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Abstract: Modern multiprocessing embedded applications require, in many cases, two different
environments on the same platform: one that meets real-time requirements and another one with
a general purpose operating system. Although several technologies can be used, two of the most
popular are virtualization based on hypervisors and asymmetric multiprocessing software. However,
using these tools introduces latency, which must be measured to verify compliance with real-time
requirements. With the aim of facilitating these measurements, this work provides a hardware tool
that is more precise and easier to use than other existing software solutions. The paper also studies
the interrupt latency generated by different hypervisors and asymmetric multiprocessing frameworks
in a Zynq UltraScale+ platform. This research work facilitates the accurate study of the temporal
response of multiprocessor embedded systems, which allows for evaluating their suitability for
applications with real-time requirements.

Keywords: virtualization; hypervisor; Xen; Jailhouse; OpenAMP; latency; real time; interrupt latency
measurement

1. Introduction

Real-time embedded systems play an essential role in today’s industry. Many ap-
plications require the simultaneous use of two or more environments. It is common to
combine a general purpose environment with a time-critical environment. This work
focuses specifically on these scenarios.

Modern platforms have a heterogeneous processing system with some specific cores
to process hard real-time applications—a Real-Time Processing Unit (RPU)—and some
cores to process other applications—an Application Processing Unit (APU). Moreover,
some software tools make it possible to run Real-Time Operating Systems (RTOSs) and
General-Purpose Operating Systems (GPOSs) at the same time in homogeneous or hetero-
geneous processors.

Hypervisors are one of those tools. They virtualize the hardware resources so that
different isolated environments can use them simultaneously. Virtualization is a widespread
technique in computing and cloud applications due to its benefits: saving resources,
increasing security, running several isolated environments with different Operating Systems
(OSs), etc. However, its use in embedded systems has been considered only in recent
years [1].

Other popular tools with a similar purpose are Asymmetric Multiprocessing (AMP)
multicore frameworks, such as OpenAMP [2], that allow for running an RTOS on the
RPU while a GPOS—e.g., the Linux OS—runs on the APU. These frameworks do not
virtualize the CPU or isolate the environments as hypervisors do, but they allow for taking
advantage of all the resources of the platform by using both processing units to run different
environments simultaneously and to facilitate communication between them.
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However, all this software may increase the latencies of the system, since they consti-
tute extra layers of software. Measuring those latencies is essential for applications with
hard real-time constraints, but it is a challenging task. Many studies in the literature analyze
them in computing or cloud environments, and some propose tools, such as Cyclictest [3] or
Thread-Metric [4], to facilitate the measuring process. In recent years, researchers have be-
gun to conduct some timing analysis in multiprocessing embedded systems. Nevertheless,
this is a largely unexplored field, especially for hardware-made measurements.

System-on-Chip (SoC) devices that have an FPGA usually have an embedded logic ana-
lyzer to make time measurements by hardware more accurately than by software. However,
the logic analyzers are limited by the finite number of samples they can show—although
they can be configured to only log changes so more samples can be caught, but in that
case, a counter should be added to the signals—and, on the other hand, the communica-
tion protocols and the analysis software are not specifically developed for studying these
latencies. Even with the maximum sample data depth, the process has to be repeated to
obtain a significant number of measurements. Moreover, increasing the sample data depth
in the logic analyzer increases the memory resources. In addition, the results must be
processed manually, as the exported data are not easy to use. For this reason, in this paper,
a new hardware circuit has been designed to facilitate the task of measuring latencies and
managing this data in software.

A study of interrupt latencies introduced by different hypervisors and an AMP frame-
work is also carried out in this paper, since this is one of the most critical parameters in hard
real-time embedded systems, as the system’s response time depends significantly on it [5].
In most scenarios, two environments are set—one running a GPOS and the other running
real-time software—and there are also some control scenarios with only the hard real-time
environment to compare the influence of hypervisors and AMP frameworks with them.
The latencies produced in the real-time environment are studied to evaluate its real-time
behavior. These measurements have been implemented on the Zynq UltraScale+ MPSoC
ZCU102 platform using the hardware circuit proposed in this paper.

This paper is organized as follows. Section 2 explains basic concepts about the dif-
ferent techniques to run two distinct environments on a single device and the latencies
in virtualized environments. Next, Section 3 shows the state of the art of timing analysis
in multiprocessing embedded systems and some techniques designed for it. Section 4
presents the proposed circuit to measure interrupt latencies. The last Section 5 explains the
methodology followed in this work to perform the timing analysis and summarizes the
results. Finally, Section 6 concludes the paper.

2. Background
2.1. Multiprocessor System on Chip (MPSoC)

SoC technology is widely used due to its flexibility and reliability. Some SoCs have
a Field Programmable Gate Array (FPGA) to reconfigure the hardware design and adapt
the system to the constraints of each moment. Some modern platforms also have multiple
processing units, thus increasing the reliability and throughput and decreasing the cost.
These systems are called Multiprocessor Systems on Chips (MPSoCs). In these systems,
the Programmable Logic (PL) encompasses the hardware components, including the FPGA
and other circuits. On the other hand, the Processing System (PS) handles the software
aspects, which are executed by the processors and their associated peripherals. Both sides,
PL and PS, are connected and can share data at high speed—the recommended frequency
for the AXI interface that connects the PS and PL is up to 200 MHz.

