines of beams of light emitted from
the origin, along the chosen special spatial coordinate x1. This can be seen by considering
a beam of light along the positive x1 direction; as its speed is c, x1 = ct, and as usual,
x0 = ct, so x1 = x0, and taking into account our definitions of x±, we have x− = 0,
corresponding to the x+ axis, as can be seen in Figure 2.5. The same reasoning may be
used to prove that for a beam of light moving in the negative x1 direction, x+ = 0 is
obtained, corresponding to the x− axis.
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x+ will be treated as the light-cone time coordinate, even though x− could have also
been chosen. The time coordinate should not be understood in the usual sense, because its
fundamental property is that time goes forward with any physical motion, but considering
special light rays, the light-cone time “freezes” (if x+ is taken to be the light-cone time,
it remains constant when choosing a light ray along the negative x1 direction).

2.2.2 World-sheets

In order to study relativistic strings, just as world-lines are used for point particles, that
is, the paths traced out by them in spacetime, the two-dimensional surface traced out by
a string in spacetime is defined, known as the world-sheet (see Figure 2.6). As they are
two-dimensional, two parameters are needed to describe world-sheets, typically denoted
by τ and σ. If our usual spacetime coordinates are xµ =

(
x0, x1, ..., xd

)
, the surface can

be described via the mapping functions xµ (τ, σ). These functions are usually capitalised,
and therefore called Xµ (τ, σ), so as to avoid confusion if the (τ, σ) arguments are dropped.
A point (τ, σ) in the parameter space is thus mapped to a point in spacetime, given by
the coordinates

(
X0 (τ, σ) , X1 (τ, σ) , ..., Xd (τ, σ)

)
. Xµ are called string coordinates.

Figure 2.6: World-sheets of an open string and a closed string. Taken
from [4].

A point particle’s action is proportional to the proper time elapsed on its world-
line, and proper length is defined by multiplying it by c. Consequently, the relativistic
string action, named the Nambu-Goto action, is constructed proportional to the Lorentz
invariant proper area of a world-sheet. With the notation

Ẋµ ≡ ∂Xµ

∂τ
, X ′µ ≡ ∂Xµ

∂σ
, (2.62)

the proper area of a world-sheet with σ ∈ [0, σ1] and τ ∈ [τi, τf ] is taken to be [4]:

A =

∫ τf

τi

dτ

∫ σ1

0

dσ

√
(Ẋ ·X ′)2 − (Ẋ)2(X ′)2, (2.63)

and the Nambu-Goto action is constructed by multiplying it with the appropriate con-
stants,

S = −T0
c

∫ τf

τi

dτ

∫ σ1

0

dσ

√
(Ẋ ·X ′)2 − (Ẋ)2(X ′)2, (2.64)
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where T0 is a constant called the string tension. Extracting the Lagrangian density from
the last equation,

L
(
Ẋµ, X ′µ

)
= −T0

c

√
(Ẋ ·X ′)2 − (Ẋ)2(X ′)2, (2.65)

S =

∫ τf

τi

dτL =

∫ τf

τi

dτ

∫ σ1

0

dσL
(
Ẋµ, X ′µ

)
, (2.66)

we define

Pτ
µ ≡ ∂L

∂Ẋµ
= −T0

c

(Ẋ ·X ′)X ′
µ − (X ′)2Ẋµ√

(Ẋ ·X ′)2 − (Ẋ)2(X ′)2
, (2.67)

Pσ
µ ≡ ∂L

∂X ′µ = −T0
c

(Ẋ ·X ′)Ẋµ − (Ẋ)2X ′
µ√

(Ẋ ·X ′)2 − (Ẋ)2(X ′)2
. (2.68)

The equation of motion corresponding to both open and closed relativistic strings is
obtained by varying the action,

∂Pτ
µ

∂τ
+
∂Pσ

µ

∂σ
= 0. (2.69)

For open strings one edge of the world-sheet is chosen to be the curve σ = 0 and the other
one to be σ = σ1, so σ ∈ [0, σ1]. As for closed strings, an identification must be imposed
in the parameter space, because the σ direction must be a circle. Consequently, the (τ, σ)
space should be a cylinder. Denoting the circumference by σc,

(τ, σ) ∼ (τ, σ + σc) , σ ∈ [0, σc] . (2.70)

Choosing a σ parametrisation means constructing lines in which σ is constant, and that
are perpendicular to those of constant τ . Let us show how to obtain the parametrisation
of all strings, assuming that a particular one of a single string is already given. τ will
be chosen as τ = t, that is, X0(τ, σ) = ct = cτ . Considering an open string with t = 0,
parametrised with σ ∈ [0, σ1], and another one with t = ϵ (where ϵ is infinitesimal), one
could picture perpendicular segments to the t = 0 string, that intersect the t = ϵ one, as
in Figure 2.7. Any arbitrary point σ0 on the first string is mapped to the second one with
the segment going through the t = 0 string, and the intersection in the second string is
also named σ0. The parametrisation for the second string is obtained continuing along
the first one in this manner, and the process is repeated for this last string. As a result, a
set of lines is obtained which have constant σ and are perpendicular to the strings, that
is, lines in which t is constant. In order to complete the parametrisation, it must still be
specified for the initial string. There are many options, but this will resumed later on.

