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Tesiaren laburpena

Arrantzak iraganean, eginkizun garrantzitsua izan du gizartean, eta hala jar-
raituko du etorkizunean ere, biztanleriari proteina eta beste mantenugai batzuen
iturri garrantzitsua eskainiz. Arrantzak aurrerapen teknologikoak izan dituen
arren, bere iraunkortasunaren eta eraginkortasunaren inguruko kezkak geroz
eta handiagoak dira. Aipagarria da, gaur egun, mende hasieran arrantzatzen
zuten arrain kopuru bera harrapatzeko, munduko arrantza-flotak %20 gehiago
kutsatzen duela. Arrazoi asko daude ingurumen-errendimenduaren joera negat-
ibo honen atzean, besteak beste, arrantza gaitasunaren gorakada eta arrainen
biomasaren beherakada. Gainera, zenbait ikerketek, klima-aldaketaren ondorioz
arrainen biomasa eta gorputz-tamaina murriztu, eta haien distribuzio espaziala
aldatuko dela aurreikusten dute. Honek, arrainen biomasarekiko presioa, eta
ingurumen-errendimenduaren joera negatiboa areagotuko ditu etorkizunean.

Motor eraginkorragoetan, ontzi handiagoetan eta erregai hobeagoetan inber-
titzea izan da arazo honi irtenbidea aurkitzeko hartu den bide nagusia, baina
bide hau kostu handiekin eta epe luzera bakarrik da bideragarria. Bide horren
alternatiba bat, arrantza ontzien operazioak optimizatzea da, arrantza-estrategia
eraginkorragoak zehaztuz. Epe laburreko arrantza-estrategia eraginkorragoak ze-
hazteko prozesu honen barruan, ontzien ibilbideak optimizatzea barne sartzen da.
Hala ere, hau oso problema konplexua da arrantzan erabiltzen dituzten objektu
mugikor dinamikoen ezaugarriengatik.

Arrantzaleek historikoki, beraien arrantza-estrategia eta operazioak urteetan
zehar lortutako ezagutzan oinarritu izan dituzte. Hala ere, arrantza-sektoreak
gero eta gehiago izaten ditu kontuan teknologia berritzaileak, hala nola, mod-
elo ozeanografikoak, itsasontzien errendimendu modeloak eta espezieen distribuzio
modeloak. Informazio iturri berri hauek hainbat aplikazioren esplorazioa erraztu
dezakete, besteak beste, modelizazio matematikoetan oinarritutako teknikak er-
abiltzea. Honen adibide da arrantza-estrategia hobeak diseinatzeko ikerketa oper-
atibo eta ikerketa automatikoen arteko konbinazioa. Hala ere, arrantza-sektoreak
ez du balio potentzial guztia ateratzen biltzen diren datuetatik eta beste sektoree-
tan baino gutxiago erabiltzen dira datuak.

Arrantza-sektorearen ikerketa operatiboan oinarritutako aplikazio gutxi pro-
posatzen dira literaturan, nahiz eta ikerketa operatiboak ikuspegi eta estrate-
gia baliotsuak izan jasangarritasun erronkei aurre egiteko. Ikerketa gehienak
eguraldiaren bideratze-problemetan oinarritu izan dira, hau da, puntu batetik
besterako ibilbidea, eguraldiaren ziurgabetasunaren arabera zehaztean. Hala ere,
arrantza-optimizazioak aurre egin behar dio ere harrapatu nahi den arrain es-
peziea aurkitzeari lotutako ziurgabetasun handiari. Horrela, arrantza bideratze-
problemek helburu klasikoen eta arrantzako berezitasunen arteko trukaketak kon-
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tuan hartu behar dituzte (adibidez, lehorreratutako arrain bakoitzeko erregai-
kontsumoa). Ikerketa batzuk arrantza-ibilbideak optimizatu dituzte, arrantzaren
berezitasun batzuk kontuan hartuta. Hala ere, problemaren formulazioa nahiko
sinplea zen, arrantza estrategia bat egun gutxi batzuetarako definituz, eta dis-
tantziak funtzio objektibo gisa erabiliz. Ikerketa horiek ez zuten kontuan hartu
ez arrantza-bidaiaren iraupen osoa, ez ontziaren errendimendua, ez atunaren
kokapena eguraldi-baldintzen arabera, ez eta arrantza denbora-tartea. Horrez
gain, ikustatu beharreko arrainak batzeko gailuen (dFAD) kopurua txikia eta
finkoa zen, itsasontzi batek itsasoan dauden dFAD guztien artetik onenak hau-
tatzen dituela kontuan hartu gabe.

Irudia 0.1: Doktorego-lanaren eta ikerketaren egitura nagusiaren eskema.
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Guzti honegatik, tesi hau arrantzarako estrategien eta operazioen hobekuntzan
oinarritzen da, ibilbideak optimizatzeko metodo ezberdinak erabiliz. Helburu hau
gogoan, arrantzarako bideratze-problema berri eta errealistak formulatzen dira eta
horiek konpontzeko algoritmo metaheuristikoak proposatzen dira. Gaur arte, ez
dago beste lan zientifikorik arazo honi bere konplexutasun osoan heldu dionik. Tesi
honetan lortutako emaitzei esker, arrantzaleen jardueraren jasangarritasuna eta
efizientzia nola hobetu daitekeen ezagutuko da, esfortzua, kostua eta ingurumen-
inpaktua murriztuz.

0.1 Irudiak tesi honen marko orokorra erakusten du. 1. Kapituluak arrantza-
efizientziaren egoerari, ikerketa operatiboaren aplikazioari, eta bideratze-problema
bezalako arloei buruzko informazioa eskaintzen du. Era berean, inguratze
arrantza-flotaren ezaugarriak eta arrantzan egiten diren operazioak ere azaltzen
ditu, flota hau kasu praktiko gisa erabiltzen baita tesi honetan zehar. 2. Kapit-
uluak, arrantza erabakietan laguntzeko sistemaren (DSS) marko orokor bat es-
kaintzen du, ontziaren bideratzearen arloan dauden lanetan oinarrituta. Kapitulu
honek, gainera, existitzen diren arrantza flota-motak lau talde nagusitan sailkatzea
proposatzen du, ibilbideak modu berean optimizatu daitezkeela kontuan hartuta.
Behin arrantza-ibilbideen optimizazioa erabakitzeko laguntza-sistema (FRODSS)
baten markoa definituta, hurrengo kapituluak, bi arrantza-problema desberdi-
nen aplikazio praktikoan zentratzen dira: (i) inguratze itsasontzi bakar baten
bideratze-probleman (3. Kapitulua); eta (ii) inguratze arrantza-flotaren bideratze-
probleman (4. Kapitulua). Problemen arteko ezberdintasun nagusia da lehenen-
goan ontzi bakar baten ibilbidea optimizatzen dela, eta bigarrenean berriz, ontzi
batzuen ibilbideak optimizatzen direla aldi berean. Ondorio orokorrak eta etork-
izuneko lanak 5. Kapituluan aurkezten dira. Tesi honen kapitulu eta helburu na-
gusiak hurrengo parrafoetan zehazten dira.

Lehen helburua, 2. Kapituluan deskribatzen den bezala, honako hau da:

1. Helburua

Arrantza-flota bakoitzeko arrantza-ibilbideen optimizazioa erabakitzeko laguntza-
sistemen (FRODSS) marko orokor bat proposatu kontuan hartuta arrantza
aparailuen egungo egoera.

Helburu hori lortzeko, lehen urratsa arrantza-flotaren ibilbide taktiko eta
operatiboaren problema definitzea da, eta, horrekin batera, FRODSS sortzea.
FRODSS honek bost geruza ditu: (i) ingurumen-geruza; (ii) itsasontzia mode-
latzeko geruza; (iii) arrantza-geruza; (iv) bideratze eta planifikazio geruza; eta
(v) erabaki-geruza (ikusi 0.1 Irudia). Gainera, funtzio objektiboei, murrizketei eta
optimizazio-algoritmoei buruzko berrikuspen integral bat egiten da, ontzien bider-
atze problema operatibo eta taktikoetan zentratuz eta arrantzara egokituz. Euskal
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arrantza-flota desberdinak kasu azterketa gisa erabiliz, ondorioztatu da, arrantza
ontziak lau multzo nagusitan sailka daitezkeela, arrantza ibilbideak modu berean
optimizatuz lau multzoetako ontzientzat. Karakterizazio hau haien antzekotasune-
tan oinarritzen da, hala nola, xede-espezieak, arrantza-aparailuak eta arrantza-
eremuen mota eta distantzia. Lau talde hauek dira: (i) itsasertzeko flota txikia;
(ii) flota pelagiko handia; (iii) flota demersal handia; eta (iv) urruneko flota.

Behin FRODSS bat garatzeko marko orokor bat definitzen denean,
flotaren agregazioarekin batera, hurrengo urratsa FRODSSen geruza desberdinak
definitzea da. Tesi hau, batez ere, bideratze eta planifikazio geruzan zentratzen da,
nahiz eta itsasontziaren modelatze eta arrantza geruzei ere ekarpenak egin. Lan
honetan zehazki, bi arrantza bideratze-problema formulatzen dira eta bi soluziotan
zehazten da (ikusi 0.1 Irudia). Horretarako, kontuan hartzen ditu eguraldiak duen
eragina ontzien errendimenduan eta arrantza-eremuen aukeraketan.

Bi problemak aztertzeko, urruneko inguratze-ontzia erabili da, Indiako
ozeanoan atun tropikalak arrantzatzen dituena. Atunontziak teknologikoki,
munduko arrantza flota aurreratuenetakoak dira. Garrantzi berezia izan du hone-
tan dFAD erabilerak. dFAD-ak objektu artifizialak dira, ozeanoan askatzen dire-
nak arrainak erakartzen dituen habitat artifizial bat sortzeko. Honako dFAD-ek
ekozunda eta GPS-a izaten dute integratuta, beren ibilbidean zehar pilatutako
arrainen biomasaren estimazioa eta bere posizioa ematea ahalbidetuz. Haien er-
abilerak, beraz, arrainen bilaketa-denbora eta funtzionamendu-kostuak murriztu
ditzake, edozein unetan dFAD-ak azkar koka bait daitezke haien azpiko arrain-
biomasaren estimazioa ezagutuz.

Tesiaren 3. Kapituluan definitutako lehen arrantza bideratze-problemaren hel-
burua honako hau da:

2. Helburua

Inguratze ontzi bakar baten bideratze-problemaren formulazioa eta hura kon-
pontzeko algoritmo metaheuristiko bat proposatu.

Inguratze ontzi baten praktika operatiboa, arrantza ontziak portutik atera eta
sartzen denerarte egiten duen ibilbidea da, non hainbat arrantzaldi egiten diren.
Helburua, bidaia-kostu osoaren eta bisitatutako arrantza-eremuetan espero den
sariaren arteko trukaketa minimizatzen duen ibilbide bat aurkitzea da. Tesi honek,
atuna arrantzatzen duen inguratze itsasontziaren bideratze-problema dinamikoa
aztertzen du, ikuspuntu taktiko eta operatibotik. Bideratze-problema taktikoa,
k-saltzaile ibiltariaren problema, xede mugikorrekin, eta denbora-tarteak aldako-
rrak direla kontuan hartuz formulatzen da (DkTSP-MTTW). Dakigunez, hau da
DkTSP-MTTW-ren lehen formulazioa literaturan. Problema operatiboa, berriz,
denboraren araberako bide laburrenaren problema gisa formulatzen da.
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Problema hau ebazteko GA-TDA* izeneko algoritmo bat proposatzen da. Al-
goritmo hau algoritmo genetiko (GA) batean oinarritzen da eta problemen men-
peko operadoreak erabiltzen ditu, gainera denboraren menpeko A* algoritmoa ako-
platzen du. Arrantza-enpresa baten datu errealak erabiliz, diseinatutako GA-ko
operadoreak ebaluatzen dira. Horretarako, definitutako bi objektiboen arteko kon-
binazioa erabiltzen da: erregai-kontsumoa eta harrapaketa handiak egiteko prob-
abilitatea.

Algoritmo honekin lortutako emaitzak arrantzako datu historikoekin alder-
atzen dira eta erregaien kontsumoan eta itsasoan aurreztutako denbora potentziala
kalkulatzen da, %57 eta %33 hurrenez hurren. GA-TDA* dinamikoak adier-
azten duenez, arrantza-eremu hobeak hautatzeak eta eguraldi-baldintzak kontuan
hartzeak, arrantza-industriari klima-aldaketara egokitzen lagun diezaioke, kostu
nagusietako bat (erregai-kontsumoa, alegia) murriztu bitartean.

Bigarren bideratze-problemaren helburua 4. Kapituluan azaltzen da, eta
honako hau da:

3. Helburua

Inguratze itsasontzi flotaren bideratze-problemaren formulazioa eta hura kon-
pontzeko algoritmo metaheuristiko bat proposatzea.

Kapitulu honetan helburu bikoitzeko programazio lineal oso misto-ko (MIP)
bi modelo aurkezten dira: bat problemaren bertsio estatikoarentzat, eta bestea
denboraren araberako aldakortasuna kontuan hartzen duena. Helburu anitzeko
GRASP (MO-GRASP) algoritmo bat proposatzen da MIP modeloen soluzio ze-
hatzaren instantzia-tamainaren mugak gainditzeko eta problemaren instantzia
errealei aurre egiteko eta ebazteko. Bi-objektiboen planteamenduak, erabiltza-
ileari, helburu ekonomikoak eta erregai-kontsumoa trukatzeko aukera ematen
diote. Denbora-tarte anitzeko arrantzaren bideratze-problemaren aldaera estatikoa
aztertzeak konputazio-proba zabalak eta algoritmoen doikuntza zehatzak ahal-
bidetzen ditu denboraren menpeko problema askoz konplexuagora igaro aurretik,
denbora-tarte anitzeko arrantza bideratzeko arazoarekin.

Instantzia sintetikoekin egindako konputazio-esperimentuek GRASP algorit-
moaren errendimendu ona erakusten dute, eredu estatikoaren soluzio global op-
timoekin alderatuta. Era berean, parametroen baldintza ezberdinetarako algorit-
moaren sentikortasuna ere ikertzen dute, hau da, nodo kopurua (arrantzatu edo
askatu beharreko dFADak). Soluzio-metodoak ontzi bakarreko problema batera
murriztuz gero, 3. Kapituluan inplementatutako algoritmoarekin alderatu ahal
izango genituzke. Horrez gain, Ozeano Indikoan jarduten duen arrantza flota
baten urtebeteko datu historikoekin esperimentu konputazionalak egiten dira.
Esperimentu hauek aukera ematen dute GRASP algoritmoa testuinguru erreal
batean aplikatzearen bideragarritasuna frogatzeaz gain, arrantza-flota baten ar-



rantza estrategia bateratuaren onurak aztertzea (estrategia kolaboratiboa) ontzi
bakoitzaren estrategia indibidualista batekin alderatuta (estrategia ez kolabora-
tioboa). Esperimentu hauek erakusten dute, estrategia kolaboratiboek, erregai-
kontsumoa nabarmenki murrizten dutela (%17,3) eta itsasoan denbora gutxi-
ago ere ematen dutela (%10,1), nahiz eta estrategia indibidualistekin alderatuta,
zertxobait gutxiago (%2,9) arrantzatu. Azken esperimentuak ontzi bakoitzak es-
kuragarri dituen dFAD kopurua murriztearen eragina aztertzen du bi estrategietan
(kolaboratiboan eta ez kolaboratiboan). Ontzi bakoitzeko dFAD aktiboen kop-
uruaren murrizketa aztertzea garrantzitsua da, kudeaketa-erakundeak dFAD-ak
murrizteko neurriak hartzen ari baitira. Emaitzek nabarmentzen dute, estrategia
kolaboratiboaren garrantzia, dFADen kopurua murrizten den heinean, erregai-
kontsumoa murriztea eta itsasoan denbora gutxiago izatea dakarrelako, arrantza-
errendimendu onari eutsiz.

5. Kapituluak ondorio orokorrekin eta etorkizuneko lan posibleak aztertzen
ditu. Ondorio orokorrak bi taldetan bana daitezke: lehenengo taldean, tesiak opti-
mizazio konbinatorioaren eremuari egiten dizkion ekarpenak azaltzen dira, non bi
problema berri formulatzen diren eta bi metaheuristiko garatzen diren; bigarren
taldean tesiak arrantza sektorearen kudeaketa estrategiei egiten dizkion ekarpenak
biltzen dira, non ondoriozta daitekeen, arrantza bideratzeko problemaren soluzio
batzuk egoera multzo jakin batean azkar ebalua daitezkeela ibilbide egokiena auk-
eratuz. Azkenik, tesi honen etorkizuneko luzapenak eta ikerketak aztertzen dira.

Laburbilduz, tesi honek bi optimizazio konbinatorioko problema berri
planteatzen ditu, arrantza-sektoreko aplikazio erreal batean oinarrituta. Gain-
era, arazo bakoitzerako metaheuristiko bat proposatzen da, eragiketa jasangarriak
eta eraginkorrak garatzen lagun dezakeena, bideragarritasun ekonomikoaren eta
kontserbazio ekologikoaren arteko oreka bermatuz.
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Introduction

This chapter provides an overview of the current state of efficiency in the fishing
industry. It then explores the potential use of operational research methods to
optimize fishing routes. A description is then given of the tuna purse seine fleet,
which serves as a case study throughout this thesis. This description highlights
the opportunities available for optimizing their routes. Finally, a brief literature
review is provided of the main approaches applied to fishing route problems.

1.1 The State of Efficiency of World Fisheries

Historically, fisheries have played a crucial role in the sustainability of the planet
by providing an important source of protein to the population. Until the end of
the nineteenth century, the main idea was that the ocean could provide almost
unlimited quantities of fish indefinitely. Unfortunately, this misconception was
reinforced by data indicating a general increase in catches. It is now clear that
increasing catches are mainly due to increased fishing pressure and the use of
more efficient fishing methods.

Fisheries will continue to play an important role in providing food and nutrition
in the future. However, there is a growing consensus that all fisheries are vulnerable
to overfishing, and there are growing concerns for the sustainability and efficiency
of fisheries. This is happening despite technological developments, with the global
fishing fleet emitting 20% more emissions per tonne of fish landed to catch the
same amount of fish as at the beginning of the century [Bell et al., 2017, Parker
et al., 2018]. This trend in catches can be seen in Figure 1.1, where catches have
remained relatively constant since 1990, indicating growing acknowledgement that
some fish stocks are close to their limits.
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Fig. 1.1: World capture fisheries and aquaculture production. Notes: Excluding
mammals, crocodiles, alligators, caimans and algae. Data expressed in live weight
equivalent. Source: [FAO, 2022].

There are many reasons for this negative trend in environmental performance,
including overcapacity and declining fish stocks [Parker et al., 2018]. In addition,
some studies suggest that the biomass and size of fish may be reduced due to
the effects of climate change, along with a change in their spatial distribution
and size [Lotze et al., 2019, Tittensor et al., 2021, Erauskin-Extramiana et al.,
2023]. This will put additional pressure on fish stocks and exacerbate this negative
environmental trend in the future.

Coupled with the urgent need to adapt to climate change and mitigate its
impacts, these concerns are becoming a global priority. For example, with the
adoption of the European Green Deal, the European Union (EU) has set itself
the goal of achieving zero emissions by 2050, with an interim target of reducing
emissions by 50 to 55% by 2030 [European Commission, 2019]. In the fisheries
sector, the interim target is to reduce greenhouse gas (GHG) emissions by 30%
by 2030 compared to 2005 levels. However, fishing is still heavily dependent on
the use of fossil fuels, whose consumption can account for between 30 and 75% of
total operational costs [Tyedmers and Parker, 2012]. In addition to representing
a high proportion of operational costs, their consumption is also a major contrib-
utor to global greenhouse gas emissions [Basurko et al., 2013a]. The EU therefore
requires fisheries to be environmentally friendly, economically viable and socially
sustainable in order to ensure long-term European food security.
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A combination of short-term and long-term strategic measures can be imple-
mented to achieve these objectives. However, long-term strategic solutions focus on
the development and implementation of more energy-efficient vessels and manage-
ment regulations, which are only feasible in the long term and may be associated
with high costs [Alma-Maris, 2023]. In contrast, short-term technological solutions
provide an opportunity to decarbonise the fisheries sector and meet the GHG re-
duction target in the short term. These solutions can also improve their efficiency
and sustainability, and the technologies can be divided into four main areas of
action: (i) vessel technologies; (ii) fishing gear technologies; (iii) regulatory and
management measures; and (iv) fisheries strategy [Alma-Maris, 2023].

Towards Sustainability and Efficiency in Fisheries

This thesis will focus on improving fishing strategy and operations by formulating
novel, realistic fishing routing problems and implementing optimization algorithms
to solve them. This will make it possible for fishermen to engage in a more sus-
tainable activity by reducing effort, cost and environmental impact, thus ensuring
their sustainability and efficiency.

1.2 Optimization of Fishing Operations

In the past, fishermen have based their fishing strategy and operations on knowl-
edge acquired over the years. This knowledge was mainly based on their experience,
local knowledge and weather conditions. However, this approach has its limitations
and can lead to sub-optimal routes. Today, fishermen have access to and collect
better fisheries, oceanographic and vessel performance data. However, they do not
extract all the potential value from the data they collect and their use of data
lags behind other sectors. This thesis explores the application of mathematical
modelling techniques, such as the combination of operational research (OR) and
machine learning methods, to design better operations using the available data.

OR is a multidisciplinary field that applies advanced analytical methods and
mathematical modelling to optimize complex systems and decision-making pro-
cesses. Using mathematical and computational approaches, OR aims to improve ef-
ficiency, sustainability and overall performance by finding optimal or near-optimal
solutions to complex decision problems. OR has been applied in various fields
such as transportation, logistics, manufacturing, healthcare and finance [Luss and
Rosenwein, 1997]. However, few applications of OR have been proposed for the
fishing industry, although OR can provide valuable insights and strategies to ad-
dress the sustainability challenges faced by the industry by optimizing fishing
operations.
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The optimization algorithms used to solve operational problems can be divided
into two categories:

• Exact algorithms guarantee optimal solutions. That is, given enough time
on a problem of reasonable size, they find the optimal solution when there
is no other solution with a better objective function value. Examples include
Branch and bound, dynamic programming, etc.

• (Meta)heuristic algorithms do not guarantee optimal solutions, but they
can find near-optimal solutions faster. This can be useful when the running
time of exact algorithms is an issue and the problem size is too large. Examples
include local search-based algorithms, such as tabu search, and evolutionary
algorithms, such as genetic algorithms, etc.

In both approaches, the main idea is to find the best possible solution to
a problem within a given set of constraints, seeking to optimize one or more
objective functions. However, exact solution methods usually have an exponential
running time, making it difficult to apply them to real problems due to their size.
A comprehensive review of exact and heuristic algorithms with a focus on our
context is given in Section 2.2.3.

Besides the choice of algorithm, another crucial aspect of an optimization prob-
lem is the definition of the objective function. There are two main approaches
to defining an objective function: the mono-objective approach, and the multi-
objective approach. The former focuses on finding an optimal solution that es
a specific objective in a single objective function. The latter involves optimizing
more than one objective function simultaneously, taking into account the trade-off
between two or more conflicting objectives.

Multiple objectives can be addressed in two ways: first, by optimizing a
weighted combination of the desired objectives in an objective function [Kosmas
and Vlachos, 2012]; and second, by using a multi-objective optimization solution
strategy that treats each objective separately [Vettor and Guedes Soares, 2016].
In the first approach, these weighted parameters can be adjusted to give a rela-
tive importance to each objective based on the user’s preferences. In the second
technique, the optimization of one objective is often at the expense of the others.
Therefore, there may be no solution that optimizes all objective functions at once.
Accordingly, there is a set of optimal solutions called the Pareto front [Newbery
and Stiglitz, 1984]. The solutions are based on the Pareto optimality criterion,
which states that one solution dominates another if it gives better results in at
least one objective without worsening any of the others. This approach adds flexi-
bility by allowing users to vary the preference for each objective according to their
current interests or priorities.

OR can be applied in fisheries in many ways, such as in fisheries manage-
ment [Gaither, 1980, Azadivar et al., 2009], the selection of fishing grounds [Mil-
lar, 1996], operational production planning [Randhawa, 1995, Bakhrankova et al.,
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2014], fleet design [Harding and Haley, 1982, Weerasooriya et al., 1992], and vessel
design [Gammon, 2011]. However, this work will focus specifically on fishing route
problems, in particular, the definition of fishing strategies that take into account
vessel performance, and the selection of fishing grounds based on changing weather
conditions.

1.3 Fishing Routing Problems

Routing Problems

Routing problems are a class of combinatorial optimization problems that in-
volve determining the most efficient or optimal routes for vehicles visiting a set
of locations that minimize or maximize a given number of objectives, taking into
account various constraints. There are several variations and specialisations of
routing problems based on problem characteristics, such as number of vehicles,
time windows, vehicle capacity, dynamic vs static etc. These problems are of great
importance because many real situations or problems can be modelled in this way.

Routing problems are commonly formulated and solved in the maritime or road
transport industries to solve real-world problems. However, there is a lack of real-
world applications in the fisheries sector due to the complexity that goes beyond
the classical shipping needs of getting from one point to another with weather
uncertainty as the main problem. Fishing optimization has to face this weather
uncertainty and the uncertainty of finding the target species. Thus, fishing route
problems have to take into account trade-offs between classical objectives and
fishing specificities (e.g., fuel consumption/emissions per fish landed, catch or by-
catch).

The consideration of multiple objectives when optimizing fishing routes, such
as maximizing catches while minimizing environmental impact, is an important
factor. Adding these factors together is not straightforward due to the highly
dynamic nature of the fisheries problem, which leads to high uncertainty associated
with vessel performance, information on species distribution, and the fact that gear
deployment is not always successful. The overall objective in defining a fishing
strategy is usually to minimize total costs (e.g., fuel consumption and time at sea)
while maximizing profits (e.g., catches).

Fisheries also have specific constraints such as quotas, bycatch, restrictions on
fishing windows, competing fleets or even pirates in some distant water fleets. In
addition, there are four other main challenges that can explain the lack of technol-
ogy integration in fisheries: (i) upfront costs and insufficient access to capital; (ii)
legal and bureaucratic barriers; (iii) failure to implement data collection standards;
and (iv) lack of trust and buy-in from fishermen [Bradley et al., 2019].
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In the case of fishing routes, at least two objectives need to be considered:
total costs and expected rewards (e.g., total catch). For example, if a skipper
defines a fishing trip based only on minimizing total cost without considering
expected reward, this may result in a route with low fuel consumption but also
low catches, or even no catches of significance, making the route unprofitable.
On the other hand, if the trip is defined only in terms of maximizing catches, it
may lead to significantly higher fuel consumption, resulting in higher costs and
greenhouse gas emissions, again making the route unprofitable. Therefore, in a
real fishing planning problem, it is crucial to find a balance between total costs
(e.g., fuel consumption or greenhouse gas emissions) and expected benefits. Of
course, consideration can also be given to other objectives, such as increasing
safety, reducing bycatch or minimizing time at sea.

A General Fishing Problem

A simple version is to find the fishing grounds that minimize (or maximize) a
function f that at least takes into account the relationship between the total costs
and expected rewards of the fishing grounds visited, subject to a set of constraints.
That is, find π such that:

min (or max) total f value of grounds visited by π (1.1)
s.t. π is a simple cycle (1.2)

π has a length lower than dmax (1.3)
π starts and ends in a port (1.4)

where dmax is the maximum length of the cycle (e.g., days at sea, distance, number
of fishing sets).

This optimization task can have different degrees of complexity, from the sim-
plest definition to a variety of more well-defined complex problems, such as the
routing of one or more fishing vessels, taking into account the dynamic (time-
dependent) moving target characteristics of the fishing grounds. The solutions to
fishing routing problems can help fishermen to quickly evaluate a given set of
solutions or scenarios in order to select the most appropriate route. However, in
order to define a fishing routing problem, it is important to consider the specifics
of each fishing fleet, such as target species, fishing gear and distance to the fishing
grounds.
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1.4 Routing Opportunities in the Purse Seine Fleet

This thesis focuses on the fishing routing problems faced by the distant-water purse
seine fleet targeting tropical tuna in the Indian Ocean. Tuna and tuna-like species
are among the four most valuable commercial fish groups, with a total catch of 7.8
million tonnes in 2020 [FAO, 2022]. In addition, the global tuna fishery is one of
the largest in the world, targeting large pelagic fish with high migratory patterns
[Artetxe-Arrate et al., 2020]. Vessels targeting tuna tend to have higher and more
variable fuel consumption than other fisheries targeting small coastal pelagic fish
[Parker and Tyedmers, 2015]. Compared to other fishing gears targeting tropical
tuna (i.e. longliners, trollers or pole-and-line vessels), purse seine vessels perform
relatively better in terms of fuel consumption per tonne of tuna landed [Tyedmers
and Parker, 2012]. As a result, purse seine fishing is the most common method of
catching tropical tuna, accounting for 66% of total catches [ISSF, 2022].

The deployment of the purse seine consists of several phases, starting with the
detection of the school of tuna and the assessment of the species and size of the
tuna in order to determine its catchability (Figure 1.2). The operation begins by
deploying the net around the school of tuna with the help of an auxiliary boat.
Once the school is encircled, the net is closed at the bottom and the tuna are
transferred to the fishing vessel.