From a software perspective, multiprocessors can be Symmetric Multiprocessors
(SMPs) if a single OS runs on all the cores and the work is divided between them, or they
can be AMPs if each core has different applications or OSs. In the first case, all the processors
can communicate with each other, and it is usually implemented when an application needs
more CPU power to manage its workload. In the other case, processors contain a master–
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slave relationship, and it is generally implemented when different CPU architectures or
OSs are needed for a specific application.

Each processor can have multiple cores—i.e., multicore systems. From a hardware
perspective, multicore designs can be homogeneous if the architecture of all the cores is
the same or heterogeneous or if there are cores with different architectures. In heteroge-
neous multicore systems, both AMP and SMP architectures can be employed, whereas in
homogeneous multicore systems, an SMP is the only viable option.

MPSoCs are widely used in applications that require two environments with differ-
ent OSs. Avionics, autonomous driving, and the medical field are examples where more
than one OS may be needed. For example, the RETINA project [6] provides time-critical,
predictable, and reliable communication for automotive applications where two environ-
ments with different criticality levels are executed. Embedded 5G edge computing systems,
computation-intensive AI, or Electronic Control Units (ECUs) are other examples [7].

2.2. Virtualization

Virtualization creates a representation of hardware resources to let different environ-
ments share them. It saves physical resources and energy consumption, and it makes the
management of the applications easier.

There are three virtualization levels [8]:

• Full or Hardware Virtualization Machine (HVM): It makes it possible to run an OS
inside a virtual machine, since the hardware architectures have the needed support
for virtualization.

• Paravirtualization (PV): Some of the privileged instructions of the OS kernel are
replaced by calls to the hypervisor.

• Static partitioning or core virtualization: It is a combination of the previous ones.

Virtualization is based on a hypervisor. ARM supports four exception levels (Figure 1),
thus determining the processor’s privilege and execution state. A hypervisor is a piece of
software running at Exception Level 2 (EL2), which is used as the interface between the OS
and the hardware. It allows for running multiple Virtual Machines (VMs) with different
OSs and applications and distributes physical resources between them. A fundamental
characteristic of hypervisors is the isolation between the guests, which increases the se-
curity of the system. The most common hypervisors in MPSoCs are type 1 and type 2.
The aforementioned types constitute a classification based on where the hypervisors are
executed: while the first runs directly on hardware, the second runs on a host OS.

  

EL0 Applications

EL1 Operating Systems

EL2 Hypervisors

EL3 Firmware

P
riv

ile
ge

Figure 1. Exception Levels (ELs) on ARMv8 architectures.

2.3. Xen Hypervisor

Xen is a widespread and well-documented open source hypervisor. It runs directly on
hardware—i.e., it is a type 1 hypervisor—and combines full virtualization and paravirtual-
ization to achieve the best performance.

Xen guests or VMs are called domains. Each domain runs an isolated OS or application.
Dom0 is the first domain started by the hypervisor, and it runs a Linux OS. This domain
can access the hardware resources and can manage other domains with XenControlTools.
The other domains are called DomU, and they do not have privileges—i.e., they cannot
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directly access the hardware resources. They can run any OS, but they can only be created
while Dom0 is running. In I/O operations, Xen uses grant tables to share or transfer
memory pages between domains. It marks these I/O requests by the event channels using
a technique called hypercall. When the domain is scheduled, it checks the event channels
and delivers the pending events by calling the corresponding interrupt handler [9].

Each domain has one or more virtual CPUs (vCPUs) assigned, and the guest’s OS
sees each vCPU as a single physical CPU. Each core can create eight vCPUs. Xen’s Credit
Scheduler synchronizes all the vCPUs with a fair share algorithm based on proportional
scheduling [9]. Xen usually allocates just one vCPU to each domain, thus containing the
information related to scheduling and event channels. Figure 2 [10] shows the architecture
of Xen.

APU

Xen

DomU
Dom0

Linux
DomU

Figure 2. The architecture of the Xen hypervisor. Adapted with permission from Ref. [10]. 2023, Sara
Alonso (979-8-3503-0385-8/23/$31.00 ©2023 IEEE).

2.4. Jailhouse Hypervisor

Jailhouse is a partitioning—i.e., it combines HVM and PV—open source hypervisor
based on Linux, and it is a type 1 hypervisor. It allows for running bare metal applications
or adapted OSs besides Linux.

Jailhouse is lightweight, as it aims for simplicity rather than feature richness. Com-
pared to other hypervisors, it does not support the overcommitment of resources. For exam-
ple, it does not offer vCPUs to guest systems. Thus, it does not need a scheduler to manage
the resources and only virtualizes the software resources required. Instead of emulating
the hardware resources as other hypervisors do, Jailhouse divides hardware into isolated
compartments called “cells”, so they are fully dedicated to guests called “inmates”, which
can control the resources assigned to the cell. The hypervisor manages the cells and ensures
the isolation between them. There is a Linux root cell, which is the first started by the
hypervisor. This cell has a kernel module and some tools to create, run, stop, and destroy
other cells. Figure 3 shows the architecture of Jailhouse.

Jailhouse

Linux

CPU0

cell0root cell

Guest

OS

CPU1 CPU2 CPU3

Figure 3. The architecture of the Jailhouse hypervisor.
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2.5. OpenAMP

OpenAMP is not a hypervisor, as it does not virtualize the CPU or isolate the different
VMs. It just uses virtualization for some memory addresses. However, it is interesting
to measure its latencies too, because it is also used for running multiple environments,
and likewise an extra software may introduce latencies.