2.2.3 Conserved currents on the world-sheet

It is known that the symmetric characteristics of a dynamical system are closely linked
to conserved quantities. Within our field of study, there are conserved charges that will
turn out to be very useful in our brief discussion on string theory. On the one hand,
a relativistic momentum pµ will be defined, conserved for free strings, and on the other
hand, the conserved charges Mµν , associated with Lorentz symmetry. With that aim, it
is convenient to first revise the expressions for conserved currents and charges related to

21



2.2. The number of spacetime dimensions in string theory

Figure 2.7: The process of constructing a σ parametrisation for all
strings. Taken from [4].

the Lagrangian’s symmetries.

Let us write the action as an integral of the Lagrangian density dependent on the fields
ϕa (ξ) (a just labels these fields), with the set of coordinates ξα of the relevant world:

S =

∫
dξ0dξ1...dξkL (ϕa, ∂αϕ

a) , ∂αϕ
a =

∂ϕa

∂ξα
. (2.71)

Consider the infinitesimal variation

ϕa (ξ) → ϕa (ξ) + δϕa (ξ) , δϕa = ϵihai (ϕ) , (2.72)

where ϵi are infinitesimal constants, and i labels the parameters in the variation (it may
involve several, as in spatial translations). The arguments’ indices have been dropped for
simplicity. If L is invariant under the above variation, then the currents jαi defined in the
following way are conserved, (in the sense that ∂αj

α
i = 0),

ϵijαi ≡ ∂L
∂ (∂αϕa)

δϕa. (2.73)

A conserved current implies a conserved charge; to obtain the latter, the former’s zeroth
component must be integrated over space:

Qi =

∫
dξ1dξ2...dξkj0i . (2.74)

Returning to our case, as stated earlier, the relativistic momentum pµ will be defined,
which is conserved for free strings. The action (2.65) is integrated over τ and σ, so α in
(2.71) will only adopt two values,

S =

∫
dξ0dξ1L(∂0Xµ, ∂1X

µ), (ξ0, ξ1) = (τ, σ). (2.75)

The variation δXµ(τ, σ) = ϵµ does not change the Lagrangian density, because L only
depends on the derivatives of the coordinates, and their variations vanish, so retaking
(2.73), α is identified as a world-sheet index, i is a spacetime index, and so is a,

ϵµjαµ =
∂L

∂(∂αXµ)
δXµ =

∂L
∂(∂αXµ)

ϵµ. (2.76)
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jαµ =
∂L

∂(∂αXµ)
→ (j0µ, j

1
µ) =

(
∂L
∂Ẋµ

,
∂L
∂X ′µ

)
. (2.77)

jαµ = Pα
µ ,

(
j0µ, j

1
µ

)
=
(
Pτ

µ ,Pσ
µ

)
. (2.78)

In order to get the charges, the zeroth components Pτ
µ of the currents are integrated over

σ,

pµ (τ) =

∫ σ1

0

Pτ
µ (τ, σ) dσ. (2.79)

pµ give the spacetime momentum carried by the string, they arise from spacetime trans-
lational invariance, so Pτ

µ is the σ density of spacetime momentum carried by the string.

Secondly, the action is Lorentz invariant by construction, and the conserved charges
related to this symmetry will be formulated. For this purpose, the infinitesimal form of
these transformations must be used. Lorentz transformations are linear transformations,
and ηµνX

µXν remains invariant under them. Infinitesimal linear transformations are
written as Xµ → Xµ + δXµ, where δXµ = ϵµνXν , and ϵµν is a matrix of infinitesimal
constants. It can be shown that infinitesimal Lorentz transformations are characterised
by an antisymmetric ϵµν . Considering (2.73) to formulate the currents, we can see that
ϵµν plays the role of ϵi:

ϵµνjαµν =
∂L

∂ (∂αXµ)
δXµ = Pα

µ ϵ
µνXν . (2.80)

Taking into account that ϵµν is antisymmetric,

ϵµνjαµν =

(
−1

2
ϵµν
)(

XµPα
ν −XνPα

µ

)
. (2.81)

The currents may be normalised as wished, so naming them Mα
µν , we define:

Mα
µν = XµPα

ν −XνPα
µ . (2.82)

Once the currents have been given, the conserved charges can be calculated. For any
arbitrary curve γ on the world-sheet which connects the σ = 0 and σ = σ1 boundaries,
we can write

Mµν =

∫
γ

(
M τ

µνdσ −Mσ
µνdτ

)
. (2.83)

Or, using constant τ lines,

Mµν =

∫
Mτ

µν (τ, σ) dσ =

∫ (
XµPτ

ν −XνPτ
µ

)
dσ. (2.84)

2.2.4 Choice of gauges

In the type of gauges that will be used, τ is set equal to a linear combination of the string
coordinates (a specific choice out of these gauges defines the light-cone gauge that will be
introduced later on). The combination of coordinates which defines these gauges can be
expressed as

nµX
µ (τ, σ) = λτ. (2.85)

As to the σ parametrisation, one option would be setting it so that the energy density
Pτ0 is constant, that is, in order for each segment with the length σ to have the same
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2.2. The number of spacetime dimensions in string theory

energy. However, a more general will be considered, by demanding nµPτµ = n · Pτ to
be constant over the strings. The first case would be equivalent to this condition with
nµ = (1, 0, ..., 0), and the new choice is valid for an arbitrary nµ. σ ∈ [0, π] will also be
required for open strings, and σ ∈ [0, 2π] for closed ones. It will not be proved in this
work, but this can be satisfied by [4]

n ·X (τ, σ) = βα′ (n · p) τ,

n · p = 2π

β
n · Pτ ,

(2.86)

where

β =

{
2 for open strings,
1 for closed strings,

(2.87)

and α′ is a constant called the slope parameter, given by

α′ =
1

2πT0ℏc
. (2.88)

