
Ore’s Conjecture and
Computational Group Theory

Final Degree Dissertation
Degree in Mathematics

Xabier de Juan Soriano

Supervisor:
Matteo Vannacci

Leioa, June 22, 2023

Contents

Symbols v

Introduction vii

1 The classical groups 1
1.1 Iwasawa’s lemma . 1
1.2 Linear groups . 2
1.3 Bilinear forms . 5

1.3.1 Definitions . 5
1.3.2 Classification of alternating forms 6
1.3.3 Classification of conjugate-symmetric sesquilinear forms 6
1.3.4 Classification of symmetric forms in odd characteristic 7

1.4 Symplectic groups . 10
1.5 Unitary groups . 14
1.6 Orthogonal groups in odd characteristic 15
1.7 Orthogonal groups in characteristic 2 16

2 Character theory 19
2.1 Ore’s criterion . 19
2.2 Computing character tables 21

3 Ore’s conjecture 29
3.1 Generalizations . 29
3.2 Alternating groups . 29
3.3 Testing Ore’s conjecture . 33
3.4 Testing Ore’s conjecture probabilistically 34
3.5 Experimental results and final discussion 35

A Exercises 41
A.1 Exercises from Chapter 1 . 41
A.2 Exercises from Chapter 3 . 43

B Source code 45

iii

Symbols

Sn Symmetric group on n elements.
An Alternating group on n elements.
|g| Order of the element g.
gh Conjugate h−1gh.
〈S〉G Normal closure of a subset S of a group G.
ClG(g) Conjugacy class of g on a group G.
CG(S) Centralizer of a subset S of a group G.
K(G) Set of all commutators of a group G.
G′ Derived subrgoup of G.
xϕ or (x)ϕ Image of x by the homomorphism ϕ.
fg The composition of maps where we apply first

f and then g.
CG C-group algebra of the group G.
IrrG Set of complex irreducible characters of G.

Fq Finite field of prime-power order q.
k× Group of units of the field k.

AT Transpose of the matrix A.
trA Trace of the matrix/linear map A.
Ai,: i-th row of the matrix A.
v[i] i-th component of the vector v.
Mn(k) Algebra of n× n matrices over a field k.
In n× n identity matrix.
diag(λ1, . . . , λn) Square diagonal matrix with the elements

λ1, . . . , λn on the main diagonal.
MB(f) Matrix representation by rows of the linear

map f w.r.t. the basis B.
V ∗ Dual space of V .

(n,m) Greatest common divisor of n and m.
≡n Congruence mod n.
1A Identity map on the set A.

v

Introduction

A group is said to be simple if its only normal subgroups are the trivial
one and the group itself. The finite simple groups play a crucial role in
understanding finite groups as they can be thought of as their “basic building
blocks”.

The study of simple (non-abelian) groups can be dated back to the early
19th century, when Évariste Galois studied the simple group A5. He also
constructed the simple groups PSL2(p) for primes p > 5. This construction
can be found in his last letter, addressed to his friend Auguste Chevalier1.

There was not much progress in the theory of finite simple groups until
the end of the 19th century. In 1870, Camille Jordan constructed in [Jor70]
four families of simple matrix groups over the fields Fp of prime order. The
beginning of the 20th century saw the creation of a well-developed theory
of the finite groups. During the early 1960s, serious efforts to classify finite
simple groups began. However, this task turned out to be much more chal-
lenging than what some people initially anticipated. Finally, in 2004 the
classification of all finite simple groups was completed [Wil09]. The proof,
which involved the collaboration of about 100 authors, consists of tens of
thousands of pages spread over a hundred journal articles. This result is
considered a milestone of twentieth-century Mathematics.

Classification Theorem for Finite Simple Groups. Every finite simple
group is isomorphic to one of the following:

• a member of one of three infinite classes:

(i) a cyclic group Cp of prime order p;

(ii) an alternating group An, when n > 5;

(iii) a group of Lie type:

1It was written on May 29, 1832, one day before his fatal duel, at the age of 20. It is
considered his testament as a mathematician. Galois asks Chevalier to publicly ask Jacobi
or Gauss to give their opinion, not on the truth, but on the importance of the theorems
that he has found in the letter, and to have the letter printed in the Revue encyclopédique.
The letter was published in September 1832.

vii

viii

– a classical group:

linear: PSLn(q), n > 2, except PSL2(2) and PSL2(3);
unitary: PSUn(q), n > 3, except PSU3(2);
symplectic: PSp2n(q), n > 2, except PSp4(2);
orthogonal: PΩ2n+1(q), n > 3, q odd;

PΩε
2n(q), n > 4, ε ∈ {+,−}

where q is a prime power;
– an exceptional group of Lie type,

G2(q), q > 3;F4(q);E6(q); 2E6(q); 3D4(q);E7(q);E8(q)

where q is a prime power, or

2B2(22n+1); 2G2(32n+1); 2F4(22n+1)

where n > 1, or the Tits group 2F4(2)′.

• one of the 26 sporadic simple groups:

(i) a Mathieu group M11, M12, M22, M23, M24;
(ii) a Leech lattice group Co1, Co2, Co3, McL, HS, Suz, J2;
(iii) a Fischer group Fi22, Fi23, Fi′24;
(iv) a Monstrous group M, B, Th, HN, He;
(v) a pariah J1, J3, J4, O’N, Ly, Ru.

In a group, the commutator of two elements x and y is defined as

[x, y] = x−1y−1xy.

In 1951, Øystein Ore dealt with commutators in [Ore51], where he proved
that, if n > 5, every permutation of An is a commutator of two permutations
of Sn. He also affirmed that the proof could be extended to show that in
An every element is a commutator. In the final part of the same article
he stated the following: “It is possible that a similar theorem holds for any
simple group of finite order, but it seems that at present we do not have the
necessary methods to investigate the question.” This has become known as
Ore’s conjecture.

Through different articles published throughout the 20th century, Ore’s
conjecture was established by many authors for different families of finite
simple groups. For instance, Noboru Ito proved the conjecture for the simple
alternating groups in [Ito51]. In [NPC84], Ore’s conjecture was checked
directly using computational methods for the sporadic groups.

Several authors obtained partial results for finite simple groups of Lie
type [Mal14]. In 1998, an important breakthrough was made by Erich Ellers

Introduction ix

and Nikolai Gordeev in [EG98], where they established Ore’s conjecture for
groups of Lie type over a finite field Fq, if q > 8. Finally, in 2009 the
remaining cases (groups of Lie type over Fq with q < 8) were proved in
[LOST]. Combining this and the classification of the finite simple groups,
Ore’s conjecture was finally proven.

Main Theorem. If G is a finite non-abelian simple group, then every ele-
ment of G is a commutator.

In fact, in [LOST] a more general result was proved for the classical
groups than Main Theorem. It was shown that in every quasisimple (perfect
group G such that G/Z(G) is simple) classical group every element is a
commutator.

Now, we give a rough idea of the strategy used in [LOST] to prove
the conjecture. A dichotomy is established between elements with “small
centralizer” and the rest. For an element with small centralizer, Deligne-
Lusztig theory and the theory of dual pairs and Weil characters of classical
groups are used to show that such an element is a commutator.

On the other hand, for a fixed element whose centralizer is not small,
the strategy consists of reducing to groups of Lie type of lower dimension
and apply induction. For instance, for symplectic or orthogonal groups, it
is possible to write such an element as a Jordan decomposition into several
Jordan blocks. Therefore, this element lies in direct product of smaller
symplectic or orthogonal groups. Hence, if one can inductively express each
block as a commutator in a lower rank classical group, then the fixed element
is a commutator. However, for the unitary groups, the inductive strategy
using Jordan blocks does not work well, and therefore M. Liebeck et al.
adopt a different approach.

This dissertation arises from [LOST, Lemma 3.1], which we state and
name as Main Lemma. This lemma serves as the base of the induction of
the proof of the Main Theorem.

Main Lemma. Every element of each of the following groups is a commu-
tator:

(i) Sp2m(2), 3 6 m 6 6;

(ii) Sp2m(3), 2 6 m 6 5;

(iii) SU3(q), 3 6 q 6 17; SU4(q), q 6 7; SU5(q), q 6 4; SU6(q), q 6 4;
SU7(2);

(iv) Ω±n (2), 8 6 n 6 12; Ω±n (3), 7 6 n 6 11; Ω7(5);

(v) simply connected D4(q), q 6 4; 2D4(q), q 6 5;

(vi) E6(2) or simply connected 2E6(2).

x

The proof of the Main Lemma is by direct computation in a computer,
and most of the details are omitted in the article. Therefore, the goal of this
dissertation is to reproduce such computations and understand some of the
algorithms behind them.

It is assumed that the reader does not have any prior knowledge apart
from what is taught in the Mathematics degree. Therefore, the first chap-
ter is dedicated to the definitions of the classical groups, which in most
cases arise as the quotients of some isometry groups of bilinear/sesquilinear
forms on a vector space. Furthermore, we will provide the full proofs of the
simplicity of two families of classical groups.

We start Chapter 2 proving Ore’s criterion, which relates Ore’s conjec-
ture for a concrete group with the values of its ordinary character table.
In order to apply this criterion to a particular group, one should know the
complete character table of such a group. Hence, we will also present an
algorithm for computing the character table of an arbitrary group. We will
implement this algorithm in the GAP system [GAP22], which is a computa-
tional discrete algebra system, with particular emphasis on Computational
Group Theory.

At last, we begin the final chapter by noting some generalizations of
Ore’s conjecture. Later, we establish Ore’s conjecture for the alternating
groups An when n > 5. Throughout the literature, in [KM05] among others,
it is said that Ore’s conjecture is established for the alternating groups in
[Mil99], [Ito51] and [TL65]. The proof presented in [Mil99] is far from being a
rigorous and complete, nonetheless we have been inspired by it in the proof
we present in this dissertation. At the time of writing this dissertation
we have not been able to find both articles [Ito51] and [TL65]. Also, we
will present two tests that check if a group fulfills Ore’s conjecture or not.
One consists in applying Ore’s criterion, whereas the other is a Las Vegas
algorithm. We will also implement these tests in the GAP system [GAP22].
Finally, we will compare the performance of the different tests.

All the code written for this dissertation can be found in Appendix B or
in the GitHub repository [Jua23].

Chapter 1

The classical groups

In this chapter we define and prove the simplicity of some of the classical
groups, as they were named by Hermann Weyl in [Wey39]. These groups, in
essence, are quotients of matrix groups by their centres.

The tale begins withHer All-embracing Majesty (quoting H. Weyl [Wey39,
p. 136]), the general linear group, which consists of all invertible linear maps
of a vector space on itself. All other classical groups arise as subgroups of
the general linear group or as closely related quotient groups. These are: the
symplectic and unitary groups, and the three families of orthogonal groups.

We follow mostly [Wil09, Ch. 3] and [Gro01]. Particularly, in Section 1.2
also [Lan02, Ch. XIII, §9] and [Con20].

1.1 Iwasawa’s lemma
Before anything else, we recall some concepts of group actions. In this
dissertation all actions will be right actions. Let G be a group acting on a
set Ω. A block is a subset B of Ω such that for all g ∈ G, either Bg = B
or Bg ∩ B = ∅. If G acts transitively on a set Ω that has more than one
element, then we say that G acts primitively on Ω if the only blocks are the
empty set, singletons and the whole Ω. These actions can be characterized
in the following way: a group action is primitive if and only if for any ω ∈ Ω,
the group StabG(ω) is a maximal subgroup of G [Gro01, p. 3]. An action
of G on Ω is said to be 2-transitive if for any pairs (x, y), (x′, y′) of distinct
elements of Ω, there exists g ∈ G with gx = x′ and gy = y′. Finally, we
remark that any 2-transitive action is primitive [Gro01, Proposition 0.2].

Our main tool for proving the simplicity of the classical groups will be
Iwasawa’s Lemma.
Lemma 1.1.1 (Iwasawa). Let G be a finite group acting faithfully and prim-
itively on a set Ω. Assume the following:
(i) For some ω ∈ Ω, the group StabG(ω) contains a normal abelian sub-

group N whose conjugate subgroups generate G;

1

2 1.2. Linear groups

(ii) G′ = G, i.e. G is perfect.

Then G is simple.

Proof. Assume, for sake of contradiction, that there is a normal subgroup
K such that 1 < K < G. As G acts faithfully on Ω and K 6= {1}, K
does not fix all the points of Ω. Therefore, there is ω0 ∈ Ω such that
K 66 StabG(ω0) =: H. Since K C G, HK is a subgroup of G. As G
acts primitively on Ω, H is a maximal subgroup of G, and therefore, either
H = HK or G = HK. As K 66 H, we conclude that G = HK.

Now, we claim that H contains a normal abelian subgroup, A, whose
conjugate subgroups generateG. By hypothesis, we know that such property
holds for some StabG(ω), ω ∈ Ω. Recalling that the action is transitive, we
have that for some g ∈ G, StabG(ω)g = H. Then A = Ng is a normal
abelian subgroup of H. Also, clearly, the conjugates of A generate G.

Since A P H, AK P HK = G. Then for any g ∈ G, Ag = g−1Ag ⊂
g−1(AK)g = AK. Therefore, as G = 〈A〉G, we conclude that G = AK.
Finally, by the second isomorphism theorem, G/K = AK/K ∼= A/(A ∩K).
So, G/K is abelian and consequently G = G′ 6 K, which is a contradiction.

When dealing with the classical groups, the subgroup N from Iwasawa’s
lemma contains a particular type of endomorphisms, the transvections. A
transvection is an endomorphism f on a vector space V such that rk(f−1) =
1 and (f −1)2 = 0. One can show that the inverse of a transvection is again
a transvection [Gro01, p. 7]. For any transvection f there exist ϕ ∈ V ∗

and v ∈ kerϕ such that f : x 7→ x + (x)ϕv [CS99]. In this case, we use the
notation Tv(ϕ) to denote f .

1.2 Linear groups

Let V be an n-dimensional Fq-vector space. Then GL(V) denotes the gen-
eral linear group of V , the group of all invertible linear maps from V to
itself. Fixing a basis of V yields an isomorphism between GL(V) and the
group GLn(q) of all invertible n × n matrices over the field Fq. Since
det(AB) = det(A) det(B), the map det : GLn(q) → F×q is a group homo-
morphism and its kernel is called the special linear group SLn(q), which
consists of all the matrices of determinant 1. Now we define the projec-
tive special linear group PSLn(q) as the quotient of SLn(q) by its centre:
PSLn(q) = SLn(q)/Z(SLn(q)). It is well known that Z(SLn(q)) is the set
of scalar matrices with determinant 1. In Exercise A.1.1 we compute the
orders of all of these groups.

After some preliminaries we will be able to apply Iwasawa’s lemma to
PSLn(q). We let SLn(q) act on the set Ω of 1-dimensional subspaces of

Chapter 1. The classical groups 3

V in the natural way. By linear algebra, any basis can be transformed,
up to scalar multiplication, to any other basis by a matrix of SLn(q). In
particular, the action is 2-transitive, and hence primitive. Moreover, it can
be easily shown that the kernel of this action is Z(SLn(q)) [Gro01, p. 6].
Hence, PSLn(q) acts1 primitively and faithfully on Ω.

It is easy to check that the group H = StabSLn(q)(〈(1, 0, . . . , 0)〉) consists
of matrices whose first row is the vector (λ, 0, . . . , 0) for any λ ∈ F×q . Now,
we claim that the set N which consists of matrices of the form(

1 0n−1
vn−1 In−1

)
,

where vn−1 denotes an arbitrary column vector with coefficients in Fq, is
a normal abelian subgroup of H. Let ϕ be the map from H to GLn−1(q)
which maps the element (

λ 0n−1
vn−1 B

)
of H to B. It can be easily shown that in fact ϕ is a group epimorphism and
that kerϕ = N , whence we get that N P H. Furthermore, as kerϕ ∼= Fn−1

q ,
in particular N is abelian.

For 1 6 i, j 6 n with i 6= j and λ ∈ F×q we denote by Ei,j(λ) the matrix
which differs from In by having λ in the (i, j)-th component instead of 0.
We call such Ei,j(λ) an elementary matrix. It is clear that Ei,j(λ) ∈ SLn(q).
If A is an n × n matrix, then the multiplication Ei,j(λ)A corresponds to
adding λ times the j-th row to the i-th row of A. In particular, the inverse
of Ei,j(λ) is Ei,j(−λ). If f is a transvection of the space Fnq , then there
exists a basis B of Fnq such that MB(f) = Ei,j(λ).

Lemma 1.2.1. SLn(q) is generated by elementary matrices.

Proof. Multiplying a matrix on the left by an elementary matrix corresponds
to adding a multiple of one row to another row. Hence, our claim is equiva-
lent to the elementary result from linear algebra that any matrix in SLn(q)
can be reduced to the identity matrix by a finite sequence of elementary row
operations.

Lemma 1.2.2. Every elementary matrix is in some conjugate of N .

Proof. First, we suppose that n > 2. Since E2,1(1) ∈ N , it suffices to show
that any elementary matrix is conjugate in SLn(q) to E2,1(1).

Define T = Ei,j(λ). We will abuse notation and treat T as a linear map
and a matrix at the same time. If e1, . . . , en are vectors from the canonical
basis of Fnq , then ekT = ek if k 6= i and eiT = ei + λej .

1Note that this can also be seen as the action of PSLn(q) on the projective space
Pn−1(Fq).

4 1.2. Linear groups

We define a basis {f1, . . . , fn} of Fnq by taking f1 = λej , f2 = ei and
fk = em for k > 3 and m 6= i, j, ensuring that all fk are different. Thus,
f2T = f1+f2 and fkT = fk for k 6= 2. Hence, the matrix representation of T
relative to the basis {f1, . . . , fn} is E2,1(1). Thus, if A is the change-of-basis
matrix from {e1, . . . , en} to {f1, . . . , fn}, Ei,j(λ) = A−1E2,1(1)A. At this
point we have shown that Ei,j(λ) and E2,1(1) are conjugate in GLn(q).

For an arbitrary c ∈ F×q we define the matrix Ac as ekAc = fk if k < n
and enAc = cfn. We observe that T = Ei,j(λ) = A−1

c E2,1(1)Ac. The reason
of this is that both sides of the equation are equal at f1, . . . , fn−1, cfn and
that n > 2. The rows of Ac are the same as the rows of A except for the
last, which is c times the last row of A. As detAc = cdetA, by taking
c = (detA)−1, the result follows.

When n = 2 any elementary matrix is of the form
(1 λ

0 1
)
or
(1 0
λ 1
)
∈ N ,

where λ ∈ F×q . Since
(0 −1

1 0
)
∈ SL2(q), the following establishes the result:(

0 −1
1 0

)−1(
1 λ
0 1

)(
0 −1
1 0

)
=
(

1 0
−λ 1

)
. (1.1)

Lemma 1.2.3. If (n, q) 6= (2, 2), (2, 3), then SLn(q) is perfect.