Typically, hypervisors are used for running different OSs on homogeneous cores.
OpenAMP, instead, is used for running different OSs on heterogeneous cores. It is an open
source AMP multicore framework, as it uses an AMP software architecture. The most
typical scenario in AMP systems is having Linux on the APU and an RTOS or a bare metal
application running on the RPU.

When independent software stacks run on the processor cores, it is helpful to standard-
ize how the environments interact. OpenAMP is a solution for doing so. It defines mecha-
nisms to manage the life cycle of the remote processor—load/start/stop—and message
passing between cores. It also allows for configuring the environments, sharing resources
between environments, and porting any OS on top of a standardized abstraction layer.

OpenAMP can handle interrupts, access devices, and manage the memory using the
Libmetal library. This library also provides Application Programming Interfaces (APIs)
for synchronization primitives. There are three fundamental modules in the OpenAMP
architecture which use Libmetal and are implemented in the upstream Linux kernel [11]:

• VirtIO: A virtualized communication standard for network and disk device drivers. It
is an abstraction layer over devices in a paravirtualized hypervisor that manages the
shared memory for OS interactions.

• Remoteproc: Allows a Linux master to manage remote processors—this allows the
LCM of the slave processors. It allocates system resources and creates VirtIO devices.

• RPMsg: Provides Interprocess Communication (IPC) between master and remote processors.

To startup remote processors, first, OpenAMP assumes the master is already running,
and the remote processor is waiting or powered down. Then, the OpenAMP master loads
the remote processor firmware into the memory location. Finally, the OpenAMP master
starts the remote processor, waits for it, and establishes a communication channel with it
(Figure 4 [10]).

APU

Linux

RTOS /

Standalone

OpenAMP

RPU

RMPsg

Remoteproc

VirtIO

Figure 4. The architecture of the OpenAMP framework Adapted with permission from Ref. [10].
2023, Sara Alonso (979-8-3503-0385-8/23/$31.00 ©2023 IEEE).

OpenAMP can be complementary to hypervisors. For instance, Cinque et al. [1]
proposed using Xen and OpenAMP combined to share RPU resources between VMs that
run over APUs—i.e., they used OpenAMP to use the RPU while multiple VMs were
running on the APU thanks to a hypervisor.
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To summarize, OpenAMP provides a software framework for developers to enable MP-
SoC LCMs, loads firmware across a multiprocessor system, and establishes communication
between the processors.

2.6. Latencies in Embedded Systems

Hard real-time systems must meet specific timing requirements. They have to produce
the expected result in a specific time constraint, coordinate independent clocks, and operate
synchronously [12]. To evaluate the predictability of the system, the latency—i.e., the time
between an event and the response to that event—and the jitter—i.e., the latency varia-
tion between iterations—must be studied. Usually, applications aim to achieve low and
deterministic latency and bounded jitter. Latencies are further described in the following:

• Latencies in OSs: The most significant latency of an OS is the kernel latency [13].
In Figure 5, a task is running when an interrupt happens, thus indicating an external
event has occurred. The task goes to standby mode, and the interrupt is handled. Then
the scheduler is called, and it decides which task runs next—it can be the previous one
or a different one depending on the priority of each task. When the scheduler finishes,
the task runs.
In Figure 5, the interrupt latency (1) refers to the duration from the generation of an
interrupt to its handling, i.e., the first Interrupt Service Routine (ISR)’s instruction is
executed. The handler duration (2) is the time spent in the ISR. The scheduler latency
(3) is the time between a stimulus, which indicates if an event has happened, and the
kernel scheduler being able to schedule the thread that is waiting for the stimulus to
happen. The scheduler duration (4) is the time spent, inside the scheduler, to decide
what thread to run and switch the context to it.

• Latencies in MPSoCs: Interrupt latency is one of the main latencies in MPSoC tech-
nology, as explained later. It depends on different factors such as interrupt controller
implementation, low-level software architecture, OSs, middleware stacks, peripheral-
specific interrupt handling requirements, the priority of the interrupt, and interrupt
handler implementation [14]. In MPSoC technology, the PL and PS are communi-
cated using AXI buses, and data exchange transactions may also increase latency [15].
Network congestion can also create some latency [16].

• Latencies with hypervisors and AMP frameworks: On the one hand, a hypervisor
increases the OS’s kernel latency—especially interrupt latency—and the network
latency. It virtualizes the physical resources so that all the guests can share them,
and this increases the latency, which stands out in the case of the network. It also
affects the shared memory, since this is also virtualized [17]. Regarding the interrupt
latency, the physical interrupt controller is used by the hypervisor, and the OSs of the
VMs cannot access it. Instead, the hypervisor emulates a virtual interrupt controller
for each VM—i.e., the interrupt source of the vCPU becomes the virtual interrupt
controller [18]. Thus, hypervisors affect latency due to their mechanism to manage
interrupts. On the other hand, AMP frameworks also affect the interrupt latency,
as both processors need to communicate to manage interrupts. The IPC is affected
because it is carried out by virtualized shared memory. It can also influence when the
remote processor uses the network, as it has to ask for access to the APU.