The choice of parametrisation will imply the following constraints on X ′ and Ẋ [4]:

Ẋ ·X ′ = 0, and Ẋ2 +X ′2 = 0. (2.89)

They can be put together as (
Ẋ ±X ′

)2
= 0. (2.90)

Using these constraints and the conditions (2.86), the expressions for Pτµ and Pσµ given
in (2.67) and (2.68) can be simplified:

Pτµ =
1

2πα′ Ẋ
µ, (2.91)

Pσµ = − 1

2πα′X
′µ. (2.92)

So the equations of motion ∂τPτµ + ∂σPσµ = 0 now become wave equations,

Ẍµ −X ′′µ = 0. (2.93)

2.2.5 Mode expansions

Regarding the boundary conditions, even though they will not be studied in detail, D-
branes must be mentioned, which are objects on which open string endpoints must lie,
characterised by their number of spatial dimensions: a Dp-brane has p spatial dimensions.
It will be assumed that the endpoints satisfy free boundary conditions (Pσµ = 0), which
is equivalent to having a space-filling D-brane. The most general Xµ (τ, σ) that solves the
wave equation is

Xµ (τ, σ) =
1

2
(fµ (τ + σ) + gµ (τ − σ)) . (2.94)

Taking (2.92) into account, the free endpoint boundary conditions imply the Neumann
boundary conditions

∂Xµ

∂σ
= 0, at σ = 0, π. (2.95)
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At σ = 0, the boundary condition reads

∂Xµ

∂σ
(τ, 0) =

1

2

(
f ′µ (τ)− g′

µ
(τ)
)
= 0. (2.96)

Since the derivatives of fµ and gµ coincide, they can only differ by a constant cµ, that is,
gµ = fµ + cµ. This constant can be absorbed into the definition of fµ, so from (2.94),

Xµ (τ, σ) =
1

2
(fµ (τ + σ) + fµ (τ − σ)) . (2.97)

At σ = π,
∂Xµ

∂σ
(τ, π) =

1

2

(
f ′µ (τ + π)− f ′µ (τ − π)

)
= 0. (2.98)

This must hold for all τ , so f ′µ is periodic with period 2π, and the expression of the
Fourier series for a periodic f ′µ (u) may be used,

f ′µ (u) = fµ
1 +

∞∑
n=1

(aµn cosnu+ bµn sinnu) , (2.99)

which can be integrated to get fµ (u). Absorbing the integration constants into new
coefficients,

fµ (u) = fµ
0 + fµ

1 u+
∞∑
n=1

(Aµ
n cosnu+Bµ

n sinnu) . (2.100)

Substituting this back in (2.97),

Xµ (τ, σ) = fµ
0 + fµ

1 τ +
∞∑
n=1

(Aµ
n cosnτ +Bµ

n sinnτ) cosnσ. (2.101)

We now define a new set of coefficients aµn,

Aµ
n cosnτ +Bµ

n sinnτ = − i

2

(
(Bµ

n + iAµ
n) e

inτ − (Bµ
n − iAµ

n) e
−inτ

)
≡ −i

√
2α′
√
n

(
aµ∗n e

inτ − aµne
−inτ

)
,

(2.102)

where ∗ denotes complex conjugation. A factor was introduced to make them dimension-
less. Let us develop fµ

1 .

Pτµ =
1

2πα′ Ẋ
µ =

1

2πα′f
µ
1 + ... . (2.103)

The dots stand for terms with cosnσ dependence. To find the total momentum pµ, it must
be integrated over σ ∈ [0, π], and the terms represented by the dots do not contribute.

pµ =

∫ π

0

Pτµdσ =
1

2πα′πf
µ
1 → fµ

1 = 2α′pµ. (2.104)

Naming fµ
0 = xµ0 ,

Xµ (τ, σ) = xµ0 + 2α′pµτ − i
√
2α′

∞∑
n=1

(
aµ∗n e

inτ − aµne
−inτ

) cosnσ√
n

. (2.105)
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The terms on the right correspond to the zero mode, the momentum, and the oscillations
of the string. Let us introduce the following notation,

αµ
0 =

√
2α′pµ, αµ

n = aµn
√
n, αµ

−n = aµ∗n
√
n, n ≥ 1. (2.106)

There are two important notes to be made. On the one hand, αµ
−n = (αµ

n)
∗, and on the

other, even though aµn are only defined when n is a positive integer, αµ
n are defined for all

integers. We rewrite (2.105),

Xµ (τ, σ) = xµ0 +
√
2α′αµ

0τ − i
√
2α′

∞∑
n=1

1

n

(
αµ
−ne

inτ − αµ
ne

−inτ
)
cosnσ. (2.107)

This can also be written as a sum over all integers except 0:

Xµ (τ, σ) = xµ0 +
√
2α′αµ

0τ + i
√
2α′
∑
n ̸=0

1

n
αµ
ne

−inτ cosnσ, (2.108)

and the derivatives may be calculated,

Ẋµ =
√
2α′
∑
n∈Z

αµ
n cosnσe

−inτ , (2.109)

X ′µ = −i
√
2α′
∑
n∈Z

αµ
n sinnσe

−inτ . (2.110)

The solution of the wave equations with Neumann boundary conditions is defined once
xµ0 and αµ

n are specified for n ≥ 0. Having found a solution which satisfies the boundary
conditions, it must still be ensured that the constraints (2.90) are satisfied. This will be
achieved by using the light-cone gauge.