Proof. We first consider the case n > 2. Recall that the conjugate of a
commutator is a commutator. Therefore, due to the proof of Lemma 1.2.2
it suffices to show that E2,1(1) is a commutator. Since n > 3,

E2,1(1) = E2,3(1)E3,1(1)E2,3(−1)E3,1(−1) = [E2,3(−1), E3,1(−1)]. (1.2)

If n = 2 and q > 3, then there exists x ∈ F×q with x2 6= 1. From the
proof of Lemma 1.2.2 it suffices to show that

(1 0
λ 1
)
is a commutator. Take

y ∈ Fq arbitrary, (
1 0

y(x2 − 1) 1

)
=
[(

1 0
y 1

)
,

(
x 0
0 x−1

)]

whence we get the desired result.

Finally, we are ready to prove the simplicity of PSLn(q) if (n, q) 6=
(2, 2), (2, 3). In the two cases in which PSLn(q) is not simple we have the
isomorphisms PSL2(2) ∼= S3 and PSL2(3) ∼= A4 [Wil09, p. 44].

Theorem 1.2.4. If (n, q) 6= (2, 2), (2, 3), then PSLn(q) is simple.

Proof. Define Z = Z(SLn(q)). We know that PSLn(q) acts faithfully and
primitively on Ω. Recall that if ω = 〈(1, 0, . . . , 0)〉, the group StabSLn(q)(ω)
contains the normal abelian subgroup N . Thus, as

StabSLn(q)(ω)Z/Z = StabPSLn(q)(ω)

Chapter 1. The classical groups 5

we have that StabPSLn(q)(ω) contains the normal abelian subgroup A =
NZ/Z. By combining Lemma 1.2.1 and Lemma 1.2.2 we conclude that
SLn(q) = 〈N〉SLn(q), and therefore PSLn(q) = 〈A〉PSLn(q). Finally, by
Lemma 1.2.3 PSLn(q) is perfect except when (n, q) = (2, 2) or (2, 3), and
applying Iwasawa’s Lemma 1.1.1, the result follows.

1.3 Bilinear forms

The rest of the classical simple groups are defined as the isometry groups of
forms on a vector space. In this section we will define different types of bi-
linear forms and conjugate-symmetric sesquilinear forms, and classify them.
Each vector space V in this section is assumed to be finite dimensional.

1.3.1 Definitions

A bilinear form on a k-vector space V is a map f : V ×V → k that is linear
in each argument. The pair (V, f) is said to be a bilinear space. We say that
the form is symmetric if f(u, v) = f(v, u) and alternating if f(v, v) = 0.

Now we present the conjugate-symmetric sesquilinear2 forms. For these
forms to make sense we consider fields of order q2 (q is a power of a prime),
and we write x = xq for every x ∈ Fq2 3. Hence, a conjugate-symmetric
sesquilinear form over a Fq2-vector space V is a map f : V × V → Fq2 that
satisfies f(λu + v, w) = λf(u,w) + f(v, w) and f(w, v) = f(v, w) for all
vectors v, w and scalars λ. The pair (V, f) is said to be a sesquilinear space.

We say that u and v are perpendicular if f(u, v) = 0, and we denote this
by u ⊥ v. For any S ⊆ V , we write S⊥ = {v ∈ V | v ⊥ s for all s ∈ S}, and
call this subset the perpendicular space of S. The radical of f , rad f , is the
perpendicular space of V . We say that f is non-singular if rad f = 0, and
singular otherwise.

Let B = {e1, . . . , en} be a basis of V . The matrix A whose (i, j) compo-
nent is f(ei, ej) is called the matrix of f with respect to B, and it is denoted
asMB(f). It is easy to show that f is singular if and only if the determinant
of the associated matrix is zero.

Given any W 6 V , (W, f|W) is a bilinear/sesquilinear space. Of course,
if f is (symmetric or alternating), so is f|W . In general, non-singularity is
not inherited. When f|W is non-singular, we say that the subspace W is
non-singular. In this case, it can be shown that V = W ⊕W⊥ and that W⊥
is also non-singular [Wil09, p. 56].

Suppose that f is a bilinear/sesquilinear form on vector space V . An
isometry relative to f is a k-isomorphism g : V → V that satisfies f(ug, vg) =

2From the Latin numerical prefix sesqui- which means “one and a half” because the
form is linear on the first component plus half-linear (semi-linear) on the second one.

3The map given by such assignment is called the Frobenius automorphism of Fq2 .

6 1.3. Bilinear forms

f(u, v) for all u, v ∈ V . Two forms on V are said to be equivalent if they
become equal after a change of basis.

1.3.2 Classification of alternating forms

Before classifying the alternating forms, we will see that there are no spaces
of odd dimension equipped with an alternating bilinear form.

Theorem 1.3.1. Let (V, f) be a non-singular alternating bilinear space.
Then dimV is even.

Proof. By induction on dimV . If dimV = 1 with basis {v}, then since
f is an alternating form f(λv, µv) = λµf(v, v) = 0. This contradicts the
hypothesis of non-singularity.

If dimV = 2 we get the desired result, so suppose that dimV > 3.
Take v ∈ V − {0}. Since f is non-singular, there exists w ∈ V such that
f(v, w) = 1 and that W = 〈v, w〉 is of dimension 2. The matrix of f|W
with respect to the basis {v, w} is

(0 1
−1 0

)
, which is invertible. Hence, the

restriction f|W is non-singular. Therefore, V = W ⊕W⊥ and W⊥ is also
non-singular. By induction hypothesis dimW⊥ is even and thus dimV so
is.

Let (V, f) be a non-singular alternating bilinear space. In the proof of
Theorem 1.3.1 we have seen that for every non-zero vector v ∈ V we can
find w ∈ V such that: f(v, w) = 1; V = W ⊕W⊥, where W = 〈v, w〉 is
of dimension 2; and both f|W and f|W⊥ are non-singular. The pair (v, w)
is called a hyperbolic pair. By induction one can easily show that there is
a basis {e1, . . . , em, f1, . . . , fm} of V with u ⊥ v = 0 for all basis vectors
u, v except f(ei, fi) = −f(fi, ei) = 1. A basis that fulfills such conditions is
called a symplectic basis and f is said to be a symplectic form. The matrix
of f with respect to {e1, . . . , fm} is

(0 Im
−Im 0

)
. Therefore, up to equivalence,

there is only one alternating form on a non-singular alternating bilinear
space.

1.3.3 Classification of conjugate-symmetric sesquilinear forms

As in the case of the alternating forms, up to equivalence, there is only
one conjugate-symmetric sesquilinear form. In fact, we will prove that the
matrix of the conjugate-symmetric sesquilinear form with respect to some
basis is the identity matrix.

Theorem 1.3.2. Let f be a non-singular conjugate-symmetric sesquilinear
form on a Fq2-vector space V . Then there is a basis of V of mutually per-
pendicular vectors each of norm 1, i.e. f(v, v) = 1 for all basis vectors v.
Such a basis is called an orthonormal basis.

Chapter 1. The classical groups 7

Proof. By induction on dimV . For the case V = {0} we use the empty basis
and the result follows. Now let dimV = n > 1. We claim that there is a
vector v with f(v, v) 6= 0. Otherwise, for any u,w vectors we get that

0 = f(u+ λw, u+ λw)
= f(u, u) + λf(u,w) + λf(w, u) + λλf(w,w)
= λf(u,w) + λf(w, u). (1.3)

Now choose two values of λ that form a Fq-basis of Fq2 . For instance,
λ1 = 1 and some scalar λ2 with λ2 6= λ2, that is λ2 ∈ Fq2 − Fq. Solving the
equation (1.3) for these values we conclude that f ≡ 0, which contradicts
the hypothesis of non-singularity.

Let v be some vector with f(v, v) 6= 0. Then f(v, v) = f(v, v), and
f(v, v) is in the fixed field Fq of the field automorphism x 7→ xq. Since the
multiplicative group of the field is cyclic of order q2 − 1 = (q + 1)(q − 1),
there is λ ∈ Fq2 such that λλ = λq+1 = f(v, v). Therefore, define v′ = λ−1v,
so that f(v′, v′) = 1. Now let W be the subspace spanned by v. Since
f|W is non-singular, we get that V = W ⊕W⊥, and by induction there is
an orthonormal basis of W⊥ {v1, . . . , vn−1}. Clearly {v1, . . . , vn−1, v

′} is an
orthonormal basis of V .

1.3.4 Classification of symmetric forms in odd characteristic

The classification of symmetric forms not only does require more work than
the previous ones, but also it depends on the characteristic of the underlying
field. After some preliminaries, we will be able to answer the equivalence
question for finite fields of odd characteristic.

Assume for the rest of this section that k is a field of odd characteristic
and that V a finite dimensional k-vector space.

Suppose that f is a symmetric form on V , then define Q : V → k as
Q(v) = f(v, v), and call Q the associated quadratic form. Observe that
Q(λv) = λ2Q(v) for all λ ∈ k and v ∈ V , and that for all u, v ∈ V

Q(u+ v) = f(u+ v, u+ v) = Q(u) + 2f(u, v) +Q(v). (1.4)

Therefore, since char k 6= 2, we have that f(u, v) = 1
2(Q(u+v)−Q(u)−Q(v)),

i.e. the quadratic form Q completely determines the bilinear form f .

Theorem 1.3.3. Let f be a symmetric bilinear form on V , then V has
an orthogonal basis B = {v1, . . . , vn}. That is, there are some λi 6= 0 with
MB(f) = diag(λ1, . . . , λr, 0, . . . , 0). Furthermore, {vr+1, . . . , vn} is a basis
of rad f ; and for every 1 6 i 6 r, vi can be replaced by civi for every ci ∈ k×
and each λi can be any non-zero field element in the image of the restriction
of Q to 〈v1, . . . , vi−1〉⊥.

8 1.3. Bilinear forms

Proof. Assume that f 6= 0, as otherwise the theorem trivially holds in that
case. The proof is by induction on n = dimV . The case n = 1 is trivial, so
suppose that n > 2. First note that Q(v1) 6= 0 for some v1 ∈ V . Otherwise,
by (1.4) we would have f(u, v) = 0 for all u, v ∈ V , a contradiction since
f 6= 0. Define W = 〈v1〉 so W is non-singular. Hence, V = W ⊕W⊥. By
induction,W⊥ has an orthogonal basis {v2, . . . , vr} such that Q(vi) = λi 6= 0
when 2 6 i 6 r and Q(vi) = 0 if r + 1 6 i 6 n, for some r. Hence, the
equality MB(f) = diag(λ1, . . . , λr, 0, . . . , 0) is clear.

If v ∈ V then v ∈ rad f if and only if v ⊥ vi for every i. Suppose that
v =

∑
i aivi, therefore if j > r, f(v, vj) = 0, and f(v, vj) = ajλj otherwise.

Hence, v ∈ rad f if and only if aj = 0 for 1 6 j 6 r, or equivalently
v ∈ 〈vr+1, . . . , vn〉.

Since Q(civi) = c2
iλi, every vi can be replaced by civi for every ci ∈ k×.

The other fact is immediate recalling the main proof of the theorem.

We now define some concepts that will be useful in what follows. If f is
a symmetric form on V , then v ∈ V − {0} is called isotropic if Q(v) = 0;
otherwise is called anisotropic. For technical reasons, v = 0 is taken to be
anisotropic. If there exists an isotropic vector then f , V and Q are called
isotropic; otherwise are called anisotropic. A totally isotropic subspace of V
is a subspace on which all non-zero vectors are isotropic. The form f and
the quadratic form Q are called universal if Q(V) = k, i.e. Q is a surjective
map.

Proposition 1.3.4. Every non-singular isotropic symmetric bilinear form
is universal.

Proof. Let f be any non-singular isotropic symmetric bilinear form. Take
an isotropic vector u ∈ V −{0}. Since f is non-singular, there is some w ∈ V
with f(u,w) = λ 6= 0. We can replace w by w

2λ so that f(u,w) = 1/2. Define
v = cu+ w, where c ∈ k will be determined later. Then, as u is isotropic,

Q(v) = f(cu+ w, cu+ w) = 2cf(u,w) + f(w,w) = c+ f(w,w).

Finally, for a ∈ k, set c = a− f(w,w). Therefore

Q(v) = a− f(w,w) + f(w,w) = a.

Suppose now that k = Fq, where q is a power of an odd prime. Let k×2

denote the subgroup of squares in the multiplicative group k×. The map
θ : k× → k× given by x 7→ x2 is a group homomorphism and ker θ = {±1}.
Hence, |k× : k×2| = 2 and the two cosets correspond to the squares and the
non-squares in k×.

If b ∈ k× is a non-square, denote by K the splitting field of the poly-
nomial x2 − b, so [K : k] = 2 and |K| = q2. Therefore, we may write

Chapter 1. The classical groups 9

K = {a + c
√
b | a, c ∈ k}. Moreover, as the map x 7→ xq generates the

Galois group Gal(K/k) ∼= C2, the field norm is given by

NK/k(a+ c
√
b) =

∏
σ∈Gal(K/k)

σ(a+ c
√
b) = (a+ c

√
b)q+1.

Note that the restriction N := NK/k : K× → k× is a homomorphism and
that kerN = {α ∈ K | αq+1 = 1}, which is the unique subgroup of order
q+1 ofK×. Thus, the image of N has order q

2−1
q+1 = q−1, i.e. N is surjective.

In general, if f is a symmetric form and λ ∈ k×, then fλ(u, v) = λf(u, v)
is also a symmetric form and Qλ(v) = λQ(v) is the corresponding quadratic
form. Observe that f is universal if and only if fλ is universal for all λ ∈ k×.

Proposition 1.3.5. Let k be a finite field and let f be non-singular sym-
metric bilinear form on a k-vector space V of dimension n > 2. Then f is
universal. Conversely, if dimV = 1 then f is not universal.

Proof. By Proposition 1.3.4 we can assume that f is anisotropic. Note
that it suffices to show only the case n = 2, since every vector space (of
dimension n > 2) has a subspace of dimension 2, and applying the proof to
this particular subspace the claim will follow.

By Theorem 1.3.3 we may assume that there is an orthogonal basis
B = {v1, v2} for which MB(f) = diag(α,−β), where both α and β are
non-zero; and by scaling the form we may assume that α = 1. Let v =
av1 +bv2 be any non-zero vector of V , then Q(v) = a2−βb2 6= 0 because f is
anisotropic. Hence, β is a non-square in k, so we consider K = k(

√
β). From

the definition of the field norm NK/k we have that NK/k(a+b
√
β) = a2−βb2

and thus NK/k(a + b
√
β) = Q(v). Finally, by the discussion before this

theorem we know that NK/k : K× → k× is surjective and consequently Q is
surjective.

Suppose now that dimV = 1. Recall that Q(λv) = λ2Q(v) for all λ ∈ k
and v ∈ V . Therefore, one of the following must occur: Q(V) ⊆ k×2 (k or
Q(V) ⊆ c · k×2 (k, where c is a non-square of k.

Theorem 1.3.6. Let k be a field of odd order and let f be a non-singular
symmetric bilinear form on a k-vector space V of dimension n > 2. Then
there is a basis of V which the matrix with respect to f equals diag(1, . . . , 1, d),
for some d ∈ k×.

Proof. By Theorem 1.3.3 and Proposition 1.3.5 we know that there is some
v1 ∈ V with Q(v1) = 1. By these same results we can continue choosing
vectors vi in an orthogonal basis, where Q(vi) = 1, as long as 〈v1, . . . , vi−1〉⊥
has dimension greater or equal than 2. This can be done for all 1 6 i 6 n−1.
When i = n universality is no longer guaranteed, so vn is chosen as a vector
from 〈v1, . . . , vn−1〉⊥ (which may have dimension 1, so we cannot apply
Proposition 1.3.5) with Q(vn) = d 6= 0, as in the proof of Theorem 1.3.3.

10 1.4. Symplectic groups

Therefore, there are exactly two equivalence classes of non-singular sym-
metric bilinear forms over fields of odd order: the ones which have a matrix
as in the theorem above with d = 1, and those which have such a matrix
with d = a, where a is some non-square. Note that these two types are not
equivalent, one has determinant 1, which lies in the coset of squares and the
other has determinant a, which lies in the other coset.

Before defining forms of plus type andminus type, we will give an example
to motivate these definitions. Suppose that dimV = 2. Let f1 and f2 be
two symmetric forms given with respect to an orthogonal basis {x, y} by
f1(x, x) = f1(y, y), and f2(x, x) = 1, f2(y, y) = d for some non-square scalar
d. If −1 is a square in k (write −1 = i2), then f1(x + iy, x + iy) = 0 and
f2(x + λy, x + λy) = 1 + λ2d, which cannot be 0 (otherwise, d = −λ−2 =
(λ−1i)2, which is impossible). Alternatively, when −1 is not a square, −d is
a square (write −d = λ−2 for some λ ∈ k×), so f2(x + λy, x + λy) = 0 and
f1(x + λy, x + λy) 6= 0. It is well known that −1 is a square in Fq if and
only if q ≡4 1. Hence, there is a non-zero isotropic vector for f1 if and only
if q ≡4 1. Moreover, there is a non-zero isotropic vector for f2 if and only if
q ≡4 3. Therefore, we say that a form is of plus type if there is an isotropic
vector; otherwise we say that is of minus type.

In general, a form in 2m dimensions is said to be of plus type if there
exists a totally isotropic subspace of dimension m; otherwise is called of
minus type. The Witt index of the form is defined as the maximal dimension
of a totally isotropic subspace. It can be shown that when the form is of
plus type the Witt index equals m and the forms with minus type have Witt
index m− 1 [Wil09, p. 59].

1.4 Symplectic groups

The symplectic group4 Sp(V, f) is defined as the isometry group of a symplec-
tic form (non-singular alternating) f on a vector space V ∼= F2m

q (when the
form f is clear from the context, we simply write Sp(V)). In other words,
Sp(V, f) is the subgroup of GL(V) that consists of elements g such that
f(ug, vg) = f(u, v) for every u, v ∈ V . If h is another symplectic form on V ,
by the classification of alternating forms, h and f are equivalent. Hence, the
resulting symplectic group respect to h is conjugate to Sp(V, f) in GL(V).
Equivalently, relative to appropriately chosen bases, Sp(V, f) and Sp(V, h)
are isomorphic to a subgroup of GL2m(q). This resulting group of matrices
is denoted by Sp2m(q), and by the classification of alternating forms it can

4This term is due to H. Weyl, who replaced the previous confusing name “complex
group”, as these groups have nothing to do with complex numbers. As a curiosity, the
term “symplectic” comes from the Greek word symplektikos, which is the Greek cognate
of “complex”.