Fig. 1.2: Different phases in the deployment of a purse seine. Source: Australian
Fisheries Management Authority.
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Nowadays, purse seines have two different types of sets [Basurko et al., 2022]:
free-swimming school sets (FSC); and sets on dFADs. The former are sets deployed
on unrelated schools of tuna, relying on visual cues for detection. The latter, used
specifically in this fishery, are sets made around a school of tuna associated with
a drifting fishing aggregation device (dFAD). These dFADs are artificial floating
objects deployed in the ocean to create an artificial habitat that attracts fish, in-
cluding tuna [Orue et al., 2019a]. The reason for this associative behaviour is still
unclear, but there are two main hypotheses (see Orue et al. [2019b] for more de-
tails). Since around 2000, dFADs have incorporated a satellite-linked echosounder
which, together with a global positioning system (GPS), provides a rough estimate
of the biomass of aggregated fish along their trajectory [Lopez et al., 2014]. As
a result, their use can reduce search time and operational costs, as they can be
quickly located at any time and can also indicate whether there is fish biomass be-
neath them. In addition, the dFAD sets have shown higher success rates compared
to free-floating sets [Basurko et al., 2022]. Accordingly, the number of dFAD sets
has steadily increased, with more than 80% of fishing sets in the Indian Ocean
using dFADs [Báez et al., 2020a].

Evolution in the use of acoustic information on the presence of fish has greatly
facilitated the route planning of the purse seine fleet. Figure 1.3 illustrates this
evolution, from the search for schools of tuna using mainly visual cues 1.3(a), to the
use of logs or dFADs equipped with GPS but without acoustic information 1.3(b),
to current practices where dFADs have integrated both GPS and echo-sounder
technologies 1.3(c). This technology makes it possible for fishermen to efficiently
locate their dFADs and estimate the biomass of fish below, thus reducing search
time and operating costs.

Fig. 1.3: Evolution on the establishment of drifting fishing aggregation device
(dFAD) fishing in the purse seine fleet from fishing without drifting fishing aggre-
gation devices (dFADs) (a), fishing with dFAD equipped only with a GPS (b), to
dFADs with GPS and echo-sounders (c).
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Despite the use of dFADs and other technological advances, fishermen often
fail to make the most rational decision for dFAD deployment that would further
reduce their fuel consumption and GHG emissions [Basurko et al., 2022]. This
creates an opportunity to use vessel routing tools to help fishermen in the fishing
planning process to quickly evaluate a certain set of solutions or scenarios and
consider several factors at once, such as dFAD information, weather conditions,
fuel consumption, travel time and tuna distribution.

The Purse seine Fleet Routing Problem

The operational practice of the purse seine fleet targeting tropical tuna is to design
a route that starts and ends at a port where multiple sets are made. The objective
is to find a route that minimizes the trade-off between total travel cost and the
expected reward of the visited fishing grounds from all available fishing zones or
dFADs.

1.5 Related Work

The aim of this section is to provide a comprehensive background and overview of
the main approaches proposed in the literature for fishing routing problems. This
review will serve as a basis for introducing the contributions of this thesis.

In the literature, ship routing methods have been widely used in maritime
transport [Zis et al., 2020, Christiansen et al., 2013]. However, their application
in fisheries has been low-key, despite the fact that significant theoretical and ex-
perimental progress has been made in the field of ship routing [Fagerholt et al.,
2009a]. The use of routing methods in fisheries has focused mainly on weather
routing, i.e. from one point to another, where weather uncertainty is the main
problem [Vettor and Guedes Soares, 2016, Vettor et al., 2016, Mannarini et al.,
2016a,b, Palenzuela et al., 2010].

In Vettor and Guedes Soares [2016] and Vettor et al. [2016], a multi-objective
genetic algorithm (MOGA) was used to develop an optimization system consider-
ing the objectives of ETA, fuel oil consumption (FOC) and safety. Furthermore,
the MOGA was coupled with a modified Dijkstra’s algorithm to perform a prior
optimization for the first generation of the route population. This method was
called the ES (Evolution Strategy)-Dijkstra method. In Vettor and Guedes Soares
[2016], the fishing vessel travels from the port of Valencia to a hypothetical fishing
area in Malta, while in Vettor et al. [2016] it travels from Portugal to Norwegian
waters. Another graph search algorithm based on Dijkstra with time-dependent
edge weights used a fishing vessel as a case study [Mannarini et al., 2016a,b]. For
the environmental data used, a distinction was made between static fields (i.e.
bathymetry and coastline) and dynamic fields (i.e. waves). A machine-learning
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approach (ANN model) was used to optimize the routes of six fishing vessels op-
erating in different fishing grounds Palenzuela Torres et al. [2010]. However, these
operational optimization methods do not take into account specific fishing factors
and operations.

To the best of our knowledge, the only studies that have optimized the routes
of a fishing vessel by considering some of the fishing operations were performed
by Groba et al. [2015, 2018]. In these studies, a dFAD recovery strategy for a few
days was optimized by minimizing the distance travelled for a single fishing vessel
[Groba et al., 2015] or for multiple vessels [Groba et al., 2018]. The former was
formulated as a dynamic travelling salesperson problem (DTSP), while the latter
was formulated as a multiple travelling salesperson problem (mTSP). In addition,
their routing horizon was limited to a few days instead of an entire fishing trip,
which spans approximately 25 days. In both approaches, a genetic algorithm was
proposed with the support of a prediction technique to forecast the movement of
the dFADs. However, these approaches did not take into account the performance
of the vessel and the distribution of tuna based on weather conditions or fishing
windows. Furthermore, they assumed a small, fixed number of pre-selected dFADs
to be visited, without considering the selection of the best dFADs to fish from all
the available dFADs a vessel normally uses at sea (∼200).

In conclusion, the use of planning and optimization methods in fisheries is low-
key due to the complexity that goes beyond the classical navigation needs of going
from one point to another with weather uncertainty as the main problem, without
taking into account the specificities of fishing. This shows the great potential of
the digitalisation of fishing fleets and the application of Decision Support Systems
(DSS) adapted to fishing.

1.6 Overview of the Dissertation

This thesis is divided into five chapters, organised as follows: chapter 1 provides a
self-explanatory introduction to a number of basic concepts necessary for under-
standing the following contributions. Specifically, section 1.1 describes the current
state of efficiency in world fisheries; section 1.2 provides a general introduction to
operational research algorithms, objectives and constraints with a particular focus
on fisheries; section 1.3 explains the general fishery routing problem; section 1.4
describes the purse seine fleet and explores the opportunities for operational op-
timization through the use of routing algorithms; and finally, section 1.5 provides
a literature review of existing approaches proposed for fishing routing problems.

The following chapters describe the main contributions of this thesis. Chapter
2 establishes the basis for the development of different DSSs according to existing
fleets, along with the main algorithms, objectives and constraints used in the
literature. Chapter 3 focuses on the formulation of the dynamic fishing routing
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problem for a single vessel, while Chapter 4 focuses on the formulation of the
fishing routing problem for multiple vessels. Chapters 3 and 4 propose respective
metaheuristics to solve these problems.

Finally, Chapter 5 gives the general conclusions of the thesis, points out possi-
ble future work and lists the publications and main achievements produced during
this thesis.
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Towards a Fishing Route Optimization Decision
Support System

In this chapter, a general framework to develop a fishing route optimization de-
cision support system (FRODSS) is suggested, along with a review of the state-
of-the-art with respect to the main objectives, constraints and algorithms used at
tactical and operational level. Furthermore, suggestions are made on how to mod-
ify these objectives and constraints, taking into account the fishing particularities
to address the existing gap in the literature. Finally, an aggregation of existing
fleets into four main groups is proposed, where similar optimization approaches
can be applied to develop a FRODSS for each group.

2.1 Introduction

Maritime shipping is the most important goods transport mode in the world, rep-
resenting around 90% of global trade [George, 2013]. Shipping, as well as fisheries,
requires a large amount of energy to operate, and this consumption represents
a large portion of their cost and greenhouse gas (GHG) emissions. Therefore,
improving efficiency in this industry could have a great impact on increasing prof-
its, while reducing costs and environmental impacts. The efficiency improvements
could focus on six main potential areas [Bouman et al., 2017]: (i) hull design, which
encompasses the hull dimension, shape and weight with the challenge of minimiz-
ing the water resistance faced by vessels [Lindstad et al., 2014]; (ii) economy of
scale, by means of using large vessels since they tend to be more energy-efficient
per freight unit [Gucwa and Schäfer, 2013]; (iii) power and propulsion, which in-
cludes the design of new systems aimed at improving efficiency and energy saving
[Sciberras et al., 2015]; (iv) fuels and alternative energy sources, which involves
the improvement of existing ones and the search for new energy sources [Gabiña
et al., 2019]; (v) speed reduction, the so-called slow steaming where many ships
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operate at less than their maximum speed to reduce their fuel consumption [Car-
iou, 2011]; and (vi) ship routing, which consists in finding the optimum route and
speed [Christiansen et al., 2004].

Out of the six areas of efficiency cited previously, the present study focuses on
ship routing and its application for fisheries. The planning horizon influences the
problem objectives and constraints. Usually, these planning levels are defined as
strategic (long-term), tactical (medium-term) or operational (short-term) [Chris-
tiansen et al., 2004]. The strategic problems will not be discussed in detail here,
and for further information readers may refer to some of these works [Christiansen
et al., 2013, 2004]. At tactical level, the ship routing problem is known as the
ship routing and scheduling problem, whereas at operational level it is called ship
weather routing. Therefore, here the ship routing problem refers to two different
maritime problems according to the planning horizon level at which they are stated
and solved (Table 2.1). The ship routing and scheduling is a distribution problem
where the goal is to find a path - or paths - that visits a set of ports (routing), and
arrange stops/visits in an optimal sequence (scheduling) in order to, for a ship or
multiple ships, pick up and deliver some cargoes. By contrast, the ship weather
routing refers to a short path problem for a single ship that estimates the optimal
path between two known points according to one or more objective functions, and
considering the weather effect on the ship performance [Zis et al., 2020].

Problem Formulation Planning horizon Scope Main objectives Main constraints Example of problems

Weather routing
(operational) SPP Short-term

(1day-1 week) One vessel Time or FOC
- Time window
- Ship capacity
- Draft limit

- Best course and/or
speed between two points

Routing and
scheduling (tactical)

TSP/VRP Medium-term
(1 week – 1 year)

One vessel or
multiple vessels Cost or profits

- Land avoidance
- Shallow waters
- Safety

- Routing and scheduling
- Fleet deployment
- Scheduling and speed
optimization
- Cargo allocation

Table 2.1: Summary of the main characteristics of the studied planning horizon.
Notes: TSP is the travelling salesperson problems; VRP is the vehicle routing
problem; and SPP is the shortest path problem; FOC is the fuel-oil consumption.

These tactical and operational ship routing methods are usually embedded into
decision support system (DSS) [Lazarowska, 2014, Vettor and Soares, 2015, Lee
et al., 2018a], which are computer-based information systems developed in order
to support managers in the decision-making processes. Fishing activities need
similar levels of planning to other marine activities, but the development of fishing
route optimization decision support systems (FRODSSs) is scarce. This is because
the tactical and operational fishing planning is one of the most challenging since
fisheries must face additional uncertainties, such as fish ground location and policy
limitations (e.g., catches or time at sea). Therefore, to define a fishing planning
strategy, a FRODSS should consider these added uncertainties and other fishing
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particularities, such as the target species, fishing gear, specific legislation, or the
distance to the fishing grounds.

In general, the shipping industry has a long history of implementing ship rout-
ing methods, especially for large ships and long distances [Takashima et al., 2009].
Usually, the goal is to reduce their operation cost, fuel-oil consumption (FOC),
sailing time, or increase their profit. However, recently, new regulations are also
trying to minimize their environmental impact, such as the establishment of four
emission control areas (ECAs) to reduce ship emissions [Ma et al., 2020]. On
average, global shipping and fishing contributed 2.6% of the annual global anthro-
pogenic CO2 emission for the period 2013-2015 [Olmer et al., 2017]. This emission
represented around 930 million tonnes of CO2, of which the industrial fishing
vessels accounted for approximately 40 million tonnes of CO2. Nevertheless, this
number is probably an underestimation, as other studies suggest that industrial
and semi-industrial fishing vessel emissions account for 159 and 48 million tonnes
of CO2, respectively [Greer et al., 2019]. Within the different marine sectors, ship-
ping emissions increased by 1.8%, whereas the fishing emission increased by 17%
for the period 2013-2015 [Olmer et al., 2017]. Furthermore, future projections es-
timate an increase of maritime CO2 emissions, including fisheries, of between 50%
and 250% for the year 2050, depending on future economic and energy develop-
ments [IMO, 2015]. Although, CO2 is the main contributor of the fisheries carbon
footprint, there are other GHG that contribute to shipping’s climate impact, such
as black carbon (BC), methane (CH4) and nitrous oxide (N2O). These pollutants
are estimated to contribute around 25% of the CO2 equivalent [Olmer et al., 2017].
Shipping activities also emitted other important air pollutants, such as nitrogen
oxides (NOx), sulphur oxides (SOx) and particulate matter (PM).

Unlike shipping, the environmental impacts of fishing activities have mainly
been focused on overfishing of the target stocks, incidentally caught organisms (by-
catch), physical damage to benthic communities and substrates, and the alteration
of ecosystem structures and functions [Hospido and Tyedmers, 2005]. By focusing
on these biological impacts, the environmental analysis of fisheries has underesti-
mated other impacts, such as energy and material use, anti-fouling paints, or gear
use and loss at sea [Vázquez-Rowe et al., 2010]. In this context, the use of life cycle
analysis (LCA) can provide the opportunity to identify and assess all the fishing
activities and hence, lead to a more effective reduction of the overall impacts of
fisheries [Avadíand Fréon, 2013]. For example, some LCA studies suggest that the
fuel consumption of fishing vessels account for between 60% and 90% of the total
life cycle GHG emission [Tyedmers and Parker, 2012].

The first purpose of this chapter is to give a definition of the fishing problem
along with a review of the state-of-the-art of ship routing, specifically, in terms of
the algorithms, objectives and constraints applied in the shipping industry, and
how they can be applied to fisheries (Section 2.2). This review will allow readers
to follow and evaluate the current procedures used, and how they are integrated
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into a DSS. The second goal is to identify the current gaps in the application
of these routing methods to fishing vessels, and to give advice for future work
in tactical and operational ship routing in fisheries (Sections 2.3 and 2.4). This
review is intended for fishing companies, policy-makers, and research communities,
to show the potential of these techniques and the needs for the development of
a FRODSS. Research communities can find the technological and scientific gaps
that need to be filled for the development of FRODSS. Fishing companies can
see the economic benefits, and a guide to implement the decision systems. Policy-
makers can understand the needs for the development of FRODSS to guide policies
and funding. To the best of our knowledge, no studies have attempted to develop
specific fishing routing methods while considering their fishing particularities.

2.2 A Decision Support System (DSS) for Ship Routing
Problem in Fisheries

Fishing vessels increase their profit and long-term sustainability through differ-
ent strategies, such as fuel consumption reduction, catching high value species,
reducing time at sea, or catching larger size fish, whilst dealing with constraints,
such as emissions, bycatch limitations, or catch quotas, among others. These goals
and constraints can be balanced by means of FRODSSs to aid in tactical and
operational decision-making processes.

1. Tactical decision varies from setting the departure-arrival dates, fishing ground
selection, or landing port selection, among others. The planning horizon of this
problem ranges from one week to several weeks. This problem refers to fishing
vessels departing from port to search for fish schools, and once they catch
enough fish or a specific fishing trip duration is met, returning to a port to
discharge the catches. The departure and arrival port can be different, and each
fishing vessel can visit one or several fishing grounds during the fishing trip.
The number of fishing grounds visited may be based on the vessel capacity,
the current catches, the fuel-oil consumption, or a predefined trip duration.

2. The operational fishing planning problem consists of defining the vessel’s head-
ing and/or speed between the departure/arrival port and each fishing ground.
For that, once the problem has been solved at tactical level, and therefore
the waypoints are defined, the operational problem attempts to find the best
path between each pair of known waypoints/fishing grounds, considering the
weather effect on the vessel performance along the route. This operational
planning is usually limited to the next few hours or days at most, due to
changing environment conditions and potential fishing grounds.

Therefore, the fishing routing problem could be addressed in two phases: (i)
as a ship weather routing system at operational level; and (ii) as a routing and
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scheduling problem at tactical level. At tactical level, the fishing problem, like
most of the maritime shipping problems, could be formulated as a variant of
the well-known travelling salesperson problem (TSP) or vehicle routing problem
(VRP). These TSP or VRP problems could be formulated using two different
scenarios: static [Mesquita et al., 2017] or dynamic [Groba et al., 2015]. In the
literature, there are a lot of studies working in dynamic VRP. However, in ship
routing and scheduling problems, dynamic approaches are still scarce because
the occurrence of dynamic scenarios is highly unlikely [Psaraftis et al., 2016].
In contrast, dynamic scenarios are more common in weather routing problems
since they deal with the high variation and uncertainty of weather conditions.
However, a limitation to formulating a unique problem for the entire fishing sector
is the high variety of target species, fishing gear, distance to fishing grounds and
management constraints within the fishing fleets. For example, target species have
a big impact on vessel characteristics, fishing pattern, management constraints,
and fuel consumption.

A general framework for a ship routing DSS can be defined by four layers
[Fabbri et al., 2018]. However, an additional layer needs to be added for the fishing
industry case in order to consider the fishing particularities, such as fishing gear
used, the target species, the fleet composition, management regulations and/or
target market logic (e.g., fresh or canned). These five layers, and how they are
integrated together to create a FRODSS, are summarized in Fig. 2.1.

The five layers of a FRODSS are:

• Environmental layer, which provides the metocean information needed to
model the ship behaviour under different weather conditions, and some of
the fishing layer elements. The most common approach for ship routing is to
use some of the critical weather variables (i.e., waves, wind and/or currents)
affecting ships’ performance [Sidoti et al., 2016]. In the case of fisheries, these
critical variables are those related to the target species distribution models.

• Ship modelling layer, which predicts the ship behaviour under different
weather conditions by using the data provided by the environment layer along
with the ship characteristics [Gkerekos and Lazakis, 2020]. Nevertheless, its
accurate estimation is a complex and difficult task due to the presence of un-
certain stochastic processes and its dependence on many factors [Soner et al.,
2018].

• Fisheries layer, which is the layer that considers the fishing particulari-
ties such as species distribution and abundance predictions [Galparsoro et al.,
2009]; fishing grounds selection [Iglesias et al., 2007]; fishing pattern detection
using automatic identification system (AIS) data [Taconet et al., 2019]; fish
price [Guttormsen, 1999], and demand models [Eales et al., 1997]; and tuna or
bycatch detection by means of echo-sounder buoys attached to Fishing Aggre-
gation Devices (FADs) [Orue et al., 2019b, Mannocci et al., 2021]. However,
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Fig. 2.1: A general scheme of a fishing route optimization decision support system
(FRODSS).

the results of these models usually have high uncertainty, adding more com-
plexity to the problem of finding the optimal route and fishing solution.

• Routing and planning layer, which searches for the optimal route accord-
ing to the input of the previous three components. This layer is the core of
the DSS, and the optimal route is computed according to the objectives and
optimization algorithm. A review of the main objective functions and opti-
mization algorithms used in weather routing is conducted in Section 2.2.1 and
Section 2.2.3, respectively.

• Decision layer, which is the graphical component that interacts with the
final user by selecting the final route. The design of this software applica-
tion will depend on the desired format to display the selected route and the
needed interaction between the user and the routing and planning layer. Some
examples are given in [Vettor and Guedes Soares, 2016, Lazarowska, 2014].
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2.2.1 Objective functions

The objectives used in the ship routing problem can vary depending on the plan-
ning horizon. At tactical level, the objectives are usually more global, whereas at
operational level the objectives focus on more specific goals. The overall cost
reduction or the increase of profit are commonly used in ship routing and
scheduling problems at tactical planning level. There are also other goals that
have been gaining more interest recently to reduce shipping environmental im-
pacts, such as emission reduction [Fagerholt et al., 2015]. Fisheries can use similar
indicators. However, assessing the overall cost and profits faces the uncertainty
variable duration driven by catches.

At operational level, the most studied objectives have been the sailing time,
FOC, and safety. Common approaches to optimize the minimum-time objective
consider that ship speed is affected by the sea conditions (involuntary speed re-
duction). This can also include the voluntary speed reduction [Mannarini et al.,
2016a, Sen and Padhy, 2015]. One of the first approaches that optimized the FOC
was directly proposed by [Klompstra et al., 1992], and nowadays this is one of the
main concerns of the shipping industry. The operational fishing routing should
use indicators that consider landings, such as fuel consumption per catch (L fuel
/ tn catch landed) [Damalas et al., 2015], and detailed by target species, fishing
gear, fishing effort or region [Greer et al., 2019]. A safety consideration was also
studied with the aim of avoiding rough weather areas. In our case, we have to
consider that fishery is one of the most dangerous occupations in the world with
80 deaths per 100,000 fishers per year [FAO, 2018].

2.2.2 Constraints

At tactical planning level, the most studied and common constraints in shipping
are the time windows, ship capacity, or draft limit. The time window usually refers
to the unloading/loading service times allowed at ports, [Sigurd et al., 2005]; ship
capacity is the ship’s cargo carrying capacity measured in weight or volume [Stål-
hane et al., 2015]; and the draft limit depends on each port infrastructure and the
load weight, which can limit the ports that a ship can visit [De et al., 2017, Ya-
mashita et al., 2019]. At operational level, the necessary constraints to consider are
land and shallow water avoidance, since these constraints represent non-navigable
geographic areas that a ship route cannot cross [Vettor and Guedes Soares, 2016,
Fang and Lin, 2015]. There are other weather-related constraints, such as storm
area avoidance, emission-controlled areas, or navigation safety constraints that try
to keep the unstable ship motion-limiting criteria within some limits [Vettor and
Guedes Soares, 2016, Fang and Lin, 2015, Szlapczynska, 2015].

Apart from the common constraints that are used in shipping and that can be
translated directly to fishing routing, there are some specific fishing constraints.
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The main management constraints to consider in fishery planning include the
total allowable effort (TAE), total allowable catch (TAC), quota regulations and
landing obligation. TAE is the maximum number of fishing days by fishing area
and by vessels during a specific period, whereas TAC is the maximum quantity
of fish catch that can be caught from a specific stock over a given period of time
[Prellezo et al., 2016]. TACs are catch limits (expressed in tonnes or numbers) that
are set for most commercial fish stocks. TACs are shared between EU countries in
the form of national quotas. By 2019, all species subject to TAC limits or Minimum
Conservation Reference Sizes (in the Mediterranean) were subject to the landing
obligation [Reg, 2008]. For mixed fishery, this could involve some problems as
there will always be a choke species that can potentially limit their fishing effort
on other species [Prellezo et al., 2016]. Finally, there are more specific constraints
based on the type of fishing vessel. This will be discussed for each fleet in Section
2.3.1.

2.2.3 Algorithms for solving ship routing problems

There are two types of optimization methods: exact and heuristic. Exact algo-
rithms guarantee the optimal route, normally at the expense of the computation
time, whereas heuristic approaches run faster but do not guarantee the optimal
route. It should be emphasized that the following sections will focus on operational
(see Subsection 2.2.3.1) and tactical (see Subsection 2.2.3.2) routing problems, and
they do not present an extensive survey but rather provide an overall view of the
main algorithms applied in each ship routing area.

2.2.3.1 Operational ship weather routing methods

Table 2.2 lists a number of papers related to ship weather routing, with respect
to the algorithm used, and the optimized objectives, together with the main con-
straints and ship types. These constraints do not include land avoidance or con-
trol constraints (speed or heading limits) since they are mandatory to produce
a realistic route. Furthermore, motion constraint encompasses the ships’ unsta-
ble motions that are used as safety and comfort criteria. Some key optimization
algorithms applied in the field are described.

In 1957, the Isochrone exact method was proposed for ship routing to min-
imize the sailing time [James, 1957]. However, its computer implementation was
problematic due to the occurrence of the so-called Isochrone loop, leading to the
modified isochrone [Hagiwara, 1989]. In contrast, the Isopone method was devel-
oped to optimize the fuel-oil consumption [Klompstra et al., 1992]. There is a
heuristic modification called the 3-dimensional modified isochrone (3DMI) [Fang
and Lin, 2015].
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Ref. Ship type Objective function Main constraints Algorithm

E
xa

ct

[James, 1957] Trans-ocean ship Min time Isochrone
[Hagiwara, 1989] Sail-assisted ship Min time, FOC, or cost Modified Isochrone
[Klompstra et al., 1992] Container ship Min FOC ETA, water depth Isopone
[Zoppoli, 1972] Cargo-ship Min time Dynamic programming
[Shao et al., 2012] Container ship Min FOC Motion Dynamic programming
[Takashima et al., 2009] Coastal merchant ship Min FOC Dijkstra’s algorithm
[Skoglund, 2012] General Min time and FOC Dijkstra’s algorithm
[Sen and Padhy, 2015] Coastal ships Min time Motion Dijkstra’s algorithm

H
eu

ris
tic

[Fang and Lin, 2015] Container ship Min time and FOC Motion, water depth 3D Modified Isochrone
[Guinness et al., 2014] Ice-going ship Min cost function Motion A* algorithm
[Yoon et al., 2018] Container ship Min FOC Motion A* algorithm
[Grifoll et al., 2018] Ro/Ro ship Min time A* algorithm
[Marie and Courteille, 2009] Motor vessel Min time and FOC Genetic algorithm
[Lee et al., 2018b] Container ship Min FOC ETA Genetic algorithm
[Szlapczynska, 2015] General Min FOC, time, and max safety Water depth, piracy areas Genetic algorithm

and high wind areas
[Vettor and Soares, 2015] Container ship Min FOC, time, and max safety Motion Genetic algorithm
[Ibarbia et al., 2011] Oceanographic ship Min time Simulated Annealing
[Kosmas and Vlachos, 2012] General Min time and max safety Simulated Annealing
[Li and Qiao, 2019] Wind-assisted ship Min FOC and max safety ETA Simulated Annealing
[Tsou and Cheng, 2013] Transoceanic ship Min cost Motion Ant colony algorithm
[Lazarowska, 2014] General Min distance Motion Ant colony algorithm
[Lee et al., 2018a] Liner shipping Min FOC and max service level Speed, ETA Particle swarm
[Zheng et al., 2019] Ocean-going ships Min FOC ETA Particle swarm
[Lin, 2018] Container ship Min time and FOC Motion Particle swarm

M
ac

hi
ne

le
ar

ni
ng [Hagiwara et al., 1996] Container ship Min time Artificial Neural Networks

[Palenzuela Torres et al., 2010] Fishing vessels Min FOC Artificial Neural Networks
[Yoo and Kim, 2015] Theoretical Min time Motion Reinforcement learning

Table 2.2: The main weather routing algorithms used in the literature according
to the objective function and the main constraints considered in each case. Ab-
breviations are: fuel-oil consumption (FOC) and estimated time of arrival (ETA).

Dynamic programming (DP) can be divided in two main approaches. First,
2D dynamic programming (2DDP), which takes two dimensions into account,
latitude and longitude [Zoppoli, 1972]. And second, 3D dynamic programming
(3DDP), which can consider the time, in addition to the location, during the
optimization process [Shao et al., 2012].

Dijkstra’s and A* algorithms are the most common pathfinding algorithms
used to solve the shortest path problem in a weighted graph. Dijkstra’s algorithm
has been widely used for ship routing with the aim of finding the minimal time
route [Sen and Padhy, 2015], the minimum FOC routes [Takashima et al., 2009],
or a combination of both by following a multi-objective approach [Skoglund, 2012].
The A* algorithm derives from the Dijkstra’s algorithm (low computational effi-
ciency) and the greedy algorithm (fast search speed) [Hart et al., 1968]. It gives
a balance between search speed and global optimality. This method has been
broadly used for route optimization in different situations, for example, in ice-
covered waters [Guinness et al., 2014], routing in short distances [Grifoll et al.,
2018] or transoceanic routing [Yoon et al., 2018].

Nature inspired algorithms are metaheuristic methods based on mimic
natural processes. Within this group, the most commonly used method is the ge-
netic algorithm (GA), which is a population-based approach that iteratively
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improves the set of best solutions or population [Goldberg, 1989]. One of the first
approaches for ship routing optimization was using a multi-objective genetic algo-
rithm (MOGA) technique [Marie and Courteille, 2009]. Other methods incorporate
elitism selection, which means keeping intact the best or a small portion of the
best solutions from the current population for next generation [Vettor and Soares,
2015, Szlapczynska, 2015]. Another method is the NSGA-II (non-dominated sort-
ing genetic algorithm), which uses fast non-dominated sorting and crowd-distance
comparison to select the next set of solutions in each iteration [Lee et al., 2018b].
Other nature inspired methods used for ship routing are: i) Simulated anneal-
ing algorithm (SA), which mimics the annealing process of metallurgy, which is
a heat treatment that involves warming a material and then slow cooling [Kos-
mas and Vlachos, 2012, Ibarbia et al., 2011, Li and Qiao, 2019]; ii) Ant colony
algorithm (ACA), which is a probabilistic technique inspired by ants’ foraging
behaviour Lazarowska [2014], Tsou and Cheng [2013]; and iii) Particle swarm
optimization (PSO), which is a population-based method that mimics the social
behaviour of organisms in groups, such as birds or fish [Lee et al., 2018a, Zheng
et al., 2019, Lin, 2018].

Machine learning is a growing research field that is involved in finding pat-
terns or mine knowledge from data. A neural network algorithm (ANN) was among
the first to be applied to weather routing [Palenzuela Torres et al., 2010, Hagiwara
et al., 1996]. A reinforcement learning algorithm (Q learning algorithm) was used
for route planning to minimize the sailing time considering the current effects [Yoo
and Kim, 2015].