2.2.6 Light-cone gauge

The coordinates X2, X3, ..., Xd are named transverse coordinates, and are denoted by
XI ,

XI =
(
X2, X3, ..., Xd

)
. (2.111)

Choosing the light-cone gauge means imposing (2.86) with a choice of ηµ which implies
n ·X = X+. This is achieved by selecting

nµ =

(
1√
2
,
1√
2
, 0, ..., 0

)
, (2.112)

as can be seen by computing n ·X:

n ·X =
X0 +X1

√
2

= X+, n · p = p0 + p1√
2

= p+. (2.113)

From (2.86),

X+ (τ, σ) = βα′p+τ, p+ =
2π

β
Pτ+. (2.114)

The constraints can be rewritten as

Ẋ− ±X ′− =
1

βα′
1

2p+

(
ẊI ±X ′I

)2
. (2.115)
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In the case of open strings, let us write the solution for the transverse coordinates XI

taking into account the general solution (2.108),

XI (τ, σ) = xI0 +
√
2α′αI

0τ + i
√
2α′
∑
n̸=0

1

n
αI
ne

−inτ cosnσ. (2.116)

As to the X+ coordinate, the gauge condition gives

X+ (τ, σ) = 2α′p+τ =
√
2α′α+

0 τ. (2.117)

As can be seen, the position zero mode and the oscillations of the X+ coordinate have
been set equal to zero. Being a linear combination of X0 and X1, X− also satisfies the
same wave equation and boundary conditions as all other coordinates. Therefore, the
same expansion may be used,

X− (τ, σ) = x−0 +
√
2α′α−

0 τ + i
√
2α′
∑
n̸=0

1

n
α−
n e

−inτ cosnσ. (2.118)

The constraints can be used to show that the minus oscillators can be written in terms
of the transverse oscillators,

√
2α′α−

n =
1

2p+

∑
p∈Z

αI
n−pα

I
p. (2.119)

The general solution is fixed by specifying the values of p+, x−0 , x
I
0 and all of the αI

n.
This determines XI (τ, σ) and X+ (τ, σ). α−

n are also fixed by (2.119), and together
with x−0 , they determine X− (τ, σ). The full solution is thus constructed. The quadratic
combination of oscillators that appears in (2.119) is named the transverse Virasoro mode
L⊥
n : √

2α′α−
n =

1

p+
L⊥
n , L⊥

n ≡ 1

2

∑
p∈Z

αI
n−pα

I
p. (2.120)

The particular case of n = 0 will be very useful later on,

√
2α′α−

0 =
1

p+
L⊥
0

(2.106)−−−−→ 2p+p− =
1

α′L
⊥
0 . (2.121)

2.2.7 Relativistic quantum open string

In order to construct our quantum theory, a set of operators is needed, including the
Hamiltonian. The procedure then involves postulating their commutation relations and
checking that they generate the expected equations of motion.

With regard to the classical string, X− has been solved in terms of XI , only needing
to specify x−0 , and X

+ is fixed by the light-cone gauge condition. As to the momentum,
the condition (2.115) can be further developed to show that Pτ− is determined by PτI

and p+. Therefore, a reasonable choice of Schrödinger operators is XI (σ), x−0 , PτI (σ),
and p+. On the other hand, regarding the commutation relations, we only expect XI (σ)
and PτI (σ) not to commute when they have the same σ along the string, so we set[

XI (σ) ,PτJ (σ′)
]
= iηIJδ (σ − σ′) , where, from (2.61), ηIJ = δIJ , (2.122)
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[
XI (σ) , XJ (σ′)

]
=
[
PτI (σ) ,PτJ (σ′)

]
= 0,

[
x−0 , p

+
]
= −i. (2.123)

The Hamiltonian should generate τ -translations. X+ = 2α′p+τ , and p− generates X+-
translations, therefore,

∂

∂τ
=
∂X+

∂τ

∂

∂X+
= 2α′p+

∂

∂X+
, so H = 2α′p+p−

(2.121)−−−−→ H = L⊥
0 . (2.124)

One way of checking that our Hamiltonian generates the appropriate quantum equations
of motion is to construct the Heisenberg operators, and verify that the correct time evo-
lution is obtained for the operators. The only subtlety concerning H is that we will later
subtract a constant from it.