Chapter 1. The classical groups 11

be easily shown that

Sp2m(q) =
{
X ∈ GL2m(q) | XT (0 Im

−Im 0
)
X =

(0 Im
−Im 0

)}
. (1.5)

The centre Z of Sp2m(q) consists of the matrices I2m and−I2m if charFq 6=
2, and Z = {I2m} if charFq = 2. The quotient group Sp2m(q)/Z is called the
projective symplectic group and is denoted as PSp2m(q). In Exercise A.1.2
we compute the orders of these groups.

We start by considering the symplectic groups when m = 1. By (1.5),
a simple computation yields that

(
a b
c d

)
∈ Sp2(q) if and only if ad− bc = 1.

Thus, Sp2(q) = SL2(q).
From now on in this section, V will be a Fq-vector space of dimension 2m

and f will be symplectic form on V . After proving some technical results
we will be ready to apply Iwasawa’s lemma to PSp2m(q).

Lemma 1.4.1. Let v ∈ V and ϕ ∈ V ∗. A transvection Tv(ϕ) is in Sp(V, f)
if and only if kerϕ = v⊥. In that case there is λ ∈ Fq such that xTv(ϕ) =
x+ λf(x, v)v. Tv(ϕ) is called a symplectic transvection and we write Tv(λ)
instead of Tv(ϕ).

Proof. τ = Tv(ϕ) is symplectic if and only if

f(x, y) = f(xτ, yτ) = f(x, y) + yϕf(x, v) + xϕf(v, y) + f(v, v).

The equation above is equivalent to

yϕf(x, v) + xϕf(v, y) = 0. (1.6)

Suppose this holds and let w ∈ V be such that f(v, w) 6= 0, which exists
since f is non-singular. Then wϕf(x, v) + xϕf(v, w) = 0, and hence xϕ =
− wϕ
f(v,w)f(x, v) = λf(x, v) and λ ∈ Fq is independent of x. It is clear that in

this case kerϕ = v⊥. For the converse, if kerϕ = v⊥ = ker f(·, v), there is λ
such that xϕ = λf(x, v). Clearly (1.6) holds (f is an alternating form), and
hence τ is symplectic.

Proposition 1.4.2. Let Tv(λ) and Tv(µ) be symplectic transvections. Then:

(i) Tv(λ)Tv(µ) = Tv(λ+ µ),

(ii) Tµv(λ) = Tv(λµ2),

(iii) Tv(λ)−1 = Tv(−λ),

(iv) Tv(λ)g = Tvg(λ) for any g ∈ Sp(V).

Proof. Easy computation.

Lemma 1.4.3. The subgroup S generated by all symplectic transvections
equals Sp(V).

12 1.4. Symplectic groups

Proof. Part 1: S acts transitively on V 2 − {(0, 0)}.
Let v, w be two distinct non-zero vectors. If f(v, w) = λ 6= 0, then

vTv−w(λ−1) = w. Otherwise, f(v, w) = 0. We aim to find an x such that
f(v, x) 6= 0 6= f(w, x). Such x exists because if not, there exist y, z such that
f(v, y) = 0 = f(w, z) and f(v, z) 6= 0 6= f(w, y). With this in mind, we see
that a suitable linear combination of y and z has the required properties.
Now, we can construct T1 and T2 symplectic transvections such that vT1 = z
and zT2 = w. Hence, we can map v to z and z to w.

Part 2: S acts transitively on the set of hyperbolic pairs.
We have to show that there is a product of transvections which maps

{ei, fi} to {ej , fj}. By Part 1, there is a transvection T1 mapping ei to ej .
If we find a transvection T2 such that fiT1T2 = fj and ejT2 = ej , then the
claim is proven. We divide into two cases.

If f(fiT1, fj) = λ 6= 0, by Part 1, defining T2 = TfiT1−fj
(λ−1) we get

fiT1T2 = fj and since f(ej , fiT1 − fj) = f(ei, fi)− f(ej , fj) = 0, ejT2 = ej ,
as we wanted.

Now suppose that f(fiT1, fj) = 0. In this case f(fiT1, ej + fiT1) = −1.
Moreover, f(ej + f1T1, fj) = f(ej , fj) = λ 6= 0. Furthermore, f(ej ,−ej) =
0 = f(ej , ej + fiT1 − fj). Thus, by Part 1 there exist T2,1 = T−ej (−1) and
T2,2 = Tej+f1T1−fj

(λ−1) that both fix ej , and that f1T1T2,1 = ej + fiT1 and
(ej + f1T1)T2,2 = fj . Therefore, defining T2 as the composition T2,2 of T2,1
gives the desired result.

Now we are ready to prove that S = Sp(V). We prove this by induction
on dimV . When dimV = 2 by Lemma 1.2.1 the result follows since SL2(q) =
Sp2(q).

Suppose now that dimV > 2. Let (v, w) be a hyperbolic pair and define
W = 〈v, w〉. Since for any g ∈ Sp(V) (vg, wg) is a hyperbolic pair, and by
Part 2 there is some T ∈ S with vgT = v and wgT = w, then g|WT =
1W . Furthermore, as g|W⊥T ∈ Sp(W⊥) by induction hypothesis g|W⊥T is a
product of symplectic transvections t1, . . . , tr on W⊥. Since V = W ⊕W⊥,
each ti can be extended to a symplectic transvection on V , t′i. This extension
is done in the following way. By Lemma 1.4.1 we have that xti = x +
λf(x, v)v for some scalar λ and v ∈W⊥, for every x ∈W⊥. Hence, xt′i = xti
for all x ∈ V defines a transvection t′i in Sp(V) and the equality gT = t′1 . . . t

′
r

holds. Finally, it follows that g = t′1 . . . t
′
rT
−1 ∈ S, as desired.

Corollary 1.4.4. Sp2m(q) 6 SL2m(q).

Proof. Any transvection has determinant 1.

Lemma 1.4.5. Sp2m(q) is perfect except when (m, q) = (1, 2), (1, 3) and
(2, 2)

Proof. By Lemma 1.4.3 it suffices to show that every symplectic transvection
is a commutator. We prove this by induction on dimV (V ∼= F2m

q as always).

Chapter 1. The classical groups 13

We start with the inductive step, when dimV > 4. Since the conjugate of
a commutator is a commutator again, Sp(V) acts on V − {0} transitively
and by property iv) from Proposition 1.4.2, it suffices to verify that the
transvections Tv(λ), for a fixed vector v, are a commutator for every scalar
λ. Let B = {e1, . . . , fm} be a symplectic basis of V and T = Te1(λ) be
a symplectic transvection. Clearly W = 〈e2, f2〉 6 e1

⊥. The restriction
τ = T|W⊥ belongs to Sp(W⊥), and by induction it is a commutator. Since
W 6 e1

⊥, we have that T|W = 1W , and therefore T and the extension of
τ to V coincide, as in the proof of Lemma 1.4.3. Hence, T is clearly a
commutator on Sp(V).

Since Sp2(q) = SL2(q) and since in SL2(q) all transvections are commu-
tators when q > 4 (see Lemma 1.2.3 from the previous section), the base
of the induction is proven. When q = 2 induction starts at m = 3, and for
q = 3 at m = 2. So we need to check that in both Sp4(3) and Sp6(2) every
symplectic transvection is a commutator. We prove it in Exercise A.1.3.

By Corollary 1.4.4 and recalling Section 1.2 there is an action of Sp2m(q)
on the set Ω of 1-dimensional subspaces of Fnq . This action is transitive by
Part 1 of the proof of Lemma 1.4.3. Since the kernel of this action coincides
with Z(Sp2m(q)), PSp2m(q) acts faithfully and transitively on Ω.

Lemma 1.4.6. Sp(V) acts primitively on Ω.

Proof. Since SL2(q) = Sp2(q), we may assume that dimV > 1. Let B ⊆ Ω
with |B| > 1 and either Bg = B or Bg ∩ B = ∅ for each g ∈ Sp(V). We
need to show that B = Ω.

We claim that there are 〈u〉, 〈v〉 ∈ B such that f(u, v) 6= 0. Suppose
to the contrary that f(u, v) = 0 for all 〈u〉, 〈v〉 ∈ B. Choose 〈u〉 6= 〈v〉
in B. Since f is non-singular, there is x ∈ V with f(u, x) = 1. Hence,
(u, x) is a hyperbolic pair and define the plane W = 〈u, x〉. Set H =
{g ∈ Sp(V) | g|W = 1W }. It can be easily shown that H 6 Sp(V). Since
V = W ⊕W⊥, any g ∈ Sp(W⊥) extends to g′ ∈ Sp(V) with g′|W = 1W , and
hence Sp(W⊥) = {g|W⊥ | g ∈ H}. Choose w ∈ W⊥ − {0}. Since v ∈ W⊥,
and Sp(V) acts transitively on V − {0}, there is g ∈ H with vg = w. As
ug = u, we have that 〈u〉 ∈ Bg ∩B, so Bg = B. Moreover, 〈w〉 = 〈v〉g ∈ B,
and recall that w is an arbitrary non-zero vector in W⊥. Since m > 1,
W⊥ 6= {0} and there is a hyperbolic pair (y, z) in W⊥. Hence, 〈y〉, 〈z〉 ∈ B,
but f(y, z) = 1, which is a contradiction.

Therefore, we choose 〈u〉, 〈v〉 ∈ B with f(u, v) = 1. Hence, (u, v) is a
hyperbolic pair. Now, take any 〈w〉 ∈ Ω. If f(u,w) 6= 0 we can suppose
that (u,w) is a hyperbolic pair. By Part 2 of the proof of Lemma 1.4.3,
there is g ∈ Sp(V) with ug = u and vg = w. Since 〈u〉 ∈ Bg ∩ B, then
Bg = B and 〈w〉 ∈ B. Otherwise, if f(u,w) = 0 there is x ∈ V such
that f(u, x) = f(w, x) = 1. Using the same arguments as in the previous

14 1.5. Unitary groups

paragraph, 〈x〉 ∈ B, and there is also some g ∈ Sp(V) with ug = w and
xg = x. Once more, B = Bg and 〈w〉 = 〈u〉g ∈ B. Hence, B = Ω.

At this point we are ready to prove the simplicity of PSp2m(q) if (n, q) 6=
(1, 2), (1, 3), (2, 2). The three cases in which PSp2m(q) is not simple we have
the isomorphisms PSp2(2) = PSL2(2) ∼= S3, PSp2(3) = PSL2(3) ∼= A4 and
Sp4(2) ∼= S6 [Wil09, p. 61].

Theorem 1.4.7. The group PSp2m(q) is simple except when (m, q) = (1, 2),
(1, 3) and (2, 2).

Proof. PSp2m(q) acts faithfully and primitively (by Lemma 1.4.6) on Ω.
If 〈v〉 ∈ Ω, set H = StabSp2m(q)(〈v〉). Define N = {Tv(λ) | λ ∈ Fq}. By
Proposition 1.4.2, N P H andN ∼= Fq, soN is abelian. For any g ∈ Sp2m(q),
Ng = {Tvg(λ) | λ ∈ Fq}. Since Sp2m(q) acts transitively on V − {0}, then
{Ng | g ∈ Sp2m(q)} contains all the symplectic transvections. Therefore,
by Lemma 1.4.3, Sp2m(q) = 〈N〉Sp2m(q). Finally, with the exceptions noted,
PSp2m(q) is perfect by Lemma 1.4.5. Apply Iwasawa’s Lemma 1.1.1.

1.5 Unitary groups
The (general) unitary group GUn(q) is defined as the isometry group of a
non-singular conjugate-symmetric sesquilinear form f on a F2

q-vector space
of dimension n. That is, GUn(q) is the subgroup of GLn(q2) consisting
of matrices which preserve the form f . Therefore, by the classification of
conjugate-symmetric sesquilinear forms it can be easily shown that

GUn(q) =
{
X ∈ GLn(q2) | XT = X−1

}
where X = (xi,j) if X = (xi,j). Furthermore, one can show that

|GUn(q)| = qn(n−1)/2
n∏
i=1

(qi − (−1)i).

The subgroup of GUn(q) which consists of matrices of determinant 1 is
called special unitary group and is denoted by SUn(q). If Z is the subgroup
of scalar matrices, then PSUn(q) = SUn(q)/Z is called the projective special
unitary group and most of them are simple. As in the case for the symplectic
groups, we have the following isomorphism: SU2(q) ∼= SL2(q). The groups
which are not simple are the ones given by the isomorphism PSU2(q) ∼=
PSL2(q) and PSU3(2), which is a soluble group of order 72. We check this
in Exercise A.1.4 using the GAP system [GAP22].

We simply sketch the proof of the simplicity of the unitary groups. As
SU2(q) ∼= SL2(q), we suppose that n > 2. As always, we aim to apply
Iwasawa’s Lemma 1.1.1. We consider transvections of the same form as

Chapter 1. The classical groups 15

the symplectic transvections, i.e. xTv(λ) = x + λf(x, v), for some isotropic
vector v. By computation one can show that Tv(λ) ∈ SUn(q) if and only
if λq−1 = −1, and in that case Tv(λ) is called a unitary transvection. One
can show that SUn(q) is generated by unitary transvections except when
(n, q) = (3, 2). Now, we consider the action of SUn(q) on the isotropic 1-
dimensional spaces, i.e. the set of all 〈u〉 with u ∈ Fnq2−{0} and f(u, u) = 0.
Since properties similar to Proposition 1.4.2 hold for unitary transvections,
the set of unitary transvections for a fixed isotropic vector v form an abelian
normal subgroup of the stabilizer of 〈v〉. It can be easily shown that SUn(q)
acts primitively on the set of isotropic 1-dimensional spaces. When n > 3, or
n = 3 and q > 2, explicit computations show that all unitary transvections
are commutators of matrices of SUn(q). Finally, as PSUn(q) acts faithfully
on the set of isotropic 1-dimensional spaces, we get the following theorem:

Theorem 1.5.1. The group PSUn(q) is simple except when (n, q) = (2, 2), (2, 3)
and (3, 2).

1.6 Orthogonal groups in odd characteristic
In this section we will omit all the proofs. The interested reader on them
is invited to read [Gro01], but it should be careful as we use a different
notation.

In Section 1.3.4 we proved that, up to equivalence, there are exactly two
non-singular symmetric bilinear forms on a Fq-vector space V , with q odd.
Let f be a non-singular symmetric bilinear form on V of dimension n. The
(general) orthogonal group GO(V, f) is defined as the isometry group of f .
That is, it is the subgroup of GL(V) that consists of the invertible linear
maps g that satisfy f(ug, vg) = f(u, v) for all u, v ∈ V . It is clear that for
any scalar λ, GO(V, f) = GO(V, λf). As in the other classical groups, all the
groups defined in this section can be regarded as some groups of matrices.

If n is even, it can be shown that f and λf are equivalent forms for any
scalar λ. Alternatively, if n is odd and λ is a non-square scalar, then f and
λf are never equivalent. In this case there is only one orthogonal group up
to isomorphism, and we denote it as GO(V), or GOn(q) without ambiguity
(up to isomorphism). When n is even, there are two different orthogonal
groups, in fact they do not even have the same order. If f is of plus type
we denote GO(V, f) by GO+

2m(q); and GO−2m(q) when the form is of minus
type.

Observe that any isometry g in an orthogonal group has determinant
±1. To see this, let J be the matrix of the form f . Then gTJg = J ,
and by taking the determinant map we get that det g = (det g)−1. The
isometries of determinant 1 form a subgroup of index 2, which is the special
orthogonal group, and is denoted as SOn(q) when n is odd, and SOε

n(q)
when n is even and the corresponding form is of ε ∈ {+,−} type. If n

16 1.7. Orthogonal groups in characteristic 2

is odd, the projective general orthogonal group PGOn(q) and the projective
special orthogonal group PSOn(q) are the groups obtained from GOn(q) and
SOn(q) on factoring them by their respective subgroup of scalar matrices.
When n = 2m is even, these groups are defined in the same way but are
denoted as PGOε

2m(q) and PSOε
2m(q) if the corresponding form is of type ε.

Contrary to the other families of classical groups, in general PSOε
n(q)5

is not simple. In fact, it has a mysterious subgroup of index 2, which is
defined as the kernel of an invariant called spinor norm. This invariant is
a homomorphism from SOε

n(q) to F×q /F×2
q , which is defined as follows: a

reflection orthogonal to a vector v, i.e. an isometry given by the formula

rv : x 7→ x− 2f(x, v)
f(v, v)v,

is mapped to the value f(v, v) modulo F×2
q . This is extended to a well-

defined and unique homomorphism on all of SOε
n(q). Note that for such a

reflection map to exist, v must be anisotropic, so the map goes to F×q /F×2
q .

Observe that different choices of v that are scalar multiples of each other
define the same reflection map. That is why the spinor norm is defined only
as a map to F×q /F×2

q and not as a map to just F×q .
The kernel of the spinor norm is denoted as Ω(V, f). As in the other

orthogonal groups, it is customary to write Ω2m+1(q) and Ωε
2m(q). The quo-

tients Ω(V, f)/{±In} are denoted as PΩ(V, f); or PΩ2m+1(q) and PΩε
2m(q).

Abusing of notation, we simply write PΩε
n(q) to denote PΩ(V, f), where if

n is odd the ε does not mean anything. We can do the same for the rest of
orthogonal groups.

For the orthogonal groups we have the following simplicity theorem:

Theorem 1.6.1. If q is odd and n > 5, then the group PΩε
n(q) is simple.

Finally, we present the orders of the orthogonal groups. When the di-
mension of the space is odd:

|GO2m+1(q)| = 2qm2(q2 − 1)(q4 − 1) · · · (q2m − 1).

If the space is of even dimension:

|GO+
2m(q)| = 2qm(m−1)(q2 − 1)(q4 − 1) · · · (q2m−2 − 1)(qm − 1), (1.7)

|GO−2m(q)| = 2qm(m−1)(q2 − 1)(q4 − 1) · · · (q2m−2 − 1)(qm + 1). (1.8)

1.7 Orthogonal groups in characteristic 2
In characteristic 2 the situation is quite different. Instead of classifying
the symmetric bilinear forms, in this case we classify the quadratic forms.

5We abuse notation and combine both notations in one symbol.

Chapter 1. The classical groups 17

A quadratic form in 2m dimensions is defined to be of plus type if it has
isotropic subspaces of dimension m, and of minus type if it does not. How-
ever, the groups GOε

n(q), SOε
n(q), PGOε

n(q) and PSOε
n(q) are defined in the

analogous way as in odd characteristic. In characteristic 2 it can be shown
that GO2m+1(q) ∼= Sp2m(q) and hence we omit the case of spaces of odd
dimension.

As in the case of odd characteristic, in characteristic 2 there is another
mysterious subgroup of index 2, which is defined to be the kernel of another
invariant, the quasideterminant. It is a homomorphism from GOε

2m(q) to
{±1}. This homomorphism maps an isometry to (−1)k, where k is the
dimension of its fixed space. Hence, we define Ωε

2m as the kernel of the
quasideterminant. Note that when q is odd the quasideterminant agrees
with the determinant.