2.2.3.2 Tactical ship routing and scheduling methods

Table 2.3 lists a number of papers related to ship routing and scheduling problems,
with respect to the shipping mode, problem type, the optimized objectives together
with the main constraints, and the solution method used to solve the problem.
The main constraints considered to complete the table are time window (TW),
ship capacity (SC), allocation (AL), ship/cargo compatibility (SC-C), port/ship
compatibility (PS-C), customer/ship compatibility (CS-C), route/schedule com-
patibility (RS-C) and draft limit (DL). Some key optimization algorithms applied
in the field are:

Branch-and-bound (B&B) consists of a systematic enumeration of all candi-
date solutions (branches), where large subsets of partial solutions are discarded if
they cannot improve on the current best solution (bounds) [Land and Doig, 2010].
This exact approach was used in tramp ship scheduling with both optional and
contracted cargos [Appelgren, 1971] It was also used to solve the offshore wind
farm maintenance problem [Stålhane et al., 2015]. There are other variants, such
as branch-and-cut [Malaguti et al., 2018, Homsi et al., 2020] or branch-and-price
[Sigurd et al., 2005, Wen et al., 2017].
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Ref. Mode of
shipping Problem type Objective

function Main constraints Solution method Solution

[Appelgren, 1971] General Ship’s cargo scheduling Max profit Branch-and-bound Exact
[Stålhane et al., 2015] Industrial VRP with pickup and delivery Min cost SC, TW Branch-and-bound Exact

[Arnesen et al., 2017] General TSP with pickup and delivery Min cost DL, SC Branch-and-cut and
Heuristic procedures

Exact and
Heuristic

[Malaguti et al., 2018] Tramp/Industrial TSP with pickups, deliveries,
and draft limits Min cost SC, DL Branch-and-cut and

Heuristic procedures
Exact and
Heuristic

[Homsi et al., 2020] Tramp/Industrial PDP with time windows Min cost SC, TW, SC-C Branch-and-price and
a hybrid metaheuristic

Exact and
heuristic

[Wen et al., 2017] General VRP with pickup and delivery Min time, cost
and emissions SC Branch-and-price and

constraint programming
Heuristic
and Exact

[Sigurd et al., 2005] Liner Periodic VRP with pickup and delivery Min cost TW, SC, PS-C Branch-and-price Heuristic
[Battarra et al., 2014] General TSP with draft limits Min cost DL Branch-cut-and-price Exact

[Fagerholt and Christiansen, 2000a] Industrial TSP with allocation, time window
and precedence constraints Min cost TW, AL, SC Dynamic programming Exact

[Fagerholt and Christiansen, 2000b] Industrial Multi-ship pickup and delivery with
time windows and multi-allocation Min cost TW, SC, AL Dynamic programming Exact

[Korsvik and Fagerholt, 2010] Tramp Multi-vehicle PDP with time windows
and flexible cargo quantities Max profit TW, SC Tabu search Heuristic

[Charisis et al., 2019] Tramp/Industrial VRP with time windows and split
deliveries Min cost TW, SC Tabu search Heuristic

[Brønmo et al., 2007] Tramp PDP of bulk cargoes Max profit TW, SC Multi-start local search Heuristic
[Fagerholt et al., 2009b] Tramp Multi-vehicle PDP with time windows Max profit RS-C, TW, SC Multi-start local search Heuristic
[Norstad et al., 2011] Tramp PDP with speed optimization Max profit TW, SC Multi-start local search Heuristic
[Yamashita et al., 2019] Industrial PDP with time windows Min cost TW, SC, DL, PS-C Multi-start heuristic Heuristic
[Malliappi et al., 2011] Tramp PDP with time windows Max profit TW, SC Variable neighborhood search Heuristic
[Castillo-Villar et al., 2014] Tramp VRP with time window Min cost TW Variable neighborhood search Heuristic
[Lin and Liu, 2011] Tramp VRP with time windows Max profit TW, SC Genetic algorithm Heuristic

[Al-Hamad et al., 2012] Industrial VRP with pickup, deliveries
and time windows Min cost TW, SC Genetic algorithm Heuristic

[Moon et al., 2015] Tramp Ship routing and scheduling + fleet
deployment + network design Min cost SC Genetic algorithm Heuristic

[Song et al., 2017] Liner Ship deployment + sailing
speed + service scheduling Min cost TW, SC Genetic algorithm Heuristic

[De et al., 2017] General Sustainable ship routing and scheduling
with draft restrictions

Max profit and
min emissions TW, DL, SC, PS-C Genetic algorithm and

particle swarm optimization Heuristic

[De et al., 2016] General m-VRP with pickup and delivery Min cost TW, SC Particle Swarm Optimization
-Composite Particle Heuristic

Table 2.3: The main algorithms used in the literature to solve the routing and
scheduling problem. Abbreviations are: pickup and delivery problem (PDP);
vehicle routing problem (VRP); travelling salesperson problem (TSP); time
window (TW), ship capacity (SC), allocation (AL), ship/cargo compatibility
(SC-C), port/ship compatibility (PS-C), customer/ship compatibility (CS-C),
route/schedule compatibility (RS-C), and draft limit (DL).

Fagerholt and Christiansen [2000a] used a dynamic programming (DP)
method to solve a travelling salesman problem with allocation, time Window
and precedence constraints (TSP-ATWPC). The DP algorithm was also used to
solve a combined multi-ship pickup and delivery problem with time windows (m-
PDPTW), and multi-allocation problem [Fagerholt and Christiansen, 2000b]. Ar-
nesen et al. [2017] used a forward dynamic programming method to solve a real
ship routing and scheduling problem of a chemical shipping company. The prob-
lem was formulated as a TSP with Pickups and Deliveries, Time Windows and
Draft Limits (TSPPD-TWDL).

Within the local search-based methods there are three main approaches used
in ship routing and planning: tabu search (TS), multi-start local search
(MLS), and variable neighbourhood search (VNS). TS method had been used
for different routing and scheduling problems, such as with flexible cargo quan-
tities [Korsvik and Fagerholt, 2010], or with multiple time windows, split loads
and berth constraints [Charisis et al., 2019]. Brønmo et al. [2007] implemented
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an MLS algorithm that was based on a partly randomized insertion operator for
initial solution generation, and then improved by a local search strategy. Based
on a similar approach, [Fagerholt et al., 2009b] integrated an MLS algorithm into
a DSS with the aim of presenting a set of good solutions rather than the optimal
one. Another multi-start heuristic was implemented to solve a real-life pickup and
delivery problem for an oil company [Yamashita et al., 2019], and to solve the
combined problem of a tramp ship routing and scheduling with speed optimiza-
tion [Norstad et al., 2011]. A VNS method was applied to a tramp ship scheduling
problem by Malliappi et al. [2011]. Furthermore, the VNS method was compared
with a multi-start local search and a tabu search, showing that the VNS method
outperforms both techniques in terms of solution quality and computational time
[Malliappi et al., 2011].

A genetic algorithm (GA) approach was used by Lin and Liu [2011] to solve
the ship routing problem of tramp shipping, considering the ship allocation, freight
assignment, and ship routing simultaneously. A GA was also used in a ship rout-
ing and scheduling problem with time windows for industrial shipping [Al-Hamad
et al., 2012]. A GA with local search was proposed to address three NP-hard mar-
itime problems [Moon et al., 2015]: i) a location–allocation problem, ii) a TSP
between hubs; and iii) m-VRP of ship routing. The multi-objective genetic algo-
rithm (MOGA) technique has also been used to solve maritime problems [De et al.,
2017, Song et al., 2017]. In De et al. [2017], a multi-objective particle swarm
optimization method was implemented to solve a ship routing and scheduling
problem, considering the time window concept, sustainability aspects, and vessel
draft restriction. A variant of Particle Swarm Optimization of Composite Particle
was employed for solving the ship routing and scheduling problem [De et al., 2016].

2.3 Definition of a Framework for Fishing Route
Optimization Decision Support Systems (FRODSS) by
Fleet Type

There is a general goal to reduce GHG emissions worldwide, and the fishing in-
dustry is also expected to contribute to GHG emission reduction. LCA analysis
reviews indicate that vessel fuel consumption is the main contributor to GHG
emissions during fishing vessel life [Avadíand Fréon, 2013, Pelletier et al., 2007].
Moreover, its consumption may represent a large portion of the total operational
costs, this being one of the main concerns of fishing companies [Basurko et al.,
2013b]. This, along with the volatile fuel price, can have a big impact on the fishing
industry, fish prices, and food security of some countries [Parker et al., 2018].

The use of planning and optimization methods in fisheries is sparse due to the
complexity, which goes beyond the classical shipping needs, since fisheries must
face the weather/problem uncertainty together with the uncertainty of finding the
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target species or not. Fisheries also have their own constraints, such as the need
to consider quotas, bycatch (incidental fishing of non-targeted or even endangered
species), fishing time window limitations, competing fleets, or even pirates in some
distant-water fleets. Furthermore, there are another four main challenges that
can explain the lack of technology integration into fisheries: (i) upfront costs and
insufficient access to capital; (ii) legal and bureaucratic barriers; (iii) failure to
implement data collection standards; and (iv) lack of trust and buy-in from fishers
[Bradley et al., 2019].

In this thesis, a characterization of the Basque fishing fleet is used as an ex-
ample of worldwide fishing fleets for the formulation of FRODSS [Taconet et al.,
2019].

2.3.1 Characterization of fishing fleet types: Basque fishing fleet
example

Fishing gears used by the Basque fleet can be grouped into 12 main gears [Fernan-
des et al., 2019], which, in turn, can be classified as active, non-active or miscella-
neous [Boopendranath, 2012]. Active gears are mostly based on chasing the target
species and catch fish by trapping or encirclement. Whereas non-active gears are
usually placed for several days before being hauled, and the target species swing
towards the net, trap, or hooks and lines. Recently, eight types of fishing gears
have been analyzed in several project at AZTI [Basurko et al., 2013b, Gabiña
et al., 2016, Uriondo et al., 2018], showing that their fuel consumption varies from
1.94 L/ mile to 74.2 L/mile (Table 2.4).

Targeted fish species can be classified as: (i) shellfish, which encompass vari-
ous species without capacity for significant migration patterns that are targeted
mainly by some non-active gears; (ii) demersal species, which live on or near the
seafloor with limited migration capacity, targeted mainly by trawlers, gillnetters
and bottom longliners; (iii) small pelagic inhabit the water column, either near
the sea surface or in middle depths with seasonal migration patterns, and are
targeted mainly by purse seiners, mechanized handlines and pole-lines; and (iv)
large pelagic are mostly tunas and tuna-like, sharks and billfishes with large and
seasonal migration patterns, targeted mainly by purse seiners and longliners. Fish-
ing time windows can be important for some fisheries in order to know when the
fish event may occur, or even to mitigate the bycatch [Auger et al., 2015]. The
relationship between each fishing gear and target species is shown in Figure 2.2.

Excluding trawlers and distant-water vessels, the remaining fleets use more
than one gear throughout the year (Table 2.4). Despite the high diversity of gears,
four groups of fishing fleets were identified where a similar planning and optimiza-
tion system could be applied. These groups are based on their similarities, such as
fishing grounds, fuel patterns, target species, and management constraints (Table
2.5).
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Fig. 2.2: Total catch (black line), weekly catch average (blue line) and main species
catch series of the Basque fleet by fishing gear for 2018. Species are: Mackerel
(Scomber spp.), anchovy (Engraulis encrasicolus), pilchard (Engraulis encrasico-
lus), albacore (Thunnus alalunga), blue shark (Prionace glauca), hake (Merluccius
merluccius), anglerfish (Lophius spp.), ling (Molva molva), conger (Conger con-
ger), dogfish (Scyliorhinus canicula), Atlantic john dory (Zeus faber), and algae
(Gelidium sesquipedale).
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Nº of vessels
analyzed Fleet type Gear Gear

abbreviation
Mean length

(m)
Mean fuel
(L/mile)

± SD fuel
(L/mile)

1 Small-scale
coastal fleet

Gillnet,
handline GN, LHM 9.2 2.4 -

4 Small-scale
coastal fleet

and
Large-scale
pelagic fleet

Gillnet, handline
trolling GN, LHM, LTL 17.9 3.2 1.6

1 Longline, handline LLS, LHM 23.0 3.81 -

2 Longline, handline,
trolling LLS, LHM, LTL 13.0 1.9 0.7

1
Large-scale
pelagic fleet

Handline, trolling LHM, LTL 26.0 3.9 -

3 Purse seine,
Pole and line PS, LHP 36.4 10.8 0.2

3 Large-scale
demersal fleet

Bottom trawl OTB 40.0 17.9 1.2

2 Bottom trawl
in pairs PTB 37.0 20.2 0.1

5 Distant-water
fleet Purse seine PS 90.3 74.2 4.3

Table 2.4: Fuel consumption approach for different types of Basque fishing vessels
and gear. Note: bottom otter trawl (OTB): fuel consumption during trawling 35-45
L/mile; bottom pair trawl (PTB): fuel consumption during trawling 50-55 L/mile.

Basque fleets

Type Gear type GT Overall
length (m)

Trip length
(days)

Mean catch per
trip (kg) Top 1 (%) Top 2 (%) Top 3 (%)

Sm
al

l-s
ca

le
co

as
ta

lfl
ee

t GN 30 14.7 0.6 ± 1.0 263 Hake (31) Anglerfish (30) Horse
mackerel (4)

LLD 81 19.3 4.5 ± 1.4 11,984 Blue shark
(99)

Mako shark
(< 1)

LLS 43 14.8 0.7 ± 1.2 713 Hake (43) Ling (40) Conger (8)

MIS 18 11.4 0.3 ± 0.1 2,808 Gelidium (98) Octopus (1) Snakelocks
anemone (< 1)

La
rg

e-
sc

al
e

pe
la

gi
c

fle
et LHP 178 32.9 5.9 ± 3.6 25,093 Albacore (98) Bluefin

tuna (∼ 2)
LHM 25 14.1 0.4 ± 0.6 3,355 Mackerel (99)
LTL 77 22.2 6.4 ± 5.9 5,283 Albacore (99) Bigeye (< 1))
PS 147 30.2 0.7 ± 0.3 7,471 Anchovery (41) Mackerel (39) Pilchard (13)

La
rg

e-
sc

al
e

de
m

er
sa

lfl
ee

t OTB 432 39.3 5.6 ± 1.4 14,059 Hake (22) Anglerfish
(15) Dogfish (9)

PTB 372 37.0 2.9 ± 0.8 11,0.36 Hake (97) Atlantic John
Dory (< 1)

D
is

ta
nt

-
w

at
er

fle
et OTB 901 52.0 47.3 ± 13.0 850,800 Cod (97) Haddock

(< 2)

PS 2,849 90.3 21.8 ± 7.0 844,000 Skipjack
(67)

Yellowfin
tuna (25)

Bigeye
tuna (8)

Table 2.5: Summary of the Basque fleet using the logbook from 2018. Note: GT
is the gross register tonnage.

2.3.1.1 Small-scale coastal fleet (non-active gears)

The first group is comprised of small coastal vessels (usually under 12 m length):
a multispecies fishery using non-active gears that are put into place, and then,
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after some hours or days the catch is retrieved. Their fishing grounds are located
within the coastal waters and close to their base port. Therefore, they make short
fishing trips with low fuel consumption per mile, and catches per trip of high value
species (Tables 2.4 and 2.5). The main gears used by these fleets are longliners
(LLS), gillnets (GN) and drifting longliners (LLD). Longliners (LLS) mainly tar-
get the demersal species, hake, ling and conger. LLS has two downtimes (Figure
2.2): i) vessels start fishing the pelagic species, mackerel, using mechanized han-
dlines and pole-line (LHM) gear in March; and ii) they target albacore tuna by
trolling lines (LTL) in summer. Gillnets (GN) target mixed fisheries dominated by
demersal species, mainly hake, anglerfish and horse mackerel. They have a down-
time from mid-March until May, when most of the vessels change their gear to
LHM, whereas, in summer, some vessels change to LTL. Drifting longliners (LLD)
target the pelagic species blue shark, from April until mid-December. Miscella-
neous gear (MIS), which in our case also include pots and traps (FPO), includes
many minor fishing gears, and over 98% of the total catches consist of algae (Ge-
lidium sesquipedale) and high value species of importance for local tourism, such
as lobster, octopus, velvet, and brown crab [Fernandes et al., 2019].

For this fleet, the following characteristics need to be considered for FRODSS
development; i) the departure and arrival port may be the same; ii) as the trav-
elled distance and trip duration are small the vessel speed must be assumed as
constant; iii) fishing ground areas must be known, but the ones with high biomass
need to be forecast based on environmental conditions; iv) best timing of deploy-
ment and retrieval must also be forecast based on environmental conditions; v)
as the net/trap locations are static, this problem could be formulated in a static
environment; vi) the vessels must not be limited by their load capacity; vii) there
are no management constraints; and viii) the main uncertainties must be mar-
ket demand/prices and weather conditions affecting abundance for demersal and
shellfish species, or migration patterns for pelagic species.

Finally, and because the fishing trips duration usually takes less than one day,
and the use of non-active gears and the travelled distances are minimum, the
implementation of tactical solutions (i.e., routing and scheduling) can be more
useful than operational ones (i.e., weather routing). A FRODSS for this fleet would
define the best locations and date to place and collect the nets/traps along with
the optimal route that goes through these locations. The timing of the placing and
collection is probably more important than in other groups, given that these gears
target high value species that are caught in smaller quantities. Therefore, these
fleets can aim at making a smaller number of trips when this is more profitable
(e.g., tracking market demand and prices). The locations could be defined by the
user or be based on some species distribution model predictions to select the areas
with higher catch potential at lower cost [Galparsoro et al., 2009].
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2.3.1.2 Large-scale demersal fleet (active gears)

A second group is comprised of bottom trawlers (OTB and PTB) targeting dem-
ersal and benthic species by means of nets, with a trip duration ranging from 3
to 5 days in the case of PTB, and 5 to 7 for bottom otter trawlers (Table 2.5).
One characteristic of these vessels is that they consume the most energy during
the trawling operations [Basurko et al., 2013b]. Furthermore, they do not change
the gear throughout the year. PTB mainly fish mainly hake, whereas OTB tar-
gets a mix of demersal species including hake, anglerfish, dogfish (Table 2.5), and
also megrim (Lepidorhombus whiffiagonis), due to its high market value. Trawlers
make constant trips over the year with a 3-6 day duration (Table 2.5). Both gears
have their own downtime period: OTB is from July to mid-August, and PTB runs
from mid-August to the end of September (Figure 2.2). Their main fishing grounds
are in the Bay of Biscay, North Sea and Celtic sea (i.e., FAO subareas 27.8, 27.7
and 27.6, respectively), and limit their operations to sedimentary seafloor and to
the continental shelf. The selection of these fishing areas is influenced by experi-
ence, regulations (mainly TAC), expected harvest, external information received,
and fuel costs [Prellezo et al., 2009]. The selection of the fishing grounds becomes
particularly important for this fleet due to landing obligation (choke species) and
quota management, as they fish mixed demersal species.

For this fleet, when targeting demersal species, the following assumptions can
be used in a FRODSS: i) the departure and arrival port may be different; ii)
fishing grounds are known, but the ones with high biomass need to be forecast
based on environmental conditions; iii) high biomass of choke species needs to be
forecast to avoid quota issues; iv) the weather effect on ship performance should be
considered; v) vessels are limited by their load capacity; and vi) they are affected
by fishing management constraints, such as landing obligation. This case is similar
to the previous group with the difference of needing to consider choke species,
and longer trips with multiple fishing events that permit the use of TSP/VRP
approaches. Therefore, the routing problem of this fleet could be raised like the
large-scale pelagic fleet routing problem during summer when they are targeting
tuna. That is, as a tactical problem where the potential fishing areas are defined
along with the visiting order, and all of this coupled with a weather routing system.

2.3.1.3 Large-scale pelagic fleet (active gears)

The third group encompasses vessels that target shoaling and highly mobile species
such as small and large pelagic. The habitat of pelagic fishes is the largest aquatic
environment, which generates the difficulty of finding the fish shoals. These vessels
tend to consume more fuel during routing to fishing grounds and searching for fish
(up to 80%) than during fishing operations, due to the target species migration
patterns [Basurko et al., 2013b]. This category includes the following active gears:
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purse seine (PS), trolling (LTL), and pole and lines (mechanized and manually).
Purse seiners (PS) operating in coastal waters of Bay of Biscay fish from March
to mid-June, mainly fishing anchovy and mackerel; and from mid-September to
mid-December, mainly targeting Atlantic chub mackerel and sardine (Figure 2.2).
Coastal PS vessels usually make a daily trip, and their downtime starts in Mid-
December until mid-February. During the summer, most of the PS vessels change
their gear to pole and line with live bait (LHP) to fish albacore tuna. The trip
duration of vessels using LHP gear are longer and more irregular due to the spatial
migration of tuna (6.4±5.9 days, see Table 2.5). Mechanized pole and line (LHM)
gear consists of a hooked line attached to a mechanized pole in a daily fishing trip.
LTL operates during summer with an irregular trip duration, mainly because they
follow tuna migration routes.

During the summer (targeting tuna), their fishing trip duration and distance
are more suitable for a combination of tactical and operational route optimization
methods. At tactical level, the problem is to define the best location to fish, and
the optimal route to reach them in a weekly horizon. During the rest of the year,
the trip duration (less than one day) and distance are shorter, where the fishing
route optimization approach could be quite similar to the approach followed for
small-scale coastal fleet. The main difference with respect to the small-scale fleet is
that the large-scale pelagic fleet searches for fish shoals, and a species distribution
model may be more helpful to select the fishing ground. However, for this fleet,
when targeting for tuna during summer, the following assumptions can be used
in a FRODSS: i) the departure and arrival port may be different, which opens
the possibility of selecting the landing port based on the fish sale price; ii) fishing
grounds locations are more variable than in previous fleets, therefore the areas
with high biomass need to be forecast based on environmental conditions; iii)
that is why this routing problem should be formulated in a dynamic environment;
iv) vessels might be limited by their load capacity; v) the weather effect on ship
performance should be considered; vi) they are affected by fishing management
constraints, such as catch quotas; and vii) the main uncertainties are fish shoal
location and weather conditions affecting fuel consumption, time at sea, and safety.

2.3.1.4 Distant-water fleet (active gears)

The last group encompasses the distant-water fleet, whose main fishing grounds
are far from the country’s domestic waters, targeting highly migratory species.
This generates more variable fuel consumption costs and irregular trip durations
(e.g., around one to two months). Within the Basque fleet, the fishing areas are the
Atlantic, Pacific and Indian oceans targeting for tuna and tuna-like species,with
a few trawlers (OTB) targeting cod in EU waters. Between these two fleets manly
targeting tuna, there is a clear difference in fuel consumption intensity and species
selectivity capacity [Tyedmers and Parker, 2012, Ruiz et al., 2018]. Distant-water
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purse seiners burn an average of 368 litres of fuel per tonne of landings, whereas
longliners burn an average of 1,070 litres per tonne [Tyedmers and Parker, 2012].
However, longliners tend to catch bigger fish with a higher economic value, and
in certain areas they can be more selective, reducing bycatch (avoiding incidental
fishing of non-targeted species).

A FRODSS for tuna longliners and trawlers follows the same assumptions as
large-scale pelagic and demersal fleets, respectively, but considering that distant-
waters fleets take longer trips, do more fishing events (Table 2.5) and use tech-
nology to reduce the effort to searching for fish. This technology includes the use
of helicopters, bird radar, sonar, or FAD [Miyake et al., 2010]. Hence, the routing
problem could be formulated at a tactical level as a combinatorial problem (TSP,
mTSP and VRP) to optimize the FAD collection, considering the habitat model
information to award the routes between FADs with high probability of tuna pres-
ence [Groba et al., 2015, 2018]. Moreover, and unlike the rest of fleets, better routes
can be proposed by formulating the problem for multiple vessels instead of for a
single vessel. Finally, this fleet is the one that can benefit most from the use of a
weather routing system. This is mainly due to their higher consumption rate (see
Table 2.4), and larger travelled distances.

For this fleet, when targeting for large pelagic species such as tuna by purse
seiners, the following assumptions can be used in a FRODSS: i) the departure and
arrival port may be different; ii) fishing grounds are often detected through the
FAD biomass estimation and other location methods; iii) fishing grounds change
constantly, hence the problem should be formulated in a dynamic environment; iv)
bycatch species and choke species need to be forecast to avoid quota issues; v) the
weather effect on ship performance should be considered; vi) they are affected by
fishing management constraints, such as FAD use limitation; vii) vessels are limited
by their load capacity; and viii) fishing events can only occur during daylight.

2.4 Conclusions

This chapter shows that there is a gap in the application of route and planning
optimization decision systems in fisheries. Most of the existing technology required
to develop a FRODSS for a smart fishing strategy is currently available. However,
further research is needed to meet the fishing vessel needs, and to consider their
particularities. For example, available algorithms and objective functions need
to consider the trade-offs between the classical objectives (e.g., cost, profit, fuel
consumption, or time) and fishing particularities (e.g., management regulations
or landed tonne of fish). Data availability is another issue to be faced. Although
the emergence of new data acquisition technologies is reaching to fisheries, their
implementation and availability is unequal among the different fishing fleets. Some
reasons are the upfront costs and insufficient access to capital for small-medium



fishing vessels, and the lack of trust to share data by the industry. Therefore,
another key field for improvement would be to enhance the trust and collaboration
between the research community and fishing industry, to reduce reluctance to join
in with the development and testing of FRODSS.

As this work suggests, dozens of fishing gears could be addressed with four main
optimization strategies based on their similarities. The fishing-related technology
available to develop a FRODSS will be different in each group. The distant-water
fleets group can optimize their operations by integrating multiple sources of data
with improved species distribution, and/or with echo-sounder buoys, estimating
the amount of fish and its type to enhance their efficiency. The large-scale demersal
fleet can benefit from species distribution forecasting when selecting the optimal
fishing areas. This selection should be based on the target species prediction, but
also avoiding areas where the presence of non-desired species could be high (due
to low market value or lack of quotas). The group of large-scale pelagic vessels
using active gears can benefit from species distribution models that significantly
reduce searching times, and from smart buoys. Finally, the group of small-scale
coastal fleets using non-active gears is probably the one that would get less benefit
from a FRODSS. Nevertheless, a mix of species distribution models forecasting
their target species biomass hotspots in combination with a market analysis could
optimize the relationship between fuel consumption and value of landings.
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The Single Purse Seine Vessel Routing Problem

In this chapter, we focus on the dynamic purse seiner routing problem for a sin-
gle vessel. We propose a mathematical formulation of the problem that aims to
model the real situation as realistically as possible. Additionally, a new metaheuris-
tic algorithm that takes advantages of the problem particularities is proposed.
Concretely, the solution couples a genetic algorithm (GA) that uses problem-
dependent operators with a time-dependent A* algorithm. The results indicate
potential savings in terms of fuel consumption and time at sea when compared to
historical fishing trips.

3.1 Introduction

Despite the use of dFADs and other technological advancements, skippers do not
often take the most rational decision for collecting the dFADs that would further
reduce their fuel consumption [Basurko et al., 2022]. This creates the opportunity
to employ vessel routing tools to help skippers in the fishing planning process by
considering several factors at once, such as dFAD information, weather conditions,
fuel consumption, travel time and tuna distribution. In the literature, ship rout-
ing methods have been widely used in maritime transportation [Zis et al., 2020,
Christiansen et al., 2013], however, their application in fisheries has been scarce
[Granado et al., 2021].

The aim of this chapter is to develop a FRODSS that can estimate the best
dFAD-dependent fishing strategy to assist skippers in their decision-making pro-
cess. To do so, a FRODSS is proposed that combines the tactical and operational
fishing routing problems in one system. The operational problem (i.e., weather
routing) enables us to find the minimum cost path (e.g., fuel consumption) be-
tween any two known points considering the effect of weather conditions on ship
performance. The tactical problem (i.e., ship routing and scheduling) enables us
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to estimate a tour at minimal cost for visiting a subset of the total dFADs to-
gether with the best order of collection while considering the dFADs movement
and fishing time window. To this end, the operational problem is formulated as
a time-dependent shortest path problem, and the tactical one is formulated as
the dynamic k-travelling salesperson problem with moving targets and time win-
dows (DkTSP-MTTW). To solve this twofold problem, a genetic algorithm (GA)
coupled with a time-dependent A* algorithm is proposed. The aim of the time-
dependent A* is to solve the operational problem, while the aim of the GA is
to solve the tactical one. Moreover, this study seeks to optimize fuel consumption
and the expected reward (i.e, probability of high tuna catches) by combining them
in a single objective function.

Finally, to evaluate the proposed algorithm, called GA-TDA*, three different
experiments are defined. In all the experiments, the problem instances considered
are built by using real data. That is, the values of the instances are obtained by
means of different models that take as input real historical fishing and environmen-
tal data. The aim of the first analysis is to assess the proposed problem-specific
crossovers. In the second analysis, a performance comparison between the GA-
TDA* and a multi-objective approach is conducted, evaluating how the proposed
objective function behaves along the Pareto front. In the final analysis, the fish-
ing routing problem is solved dynamically by updating the data, and therefore
the route, every time a dFAD is fished, and then the results are compared with
historical fishing routes.

This chapter therefore presents an innovative operational research (OR) ap-
plication for fishing routing problems that has not been addressed before. In ad-
dition, the problem is formulated as a DkTSP-MTTW, and to the best of our
knowledge, this is the first time that this variant of the k-TSP is formalized and
that a k-TSP variant is solved by means of a GA. Moreover, existing GA op-
erators in the literature work on permutations [Groba et al., 2015, Schmitt and
Amini, 1998, Kobeaga et al., 2018, Christophe et al., 2019] or variations with
a variable chromosome length [Karbowska-Chilińska and Zabielski, 2013, Dutta
et al., 2016, Maskooki et al., 2022], whereas our proposed representation works
on variations with a fixed length. This may encourage the development of new
crossover operators that take advantage of this particular feature. In addition to
solving the k-TSP, these crossovers can be taken into account when solving other
variation-based problems.

The rest of the chapter is organized as follows. Section 3.2 provides a descrip-
tion of the problem along with its mathematical formulation. Section 3.3 explains
the developed algorithm, and Section 3.4 presents the data source used to estimate
the data input needed to define the instances. The computational experiments and
results are given in Section 3.5. Finally, some conclusions and future research di-
rections are provided in Section 3.6.
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3.2 Problem Description

This thesis aims to plan a single fishing trip for a tuna purse seiner that follows an
exclusive dFAD sets fishing strategy. This routing planning refers to the problem
of generating a schedule to fish a number of dFADs out of all the ones that are
available, setting out to optimize an objective function and subject to a set of
constraints. However, the dFADs (e.g., future location or availability), tuna distri-
bution and vessel performance (e.g., fuel consumption or travel time) are affected
by changing weather conditions and fishers’ decisions. For example, some dFADs
may be beached, lost, or fished by other vessels despite the dFAD information
only being available to the owner. However, these events are rare since the route
is driven by the information they get from their own dFADs.