• Interrupt latency: After identifying latencies in OSs, MPSoCs, hypervisors, and AMP
frameworks, the interrupt latency comes up as one of the main latencies in embedded
systems. In this work, latency is defined as the time difference between the interrupt
triggering and its handling. In a virtualized system, Pavic and Dzapo [5] define it with
the following Equation (1):

t = tirq + thyp + tos + tuser (1)

where t is the total latency of the interrupt, tirq is the time required by the hardware
to process the interrupt source and call the ISR, thyp is the latency introduced by the
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hypervisor, tos is the delay introduced by the OS’s internal mechanisms, and tuser
is the time for a task to be executed in response to the interrupt after it is handled.
The parameter thyp can be very important, as it depends on the state and utilization of
all the VMs and CPUs [10]. 979-8-3503-0385-8/23/$31.00 ©2023 IEEE.

  

Waiting 
task

Running 
task

Interrupt
handler Scheduler

Interrupt
latency

Handler 
duration

Scheduler 
latency

Scheduler 
duration

1 2 3 4Interrupt

Kernel latency

Figure 5. Kernel latency components in OSs Adapted with permission from Ref. [13]. 2023, Sara
Alonso (979-8-3503-0385-8/23/$31.00 ©2023 IEEE).

3. Related Work

In the literature, there are many timing analyses of virtualized environments in the
cloud or PC. For example, Abeni et al. [19] researched the latencies introduced by the Xen
and KVM hypervisors, and they provided some guidelines for configuring the VMs to
reduce those latencies; Tafa et al. [20] evaluated the CPU consumption, memory utilization,
and transfer time in five hypervisors, and Queiroz et al. [21] compared general purpose hy-
pervisors for hard real-time applications by measuring the latencies introduced by different
hypervisors using Cyclictest—a used program to measure the period of time between when
a timer expires and the kernel executes the thread set by that timer. Additionally, interrupt
latency has also been studied in OSs. For instance, Macauley et al. [22] studied the speed
with which the processor can respond to interrupts for members of the Intel 8086 family.
Moreover, some tools for timing analysis on virtualized environments have also been
proposed, such as the one designed by Xu et al. [23]. This is a cache-aware compositional
analysis technique used to ensure timing compliance on a multicore virtualized platform.
However, it was not designed for embedded systems. Latencies caused by OSs have been
extensively investigated in embedded systems. However, in recent years, the latencies
caused by virtualization in embedded systems have also begun to be studied.

Table 1 summarizes some of the most relevant works that have performed a timing
analysis of an OS or a virtualized environment in embedded systems, including a brief
description of the works, the hardware platform, the SW environment where the analysis
was carried out, and the tool used for the analysis. Some make a timing analysis of
virtualized environments [8,24,25], others analyze the interrupt latency on an OS [26,27],
and others analyze the interrupt latency on virtualized environments [28–33]. Finally, some
propose new tools for analyzing latencies in embedded systems [34–38].

The table shows that not many studies provide a timing analysis on virtualized
environments on embedded systems. It also states that all of them use software tools for
measuring latencies. Moreover, all the works that provide a tool for timing analysis are for
OSs and do not specify if they could work on virtualized systems.

The RTOS also provides a tool to analyze the performance of the OS called Thread-
Metric. Among the tests provided by this tool, there is one to evaluate interrupt handling.
However, this is also a software tool, and it considers only software interrupts.

Thus, this paper presents a hardware circuit to measure latencies, which increases the
accuracy of the measurement and provides a timing analysis of the interrupt latency in
virtualized environments on a Zynq UltraScale+ platform.
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Table 1. State of the art on timing analysis in embedded systems.

Description HW Environment SW Environment Tool

Timing analysis on virtualized environments

Alonso et al. [24] analyze the influence of Xen on the network connection
delay and the network bandwidth. Zynq UltraScale+ MPSoC ZCU102 Xen hypervisor with Linux guests ping and iperf

Beckert et al. [25] provide a Worst-Case Response Time (WCRT) analysis of a
sporadic server-based budget scheduling with a hypervisor. ARM9 based LPC3250@ 200MHz µC/OS-MMU hypervisor modified with

µC/OS-II guests
PyCPA framework
and Python

Sebouh et al. [8] evaluate the performance overhead introduced by different
hypervisors. banana-pi board (ARM) Xen and Jailhouse hypervisors with Linux

and Cpuburn-a8 application Processor’s internal counter

Timing analysis of interrupts on OSs

Stangaciu et al. [26] propose an extension for FreeRTOS to guarantee the
absence of task execution jitter. They also present a detailed analysis of this
extension, including an analysis of interrupt latency and jitter.

EFM32_G890 _STK board FreeRTOS zlgLogic and Keil uVision

Liu et al. [27] propose RTLinux-THIN, a hybrid OS based on two-level hard-
ware interrupts, and analyze and model the worst-case real-time interrupt
latency for a Real-Time Application Interface (RTAI); they identify the key
component for its optimization.

Platform based on Intel
PXA270 processor µC = OS-II and ARM Linux combination mplayer, Bonnie and iperf

Timing analysis of interrupts on virtualized environments

Alonso et al. [30] compare the influence of Xen and OpenAMP in PL-to-PS
and PS-to-PL interrupts. Zynq UltraScale+ MPSoC ZCU102 Xen hypervisor and OpenAMP with bare

metal and FreeRTOS guests Hardware ILA

Alonso et al. [28] compare the influence of Xen and OpenAMP in a PL-to-
PS interrupt. Zynq UltraScale+ MPSoC ZCU102 Xen hypervisor and OpenAMP with bare

metal guests Hardware ILA

Alonso et al. [29] analyze the influence of OpenAMP in the latencies of a
PL-to-PS interrupt. Zynq UltraScale+ MPSoC ZCU102 OpenAMP with bare metal and

FreeRTOS guests Hardware ILA

Klingensmith et al. [31] present Hermes, a hypervisor that enables standalone
applications to coexist with RTOSs and other less time-critical software, on a
single CPU and measure the interrupt latency.