The mode expansions studied earlier will also be used in the quantum theory, but it
must be taken into account that the classical modes αI

n now become quantum operators.
It can be proved [4] that the appropriate commutation relation for them is[

αI
m, α

J
n

]
= mηIJδm+n,0. (2.125)

By defining
αI
n = aIn

√
n, αI

−n = aI†n
√
n, n ≥ 1, (2.126)(

αI
n

)†
= αI

−n, n ∈ Z. (2.127)

It should be noted that αI
0 is also Hermitian because it is proportional to pI , and the

operators xI0 and pI are Hermitian, just as in the usual quantum mechanics. These
properties mean that XI is also Hermitian. Using (2.125),[

aIm, a
J†
n

]
= δm,n η

IJ ,
[
aIm, a

J
n

]
=
[
aI†m , a

J†
n

]
= 0, (2.128)

hence, αI
n can be thought of as annihilation operators and αI

−n as creation operators of
a quantum simple harmonic oscillator. As the α modes are now oscillators, instead of
referring to L⊥

n as transverse Virasoro modes, they will be called transverse Virasoro
operators. Taking into account that the α operators do not commute, it must checked
whether the order in which they appear in the definition of L⊥

n is correct. The only case
in which the commutator does not vanish is when their mode numbers add up to zero,
thus we only have to check L⊥

0 , which is actually the Hamiltonian. Considering its action
on the vacuum state, we want it to be normal-ordered, that is, the annihilation operators
must appear to the right of the creation operators. From (2.120),

L⊥
0 =

1

2

∑
p∈Z

αI
−pα

I
p =

1

2
αI
0α

I
0 +

1

2

∞∑
p=1

αI
−pα

I
p +

1

2

∞∑
p=1

αI
pα

I
−p. (2.129)

The first sum on the right is normal-ordered, but the last one is not, so we would like to
rewrite it as

1

2

∞∑
p=1

αI
pα

I
−p =

1

2

∞∑
p=1

(
αI
−pα

I
p +

[
αI
p α

I
−p

])
=

1

2

∞∑
p=1

αI
−pα

I
p +

1

2

∞∑
p=1

p ηIJ

=
1

2

∞∑
p=1

αI
−pα

I
p +

1

2
(D − 2)

∞∑
p=1

p.

(2.130)
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The last term is divergent, and it cannot simply be ignored. Because of the relation
(2.121), adding a constant to L⊥

0 alters the values of the masses of the string states,

M2 = −p2 = 2p+p− − pIpI =
1

α′L
⊥
0 − pIpI , (2.131)

so the problematic term is dealt with in the following way: we define L⊥
0 without it, and

introduce an ordering constant a in (2.121),

L⊥
0 ≡ 1

2
αI
0α

I
0 +

1

2

∞∑
p=1

αI
−pα

I
p = α′pIpI +

∞∑
p=1

p aI†p a
I
p, 2α′p− ≡ 1

p+
(
L⊥
0 + a

)
. (2.132)

Instead of concluding that

a =
1

2
(D − 2)

∞∑
p=1

p,

a will be taken to be an undetermined constant, which will be fixed by the consistency of
string theory.

2.2.8 Quantum Lorentz generators

The classical Lorentz generators in terms of oscillation modes can be obtained by inserting
the expressions (2.91), (2.92), (2.108) and (2.109) in (2.84), and integrating,

Mµν = xµ0p
ν − xν0p

µ − i
∞∑
n=1

1

n

(
αµ
−nα

ν
n − αν

−nα
µ
n

)
. (2.133)

It will be analysed whether (2.133) can be used to define the quantum Lorentz generators.
When considering conserved charges in the quantum theory, they become operators that
generate, via commutation, a version of the symmetry property from which they arose in
the classical theory. With regard to Lorentz transformations, the generators’ commutator
must adopt the following form [4],

[Mµν ,Mρσ] = iηµρMνσ − iηνρMµσ + iηµσMρν − iηνσMρµ, (2.134)

hence, any theory with operators Mµν failing to satisfy (2.134) is not Lorentz invariant.
For example, as to

[
M−I ,M−J

]
, it must satisfy

[
M−I ,M−J

]
= 0. Let us try defining

M−I using (2.133),

M−I ?
= x−0 p

I − xI0p
− − i

∞∑
n=1

1

n

(
α−
−nα

I
n − αI

−nα
−
n

)
. (2.135)

As xI0 and p− do not commute, it is not Hermitian, thus let us propose

M−I ?
= x−0 p

I − 1

2

(
xI0p

− + p−xI0
)
− i

∞∑
n=1

1

n

(
α−
−nα

I
n − αI

−nα
−
n

)
. (2.136)

The minus oscillators can be rewritten in terms of Virasoro operators by using (2.120)
and (2.132),

M−I = x−0 p
I − 1

4α′p+
(
xI0
(
L⊥
0 + a

)
+
(
L⊥
0 + a

)
xI0
)

− i√
2α′p+

∞∑
n=1

1

n

(
L⊥
−nα

I
n − αI

−nL
⊥
n

)
.

(2.137)
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Using the Virasoro commutation relations, the result for
[
M−I ,M−J

]
given in A First

Course in String Theory [4], and which must vanish, is

[
M−I ,M−J

]
=− 1

α′p+2

∞∑
m=1

(
αI
−mα

J
m − αJ

−mα
I
m

)
×
{
m

[
1− 1

24
(D − 2)

]
+

1

m

[
1

24
(D − 2) + a

]}
.

(2.138)

The terms
(
αI
−mα

J
m − αJ

−mα
I
−m

)
cannot vanish, so we must have

m

[
1− 1

24
(D − 2)

]
+

1

m

[
1

24
(D − 2) + a

]
= 0, ∀m ∈ Z+. (2.139)

It is enough to consider m = 1 and m = 2 to see that both terms must be set to zero,

1− 1

24
(D − 2) = 0 and

1

24
(D − 2) + a = 0. (2.140)

The first equation fixes the number of spatial dimensions,

D = 26, (2.141)

and the second one determines a,

a = − 1

24
(D − 2) = −24

24
= −1. (2.142)

Only the case of open strings has been studied, yet using a similar procedure, the same
value is obtained for D when considering closed strings [4]. This is actually a necessary
result in order for the coexistence of open and closed strings to be possible, and taking
into account that open strings can close, turning into closed strings, it is coherent to
demand this condition.