3.2.1 Dynamic fishing routing problem

A previous study addressed the fishing routing problem of a single vessel as a
dynamic TSP with a small fixed number of pre-selected moving-targets [Groba
et al., 2015]. Therefore, they did not address the selection of the best dFADs to
fish from all the ones available that a vessel usually has deployed at sea (∼200),
and furthermore, only a few days were planned instead of a whole fishing trip.
According to this previous study, the vessel route starts at some point in the
middle of the sea and ends at the last dFAD collected, instead of departing from
and arriving at a known fishing port, as in this study. In addition, they did not
consider the vessel’s performance based on the weather conditions or the fishing
time windows.

In our proposed dynamic fishing routing problem (DFRP), there is no prede-
fined set of dFADs to fish, and a complete fishing trip is defined by considering
the fishing grounds forecast and the fishing time window. Only a limited number
of all the available dFADs can be visited in each fishing trip. This limit can be
set by defining the number of sets to be made during the trip or by setting the
trip duration. The limitation of both approaches is that the user does not know
in advance either the number of sets or the time at sea. The former can be seen
as a variant of the k-travelling salesperson problem (k-TSP) [Pandiri and Singh,
2020], while the latter can be understood as a variant of the orienteering problem
[Vansteenwegen et al., 2011]. Both approaches have their pros and cons; however,
here the problem will be formulated as a variant of the k-TSP. This formulation
has received very limited attention in the literature, and to the best of our knowl-
edge, this study is the first to apply a variant of the k-TSP to fisheries. The reason
for selecting this formulation is the flexibility that it gives to the end user when
defining possible scenarios or fishing strategies. For example, they can compare
trips with different numbers of sets (e.g., 15, 20, 25 or 30). Another example is
when the skipper wants to fish a particular dFAD, the k-TSP will allow them to
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set this dFAD at the last point of the route and set the number of other dFADs
to be fished (k) until the desired dFAD is reached.

Therefore, the DFRP for a tuna purse seine is formulated as a variant of the
dynamic k-traveling salesperson problem with moving targets and time windows
(DkTSP-MTTW). The goal of the DkTSP-MTTW is to determine a tour at mini-
mal cost that visits k of the targets, considering their movement and time window.

3.2.1.1 Instance definition and formulation

This subsection presents the data needed to define a problem instance along with
the mathematical formulation used.

• N ={1, 2, ..., N} is the set of available dFADs to fish, with N being the number
of available dFADs.

• k is the number of dFADs to fish, with k < N .
• 0 is the departure and arrival point, not considered in N (0 /∈ N ).
• lt

i = (longitudet
i, latitudet

i), i = 1, ..., N, t ≥ 0, is the geolocation of dFAD i
at time t. Therefore, an Li,t matrix with the dFADs’ future locations at each
instant t is given:

Li,t =


l0
1 l1

1 · · · lth
1

l0
2 l1

2 · · · lth
2

...
...

. . .
...

l0
N l1

N · · · lth

N


where the jth column contains the geolocation of each dFAD i at the jth time
instant. The initial time (t = 0) is the time for the first available position, and
the last time (t = th) is the forecast horizon. After th, all the locations are
considered static and set to the last known geolocation lth

i .
• TW = [a, b] denotes the daily fishing time window for all dFADs, since the

fishing event cannot occur during the night. If the vessel arrives before a or
after b, it should wait until the time window is open to start fishing and then
depart to the next target. a and b are real numbers expressed in 24-hour format
(0 ≤ a, b < 24).

• tmax denotes the maximum number of days that the fishing trip can last,
expressed as an integer number.

• fj denotes the time that a vessel spends during the fishing operations at dFAD
j.

• erj(t) is the expected reward of dFAD j, i.e., the probability of high catches
of tuna at the jth dFAD at time t.

• ci,j(t) is the cost (fuel consumption) of travelling from dFAD i to j, departing
at time t from i.
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• ti,j(t) is the number of hours needed to reach dFAD j departing at time t from
dFAD i, expressed as a real number.

• Exclusive economic zone (EEZ) fishing restrictions: the fishing vessels cannot
fish within some EEZs, but they can navigate through them. Here, EEZt

represents the set of dFADs that cannot be fished at instant t as some dFADs
may enter these zones at certain times.

3.2.1.2 Problem assumptions

In this research, it will be assumed that a typical fishing trip meets the following
criteria.

1. Fishing time. The time spent fishing at all the dFADs will be the same. Based
on historical fj = 3 hours, ∀j = 1, . . . , N is assumed.

2. Expected reward. To penalize the dFADs with a low expected reward, it will
be assumed that if erj(t) < 0.5, then erj(t) = 0.

3.2.1.3 Search space

A fishing trip planning problem consists of defining the subset of dFADs to fish, the
visit schedule along with the waiting times and the route to reach each dFAD. To
do so, the starting and ending points are established together with the number of
dFADs to fish, k, within a predefined period of days, tmax. The problem solutions
are formulated as variations without repetitions, that is, vectors of size k where all
the elements are different integers from the set N = {1, . . . , N}. In case k = N ,
they would be permutations. A solution will be codified as (e0 e1 ... ek ek+1),
where ei ∈ N , ∀i = 1, . . . , k, and e0 = ek+1 = 0, meaning that a vessel departing
from e0 has to fish first e1, then e2 and so on until ek, and finally return to ek+1.
Note that 0 is known beforehand, so we need to look for the solution among the
(e1 ... ek) variations. Therefore, the search space, S = {(0 e1 ... ek 0) | ei ∈ N , i =
1, . . . , k, ei ̸= ej , ∀i ̸= j}, is a finite set with all possible ordered arrangements
of k different elements from the set N , and its size can be calculated by VN

k =
N !/(N − k)!.

3.2.1.4 Objective function and restrictions

Given a set of dFADs, N = {1, 2, ..., N}, located at lt
i at instant t, each one having

the same TW = [a, b] associated, the aim of the DFRP is to find the minimum
cost tour starting and ending at known points, which intercepts k targets (k < N)
taking into account their time windows and movement. To fulfil the restriction
of the time window, the time at which each dFAD of the solution is reached,
atei , should be considered, where atei is expressed in hours. The atei can also be
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codified by two components [DDatei
, HHatei

], which represent the number of days
from a reference time ts, and the current time of day expressed in 24-hour format,
respectively. Thus, DDatei

= ⌊atei
/24⌋ and HHatei

= atei
− 24⌊atei

/24⌋ 1. It is
also important to know the departure time from each dFAD, dtei , in order to know
the travel cost, cei,ej (dtei), and time, tei,ej (dtei). Therefore, having established,
that the dte0 is equal to the departure time from the port:

atei
= dtei−1 + tei−1,ei

(dtei−1), i = 1, . . . , k,

dtei
= atei

+ fei
+ twei

, i = 1, . . . , k,

meaning that the arrival time, atei
, is calculated as the sum of the last visited

dFAD’s departure time, dtei−1 , and the travelling time, tei−1,ei
(dtei−1), while, the

departing time, dtei
, is estimated as the sum of the arrival time, atei

, and the time
spent on fishing operations, fei , and the possible waiting time, twei , at ei. The
waiting time is computed as follows:

twei =


a − HHatei

, if HHatei
< a

a + 24 − HHatei
, if HHatei

> b

0 , otherwise.

Furthermore, the objective function is designed to balance the high cost of
going to some dFADs with a possible higher probability of a larger tuna catch
(i.e., expected reward) in such dFADs. The DFRP can be formulated as follows:

minimize J(e0 e1 ... ek ek+1) = 1
1 +

∑k
j=1 erej

(atej
)

·
k∑

i=0
cei,ei+1(dtei

) (3.1)

subject to:
ttrip = dtek

+ tek,ek+1 ≤ tmax (3.2)
ei /∈ EEZatei

, ∀i = 1, . . . , k (3.3)

where (e0 e1 . . . ek ek+1) ∈ S, and e0 = ek+1 = 0 is the departure/arrival point.
The aim of the objective function (3.1) is to minimize the relationship between

the fuel consumption and the expected reward. Constraint (3.2) ensures that the
trip duration is never greater than the maximum trip duration limit. Constraint
(3.3) ensures that none of the dFADs fished are within any of the invalidated
EEZs.

1 ⌊ a
b
⌋ is the floor function that gives as output the integral part of a

b
.
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3.2.2 Sub-problem formulation: time-dependent shortest path problem

A simple example of a solution of a DFRP is shown in Figure 3.1(a), where a fishing
route (in red) that leaves port (the anchor icon representing e0 = 0) fishes, first,
the 4 dFAD, and second, the 2 dFADs, and then returns again to port 0. The ideal
situation to compute Equation (3.1) for this fishing route, J(0 4 2 0), would be
to have straightforward cei,ej (dtei) and tei,ej (dtei), ∀(i, j) ∈ {(0, 4), (4, 2), (2, 0)}.
However, in the sea, the great circle is the path of shortest distance between
two points on the surface of a sphere (e.g., earth), as opposed to a straight line
through the interior of the sphere. Hence, the great circle does not mean that it
is the fastest path or the cheapest, thus, it is not known in advance which is the
best path to link two dFADs. This situation is simulated in Figure 3.1(b), where
the dashed lines represent some of the possible fishing routes that a vessel can
follow to fish 4 and 2 dFADs. Therefore, a new sub-problem arises to calculate
the minimum fuel path between a pair of dFADs, and thus enables us to calculate
the cost between ei and ej , cei,ej

(dtei
), and consequently the time spent on going

from ei to ej , tei,ej
(dtei

), and the arrival time at ej , atej
, ∀ei, ej .

This new sub-problem can be formulated as the classical shortest path problem
(SPP), which consists of finding the minimum cost path in a weighted graph
between a source and a destination node [Bellman, 1958]. However, in many real
problems the cost of travelling between two nodes is time-variable, as in our case,
where the weather conditions affect the vessels’ fuel consumption, cei,ej

(dtei
), and

the travel time, tei,ej (dtei). Therefore, this sub-problem is formulated as a time-
dependent shortest path problem (TDSPP), which works on a time-dependent
weighted graph [Cooke and Halsey, 1966]. A time-dependent weighted graph can
be described as GT = (V, E, Ĉ, T̂ ), where V = {v1, ..., vz} is the set of nodes, E =
{(vi, vj)|vi, vj ∈ V } is the set of edges, Ĉ = {ĉvi,vj

(dtvi
)|(vi, vj) ∈ E} is the set of

time-dependent travel cost (i.e., fuel consumption), and T̂ = {t̂vi,vj
(dtvi

)|(vi, vj) ∈
E} is the set of time-dependent travel times. Hence, the ĉvi,vj

(dtvi
) and t̂vi,vj

(dtvi
)

values define this sub-problem instance. A path, or route, between a source node
vs and a destination node vd can be expressed by a node sequence r(vs, vd) =
(v1, v2, . . . , vm) where v1 = vs, vm = vd and (vi, vi+1) ∈ E, ∀i = 1, . . . , m − 1. A
path (v1, v2, . . . , vm) is called simple if v1, v2, . . . , vm are distinct. Therefore, the
size of the search space of this sub-problem is the number of all the possible simple
paths that link the source node vs and the destination node vd.

An illustrative example of a TDSPP is given in Figure 3.1(c), where the
source-destination nodes are the dFADs 4 and 2, and the red edges indicate
the minimum fuel path (minimum cost path). In our problem, a grid is usu-
ally considered to determine the possible paths (see Figure 3.1(c)), and when
the TDSPP is solved, the cei,ej

(dtei
) and tei,ej

(dtei
) corresponding to the DFRP

can be estimated. Hence, the minimum cost path between the pair of dFADs,
(4 = v14, 2 = v17), in Figure 3.1(c) is r∗(4, 2) = (v14, v21, v22, v17), and there-
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(a) A solution for the DFRP
problem, which first selects the
dFAD 4 and then the dFAD 2.

(b) Different possible routes
that a vessel can follow in or-
der to fish 4 and 2 due to the
weather conditions.

(c) The solution approach for the new sub-problem: time-
dependent shortest path problem (TD-SPP). The grid rep-
resents a spatial discretization around the locations of 2 and
4 dFADs.

Fig. 3.1: The fishing routing problem scheme. In (a), a fishing route example is
shown, where the nodes indicate the dFADs, the anchor is the port of departure
and arrival, and the nodes and edges in red indicate the dFADs selected to fish
and the link between them. In (b) some of the possible fishing routes that a vessel
can follow to fish 4 and 2 dFADs. In (c) an example of a time-dependent shortest
path problem is shown, where the grid represents a spatial discretization around
the locations of 2 and 4. Hence, in each node of the grid the vessel can follow
any edge leading from the current node to reach the next node. The edges in red
represent the optimal solution to go from 4 to 2.
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fore, c4,2(dt4) = ĉv14,v21(dtv14) + ĉv21,v22(dtv21) + ĉv22,v17(dtv22) and t4,2(dt4) =
t̂v14,v21(dtv14) + t̂v21,v22(dtv21) + t̂v22,v17(dtv22).

Then, given a GT , a source node ei = vs ∈ V , a destination node ej = vd ∈ V ,
and a departure time dts = dtei , the TDSPP enables us to establish the optimal
path, r∗(ei, ej), between two dFADs along with the vessel’s fuel consumption,
cei,ej

(dtei
), and travel time, tei,ej

(dtei
), considering the weather conditions. The

TDSPP objective function is defined as follows:

minimize cei,ej
(r(vs, vd), ts) =

m−1∑
i=1

ĉvi,vi+1(dtvi
) (3.4)

where v1 = vs = ei, vm = vd = ej , dtv1 = ts, and dtvi
= dtvi−1 + t̂vi−1,vi

(dtvi−1).
Equation (3.4) represents the objective function whose aim is to minimize the

fuel consumption between a pair of dFADs (ei, ej) = (vs, vd).
To sum up, the fishing routing problem could be formulated as the combina-

tion of two problems: 1) dynamic fishing routing problem (DFRP); and 2) time-
dependent shortest path problem (TDSPP). Figure 3.2 shows a hierarchy diagram
of how the data and problems are connected. The first step is the collection of the
raw data, which is explained in Section 3.4.1. The second step is the estimation of
the problem instances by means of machine learning models, which are explained
in Section 3.4.2. Once we have the problem inputs, the TDSPP can be solved,
enabling us to establish the time-dependent optimal path in terms of fuel con-
sumption (i.e., vessel heading), as well as the travel time between two dFADs,
while considering the effect of the weather conditions on the vessel’s performance.
The final step is to solve the DFRP, the aim of which is to establish a tour at
minimal cost, in terms of the relation between fuel consumption and expected
reward in a visit to a subset of the total dFADs, considering the movement and
time window of each dFAD.

3.3 Solution Approach

A metaheuristic algorithm to solve the DFRP is proposed, which works on a de-
terministic discrete time-dependent dynamic network. The proposed heuristic al-
gorithm couples a genetic algorithm (GA) [Goldberg, 1989] and a time-dependent
A* algorithm [Ohshima et al., 2011] to obtain near-optimal solutions. It is called
GA-time-dependent A* (GA-TDA*). The proposed GA-TDA* algorithm scheme
is shown in Figure 3.3, where the GA uses a scheme based on the one implemented
in the GA R package [Scrucca, 2013]. It starts by creating an initial population
with random solutions, and evaluates the fitness of each individual by using a
time-dependent A* algorithm. Then at each iteration the GA-TDA* generates a
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Fig. 3.2: Hierarchical diagram of how the data and problems are connected.

new offspring (new solutions) from the current set of best solutions by means of
the genetic operators selection, mutation and crossover.

The main contribution of the GA-TDA* is the adaptation of new crossover
operators (Section 3.3.3) designed for permutation-based problems (i.e., paths
that necessarily need to visit all the nodes once) to variations without repetition
problems (i.e., paths that only need to visit a subset of them). To the best of
our knowledge, there is no proposal for this kind of space in the literature. The
existing approaches in the literature work on permutation space [Schmitt and
Amini, 1998, Kobeaga et al., 2018, Silberholz and Golden, 2007, Yu et al., 2011], or
on variation space but with a chromosome of variable length [Karbowska-Chilińska
and Zabielski, 2013, Dutta et al., 2016]. The main advantages of the proposed
approach with the existing methods are: i) the search space is reduced since the
size of the permutation space is N !, whereas for variations without repetitions it
is N !/(N − k)!, reducing significantly the search space and avoiding duplications;
and ii) the required memory is reduced since in the permutation object all the
N available elements are part of a solution, so that a numeric vector of size N is
needed to store each solution, whereas for variations only the k selected elements
are part of a solution, and thus, a numeric vector of size k (with k < N) is enough
to maintain each solution. This is an important characteristic for large instances
[Kobeaga et al., 2018], and particularly where k << N is concerned. An important
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feature of the proposed crossovers is that besides combining the elements of two
parents, they allow us to select any possible element that is not in either parent.
Finally, the proposed crossovers can be generalized to the cases where the solution
space consists of permutations by simply using a value of k = N .

Fig. 3.3: Diagram of the genetic algorithm with time-dependent A* (GA-TDA*)
algorithm.

3.3.1 Initialization

The initial population is chosen randomly with the aim of creating a diverse pop-
ulation that represents the whole search space. To do so, a chromosome of length
k is filled with the available dFADs, N = {1, 2, ..., N}, chosen at random without
repetition, and then the departure/arrival ports are added to the chromosome.
The population size, Ns, depends on the available number of dFADs, N , of each
instance, and it is set by Ns = 2 · N .

3.3.2 Selection

A portion of the current population in each iteration is selected to be the parents
where the crossover and mutation operators will be applied. To do so, a tourna-
ment selection is used, where K solutions are selected randomly from the current
population and the best solution among the K is chosen to pass to the next phase
for reproduction. This process is repeated until Ns = 2 · N parents are chosen,
and using a tournament of size K = 3.
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3.3.3 Crossover

The aim of the crossover operator is to enhance the average quality of the pop-
ulation by combining two parents and, in our case, obtaining two children. The
crossover operator is applied by means of a probability pc, which establishes if the
crossover will happen or not. Therefore, if the crossover occurs, the two parents
are replaced by the children in the population. New crossover operators are de-
signed to address the specific characteristics of our problem avoiding unfeasible
solutions. A distance function is defined between each pair of elements, (i.e., (i, j))
to account for the problem characteristics:

distance(i, j; t) = deuc(i, j)
1 + erj(t) , (3.5)

where deuc(i, j) is the Euclidean distance between i and j dFADs, and erj(t) is
the expected reward at dFAD j at time t. It is worth noting that the time t to
select the dFADs positions and erj(t) to compute the Eq. (3.5) is the departing
time of the current position, t = dtei . Moreover, the Euclidean distance is used
instead of the great-circle distance to reduce computational time.

The repair uniform crossover (RUX) is selected as the baseline for compari-
son, since it does not consider the problem characteristics. Then, three crossovers
are proposed for being gradually more problem-specific since they consider the
problem characteristics by applying Equation 3.5. The proposed common-point
crossover (CPX) only accounts for the distance function in the repair function.
The random bidirectional circular sequential constructive crossover (RBCSCX)
and the greedy crossover with nearest new insertion (GX-NNI) use the distance
every time a new element is added to the child. However, the GX-NNI also allows
new elements that are not in any parent to be added.

• Repair uniform crossover (RUX), where each element of the children can
be selected from either parent with an equal probability. This probability is
generated for each position by a random number between 0 and 1, and if the
probability is below 0.5, then the element is taken from P1, or from P2. Figure
3.4(a) shows an example of the RUX, where, given two parents (P1 and P2)
and having the following probability vector, (0.3, 0.2, 0.6, 0.1, 0.9, 0.9, 0.7),
the children (C1 and C2) are built as follows: if probability is below 0.5, C1
takes the element from P1 and C2 from P2, else, C1 takes the element from
P2 and C2 from P1. However, this crossover can lead to invalid solutions since
duplicated elements (dFADs) can be entered in a child. Therefore, a repair
function randomly removes one of the duplicated values and inserts a random
element from all the available elements (dFADs) that are not considered in
the child (Figure 3.4(a)).
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• Common-point crossover (CPX) creates a child by searching for common
elements in both parents, and from these common elements one is selected
at random as the cut-off point. If no common elements are found, a random
element from P1 is selected as the cut-off point and to establish the cut-off
point in P2, the element with the minimum distance (Equation (3.5)) from
the cut-off point of P1 will be selected. Then, to build C1, everything from the
first element of P1 until the cut-off point are taken from P1 along with the
other elements from the cut-off point onwards, from P2. Figure 3.4(b) shows
an example, where the common elements are 5, 12, and 7, and element 12 is
selected as the cut-off point. Then, C1 is filled with the P1 elements from the
first one up to the cut-off point (i.e., 5, 8, 4, 15, 12). The other elements are
provided by P2 from the cut-off point onwards (i.e., 14, 2). The C2 is built
by following the same approach, but starts with the elements of P2. Note
that, when there are no more elements to add after reaching the end of a
parent, the rest of the required elements are taken from the beginning of the
parent (see elements 5 and 8 in the building of C2 in Figure 3.4(b)). However,
this approach can create invalid solutions by introducing duplicated elements,
such as element 5 in C2. Therefore, the repair function randomly removes one
of the duplicated elements and inserts the new valid element that minimizes
Equation (3.5) from all the available dFADs that are not already considered
in the child.

• Random bidirectional circular sequential constructive crossover
(RBCSCX) is based on Kang et al. [2015]. First, a random element from
P1 is selected as the first element of C1. The legitimate elements of a given
element are defined as those that are in the closest positions of the parents and
have not been previously used in the child. Then, at each step this crossover
searches in both parents for the legitimate elements of the last added element.
Figure 3.4(c) shows an example, where it is assumed that the elements in gray
are already in C1 and the last added element to C1 is 12. Considering that
the solutions are cyclical, the legitimate elements of 12 are 8 and 15 in P1,
and 14 and 3 in P2 (Figure 3.4(d)). If the last added element is only in one
parent, only the legitimate elements of this parent will be considered. Then,
from these legitimate elements, the one with the minimum distance according
to Equation (3.5) is added to C1. These steps are repeated until the child is
completed. The C2 construction follows the same steps, except for the case of
the initial element that is selected from P2.

• Greedy crossover with nearest new insertion (GX-NNI) is based on
the work of Yang [1997]. The first element of C1 is selected randomly from
P1, and then the adjacent elements in P1, and also in P2 if P2 contains the
selected element, are identified. This is shown in Figure 3.5(a), where element
15 is randomly selected as the first added element to C1, and 14, 7, 3, and 14
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(a) Repair uniform crossover (RUX)
diagram. Green indicates the ele-
ment that has been inserted by the
repair function in order to avoid rep-
etitions.

(b) Diagram of the common-point
crossover (CPX). Green indicates
the element that has been inserted
by the repair function in order to
avoid repetitions.

(c) Diagram of an intermediate step
of the random bidirectional circu-
lar sequential constructive crossover
(RBCSCX).

(d) Example of the legitimate ele-
ments search process for element 12.
Gray elements are already in the
child (see Figure 3.4(c)).

Fig. 3.4: Schemes of the crossovers.

are its adjacent elements. Then, to select the new element to be added to C1
among the adjacent elements, there are four possible situations. First, if there
are common elements among the adjacent elements, and if they are not in C1,
the one with the lowest distance (Equation (3.5)) is selected. If there is only
one common element, and if it is not already in C1, then this one is chosen
(i.e., 14 in Figure 3.5(a)). The second option is to select the one with the lowest
distance (Equation (3.5)) among the right-adjacent elements of both parents
(i.e., elements 8 and 16, in Figure 3.5(b)). Third, if one of the right-elements
is already in C1, the other one is chosen (Figure 3.5(c)). The last option is
when all the right-adjacent elements are already in C1. In this case, from all
possible elements (i.e., all the available dFADs) that are not in C1, the one
at the lowest distance using Equation (3.5) is selected (Figure 3.5(d)). The
C2 is constructed in a similar way, but when there are no common elements,
the left-adjacent elements are considered instead of comparing right-adjacent
elements.
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(a) Example when there is a common
adjacent element.

(b) Example when there is no common
adjacent element and among the right-
adjacent elements, the one with the low-
est distance is selected.

(c) Example when there is no common
adjacent element and among the right-
adjacent elements, there is only one that
is not in C1.

(d) Example when there is no com-
mon adjacent element and all the right-
adjacent elements are already located
in C1, hence, from all possible elements
that are not in C1, the one with the min-
imum distance is selected.

Fig. 3.5: Diagram of the greedy crossover with nearest new insertion (GX-NNI).

3.3.4 Mutation

The mutation operator’s aim is to increase the exploration of solutions, preventing
the algorithm from getting stuck. This is done by altering one or more elements
in a chromosome based on a defined probability pm. Here, different mutations
schemes are considered (Figure 3.6).

• Random mutation, which works by randomly selecting an element and ex-
changing it for another one chosen randomly from the subset of the dFADs
that are not in the current solution.

• Scramble mutation, which randomly selects a subset of adjacent elements
that are then randomly scrambled.

• Displaced inversion mutation, which selects two random points in the
chromosome, then reverses the elements between these two points, and finally
displaces them somewhere along the chromosome.

3.3.5 Elitism

The goal of the elitism selection operator is to guarantee that the best solutions in
each generation pass to the next one. Therefore, this operator guarantees that the
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Fig. 3.6: Mutation schemes: random mutation (left), scramble mutation (middle),
and displaced inversion mutation (right).

quality of the solutions does not decrease from one generation to the next. Note
that Ns = 2N parents were chosen (with repetition) from the previous generation,
and then the crossover and the mutation operators are applied with probabilities
pc and pm, respectively. So, in the case where one or both operators are applied,
the new solutions replace their parents. At this step of the algorithm, the objective
function values of these new solutions are unknown. However, in the cases where
none of the operators are applied, both parents remain in the current generation,
and for them the objective function value is known because it had been calculated
in the previous generation. Therefore, the worst 5% · Ns = 2N · 5/100 inherited
parents will be replaced by the top 5% solutions of the previous generation. If
the amount of inherited parents is less than 2N · 5/100, the remaining required
solutions to be replaced will be randomly selected.

3.3.6 Fitness evaluation

The fitness value of each solution is used as a measure of its quality. A general
diagram of the process to calculate the fitness value of a solution of the DDRP is
shown in Figure 3.7. There are three main steps:

1. The dFADs’ location at each arrival time from the Li,t matrix is selected. To
do so, the travel time is estimated by applying the following formula:

tti,j = disti,j

vel
(3.6)

where disti,j is the great circle distance between i and j dFADs, and vel is the
vessel speed that is assumed to be constant with a value of 12 knots. Once the
arrival time is known, the dFAD position is selected from Li,t based on the
estimated arrival time. Note that the movement of the dFADs is ignored while
the vessel is travelling to collect them in order to simplify the mathematical
computation. Moreover, since the study area is spatially discretized in 0.5°
cells and the dFADs average velocity is usually around 1 knot, the time that
a dFAD needs to leave a cell is usually bigger than the time necessary to
reach the dFAD. These simplifications can introduce minor deviations in the
fitness value (between 0.4% and 1.5%), hence the effect on to the solutions
rank within the GA-TDA* will be insignificant.
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Fig. 3.7: Diagram of the evaluation of a solution of DFRP fitness.

2. The minimum fuel path cei,ej
(r(vs, vd)), ts) and tei,ej

(r(vs, vd))ts) is calcu-
lated, using the time-dependent A* algorithm (detailed in Section 3.3.6.1).

3. The objective function is calculated. In order to consider the constraints of
the problem, the objective function (3.1) is modified as follows:

J(e0 e1 ... ek ek+1) = 1
1 +

∑k
j=1 erej

(atej
)

·
k∑

i=0
cei,ei+1(dtei

) + M · τ + M · µttrip

(3.7)

where M = 106 is a large number to penalize the invalid solutions if a fished
dFAD is within some of the forbidden EZZs, or if the ttrip ≥ tmax, and where
τ and µtrip are defined as follows:

τ =
{

1 , if any ei ∈ EEZatei

0 , otherwise
µttrip =

{
1 , if ttrip > tmax

0 , otherwise.
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3.3.6.1 Time-dependent A* algorithm

The A* algorithm is a goal-directed search algorithm that finds the optimal route
according to a cost function (Equation (3.8)). It was originally described by [Hart
et al., 1968]. The time-dependent A* algorithm employs an estimator (i.e., heuris-
tic function) to guide the search process towards the destination node. To do so,
the A* algorithm selects the path that minimizes the following cost function:

f(v, t) = g(v) + h(v, t) (3.8)

where f(v, t) is the travel cost value at node v and time t, g(v) is the time-
dependent cost from the departure to the node v, h(v, t) is a heuristic estimation
of the cost from the node v to the destination at time t. Note that the heuristic is
problem specific and the search efficiency and optimal quality depends on h(v, t)
if h(v, t) = 0, A* is equivalent to Dijkstra’s algorithm [Nannicini et al., 2008].
In addition, if h(v, t) never overestimates the actual cost to the destination, then
A* always finds the shortest path. Hence, the h(v, t) is defined as the great circle
distance divided by a coefficient, allowing us to set a cost (i.e., fuel consumption)
that never overestimates the real cost of crossing each edge. This coefficient is set
to 21.5 kg fuel/km, which is the minimum recorded fuel consumption per km for
the specific study vessel at 12 knots.