Theorem 1.7.1. If q is even and m > 3, then Ωε
2m(q) is simple.

Since we are working in characteristic 2, there is no confusion (with
the notation from the previous section) in denoting the groups Ωε

2m(q) by
PΩε

2m(q). The orders of the orthogonal groups in even characteristic are
given by the formulae (1.7) and (1.8).

Chapter 2

Character theory

In what follows we shall assume that we are given a finite group G. Also,
we may assume that C1, . . . , Cr are the distinct conjugacy classes of G with
representatives 1 = g1, . . . , gr, respectively. The only character theoretic
prerequisites for this chapter are the first two chapters from [Isa94], which
will be our main reference.

2.1 Ore’s criterion

The aim of the present section is give a self-contained proof of Ore’s crite-
rion: in a finite group G an element g is a commutator if and only if

∑
χ∈IrrG

χ(g)
χ(1) 6= 0.

We start proving some technical lemmas.

Lemma 2.1.1. Let X be an irreducible complex representation of G of degree
n. Suppose that A ∈ Mn(C) commutes with X(g) for all g ∈ G. Then A is
a scalar matrix.

Proof. Let V be the irreducible CG-module of dimension n given by the
action v · x = vX(x) for v ∈ V and x ∈ CG. Define the map f : V → V
as vf = vA. Since A commutes with X(g) for all g ∈ G, it is clear that
f ∈ EndCG(V). Finally, since V is irreducible, by Schur’s Lemma we get
that EndCG(V) = C · 1V . The claim follows.

Lemma 2.1.2. For 1 6 i, j, t 6 r, define the positive integer ai,j,t as the
number of pairs (x, y) ∈ Ci × Cj with gt = xy. Then,

ai,j,t = |Ci||Cj |
|G|

∑
χ∈IrrG

χ(gi)χ(gj)χ(gt)
χ(1) .

19

20 2.1. Ore’s criterion

Proof. Let C1, . . . , Cr be the conjugacy classes of G and K1, . . . ,Kr be the
corresponding class sums. It is well known that {Ki}ri=1 is a basis of Z(CG),
and therefore KiKj =

∑r
v=1 ci,j,vKv. From the definition of the group al-

gebra, the coefficient ci,j,t equals the coefficient of gt in the product KiKj ,
and due to the definition of multiplication in a group algebra we conclude
that

ci,j,t = |{(x, y) ∈ Ci × Cj | gt = xy}| = ai,j,t.

Now consider the map ft(x) =
∑
χ∈IrrG χ(x)χ(gt) for x ∈ CG. By

applying ft to the equality KiKj =
∑r
v=1 ai,j,vKv, and taking gv ∈ Cv for

all v = 1, . . . , r we get

∑
χ∈IrrG

χ(KiKj)χ(gt) =
r∑

v=1
ai,j,v|Cv|

∑
χ∈IrrG

χ(gv)χ(gt) = ai,j,t|G| (2.1)

where in the last equality we have applied the second orthogonality relation.
Fix χ ∈ IrrG and let X be any representation that affords χ. For any z ∈

Z(CG), X(z) commutes with X(g) for all g ∈ G, and hence, by Lemma 2.1.1,
there is a unique λ(z) ∈ C such that X(z) = λ(z)In, where n = χ(1).
Therefore, the map λ : Z(CG) → C is a C-algebra homomorphism. If we
write λi := λ(Ki) and λj := λ(Kj), then χ(Ki) = λiχ(1) and χ(Kj) =
λjχ(1). Since λ is a C-algebra homomorphism, χ(KiKj) = λiλjχ(1). Thus,

χ(KiKj) = χ(Ki)χ(Kj)
χ(1) . (2.2)

Combining (2.1) and (2.2) we get

ai,j,t|G| =
∑

χ∈IrrG

χ(Ki)χ(Kj)χ(gt)
χ(1) .

Finally, as characters are class functions we have that χ(Ki) = |Ci|χ(gi) and
χ(Kj) = |Cj |χ(gj), where gi ∈ Ci and gj ∈ Cj . The claim follows.

Lemma 2.1.3. Let Ci be a conjugacy class of G, gi ∈ Ci and g ∈ G. Then
the number of pairs (x, y) ∈ Ci × Ci with g = x−1y is given by

Ni(g) = |Ci|
2

|G|
∑

χ∈IrrG

|χ(gi)|2χ(g)
χ(1) . (2.3)

Proof. For some t we have that g ∈ Ct. Recall the definition of ai,j,t from
Lemma 2.1.2. It is clear that ai,i,t = |{(x, y) ∈ Ci × Ci | g = x−1y}|.
Moreover, if gi ∈ Ci, then for some j we have that gj = g−1

i ∈ Cj , and
it is clear that |Ci| = |Cj |. Apply Lemma 2.1.2 and take the complex
conjugate.

Eventually, we are ready to prove Ore’s criterion.

Chapter 2. Character theory 21

Theorem 2.1.4 (Ore’s criterion). Let G be a finite group. Then g ∈ G is
a commutator if and only if ∑

χ∈IrrG

χ(g)
χ(1) 6= 0.

Proof. We define N(g) to be the number of pairs (x, y) ∈ G ×G such that
g = [x, y] = x−1xy. For a fixed conjugacy class Ci, equation (2.3) from
Lemma 2.1.3 gives us the number of pairs (x, y) ∈ Ci × Ci with g = x−1y.
For any h ∈ CG(y) the equality g = x−1yh is still ensured, so there are
|CG(y)|Ni(g) = |G|

|Ci|Ni(g) pairs (x, y) ∈ Ci × G with g = [x, y]. Finally, by
summing over all conjugacy classes we get that

N(g) =
r∑
i=1

|G|
|Ci|

Ni(g) =
∑

χ∈IrrG

χ(g)
χ(1)

r∑
i=1
|Ci||χ(gi)|2 = |G|

∑
χ∈IrrG

χ(g)
χ(1)

where in the last equality we have applied the first orthogonality relation.
The result follows.

2.2 Computing character tables
In this section, we will present an algorithm for computing the character
table of an arbitrary finite group G, which is a key problem in computational
group theory. Such an algorithm was first outlined by Burnside in [Bur55,
§223]. However, the one we will present in this section is an improved version
of it. We mostly follow the outline from [HEO05, Ch. 7], and we fill in the
details from other sources such as [Hul93], [Dix67] or [Sch90].

We will assume that the conjugacy classes of G are known or can be
computed efficiently (see [CS97] for a discussion on this), so we will fix the
distinct conjugacy classes C1, . . . , Cr with representatives 1 = g1, . . . , gr,
respectively. The correctness of the algorithm relies on the following result:

Proposition 2.2.1. For 1 6 j, k, l 6 r, as in Lemma 2.1.2, let aj,k,l denote
the number of pairs (x, y) ∈ Cj × Ck with gl = xy. If χi ∈ IrrG, then the
following holds:

|Cj |χi(gj)
χi(1)

|Ck|χi(gk)
χi(1) =

r∑
l=1

aj,k,l
|Cl|χi(gl)
χi(1) . (2.4)

Proof. Fix χi ∈ IrrG and let Xi be any representation that affords χi. Define
λi : Z(CG) → C the C-algebra homomorphism where Xi(z) = λi(z)In, n =
χi(1), as in the proof of Lemma 2.1.2. Now let C be a conjugacy class
with sum K ∈ Z(CG) and let g ∈ C. Computing the traces of the equality
Xi(K) = λi(K)In yields

χi(1)λi(K) = χi(K) =
∑
x∈C

χi(x) = |C|χi(g) (2.5)

22 2.2. Computing character tables

and thus, λi(K) = |C|χi(g)
χi(1) . Evaluating λi in the equalityKjKk =

∑r
l=1 aj,k,lKl

gives the desired result.

We denote by j′ the integer such that g−1
j ∈ Cj′ . By the definition of the

integer aj,k,l it is clear that the total number of triples (x, y, z) ∈ Cj×Ck×Cl
with xy = z equals |Cl|aj,k,l. Moreover, this also equals the total number of
such triples with y = x−1z, and hence |Cl|aj,k,l = |Ck|aj′,l,k. Substituting
this in the right-hand side of (2.4) and interchanging j and j′ we get

|Cj |χi(gj′)
χi(1) χi(gk) =

r∑
l=1

χi(gl)aj,l,k (2.6)

where 1 6 i, j, k 6 r. Rewriting (2.6) in matrix form yields

|Cj |χi(gj′)
χi(1) (χi(g1), . . . , χi(gr)) = (χi(g1), . . . , χi(gr))

aj,1,1 · · · aj,1,r
...

aj,r,1 · · · aj,r,r


(2.7)

for 1 6 i, j 6 r. Hence, if we define Mj as the r × r matrix whose
(k, l) component is aj,k,l, what (2.7) tells us is that the r row vectors
(χi(g1), . . . , χi(gr)) are common eigenvectors of the matrices Mj . Such ma-
trices are called class matrices.

To compute the l-th column of Mj , we determine the conjugacy classes
of yl = x−1gl for all x ∈ Cj . Hence, the (k, l) component of Mj is the
number of these yl that are in Ck. If we want to work efficiently in practice,
the class map of G —the map f : G → {1, . . . , r} such that x ∈ Cf(x) for
every x ∈ G— should be cheap to compute1. Notice that the first column
of Mj has a unique non-zero entry |Cj | in row j′, so we may assume that
the first column of a class matrix is always known.

Working in a finite field

We know that the values of the character table are related to the eigenvectors
of the class matrices. Computations of such eigenvectors over the complex
numbers involve floating point computations. Since this is not desirable,
instead of working over C, Dixon showed in [Dix67] that the eigenvector
computations could be performed in a finite field to later lift back the results
to C. We present his work in this section.

Let e be the exponent of G and let ζ ∈ C be a primitive e-th root of
unity. Recall that for every character χ of G and all g ∈ G, χ(g) is a sum
of χ(1) |g|-th roots of unity. Thus, for all the values χi(gj) of the character
table we have that χi(gj) ∈ Z[ζ].

1Instead of checking directly conjugacy for every representative, the number of conju-
gacy checks can be reduced if one compares conjugacy invariants beforehand. For example,
the order of an element or the cycle decomposition in permutation groups.

Chapter 2. Character theory 23

Theorem 2.2.2. Fix χ ∈ IrrG. For every g ∈ G,

|ClG(g)|χ(g)
χ(1)

is an algebraic integer.

Proof. It is easy to show that the abelian group R = 〈K1, . . . ,Kr〉 is in fact
a ring. Let λ : Z(CG) → C be the homomorphism defined in the proof of
Lemma 2.2.1, in this case the one that depends on the irreducible character
χ. Thus, S = λ(R) = 〈λ(K1), . . . , λ(Kr)〉 is a ring. It is well known that a
complex number z is an algebraic integer if and only if z is contained in a
subring of C whose additive group is finitely generated. Hence, we conclude
that all the λ(Ki) are algebraic integers. Define K =

∑
x∈ClG(g) x. By

(2.5) we have the equality, χ(1)λ(K) = |ClG(g)|χ(g), and hence the result
follows.

Corollary 2.2.3. The equations from (2.6), and consequently (2.7), involve
elements from Z[ζ].

Proof. By Theorem 2.2.2 all the numbers |Cj |χi(gj)/χi(1) ∈ Q(ζ) are alge-
braic integers. Moreover, it is well known that Z[ζ] is the ring of integers of
Q(ζ), and therefore all the numbers |Cj |χi(gj)/χi(1) lie in Z[ζ]. The result
follows.

By Dirichlet’s theorem [Dir37] on primes in an arithmetic progression,
there exists a prime p with e|p−1 and p > 2χi(1) for 1 6 i 6 r. At this point
the degrees of the irreducible characters are unknown to us, but by the class
equation these last inequalities can be replaced with the following condition:
p > 2b

√
|G|c. As e|p − 1, there is an element ω ∈ Fp with multiplicative

order e. Therefore, the assignation ζ 7→ ω induces a ring homomorphism
Θ: Z[ζ]→ Fp in the natural way:

Θ
(
e−1∑
i=0

aiζ
i

)
7−→

e−1∑
i=0

aiω
i.

Let X = (χi(gj)) be the character table of G regarded as a matrix, and
let Y be the r×r matrix with Y = (|Cj |χi(gj′)). By the second orthogonality
relation we have that XY = |G|Ir, in particular det(X) det(Y) 6= 0. Hence,
the rows Xi,: = (χi(g1), . . . , χi(gr)), which by (2.7) are common eigenvectors
of the matrices Mj , are linearly independent. Furthermore, every prime q
that divides |G| also divides e, and as e|p− 1, p does not divide |G|. Since
| det(X)| divides |G|, the row vectors Θ(Xi,:) are also linearly independent
over Fp. By Corollary 2.2.3 we can apply Θ to the equations from (2.6) to
get a system of equations over Fp. Since Θ is a ring homomorphism, these
vectors are common eigenvectors of the matrices Θ(Mj).

24 2.2. Computing character tables

Let Xi,: and Xt,: be two distinct rows of X. Note that the corresponding
eigenvalues |Cj |χi(gj′)/χi(1) and |Cj |χt(gj′)/χt(1) are different for at least
one j. Otherwise, the i-th and t-th column of the matrix Y would be the
same. The same applies to any pair of distinct rows of Θ(X). Therefore, the
set of rows of Θ(X) and a set of r linearly independent common eigenvectors
of the matrices Θ(Mj) are the same, up to scalar multiplication in each
vector.

Splitting eigenspaces of the class matrices

Now we will show a method to find a set of r linearly independent common
eigenvectors of the matrices Θ(Mj). Instead of computing all the class ma-
trices, Schneider showed in [Sch90] that it was sufficient to only compute
some well-chosen columns of some class matrices.

We call a subspace of Frp a character space if it is spanned by some rows
of Θ(X). Choose some j > 1 and computeMj . For example, one could take
the j that corresponds to the smallest non-trivial conjugacy class. We know
that Frp = V1 ⊕ · · · ⊕ Vt, where the Vi are the distinct eigenspaces of Θ(Mj).
Note that all the Vi are character spaces. Furthermore, we can compute a
basis in echelon form for each Vi.

If dimVi = 1 for all i, then we have found r linearly independent com-
mon eigenvectors of the matrices Θ(Mj). Otherwise, there is some Vi with
dimVi > 1. In this case, we should find a different Θ(Mj) to split Vi into
smaller dimensional character spaces. The next lemma tells us which class
matrices will split Vi, just from looking at the first column of the class
matrices, which are always known, as we noted on p. 22.

Lemma 2.2.4 ([Sch90]). Let {b1, . . . , bs} be a basis of a character space V
in echelon form. Define the subspace W = 〈b2, . . . , bs〉. Then V is contained
in a single eigenspace of Θ(Mj) if and only if W is fixed by Θ(Mj).

Proof. Suppose that V is contained in a single eigenspace of Θ(Mj). Then
the base vectors b1, . . . , bm are all eigenvectors, and hence W is fixed by
Θ(Mj).

For the converse, suppose thatW is fixed by Θ(Mj). Assume, for sake of
contradiction, that V does not lie in a single eigenspace of Θ(Mj). Therefore,
there exist v1, v2 ∈ V eigenvectors for different eigenvalues λ1 and λ2 of
Θ(Mj). As v1 and v2 lie in different character spaces, their first component
is non-zero, so we may assume that their first entry is 1. Since b1 is the only
basis vector of V with non-zero first component (by hypothesis, the basis is
in echelon form), we may assume that v1 = b1 + w1 for some w1 ∈ W , and
in an analogous way v2 = b1 + w2, where w2 ∈W . Therefore,

λ1v1 = v1Θ(Mj) = b1Θ(Mj) + w1Θ(Mj)

Chapter 2. Character theory 25

and since by assumption W is invariant under Θ(Mj), b1Θ(Mj) must have
λ1 as its first component. The same argument for v2 yields λ1 = λ2, which
is a contradiction.

We conclude that a character space V (of dimension greater than 1) is
contained in a single eigenspace of Θ(Mj) if and only if each of its echelonized
basis vector b2, . . . , bs is zero in position j′. Otherwise, we can use Θ(Mj)
to decompose V into smaller character spaces. Note that always will exist
such a j.

Let j be such that the character space V is not contained in a single
eigenspace of Θ(Mj). In order to determine the action of Θ(Mj) on V it is
no longer necessary to know the complete class matrix Mj , but only those
columns k1, . . . , ks where the first non-zero entry of bi is in the ki-th entry.
We will try to use the same Θ(Mj) matrix to split more than one character
space of dimension greater than 1. However, different character spaces may
require the computation of different columns of Mj , in order to determine
their corresponding action.

Suppose that V = {V1, . . . , Vt} is a set of character spaces such that
Frp = V1 ⊕ · · · ⊕ Vt, where for at least one Vi its dimension is greater than
1. The cost of computing a class matrix Mj is proportional both to |Cj |
and to the number of distinct columns required to determine its action in
the character spaces it splits. We quantify the computational cost of the
matrix Mj in the following way: set val = 0 and for each character space
V ∈ V with dimension greater than 1 and that is split by Θ(Mj), increase
val by 1. Finally, divide val by |Cj | and by the number of columns required
to determine all the actions of the character spaces that are split by Θ(Mj).
The greater the value of val the more cost-effective it should be to determine
the class matrix Mj . So, we define the number BestMat(V) = j if Mj is the
class matrix with the highest val.

Here we describe a procedure to compute a set of r linearly independent
common eigenvectors of the matrices Θ(Mj), 1 6 j 6 r.
Algorithm 1: Schneider
1 Compute Mj , where j fulfills |Cj | = mini>1 |Ci|;
2 Compute the set V := {V1, . . . , Vt} of eigenspaces of Θ(Mj) and a

base in echelon form for each Vi;
3 while ∃i : dimVi > 1 do
4 j := BestMat(V);
5 for V not contained in a single eigenspace of Θ(Mj) do
6 Determine the action of Θ(Mj) on V as described above;
7 Compute the eigenspaces Ṽ1, . . . , Ṽl 6 V of Θ(Mj) on the

space V and their respective bases in echelon form;
8 Replace V by Ṽ1, . . . , Ṽl in V;
9 return V;

26 2.2. Computing character tables

In fact, this algorithm returns a set of r one-dimensional eigenspaces,
but this is not a problem at all.

Returning to the complex plane

Let v1, . . . , vr for Θ(Mj) be r linearly independent common eigenvectors of
the matrices Θ(Mj) computed using Algorithm 1. Each vi is a multiple of
some row of Θ(X), so we may assume to be of the i-th one. Thus, the first
entry of vi is a multiple of χi(1) 6= 0, so we normalize the vector to ensure
that vi[1] = 1. Therefore, vi = 1

χi(1)Θ(Xi,:), and by the first orthogonality
relation

r∑
j=1
|Cj |vi[j]vi[j′] = |G|

χi(1)2 .