There are many issues that are beyond the scope of this study, starting from the fact
that even superstrings have not been studied. Could the Standard Model actually arise
from them? This has not been shown in detail yet, but there are models which could give
rise to it. Gauge bosons and matter particles would arise from vibrations of open strings
stretching between D-branes, and the graviton, from closed strings. As to the geometric
configuration, the extra dimensions are usually thought to be curled up in Calabi-Yau
manifolds. However, compactification moduli, adjustable parameters, arise, which can be
stabilized with flux compactifications, at the cost of forming a vast set of models with
more than 10500 constituents, referred to as the string landscape [11] [13]. There may be
no string model in this landscape which reproduces the Standard Model, there may be a
single one that does, or there may be many models consistent with the current accuracy.
[4]

It should also be mentioned that by mid 1980s, five ten-dimensional superstring the-
ories were known, which were later found to be interrelated. The strong coupling limit
of one of these theories leads to the M-theory, which is eleven-dimensional. They are all
actually thought to be different limits of a single theory. [4] [11]
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Chapter 3

Anthropic debate on the number of
spacetime dimensions

Having studied the consequences upon our understanding of spatial dimensions (or at
least, the possible number of these) caused by the attempts of unification, a radically
different approach to this discussion will be considered, motivated by the anthropic prin-
ciple. The aim is not to study specific calculations as in the previous chapter, instead,
the type of reasoning this approach involves will be focused on, that is to say, the object
of study will be the kind of arguments the anthropic principle provides, and how this has
been applied by several authors to the dimensionality of spacetime. In very general terms,
the principle fundamentally states that taking our existence into account, any physical
theory must be such as for our existence to be possible, and moreover, our mere existence
implies limits on the age of the universe and its fundamental constants. It arises from the
questions: why does the universe have the specific characteristics needed in order for our
existence to be possible? Why is it not in any other way, in which we would not be able
to exist? The principle under consideration has often been classified as a tautology, or
simply as a selection bias, but far from being insignificant, it may lead to very interesting
debates. Proof of its contemporariness is the recently held conference “Carter Fest” [14],
in which many of the talks referred to this topic.

3.1 The anthropic principle: a historical review

The anthropic principle has many precedents, which are generally reactions to a specific
physical phenomenon or discovery which seems “surprising”, or which seems to have a
low probability. It is closely linked to believing the universe to be fine-tuned, although
defining this property is much more complicated than it may seem at first sight. Those
in favour of fine-tuning claim that if the universal constants had even a slightly different
value to the experimentally observed ones, we would not be here in the first place. The
problem lies in the degree of tuning; in order to affirm or reject fine-tuning, how small
should the interval allowing our existence be? This interval cannot be fixed arbitrarily,
the limits permitting our existence should be determined, and we should then calculate
the probability of the constants adopting a value in that range, and if this is indeed a
small probability, we might be able to affirm that we live in a fine-tuned universe. But
in order to calculate the probability, all possible values of the constants under question
should be given.
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If the hypothesis of fine-tuning were to be accepted, there does not seem to be an
explanation as to why the fundamental constants adopt the values they do, as it is being
said that this is not likely at all. One way of interpreting this is the anthropic reason-
ing; we observe the values that we do because that is the only option allowing us to be
observers. For example, in his book Just Six Numbers, Martin Rees defines six constants
with finely adjusted values, including the number of spatial dimensions, for which an
anthropic explanation should be given [15]. But getting to the point, let us study the
forementioned precedents.

One of the first known antecedents was made by the biologist Alfred Russel Wallace,
who said in 1904:

“Such a vast and complex universe as that which we know exists
around us, may have been absolutely required in order to produce a
world that should be precisely adapted in every detail for the orderly

development of life culminating in man.” [16]

On the other hand, in the 1930s, Paul Dirac studied the coincidences between fun-
damental numbers of nature, inspired by Hermann Weyl [17] and Eddington’s [18] work
in 1919 and 1923, respectively. Considering an electron and a proton, the ratio between
the electromagnetic and the gravitational force between them is a very big number, 1040.
The ratio between the age of the universe and the time an electron needs to complete an
orbit in the fundamental state of hydrogen according to Bohr’s model also turns out to
be of a very similar value, 1039. The age of the universe obviously increases with time,
and taking into account the similarity of the two numbers, Dirac proposed an idea known
as the Dirac large number hypothesis, according to which these coincidences would be
described by a time-varying gravitational constant, inversely proportional to the age of
the universe (G ∝ 1

t
, t being the age of the universe). If not, the coincidence would only

be true at a specific cosmic period. [19]

In his paper named “Dirac’s Cosmology and Mach’s Principle” [20], written in 1961,
Robert Dicke pointed out that having included the age of the universe, the relation ob-
tained by Dirac might just be a selection bias : the age of the universe is not random,
because not any value would allow the existence of observers. The permitted range is re-
lated to the lifetime of main-sequence stars, which depends on the fundamental constants.
That is, the relation between the age of the universe and the constants is no coincidence,
they must be related as they are, simply on account of our existence. Dicke proceded to
give anthropic arguments to obtain upper and lower limits of the age of the universe.