Given a directed time-dependent graph GT = (V, E, Ĉ, T̂ ), a source node vs ∈
V , a destination node vd ∈ V , and a departure time ts, the A* algorithm finds the
minimum cost path between the source vs and destination vd that departs from
vs at time ts. The implemented Algorithm 1 is a variant of the time-dependent
A* algorithm proposed by Ohshima et al. [2011], since in our approach the edge
cost is the fuel consumption rather than the travelling time. This requires the cost
g(v), time of arrival time(v) at each node, and the predecessor node of node v,
p(v) to be stored.
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Algorithm 1: time-dependent A* (GT (V, E, Ĉ, T̂ ), vs, vd, ts)
Input: a time-dependent graph GT , source vs, destination vd, and departure

time ts.
Output: precedent nodes p(v), total cost g(vd), and total travel time time(vd).

initialize:
1: status(vs) :=“labeled”, g(vs) := 0, time(vs) := ts, p = ∅
2: for all vi ̸= vs ∈ V do
3: status(vi) :=“unlabeled”, g(vi) := ∞, time(vi) := ∞

main loop:
4: repeat
5: Choose a “labeled” node vi with the smallest g(vi) + h(vi, t). {In the case

that there are multiple candidates, choose one with the smallest g(vi).}
6: for each edge (vi, vj) ∈ E do
7: if status(vj) =“unlabeled” then
8: status(vj) := “labeled”, g(vj) := g(vi) + ĉvi,vj

(t),
time(vj) := time(vi) + t̂vi,vj

(t), p(vj) := vi

9: else if status(vj) =“labeled” AND g(vj) > g(vi) + ĉvi,vj
(t) then

10: g(vj) := g(vi) + ĉvi,vj
(t), time(vj) := time(vi) + t̂vi,vj

(t), p(vj) := vi

11: status(vi) := “finished”. goto 5
12: until vi = vd

13: return p(v), g(vd), time(vd)

Note that the outputs of the time-dependent A*, g(vd) and time(vd), are the
desired cei,ej (dtei) and tei,ej (dtei), respectively. Moreover, Algorithm 2 is used to
generate the shortest path found by Algorithm 1. The reverse function is used to
modify the sequence of path r in order to start from node vs.

Algorithm 2: Path generation
Input: predecessor nodes p(v), source node vs, and destination node vd.
Output: Optimal vs-vd path r.

initialize:
1: r[0] := vd, k := 1

main loop:
2: while r[k − 1] ̸= vs do
3: r[k] := p(r[k − 1])
4: k + +
5: return r := reverse(r)
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3.4 Problem Instances

The problem instances used for the experiment (Section 3.5) are defined by real
historical data given by a fishing company and environmental modelled data from
the EU Copernicus marine environment services (CNEMS). By, using this his-
torical data, different models are developed in order to predict the values of the
problem instances (e.g., fuel consumption, expected reward, etc.). This section ex-
plains the historical data that is used (Section 3.4.1) and how the instance values
are estimated for the starting time onwards (Section 3.4.2).

3.4.1 Data source

Before describing the historical data, two points should be mentioned. First, the
fishing vessel data (Section 3.4.1.3) and the historical tuna catches (Section 3.4.1.4)
are only used to train the machine learning models (Sections 3.4.2.2 and 3.4.2.4).
Second, the remaining data (Sections 3.4.1.1, 3.4.1.2 and 3.4.1.5) are also used
to train the models, but they are also needed to create the problem instances.
Furthermore, these data are always available before the vessel departs from port
and also every time they are updated during the vessel fishing trip.

3.4.1.1 Fishers’ echo-sounder buoys data

The acoustic data from the dFADs are supplied mainly by two buoy manufacturers,
hereinafter referred to as M1 and M2 manufacturers. The echo-sounder buoys
provide a rough estimation of aggregated biomass by detecting the assemblage of
various fish species beneath them by means of acoustic signals, along with their
geo-location [Moreno et al., 2016, Lopez et al., 2016]. These estimations do not
discriminate between the targeted tunas and non-targeted species. Differences in
the signal outputs between companies create the need to develop independent
models for each manufacturer in order to predict eri(t).

3.4.1.2 Environmental data

The environmental variables affect the tuna distribution (e.g., expected reward,
erj(t)) and the ship performance (e.g., fuel consumption, ci,j(t), and travel time,
ti,j(t)). The environmental data used here comes from the Copernicus marine en-
vironment monitoring service (CMEMS1). Here, the following short-term forecast
products are used: i) global sea physical analysis and forecasting product; ii) global
ocean wave analysis and forecasting product; and iii) global biogeochemical anal-
ysis and forecasting product. Table 3.1 shows a summary of each environmental
product characteristic and its use. Notice that the value of these variables can be
known up to 5/10 days in advance.

1 http://marine.copernicus.eu/

http://marine.coper nicus.eu/
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Product Variables Forecast
horizon

Spatial
resolution

Temporal
resolution

Update
frequency Depth (m)

BIO

Chlorophyll (chl)
Nitrate (NO3)
Primary production of phyto (nppv)
Dissolved oxygen (O2),
Phosphate (PO4)
Dissolved silicate (Si)

10 days 1/4 degree daily Weekly 500 m

WAV
Significant wave heigh (Hs)
Wave direction (Hd)
Wave period (Tm10 and Tm02)

10 days 1/12 degree 3 hourly daily surface

PHY

Potential temperature (thetao)
Salinity (so)
Current velocity (uo, vo)
Sea surface height (zos)
Mixed layer thickness (mlost)
Sea floor potential temperature (bottomT)

10 days 1/12 degrees daily daily 500 m

Oceanic general circulation: (uo,vo)
Tide currents (utide, vtide)
Total current (utotal, vtotal)

5 days 1/12 degrees hourly daily surface

Table 3.1: Environmental data used. BIO refers to global sea biogeochemical anal-
ysis and forecasting products; WAV refers to global wave analysis and forecasting
products; and PHY refers to ocean sea physical analysis and forecasting products.

3.4.1.3 Fishing vessel data

The vessels’ onboard sensors provide information about time, latitude, longitude,
main engine fuel consumption, propeller shaft power, engine speed, propeller pitch,
and actual ship speed. In addition, the dry docking, which is the number of months
since the ship’s hull and propeller were last cleaned, is also considered. This vari-
able affects fuel consumption, ci,j(t), since the biofouling attached to the hull and
propeller increases the ship’s resistance and reduces propeller efficiency [Adland
et al., 2018].

3.4.1.4 Tuna catch data

The historical tuna catch data come from the Spanish fisheries observer pro-
gramme from 2014 to 2020 [Báez et al., 2020b], which monitor fishing activities.
The observations are collected by onboard scientific observers, and the program
has a minimum coverage rate of 10% of the fishing trips. However, the company
providing the data to this work have 100% coverage for the study period.

3.4.1.5 Spatial discretization

The studied area is spatially discretized by implementing a regular square grid,
GT = (V, E). The area is located in the Indian Ocean, and it extends through all
the water from 30, 75 longitudes to -20, 22.5 latitudes. Fishing sets are allowed
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only in the Seychelles, Madagascar, France, and Comoros exclusive economic zones
(EEZs) and high seas (outside national EEZs). However, vessels can navigate
through all EEZs. The distance between the nodes of the grid is of 0.5 degrees and
each node is connected to 8 vicinity nodes. Each edge that links the nodes in V
with their neighbours can be considered to form the path that a vessel can follow.

3.4.2 Estimation of the input data of the problem instances

3.4.2.1 Travel time

The time that a vessel spends travelling from one node vi to another node vj

departing from vi at time dtvi
, t̂vi,vj

(dtvi
), depends on the edge length and the

vessel’s speed. This speed is affected by an involuntary speed reduction due to
the added resistance caused by the weather conditions. In order to consider this
involuntary speed loss due to the wave effect, the formula proposed by Bowditch
[1975] is used:

v(H, θ, dtvi
) = v0 − q(θ) · H2(dtvi

) (3.9)

where v(H, θ, dtvi) denotes the final speed at time dtvi , v0 is the vessel speed when
unaffected by the weather conditions, H(dtvi

) is the significant wave height at time
dtvi

, and q(θ) is a coefficient based on the relative ship-wave direction found in
the edge (vi, vj). The values of q(θ) are given in Table 3.2 according to the angle
θ between the ship’s and the wave’s directions, and it is expressed in kn/ft2. In
this study, v0 is considered as a constant vessel speed of 12 knots.

Ship-wave relative angle Wave direction q

0◦ ≤ θ ≤ 45◦ Following seas 0.0083
45◦ ≤ θ ≤ 135◦ Beam seas 0.0165
135◦ ≤ θ ≤ 180◦ Head seas 0.0248

Table 3.2: Values of the q coefficient of Equation (3.9).

Hence, the estimated travel time between nodes, t̂vi,vj (dtvi), departing from vi

at time dtvi
, is defined by:

t̂vi,vj
(dtvi

) =
distvi,vj

v(H, θ, dtvi
) (3.10)

where distvi,vj
is the great circle distance between the vi and vj nodes.
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3.4.2.2 Fuel consumption

With the historical data a machine learning model is developed to predict the
ship’s fuel consumption during cruising, ĉvi,vj

(tvi
) (Figure 3.8). The vessel’s fuel

consumption is affected by many factors such as the vessel’s speed, weather con-
ditions, loading conditions, and hull design [Bialystocki and Konovessis, 2016].
The developed model therefore uses environmental variables (Section 3.4.1.2), the
vessel’s speed and dry docking as predictors, whereas the response variable is fuel
consumption per hour (kg/h), FOC(t), at time t that comes from the onboard
sensors (see Section 3.4.1.3).

The modelling starts with the data pre-processing, which consists of two steps:
1) data cleaning, which is carried out on the vessel’s data by selecting the steady-
state data, data aggregation, outlier detection, and correction for environmental
factors [Internartional Standar, 2016]; and 2) feature engineering, which consists of
transforming the environmental northward and eastward component, or angle and
magnitude into the vessel body-fixed frame of reference to obtain the longitudinal
and transversal components as suggested by Gkerekos and Lazakis [2020]. Then,
the model is trained and validated by the following steps: 1) the data is randomly
split between a training set (80% of the data) and a test set (20% of the data);
2) a feature selection is carried out on the training set [Azadkia and Chatterjee,
2019], then a model tuning using a 10-cross validation technique, and with the best
parameters, a random forest (RF) algorithm is learnt [Breiman, 2001]; and 3) the
model performance on the test set is measured and validated, using the mean
absolute percentage error (MAPE) as the performance metric [de Myttenaere
et al., 2016]. The trained model showed a MAPE of 3.8%, indicating that the
model can predict the fuel consumption FOC(t).

Fig. 3.8: The building and validation methodology of the fuel consumption model.

Finally, with the model output the fuel consumption needed to go from vi to
vj departing from vi at time dtvi

, ĉvi,vj(dtvi
), is estimated by:

ĉvi,vj (dtvi) = FOCvi,vj (dtvi) ·
distvi,vj

v(H, θ, dtvi)
(3.11)
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where FOCvi,vj
(dtvi

) is the vessel’s fuel consumption at edge (vi, vj) at time
dtvi

, distvi,vj
is the great circle distance between the vi and vj nodes, and

vvi,vj
(H, θ, dtvi

) is the vessel speed in the edge (vi, vj) (Equation (3.9)).
Another fuel-intensive activity that consumes a high amount of fuel and is

considered here is the fishing operation. In Basurko et al. [2022], they estimated
an average fuel consumption rate during fishing operations of 72.4 kg/h and 190.8
kg/h for the main and auxiliary engines, respectively. Therefore, using these es-
timations and assuming that a fishing event has an average duration of three
hours in this study, the fuel consumption in each fishing set is assumed to be
3 · (72.4 + 190.8) = 789.6 kg.

3.4.2.3 dFAD geolocation

The historical and current geolocation of each dFAD, lt
i = (longitudet

i, latitudet
i),

is accessible at any time. However, the dFADs drift in any particular course and
speed based on the weather conditions, which creates the need to forecast their
trajectory in order to establish their geolocation when the vessel arrives. To do
so, there are several methods that range from more complex Lagrangian models
that use environmental data [Özgökmen et al., 2000], to simpler motion equations
that require only the last locations of each dFAD [Groba et al., 2015]. Here, the
historical geolocations will be used as future geolocations in order to test the
proposed algorithm, since trajectory forecasting is not the objective of this work.

3.4.2.4 Expected reward under drifting fishing aggregating devices
(dFADs)

To predict the expected reward (i.e, probability of high catches of tuna) eri(t),
a machine learning model is developed by using the historical data. In order to
forecast the tuna distribution and abundance, the physical and biogeochemical
variables are commonly used as predictors [Arrizabalaga et al., 2015, Orúe et al.,
2020]. Thus, the dFADs signal source (Section 3.4.1.1) and the environmental data
(Section 3.4.1.2) are used to gather the information about the predictor variables,
while the information from the catches data (Section 3.4.1.4) is considered for the
target variable. Figure 3.9 shows the model building and validation methodology.
This model enables us to establish erei

(t) at each dFAD ei and time t.
The data pre-processing consists of cleaning the dFADs’ data as suggested by

Orue et al. [2019a], and the catch data. The three sources of data are aggregated
to a 0.5 degree resolution and merge, and finally the target variable (i.e., tonnes
of catches) is discretized into two possible values: low or high amount of catches.
The threshold used to discretized the target variable is 35 tonnes of tuna. A sim-
ple approach is used to build and validate the model (Figure 3.9). Firstly, the
pre-processed data is split between the training and test sets. Then the features in
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Fig. 3.9: Tuna model building and validation methodology.

the training set are discretized according to Fayyad and Irani [1993] method, and
then a feature selection is conducted as suggested by Hall [1999]. Finally, a Naïve
Bayes classifier is learned and its performance is evaluated [Granado et al., 2019].
To evaluate the models, the accuracy, sensitivity, and specificity metrics are con-
sidered. The accuracy indicates the proportion of the total number of predictions
that were correctly classified, while specificity and sensitivity indicate the propor-
tion of real positive (high) or negative (low) cases that were correctly classified,
respectively [Granado et al., 2019]. The accuracy enables the overall performance
of the model to be established, whereas the specificity and sensitivity enables us
to measure the performance in each class.

The above mentioned process is applied to each manufacturer of dFADs. That
is, two tuna models are created, one for M1 and other for M2. For M1, the model
accuracy is 58.1%, and its sensitivity and specificity are 61.0% and 54.2%, re-
spectively. For M2, the accuracy, sensitivity, and specificity are 61.8%, 85.9%, and
27.7%, respectively. Existing studies that tried to predict tuna under dFADs show
accuracies of around 75-85% in recognising the presence/absence of tuna aggre-
gations under dFADs [Baidai et al., 2020], between 58 and 66% to differentiate
between high and low bycatch occurrence [Mannocci et al., 2021], or around 50%
for the classification of size categories of tuna aggregation [Baidai et al., 2020].
Therefore, our results match the one that predicted between low and high bycatch
occurrence. The differences with the other two studies are mainly due to the tar-
get variable, since the model with the highest accuracy only differentiates between
presence/absence of tuna, whereas the model with the lowest accuracy classifies
between four groups (i.e., No tuna, < 10 tons, 10-25 tons and > 25 tons). Hence,
the model performances are enough to estimate the problem instances values in
order to work with a framework as real as possible.

3.5 Results of Experiments

Three different experiments were developed to analyze the proposed time-
dependent algorithm and its dynamic version using real fishing trips data. The
aim of the first analysis is to evaluate the performance of the proposed crossover
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and mutations operators explained in Sections 3.3.3 and 3.3.4. The second anal-
ysis compares our mono-objective approach detailed in Section 3.3 with a multi-
objective approach, since our proposed objective function combines two indepen-
dent objectives (i.e., fuel consumption and expected reward). The aim is to check
if the defined objective function accomplishes both goals. The last analysis con-
sists of solving the DFRP as a real dynamic problem with route updates every
time a dFAD is fished (usually one or two times per day). This approach is the
most similar one to a real situation, allowing changes to be made in the proposed
route as forecasts or fishers’ decisions vary.

All the instances used in the three experiments have the same departure and
arrival point (e0), which is the Seychelles port. As regards the dFADs positions,
Li,t, the historical positions are used as future positions (see Section 3.4.2.3). The
fishing time window, TW = [a, b], is set at a = 5 am and b = 5 pm. The expected
reward at each dFAD, erj(t), is computed with the model explained in Section
3.4.2.4. The time-dependent travel cost, ĉvi,vj

(t), and travel time, t̂vi,vj
(t), are

computed according to the description in Sections 3.4.2.2 and 3.4.2.1, respectively.
For the travel time, a vessel’s constant speed of v0 = 12 knots is assumed. These
costs are assigned to each edge of the grid defined in Section 3.4.1.5, in order to
know how long it takes to travel through these edges from one node to another
and the consumption incurred. In addition, the data used as input in the models
are the same as those explained in Section 3.4.1.

3.5.1 GA-TDA* operator selection

The data used as input are the ones explained in Section 3.4, and the specific
instances considered are based on five real fishing trips (i.e., instances 2, 3, 4, 5,
and 6). The numbers of available dFADs together with the number of dFADs to
fish in each of the five instances are shown in Table 3.3.

Trip Available #dFADs #dFADs to fish
2 N = 189 k = 33
3 N = 185 k = 22
4 N = 201 k = 20
5 N = 195 k = 24
6 N = 231 k = 15

Table 3.3: Instance parameters based on the five real fishing trips.

The specific setup parameters used for the GA-TDA* are detailed in Table 3.4,
with the difference that the scramble is used as the mutation operator.
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3.5.1.1 Analysis of the crossover operator

The performance between the four crossover operators explained in Section 3.3.3
is compared by running the algorithm with each one 30 times in each instance
and using the scramble as the mutation operator in all the runs. Figure 3.10 sum-
marizes the 30 runs for each operator and instance. A first glance shows that the
RUX is the worst performing crossover, perhaps because it is the simplest one and
does not consider any problem particularities. The CPX performs better, but not
as well as the GX-NNI and RBCSCX crossovers. This may be due to the fact that
the CPX only considers some of the problem characteristics in the repair function,
whereas the GX-NNI and RBCSCX crossovers consider the problem particulari-
ties whenever any new dFAD is added to the child by using the Equation (3.5).
Since the best crossover operators are GX-NNI and RBCSCX, a new crossover
that combines both operators is proposed with the hope of getting the best out
of both. This new crossover, called GreedyBcscx randomly selects GX-NNI or
RBCSCX at each step to create the children. Figure 3.11 shows the results of the
30 runs for the best two crossovers (i.e., GX-NNI and RBCSCX) with the new
GreedyBcscx operator.

Fig. 3.10: Box plot for GX-NNI, RBCSCX, CPX, and RUX crossovers.

According to the Bayesian ranking analysis [Calvo et al., 2018], which is im-
plemented in the scmamp R package [Calvo and Santafé, 2016], the GreedyBcscx
crossover has the best performance with an expected probability of being the best
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Fig. 3.11: Box plot for GX-NNI, RBCSCX, and GreedyBcscx crossovers.

of 0.506. The expected probability of being the best for the other operators is: GX-
NNI 0.312, RBCSCX 0.154, CPX 0.027, and RUX 0.001. Figure 3.12 shows the
samples from the posterior distribution of the probability of being the best when
considering the 3 best crossovers: RBCSCX, GX-NNI, and GreedyBcscx.. Greedy-
Bcscx. The region at the bottom-right of the triangle is relative to the case where
GX-NNI is more likely to be better than RBCSCX and GreedyBcscx. The top
region of the triangle shows the case when the GreedyBcscx is more likely to have
a better performance than the other two crossovers, and the bottom-left region
corresponds to the case where RBCSCX is more likely to be better than GX-NNI
and GreedyBcscx together. Since most of the points fall inside the GreedyBcscx
region, we conclude that the hypothesis of GreedyBcscx being the best crossover
is true with a probability of ≈ 1.

3.5.1.2 Analysis of the mutation operators

A performance comparison of the three mutation operators explained in Section
3.3.4 is conducted by running the algorithm with each one 30 times in each instance
and using the GX-NNI as the crossover operator. Figure 3.13 summarizes the 30
runs for each mutation and instance. As can be observed, the three mutations
have a similar performance in the five instances.

The Bayesian approach is applied to compare them, giving an expected prob-
ability of winning of 0.471 for the Disp-inv operator, while for Scramble and Ran-
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Fig. 3.12: Distribution of the posterior probabilities for Bcscx, Greedy and Greedy-
Bcscx crossovers obtained from the Bayesian ranking analysis.

Fig. 3.13: Box plot showing the objective function values for all the 30 runs for
each mutation operator.
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dom mutations, it is 0.262 and 0.267, respectively. Figure 3.14 shows the posterior
distribution of the probability of being the best for the three mutations. Note that
although Figure 3.13 does not show much difference between operators, after the
Bayesian analysis there is not much uncertainty about Disp-inv being the best.

Fig. 3.14: Distribution of the posterior probabilities for all the mutation operators
using the Bayesian ranking analysis.

3.5.2 Comparison of mono-objective and multi-objective algorithms

Many real world problems involve the optimization of several objectives simulta-
neously, which can be addressed in two ways: by combining the desired objectives
in a single objective function, or by using a multi-objective optimization (MOO)
approach that considers each objective independently in the process of optimiza-
tion. However, with MOO methods, it might not be possible to find a solution
that optimizes all objective functions at once. Hence, the aim of this analysis is
twofold. First, to see if the proposed GA-TDA* is able to obtain good solutions
by comparing it with a multi-objective approach. Second, to validate the proposed
objective function (Equation 3.1), by looking at the relative importance of each ob-
jective (i.e., fuel consumption and expected reward) by observing the Pareto front.
For the multi-objective optimization approach, the fast non-dominated sorting ge-
netic algorithm II (NSGA-II) is selected, which is a multi-objective evolutionary
algorithm (MOEA) developed by Deb et al. [2002].

Since the NSGA-II is based on a genetic algorithm, the genetic operators used
in the GA-TDA* can be used in the NSGA-II. The NSGA-II therefore uses the
same operators to make the comparison as fair as possible. In addition, the NSGA-
II algorithm also makes use of the A* algorithm to calculate the objective function
values of the solutions, in the same way as the GA-TDA* does. The GA-TDA*
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and NSGA-II setting parameters are showed in Table 3.4. These parameters and
were set as per the results of preliminary experiments, where different values for
each parameter were tested and tuned.

GA-TDA* NSGA-II
Initial population Random Random
Population size 2N 2N

Selection Tournament Tournament
Crossover GreedyBcscx GreedyBcscx
Mutation Disp-inv Disp-inv
Elitism 5% -
Stopping criteria 50 iterations 50 iterations
Probability of crossover 0.7 0.7
Probability of mutation 0.3 0.3

Table 3.4: Algorithm parameters used to compare GA-TDA* and NSGA-II per-
formances.

In this experiment, 20 instances coming from real fishing trips are used, five of
which were used in the previous section. Moreover, each configuration is applied
5 times in each of the 20 instances, giving a total of 100 executions for each
algorithm. The number of available dFADs together with the number of dFADs to
fish in each of the 20 instances are set according to the 20 historical fishing trips
and these values are shown in Table 3.5.

Instance Available
#dFADs #dFADs to fish Instance Available

#dFADs #dFADs to fish

1 N = 203 k = 29 11 N = 231 k = 13
2 N = 189 k = 33 12 N = 232 k = 20
3 N = 185 k = 22 13 N = 255 k = 27
4 N = 201 k = 20 14 N = 247 k = 25
5 N = 195 k = 24 15 N = 176 k = 23
6 N = 231 k = 15 16 N = 168 k = 29
7 N = 192 k = 31 17 N = 159 k = 19
8 N = 164 k = 23 18 N = 133 k = 11
9 N = 220 k = 32 19 N = 190 k = 25
10 N = 212 k = 10 20 N = 125 k = 21

Table 3.5: Instance parameters based on the 20 real fishing trips.
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3.5.2.1 Objective functions for the MOO approach

The objective function defined for the DFRP is the combination of the fuel con-
sumption,

∑k
i=0 cei,ei+1(dtei) and the expected reward (i.e, probability of high

tuna catches)
∑k

j=1 erej
(atej

). Therefore, for the MOO approach, the proposed
Equation (3.1) is decomposed in the following two objectives:

• Fuel consumption:

minimize J(e0 e1 . . . ek ek+1) =
k∑

j=0
cei,ei+1(dtei

) + M · τ + M · µttrip

(3.12)

• Expected reward:

maximize J(e0 e1 . . . ek ek+1) =
k∑

j=1
erej

(atej
) + M · τ + M · µttrip

(3.13)

Note that the fuel consumption objective is also taken into account in the A*
algorithm, whereas the expected reward is also considered in the genetic operators
by using Equation (3.5). Furthermore, M , τ , and µttrip

are defined as in Section
3.3.6.

3.5.2.2 Results of the comparison between the GA-TDA* and the
NSGA-II

The simulation results of the 20 instances are shown in Figure 3.15. The blue
points represent the solutions found by the GA-TDA*, whereas the black points
and the red line represent the solutions found by the NSGA-II and the Pareto
front estimated by using the outputs of all the MOO executions. The solutions
that fall inside the shaded area would be non-dominated by the solutions found
by the NSGA-II. Thus, it can be observed that the proposed GA-TDA* algorithm
obtains solutions close to the Pareto front or even solutions non-dominated by the
solutions given by the NSGA-II. In none of the instances are any of the solutions
obtained by the GA-TDA* dominated by those of the NSGA-II. In some instances,
the GA-TDA* obtains a number of solutions dominated by the ones obtained by
the NSGA-II, such as instances 1, 14, 19 or 20. However, there are other instances
where all the solutions obtained with the GA-TDA* are non-dominated by the
ones of the NSGA-II, such as routes 8, 13, 15 or 18.

The behaviour of the objective function (Equation (3.1)) along the Pareto
front shows that fuel consumption is more important than the expected reward
since most of the solutions found by the GA-TDA* are the minimum-fuel route or
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close to this. Hence, the GA-TDA* does not provide solutions with high expected
reward if this involves major fuel consumption, which is desirable in a real world
application. Then, the catches objective (i.e., expected reward) seems to have less
importance in the objective function (Equation (3.1)). This can be seen in routes
1, 2, 5, 6, 7, 11, 12, 14, 18, and 20, where the solutions found have less expected
reward compared to those with the highest expected reward. However, it is worth
highlighting that the average expected reward obtained is competitive and over
0.7 with the exception of instance 7.

Fig. 3.15: Results of the MOO and mono-objective approaches for the 20 DFRP
instances. The Y axis represents the average expected reward (

∑k
j=1 erej

(atej
)/k),

while the X axis indicates total fuel consumption
∑k

j=0 cei,ei+1(dtei
). The blue

points represent the mono-objective results, and the black points and the red line
(Pareto front) represent the MOO results. The mono-objective solutions within
this shaded area are non-dominated by the solutions found by the NSGA-II. (For
interpretation of the references to colour keys in this figure, the reader is referred
to the web version of this article).
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3.5.3 Using the dynamic version of the GA-TDA* to plan a fishing
trip with data update

The problem inputs may change over time in real applications, and therefore,
the approach for the solution should be dynamic to account for these changes.
This experiment is the most similar one to a real application, where the decisions
are made according to the last available information. Thus, all the instance data
will be updated every time a dFAD is fished. The route update approach starts
executing the GA-TDA* algorithm and obtains a fishing route from the departure
to the arrival port. Once the vessel fishes the first dFAD, all the data is updated
with the latest available information. Then the GA-TDA* is re-run with the new
information, departing from the last fished dFAD to the arrival port. This process
is repeated until only three dFADs are left to be fished, since the GA-TDA* cannot
be executed for solutions with less than three elements. Each time the GA-TDA*
has been run, the top 5% solutions are transferred to the initial population of the
next run (see Appendix D for further details).

An example of the dynamic approach is shown below, where pop1 is the pop-
ulation after the first run of GA-TDA* with a size of 60 solutions. Assuming that
the solutions are ordered from best to worst, the first fished dFAD is 3. The next
step is then to create the suggested solutions, sugg1 by using the top 5% solution
(e.g., the top three solutions). Once the top 5% solutions are defined, the first
element of each one is removed and 3 is set as the departure location (See sugg1).
However, this approach can create invalid solutions in sugg1 due to the fact that
the fished dFAD may be in other solutions. This can be seen in the example below,
where the second solution in pop1 includes the fished dFAD, 3, creating an invalid
solution. Therefore, once the dFADs information is updated, and if needed, the
fished or lost dFADs (i.e., beached or broken) are removed from the solutions and
from the available dFADs, new ones are inserted randomly (See sugg1∗).

pop1 =


0 3 10 1 2 0
0 8 5 6 3 0
0 2 1 9 8 0

. . . . .
0 7 3 9 1 0

 , sugg1 =

3 10 1 2 0
3 5 6 NA 0
3 1 9 8 0

 sugg1∗ =

3 10 1 2 0
3 5 6 9 0
3 1 9 8 0



The GA-TDA* parameters used in this experiment are the same as in the
previous experimental study (Table 3.4). In this experiment, 16 instances used in
Section 3.5.2 are considered: 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 15, 16, 17, 19, 20.
Instances 8, 9, 14, and 18 were not considered in this experiment due to some
malfunction in the sensor that measures the vessel’s fuel consumption, making it
unfeasible to compare these routes and the proposed ones. The dynamic GA-TDA*
is run 10 times in each instance.
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3.5.3.1 Results of the comparison between the dynamic GA-TDA*
and sixteen real fishing trips

A summary of the comparison between the best routes obtained with the dy-
namic GA-TDA* and the real historical fishing trips is shown in Table 3.6. The
historical data come from the vessel onboard sensors and the Spanish fisheries
observer programme, which are explained in Sections 3.4.1.3 and 3.4.1.4. In order
to differentiate between the days spent searching, fishing, and inactive in the his-
torical data, the method suggested by [Basurko et al., 2022] is used. The average
reduction between the historical and the proposed routes of the time at sea, fuel
consumption, and miles travelled are 33.0%, 56.8%, and 70.0%, respectively. These
results indicate the high potential gain of a FRODSS method applied to fisheries.