ARM-Cortex-M CPUs Hermes hypervisor with FreeRTOS guests Performance counters

Garcia et al. [32] present work-in-progress results of hardware-based hyper-
visor implementation and study the performance of interrupt virtualization. Xilinx ML505 board Hardware hypervisor with AIC_IMR and

HyperIMR guests
ISIM simulator and
Chip-Scope

Sá et al. [33] port a hypervisor to RISC-V, which enables the interrupts, and
evaluate their latency Zynq UltraScale+ MPSoC ZCU104 Bao hypervisor with standalone guest Timer
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Table 1. Cont.

Description HW Environment SW Environment Tool

Tools for timing analysis

Adam et al. [34] perform real-time measurements of Linux kernels with the
PREEMPT_RT patch with new real-time software modules designed by the
authors.

Raspberry Pi and BeagleBoard Linux OS Self-tool

Strnadel et al. [35] present a novel hybrid timing analysis technique and
show its practical applicability in the area of Worst-Case Execution Time
(WCET) analysis.

MSP430 FreeRTOS Self-tool

Schliecker et al. [36] present a novel analytical approach to provide the WCRT
for real-time tasks in multiprocessor systems with shared resources. Multicore ECUs RTOS based on the OSEK/VDX Self-tool

Brylow et al. [37] present the Zilog Architecture Resource Bounding Infras-
tructure (ZARBI), a tool for deadline analysis of interrupt-driven Z86-based
software, and make a deadline analysis of handling an interrupt.

Z86-based microcontroller Bare metal ZARBI (self-tool)

Liu et al. [38] propose a method to measure the interrupt response time. W2 chip Linux with real-time pre-emption patch Timer (self-method)
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4. Design of a Hardware Circuit to Measure Latency Accurately

As a main contribution of this work, a new hardware tool has been designed to mea-
sure the interrupt latency in SoC devices with an FPGA: the Latencies IP. This tool has been
designed in VHDL and is capable of recording a large number of latency measurements,
which can later be recovered and analyzed. The module has been designed to measure the
latency introduced by hypervisors without interfering with the software structure of the
system. While its primary purpose is interrupt latency measurement, the Latencies IP also
boasts versatility, thus enabling other types of timing analysis. The aforementioned Laten-
cies IP has been specifically designed by the authors from scratch for the task; nonetheless,
the AXI Lite Slave interface comes from open source under an AMPA license.

Figure 6 shows the internal architecture of the Latencies IP, and Table 2 [10] describes
all its signals and ports.

Latencies IP

PL

PL circuits

PS

RAM
lat(i) = ack_in(i) - irq_in(i)

irq_in
ack_in

we
alarm_lat

last
max
min
num
alarm

S01_AXI

S00_AXI

Figure 6. Interconnection and data of the Latencies IP.

Table 2. Ports and internal data of the Latencies IP core [10] (979-8-3503-0385-8/23/$31.00 ©2023 IEEE).

Port Signals In/Out Description Bits

axi_s00 In AXI slave port to read the RAM from PS by AXI. 32
axi_s01 In AXI slave port to read other internal data from PS by AXI. 32

irq_in In The beginning point of the latency the user wants to measure—i.e., a signal
that defines when the interrupt is set. 1

ack_in In The ending point of the latency the user wants to measure—i.e., a signal that
defines when the interrupt is handled. 1

Internal Data In/Out Description Bits

RAM Out A RAM memory which saves the measured latencies. 512 × 16
we In It enables the measurements. 1
alarm_lat In A value that the latencies must not exceed. 16
last Out The last value of the processed latencies. 16
max Out The maximum value of the latencies processed until that moment. 16
min Out The minimum value of the latencies processed until that moment. 16
num Out It indicates how many measurements have been made until that moment. 16
alarm Out It is activated when the calculated latency exceeds the alarm_lat value. 1

The block has two AXI Lite Slave interfaces with 32-bit data buses and two input
ports, irq_in and ack_in. Two different buses are used for the measurements saved in
RAM and the other data to make it easier for the user to manage them. In the IP core,
the latency of each interrupt is calculated following Equation (2) and stored in a RAM
memory. This RAM is connected to the S00_AXI interface so that the microcontroller can
read all the data using AXI. Thus, the PS can manage the obtained data easily from software.

latency = ack_in − irq_in (2)
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Using the data stored in the RAM, the Latencies IP also calculates some output
information saved in last, max, min, and num signals. It also sets the alarm signal when
the measured latency exceeds a specific value. These signals are stored in registers of
the S01_AXI interface, so the PS can also read them through AXI. The IP also has two
input registers that can be written using AXI from the PS: we, which enables making the
measurements, and alarm_lat, which specifies the value that activates the alarm signal
when the measured latency is bigger.

The Integrated Logic Analyzer (ILA)—i.e., a logic analyzer core that can be used to
monitor the internal signals of a design—can also produce the measurements that this
block makes. However, manipulating the data exported from the ILA is complex and slow,
and the number of measured interrupts is very limited. The IP block presented in this
paper facilitates the process significantly. In addition, it provides some extra data when the
maximum value or the alarm indicating that a latency determined by the user has been
exceeded—i.e., it is possible to know if every interrupt is handled before a deadline. This
tool is also an advance when compared with other tools that make the measurements by
software, as hardware measurements are usually more accurate.