As to the lower limit, minutes after the Big Bang, only hydrogen, helium and some
other light elements had been produced by primordial nucleosynthesis. Metallicity1 has
had to increase sufficiently for our existence: there has had to be enough time for an early
generation of stars to have formed, and for them to have turned the original hydrogen
and helium into heavier elements as carbon and oxygen, to then spread them out with
their death, throughout a supanova explosion and stellar winds, forming more stars and
planets. Regarding the upper limit, it seems reasonable to suppose that life requires a
planet orbiting around a luminous star, so we take the maximum age a star able to pro-
duce energy throughout nuclear reactions can have. The two limits obtained by Dicke are

1Metallicity, as used in astrophysics, refers to the level of elements that are not hydrogen and helium.
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actually of the same order of magnitude, and compatible with the Dirac relation. [20]

This reasoning gave way to the talk given by Brandon Carter in the International
Astronomical Union Symposium in Cracow in 1973, held for the 500th anniversary of
Copernicus’s birth, in which he used the term anthropic principle for the first time. The
talk’s title was “Large Number Coincidences and the Anthropic Principle in Cosmology”.
It was, in his words, a reaction to the “exaggerated subservience” to the Copernican
principle, which states that the human being is not a privileged observer in the universe,
so in the face of this he introduces his weak anthropic principle:

“We must be prepared to take account of the fact that our location in
the universe is necessarily privileged to the extent of being compatible

with our existence as observers.” [21]

It is important to note that the laws of nature and the physical constants are given
beforehand within the weak anthropic principle. Carter also formulated the strong an-
thropic principle, which states that the existence of observers imposes restrictions on the
fundamental constants,

“The universe (and hence the fundamental parameters on which it
depends) must be such as to admit the creation of observers within it

at some stage.” [21]

The difference with respect to the weak version is that it also refers to the constants
(and laws) of physics, not only to our position in the universe. His talk was contempora-
neous to the paper “Why Is the Universe Isotropic?” [22] by Collins and Hawking, who
also raised the same issue, and referenced each other on the topic. Carter paraphrases
Descartes,

“Cogito ergo mundus talis est” [21],

translated as “I think, therefore the world is as it is”. He does not refer to the cause
of the universe, he does not claim that the aim of the universe is to give life to us, but
that taking into account that we exist, the universe must be as it is. Regarding “cogito
ergo sum” (“I think, therefore I exist”), just as according to Descartes thinking implies
existence, for Carter, our existence means the universe is as we see it.

Aiming to give the strong anthropic principle an explanatory sense, he states that in
order to be able to explain the conditions needed for the existence of life in a probabilistic
way, an “ensemble of worlds” (universes) should be considered, in which we could find all
possible initial conditions and fundamental constants. In this way, even if the conditions
leading to our existence seem very carefully chosen, it should not surprise us, because all
conditions are given in different universes. “It is of course philosophically possible – as
a last resort, when no stronger physical argument is available – to promote a prediction
based on the strong anthropic principle to the status of an explanation by thinking in
terms of a ‘world ensemble’ ”[21]. Hawking also defends this idea in A Brief History of
Time:

“It is a bit like the well-known horde of monkeys hammering away on
typewriters – most of what they write will be garbage, but very

occasionally by pure chance they will type out one of Shakespeare’s
sonnets.” [23]
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However, the anthropic principle was completely distorted with Barrow and Tipler’s
book The Anthropic Cosmological Principle [24], published in 1986. Their weak version is
similar to Carter’s strong one, but their strong anthropic principle states that the universe
“must be such as to admit the creation of observers within it at some stage”, which clearly
has a teleological sense (in fact, Tipler was deeply religious). Together with their weak
and strong anthropic variants they also introduce the final anthropic principle, “Intelligent
information-processing must come into existence in the Universe, and, once it comes into
existence, it will never die out”. The order followed in the book is also very meaningful,
after a historical review of more than 200 pages of teleology, we reach a chapter named
“The rediscovery of the anthropic principle”. When mentioning anthropic reasoning we
are not referring to versions of this kind.

3.2 Dimensionality of spacetime: anthropic arguments

How does all this apply to the dimensionality of spacetime? As it shall be seen, the
anthropic principle has usually been used to argue that if the number of space and time
dimensions was not equal to the one we perceive, our existence would be impossible,
hence, we would not ask ourselves the question “why does our universe have this amount
of space and time dimensions?”, which arises due to our condition as observers. Therefore,
in view of that question, we would answer, “because otherwise we would not be able to
raise the question in the first place”. The number of spatial dimensions will be denoted
by d. Consequently, anthropic arguments are used to argue that we cannot postulate a
universe (with us in it) in which d ̸= 3.

3.2.1 d > 3

In 1917, in an article titled “In What Way Does It Become Manifest in the Fundamental
Laws of Physics that Space Has Three Dimensions?” [25], Paul Ehrenfest proved that
having only one time dimension and more than three extended spatial ones, planets or-
biting around the Sun would not be able to have stable orbits, which can be generalised
to any star. If d > 3, the gravitational force between two bodies would be reduced faster
than when d = 3. With three spatial dimensions, for example, when doubling the dis-
tance, the force is reduced by 1/4, but with four spatial dimensions it would reduce by
1/8, and with five, by 1/16.