The reduction of the time at sea comes mainly from a reduction on the inactive
periods and the time spent searching/navigating for tuna since the vessel speed
is similar in both. Moreover, the inactive periods in the route proposed by the
dynamic GA-TDA* are limited to waiting times until the fishing time window is
open. It is also important to highlight that in our study we do not consider the
free-swimming schools sets or other operations that can occur during a fishing
trip (e.g., deployment of new dFADs or vessel failure, among others) since these
events are rare nowadays. The free school sets represent less than 20% of the
total sets in the last decade and decrease with a minimum peak of 4% recorded
in 2018 [Báez et al., 2020a]. In addition, the deployment of new dFADs occurs
during navigation without any need to stop the vessel. Moreover, the new dFAD
deployment is mainly carried out by supply vessels, which is why purse seiners
usually do not make travel extra to deploy new dFADs. Therefore, these excluded
activities may increase time and fuel consumption, but their influence on the
comparison is limited.

Another important difference is in the number of sets over 35 tonnes, since the
proposed dynamic GA-TDA* doubles the number of sets with a high amount of
catches. This indicates that the dynamic GA-TDA* not only reduces fuel usage
and time at sea, but is also effective when it comes to selecting high potential
fishing grounds (i.e., from all the available dFADs, it selects good dFADs to fish).
The reduction in the miles travelled and fuel consumption is mainly because the
proposed approach knows the order of collection in advance and does not spend
time on searching, being adrift at night, deploying new dFADs or in free schooling,
among others.

Figure 3.16 shows the proposed route (blue line) and the historical route (gray
line) in four different periods. Panel A shows the initial proposed route, where
the blue line indicates the route already travelled and the label gives information
about fuel usage, time spent, and the number of sets with a high expected reward.
Panels B, C, and D show the moment when the vessel has already fished 10, 20, and
29 dFADs, respectively. The dynamic GA-TDA* implies fish in the north where
there are the dFADs with a high expected reward, while the historical route shows
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Variable Historical Proposed Difference (%)
Days at sea 25.1 ± 7.6 16.8 ± 3.4 −33.0
Days searching 16.2 ± 6.2 11.8 ± 2.7 −26.2
Days inactive 5.6 ± 4.5 2.1 ± 1.0 −62.5
Days fishing 2.4 ± 0.9 2.9 ± 0.7 20.8
Number of sets 23.4 ± 5.7 23.4 ± 5.7 0.0
Set over 35t 6.5 ± 4.6 13.1 ± 2.8 101.5
FOC (main) 216.6 ± 81.8 75.6 ± 19.1 −65.1
FOC (aux) 83.9 ± 16.5 54.2 ± 10.7* −35.4
Total FOC 300.5 ± 93.8 129.7 ± 18.9 −56.8
Cruising speed 11.8 ± 2.8 11.9 ± 0.1 0.1
Distance 4800.8 ± 1499.8 1439 ± 339.5 −70.0
Distance (day) 3084.4 ± 999.2 729.3 ± 179.9 −76.3
Distance (night) 1716.4 ± 538.7 745.7 ± 246.7 −56.5

Table 3.6: Comparison between the historical fishing trips and the proposed ones.
Units: fuel consumption is measured in tonnes, vessel speed in knots, and distance
in miles. FOC (main) is the fuel consumption of the main engine, and FOC (aux)
is the fuel consumption of the auxiliary engines (FOC aux), which for the proposed
route is assumed to be the same as in the historical one but proportional to the
time at sea.

fishing mainly in three grounds (close to Madagascar, Seychelles, and Maldives)
far away from each other, meaning that longer distances are travelled. Therefore,
the main difference between both routes is the distance travelled (7320 vs 2495.7
miles), and consequently the fuel consumption (344.5 vs 115.9 tonnes) and time
at sea (32.6 vs 16.4 days).

3.6 Conclusions

This chapter shows the potential use and benefit of a FRODSS for the tuna purse
seine fleet to mitigate climate change and reduce their operational costs. The
reduction of fuel consumption and consequent emissions allows the industry to
contribute to climate change mitigation according to United Nations and Eu-
ropean development goals, while reducing their operational cost and therefore
making them more resilient to market changes. The problem is formulated as the
k-travelling salesperson problem with moving targets and time windows (DkTSP-
MTTW). This mathematical model is the most realistic to date for modelling
the fishing routing problem. The proposed GA-TDA* is the first method in fish-
eries that dynamically optimizes the fishing strategy of a tune purse seiner during
a whole fishing trip, considering the selection of the fishing grounds, the order
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Fig. 3.16: Example of a proposed route by the dynamic GA-TDA*, which is up-
dated every time a dFAD is fished. The label at each panel indicates the fuel usage,
time spent, and the predicted probability of high tuna catches over the dFADs for
the route considered in that specific moment. The gray line indicates the histor-
ical fishing route and the blue crosses indicate where the historical fishing sets
occurred. (For interpretation of the references to colour keys in this figure, the
reader is referred to the web version of this article).

in which to visit them, the fishing time windows, and the vessel’s performance
based on weather conditions. The algorithm is designed to be dynamic with re-
calculations every time a dFAD is fished to account for changing environmental
conditions and end-user’s decisions that are likely to deviate from planning as in a
real world application. Moreover, the GA-TDA* solutions are encoded by means of
fixed-length chromosomes based on variations without repetitions. This encoding
can be used in similar problems, which were previously encoded as permutations.
The solutions obtained by the proposed GA-TDA* are compared to 16 historical
fishing trips, showing a potential saving in fuel usage and time at sea of around
56.8% and 33.0%, respectively.





4

The Multiple Purse Seine Vessel Routing
Problem

In this chapter, we extend the previous work shown in Chapter 3 to address the
challenges of multiple vessels and the deployment of new dFADs. Hence, a novel
fishing routing problem for a fleet is formulated, considering its full complexity due
to its dynamic (time-dependent) moving target characteristics. To overcome the
limitations of exact solutions of the problem, a multi-objective greedy randomized
adaptive search procedure (MO-GRASP) algorithm is proposed. In addition, com-
putational experiments demonstrate the feasibility of applying the MO-GRASP
algorithm in a real context and explore the benefits of joint planning (collaborative
approach) compared to a non-collaborative strategy. Additionally, an analysis of
the effect of reducing the number of available dFADs per vessel in both strategies
is conducted.

4.1 Introduction

The routing of a fleet of fishing vessels is a complex problem due to its dynamic
(time-dependent) moving target characteristics. To the best of our knowledge, no
other scientific study has approached this problem in its full complexity, i.e., as a
dynamic vehicle routing problem with multiple time windows and moving targets.
In Chapter 3, the problem variant for a single vessel extends the previous works
in the literature by considering: i) the selection of the best dFADs to fish from all
those available that a vessel usually has deployed at sea based on the probability of
high catches; ii) the optimization of a whole fishing trip of about 25 days, starting
and ending at the port; iii) the consideration of the weather effect on the vessel
performance (i.e., fuel consumption); iv) taking into account the time windows
of dFADs as they cannot be fished at night. The problem proposed in this study
extends the work done in Chapter 3 by (i) optimizing the routes for a fishing fleet
instead of a single vessel, (ii) by considering the need to deploy new dFADs during
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the fishing trip, and (iii) by explicitly considering the bi-objective nature of the
problem.

Two variants of the problem are considered in this chapter, the static fish-
ing routing problem with multiple time windows (SFRP-MTW) and the time-
dependent fishing routing problem with moving targets and multiple time win-
dows (TDFRP-MTMTW). The study of the simpler SFRP-MTW was motivated
by the possibility of extensive computational testing and fine-tuning of the so-
lution approach before moving on to the much more complex time-dependent
variant (TDFRP-MTMTW), which is of particular interest, as it closely repre-
sents the real-world problem. The TDFRP-MTMTW problem is formulated as a
variant of the vehicle routing problem (VRP), specifically as the time-dependent
vehicle routing problem with multiple time windows and moving targets. How-
ever, most of the existing studies in the literature focus on the time-dependent
vehicle routing problem [Malandraki and Daskin, 1992, Haghani and Jung, 2005],
or some of its variants, such as the time-dependent vehicle routing problem with
time windows [Figliozzi, 2012, Balseiro et al., 2011, Pan et al., 2021] or the vehicle
routing problem with moving targets [Groba et al., 2018, Gambella et al., 2018].
Nevertheless, to the best of our knowledge, no previous work has combined the
existence of multiple time windows and the moving target characteristic in the
time-dependent VRP. Moreover, both problems need to consider that only a sub-
set of the nodes can be visited. These routing problems, where each node has a
reward associated, and not all nodes have to be visited, are usually called (team)
orienteering problems (TOP) [Vansteenwegen et al., 2011, Chao et al., 1996]. How-
ever, the main difference with existing TOP problems is that in the SFRP-MTW
and TDFRP-MTMTW, the subset size is known, i.e., the number of nodes to visit
by the fleet is fixed and known before the route starts.

To provide a formal and clear definition of the problem, a bi-objective mixed
integer programming (MIP) model is presented for each variant. While the MIP for
the SFRP-MTW is used in the computational experiments to help determine the
quality of the proposed solution approach, the model for the TDFRP-MTMTW
has the inherent difficulty that the time and cost of travelling between nodes,
and the fishing reward associated with each node, are time-dependent, i.e., “data”
is dependent on decision variables, and therefore has not been implemented. To
overcome this limitation and to be able to solve the real problem at hand, a meta-
heuristic algorithm is proposed based on a greedy randomized adaptive search
procedure (GRASP) algorithm [Feo et al., 1994]. The algorithm introduced, called
multi-objective GRASP (MO-GRASP), is designed to overcome the natural in-
stance size limitations of exact methods and to be able to tackle and solve real
instances of the problem. The bi-objective nature of MO-GRASP contributes to
increase the economic and environmental sustainability of the fleet by allowing
the user to trade-off between the two objectives. These objectives are modelled
using the expected reward (i.e., the probability of high catches at each dFAD and
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the probability of successful deployment of a new dFAD) and fuel consumption as
proxies.

To validate MO-GRASP and evaluate its performance, three experiments are
designed. The first experiment uses synthetic and small-size instances for the
SFRP-MTW. The aim of this experiment is to evaluate the performance of the
MO-GRASP compared to the optimal solutions, resorting to the solution of the
MIP model of the static variant of SFRP-MTW with IBM CPLEX solver. The
second experiment compares the performance of the MO-GRASP in its time-
dependent variant against the GA-TDA* algorithm proposed in Chapter 3, by
using time-dependent and medium-size real instances. For that, it is used a down-
sized version of the MO-GRASP, considering a single-vessel without the deploy-
ment of new dFADs. The final experiment uses real instances from a one-year
period of a fishing fleet operating in the Indian Ocean. In this final set of experi-
ments the potential of the MO-GRASP approach to be used in a decision-support
context and to derive managerial insights is shown by: i) studying the potential
benefits of a joint fishing planning of a fleet (collaborative approach) compared
to a non-collaborative strategy of each vessel, and ii) analyzing the impact of a
hypothetical reduction in the number of allowed dFADs per vessel in both fishing
strategies. The former is of interest because it can demonstrate that, in addition to
the use of routing optimization methods, cooperation between vessels can further
improve the economic and environmental sustainability of the fleet. The latter is
an important topic for the fishing industry, as over the last years, the tuna regional
fisheries management organizations (tRFMOs) have adopted various measures to
reduce the number of daily active dFADs per vessel [Zudaire et al., 2023]. In short,
the main contributions of this work are the following:

• To the best of our knowledge, this is the first study to deal with a bi-objective
dynamic vehicle routing problem with multiple time windows and moving
targets.

• It deals with the real-world routing application of a purse seiner fleet, helping
in effective decision making in the fishing industry.

• MIP models are proposed for both the static and dynamic variants of the
problem, and the model for the static variant is extensively tested.

• A general bi-objective GRASP metaheuristic, capable of tackling both variants
of the problem, is proposed and extensively tested and compared with the
literature, after the introduction of a set of simplifying assumptions that meet
the form of the problem previously tackled in the literature.

• Using as a case study the purse seiner fleet targeting tropical tuna in the
Indian Ocean, managerial insights are derived regarding the use of more or less
collaborative approaches between the vessels of the fleet, and testing scenarios
regarding changes in the legislation regarding the number of dFADs per vessel.
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Figure 4.1 explains how the chapter is organized. Section 4.2 provides a descrip-
tion of the problem along with the formulation of the static and time-dependent
variants of the problem. Section 4.3 explains the proposed multi-objective algo-
rithm, and Section 4.4 presents the problem instances used for validation and
managerial insights. These results are presented in Section 4.5, where the first two
experiments evaluate the performance of the proposed algorithm, while the last
experiment two scenarios are examined: the first one compares the collaborative
and non-collaborative fishing strategies, while the second experiment analyses the
impact of a reduction in the number of available dFADs in both strategies. The
final conclusions are provided in Section 4.6.

Fig. 4.1: Structure of the chapter.
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4.2 Problem Description

The operational practices of the purse seiner fleet targeting tropical tuna involve
designing a route that begins and ends at a port, where different fishing sets
are carried out. A dFAD-dependent fishing strategy is assumed here, meaning
fishing sets are only accounted on dFADs. Fishing with dFADs involves deploying
a network of dFADs across the sea, and since dFADs are continuously fished or
washed ashore, new dFADs must be deployed to ensure availability for future trips.
Therefore, purse seiners also deploy new dFADs along their routes, in addition to
fish. All dFADs have a time window when they can be fished since tuna schools
cannot be fished at night, but dFADs can be deployed at any time. Moreover, it
is assumed that all vessels depart simultaneously from the same port and return
after completing their trips within the allowed maximum time at sea.

The common fishing strategy among purse seiners is the non-collaborative one,
where each vessel possesses and deploys its own dFADs at sea and whose dFAD in-
formation is restricted to the respective vessel [Basurko et al., 2022]. However, this
problem is generalized to encompass the routing of a fleet, specifically to design a
fishing strategy where all the dFADs’ information, the fishing and the deployment
requests (i.e., the total number of dFADs to deploy and fish) are shared among ves-
sels of the same company. In the non-collaborative approach, the decision-maker
is the skipper, making decisions based on personal and crew benefit, whereas in
the collaborative approach, the decision-maker is the fishing company considering
the overall benefit. The definition of these two fishing strategies will allow us to
compare the performance of current practices with a joint plan. Hence, the fishing
routing problem aims to find the optimal set of routes for a fleet of fishing vessels
to visit a subset of dFADs and also to deploy a predefined number of new dFADs.

This fishing routing problem can be seen as a variant of the time-dependent
VRP with time windows [Figliozzi, 2012]. However, to account for the fact that
only a subset of the total dFADs/deployment locations can be visited and that
these dFADs are constantly moving, two new definitions of the fishing routing
problem are proposed in this study: the static fishing routing problem with multi-
ple time windows (SFRP-MTW) and the time-dependent fishing routing problem
with moving targets and multiple time windows (TDFRP-MTMTW). The SFRP-
MTW is proposed to generate benchmark instances for which the global optimum
is known since they will be solved by an exact approach. However, the SFRP-
MTW does not consider the fact that the real-world problem is dynamic due to
changes in the weather and species distribution. Therefore, the TDFRP-MTMTW
is presented as a problem more similar to real cases, where the aim is to find the
best routes for a fleet of fishing vessels to perform a predefined number of dFAD
deployments and fishing sets, taking into account the dFADs time windows, their
movement, and the effect of weather conditions on vessel performance and species
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distribution. For this purpose, an objective function is proposed that combines the
travel cost and the expected rewards using a weighted sum.

4.2.1 The static fishing routing problem with multiple time windows

The SFRP-MTW consists on a set of similar vessels V = {0, 1, 2, . . . , V } and a
set of nodes N = {0, 1, 2, . . . , N} defined on a directed graph, G = (N , E). The
set of nodes N represents the locations of the available dFADs to fish or deploy,
and E = {(i, j)|i, j ∈ N , i ̸= j} is the set of edges, and each edge (i, j) has a
non-negative travel cost cij and a crossing time tij .

The binary parameters pj distinguish the nodes to fish or to deploy. If pj = 1,
node j ∈ N is a dFAD, and if pj = 0, node j ∈ N is a deployment location. If
node j ∈ N is a dFAD, the expected reward erj represents the probability of high
catches at that location, whereas, if j ∈ N is a deployment location, erj represents
the probability of deployment success. The geolocation lj of each node j ∈ N is
also known.

Each node can only be visited once by a vessel v ∈ V. All the vessels leave
node 0 (i.e., the port) at time t0 and return to node 0 after completing their
fishing requests. The set of vessels, V, must perform a total of Nf fishing sets and
deploy a total of Nd dFADs within the maximum number of days at sea, D. Each
vessel v ∈ V must visit a total number of nodes between gmin and gmax and from
these visited nodes, a minimum of them should be dFADs, fmin, and deployment
locations, dmin.

Each node j ∈ N also has a set of time windows TWj associated:
TWj = {(aj1, bj1), . . . , (ajd, bjd), . . . , (ajD, bjD)}, where ajd and bjd are the earliest
and latest time to start fishing/deploying at day d, and D is the maximum number
of days allowed at sea. All ajd and bjd are expressed as a cumulative time from
a reference date. For example, if for a certain node j, the time windows open at
5:00 am and close at 5:00 pm for all days, aj1 = 5, aj2 = aj1 + 24, . . . , ajD =
aj1 + (24 · (D − 1)) and bj1 = 17, bj2 = bj1 + 24, . . . , bjD = bj1 + (24 · (D − 1)),
expressed in hours. If a vessel fishes the dFAD j ∈ N on the day d, it must arrive
at the dFAD j before bjd. If it arrives before ajd, it has to wait until ajd to start
fishing. Once the vessel arrives at the jth dFAD it spends fj hours on fishing
operations.

The main assumptions of the proposed SFRP-MTW are the following.

• The maximum time at sea per vessel, D, is defined using the 0.75 percentile of
the historical trip durations. This value is the same for all vessels and fishing
trips, and it is assumed that D = 29 days.

• The time spent fishing a dFAD is based on historical data and we assume a
value of three hours fj = 3, ∀j ∈ N : pj = 1.

• The time spent deploying a dFAD is considered zero, as the vessels do not
slow down to deploy dFADs: fj = 0, ∀j ∈ N : pj = 0.
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• Newly deployed dFADs are not considered eligible to fish on the same trip,
as tuna usually takes around 21 days to aggregate at the dFADs [Orue et al.,
2019b].

• The time windows at the fishing nodes are the same for all the days of the
fishing trip and for all the nodes j ∈ N : pj = 1.

• There are no time windows for the deployment nodes j ∈ N : pj = 0.

The notation utilized in the formulation is summarized as follows:

Indices

v ∈ V, V = {1, 2, . . . , V } – v is used to denote the vessels and V is the number of
vessels.

i, j, k ∈ N , N = {0, 1, 2, . . . , N} – i, j, k are used to denote the nodes and N is the number
of nodes.
N is the set of nodes (i.e., dFADs to fish and deployment locations) available
for all vessels, where 0 represents the departure and arrival node.

d ∈ D, D = {1, 2, . . . , D} – d is used to denote the days and D is the number of days
of the fishing trip.

Parameters

A. Parameters related to the nodes

pj ∈ {0, 1} =
{

1, if node j indicates the location of a dFAD to be fished
0, if node j indicates the deployment location for a dFAD

erj is the expected reward of node j, i.e., the probability of high catches at the
dFAD at node j or the probability of successful deployment at node j.

fj is the service time that a vessel spends during fishing operations at node j.
T W is the set of time windows associated with nodes j ∈ N : pj = 1.

T W = {(a1, b1), . . . , (ad, bd), . . . , (aD, bD)}, where ad and bd are the earliest
and latest time to start fishing at day d, and D is the number of days of the
fishing trip.
The deployment nodes do not have associated time windows.

B. Parameters related to the edges

cij is the cost of traveling from node i to node j.
tij is the travel time needed to reach node j departing from node i.
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C. Parameters related to the fishing trip

Nf is the total number of dFADs to fish by all vessels during the fishing trip.
Nd is the total number of dFADs to deploy by all vessels during the fishing trip.

fmin is the minimum number of dFADs each vessel must fish.
dmin is the minimum number of dFADs each vessel must deploy.
gmin is the minimum number of dFADs that each vessel must either fish or deploy:

gmin ≥ fmin + dmin.
gmax is the maximum number of dFADs each vessel can fish or deploy: gmax ≥ gmin.

D is the maximum number of days of the fishing trip.
t0 is the time at which all the vessels depart from the port (i = 0).

tmax is the maximum time all the vessels must return to the port (i = 0): tmax =
t0 + 24 · D.

D. Parameters related to the MIP model

cmin is the coefficient used to normalize the cost in the objective function.
ermax is the coefficient used to normalize the expected reward in the objective func-

tion.
λ is the weight given to each objective, expressed as a real number with 0 ≤ λ ≤

1.
M is a sufficiently large number.

Decision Variables

xv
ij ∈ {1, 0} =

{
1, if the edge from i to j is traversed by vessel v

0, otherwise
sv

k ≥ 0 is the arrival time of vessel v at node k, expressed as a real number.

zv
kd ∈ {1, 0} =

{
1, if vessel v fishes the dFAD k on day d

0, otherwise

Using the above notation and definitions, the SFRP-MTW can be formulated
as follows.
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min J = λ

cmin

∑
v∈V

∑
i,j∈N j ̸=i

cij · xv
ij + (1 − λ)

ermax

∑
v∈V

∑
i,j∈N j ̸=i

−erj · xv
ij , (4.1)

subject to: ∑
v∈V

∑
i∈N

xv
ik ≤ 1, ∀k ∈ N , k ̸= 0, (4.2)∑

i∈N
xv

ik =
∑
j∈N

xv
kj , ∀k ∈ N , ∀v ∈ V (4.3)

∑
j∈N

xv
0j = 1, ∀v ∈ V (4.4)

xv
ii = 0, ∀v ∈ V, ∀i ∈ N (4.5)∑

v∈V

∑
i,k∈N ,k ̸=0

pk · xv
ik = Nf, (4.6)

∑
v∈V

∑
i,k∈N ,k ̸=0

(1 − pk) · xv
ik = Nd, (4.7)

∑
i,k∈N ,k ̸=0

pk · xv
ik ≥ fmin, ∀v ∈ V (4.8)

∑
i,k∈N ,k ̸=0

(1 − pk) · xv
ik ≥ dmin, ∀v ∈ V (4.9)

gmin ≤
∑

i,k∈N ,k ̸=0
xv

ik ≤ gmax, ∀v ∈ V (4.10)

sv
0 < tmax, ∀v ∈ V (4.11)

sv
k ≥ t0 + t0k + (xv

0k − 1) · M, ∀v ∈ V, ∀k ∈ N , k ̸= 0 (4.12)
sv

k ≥ sv
i + fi · pi + tik + (xik − 1) · M, ∀v ∈ V ∀i, k ∈ N , k ̸= 0, i ̸= k

(4.13)
ad − (1 − zv

kd) · M ≤ sv
k, ∀v ∈ V, ∀d ∈ D, ∀k ∈ N : pk = 1 (4.14)

bd + (1 − zv
kd) · M > sv

k, ∀v ∈ V, ∀d ∈ D, ∀k ∈ N : pk = 1 (4.15)∑
i∈N

xv
ik =

∑
d∈D

zv
kd, ∀v ∈ V, ∀k ∈ N : pk = 1 (4.16)

The objective function (4.1) minimizes the weighted sum of the travel cost and
the expected reward. Constraints (4.2) guarantee that each dFAD can only be
fished/deployed once. Constraints (4.3) and (4.4) describe the vessel path, namely,
they define the path continuity by ensuring that each vessel leaves the port, after
arriving at a node the vessel leaves again, and finally it returns to the port. Con-
straints (4.5) are the loop elimination constraints that prevent a vessel from going
from one node to itself. Constraints (4.6) and (4.7) ensure, respectively, that a fixed
number of dFADs is fished and deployed by all the vessels. Constraints (4.8) and
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(4.9) impose, respectively, that each vessel carries out a minimum number of fish-
ing sets and deployments. Constraints (4.10) ensure that each vessel fishes/deploys
a number of dFADs between a minimum and a maximum. Constraints (4.11) im-
pose a maximum trip duration to do the fishing trip. Constraints (4.12) and (4.13)
ensure that a vessel cannot arrive at node k before departing from node i plus
travel and fishing time if needed. Constraints (4.14), (4.15), and (4.16) guarantee
that the time windows for the fishing nodes are satisfied.

4.2.2 The time-dependent fishing routing problem with moving
targets and multiple time windows

The need to formulate a time-dependent version of the SFRP-MTW arises since
most of the problem inputs (e.g., travel cost and time, dFADs position, tuna
distribution, and deployment success) change over time. For example, the dFADs
drift through the ocean due to weather conditions, or the travel cost between two
points will also depend on the weather conditions. Therefore, the formulation and
notation for the time-dependent problem are similar to the SFRP-MTW, though
with the following differences.

The problem is also defined in a directed graph G. However, the travel cost
and the travel time on an edge (i, j) now depend on the departure time from
node i, dti, i.e., cij(dti) and tij(dti). Moreover, each node in N has an associated
expected reward and geo-location lj(atj) dependent on the arrival time at node
j, atj . In the TDFRP-MTMTW, as dFADs drift along the ocean, some dFADs
may at any time enter an Economic Exclusive Zone (EEZ) where fishing is not
allowed. To prevent dFADs from being fished in EEZs where fishing is not allowed,
a new constraint must be added. A new set EEZ = {l0, l1, . . . , lh} is defined,
containing all geolocations where fishing is prohibited. The dFAD deployment
locations remain static, while the probability of a successful deployment at each
location changes over time. Therefore, the problem also consists in carrying out
a predefined number of sets Nf and deployments Nd within a maximum time at
sea D, taking into account their time windows, the movement of the dFADs and
the effects of changing weather conditions on the performance of the vessels.

It is required to estimate the arrival time atij and departure time dtij at node
j when departing from node i. Note that atij and dtij depend on which node the
vessel is coming from, but for simplicity, we only consider the destination node in
the notation (i.e., atj and dtj), assuming that the predecessor i is known. Hence,
the arrival time at node j, when departing from node i, is computed using the
following expression:

atj = dti + tij(dti), ∀j ∈ N , i ̸= j, (4.17)
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where dti is the departure time at node i and tij(dti) is the travel time between
nodes i and j, departing at time dti from node i. Note that the departure time
from the port is dt0 = t0 and, for the remaining nodes the departure time is
estimated with the following expression:

dti = ati + fi · pi + twi, ∀i ∈ N \ {0}, (4.18)

where fi is the time spent during the fishing operation if i is a fishing node
(pi = 1), and twi is the waiting time at node i. To calculate the waiting time twi,
it is important to know the day d on which the node i is reached in order to be
able to select the time window of this day (i.e., ad and bd on day d). This can be
done by d = ⌈ati/24⌉ where ati is expressed in cumulative hours, and therefore,
twi is estimated using the following expression:

twi =

 ad − ati , if ati ≤ ad and pi = 1
ad+1 − ati , if ati > bd and pi = 1
0 , otherwise.

(4.19)

A solution is codified as a set of routes S = {S1, S2, . . . , SV }, where each
route Sv = (ev

0 ev
1 ev

2 . . . ev
qv

ev
qv+1) represents the tour that vessel v must follow

and qv indicates the number of fishing/deployment events to be carried out by
vessel v, with ev

i ∈ N , ∀i = 0, . . . , qv+1, and ev
0 = ev

qv+1 = 0. Note that to distin-
guish between a dFAD and a deployment location within a solution, there exists
a binary variable pj , ∀j ∈ N , explained in Section 4.2.1. For example, a route
Sv = (0 2 4 6 0) means that the vessel v must depart from port, 0, and visit, in
this order, nodes 2, 4, and 6, and finally return to port 0. Note that all routes
start and end at node 0.

Therefore, using the above notation and definitions, the TDFRP-MTMTW
can be formulated as follows.
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min J(S1, . . . , SV ) = λ

cmin

V∑
v=1

qv+1∑
j=1

cev
j−1ev

j
(dtev

j−1
) + (1 − λ)

ermax

V∑
v=1

qv∑
j=1

−erev
j
(atev

j
)

(4.20)
subject to:

V∑
v=1

qv∑
k=1

pev
k

= Nf, (4.21)

V∑
v=1

qv∑
k=1

(1 − pev
k
) = Nd, (4.22)

qv∑
k=1

pev
k

≥ fmin, ∀v ∈ V (4.23)

qv∑
k=1

(1 − pev
k
) ≥ dmin, ∀v ∈ V (4.24)

gmin ≤ qv ≤ gmax, ∀v ∈ V (4.25)
atev

qv+1
< tmax, ∀v ∈ V (4.26)

lev
k
(atev

k
) /∈ EEZ, ∀v ∈ V, ∀k = 1, . . . , qv (4.27)

The objective function (4.20) minimizes the weighted sum of the travel cost
and the expected reward of all the vessels. Constraints (4.21) and (4.22) ensure,
respectively, that a fixed number of dFADs are fished and deployed. Constraints
(4.23) and (4.24) impose that each vessel should carry out, respectively, a mini-
mum number of fishing sets and deployments. Constraints (4.25) ensure that each
vessel fishes/deploys a number of dFADs between a minimum and a maximum.
Constraints (4.26) impose a maximum trip duration to do the fishing trip. Con-
straints (4.27) ensure that no dFAD is fished within the EEZs where fishing is not
allowed.

It should be noted that the inherent difficulty of time dependence, which is
concertized in the fact that the time and cost of travelling between nodes is time
dependent, as well as the fishing reward associated with each node (i.e., “data” is
dependent on decision variables), is not overcome in this model.

4.3 Solution Approach

This section presents the solution approach proposed for the SFRP-MTW and
TDFRP-MTMTW problems, which is based on a greedy randomized adaptive
search procedure (GRASP) [Feo et al., 1994]. The basic structure of a GRASP
consists of two phases: the first is used to construct a solution by applying a
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randomized greedy constructive algorithm (see Section 4.3.1), while in the second
phase, a local search is applied to improve the constructed solution (Section 4.3.2).
These two steps are repeated in each iteration, along with the update of the cmin

and ermax, until the stopping condition is satisfied. The best solution found over all
iterations is returned as the final solution of GRASP. This study proposes a multi-
objective GRASP (MO-GRASP), where both phases are guided by a weighted sum
of both objectives (i.e., travel cost and expected reward).