On the other hand, the Latencies IP differs from other software tools that measure
interrupt latency, such as Cyclictest, because those tools focus on interrupts generated by
PS timers, while the IP proposed in this work focuses on interrupts that pass through the
PL–PS interface. In many applications, the real-time part—e.g., Time Sensitive Networking
(TSN), where coprocessing circuits in the PL side are needed for time-critical processing—is
implemented on the FPGA and uses interrupts and AXI signals to communicate with the
processor. The Latencies IP allows for the evaluation of the processor’s ability to handle
these PL interrupts in real time.

Moreover, with the Latencies IP, the user can precisely choose the measurement of the
interrupt latency and know more precisely what it is being measured. Therefore, the IP
provides transparency in the measurements and precision of one clock cycle of the PL side,
while Cyclictest’s precision depends on the core’s frequency—Cyclictest assumes a timer
resolution of less than one microsecond [39].

Additionally, Cyclictest is designed to be used on Linux environments, and running
it on other OSs requires additional effort from the user. The Latencies IP, instead, as it is
installed on PL, supports any OS or software.

5. Timing Analysis of Interrupt Latency by Means of a Dedicated Circuit

A set of latency measurements have been performed using the Latencies IP in different
scenarios. The Zynq UltraScale+ MPSoC ZCU102 evaluation board has been used for
these experiments. This platform has been selected due to its popularity in embedded
systems and its suitability to run hypervisors and AMP frameworks, as it is multicore
and multiprocessor.

The IP and the interrupt latency measurement methodology proposed in the paper can
be easily reused in SoC FPGA technologies (Xilinx Zynq, Intel FPGA Arria 10, or Intel FPGA
Cyclone V devices) [40], where the processing system is based on ARM microprocessors,
which is one of the most promising digital technologies for implementing smart controllers.

The selected platform has two major processing units in the PS: the APU with four
Cortex-A53 cores running at 1.2 GHz frequency and the RPU with two Cortex-R5 cores
running at 500 MHz frequency. It also has an FPGA in the PL part, which works at 100 MHz
in our design.

5.1. Hardware Design

Several applications use interrupts to communicate between the PL and PS and
combine hard real-time environments with soft real-time ones. In the automotive world,
ECUs or autonomous driving are some examples [41,42]. Another example is audio or
video stream data systems that usually work in real-time with an FIR filter in the PL [43].
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There are also some applications in which data are collected from a sensor and processed
in real-time, for instance, a pulse oximeter [44,45].

Based on the previous applications, a design was proposed, in which random data
are periodically generated, and the processor reads it through AXI to process or use it.
Although no specific use is given in this work, this data could be used for a cryptography
application that needs to create random keys periodically.

The main blocks of this design are the PS and a random data generator IP core, which
generates random data and stores it in a FIFO. The design follows this process:

1. A Triple Timer Counter (TTC) in the PS generates a periodic interrupt (ps_pl_irq_ttc1_0).
The frequency between interrupts allows the system to process data in real time.

2. A circuit in the PL (PL Random Data Generator) handles the interrupt and produces
random data, which is stored in a FIFO. The circuit generates another interrupt
(pl_ps_irq) when the data are ready to be read.

3. The PL interrupt is handled in the PS. In the ISR, the data from the FIFO in the PL
circuit (axi_rvalid) are read using AXI.

In this process, two latencies have been measured with the Latencies IP:

• T1—Latency in PS-to-PL interrupt: It is the latency from the moment the interrupt
is generated in the PS to its handling in the PL. The time between the generation of
the TTC interrupt in the PS and the generation of the interrupt that indicates that the
data are ready in the PL was measured. For this measurement, the Latencies IP was
connected with irq_in connected to ps_pl_irq_ttc1_0, and ack_in was connected
to pl_ps_irq.

• T2—Latency in PL-to-PS interrupt: It is the time from the moment the interrupt
is generated in the PL to its handling in the PS. The interrupt indicates that the
data are ready in the PL. For this measurement, the Latencies IP was connected
with irq_in connected to pl_ps_irq, and ack_in was connected to axi_rvalid—this
signal indicates that the AXI-read transaction to read the data of the FIFO in the ISR
was completed.

Figure 7 shows a diagram of the hardware design with the two Latencies IPs connected to
make the measurements. Table 3 summarizes the actions that occurred in each measurement.

PS
PL

Random Data
Generator

axi_rvalid

pl_ps_irq

ps_pl_irq_ttc1_0

irq_in

ack_in
T1

irq_in

ack_in
T2

Latencies IP

Latencies IP

Figure 7. Connections of the Latencies IPs in the design.

Table 3. Actions included in each measurement.

Measurement In/Actions

T1—PS-to-PL interrupt
The random data generator detects the new interrupt.
The random data generator generates and stores in an FIFO the random data.
The random data generator generates an interrupt indicating the data are ready to be read.

T2—PL-to-PS interrupt The scheduler stops the running task and gives the control to the PL interrupts’ ISR.
The processor reads the data from the random data generator using AXI.
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5.2. Software Scenarios

The experiment was carried out in eight different scenarios, so the influence of virtual-
ization on the interrupt latency could be perceived:

1. Standalone A53: The measurements are made on an A53 core directly, without any OS.
2. Xen: The measurements are made on a Xen’s domain without an OS, while Linux is

running on the Dom0. The hypervisor runs on the A53 cores. Four vCPUs pinning to
one physical core are used for Dom0, as less is not recommended [46], and one vCPU
is pinning to another physical core for the other domain. In this implementation, Xen
uses the default scheduler, i.e., the Credit Scheduler. This scenario is the same as
the first but includes the Xen hypervisor.