With this reasoning, he proved that with more than three extended spatial dimensions,
a slight perturbation of a circular orbit would result in the planet spiralling away from
the star (or towards it, depending on the perturbation). Therefore, the orbits would not
be stable. For example, if a planet orbiting a star reduced its speed slightly, instead of
adopting an orbit with a smaller radius, the gravitational force would change so drasti-
cally that the planet would move spirally towards the star. The same would happen if
the planet increased its speed, but it would then move away from the star. In any case,
we would either freeze or burn as a result of any slight variation, hence, we would not be
able to survive in such a universe. On the other hand, it would not be possible for the
Sun to be in a stable state in which the pressure is in equilibrium with gravity; it would
either collapse and form a black hole, or disintegrate.
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The steps leading to that proof involved Ehrenfest making a generalisation of New-
ton’s universal law of gravitation to any number N of spatial dimensions. According to
Newton’s gravitation, having two masses M and m at a distance r, with r̂ being the unit
vector from m to M , the force exerted on M and potential energy are given by

F⃗ =
−GMm

r2
r̂, F = |F⃗ | = −GMm

r2
, (3.1)

Ug =
−GMm

r
. (3.2)

The generalisation given by Ehrenfest is

F =
−GMm

rd−1
, (3.3)

Ug =
−GMm

(d− 2)rd−2
. (3.4)

Another author that could be mentiond is Gerald Whitrow, who published an article
titled “Why Physical Space Has Three Dimensions” [26] in 1955. He begins by quoting
Galileo’s Dialogue Concerning the Two Chief World Systems, in which Salviati argues
the point of view of Aristoteles on the number of spatial dimensions. In the conclusions,
particularly on the last page, it can be seen that Whitrow tries to answer the question
about the number of spatial dimensions with anthropic reasoning. Why are there three
spatial dimensions? Because with that amount, the conditions on Earth are such that
the evolution of the human being, “the formulator of the problem”, as he says, has been
possible.

On the other hand, it must be mentioned that the effects resulting when changing the
number of spatial dimensions are not restricted to the gravitational force. For instance,
when considering more than three spatial dimensions, the orbitals of the electron around
the nuclei would be affected in the same way, it would be impossible for the orbitals
to be stable. The electrons would escape from the atom or be attracted to it under
any perturbation. As a consequence, another argument on the topic could be given by
stressing that it seems impossible to think that under such conditions there could be
atoms as we know them, which obviously affects our existence.

3.2.2 d < 3

If we considered a universe in which the number of spatial dimensions is smaller than
three, any kind of gravitation would be problematic, and not only gravitation; the uni-
verse would probably be too simple as to have observers. There have been many attempts
to picture what two-dimensional beings would be like if N were to be 2, for instance, there
is the novel written by Edwin Abbott Abbott named Flatland: A Romance of Many Di-
mensions [27], which is in turn mentioned by Carl Sagan in Cosmos [28].

In A brief history of time [23], Hawking argues that two-dimensional complex observers
do not seem realistic. He gives a very good visual example in Figure 3.1. Supposing there
is a universe with only two spatial dimensions, he affirms that any everyday life example
appears to be problematic. For example, these two-dimensional animals, living on a world
whose surface has only one dimension, would have to climb one on top of another to be
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able to overtake each other. Even though this does not seem a crucial condition for their
existence, let us consider an issue that does seem so: feeding. In the case of one of
these two-dimensional animals not completely digesting anything ingested, the only way
of throwing it out would be to expel it the same way out, due to the fact that if our animal
had any kind of channel going through the whole of its body, it would be divided in two
completely separated parts, as we can see in Figure 3.1. Following the same reasoning,
it would also seem impossible to imagine how blood could circulate through our animal,
because the same problem we had with the digestive tracts would hold for veins and
arteries.

Figure 3.1: A two-dimensional dog. Taken from [23].
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Chapter 4

Conclusions

Unified theories of physics have led to the understanding that it may be possible for the
universe to have more spatial dimensions than we are aware of, and it has been discussed
that string theory has a very interesting property, due to the number of spatial dimen-
sions being required and not postulated, but will it ever be possible to confirm or reject
these extra dimensions? Their length-scale is not fixed in string theory, and the smallest
distance that has ever been explored with particle accelerators is currently about 10−16 cm
[4]. Therefore, if there really were extra dimensions and their length were, for example,
roughly equal to the Planck length (10−33 cm), they may never be detected directly.

However, if the extra dimensions were large, and our three-dimensional space were
a D-3 brane transverse to these, they could be tested by gravitational experiments (for
distances shorter than the length of the extra dimensions, the world is effectively higher-
dimensional, and the force laws change). Taking into account that in most of these models
electromagnetism arises from open strings whose endpoints must remain attached to the
D-brane, electromagnetism itself would be bound to the brane, and not affected by the ex-
tra dimensions. Nonetheless, gravity, arising from closed strings, would be. The problem
is that with it being such a weak force, it is difficult to test at small distances. Exper-
iments up to a distance of fifty microns show that if extra dimensions exist, they must
be smaller than this distance. Other possible experimental detections would be linked to
cosmic strings, which have been exhaustively searched for, although still unsuccessfully;
and supersymmetry, which would not exclusively confirm string theory, and thus, extra
dimensions. [4] [11]

Lastly, it is worth mentioning that the set of possible models that may allow the
existence of life within the vast string landscape has actually been referred to by many
theorists, such as Leonard Susskind, as the anthropic landscape [13], which provides a link
between the two main chapters.
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