Algorithm 3 presents the pseudo-code of the proposed MO-GRASP, which only
takes three input arguments: the maximum number of iterations maxIter, α, and
λ. The parameter α controls the balance between random and greedy construction,
with α = 0 leading to a greedy construction and α = 1 indicating a fully random
construction. The parameter λ determines the weight of each objective in the
multi-objective problem. In line 1, the cost of the best solution J∗, the cmin, and
the ermax are initialized.

The main loop of MO-GRASP is executed from lines 2 to 16, terminating when
the maximum number of iterations is reached. In line 3, the solution construction
phase is performed, and in line 4, the local search phase takes place. These two
phases are described further in Sections 4.3.1 and 4.3.2. In line 5, the algorithm
checks the maximum time at sea and the Exclusive Economic Zone (EEZ) con-
straints. To do so, the expression time(S) < tmax indicates if the arrival time at
the port of all the vessels is < tmax, while the expression position(S) /∈ EEZ
states that none of the dFADs fished is within a non-allowed EEZ. The last con-
dition is only checked for the TDFRP-MTMTW, since in the SFRP-MTW, the
dFADs are static and, therefore, will not enter any EEZs. If the solution violates
these constraints, it is considered infeasible, and the algorithm returns to line 3 to
build a new solution. During the construction phase of the MO-GRASP algorithm,
infeasible solutions may be generated. However, after the local search phase, these
solutions can be transformed into feasible ones or vice versa. Therefore, the fea-
sibility constraints are checked only at the end of both phases to ensure that the
final solution is feasible and satisfies all problem constraints.

Parameters cmin and ermax are used to normalise both objectives. These pa-
rameters represent the minimum travel cost and the maximum expected reward
and, in the best scenario, the value of these parameters would be the value of the
optimal solution for each in a mono-objective approach and known in advance.
However, these values are unknown, and hence are updated dynamically during
the algorithm execution. Whenever a new solution with a lower travel cost c(S)
or a higher expected reward er(S) is found, the parameters cmin or ermax are up-
dated accordingly, and the best solution J∗ is updated with the new values (lines
9 and 13).

Finally, if the objective function value of the current solution, J(S), is better
than J∗, then S is retained as the new best solution S∗, and its objective function
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value is recorded as J∗, (lines 14-16). Once all iterations are completed, MO-
GRASP returns the best solution (local optimum) found, S∗.

Algorithm 3: MO-GRASP(maxIter, α, λ)
Input: maxIter: number of iterations, α: balance factor between greediness and

randomness, λ: objectives weights.
Output: A solution S∗.

initialize:
1: J∗ := ∞, cmin := ∞, ermax := 0

main loop:
2: for i = 1, . . . , maxIter do
3: S := MO − GreedyRandomConstruction(α, λ)
4: S := MO − twoOpt(S, λ)
5: if time(S) < tmax AND position(S) /∈ EEZ then
6: if c(S) < cmin then
7: cmin := c(S)
8: if i ̸= 1 then
9: J∗ := J(S∗)

10: if er(S) > ermax then
11: ermax := er(S)
12: if i ̸= 1 then
13: J∗ := J(S∗)
14: if J(S) < J∗ then
15: S∗ := S
16: J∗ := J(S)
17: return S∗

4.3.1 Construction phase

For the construction phase of the MO-GRASP, we propose a new heuristic algo-
rithm described in Algorithm 4. An example of the proposed heuristic construction
algorithm is illustrated in Figure 4.2, where a solution for three vessel (i.e., vessel
red, vessel blue, and vessel black) departing and arriving at port, represented by
the anchor, is constructed. In brief, the first step of the heuristic is to select the
first dFAD or deployment location to visit for each vessel (i.e., arrows 1 to 3).
Then, the vessel that first arrives at its destination will be the next to select a
dFAD to fish or a deployment location (i.e., arrow 4). To construct the remainder
of the routes, the same logic is followed: the vessel that reaches its destination first
is the next to choose. In the example shown in Figure 4.2, vessel 1 crosses arrow
5, then vessel 3 crosses arrow 6, then vessel 1 again crosses arrow 7, and vessel
3 crosses arrow 8, and so on. These steps are repeated until the route for each
vessel has been fully constructed, considering the constraints of the problem. A
more formal description of the heuristic is provided in the following paragraphs.
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Fig. 4.2: Example of the proposed heuristic construction algorithm.

The algorithm initializes the route Sv, set of candidate nodes Cv, and current
time ctv for each vessel in lines 1 to 4. The sets of candidate nodes, Cv, are
initialized by adding all feasible nodes in N except for the port (i = 0). Note that,
as elements are added to the solution at each step of the algorithm, each vessel may
have different candidate elements due to constraints (4.6), (4.7), (4.8) and (4.9)
for the SFRP-MTW or (4.21), (4.22), (4.23) and (4.24) for the TDFRP-MTMTW.

The current time for each vessel ctv ∈ CT = {ct1, ct2, . . . , ctV } is estimated
as the departure time of the last node visited. In line 5, the total work to be
done (Nf + Nd) is randomly assigned among the vessels considering the problem
constraints. For that, the function getWork creates a set W = {w1, w2, . . . , wV }
where wv indicates the total number of dFADs and deployment locations that
vessel v must visit. The wv must respect the following constraints for all v: wv ≥
fmin, wv ≥ dmin, gmin ≤ wv ≤ gmax, and

∑
v∈V wv = Nf + Nd.

In lines 6 to 12, the algorithm selects the first node t visited by each vessel.
The route Sv of vessel v is updated to account with the inclusion of the randomly
selected element s, and the current time is updated accordingly (ctv = dts). The
candidate sets are then updated by removing the added element s from the can-
didate sets of all vessels.

Additionally, in line 11, the algorithm checks the problem constraints using
the function checkConstraints. This function checks if a vessel has reached its
minimum allowed dFADs to fish fmin or to deploy dmin, and it also checks if
the total number of dFADs to fish Nf or to deploy Nd has been reached. If any
of these constraints are reached, the remaining fishing or deployment nodes are
removed from the corresponding candidate set.
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Algorithm 4: MO-GreedyRandomConstruction(α, λ)
Input: α: balance factor between greediness and randomness, λ: objectives

weights.
Output: a solution S∗.

initialize:
1: for v = 1, . . . , V do
2: Sv := ()
3: Cv := N \ {0}
4: ctv = t0
5: W := getWork()
6: for v = 1, . . . , V do
7: Select s ∈ Cv at random
8: Sv := Sv ∪ {s}
9: ctv := dts

10: Cv′ := Cv′ \ {s}, ∀v′ ∈ V
11: Cv′ := checkConstraints(Cv′), ∀v′ ∈ V
12: wv := wv − 1
13: Select the vessel to fish or deploy: v := argmin{ctv ∈ CT | v ∈ V, wv ̸= 0}
14: Evaluate the incremental weighted cost f(e) for all e ∈ Cv

main loop:
15: while W ̸= {0, 0, . . . , 0} do
16: Fmin := min{f(e)| e ∈ Cv}
17: Fmax := max{f(e)| e ∈ Cv}
18: RCL := {e ∈ Cv| f(e) ≤ Fmin + α(Fmax − Fmin)}
19: Select s ∈ RCL at random
20: Sv := Sv ∪ {s}
21: ctv := dts

22: Cv′ := Cv′ \ {s}, ∀v′ ∈ V
23: Cv′ := checkConstraints(Cv′) , ∀v′ ∈ V
24: wv := wv − 1
25: Select the vessel to fish: v := argmin{ctv ∈ CT | v ∈ V, wv ̸= 0}
26: Re-evaluate the incremental weighted cost f(e) for all e ∈ Cv

27: return S∗

Once the initial nodes have been selected for all vessels, the next step is to
define which vessel, whose remaining work (i.e., number of dFADs and deployment
locations to visit) is different from zero, should select a node. The vessel with
the minimum current time ctv is selected as the next vessel to fish/deploy (line
13). This approach reflects a realistic case or simulation, where the availability
of dFADs or deployment locations depends on whether another vessel has visited
the node. Then, in line 14, the incremental weighted cost f(e) is calculated for all
nodes e ∈ Cv using the following expression:
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f(e) = λ

cmin
cse(dts) + (1 − λ)

ermax
− ere(ate) (4.28)

cmin and ermax are the minimum travel cost and the maximum expected re-
ward of all nodes e ∈ Cv. That is, cmin = min{cse(dts)|e ∈ Cv} and ermax =
max{ere(ate)|e ∈ Cv}.

Finally, from lines 15 to 26, the vessels add dFADs or deployment locations to
their routes as if it were a real simulation. To select the best candidates to add to
the routes Sv, a restricted candidate list (RCL) is created. The strategy followed
is to select the nodes with f(e) values between

[Fmin, Fmin + α · (Fmax − Fmin)],

where Fmin = min{f(e)|e ∈ Cv} and Fmax = max{f(e)|e ∈ Cv}. The parameter
α ∈ [0, 1] regulates the size of this RCL, from the maximum size (i.e., RCL = Cv

or random construction) to the minimum size (i.e., RCL = min{f(e)|e ∈ Cv}
or greedy construction). Once the RCL is built, a node s of the RCL is selected
randomly. Then, from lines 20 to 26, the selected node is added to Sv, the current
time ctv, and all candidate sets are updated. Moreover, the problem constraints are
checked, and the remaining work is updated. Finally, the next vessel to fish/deploy
is selected, and the incremental weighted cost f(e) for all the elements in Ci is
re-evaluated.

4.3.2 Local search

The objective of MO-GRASP is to improve the starting solution. The local search
is based on the 2-opt neighborhood developed by Croes [1958], and the pseudo-code
of the proposed multi-objective local search (MO-twoOpt) is shown in Algorithm 5.
The MO-twoOpt follows the first-improvement approach, i.e., the current solution
will be replaced by the first neighbor found whose objective function value is
better.
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Algorithm 5: MO-twoOpt(S, λ)
Input: S: a solution, λ: objectives weights.
Output: S∗: a new solution.

initialize:
1: S∗ := ∅

main loop:
2: for v = 1, 2, . . . , V do
3: len := size(Sv)
4: cmin := c(Sv)
5: ermax := er(Sv)
6: J∗ := J(Sv)
7: improve := true
8: while improve do
9: improve := false

10: k := 1
11: while k < len − 2 AND !improve do
12: j := k + 2
13: while j < len AND !improve do
14: S∗

v := 2 − opt(Sv, k, j)
15: if J(S∗

v ) < J∗ then
16: improve := true
17: Sv := S∗

v

18: J∗ := J(S∗
v )

19: j := j + 1
20: k := k + 1
21: S∗ := S∗ ∪ Sv

22: return S∗

The MO-twoOpt takes as input a solution S and λ. From lines 2 to 6, the
length of the route Sv, the travel cost c(Sv), the expected reward er(Sv), and the
cost J(Sv) are stored. Next, in line 14, the classical 2-opt operator proposed by
Flood [1956] is applied, which reverses the elements between the indices k and j.
If the objective value of the new solution, J(S∗

v ), is better than the best one found
until that moment, the best solution and its cost are updated. These steps are
performed for each route until no route can be improved, i.e., a local optimum is
reached. Finally, the best route found, Sv, is added to the final solution S∗.

To sum up, the construction phase selects the nodes to visit, whereas the local
search improves the order in which these nodes are visited.
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4.4 Problem Instances

In this study, three different sets of test instances are used to evaluate the perfor-
mance of the proposed algorithm. Each set of instances presents its own unique
challenges and characteristics. Instances vary in complexity, including different
numbers of vessels and nodes, which presents challenges in finding optimal solu-
tions.

The first set of test instances consists of synthetic instances specifically de-
signed for the SFRP-MTW problem. These instances are used to compare the
solutions obtained with the CPLEX solver for the model (4.1) - (4.16) with the
solutions generated by the MO-GRASP algorithm. The synthetic instances allow
us to assess the algorithm’s ability to find optimal solutions and its performance
in solving relatively smaller and simpler instances.

The second set of test instances, introduced in Chapter 3, is used to com-
pare the effectiveness of the MO-GRASP and GA-TDA* algorithms for the time-
dependent single-vessel fishing routing problem (TDSV-FRP). This problem mod-
els a single vessel without the deployment of new dFADs. The instances in this set
provide a time-dependent scenario and medium-size real instances, allowing us to
assess the performance of both algorithms under different conditions.

Finally, the last set of test instances is designed for the TDVRP-MTMTW
problem and is based on real-world data. These instances represent real fishing
fleet scenarios and involve various vessels and nodes, making the problem more
complex. This set of instances enables us to evaluate the performance of the MO-
GRASP algorithm in real-world situations, where the size and complexity of the
problem are more significant.

4.4.1 Instances for the SFRP-MTW

The benchmark data set consists of nine randomly generated instances designed
to serve as test cases. Table 4.1 provides an overview of the main characteristics
of the test instances. Each instance varies in the number of nodes, the amount of
fishing sets and deployments, and the number of vessels.

The Nodes column denotes the total number of nodes available, while the
values inside the parentheses indicate the number of nodes allocated to dFADs and
deployment locations, respectively, out of the total nodes. All instances share a
common departure time from the port at t0 = 0. The values of these instances were
selected to cover a wide range of parameter values relevant to the problem, enabling
the generation of instances that CPLEX can solve easily, as well as instances where
CPLEX is unable to prove the optimality of the found solutions within the given
time limit.

The remaining inputs for the problem are estimated as follows. The time win-
dows for all days are set to open at 5 AM and close at 5 PM since tuna cannot
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Instance Nodes Nf Nd V tmax gmax gmin fmin dmin

A 10 (5-5) 3 3 2 13 4 2 1 1
B 12 (4-8) 2 4 2 16 4 2 1 1
C 20 (10-10) 7 7 2 27 10 4 2 2
D 20 (10-10) 5 7 3 27 6 2 1 2
E 25 (10-15) 5 8 3 25 6 2 1 2
F 33 (8-25) 3 8 3 31 6 2 1 2
G 35 (15-20) 8 12 2 41 15 5 3 4
H 35 (15-20) 7 12 3 41 10 3 2 3
I 50 (25-25) 10 10 2 41 15 5 3 3

Table 4.1: Summary of the problem instances values for the SFRP-MTW.

be fished at night. They are denoted as TW = {(5, 17), (29, 41), . . . , (5 + (24 ·
D), 17 + (24 · D))}, where D represents the maximum number of days in the plan-
ning horizon. The travel time between each pair of nodes (i, j), tij is computed
as tij = β · cij , where β is randomly selected in [0.9, 1.1]. The travel cost between
each pair of nodes (i, j), cij , is randomly selected in [0.5, 60], while the travel time
is computed as tij = β · cij , where β is randomly selected in [0.5, 60]. Additionally,
the expected reward for each node is randomly selected in [0, 1].

4.4.2 Instances for the TDSV-FRP

The instances used for the TDSV-FRP are the same as those employed in Chapter
3, which were designed for single-vessel routing in a time-dependent scenario. The
TDSV-FRP is a particular case of the TDFRP-MTMTW, in which no deployment
is considered (Nd = 0), only the route of one vessel (V = 1) is optimized, and the
set of nodes N is composed only by dFADs. The values for travel time and cost
between nodes, and the expected rewards (i.e, probability of high catches at each
dFAD) remain the same.

4.4.3 Instances for the TDFRP-MTMTW

The instances used for TDFRP-MTMTW were obtained from real data provided
by a fishing company over a one-year period. A total of 12 instances were used,
each corresponding to a different month of the year. For all instances, we assume
V = 3 and D = 29 days.

Table 4.2 shows the total number of nodes, along with the number of nodes
assigned to dFADs and deployment locations, respectively (in parentheses), as
well as the number of dFADs to fish (Nf) and deployment locations (Nd). In
addition, the minimum number of dFADs to fish and deploy (fmin and fmin) and
the minimum/maximum number of dFADs that each vessel can fish or deploy



4.4 Problem Instances 91

(gmin and gmax) are estimated using the following expressions: fmin = ⌊(1/2 ·
Nf)/V ⌋; dmin = ⌊(1/2 · Nd)/V ⌋; gmin = ⌊(1/2 · (fmin + dmin))/V ⌋; and gmax =
⌊(3/2 · (fmin + dmin))/V ⌋.

Instance Nodes Nf Nd

Trip 1 1544 (421-1123) 74 90
Trip 2 1119 (529-590) 93 46
Trip 3 1126 (511-615) 62 67
Trip 4 996 (475-521) 54 89
Trip 5 964 (491-473) 55 128
Trip 6 808 (508-300) 77 100
Trip 7 934 (502-432) 74 43
Trip 8 1164 (521-643) 71 98
Trip 9 982 (535-357) 69 19
Trip 10 1317 (459-858) 65 34
Trip 11 909 (375-534) 85 38
Trip 12 997 (327-670) 30 58

Table 4.2: Summary of the problem instances values for the TDFRP-MTMTW.

Additionally, the values of the other parameters of the problem instances, such
as dFAD and deployment positions, travel time, travel cost, and expected rewards,
are estimated using the following methods.

4.4.3.1 dFADs and deployments geolocations

The historical data for the dFADs and deployment geolocations, lj(atj), will be
utilized as future geolocations to evaluate the proposed algorithm with real in-
stances.

4.4.3.2 Travel time and cost

To estimate the travel time and cost between two nodes (i, j), a regular square
grid Gs = (Ns, As) is implemented to spatially discretize the studied area. The
set of nodes is denoted as Ns = {n1, n2, ..., nz}, and the set of edges is denoted
as As = {(ni, nj)|ni, nj ∈ Ns, ni ̸= nj}. The distance between the nodes is 0.5
degrees, and each node is connected to eight adjacent nodes through the edges,
forming a grid structure (see Figure 4.3).

To navigate from one node to another, the vessels can only traverse the
grid’s edges. Each edge (ni, nj) has associated time-dependent crossing times
ctni,nj (dtni) and costs ccni,nj (dtni), where dtni represents the departure time from
node ni. A path of a vessel between an origin node no and a destination node nd
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is defined as a node sequence r(no, nd) = (n1, n2, . . . , nl), where n1 = no, nl = nd,
and (ni, ni+1) ∈ As for all i = 1, . . . , l − 1. The Bresenham’s line algorithm [Bre-
senham, 1965] is used to approximate the shortest path between two nodes in the
grid. The total travel cost cij and the travel time tij between the nodes i and j
are then computed by summing the crossing values associated with all the edges
that form the path r(i, j), linking the node i = no with node j = nd. Thus, the
expressions for the total travel cost cij(dti) and the travel time tij(dti) are given
by:

Fig. 4.3: Scheme of connections between nodes, departing from the central node.

cij(dti) =
l−1∑
k=1

ccnk,nk+1(dtnk
), ∀nk ∈ r(i, j), (4.29)

tij(dti) =
l−1∑
k=1

ctnk,nk+1(dtnk
), ∀nk ∈ r(i, j). (4.30)

To compute the expressions presented in Eq. (4.29) and (4.30), the crossing
time and cost associated with each edge (ni, nj) ∈ As need to be determined.
These values are estimated through the following methods.

A. Travel time

To account for the impact of wave-induced resistance on the crossing time
ctni,nj

(dtni
), which may result in a decrease in vessel speed, vs, we use the formula

proposed by Bowditch [1975]. Therefore, the estimated travel time between nodes
ctvi,vj (dtvi) is defined by:

ctni,nj
(dtni

) =
distni,nj

vs(dtni
) , (4.31)

where distni,nj
is the great-circle distance between the ni and nj nodes, and

vs(dtni
) is the vessel speed in the edge (ni, nj).
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B. Travel cost

Fuel consumption will be used to estimate the crossing cost ccni,nj (dtni) that
each vessel spends to go from node ni to node nj . This travel cost is predicted
using a machine learning model detailed in Chapter 3. In brief, the model uses
environmental variables, vessel speed and dry docking as predictors to forecast fuel
consumption per hour (kg/h). The dry docking refers to the number of months
since the last ship’s hull and propeller cleaning, which affects fuel consumption due
to attached biofouling [Adland et al., 2018]. Once the average fuel consumption
per hour (kg/h) for each edge is estimated, the total fuel (kg) needed to cross the
edge (ni, nj), ccni,nj

(dtni
), can be estimated using the following equation:

ccni,nj (tni) = FOCni,nj (dtni) ·
distni,nj

vs(dtni
) , (4.32)

where FOCni,nj
(dtni

) is the vessel’s average fuel consumption per hour on edge
(ni, nj) at time dtni

, distni,nj
is the great-circle distance between nodes ni and

nj , and vs(dtni
) is the vessel speed in the edge (ni, nj).

4.4.3.3 Expected rewards

The expected reward at each node j, erj , is estimated by one of the following
models, depending on whether the node is a dFAD for fishing or a location for the
deployment of a new dFAD. For the reward at each fishing dFAD (i.e., probability
of high catches of tuna), the machine learning models proposed in Chapter 3
are used. These models take as predictors the dFADs’ signal and the physical and
biogeochemical environmental variables, whereas the target variable consists of the
historical tuna catches (kg). The results given by the models are the probability
that the tuna catches are over 35 tonnes. The learning classifier is the Naive Bayes,
a probabilistic model based on Bayes’ theorem.

A machine learning model is developed to estimate the expected reward of a
new dFAD deployment, which is defined as the probability of success. The prob-
ability of success, erj(atj), is defined as the likelihood that a dFAD deployed at
a specific location will end up within a fishable area, avoiding areas where fish-
ing is prohibited, such as the EEZ or land. The proposed model utilizes various
predictors, including the month, location, and physical variables such as currents
and wave data. These predictors are used to predict a binary target variable that
indicates whether the dFAD ends up within a fishable Exclusive Economic Zone
(EEZ) or not.

The model is built following the scheme in Figure 4.4. In the preprocessing
phase, the data is cleaned by removing inaccurate records and dFAD transects
with less than ten observations. The target variable is then created as a binary
variable to indicate whether the last recorded dFAD position is located on land or
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Fig. 4.4: dFAD deployment model building and validation methodology.

within an EEZ where fishing is prohibited. In the model training and validation
phase, the data is split into a training set (70%) and a testing set (30%). To address
the imbalance in the target class, the synthetic minority oversampling technique
(SMOTE) is applied to the training set using the unbalanced R package [Chawla
et al., 2002]. This results in an equal representation of both classes in the target
variable. The model hyperparameters are tuned using a 10-fold cross-validation
method, and optimal parameters are used to train a random forest (RF) model
with the randomForest R package [Liaw and Wiener, 2002]. The trained model
exhibits an accuracy of 81.6%, a sensitivity of 83.7%, and a specificity of 77.6%.

Finally, the available deployment locations will be limited based on historical
data. Specifically, vessels deploy new dFADs in different areas depending on the
month. Therefore, we restrict new deployment locations based on the past de-
ployment record for each month. This approach reduces the number of potential
deployment sites, and the specific number of locations for each month is presented
in Table 4.2.

4.5 Results of Experiments

This section presents the results of two numerical experiments conducted to eval-
uate the performance of the proposed heuristic, along with the last experiment
focusing on real cases (see Figure 4.1). The first experiment evaluates the per-
formance of MO-GRASP against CPLEX using small-sized and static instances
introduced in Section 4.4.1. This experiment enables the evaluation of MO-GRASP
with instances where optimal solutions are known in most of the cases. The second
experiment employs larger and time-dependent real-world instances for a single
vessel (explained in Section 4.4.2) to further evaluate MO-GRASP with the exist-
ing approach in the literature. The final experiment utilizes real case instances of
the TDFRP-MTMTW to compare two different fishing strategies: the collabora-
tive strategy, where all vessels share the dFADs and exchange information regard-
ing the fished dFADs and the next dFADs to be fished, and the non-collaborative
strategy, where each vessel has its own dFADs and no information is shared be-
tween vessels. Additionally, this experiment investigates the impact of a possible
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reduction in the number of dFADs on the performance of both strategies. This
analysis is particularly relevant as the number of dFADs allowed per vessel has
decreased in recent years [Zudaire et al., 2023].

The MO-GRASP algorithm is used with the same settings in all the experi-
ments. The maximum number of iterations, maxIter, is set to 10,000 based on
preliminary experiments that identified the point where the algorithm became
mature and showed little or no improvement afterwards. The parameter α, which
controls the level of randomness in the construction phase, is set to values within
the range of [0, 0.2] because low values of α are found to produce better results
with fewer iterations. The parameter λ varies from 0.1 to 0.9, except in the com-
parison with CPLEX where it ranges from 0 to 1. The extreme cases, λ = 0 and
λ = 1 are not considered with real data as they are not relevant to fishing vessels.
These cases represent either the minimum cost route or the selection of dFADs
with the maximum expected reward without considering the trade-off between
both objectives.

4.5.1 Comparison between CPLEX and MO-GRASP performance for
the SFRP-MTW model

The objective of this comparison is to assess how well MO-GRASP performs in
relation to CPLEX using SFRP-MTW instances. In the research community, it is
a common practice to utilize a general-purpose solver like CPLEX as a benchmark
for evaluating the solution quality and computation time of (meta)heuristic algo-
rithms [Silva et al., 2022]. In this context, the MO-GRASP algorithm is executed
ten times for each SFRP-MTW instance, and the results are then compared with
those obtained from CPLEX. Notably, CPLEX is constrained by a maximum run-
time of one hour (3.600 sec) for each instance. The experiments utilize the static
instances described in Section 4.4.

Figure 4.5 illustrates a comparison between the solutions obtained by CPLEX
and MO-GRASP for different instances, where fuel consumption (X-axis) is mini-
mized, and expected reward (Y-axis) is maximized. The graph demonstrates that
the significance of each objective varies depending on the assigned weight, rep-
resented by the λ value, showcasing MO-GRASP’s capability to find the Pareto
front.

For instances A, B, C, D, and E, CPLEX successfully finds the global optimal
solutions. However, for instances F, G, H, and I, CPLEX is unable to prove the
optimality of the found solutions within the given time limit for most of the
λ values. In contrast, MO-GRASP achieves solutions on or close to the Pareto
front for all instances in significantly less computational time, as shown in Table
4.3. Particularly, for instances G, H, and I, MO-GRASP outperforms CPLEX
for certain λ values. It is important to note that as the instance size increases,
CPLEX’s computation time grows significantly more compared to MO-GRASP.
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Fig. 4.5: Comparison between the solutions obtained by CPLEX and MO-GRASP
for the SFRP-MTW instances. The X-axis represents the total fuel consumption,
while the Y-axis indicates the expected rewards. The black points and red lines
on the graph indicate the solutions and Pareto front, respectively, discovered by
CPLEX, while the crosses depict the solutions found by MO-GRASP.

An exception to this is the special case of λ = 0, where CPLEX consistently finds
the global optimum swiftly.

Instance Runtime (s)
CPLEX MO-GRASP

A 0.2 11.2
B 0.3 11.1
C 12.8 22.6
D 370.7 15.0
E 1087.2 16.3
F 2318.3 14.8
G 3281.9 42.1
H 3279.5 24.6
I 3276.8 43.7

Table 4.3: Comparison of the average runtimes for the CPLEX and MO-GRASP.
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Furthermore, to evaluate the performance of MO-GRASP in comparison to
CPLEX, a performance metric called “gap" is utilized. This gap measures the
difference between the solution value obtained by MO-GRASP, denoted as fgr, and
the solution value obtained by CPLEX, denoted as fc. The formula to calculate
the gap is as follows:

gap =
(

fgr − fc

fc

)
· 100 (4.33)

In this formula, fgr represents the solution value obtained by MO-GRASP,
and fc represents the solution value obtained by CPLEX. The gap provides a
percentage-based measure of how much the MO-GRASP solution differs from the
CPLEX solution. A negative gap indicates that MO-GRASP’s solution is better
than CPLEX’s, while a positive gap suggests that CPLEX’s solution is better. A
gap of 0% indicates that both methods produced identical solution values. This
metric allows a direct comparison of the performance of MO-GRASP relative to
CPLEX across different instances and objectives.

Figure 4.6 presents a comparative analysis between CPLEX and MO-GRASP,
focusing on the gap in fuel consumption (FOC) and in expected reward (ER) for
each λ and instance. Notably, to enhance the comprehensiveness of Figure 4.6,
the sign of the ER gap has been reversed, ensuring that all objective signs share
a consistent meaning. Consequently, a positive gap indicates that the CPLEX ap-
proach surpasses the performance of the MO-GRASP algorithm. For the smallest
instances A, B, C, and D both approaches yield comparable results, except for the
case of λ = 0, where the behavior becomes more unpredictable concerning fuel
consumption (FOC) since this objective is not taken into account for this specific
value of λ. CPLEX and MO-GRASP generally generate similar solutions for in-
stances E and H, except for the case of λ = 0.1 in instance E. For this specific
value of λ, CPLEX can find a solution that significantly reduces fuel consumption
while only slightly decreasing the amount of fish caught compared to MO-GRASP.
In instances F, G, and I, MO-GRASP consistently obtains solutions with lower
fuel consumption (FOC) than CPLEX. Meanwhile, CPLEX tends to find solutions
with higher expected rewards (ER). However, the reduction in FOC achieved by
MO-GRASP is typically more substantial compared to the marginal improvement
in ER observed with CPLEX.

In conclusion, the experiments revealed that the MO-GRASP algorithm can
provide competitive solutions for the SFRP-MTW problem, particularly for the
larger instances where exact methods like CPLEX become less efficient. While
CPLEX may have outperformed MO-GRASP in certain instances, the results
demonstrate that MO-GRASP can deliver effective solutions with significantly
lower computing time. This makes MO-GRASP a valuable alternative when deal-
ing with larger instances where exact methods may struggle to find optimal so-
lutions within a reasonable timeframe. The study indicates that MO-GRASP is
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Fig. 4.6: Comparison of the gap between the solutions obtained by CPLEX and
MO-GRASP for the SFRP-MTW instances. The X-axis of the graph represents
the λ values, while the Y-axis represents the gap. The red line on the graph
represents the average fuel consumption (FOC) gap, and the green line represents
the average expected rewards (ER) gap. The shaded areas around the red and
green lines represent the standard deviation in the gap values for the FOC and
ER objectives, respectively.

a promising choice for solving the SFRP-MTW problem efficiently and obtaining
solutions close to the optimal Pareto front.