All in the left-hand side of this equation is known mod p, and therefore we
compute the value of χi(1)2 mod p. Since 1 6 χi(1) < p/2 (we imposed this
condition on p. 23), we can fully determine the value of the integer χi(1).
Therefore, we can compute Θ(Xi,:) = χi(1)vi for 1 6 i 6 r, and get the
matrix Θ(X).

Finally, in the following lines we carry out the reconversion to the com-
plex field. Unfortunately, Θ is not invertible (it has non-trivial kernel), so
the reconversion C is not immediate. However, each χi(gj) is the sum of
di = χi(1) powers of ζ. That is, χi(gj) =

∑e−1
k=0mi,j,kζ

k where mi,j,k are
integers satisfying 0 6 mi,j,k 6 |χi(gj)| 6 χi(1) < p. The following lemma
will help us to determine such coefficients.

Lemma 2.2.5. If χi(gj) =
∑e−1
k=0mi,j,kζ

k, then

mi,j,k = e−1
e−1∑
l=0

χi(glj)ζ−kl. (2.8)

Proof. For any l ∈ Z we have that χi(glj) =
∑e−1
t=0 mi,j,tζ

tl. Then,

e−1
e−1∑
l=0

χi(glj)ζ−kl = e−1
e−1∑
t=0

mi,j,t

e−1∑
l=0

ζ(t−k)l.

As ζ is a primitive e-th root of unity, the sum
∑e−1
l=0 ζ

(t−k)l equals e if t = k
and 0 otherwise. We get the desired equality.

Applying Θ to equation (2.8), we get the value of mi,j,k mod p:

mi,j,k ≡p Θ(e−1)
e−1∑
l=0

Θ(χi(glj))ω−kl.

Since the matrix Θ(X) is known, it is clear that the values of Θ(χi(glj)) can
be computed. The value Θ(χi(glj)) equals to the (f(glj), i)-th entry of the

Chapter 2. Character theory 27

matrix Θ(X), where f denotes the class map with respect to the conjugacy
classes we have fixed at the beginning. Finally, as 0 6 mi,j,k 6 χi(1) < p,
the values of the integersmi,j,k are fully determined, and hence the character
table of G is known.

The following is a summary in pseudocode of the complete algorithm:
Algorithm 2: Burnside-Dixon-Schneider
Data: G finite group with 1 = g1, . . . , gr representatives of its

conjugacy classes. f denotes the class map of G with respect
to these representatives.

Result: The character table of G as a matrix.
1 e := lcm(g1, . . . , gr);
2 Choose a prime number p with e|p− 1 and p > 2

√
|G|;

3 Find v1, . . . , vr linearly independent common eigenvectors of the
matrices Θ(Mj), 1 6 j 6 r, using Algorithm 1;

4 for 1 6 i 6 r do
// Determine the values of the degrees χi(1)

5 Compute the unique integer satisfying 1 6 di < p/2 and∑r
j=1 |Cj |vi[j]vi[j′] ≡p |G|/d2

i ;
6 for 1 6 i 6 r do

// Compute the matrix Θ(X) row by row
7 Θ(X)i,: := divi;
8 for 1 6 i, j, k 6 r do
9 mi,j,k := Θ(e−1)

∑e−1
l=0 Θ(X)f(gl

j),i ω
−kl;

10 for 1 6 i, j 6 r do
11 χi,j :=

∑e−1
k=0mi,j,kζ

k;
12 return X = (χi,j)16i,j6r;
Note: The author’s implementation of this algorithm in the GAP system [GAP22] can be
found in the file CharTab.g from the GitHub repository [Jua23] and in Appendix B.

The algorithm described in this section can be improved in many ways.
For example, one could first compute the linear characters and use this
information to avoid computing class matrices. The interested reader should
check [Hul93] for more details.

Chapter 3

Ore’s conjecture

Ore’s conjecture states that every element of every finite non-abelian simple
group is a commutator. In 2009 the proof was completed.

3.1 Generalizations

Obvious generalizations of Ore’s conjecture fail to hold. For example, in
exercise A.2.1 we prove that for every prime number p there is a group G of
order p12 such that G′ 6= K(G), where K(G) denotes the set of commutators
of G. Also, in exercise A.2.2 we check in the GAP system [GAP22] that the
smallest group in which the property K(G) 6= G′ holds has order 96.

Now we note an open problem related to Ore’s conjecture. There is
a conjecture attributed to J. G. Thompson which asserts that if G is a
finite non-abelian simple group, then there is a conjugacy class C ⊆ G with
G = C2. It is straightforward to check that Thompson’s conjecture implies
Ore’s conjecture, as we do now. Let C = ClG(g). Since 1 ∈ G = C2, we have
that g−1 ∈ C, and thus G = ClG(g−1) ClG(g). Hence, every element of G is
of the form w = (g−1)xgy, and consequently w = (h−1)zh is a commutator,
where z = y−1x and h = gy.

We remark that a weaker form of Thompson’s conjecture is true. If G is
a finite non-abelian simple group, in [GT15] was proved that there exists a
conjugacy class C ⊆ G with G = C3.

3.2 Alternating groups

The alternating groups are the “simplest” family of the simple non-abelian
groups. In the present section we prove Ore’s conjecture for this particular
groups.

We use the usual convention for the product of two permutations, i.e.
the product of two στ permutations will be the composition where we apply
σ first and then τ . Also, we write (x)σ to denote the image of an element

29

30 3.2. Alternating groups

x under the permutation σ. We say that (a1 . . . ai) . . . (aj . . . an) involves
elements from (b1 . . . bl) . . . (br . . . bm) when {ai}ni=1 ⊆ {bi}mi=1.

We start, as always, with some technical lemmas.

Lemma 3.2.1. Let G be a group. If a1, b1, a2, b2 ∈ G and a1 and b1 commute
with both a2 and b2, then [a1, b1][a2, b2] = [a1a2, b1b2].

Proof. First, recall that if x, y, z ∈ G, then [xz, y] = [x, y]z[z, y] and [x, zy] =
[x, y][x, z]y. Therefore,

[a1a2, b1b2] = [a1, b1b2]a2 [a2, b1b2]
= ([a1, b2][a1, b1]b2)a2 [a2, b2][a2, b1]b2 = [a1, b1][a2, b2].

Lemma 3.2.2. Let c1, c2 ∈ An be two cycles of the same length, i.e. c1 =
(a1 . . . am) and c2 = (b1 . . . bm) for some 3 6 m 6 n. If c2 fixes ai and aj
with ai 6= aj, then there exists ϕ ∈ An such that c−1

1 = cϕ2 and that the ai’s
and bi’s appear in its decomposition.

Proof. As c−1
1 and c2 are cycles of the same length, there exists ϕ ∈ Sn such

that c−1
1 = cϕ2 . If ϕ ∈ An, the first part of the claim is proven. Otherwise,

cϕ2 = ((b1)ϕ . . . (bm)ϕ) = c−1
1 = (am . . . a1). (3.1)

Therefore, as ai, aj /∈ {bi}mi=1, we conclude that c−1
1 = c

(aiaj)ϕ
2 and (aiaj)ϕ ∈

An.
From (3.1) we deduce that we can suppose that any element different to

the ai-s and bi-s can be fixed by ϕ, thus, they only appear ai’s and bi’s in
ϕ’s decomposition.

Now we are ready to prove our desired theorem. There may be shorter
proves of it, but the one we present is interesting since it is constructive.

Theorem 3.2.3. When n > 5, every element of An is a commutator.

Proof. First, we show that some particular permutations of An are commu-
tators of two permutations that involve elements from the given permuta-
tion. Afterwards, we will see that this is sufficient to prove the theorem. We
start writing cycles of odd order (greater than 3) as commutators.

Case 1.1: If the order of the cycle is 2m+1, for some m > 2 and m even,
then

c = (a1a2a3 . . . am+1am+2am+3 . . . a2m+1) (3.2)
= (a1a2a3 . . . am+1)(a1am+2am+3am+4 . . . a2m+1). (3.3)

If we name c1 the cycle on the left of the equation (3.3) and c2 the one on the
right, it is clear that they are of the same length, m+1; and that c1, c2 ∈ An.

Chapter 3. Ore’s conjecture 31

Furthermore, c2 fixes a2 and a3, consequently, by Lemma 3.2.2 there exists
ϕ ∈ An such that c−1

1 = cϕ2 , hence, c = c1c2 = [ϕ, c2]. Remember that from
Lemma 3.2.2 we also know that ϕ will involve elements from c.

Case 1.2: When the order of the cycle is 2m+ 1, for some m > 3 and m
odd, then

c = (a1a2a3 . . . am+1am+2am+3 . . . a2m+1)
= (a1am+2a2 . . . am+1)(a1am+2a2am+3 . . . a2m+1).

Defining c1 and c2 as in the previous case, c2 fixes a3 and a4; c1 and c2 are
of length m+ 2; and c1, c2 ∈ An. Thus, by Lemma 3.2.2 there exists ϕ ∈ An
such that c = c1c2 = [ϕ, c2]. Remember that from Lemma 3.2.2 we also
know that ϕ will involve elements from c.

Now, we consider the case where we have a pair of disjoint cycles of even
order. Suppose that we have the product of a cycle of order 2k with another
of order 2m− 2k for some k,m ∈ N such that 0 < 2k 6 m.

Case 2.1: When m = 2, the unique possibility for k is being 1, and the
following proves the claim:

(a1a2)(a3a4) = (a1a2a3)(a1a4a3) = [(a1a3)(a2a4), (a1a4a3)]. (3.4)

Case 2.2: If m is even and m > 4:

c = (a1a2 . . . a2k)(a2k+1a2k+2 . . . am+1am+2am+3 . . . a2m)
= (a1a2 . . . am+1)(a1am+2am+3 . . . a2ma2k+1)

Defining c1 and c2 as always, c2 fixes a2 and am. Evidently, both are of
length m+1, so c1, c2 ∈ An. Therefore, by Lemma 3.2.2 there exists ϕ ∈ An
such that c = c1c2 = [ϕ, c2].

Case 2.3: If m = 3 and k = 1 we have that:

(a1a2a3a4)(a5a6) = (a2a3a5a4a6)(a1a2a5a4a6)
= [(a1a6a2a4a3), (a1a2a5a4a6)].

Case 2.4: When m is odd and m > 3 but (m, k) 6= (3, 1),

c = (a1a2a3 . . . a2k)(a2k+1a2k+2 . . . am+1am+2am+3 . . . a2m)
= (a1am+2a2 . . . am+1)(a1am+2a2am+3 . . . a2ma2k+2)

Defining c1 and c2 as always, we see that c2 fixes a4 and am+1. It is easy to
see that both are of length m+2, so c1, c2 ∈ An. Therefore, by Lemma 3.2.2
there exists ϕ ∈ An such that c = c1c2 = [ϕ, c2].

In the following lines we consider the cases when we deal with 3-cycles.
Case 3.1: Let τ = (a1a2a3) . . . (aiai+1ai+2) be the product of an even

number of 3-cycles. Our aim is to find π1, π2, ϕ ∈ An such that τ = π1π2

32 3.2. Alternating groups

and π−1
1 = πϕ2 . As for any j 6 i, (ajaj+1aj+2) = (ajaj+2aj+1)2 and the

3-cycles are disjoint, by defining π1 =
∏i
j=1(ajaj+2aj+1) = π2, we have that

τ = π1π2. So, there exists ϕ ∈ Sn such that π−1
1 = πϕ2 , and then

π−1
1 = (a2a3a1) . . . (ai+1ai+2ai) (3.5)
πϕ2 = ((a1)ϕ(a3)ϕ(a2)ϕ) . . . ((ai)ϕ(ai+2)ϕ(ai+1)ϕ). (3.6)

As (3.5) equals to (3.6) we conclude that ϕ = (a1a2) . . . (aiai+1) works and
that ϕ ∈ An (as the number of 3-cycles is even); and therefore, τ = [ϕ, π2].
Observe that both ϕ and π2 only involve elements from τ .

Case 3.2: Now, we study the case when we have a product of an odd
(greater than 1) number of 3-cycles. Due to the previous case we know that
if τ = (a1a2a3) . . . (aiai+1ai+2), then τ = [ϕ, π2], where ϕ and π2 are the
same permutations from Case 3.1. Unfortunately, as the number of 3-cycles
is odd, ϕ /∈ An. Since the number of 3-cycles is greater than 1 and recalling
both (3.5) and (3.6), we have that τ = [(a1ai)(a3ai+2)(a2ai+1)ϕ, π2] which
gives the desired result.

Case 3.3: In this case we will write τ = (a1a2a3)(a4a5)(a6a7) as a
commutator. Recalling the decomposition from (3.4) and as (a1a2a3) =
(a1a3a2)2, by taking π1 = (a1a3a2)(a4a5a6) and π2 = (a1a3a2)(a4a7a6),
τ = π1π2. It is clear that there exists ϕ ∈ Sn such that π−1

1 = πϕ2 . Let’s
suppose that ϕ /∈ An.

π−1
1 = (a2a3a1)(a6a5a4)
πϕ2 = ((a1)ϕ(a3)ϕ(a2)ϕ)((a4)ϕ(a7)ϕ(a6)ϕ)

whence we see that (a1a4)(a3a7)(a1a6)ϕ ∈ An and π−1
1 = π

(a1a4)(a3a7)(a1a6)ϕ
2 .

So, in any case, there is some ψ ∈ An such that τ = [ψ, π2]. Also, it is clear
that ψ will only involve elements from τ .

Case 3.4: We will express τ = (a1a2a3)(a4a5)(a6a7a8a9) as a commuta-
tor. Using the decomposition (a4a5)(a6a7a8a9) = (a5a6a7a9a8)(a4a5a9a8a6)
and proceeding as in the previous case,

τ = (a1a3a2)(a1a3a2)(a5a6a7a9a8)(a4a5a9a8a6).

Defining π1 = (a1a3a2)(a5a6a7a9a8) and π2 = (a1a3a2)(a4a5a9a8a6), we see
that τ = π1π2. Moreover,

π−1
1 = (a2a3a1)(a8a9a7a6a5)
πϕ2 = ((a1)ϕ(a3)ϕ(a2)ϕ)((a4)ϕ(a5)ϕ(a9)ϕ(a8)ϕ(a6)ϕ)

from where we deduce that by taking ϕ = (a1a2)(a4a8a6a5a9a7) ∈ An, we
get that τ = [ϕ, π2].

At this point we are ready to show that any permutation σ ∈ An is a
commutator. If the amount of 3-cycles of σ in its decomposition is different

Chapter 3. Ore’s conjecture 33

from 1, then (by cases 1.1, 1.2, 2.1, 2.2, 2.3, 2.4, 3.1 and 3.2) σ is the product
of some commutators, σ =

∏
i[ϕi, ψi]. Since every ϕi and ψi involve elements

from [ϕi, ψi], by Lemma 3.2.2 we conclude that σ is a commutator.
Suppose that σ contains only one 3-cycle in its decomposition and that σ

it is not a 3-cycle. If in σ’s decomposition there are some factors of the type
from cases 3.3 or 3.4, by arguing as in the previous paragraph we get that
σ is a commutator. Otherwise, in σ’s decomposition there is at least one
factor of the type from cases 1.1, 1.2, 2.2 or 2.4. Write σ = (a1a2a3)[ϕ,ψ],
for some ϕ,ψ ∈ An. It can be easily shown (using the same idea from the
proof of Lemma 3.2.2) that σ = [(a1a2)ϕ, (a1a3a2)ψ]. Since in cases 1.1,
1.2, 2.2 and 2.4 we have applied Lemma 3.2.2, rearranging its proof we can
suppose that ϕ ∈ Sn −An, and hence we get the desired result.

Finally, recalling that n > 5 by hypothesis, we have that any 3-cycle is
a commutator

(a1a2a3) = (a2a5a1)(a2a4a3)(a1a5a2)(a3a4a2) = [(a1a5a2), (a3a4a2)].

Following the idea from the proof the author has implemented1 an al-
gorithm in the GAP system [GAP22] which receives as input a permutation
σ of An and outputs ϕ,ψ ∈ An such that σ = [ϕ,ψ]. Note that the choice
of ϕ and ψ is not unique. In fact, in a group G, for any s, t ∈ G we have
that [s, t] = [rs, t] if and only if r ∈ CG(t). At the time of writing this
dissertation, the author has not found any function or package for the GAP
system [GAP22] that does the same as the algorithm described above.

3.3 Testing Ore’s conjecture

The main goal of the dissertation is to reproduce the computations behind
the proof of Main Lemma and understand some of the algorithms behind
them. The naive test used in Exercise A.2.2 is not effective when dealing
with big groups (order n > 106), as the memory use is huge. However, the
tests we present in this dissertation will perform well when dealing with big
groups, as we will see at the end of the dissertation.

Combining Algorithm 2 from the previous chapter (the one that com-
putes character tables) with Theorem 2.1.4 (Ore’s criterion) we get a test to
check whether every element from a group is a commutator. We also use the
elementary fact that a conjugate of a commutator is again a commutator.
In fact, this test was used in [LOST]. The following is a summary of the

1It can be found in the file AsCommutator.g from the GitHub repository [Jua23] and
in Appendix B.

34 3.4. Testing Ore’s conjecture probabilistically

test written in pseudocode:
Test A: Ore (deterministic)
Data: Finite group G.

1 Compute the character table X = (χi(gj)) of G using Algorithm 2;
2 for 1 6 j 6 r do
3 if

∑r
i=1 χi(gj)/χi(1) = 0 then

4 return False;
5 return True;

Note: The author’s implementation of this test in the GAP system [GAP22] can be found
in the file OreTest1.g from the GitHub repository [Jua23] and in Appendix B.

The test returns True when every element of a group G is a commutator
and False otherwise. Moreover, the test always terminates and the runtime
does not change given the same group as input, as long as the same happens
to the algorithm from the first step.

3.4 Testing Ore’s conjecture probabilistically

In contrast with the deterministic test given in the previous chapter, in the
following lines we present a probabilistic test to check Ore’s conjecture for
a concrete finite group. The correctness of the test relies on two elementary
facts: every conjugate of a commutator is again a commutator, and on the
class equation

|G| =
∑
i

|G : CG(gi)|,

where we choose a single representative element gi from each conjugacy class.
We may assume that we know a way of choosing random elements from a

group (see [Cel+95]) and how to compute the centralizer of an element (see
[HEO05, §4.6.5]). In order to test if every element in a group is a commutator
we can proceed in the following way. We choose random elements that are
commutators, test them for conjugacy with the known class representatives
and continue until we get a complete set of representatives of the conjugacy
classes. Completeness is checked by computing the index of the centralizers
of the representative and applying the class equation.