3. Xen stress: Dom0 is stressed while the measurements are taken in another domain.
This scenario is the same as the second, but the system is stressed.

4. Jailhouse: The measurements are made on a Jailhouse’s cell without an OS, while
Linux is running on the root cell. One different A53 core is used for each cell. This
scenario is the same as the first but includes the Jailhouse hypervisor.

5. Jailhouse stress: The root cell is stressed while the measurements are taken in another
cell. This scenario is the same as the fourth, but the system is stressed.

6. Standalone R5: The measurements are directly made on an R5 core directly, with-
out any OS.

7. OpenAMP: The measurements are made on an R5 core with OpenAMP without an
OS, while Linux is running on the four A53 cores. This scenario is the same as the sixth
but includes OpenAMP.

8. OpenAMP stress: The APU running Linux is stressed while the measurements are
taken in the RPU. This scenario is the same as the seventh, but the system is stressed.

In the scenarios with a hypervisor, the VM, where the measurements are done, accesses
the hardware resources in passthrough mode to achieve lower latency.

In the stressed scenarios, the stress-ng [47] tool was used to exercise various physical
subsystems and to test the performance under extreme conditions. Four stressors of all
types were executed in parallel (stress-ng -all 4). The -all option includes the stressors of
the vm and interrupt classes, which are the ones that can affect these scenarios the most.
Repeating the measurements specifically using these stressors instead of the generic -all
option yielded the same results.

It is worth mentioning that to compile the application programs, a common and null
optimization level (-O0) was established for all cases. This decision stems from the fact that
while compiler optimization levels may potentially contribute to performance enhance-
ments, they can also introduce distortions that favor certain types of code over others,
thus complicating code tracking and monitoring. Furthermore, the level of optimization
does not carry a direct relationship with the object of study, since the proposed tool must
measure latency, regardless of the level of optimization required when compiling.

5.3. Results

A total of 400 measurements were measured with the Latencies IP, as 385 is the value of
the minimum number of samples to obtain statistically reliable results, which are obtained
for a 95% confidence level—error range of 5%—assuming the population size is infinite.
Equation (3) [48] was used to calculate the number of samples needed.

n =
z2 p(1 − p)

e2 (3)

where n is the sample size, z is a value obtained from the confidence level—for a confidence
level of 95%, z is 1.96—p is the proportion—as this information is unknown, a 0.5 value
was used—and e is the error range.

Table 4 summarizes the measurements’ average, median, maximum, jitter, and devi-
ation values. The jitter is the difference between the average value and the maximum or
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minimum value—the greatest value is chosen. The deviation, instead, is calculated using
Equation (4).

dev =

√
∑n

i=1(xi − x̄)2

(n − 1)
(4)

where xi is the value of each measurement, x̄ is the mean value of the measurements, and n
is the sample size—400 in our test.

Table 4. PL–PS interrupt latencies’ measurements (ns).

T2

Avg. Median Max. Jitter Dev.

Standalone A53 638.15 640.00 650.00 11.86 7.30

Xen 2319.86 2310.00 2760.00 440.14 79.20

Xen stress 2317.57 2290.00 3330.00 1012.43 74.56

Jailhouse 2084.00 2080.00 2120.00 36.00 9.32

Jailhouse stress 2078.39 2070.00 2130.00 51.61 12.99

Standalone R5 746.17 750.00 760.00 16.17 7.16

OpenAMP 2228.84 2210.00 2750.00 288.84 188.73

OpenAMP stress 2233.57 2200.00 2770.00 536.43 207.94

In the proposed application, T1 is a constant value, and there is no jitter, since it is the
time that the random data generator needs to do a certain job, which is always the same.
Thus, the latencies of the interrupts from PS to PL were low and deterministic. Furthermore,
they are not affected by stress or the different software used to run two environments. But it
might not be like that in other applications, for example, if the PL side circuit uses data
from sources with variable response times. Therefore, the T2 values were analyzed, as they
show the impact of the hypervisor or AMP framework, and they are the latencies that limit
the real-time requirements.

Figure 8 shows graphically the statistical average and maximum data collected in
Table 4 regarding the scenarios running on APU. Figure 9 shows the statistical average and
maximum data regarding the scenarios running on RPU.
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1 500
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Standalone Xen Xen stress Jailhouse Jailhouse stress

(ns) AVG and MAX on APU

AVG MAX

Figure 8. Comparison between the PL-to-PS latencies in each scenario running on APU.

Before analyzing the results obtained in the different setups, it is necessary to highlight
the contribution of this paper in terms of the circuits, the software, and the methodology to
carry out accurate latency measurements in multiprocessing embedded systems. Latencies
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IPs are able to register on the PL side a large number of latency measurements without
interfering in the execution of the software of the processing systems.
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1 500
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Standalone OpenAMP OpenAMP stress

(ns) AVG and MAX on RPU

AVG MAX

Figure 9. Comparison between the PL-to-PS latencies in each scenario running on RPU.

There are different options to access the data measured by the Latencies IP. In this
case, it was decided to access them through software. As they were stored in a memory
communicated using AXI, the data were easily readable from the PS. Therefore, a software
program was designed to read this data using AXI, save them in an array, and, when
finished, print them directly on the serial terminal. Once all the needed data were obtained,
they were processed on the PC to calculate the average, median, maximum, jitter, and
deviation values, and the results were graphed.