4.5.2 Evaluation of the MO-GRASP algorithm for the TDSV-FRP
problem

This experiment conducts a performance evaluation of the MO-GRASP algorithm
by comparing it with the GA-TDA* algorithm. The GA-TDA* algorithm com-
bines a genetic algorithm (GA) with a time-dependent A* and has been previously
employed in a similar problem, focusing on optimizing the route of a single ves-
sel without considering the deployment of new fish aggregating devices (dFADs).
Notably, the TDSV-FRP problem corresponds to a special case of the TDFRP-
MTMTW, where the number of vessels V = 1, for all nodes k ∈ N pk = 1, and
there are no new dFAD deployments (Nd = 0).
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The primary objective of this comparison is to assess the reliability and solution
quality of MO-GRASP, particularly in time-dependent scenarios and for medium-
size real instances. The instances utilized in this experiment are detailed in Section
4.4.2.

The experiment setting is as follows: the GA-TDA* is limited to 50 generations
as the stopping criterion, and ten runs are conducted. This approach allows GA-
TDA* to obtain mature solutions similar to those of MO-GRASP. Additionally,
the MO-GRASP algorithm is also executed ten times. The parameters utilized
for the GA-TDA* are tha same that those used in Chapter 3. This experiment
setup, where we allow the algorithms to converge without considering runtime or
any other criteria, will enable us to study both approaches and see where they
stand on the Pareto front. Hence, the behaviour of MO-GRASP in time-dependent
instances is evaluated by assessing the Pareto front obtained by MO-GRASP in
addition to the solutions produced by GA-TDA*. It is important to note that the
objective function used for the GA-TDA* corresponds to the one used in Chapter
3, and is defined as follows:

min J(S) = 1
1 +

∑qv

j=1 erej
(atej

)
·

qv+1∑
i=1

cei−1,ei(dtei−1) (4.34)

In contrast, the MO-GRASP algorithm used a weighed sum objective function
that is defined in Eq. (4.20). This approach allows for a combination of fuel con-
sumption (FOC) and expected reward (ER) objectives, offering the flexibility to
assign weights to each objective. In Chapter 3, on the other hand, the combination
of objectives is achieved through a division without the flexibility to assign sep-
arate weights. Consequently, the solutions obtained using MO-GRASP will vary
along the Pareto front depending on the λ value, whereas the solutions gener-
ated by the GA-TDA* approach will not exhibit such variations due to the fixed
combination of objectives.

Figure 4.7 shows the results of the 10 runs for GA-TDA* algorithm and 10
runs x 9 lambdas for the MO-GRASP, according to fuel consumption and expected
reward. These results demonstrated the good performance of the MO-GRASP al-
gorithm in time-dependent and medium-size real instances. Furthermore, it is evi-
dent that MO-GRASP produces different results based on varying the importance
assigned to each objective. The exceptions are in instances I and P where the so-
lution of MO-GRASP are more clustered together with a low variability between
them. However, even in these two instances, higher λ values yield solutions with
lower fuel consumption (FOC), while lower λ values lead to solutions with higher
expected rewards (ER). For most instances, MO-GRASP outperforms GA-TDA*
in terms of solution quality.

These results clearly show that the MO-GRASP is competitive in time-
dependent instances and can be effectively applied to the largest real instances.
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Fig. 4.7: Comparison between the solutions obtained by GA-TDA* and MO-
GRASP for the TDSV-FRP. The X-axis represents the total fuel consumption,
while the Y-axis indicates the expected reward.

Moreover, MO-GRASP is able to model the actual bi-objective nature of the prob-
lem, yielding distinct results depending on the importance given to each objective.
This flexibility makes MO-GRASP a valuable tool for solving practical problems
with conflicting objectives.

4.5.3 Real fishing cases: Comparison of collaborative and
non-collaborative strategies

The purpose of this experiment is to determine the possible benefits of a collabo-
rative strategy versus the current non-collaborative strategy. The potential impact
of a reduction in the available number of dFADs in both strategies is also studied.

This experiment compares a collaborative strategy with a non-collaborative
strategy for the TDFRP-MTMTW problem using real instances described in Sec-
tion 4.4.3. In the collaborative strategy involves all vessels sharing their dFADs
and defining a common strategy as described in Section 4.2.2. In contrast, in the
non-collaborative strategy, each vessel has its own dFADs. This means they can
only fish on their own dFADs and not on dFADs associated with other vessels.
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The lack of connections between vessels means they do not share any information,
and as a result, they are unaware of the locations of dFADs associated with other
vessels. Hence, it is a special case of the TDFRP-MTMTW problem where V = 1,
and the total number of dFADs to fish and deploy (i.e., Nf and Nd) are exclusive
for each vessel. Both strategies are executed 10 times, with identical deployment
areas, MO-GRASP settings, and optimization of the same objective function (Eq.
(4.20)).

Figure 4.8 presents the results of the 10 runs of both the collaborative and
non-collaborative strategies for each instance and λ, where a comparison is made
between the fuel consumption (X-axis) and expected reward (Y-axis). The results
show that the collaborative approach outperforms the non-collaborative in most
of the instances (Trip 2, Trip 3, Trip 6, Trip 7, Trip 8, Trip 9, Trip 10, and Trip
11). On the other hand, the non-collaborative strategy achieves better or similar
solutions, depending on the λ value, in instances Trip 1, Trip 4, Trip 5, and Trip 12.
Overall, the collaborative strategy achieves better results in 8 out of 12 instances,
while the non-collaborative strategy performs better or similarly only in 4 out of
12 instances. In the disputed instances, in Trip 1 the collaborative strategy gives
better results for most of the λ values, while in Trip 4, Trip 5, and Trip 12 the
non-collaborative strategy performs better.

In instances where there is a discrepancy in the expected reward (ER), the
non-collaborative strategy is always able to obtain higher ERs. This can be at-
tributed to two factors. Firstly, in the non-collaborative strategy, there is no shar-
ing of information or limitations among vessels, allowing them to deploy their
new dFADs in the same locations, which can generate solutions with higher ER.
In the non-collaborative strategy, all vessels can deploy their new dFADs in the
best deployment areas, whereas when they collaborate this situation is not possi-
ble as each location can only be visited once. Secondly, this reduction in the ER
when vessels collaborate may be due to the possibility of selecting slightly less
optimal fishing or deployment areas in exchange for a significant reduction in fuel
consumption (FOC). In contrast, when vessels do not collaborate, selecting these
fishing grounds or others may not be possible, or it may result in increased FOC.

To analyse the differences more clearly, the performance of both strategies is
evaluated by measuring the gap between their solutions based on λ by using Eq.
(4.35).

gap =
(

fncs − fcs

fcs

)
· 100 (4.35)

Where fncs represents the solution value obtained by the non-collaborative
strategy, while fcs represents the solution value obtained by the collaborative
strategy. In this case, a positive gap indicates that the collaborative strategy is
better than the non-collaborative, while a negative gap suggests that the non-
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Fig. 4.8: Comparison between the solutions obtained by the collaborative and
the non-collaborative strategies for the TDFRP-MTMTW instances. The X-axis
represents the total fuel consumption, while the Y-axis indicates the expected
rewards. The triangles indicate the collaborative solutions, while the crosses denote
the non-collaborative solutions.

collaborative is better. A gap of 0% indicates that both strategies produced iden-
tical solution values.

Figure 4.9 shows the average gap (lines) and standard deviation (shaded ar-
eas) for each trip and λ values, concerning fuel-oil consumption (FOC ), expected
reward (ER), time spent at sea (Time), and FOC/ER ratio (FOC/ER). The
FOC/ER ratio is a reliable metric for evaluating the overall economic sustain-
ability of a route as it combines the costs and potential benefits of a trip. A line
above the X-axis indicates that the collaborative strategy outperforms the non-
collaborative strategy. Note that the sign of the ER gap has been reversed to
ensure consistency in Figure 4.9 and Table 4.4, allowing for a clear and unified
interpretation of the objectives across the comparison of collaborative and non-
collaborative strategies. This adjustment ensures that positive and negative gaps
consistently represent improvements or deteriorations in the respective objectives,
providing a better understanding of the performance of each strategy.
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Fig. 4.9: Comparison of the gap between the solutions obtained by the collabo-
rative and the non-collaborative strategies for the TDFRP-MTMTW instances.
The X-axis indicates the λ values, and the Y-axis represents the gap. The blue
line represents the average gap for the FOC/ER ratio, the red line represents the
average gap for the fuel consumption (FOC), the green line represents the average
gap for the expected rewards (ER), while the black line represents the average
gap for the time spent at sea. The shaded areas around the lines represent the
standard deviation.

As previously observed, the collaborative strategy demonstrates superior per-
formance for most instances and λ values, particularly when comparing FOC,
Time, and FOC/ER ratio. However, it is essential to note that the non-
collaborative approach consistently yields slightly higher ER values, although the
differences seem to be small and are statistically significant in 2/3 of the trips (see
gap ER column in Table 4.4). Despite this, the collaborative strategy achieves a
better balance between maximizing ER and minimizing FOC, leading to an overall
improvement in fleet sustainability and efficiency.

Furthermore, considering the FOC/ER as a reliable metric to evaluate the
quality of a route, the collaborative strategy outperforms the non-collaborative
strategy in most instances (see Table 4.4). There are, however, few exceptions in
Trip 4, Trip 5, and Trip 12, where the non-collaborative performance is slightly
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better, although the differences are not statistically significant. On average, the col-
laborative strategy consumes less fuel (17.3%) and spends less time at sea (10.1%)
compared to the non-collaborative strategy. While the non-collaborative strategy
is capable of achieving slightly higher expected rewards (2.9%), the savings in fuel
consumption and time at sea more than justify the slight decrease in expected
rewards.

Instance gap FOC (%) gap ER (%) gap Time (%) gap FOC/ER
Trip 1 12.6 ± 3.8** -4.8 ± 1.9** 5.8 ± 2.3** 7.4 ± 4.0**
Trip 2 37.7 ± 7.1** -2.1 ± 2.4 19.7 ± 4.1** 34.8 ± 4.7**
Trip 3 16.7 ± 7.9** -3.2 ± 2.1** 11.4 ± 5.2** 13.1 ± 7.9**
Trip 4 1.5 ± 6.4 -3.4 ± 1.6** 2.4 ± 4.4 -1.9 ± 5.3
Trip 5 2.1 ± 3.0 -3.0 ± 3.0* 1.7 ± 1.9** -0.8 ± 3.0
Trip 6 17.1 ± 3.3** -1.2 ± 2.1 10.9 ± 1.1** 15.7 ± 2.4**
Trip 7 20.6 ± 3.5** -1.9 ± 3.2 14.0 ± 2.2** 18.2 ± 0.9**
Trip 8 25.3 ± 10.2** -3.2 ± 4.0 15.5 ± 5.3** 21.2 ± 5.4**
Trip 9 23.9 ± 6.3** -3.4 ± 2.2** 13.9 ± 2.8** 19.8 ± 5.7**
Trip 10 25.0 ± 2.5** -3.8 ± 2.0** 14.9 ± 1.6** 20.3 ± 2.6**
Trip 11 29.4 ± 10.3** -2.7 ± 1.0** 13.1 ± 5.5** 26.0 ± 9.4**
Trip 12 -4.1 ± 6.1 -1.6 ± 1.9* -1.7 ± 4.1 -5.6 ± 5.7
Total 17.3 ± 12.4** -2.9 ± 1.0** 10.1 ± 6.6** 14.0 ± 12.1**

Table 4.4: Comparison of the gap between the non-collaborative and collaborative
strategies. FOC refers to fuel consumption; ER refers to expected reward; Time
refers to the time spent at sea; and FOC/ER ratio is the relationship between fuel
consumption and expected reward. Statistical significance is determined using the
Wilcoxon Rank Sum tests. Significance codes: **p < 0.01 and *p < 0.05.

Four examples of the proposed routes by the MO-GRASP for the same in-
stance, are shown in Figure 4.10. Panels A and C show the routes where more
importance is given to obtain a high expected reward (λ = 0.2), while Panels B
and D show the routes where more importance is given to use less fuel (λ = 0.8)
for both fishing strategies, respectively. The importance of the λ value becomes
evident when comparing the same strategies. With a low λ value, the routes are
larger, covering more distance, and consequently, using more fuel with the aim of
obtaining a higher expected reward. On the other hand, with a higher λ value,
the routes tend to be closer to the port, resulting in shorter distances covered and
less fuel use in exchange of a lower expected reward. When comparing the routes
between the collaborative and non-collaborative approaches (Panels A with C and
Panels B with D), it becomes evident that sharing the dFAD information allows
the vessel to fish and deploy in areas with a similar expected reward without nec-
essarily covering more distance. This example confirms the previous results, where
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the collaborative strategy outperforms the non-collaborative strategy in terms of
fuel use (-14% and -21%) and time at sea (-8% and -14%) with similar expected re-
wards (5% and -8%). The overall benefits of the collaborative strategy are evident,
making it a more efficient and sustainable strategy.

Fig. 4.10: Example of the proposed routes by the MO-GRASP. The label in each
panel indicates the fuel usage, time spent, and the expected reward for each route.
Each line represents the route of one vessel, the points indicate the available dFADs
to fish, and the colored area indicates the deployment locations along with the
success probability. Note that, in the non-collaborative Panels the color of the
points (i.e., dFADs) and lines (i.e., routes) indicates the vessel to which they are
associated.

Finally, the potential impact of reducing the number of available dFADs on
the fishing fleet is examined for both strategies. This analysis offers insights into
how the reduction in the number of available dFADs affects both strategies and
their respective performance in different instances and contributes to a better un-
derstanding of the strategies’ robustness and adaptability under varying resource
constraints.

To conduct the analysis, the same 12 instances are used with a variation of
the available dFADs to fish (nF AD), ranging from 100 to 450, with an increase of
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50 in each new instance. Hence, nF AD =
∑N

i=1 pi. The dFADs selection process
to create each new instance is random. Both strategies have the same number
of available dFADs and fishing requests (Nf). However, in the non-collaborative
strategy, the dFADs and fishing requests (Nf) are divided equally among the
vessels. In some instances (Trip 1, Trip 11, and Trip 12), there are not enough
dFADs to create new instances for some nF AD values, as the historical data has
fewer dFADs, and therefore, they are not created in these cases.

Fig. 4.11: Comparison between the collaborative and non-collaborative strategies
solution distributions for the TDFRP-MTMTW instances for different quantities
of available dFADs. The Y-axis represents the number of available dFADs, while
the X-axis corresponds to the value of the different performance metrics for each
panel. Panel A: fuel consumption (FOC); Panel B, expected reward (ER); Panel
C, time spent at sea; Panel D, ratio of fuel consumption and expected reward
(FOC/ER).

This experiment examines the effect of the number of available dFADs on fuel
consumption, expected reward, time at sea, and the FOC/ER ratio for both the
collaborative and non-collaborative strategies. Figure 4.11 presents the distribu-
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tion of the solution values for each strategy, nF AD value, and objective (i.e., FOC,
expected reward, time at sea, and the ratio of FOC/ER).

As the number of dFADs increases, both the collaborative and non-
collaborative strategies show a similar behavior regarding fuel consumption and
time at sea (Figure 4.11). That is, the FOC and time at sea are reduced, while
the ER increases slightly. Furthermore, the difference between them reduces as
the number of available dFADs increases (Panels A and C in Figure 4.11). The
expected rewards show small differences between both strategies, and the impact
of the number of available dFADs is less significant (Panel B in Figure 4.11). On
the other hand, the FOC/ER ratio also indicates that the collaborative approach
consistently outperforms the non-collaborative one, particularly with a reduced
number of available dFADs (Panel D in Figure 4.11).

Table 4.5 provides further insight into the impact of the number of available
dFADs by presenting the mean and standard deviation of the gaps for all in-
stances and lambdas. Note that the ER gap’s sign has been reversed in Table
4.5 to ensure a comprehensive understanding of the comparison. The collabora-
tive strategy’s ability to outperform the non-collaborative one becomes especially
significant for FOC, Time, and FOC/ER, as the number of available dFADs de-
creases. These findings indicate that sharing dFADs can increase sustainability
and efficiency in the fishing fleet, particularly when the number of dFADs is re-
duced. The results shed light on the potential benefits of collaboration among
vessels in resource-constrained environments and demonstrate the advantages of
adopting a collaborative approach to this problem.

nF AD gap FOC (%) gap ER (%) gap Time (%) gap FOC/ER
100 36.7 ± 13.6** -0.4 ± 4.8* 23.8 ± 8.4** 36.5 ± 15.4**
150 33.0 ± 9.6** 1.7 ± 6.3 21.1 ± 5.9** 35.9 ± 14.2**
200 27.6 ± 9.8** 1.3 ± 4.9* 18.2 ± 6.1** 39.7 ± 14.0**
250 23.2 ± 10.3** 1.8 ± 4.8** 15.8 ± 6.2** 25.9 ± 14.3**
300 24.3 ± 9.5** 1.5 ± 4.6* 15.8 ± 5.3** 26.5 ± 12.7**
350 24.7 ± 7.1** 0.7 ± 4.6 16.2 ± 4.4** 26.0 ± 10.5**
400 23.1 ± 6.9** 2.3 ± 4.2** 16.3 ± 3.8** 26.2 ± 9.5**
450 24.4 ± 6.0** 2.0 ± 4.6** 16.3 ± 3.3** 27.3 ± 9.4**

Table 4.5: Comparison of the gap between the non-collaborative and collaborative
strategies for different quantities of available dFADs. FOC refers to fuel consump-
tion; ER refers to expected reward; Time refers to the time spent at sea; and
FOC/ER ratio is the relationship between fuel consumption and expected reward.
Statistical significance is determined using the Wilcoxon Rank Sum tests. Signifi-
cance codes: **p < 0.01 and *p < 0.05.



These results highlight how the number of available dFADs affects the perfor-
mance of the vessels in both strategies (in general the more buoys, the better).
Specifically, as the number of dFADs increases, the performance gap between the
two strategies diminishes. However, for expected rewards, no significant effect is
observed between both strategies as the number of dFADs increases.

4.6 Conclusions

This chapter introduces two bi-objective mixed linear integer programming (MIP)
models with potential applications in the fishing routing problem. The proposed
metaheuristic, called the multi-objective greedy randomized adaptive search pro-
cedure (MO-GRASP), proves to be an efficient and effective algorithm for solving
real-size instances of the fishing routing problem. MO-GRASP effectively balances
solution quality and computational time, making it a valuable tool for handling
large-scale and practical problems. Moreover, it effectively models the bi-objective
nature of the problem, providing valuable insights for decision-makers in the fish-
ing sector to optimize their operations and achieve better overall performance.

The comparison between collaborative and non-collaborative strategies reveals
the potential benefits of a collaborative planning approach for a fishing fleet.
The collaborative strategy significantly reduces fuel consumption (approximately
17.3%) and time at sea (approximately 10.1%), reducing fishing companies’ op-
erational costs and contributing to climate change mitigation by reducing their
emissions. Although the collaborative strategy may yield slightly lower expected
rewards (-2.9%), the overall benefits in terms of fuel consumption and time at sea
outweigh this slight decrease.

Furthermore, the study highlights the impact of the number of available dFADs
on both fishing strategies. As the number of available dFADs decreases, there is
a negative effect, particularly on fuel consumption, time at sea, and expected
rewards. However, the impact on fuel consumption and time at sea is more sig-
nificant compared to expected rewards, indicating that expected rewards are less
influenced by the fishing strategy or the number of dFADs available. As the num-
ber of dFADs increases, the performance gap between the collaborative and non-
collaborative strategies diminishes, particularly regarding fuel consumption and
time at sea. However, the expected rewards demonstrate less sensitivity to the
number of available dFADs, with the performance gap between strategies remain-
ing relatively constant.
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General Conclusions and Future Work

This chapter summarises the general conclusions of this thesis and suggests pos-
sible future directions for extending the contributions. It also highlights the main
achievements made during the PhD thesis.

5.1 Conclusions

The contributions of this thesis are covered by the expanding fields of operational
research with a specific focus on the real-world needs of routing problems in the
fishing sector. In this thesis, various fishing routing problems are formulated for
the first time and two metaheuristic algorithms are developed to solve them. Thus,
the gap in the application of routing and planning optimization decision systems
in fisheries has been addressed, despite the existence of technology that can fa-
cilitate the optimization of fishing strategies. The contributions presented in this
thesis have opened up two main research directions, which can be divided into
two groups: (i) methodological research proposals for real-world fishing routing
problems; and (ii) managerial insights for the fishing sector.

The contributions to the field of combinatorial optimization achieved in this
PhD thesis are the following:

• A decision support system (DSS) framework for fishing routing problems is
proposed for the first time, together with an introduction to the tactical and
operational fishing routing problem. Furthermore, a review of the state of the
art is provided, focusing on the main objectives, constraints and algorithms
applied to ship routing problems at tactical or operational level.

• The proposal of four main fishing fleet groups from an optimization point of
view. This thesis proposes that dozens of fishing gears could be addressed with
four optimization strategies. These are based on their similarities, since the
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particularities of each group make it necessary to use different approaches.
The four main groups are:
(i) Distant water fleets, which have the most advanced technology and there-

fore the most to gain from optimizing their routes.
(ii) Large-scale demersal fleets, whose main concern is the selection of fishing

grounds to avoid choke species that may limit their future fishing due to
lack of quotas.

(iii) The large pelagic fleet group is made up of vessels that use more than one
fishing gear throughout the year, which makes it necessary to modify the
optimization approach according to gear, season and target species.

(iv) The small coastal fleet group, made up of small vessels (less than 12 m in
length) that fish close to the coast, and therefore the group that is in the
most difficult situation to benefit from optimizing its routes.

• Motivated by the lack of mathematical models for the different fishing route
problems, two new definitions of route problems are proposed that have not
yet been addressed in the literature. These problems arise from a real need
in the fishing sector when defining fishing strategies. However, their potential
applicability is not limited to the same context, i.e. tuna fishing, as they can
be adapted to solve analogous or similar problems. The two problems defined
are the following:
i) The first problem is formulated as a k-travelling salesperson problem

with moving targets and time windows (DkTSP-MTTW). The k-travelling
salesperson problem and its variants have not received as much attention
from researchers as other TSP variants, despite their potential applica-
tions in resource-constrained environments. In addition, to the best of our
knowledge, this is the first time that a TSP -or its k-TSP variants- has
been formulated in dynamic scenarios considering moving targets and their
associated time windows. Most studies focus on either the moving target
characteristic or the time window characteristic, but not at the same time.

ii) The second routing problem is formulated as a time-dependent VRP with
moving targets and multiple time windows. It extends the previous work
described in Chapter 3 by considering a fishing fleet instead of a single ves-
sel. It also considers the deployment of new dFADs along the journey and
the bi-objective nature of the problem. This is the first time that a problem
combines the multiple time windows and moving target characteristics of
time-dependent VRP.

• The final contributions are the proposal of two metaheuristic algorithms to
address the problems defined above, which are the following
i) A genetic algorithm (GA) is proposed, capable of solving the k-TSP for

the first time. This contribution is not only valid for the fishing problem,
but for all problems based on variations without repetition (i.e. the ar-
rangement of k elements from a set of n elements (k ≤ n), where the order



5.1 Conclusions 111

of selection is important and the repetition of elements is not allowed).
The existing approaches in the literature work on permutation space or
on variation space, but with a chromosome of variable length. Therefore,
there is a lack of GA operators that can handle variation problems with
a fixed-length chromosome. This served as a motivation to develop new
crossovers capable of addressing the problem search space, which includes
two aspects: (i) subset selection (selecting a subset containing k elements);
and (ii) variations (finding the best circular permutation of the k elements
within the selected subset). Furthermore, the proposed crossovers could
be generalised and applied to problems where the solution space consists
of permutations (i.e. all nodes have to be visited) by simply using a value
of k = n.

ii) A multi-objective greedy randomised adaptive search procedure (MO-
GRASP) for solving the time-dependent VRP with moving targets and
multiple time windows. Computational experiments show that the pro-
posed algorithm can generate a high-quality solution within a reason-
able computational time for real instances, as well as model the actual
bi-objective nature of the problem. Furthermore, the heuristic for con-
structing a greedy random solution has been developed using the fish-
ing routing problem as inspiration. However, it can be applied to similar
problems where a fleet of vehicles needs to visit or deliver to a given set
of customers, or even a fixed subset of them. For example, by removing
the checkConstrain() function, which validates fishing or specific problem
constraints, the heuristic can be generalised to a wider range of problems.

With regard to the managerial insights for the fisheries sector gained in this
thesis, the following conclusions are drawn:

• A novel aspect is that a complex decision problem has been modelled as a
decomposed bi-objective optimization problem. Using real cases, it is shown
that a significant reduction in fuel consumption per tuna caught is possible.
The proposed GA-TDA* is the first method in fisheries that dynamically op-
timizes the fishing strategy of a tuna purse seine during an entire fishing trip,
taking into account the selection of fishing grounds, the order in which they
are visited, the fishing time windows, and the performance of the vessel based
on weather conditions. The computational experiments have shown that the
GA-TDA* achieves good results, demonstrating its applicability in this inno-
vative application of operational research and presenting novel approaches to
solving real-world problems.

• • The final contribution is the comparative analysis between collaborative
and non-collaborative strategies. The results show that a collaborative fishing
strategy significantly reduces fuel consumption and time at sea, with only a
minimal reduction in expected reward. The final experiment focuses on assess-
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ing the effect of a reduction in available dFADs. The results have shown that
this reduction has a negative effect on both fishing strategies, i.e. the lower
the number of available dFADs, the more fuel vessels consume, the longer
they spend at sea and the lower the reward they expect. However, this neg-
ative effect is significantly more pronounced in the non-cooperative strategy,
demonstrating the potential for the industry to explore the benefits of joint
planning among vessels.

In conclusion, novel routing problems based on actual fishing requirements have
been formulated and different metaheuristics have been developed to solve them.
This thesis has demonstrated the promising benefits of using routing algorithms
with the tuna purse seine fleet. These methods can help fisheries to mitigate
climate change and reduce operational costs, thereby improving overall efficiency
and sustainability.

5.2 Future Work

This thesis has highlighted the existence of a gap in the application of routing
and planning decision support systems in fisheries. It also presents and discusses
various problems and solutions in fisheries routing. Fisheries have the opportunity
to use operational research in combination with other fields, such as artificial
intelligence, to drive innovation and cost-effective decarbonisation of the sector.
This approach can lead to win-win solutions by increasing fleet sustainability and
reducing environmental impacts. The potential future extensions and research
directions of this PhD thesis are discussed briefly below.

Further research is needed to meet the needs of fishing vessels, such as the issue
of data availability and quality. Although the emergence of new data collection
technologies is reaching the fishing industry, their implementation and availability
is uneven across fishing fleets. Reasons for this include up-front costs and lack of
access to capital for small and medium-sized fishing vessels, and the industry’s lack
of trust in data-sharing. Therefore, another key area for improvement would be to
increase trust and cooperation between the research community and the fishing
industry. This could reduce the reluctance to participate in the development of
new solutions.

Although this thesis is applied to the specific case of tuna purse seiners, other
fishing fleets can benefit from the problems and solutions proposed. Future work
could therefore focus on applying these or similar approaches to other types of
fishing fleets. In Chapter 2, four main groups of fishing fleets are proposed, high-
lighting their main fishing characteristics that need to be taken into account. These
peculiarities serve as the main differences between the fleet types that require the
adaptation of the algorithms proposed in this thesis. Furthermore, the mathemati-
cal models and metaheuristics developed in this thesis are based on the specificities
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of the fishing routing problem. However, the results of this work have the poten-
tial to extend beyond fishing and contribute to the formulation and solution of
similar real-world problems. For example, scenarios that can be formulated as a
time-dependent k-TSP or a VRP with mobile targets and multiple time windows
could be addressed using the insights gained from this study.

Another interesting area of research is problem formulation. In particular, it
would be valuable for fishermen to have other options to limit their fishing trips,
such as the time spent at sea. One way to achieve this is to formulate the problems
as a variant of the (team) orienteering problem, which gives fishermen additional
flexibility in defining their strategies. Another possibility is to formulate the fishing
routing problem as a variant of the open TSP or open VRP, where the vessel(s)
end their route at one of the fishing grounds without having to return to port.
This allows fishermen to plan, for example, the next few sets rather than an entire
fishing trip.

The modelling of the problem can also be improved by the assumptions made
and the approach used. For example, the use of historical data for dFAD positions
is sufficient to validate the proposed algorithms and see the potential benefits of
optimizing fishing routes. However, for practical implementation, the drift of the
dFADs has to be predicted. In addition, the inclusion of additional factors such
as bycatch, quotas or the search for free schools of tuna can make the planning
strategies take further sustainability and management needs into account. Fisher-
men should pay particular attention to the issue of bycatch, as it is becoming an
increasingly important part of the industry due to management regulations. Such
functionality would help fishermen plan their fishing strategies more effectively by
taking into account more realistic situations.

Further improvements can be made to input data, such as data collection
and modelling for fuel consumption and tuna catch models. The industry is ac-
tively engaged in this effort, as evidenced by the ongoing development of improved
dFADs that will enable more accurate estimates of tuna biomass below them and
even species discretisation. Fuel models can also be improved as on-board sensors
continue to accumulate information, resulting in a longer historical data set. Com-
bined with improving or testing other machine learning models, this would allow
for improvements in the accuracy of the models used here.

5.3 Main Achievements

As a result of this research work, several achievements have been accomplished in
terms of publications in peer-reviewed journals, oral presentations in international
conferences, posters, research internships, dissemination and collaborations with
other authors related lines of research.
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