We may assume that the group we are given is a permutation group, since
storing groups in a computer as permutation groups is common. Thanks
to this imposition we can save time in the following way: before checking
conjugacy directly in the given group we will compare the cycles types of the
elements, that is, check conjugacy in the symmetric group. Therefore, if two
elements result to not be conjugate in the symmetric group, in particular
they will not be conjugate in the given group. We apply this trick since in
practice it is by far faster to compare the cycle type of two elements than
checking whether two elements are conjugate in a group. We summarize the

Chapter 3. Ore’s conjecture 35

test in pseudocode:
Test B: Ore (probabilistic)
Data: Finite permutation group G 6 Sn.

1 R := {1};
// In this set we store the different representatives of the

conjugacy classes of G
2 while |G| >

∑
x∈R |G : CG(x)| do

3 g := [Random(G),Random(G)];
4 for x ∈ R do
5 if IsConjugate(Sn, x, g) = True then

// In fact we should check that whether x and g have
the same cycle type or not

6 if IsConjugate(G, x, g) = True then
7 break;
8 else

// If g is not conjugate to any x ∈ R
9 R := R∪ {g};

10 return True;
Note 1: The author’s implementation of this test in the GAP system [GAP22] can be
found in the file OreTest2.g from the GitHub repository [Jua23] and in Appendix B.
Note 2: Random(G) represents a uniformly and randomly chosen element from G and
IsConjugate(G, x, y) is a function that checks whether x and y are conjugate in G or not.

Note that this test never returns False and that it terminates if and only
if every element of the group is a commutator. Since we choose random
elements from the group, for the same input the runtime of the test may
be different. Algorithms of this type are called Las Vegas algorithms. They
always output correct results. However, they may make random choices
during their execution, causing their runtime to fluctuate between execu-
tions, even when provided with identical inputs. Other common class of
probabilistic algorithms are Monte Carlo algorithms. In contrast with the
Las Vegas algorithms, they always terminate in a finite number of time, but
the output of them may be inaccurate, usually with a low probability.

Finally, observe that by changing Line 3 by g := Random(G) the test is
converted to an algorithm that computes the representatives of the classes
of a finite group. A test of this type results to be very efficient in simple
groups, since the number of conjugacy classes in simple groups tends to be
small. For a more detailed discussion on algorithms for computing conjugacy
classes, we refer the interested readers to [CS97].

3.5 Experimental results and final discussion

In this section we will present the experimental results on the performance
of different tests that determine Ore’s conjecture for a concrete group. We

36 3.5. Experimental results and final discussion

have chosen part of the groups that where checked in [LOST, Lemma 3.1],
Main Lemma from the introduction.

All the results are displayed in Table 3.1, where we provide information
about the order of the different groups and the number of conjugacy classes
of each one. The most interesting part of the table (for this dissertation)
are the running times of the different tests. We refer to the different tests
as follows:

• Test A.1: the deterministic test, computing the character tables using
GAP’s default implementation2.

• Test A.2: the deterministic test, computing the character tables using
the author’s implementation of Algorithm 2.

• Test B: the probabilistic test discussed in Section 3.4.

Also, in Table 3.2 (p. 39), we present the results when applying the test to
some simple groups.

Running times marked by — were not finished after 2100 seconds. The
groups that we have omitted from Main Lemma surpassed this time in all
the tests. In the column that corresponds to the CPU time of the Test B we
write two values: the mean and the standard deviation of the CPU time of
five executions. When the mean is smaller than one second, we simply write
< 1. For the other tests, only a computation was performed. Furthermore,
in the last column we write Yes if the group fulfills Ore’s conjecture.

Final discussion

In most of the cases the fastest test has been Test A.1, and for all the groups
it has performed better than Test A.2. In fact, the implementation of the
algorithm that computes the character table in Test A.1 contains several
optimizations that the author of this dissertation has not included in his
implementation. We also note that GAP’s implementation of such algorithm
has a length 2633 lines of code, whereas the implementation written for this
dissertation has 313 lines, which should make the latter easier to understand.

As one would expect, the smaller the number of conjugacy classes is, the
better performance by the random test. For example, Ω−8 (2) has 53 classes.
For this group Test A.1 surpassed the limit time of 2100 seconds and Test
B performed in a modest amount of time. In contrast, when applying Test
B to Sp6(3), which has 141 classes, the runtime surpassed the established
limit in the five executions.

Furthermore, another factor plays an important role in the performance
of Test B: the sizes of the conjugacy classes. If a group results to have a

2The implementation can be found on https://github.com/gap-system/gap/blob/
master/lib/ctblgrp.gi

https://github.com/gap-system/gap/blob/master/lib/ctblgrp.gi
https://github.com/gap-system/gap/blob/master/lib/ctblgrp.gi

Chapter 3. Ore’s conjecture 37

Table 3.1: Experimental results
Some groups from Main Lemma

Group Order Classes CPU time (sec) OreTest A.1 Test A.2 Test B

Sp6(2) 29 · 34 · 5 · 7 30 1.9 34.3 µ = 38, σ = 29 Yes
Sp8(2) 216 · 35 · 52 · 7 · 17 81 28.2 — — Yes
Sp4(3) 27 · 34 · 5 34 < 1 2.5 µ = 10.24, σ = 5.2 Yes
Sp6(3) 210 · 39 · 5 · 7 · 13 141 85 — — Yes
SU3(3) 25 · 33 · 7 14 < 1 2.8 < 1 Yes
SU3(4) 26 · 3 · 52 · 13 22 1.4 29.2 µ = 2.28, σ = 0.68 Yes
SU3(5) 24 · 33 · 53 · 7 40 5.7 1096 — Yes
SU3(7) 27 · 3 · 73 · 43 58 2040 — µ = 169.6, σ = 132.98 Yes
SU4(2) 26 · 34 · 5 20 < 1 < 1 µ = 3.6, σ = 1.26 Yes
SU4(3) 29 · 36 · 5 · 7 71 18.7 — — Yes
SU5(2) 210 · 35 · 5 · 11 47 6.4 — µ = 1081.2, σ = 664.4 Yes
SU6(2) 215 · 37 · 5 · 7 · 11 132 1070 — — Yes
Ω+

8 (2) 212 · 35 · 52 · 7 53 13.6 — µ = 138, σ = 42 Yes
Ω−8 (2) 212 · 34 · 5 · 7 · 17 39 — — µ = 210, σ = 195 Yes
Ω7(3) 29 · 39 · 5 · 7 · 13 58 15.8 — — Yes

Note 1: All times have been obtained on an MacBook Pro running macOS 12.2.1 with a
2,5 GHz Quad-Core Intel Core i7 processor and 16 GB of RAM.
Note 2: The orders and the number of classes have been computed using the GAP system
[GAP22].

small conjugacy class, since we are assuming that we pick random elements
from the group uniformly, it would be very unlikely to find an element in
such a class. This can slow down greatly the performance of the random
test. For instance, the runtime exceeded the limit when applying Test B
to the groups SU3(5), SU4(3) and SU6(2). The reason of this is that in
those three groups there are non-trivial classes of size 1. For example, the
probability of finding an element randomly in one of those classes in the
group SU6(2) is similar to the probability of winning the biggest prize in the
Spanish lottery in two years in a row.

If we just focus in the CPU time of the experiments performed with
the random method, we can observe that the times have a big standard
deviation. This is a consequence of the random nature of the test.

As a conclusion, we show a heuristic to choose the optimal test for check-
ing Ore’s conjecture for a concrete group. The first step is to compute the
conjugacy classes of the given group. If there is a class of size 1 (or small
enough at the user’s discretion) Test B should be discarded and Test A.1
should be applied. If all classes turn out to be of similar size, and the num-
ber is small, applying Test B seems sensible. This normally occurs in simple
groups, in particular in sporadic groups. However, all the character tables of
the sporadic groups are known and have been stored. Therefore, when deal-
ing with these groups the best option is to apply Test A (the deterministic
test) to the precomputed character tables, which are available, for instance,

38 3.5. Experimental results and final discussion

in the GAP package CTblLib [Bre22].

C
hapter

3.
O
re’s

conjecture
39

Table 3.2: Experimental results
Some simple groups

Group Order Classes CPU time (sec) OreTest A.1 Test A.2 Test B

PSL3(2) 23 · 3 · 7 6 < 1 < 1 < 1 Yes
PSL3(3) 24 · 33 · 13 12 < 1 2.12 < 1 Yes
PSL5(2) 210 · 32 · 5 · 7 · 31 27 32 — µ = 6.7, σ = 5.4 Yes
PSp4(3) 26 · 34 · 5 20 < 1 < 1 µ = 3.06, σ = 0.91 Yes
PSp6(3) 29 · 39 · 5 · 7 · 13 74 21.5 — — Yes
PSU4(3) 27 · 36 · 5 · 7 20 5.7 — µ = 9.2, σ = 6.87 Yes

M11 24 · 32 · 5 · 11 10 < 1 2.2 < 1 Yes
M12 26 · 33 · 5 · 11 15 < 1 5.5 < 1 Yes
M22 27 · 32 · 5 · 7 · 11 12 < 1 190 < 1 Yes
Suz 213 · 37 · 52 · 7 · 11 · 13 43 < 1 — — Yes
M 246 · 320 · 59 · 76 · 112 · 133 · 17 · 19 · 23 · 29 · 31 · 41 · 47 · 59 · 71 194 < 1 — — Yes
J4 221 · 33 · 5 · 7 · 113 · 23 · 29 · 31 · 37 · 43 62 < 1 — — Yes

Note 1: All times have been obtained on an MacBook Pro running macOS 12.2.1 with a 2,5 GHz Quad-Core Intel Core i7 processor and 16 GB of
RAM.
Note 2: The orders and the number of classes have been computed using the GAP system [GAP22].
Note 3: For the sporadic groups Test A.1 means applying Test A to the precomputed character tables.

Appendix A

Exercises

A.1 Exercises from Chapter 1
Exercise A.1.1. Compute the orders of the linear groups.

Solution. An invertible matrix takes a basis to another basis and is deter-
mined by the image of an ordered basis. Only a condition is imposed to
this image: the image of the i-th vector must be linearly independent to all
the previous ones. Since the previous i − 1 vectors generate a subgroup of
dimension i− 1, which has qi−1 vectors in it, we get that

|GLn(q)| = (qn − 1)(qn − q)(qn − q2) . . . (qn − qn−1)
= qn(n−1)/2(q − 1)(q2 − 1) . . . (qn − 1).

From the definition of SLn(q) it is clear that | SLn(q)| = |GLn(q)|
q − 1 . Fi-

nally, to get |PSLn(q)| we need to count the number of scalar matrices λIn
with determinant 1. Since the determinant of these scalar matrices is λn = 1
and the number of solutions to xn = 1 in Fq is (n, q − 1),

|PSLn(q)| = 1
(n, q − 1)q

n(n−1)/2(q − 1)(q2 − 1) . . . (qn − 1).

Exercise A.1.2. Compute the orders of the symplectic groups.

Solution. Let V be a Fq-vector space of dimension 2m. By definition, Sp(V)
acts faithfully and transitively on the set of ordered symplectic bases of V .
Hence, |Sp2m(q)| equals the number of such bases.

We start with e1 which can be any non-zero vector, so there are q2m− 1
ways of choosing it. Since e⊥1 has dimension 2m − 1, it has q2m−1 vectors.
Hence, the number of vectors v with f(u, v) 6= 0 is q2m − q2m−1 = (q −
1)q2m−1. These come in sets of q − 1 scalar multiples, each one giving a

41

42 A.1. Exercises from Chapter 1

different value f(u, v). Thus, the number of ways of choosing f1 is q2m−1,
and by induction on m, we get that

|Sp2m(q)| =
m∏
i=1

(q2i − 1)q2i−1.

Clearly, |PSp2m(q)| = |Sp2m(q)|
(2, q − 1) .

Exercise A.1.3. Prove that the transvections in Sp4(3) and Sp6(2) are
commutators.

Solution. Let V ∼= F2m
q be a vector space. Since the conjugate of a com-

mutator is a commutator again, Sp(V) acts on V − {0} transitively and
by the property iv) from Proposition 1.4.2, it suffices to verify that the
transvections Tv(λ), for a fixed vector v, are a commutator for every scalar
λ. Let B = {e1, . . . , fm} be a symplectic basis of V . Then, it is clear that
MB(Tf1(λ)) =

(Im C
0 Im

)
where C ∈Mm(Fq) and all the entries of C are zero

except the entry (1,1), whose value is λ.
From (1.5) we deduce that if A ∈ GLm(q) and B is a m×m symmetric

matrix, then MA =
(
A−1 0

0 AT

)
∈ Sp2m(q) and MB =

(Im B
0 Im

)
∈ Sp2m(q). An

easy computation shows that [MA,MB] =
(
Im B−ABAT

0 Im

)
.

The following choices establish the result. When m = 2 and q = 3, and
if λ ∈ F×3 ,

A =
(

1 λ
0 1

)
, B =

(
0 1
1 0

)
.

When m = 3 and q = 2,

A =

1 1 0
0 0 1
1 0 0

 , B =

1 0 1
0 1 1
1 1 1

 .

Exercise A.1.4. Check in GAP that PSU3(2) is a soluble group.

Solution. The following code solves the exercise:

gap> IsSo lvableGroup (Pro j ec t iveSpec ia lUn i ta ryGroup (3 , 2)) ;
t rue

Appendix A. Exercises 43

A.2 Exercises from Chapter 3
Exercise A.2.1. [Rot95, p. 34]

(i) Let k[x, y] denote the ring of all polynomials in two variables over a
field k, and let k[x] and k[y] denote the subrings of all polynomials in
x and in y, respectively. Define G to be the set of all matrices of the
form

(f, g, h) :=

1 f h
0 1 g
0 0 1


where f ∈ k[x], g ∈ k[y] and h ∈ k[x, y]1. Prove that G is a multiplica-
tive group and that G′ consists of all matrices for which f = 0 = g.

(ii) If (0, 0, h) is a commutator, then there are polynomials f1, f2 ∈ k[x]
and g1, g2 ∈ k[y] with h = f1g2 − f2g1.

(iii) Show that if h(x, y) = x2 + xy + y2, then (0, 0, h) ∈ G′ is not a
commutator.

(iv) Deduce that for every prime number p there is a group G of order p12

such that G′ 6= K(G).

Solution. (i) Let (f1, g1, h1), (f2, g2, h2) ∈ G, then as a consequence of the
multiplication of matrices

(f1, g1, h1)(f2, g2, h2) = (f1 + f2, g1 + g2, h1 + h2 + f1g2) (A.1)
(f1, g1, h1)−1 = (−f1,−g1, f1g1 − h1) (A.2)

whence we get that G 6 GL3(k[x, y]), and thus G is a group.
By direct computation, we have that

[(f1, g1, h1), (f2, g2, h2)] = (0, 0, f1g2 − f2g1), (A.3)

and thus K(G) = {(0, 0, f1g2 − f2g1) | f1, f2 ∈ k[x], g1, g2 ∈ k[y]}.
Define H = {(0, 0, h) | h ∈ k[x, y]}. From (A.1) and (A.2) we deduce
that M 6 G, and since K(G) ⊆ H, then G′ = 〈K(G)〉 6 H. For the
other inclusion, write h(x, y) =

∑
i,j ai,jx

iyj . By direct computation,
we get that ∏

i,j

[(ai,jxi, 0, 0), (0, yj , 0)] = (0, 0, h),

and thus, H = G′.

(ii) Apply (A.3).
1A group of this type is called a Heisenberg group.

44 A.2. Exercises from Chapter 3

(iii) Suppose that (0, 0, h) ∈ G′ is a commutator. Therefore, by part ii)
there exist f1(x) =

∑
i bix

i and f2(x) =
∑
i cix

i such that

h(x, y) = x2 + xy + y2 =
∑
i

bix
ig2(y)−

∑
i

cix
ig1(y). (A.4)

In particular,

y2 = b0g2(y)− c0g1(y),
y = b1g2(y)− c1g1(y),
1 = b2g2(y)− c2g1(y).

Regarding k[y] as a k-vector space, we have that the linearly indepen-
dent set {1, y, y2} is contained in the subgroup generated by g1 and
g2, and this is a contradiction.

(iv) If k = Fp, k[x, y] is replaced by k[x, y]/(x3, y3, x2y, xy2), k[x] by k[x]/(x3)
and k[y]/(y3), then the correspoding group G has order p12 = p6p3p3.
It is clear that in this context we can apply parts i), ii) and iii). Hence,
for every p prime number there is a group of order p12 such that
G′ 6= K(G).

Exercise A.2.2. Check in GAP that the smallest group in which the prop-
erty K(G) 6= G′ holds has order 96.

Solution. The following code solves the exercise:

CommutatorProp := f u n c t i o n (G)
l o c a l commutators ;
commutators := Set (L i s t (Carte s i an (G, G) , x - > Comm(x))) ;
r e turn S i z e (commutators) = Order (DerivedSubgroup (G)) ;
end ;
empty := AllSmallGroups ([1 . . 9 5] , CommutatorProp , f a l s e) ;
examples := AllSmallGroups (96 , CommutatorProp , f a l s e) ;

Since the list empty is empty and examples is not, the exercise is solved.

Appendix B

Source code

In this appendix we present all the programs that the author has written
in the GAP [GAP22] system for this dissertation. The files are ordered
in alphabetical order. At the beginning of each file the user can find the
documentation of each program and after each file we show examples of the
execution of each program. We finally note that all these files can be found
also in the GitHub repository [Jua23], where is also available a README
file which explains how to run these programs on one’s computer.