Next, we proceeded to analyze the results of the measurements. Xen, Jailhouse, and
OpenAMP affected the T2 latency. As expected, Jailhouse was deterministic and did not
introduce as much latency as Xen. This is because it is a partitioning hypervisor and
does not need to virtualize the hardware. Moreover, the stress does not have any effect
on it. The cell containing the application that handles the PL interrupt runs in one core,
while the stress is applied in a different one, so the stress does not affect the execution of
the application.

In contrast to this, the Xen hypervisor was less deterministic and had the highest
latencies. The maximum latency was slightly higher than the average. This did not occur
with Jailhouse, which always achieved similar values and very small jitter. This makes
the Jailhouse hypervisor more suitable for real-time applications. In Xen’s case, the stress
did not affect the average and median values, but it did affect the maximum value. Some
spikes appeared, which could be critical in hard real-time applications, since the worst case
must be taken into account. In this scenario, the stress was applied to the Dom0 vCPUs
running on one physical core, while the application that managed the PL interrupt ran on
another vCPU running on a different core. Therefore, the application is isolated and should
not be affected by stress, but as has been proved, it was slightly affected.

In the case of OpenAMP, the average latency it introduced was similar to the one
introduced by Xen, and the maximum latency was quite bigger than this value, so this tool
is also less suitable than Jailhouse for hard real-time constraints. The stress almost did not
affect latency, since it was applied to A53 cores, while the application that handled the PL
interrupt ran on an R5 core.

It is also noticeable that the latency was higher in the R5 cores. This is because the A53
cores work at a frequency of 1.2 GHz and the R5 cores at 500 MHz. If both cores worked
at the same frequency, the results of the standalone A53 case would double those of the
standalone R5 case. This is expected, because the R5s are real-time cores and usually have
lower latencies.

It is worth mentioning that there are some techniques to reduce interrupt latency,
such as the one presented in [14] to move the ISR to the On-Chip Memory (OCM) or some
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hypervisor configuration options. However, these options are left out of the study, since the
main objective of this work was to present the Latencies IP and its use in some scenarios
with multiple OSs.

The comparison between the measurements made by the Latencies IP or other tools to
measure interrupt latency is complicated, since each tool approaches the measurement in
different ways. For example, to make Cyclictest and Latencies IP comparable, Cyclictest
software should access memory space addressed on the PL side, so that the PS–PL AXI
interface is activated, to achieve measurements comparable to those of the interrupts
crossing the PL–PS interface, which could be an interesting future work. Regarding the
precision of both tools, Cyclictest uses a high-resolution timer, while the Latencies IP has a
precision of one clock cycle, which is 10 ns in our design.

In terms of resources, while Latencies IP uses few hardware resources on the PL side,
Cyclictest uses PS side resources such as counters, timers, and memory space. To register
400 samples, Latencies IP only requires 94 flip-flops, 36 LUTs, and 0.5 BRAM in the Zynq
UltraScale+ XCZU9EG.

6. Conclusions

The implementation of two environments that run two different OSs is becoming
increasingly widespread due to the security and real-time requirements of modern appli-
cations. Some popular techniques to achieve this are hypervisor-based virtualization and
AMP frameworks. However, these tools introduce some latencies that must be character-
ized for real-time applications.

The Latencies IP has been designed for this purpose, which is installed in the FPGA
and is able to measure any latency defined by the user, such as the latency of interrupts that
pass from the FPGA to the processing system and vice versa. This IP provides transparency
in the measurements it performs, and its precision is one FPGA clock cycle. Moreover,
the Latencies IP allows for the evaluation of the processor’s ability to handle interrupts
generated on the PL side, which is usual when hard real-time coprocessing circuits must
communicate with the processing side. This kind of latency measurement is not done
with tools in the literature like Cyclictest. In addition, it supports the use of any OS on
the processor.

In addition, a comparison of the interrupt latency caused by two hypervisors—Xen
and Jailhouse—and one AMP framework—OpenAMP—was carried out using the pro-
posed IP. The Latencies IP saves a large number of measurements in an FPGA memory,
which is communicated through AXI. These measurements were managed in the processor
and printed. Then, the latencies were processed to obtain statistical data and compare
the scenarios.

It was observed how stress affected the aforementioned software. In this study, it
has been concluded that Jailhouse is the most suitable for hard real-time applications,
as its maximum latency is limited. It was close to the average value, which implies
that the jitter was very small, even in stress scenarios. In the case of Xen and OpenAMP
however, the average latencies were higher and had a higher jitter, which could compromise
compliance with hard real-time constraints. Additionally, in Xen’s case, stress emphasized
this condition.

The latency measurements were carried out using a hardware circuit and software for
the PS side and a PC specifically designed for this purpose, which represents an advance
compared to other existing tools.

In future work, using the proposed tool, more measurements will be performed with
other hypervisors and different OSs. Among these scenarios, it is especially interesting
to include two in which Linux runs directly in the PS, in one case in the general purpose
processor and the other in the real-time processor, so that they can be compared to those
carried out in this work. We also propose to expand the capabilities of the hardware module
to obtain temporal analysis in more complex multiprocessing applications. Furthermore,
the research is limited to theoretical analysis, and a case study could complete the work.
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It would be interesting to use the Latencies IP in a specific application and compare the
results with those obtained using other measurement tools.
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