AsCommutator.g

1 ##
2 ##
3 ## This file contains an implementation of an algorithm that writes any even
4 ## permutation as a commutator of two even permutations.
5 ##
6 ## Created by Xabier de Juan Soriano on 2022
7 ## This file is part of the author’s final degree dissertation.
8 ##
9

10 DeclareGlobalFunction("CyclesToList");
11 DeclareGlobalFunction("CommutatorEvenPair");
12 DeclareGlobalFunction("CommutatorOddCycle");
13 DeclareGlobalFunction("AsCommutatorLists");
14
15 ##
16 ##
17 #M AsCommutator(permutation)
18 ##
19 ## This is the function that the user must call in order to write any even
20 ## permutation as a commutator of two even permutations.
21 ##
22 ## input:
23 ## permutation: an even permutation, $r \in A_n$ (the value of n is assumed
24 ## to be the smallest such thatr \in A_n)
25 ## If the permutation is not even an error message is raised.
26 ##
27 ## output:
28 ## <list>[1]: even permutation $\phi \in A_n$
29 ## <list>[2]: even permutation $\psi \in A_n$

45

46

30 ## r = [\phi,\psi]
31 ##
32 AsCommutator := function(permutation)
33 local list;
34 if SignPerm(permutation) = -1 then Error("permutation must be an even

permutation"); fi;
35 list := CyclesToList(permutation);
36 return AsCommutatorLists(list[1],list[2],list[3]);
37 end;
38
39 ##
40 ##
41 ## AsCommutatorLists(cycles, cycles2, cycles3)
42 ##
43 ## This is function is not supposed to be used by the user
44 ##
45 ## input:
46 ## cycles : a list containing cycles of odd order
47 ## cycles2 : a list containing pairs of cycles of even order
48 ## cycles3 : a list containing 3-cycles
49 ## The cycle (a,b,c) corresponds to the list [a , b , c]
50 ## in this setting.
51 ##
52 ## output:
53 ## The same as the main function
54 ##
55 InstallGlobalFunction(AsCommutatorLists, function(cycles, cycles2, cycles3)
56 local a, b, phi, psi, c, l, l1, l2, m, k, aux, max;
57
58 # the particular cases
59 aux := 0; # we will use this later
60 # when we only have a cycle of order 3
61 if Length(cycles) = 0 and Length(cycles2) = 0 and Length(cycles3) = 1 then
62 a := cycles3[1];
63 max := Maximum(a);
64 if max < 5 then max := 5; fi;
65 b := [1..max];
66 RemoveSet(b, a[1]);
67 RemoveSet(b, a[2]);
68 RemoveSet(b, a[3]);
69 a := Concatenation(a, [b[Length(b)-1], b[Length(b)]]);
70 return [(a[1] ,a[5], a[2]),(a[3], a[4], a[2])];
71 fi;
72 # when we only have a pair of a 2-cycle and a 4-cycle
73 if Length(cycles) = 0 and Length(cycles3) = 0 and Length(cycles2) = 1 then
74 # we know that Length(cycles2[1][1]) <= Length(cycles2[1][2])
75 # this is because we are applying the function "CylesToList"
76 if Length(cycles2[1][1]) = 2 and Length(cycles2[1][2]) = 4 then
77 a := Concatenation(cycles2[1][2], cycles2[1][1]);
78 return [(a[1],a[6],a[2],a[4],a[3]), (a[1],a[2],a[5],a[4],a[6])];
79 fi;
80 fi;
81 # when we only have a pair of 2-cycles
82 if Length(cycles) = 0 and Length(cycles3) = 0 and Length(cycles2) = 1 then
83 if Length(cycles2[1][1]) = 2 and Length(cycles2[1][2]) = 2 then
84 a := Concatenation(cycles2[1][1], cycles2[1][2]);
85 return [(a[1],a[3])(a[2],a[4]) , (a[1],a[4],a[3])];
86 fi;
87 fi;
88
89 # the general case
90 phi := ();

Appendix B. Source code 47

91 psi := ();
92 # the output will be: [phi,psi]
93 for c in cycles do
94 l := CommutatorOddCycle(c);
95 phi := phi*l[1];
96 psi := psi*l[2];
97 od;
98 # divide cases, if there are zero 3-cycles or >=2
99 if Length(cycles3) <> 1 then

100 for c in cycles2 do
101 l := CommutatorEvenPair(c[1],c[2]);
102 phi := phi*l[1];
103 psi := psi*l[2];
104 od;
105 for c in cycles3 do
106 l := CommutatorOddCycle(c);
107 phi := phi*l[1];
108 psi := psi*l[2];
109 od;
110 else # if there is only one 3-cycle
111 if cycles <> [] then
112 for c in cycles2 do
113 l := CommutatorEvenPair(c[1],c[2]);
114 phi := phi*l[1];
115 psi := psi*l[2];
116 od;
117 l := CommutatorOddCycle(cycles3[1]);
118 phi := phi*l[1];
119 psi := psi*l[2];
120 # from here we jump to "if SignPerm(phi) = -1 then"
121 elif cycles2 <> [] then # redundant?
122 for c in cycles2 do
123 a := c[1];
124 b := c[2];
125 k := Length(a)/2;
126 m := Length(b)/2 + k;
127 if m >= 4 then
128 for c in cycles2 do
129 l := CommutatorEvenPair(c[1],c[2]);
130 phi := phi*l[1];
131 psi := psi*l[2];
132 od;
133 l := CommutatorOddCycle(cycles3[1]);
134 phi := phi*l[1];
135 psi := psi*l[2];
136 aux := 1;
137 break;
138 # from here we jump to "if SignPerm(phi) = -1 then"
139 fi;
140 od;
141 # if we end up here that means that we are in the situation of the

final part of the proof
142 if aux = 0 then
143 c := cycles3[1];
144 a := cycles2[1][1];
145 b := cycles2[1][2];
146 if Length(b) = 2 then #2x2
147 a := Concatenation(c,a,b);
148 l1 := [a[4], a[5], a[6]];
149 l2 := [a[4], a[7], a[6]];
150 phi := phi * (a[1],a[2]) * MappingPermListList(l2,Reversed(l1

));

48

151 psi := psi * (a[1],a[3],a[2]) * CycleFromList(l2);
152 if SignPerm(phi) = -1 then
153 phi := (a[1],a[4])*(a[3],a[7])*(a[2],a[6])*phi;
154 fi;
155 else # 2x4
156 a := Concatenation(c,a,b);
157 phi := phi*(a[1],a[2]) * (a[4], a[8], a[6], a[5], a[9], a

[7]);
158 psi := psi*(a[1], a[3], a[2]) *(a[4], a[5], a[9], a[8], a

[6]);
159 fi;
160 # compute the rest in any case
161 for c in cycles2{[2..Length(cycles2)]} do
162 l := CommutatorEvenPair(c[1],c[2]);
163 phi := phi*l[1];
164 psi := psi*l[2];
165 od;
166 fi;
167 fi;
168 fi;
169
170 #in order to ensure that phi \in An
171 if SignPerm(phi) = -1 then
172 # if there is some odd cycle it is easy to ensure phi \in An
173 # we wil assume that the number of 3-cycles != 1
174 if cycles <> [] then
175 a := cycles[1];
176 m := QuoInt(Order(CycleFromList(a)),2);
177 # as it is said in the proof of the thm
178 if m mod 2 = 0 then
179 return [(a[2],a[3])*phi, psi];
180 else
181 return [(a[3],a[4])*phi, psi];
182 fi;
183 fi;
184 # if there is some pair of even permutations to whom we have applied the

lemma is easy to see phi \in An
185 if cycles2 <> [] then
186 for c in cycles2 do
187 a := c[1];
188 b := c[2];
189 k := Length(a)/2;
190 m := Length(b)/2 + k;
191 if m >= 4 then
192 a := Concatenation(a,b);
193 # as in the proof
194 if m mod 2 = 0 then
195 return [(a[2],a[m])*phi, psi];
196 else
197 return [(a[4],a[m+1])*phi, psi];
198 fi;
199 fi;
200 od;
201 fi;
202 # if there is an odd number of 3-cycles
203 if Length(cycles3) mod 2 = 1 then
204 a := Concatenation(cycles3[1],cycles3[2]);
205 return [(a[1],a[4])*(a[3],a[6])*(a[2],a[5])*phi,psi];
206 fi;
207 fi;
208 return [phi, psi];
209 end);

Appendix B. Source code 49

210
211 ##
212 ##
213 ## CommutatorOddCycle(cycle)
214 ##
215 ## "cycle" is a list
216 ## Writes a cycle of odd length as a product of two cycles of odd length
217 ##
218 InstallGlobalFunction(CommutatorOddCycle, function(cycle)
219 # cycles is a list
220 local m, l1, l2, phi;
221 m := QuoInt(Order(CycleFromList(cycle)),2);
222 if m mod 2 = 0 then
223 l1 := cycle{[1..m+1]};
224 l2 := Concatenation([cycle[1]], cycle{[m+2..2*m+1]});
225 elif m = 1 then
226 return [(cycle[1],cycle[2]) , (cycle[1],cycle[3],cycle[2])];
227 else # m odd and m>=5
228 l1 := Concatenation([cycle[1]], [cycle[m+2]], cycle{[2..m+1]});
229 l2 := Concatenation([cycle[1]], [cycle[m+2]], [cycle[2]], cycle{[m+3..2*m

+1]});
230 fi;
231 phi := MappingPermListList(l2, Reversed(l1));
232 return [phi, CycleFromList(l2)];
233 end);
234
235 ##
236 ##
237 ## CommutatorEvenPair(t1, t2)
238 ##
239 ## t1 and t2 are lists. It writes a product of two cycles of even length as a
240 ## product of two cycles of odd length
241 ##
242 InstallGlobalFunction(CommutatorEvenPair, function(t1, t2)
243 # t1 and t2 are lists
244 local k, m, t, cycle, l1, l2, phi;
245 # we can suppose that Length(t1) <= Length(t2)
246 k := Length(t1)/2;
247 m := Length(t2)/2 + k;
248 cycle := Concatenation(t1, t2);
249 # some particular cases
250 if m = 3 then
251 cycle := Concatenation(t2,t1);
252 return [(cycle[1],cycle[6],cycle[2],cycle[4],cycle[3]),(cycle[1],cycle

[2],cycle[5],cycle[4],cycle[6])];
253 elif m = 2 then
254 return [(cycle[1], cycle[3])*(cycle[2], cycle[4]) , (cycle[1], cycle[4],

cycle[3])];
255 fi;
256 # the general case
257 if m mod 2 = 0 then
258 l1 := cycle{[1..m+1]};
259 l2 := Concatenation([cycle[1]], cycle{[m+2..2*m]},[cycle[2*k+1]]);
260 else
261 l1 := Concatenation([cycle[1], cycle[m+2]], cycle{[2..m+1]});
262 l2 := Concatenation([cycle[1], cycle[m+2], cycle[2]], cycle{[m+3..2*m]},[

cycle[2*k+1]]);
263 fi;
264 phi := MappingPermListList(l2, Reversed(l1));
265 return [phi, CycleFromList(l2)];
266 end);
267

50

268 InstallGlobalFunction(CyclesToList, function(permutation)
269 # outputs a list with the disjoint cycles of "permutation"
270 local cycles, cycles2, cycles22, cycles3, lista, l, j, c, e, N;
271 N := Length(ListPerm(permutation));
272 cycles := [];
273 cycles2 := [];
274 cycles22 := [];
275 cycles3 := [];
276 l := [1..N];
277 while l <> [] do
278 c := Cycle(permutation,l[1]);
279 for e in c do
280 RemoveSet(l,e);
281 od;
282 # cycles of order dont appear in the disjoint cycle decomposition
283 if Length(c) >= 2 then
284 # we want to divide the cycles of odd order, even order and 3-cycles
285 if Length(c) mod 2 = 0 then # cycles of even order
286 cycles2 := Concatenation(cycles2,[c]);
287 elif Length(c) = 3 then # 3-cycles
288 cycles3 := Concatenation(cycles3, [c]);
289 else # cycles of odd order
290 cycles := Concatenation(cycles,[c]);
291 fi;
292 fi;
293 od;
294 # write in pairs the cycles of even order
295 if Length(cycles2) mod 2 = 0 then
296 for e in [1,3..Length(cycles2)-1] do
297 # in order to ensure that the one with smallest order appears in the

left
298 if Length(cycles2[e]) > Length(cycles2[e+1]) then
299 cycles22 := Concatenation(cycles22,[[cycles2[e+1], cycles2[e]]

]);
300 else
301 cycles22 := Concatenation(cycles22,[[cycles2[e], cycles2[e+1]]

]);
302 fi;
303 od;
304 fi;
305 return [cycles, cycles22, cycles3];
306 end);

Example B.0.1. We take a random permutation in A21 and write it as a
commutator. We check that the function works correctly.

gap> g := (1,15)(2,5)(3,19,8,12,4,10,7,20,16,9)(6,13,17)(11,21,18,14);;
gap> AsCommutator(g);
[(1,2)(3,11,12,10)(4,8,7,14,9)(5,15)(6,13)(16,21,19,20,18),

(1,5,2)(3,11,4,21,10,7,20,16,9)(6,17,13)]
gap> g = Comm(AsCommutator(g));
true
gap> SignPerm(AsCommutator(g)[1]); SignPerm(AsCommutator(g)[2]);
1
1

CharTab.g

Appendix B. Source code 51

1 ##
2 ##
3 ## This file contains an implementation of an algorithm which computes computes
4 ## the table of irreducible characters of any finite group.
5 ##
6 ## Created by Xabier de Juan Soriano on 2023
7 ## This file is part of the author’s final degree dissertation.
8 ##
9

10 DeclareGlobalFunction("NewPrint");
11 DeclareGlobalFunction("FieldToMod");
12 DeclareGlobalFunction("BestMat");
13 DeclareGlobalFunction("ClassMap");
14 DeclareGlobalFunction("ClassMatrixColumn");
15 DeclareGlobalFunction("ClassMatrix");
16
17 ##
18 ##
19 #M CharTab(G, permRepr[, mode])
20 ##
21 ## Computes the table of irreducible characters of G using a simplified version
22 ## of the Burnside/Dixon/Schneider algorihm.
23 ##
24 ## input:
25 ## G : finite group.
26 ## permRepr : if equal to true, a permutation representation of G is
27 ## computed so all the computations are performed in
28 ## this permutation group.
29 ## Otherwise, the computations are performed in a matrix
30 ## group or in the structure that the given group has.
31 ## mode(optional): when mode="silent" the program doesn’t print any text
32 ## regarding the progress of the computation.
33 ## Omiting this argument can be helpful when dealing
34 ## with large groups as it can help the user to
35 ## estimate how much time of computation is left.
36 ##
37 ## output:
38 ## <list>[1]: table of characters of G as a matrix
39 ## (the rows are sorted by the degree)
40 ## <list>[2]: representatives of the conjugacy classes of G in the same
41 ## order as the columns of the character table.
42 ##
43 ## remarks: if the user is only interested in the values of the character
44 ## table, it is recommended to call the function with
45 ## true as a second argument, since the computations
46 ## will be performed faster in that case.
47 ##
48 CharTab := function(G, permRepr, mode...)
49 local CT, i, j, k, l, m, v, d2, x, sqrtt, Bv, K, A, s, V_i, V_, B_, b, h, D_,

pol, I, q, prev;
50
51 # we want permutation groups
52 if permRepr = true and IsPermGroup(G) = false then G := Image(

IsomorphismPermGroup(G)); fi;
53 if IsPermGroup(G) then permRepr := true; fi;
54
55 CT := rec();
56
57 NewPrint(mode, "computing conjugacy classes...");
58 CT.order := Size(G);
59 CT.C := ConjugacyClasses(G);

52

60 CT.CO := List(CT.C, c -> Size(c));
61 CT.g := List(CT.C, c -> Representative(c));
62 CT.r := Length(CT.C);
63 CT.gO := List(CT.g, x -> Order(x));
64 CT.e := Lcm(CT.gO);
65 NewPrint(mode, "complete");
66 NewPrint(mode, " ");
67
68 CT.invClassMap := List([1..CT.r],j->ClassMap(CT.g[j]^-1, CT.C, permRepr));
69 CT.powClassMap := List([1..CT.r],j->List([0..CT.gO[j]-1],l->ClassMap(CT.g[j]^

l, CT.C, permRepr)));
70
71
72 NewPrint(mode, "finding the prime number p...");
73 CT.p := 2*Int(CT.order^0.5)+1;
74 while IsPrimeInt(CT.p) = false or RemInt(CT.p-1,CT.e) <> 0 do
75 CT.p := CT.p + 2;
76 od;
77 NewPrint(mode, "complete");
78 NewPrint(mode, " ");
79
80 NewPrint(mode, "computing the eigenvalues of the matrices M_j...");
81 CT.M := List([1..CT.r], x-> IdentityMat(CT.r)-IdentityMat(CT.r));
82 CT.TM := List([1..CT.r], x-> IdentityMat(CT.r)-IdentityMat(CT.r));
83 CT.M[1] := IdentityMat(CT.r);
84 j := PositionMinimum(List(CT.C{[2..CT.r]}, c -> Size(c))) + 1;
85
86 CT.M[j] := ClassMatrix(CT.C, CT.g, j, CT.r, permRepr);
87 CT.TM[j] := Z(CT.p)^0 * CT.M[j];
88
89 CT.V := Eigenspaces(GF(CT.p), CT.TM[j]);
90 CT.D := List(CT.V, v -> Dimension(v));
91 CT.B := List(CT.V, v -> Basis(v));
92
93 while CT.D <> List(CT.D, v -> 1) do
94 NewPrint(mode, "-----");
95 NewPrint(mode, "Dimension of the eigenspaces (we want a list full of 1s):

");
96 NewPrint(mode, String(CT.D));
97 i := Difference([1..Length(CT.D)],Positions(CT.D,1)); # list of the V_i

with dim V_i > 1
98 Bv := List(i, v -> BasisVectors(CT.B[v])); # bases of the V_i
99 I := Length(i); # V_1,...,V_I

100 s := List([1..I], v -> Length(Bv[v]));
101 K := List([1..I], v -> [1..s[v]]); # the columns of M_j we need to

compute
102 for v in [1..I] do
103 for m in [1..s[v]] do
104 K[v,m] := PositionNot(Bv[v,m],0*Z(CT.p));
105 od;
106 od;
107 j := BestMat(K,CT.g,CT.r,CT.CO,CT.C,permRepr);
108 A := ShallowCopy(TransposedMat(CT.M[j]));
109 for k in K do
110 for l in k do
111 if A[l] = List([1..CT.r],x->0) then
112 # we only compute the ones that have not been computed yet
113 # if a row is all 0 means that it has not been computed yet
114 A[l] := ClassMatrixColumn(CT.C, CT.g, j, CT.r, l, permRepr);
115 fi;
116 od;
117 od;

Appendix B. Source code 53

118 # we do not compute the whole matrix M_j, only the columns we need
119 CT.M[j] := TransposedMat(A);
120 # compute the eigenvalues of the action of TM[j] on V_i for each V_i
121 prev:=0;
122 for v in [1..I] do
123 A := List([1..s[v]], x -> (Bv[v,x]*CT.M[j]){K[v]});
124 V_i := Eigenspaces(GF(CT.p), A);
125 h := Length(V_i);
126 V_ := [1..h];
127 for q in [1..h] do
128 b := BasisVectors(Basis(V_i[q]));
129 V_[q] := VectorSpace(GF(CT.p), List(b, x -> x*Bv[v]));
130 od;
131 B_ := List(V_, q -> Basis(q));
132 D_ := List(V_, q -> Dimension(q));
133 # update the V, B and D vectors
134 Remove(CT.V,i[v]+prev);
135 CT.V := Concatenation(V_,CT.V);
136 Remove(CT.B,i[v]+prev);
137 CT.B := Concatenation(B_,CT.B);
138 Remove(CT.D,i[v]+prev);
139 CT.D := Concatenation(D_,CT.D);
140 prev := prev + Length(D_)-1;
141 od;
142 od;
143 NewPrint(mode, "complete");
144 NewPrint(mode, " ");
145
146 # convert the eigenvectors of F_p to integers mod p
147 CT.B := List(CT.B, v -> FieldToMod(v[1]));
148 # normalize the eigenvectors to ensure that the first component equals 1
149 CT.B := List(CT.B, v -> PowerModInt(v[1],-1,CT.p) * v);
150 NewPrint(mode, "computing Theta[X]");
151 # compute Theta(X)
152 CT.TX := IdentityMat(CT.r);
153 for i in [1..CT.r] do
154 d2 := CT.order * PowerModInt(Sum([1..CT.r],j -> Size(CT.C[j]) * CT.B[i,j]

* CT.B[i, CT.invClassMap[j]] mod CT.p), -1, CT.p);
155 sqrtt:= RootMod(d2, CT.p);
156 if 2*sqrtt >= CT.p then
157 CT.TX[i] := AbsInt(sqrtt-CT.p)*CT.B[i] mod CT.p;
158 else
159 CT.TX[i] := sqrtt*CT.B[i] mod CT.p;
160 fi;
161 od;
162 NewPrint(mode, "complete");
163
164 NewPrint(mode, "recovering X from Theta X...");
165 CT.omega := IntFFE(Z(CT.p)^((CT.p-1)/CT.e)); # element with multiplicative

order e (as an integer < p)
166 CT.m := List([1..CT.e], x -> IdentityMat(CT.r));
167 # pre-compute some values
168 CT.powOrder := List([1..CT.r],j->PowerModInt(CT.gO[j],-1,CT.p));
169 for i in [1..CT.r] do
170 for j in [1..CT.r] do
171 s := CT.gO[j]; # order of g[j]
172 for k in [1..CT.e] do
173 if (k-1) mod (CT.e/s) = 0 then
174 CT.m[i,j][k] := (CT.powOrder[j] * Sum([0..s-1],l->

PowerModInt(CT.omega,-(k-1)*l,CT.p) * CT.TX[i, CT.
powClassMap[j,l+1]] mod CT.p)) mod CT.p;

175 else

54

176 CT.m[i,j][k] := 0;
177 fi;
178 od;
179 od;
180 od;
181 NewPrint(mode, "complete");
182 NewPrint(mode, "writing the character table...");
183 # write the character table
184 CT.X := IdentityMat(CT.r)-IdentityMat(CT.r);
185 CT.Zeta := E(CT.e);
186 for i in [1..CT.r] do
187 for j in [1..CT.r] do
188 #pol := List([1..CT.e], k-> CT.m[i,j][k]);
189 CT.X[i,j] := ValuePol(CT.m[i,j], CT.Zeta);
190 od;
191 od;
192 NewPrint(mode, "sorting the rows of the table");
193 # sort the table by degrees
194 SortBy(CT.X, x -> x[1]);
195 # first character must be the trivial one
196 j := Position(CT.X, List([1..CT.r],x->1));
197 CT.X_ := ShallowCopy(CT.X);
198 CT.X_[1] := CT.X[j];
199 CT.X_[j] := CT.X[1];
200 return [CT.X_, CT.g];
201 end;
202
203 ##
204 ##
205 ## ClassMatrix(C, g, j, r, permRepr)
206 ##
207 ## Computes the class matrix M_j.
208 ##
209 ## input:
210 ## C : conjugacy classes of G
211 ## g : representatives of the conj. classes
212 ## (it is assumed that it is given in the same order as C)
213 ## j : integer with 1<=j<=r
214 ## r : # of conj. classes
215 ##
216 InstallGlobalFunction(ClassMatrix, function(C, g, j, r, permRepr)
217 local l, M;
218 M := IdentityMat(r);
219 for l in [1..r] do
220 M[l] := ClassMatrixColumn(C, g, j, r, l, permRepr);
221 od;
222 return TransposedMat(M);
223 end);
224
225 ##
226 ##
227 ## ClassMatrixColumn(C, g, j, r, l, permRepr)
228 ##
229 ## Computes the l-th column of the class matrix M_j. It is returned as a row
230 ##
231 InstallGlobalFunction(ClassMatrixColumn, function(C, g, j, r, l, permRepr)
232 local x, y, z, k, c, v;
233 z := g[l];
234 v := List([1..r], x -> 0);
235 # the first column is easy to compute
236 if l = 1 then
237 v[ClassMap(g[j]^-1, C, permRepr)] := Size(C[j]);

Appendix B. Source code 55

238 return v;
239 fi;
240 for x in C[j] do
241 y := x^-1*z;
242 k := ClassMap(y,C,permRepr);
243 v[k] := v[k] + 1;
244 od;
245 return v; # this is a row
246 end);
247
248 ##
249 ##
250 ## ClassMap(g, C, permRepr)
251 ##
252 ## Computes the image of g under the class map
253 ## C is a list of all the conjugacy classes
254 ##
255 InstallGlobalFunction(ClassMap, function(g, C, permRepr)
256 local c, j, possible, x;
257 if permRepr = true then
258 possible := Filtered([1..Length(C)], x->CycleStructurePerm(Representative

(C[x]))=CycleStructurePerm(g));
259 else # this is why we prefer permutation groups
260 possible := Filtered([1..Length(C)], x->Order(Representative(C[x]))=Order

(g));
261 fi;
262 if Length(possible) = 1 then return possible[1]; fi;
263 j := 1;
264 while j < Length(possible) do
265 if g in C[possible[j]] then
266 return possible[j];
267 else
268 j := j+1;
269 fi;
270 od;
271 return possible[j];
272 end);
273
274 ##
275 ##
276 ## BestMat(K, g, r, CO, C, permRepr)
277 ##
278 ## Returns the value j such that computing the matrix M_j is the best option
279 ##
280 InstallGlobalFunction(BestMat, function(K, g, r, CO, C, permRepr)
281 local j, j_, k, best, val, columns;
282 best := [1,0];
283 columns := [];
284 for j in [2..r] do
285 columns := [];
286 j_ := ClassMap(g[j]^-1, C, permRepr);
287 val := 0;
288 for k in K do
289 UniteSet(columns,k);
290 if Position(k,j_) <> fail then
291 val := val + 1;
292 fi;
293 od;
294 val := val/CO[j];
295 val := val/Size(columns);
296 if best[2] < val then
297 best[2] := val;

56

298 best[1] := j;
299 fi;
300 od;
301 return best[1];
302 end);
303
304 InstallGlobalFunction(FieldToMod, function(V)
305 local x;
306 return List(V, x -> IntFFE(x));
307 end);
308
309 InstallGlobalFunction(NewPrint, function(mode, str)
310 if mode = [] then
311 Info(InfoWarning,1,str);
312 fi;
313 end);

Example B.0.2. We compute the table of irreducible characters of A6 and
SL2(4). The group A6 is represented as a permutation group in GAP. On
the other hand, SL2(4) is represented as a matrix group.

gap> C:=CharTab(AlternatingGroup(6),false,"silent");; # in this case it is the
same to write false or true in the second argument

gap> Display(C[1]);
[[1, 1, 1, 1, 1, 1, 1],

[5, 1, -1, 2, -1, 0, 0],
[5, 1, 2, -1, -1, 0, 0],
[8, 0, -1, -1, 0, -E(5)-E(5)^4, -E(5)^2-E(5)^3],
[8, 0, -1, -1, 0, -E(5)^2-E(5)^3, -E(5)-E(5)^4],
[9, 1, 0, 0, 1, -1, -1],
[10, -2, 1, 1, 0, 0, 0]]

gap> Print(C[2]);
[(), (1,2)(3,4), (1,2,3), (1,2,3)(4,5,6), (1,2,3,4)(5,6), (1,2,3,4,5),

(1,2,3,4,6)]
gap> D := CharTab(SpecialLinearGroup(2,4),true,"silent");;
gap> Display(D[1]);
[[1, 1, 1, 1, 1],

[3, -1, 0, -E(5)^2-E(5)^3, -E(5)-E(5)^4],
[3, -1, 0, -E(5)-E(5)^4, -E(5)^2-E(5)^3],
[4, 0, 1, -1, -1],
[5, 1, -1, 0, 0]]

gap> Print(D[2]);
[(), (5, 6)(7, 8)(9,11)(10,12)(13,16)(14,15),

(2, 3, 4)(5,13, 9)(6,15,12)(7,16,10)(8,14,11),
(2, 5,10,11, 7)(3, 9,15,16,12)(4,13, 8, 6,14),
(2, 5,14,16, 8)(3, 9, 7, 6,10)(4,13,12,11,15)]

gap> F := CharTab(SpecialLinearGroup(2,4),false,"silent");;
this character table is equivalent to the previous one
gap> Display(F[1]);
[[1, 1, 1, 1, 1],

[3, -1, -E(5)^2-E(5)^3, -E(5)-E(5)^4, 0],
[3, -1, -E(5)-E(5)^4, -E(5)^2-E(5)^3, 0],
[4, 0, -1, -1, 1],
[5, 1, 0, 0, -1]]

we get the elements represented in a different way
gap> Print(F[2]);
[[[Z(2)^0, 0*Z(2)], [0*Z(2), Z(2)^0]],

[[0*Z(2), Z(2)^0], [Z(2)^0, 0*Z(2)]],
[[0*Z(2), Z(2)^0], [Z(2)^0, Z(2^2)]],
[[0*Z(2), Z(2)^0], [Z(2)^0, Z(2^2)^2]],
[[Z(2^2), 0*Z(2)], [0*Z(2), Z(2^2)^2]]]

Appendix B. Source code 57

OreTest1.g

1 ##
2 ##
3 ## This file contains an implementation of an algorithm that checks whether
4 ## in a group all elements are commutators
5 ##
6 ## Created by Xabier de Juan Soriano on 2023
7 ## This file is part of the author’s final degree dissertation.
8 ##
9

10 ##
11 ##
12 ## OreTest1(CT)
13 ##
14 ## input:
15 ## CT: ordinary character table of the group G as a matrix with values
16 ## in a cyclotomic field https://docs.gap-system.org/doc/ref/chap18.html
17 ##
18 ## output:
19 ## returns true if all the elements of G are commutators and false otherwise
20 ##
21 OreTest1 := function(CT)
22 local i, j, r;
23 r := Length(CT);
24 CT := TransposedMat(CT);
25 for i in [2..r] do
26 if Sum([1..r], j->CT[i,j]/CT[1,j]) = 0 then
27 return false;
28 fi;
29 od;
30 return true;
31 end;

Example B.0.3. We check Ore’s conjecture for A6, S6 and SL2(8). In order
to compute the character tables, we apply the previous function

gap> OreTest1(CharTab(AlternatingGroup(6),true,"silent")[1]);
true
gap> OreTest1(CharTab(SymmetricGroup(6),true,"silent")[1]);
false
gap> OreTest1(CharTab(SpecialLinearGroup(2,8),true,"silent")[1]);
true

OreTest2.g

1 ##
2 ##
3 ## This file contains an implementation of an algorithm that checks whether in
4 ## a group all elements are commutators
5 ##
6 ## Created by Xabier de Juan Soriano on 2023
7 ## This file is part of the author’s final degree dissertation.
8 ##
9

10 ##
11 ##
12 ## OreTest2(G)

58

13 ## the program halts if and only if every element of G is a commutator
14 ##
15 ## input:
16 ## G : finite group G
17 ##
18 ## output:
19 ## returns true if all the elements of G are commutators
20 ##
21 OreTest2 := function(G)
22 local g, x, repr, order, index_cent, new_repr;
23 order := Order(G);
24 # we want permutations groups
25 if IsPermGroup(G) = false then G := Image(IsomorphismPermGroup(G)); fi;
26 repr := [()]; # to store the different representative of the classes
27 index_cent := 1; # cummulative sum of the index of the centralizers
28 while order <> index_cent do
29 new_repr := true;
30 g := Comm(Random(G),Random(G));
31 if g <> () then
32 for x in repr do
33 # first cheap conjugation test
34 if CycleStructurePerm(x) = CycleStructurePerm(g) then
35 if IsConjugate(G, x, g) then
36 new_repr := false;
37 break;
38 fi;
39 fi;
40 od;
41 if new_repr then
42 Append(repr,[g]);
43 index_cent := index_cent + order/Size(Centralizer(G, g));
44 fi;
45 fi;
46 od;
47 return true;
48 end;

Example B.0.4. We check Ore’s conjecture for PSL3(3).
gap> OreTest2(ProjectiveSpecialLinearGroup(3,3));
true

Bibliography

[Bre22] T. Breuer. GAP package CTblLib. 2022. url: https://www.
gap-system.org/Packages/ctbllib.html.

[Bur55] W. Burnside. Theory of Groups of Finite Order. New York: Dover
Publications, 1955.

[Cel+95] F. Celler et al. “Generating random elements of a finite group”.
In: Communications in Algebra 23.13 (1995), pp. 4931–4948. doi:
10.1080/00927879508825509.

[Con20] K. Conrad. Simplicity of PSLn(F). 2020. url: https://kconrad.
math.uconn.edu/blurbs/grouptheory/PSLnsimple.
pdf (Retrieved 05/05/2023).

[CS97] J.J. Cannon and B. Souvignier. “On the Computation of Con-
jugacy Classes in Permutation Groups”. In: Proceedings of the
1997 International Symposium on Symbolic and Algebraic Com-
putation, ISSAC 1997, Maui, Hawaii, USA, July 21-23, 1997.
ACM, 1997, pp. 392–399. doi: 10.1145/258726.258855.

[CS99] H. Cuypers and A. Steinbach. “Linear transvection groups and
embedded polar spaces”. In: Inventiones Mathematicae 137 (1999),
pp. 169–198. doi: 10.1007/s002220050328.

[Dir37] P.G.L. Dirichlet. “Beweis des Satzes, dass jede unbegrenzte arith-
metische Progression, deren erstes Glied und Differenz ganze Zahlen
ohne gemeinschaftlichen Factor sind, unendlich viele Primzahlen
enthält”. In: Abhandlungen der Königlich Preußischen Akademie
der Wissenschaften 48 (1837), pp. 45–71.

[Dix67] J.D. Dixon. “High speed computation of group characters”. In:
Numer. Math. 10 (1967), pp. 446–450. doi: 10.1007/BF02162877.

[EG98] E.W. Ellers and N.L. Gordeev. “On the Conjectures of J. Thomp-
son and O. Ore”. In: Transactions of the American Mathematical
Society 350.9 (1998), pp. 3657–3671.

[GAP22] GAP – Groups, Algorithms, and Programming, Version 4.12.0.
The GAP Group. 2022. url: https://www.gap-system.
org/.

59

https://www.gap-system.org/Packages/ctbllib.html
https://www.gap-system.org/Packages/ctbllib.html
https://doi.org/10.1080/00927879508825509
https://kconrad.math.uconn.edu/blurbs/grouptheory/PSLnsimple.pdf
https://kconrad.math.uconn.edu/blurbs/grouptheory/PSLnsimple.pdf
https://kconrad.math.uconn.edu/blurbs/grouptheory/PSLnsimple.pdf
https://doi.org/10.1145/258726.258855
https://doi.org/10.1007/s002220050328
https://doi.org/10.1007/BF02162877
https://www.gap-system.org/
https://www.gap-system.org/

60 Bibliography

[Gro01] L.C. Grove. Classical Groups and Geometric Algebra. American
Mathematical Society, 2001.

[GT15] R.M. Guralnick and P.H. Tiep. Effective Results on the Waring
Problem for Finite Simple Groups. 2015. arXiv: 1302.0333.

[HEO05] D.F. Holt, B. Eick, and E.A. O’Brien. Handbook of Computa-
tional Group Theory. Discrete Mathematics and Its Applications.
CRC Press, 2005.

[Hul93] A. Hulpke. “Zur Berechnung von Charaktertafeln”. Diploma the-
sis. Rheinisch Westfälische Technische Hochschule, 1993.

[Isa94] I.M. Isaacs. Character Theory of Finite Groups. Dover, 1994.
[Ito51] N. Ito. “A theorem on the alternating group An (n > 5)”. In:

Math. Japonicae 2 (1951), pp. 59–60.
[Jor70] C. Jordan. Traité des substitutions et des équations algébriques.

Gauthier-Villars, 1870.
[Jua23] X. de Juan. TFGcode. https://github.com/xdejs/TFGcode.

2023.
[KM05] L.C. Kappe and R. Morse. “On commutators in groups”. In: Jour-

nal of Group Theory 8 (2005), pp. 415–429.
[Lan02] S. Lang. Algebra. Springer, 2002.
[LOST] M. Liebeck et al. “The Ore conjecture”. In: Journal of the Eu-

ropean Mathematical Society 012.4 (2010), pp. 939–1008. doi:
10.4171/JEMS/220.

[Mal14] G. Malle. “The proof of Ore’s conjecture [after Ellers-Gordeev
and Liebeck-O’Brien-Shalev-Tiep]”. In: Séminaire Bourbaki vol-
ume 2012/2013 : exposés 1059-1073 - Avec table par noms d’auteurs
de 1948/49 à 2012/13. Astérisque 361. talk:1069. Société math-
ématique de France, 2014.

[Mil99] G.A. Miller. “On the commutators of a given group”. In: Bulletin
of the American Mathematical Society 6.3 (1899), pp. 105–109.

[NPC84] J. Neubüser, H. Pahlings, and E. Cleuvers. “Each sporadic finasig
G has a class C such that CC = G”. In: Abstracts AMS. Vol. 34.
6. 1984.

[Ore51] O. Ore. “Some Remarks on Commutators”. In: Proceedings of
the American Mathematical Society 2.2 (1951), pp. 307–314. doi:
10.2307/2032506.

[Rot95] J.J. Rotman. An Introduction to the Theory of Groups. Springer
New York, 1995.

https://arxiv.org/abs/1302.0333
https://github.com/xdejs/TFGcode
https://doi.org/10.4171/JEMS/220
https://doi.org/10.2307/2032506

Bibliography 61

[Sch90] G. Schneider. “Dixon’s character table algorithm revisited”. In:
Journal of Symbolic Computation 9.5 (1990), pp. 601–606. doi:
10.1016/S0747-7171(08)80077-6.

[TL65] K’en-ch’eng Ts’eng and Chiung-sheng Li. “On the commutators
of the simple Mathieu groups”. In: J. China Univ. Sci. Techn. 1
(1965), pp. 43–48.

[Wey39] H. Weyl. The Classical Groups. Their Invariants and Represen-
tations. Princeton University Press, 1939.

[Wil09] R.A. Wilson. The Finite Simple Groups. Springer, 2009.

https://doi.org/10.1016/S0747-7171(08)80077-6

	Symbols
	Introduction
	The classical groups
	Iwasawa's lemma
	Linear groups
	Bilinear forms
	Definitions
	Classification of alternating forms
	Classification of conjugate-symmetric sesquilinear forms
	Classification of symmetric forms in odd characteristic

	Symplectic groups
	Unitary groups
	Orthogonal groups in odd characteristic
	Orthogonal groups in characteristic 2

	Character theory
	Ore's criterion
	Computing character tables

	Ore's conjecture
	Generalizations
	Alternating groups
	Testing Ore's conjecture
	Testing Ore's conjecture probabilistically
	Experimental results and final discussion

	Exercises
	Exercises from Chapter 1
	Exercises from Chapter 3

	Source code

