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a b s t r a c t

Background: The ongoing issues with post-COVID conditions (PCC), where symptoms persist long after the 
initial infection, highlight the need for research into blood lipid changes in these patients. While most studies 
focus on the acute phase of COVID-19, there’s a significant lack of information on the lipidomic changes that 
occur in the later stages of the disease. Addressing this knowledge gap is critical for understanding the long- 
term effects of COVID-19 and could be key to developing personalized treatments for those suffering from PCC.
Methods: We employed untargeted lipidomics to analyze plasma samples from 147 PCC patients, assessing 
nearly 400 polar lipids. Data mining (DM) and machine learning (ML) tools were utilized to decode the 
results and ascertain significant lipidomic patterns.
Results: The study uncovered substantial changes in various lipid subclasses, presenting a detailed profile of 
the polar lipid fraction in PCC patients. These alterations correlated with ongoing inflammation and immune 
response. Notably, there were elevated levels of lysophosphatidylglycerols (LPGs) and phosphatidylethano-
lamines (PEs), and reduced levels of lysophosphatidylcholines (LPCs), suggesting these as potential lipid 
biomarkers for PCC. The lipidomic signatures indicated specific anionic lipid changes, implicating anti-
microbial peptides (AMPs) in inflammation. Associations between particular medications and symptoms were 
also suggested. Classification models, such as multinomial regression (MR) and random forest (RF), suc-
cessfully differentiated between symptomatic and asymptomatic PCC groups using lipidomic profiles.
Conclusions: The study’s groundbreaking discovery of specific lipidomic disruptions in PCC patients marks a 
significant stride in the quest to comprehend and combat this condition. The identified lipid biomarkers not 
only pave the way for novel diagnostic tools but also hold the promise to tailor individualized therapeutic 
strategies, potentially revolutionizing the clinical approach to managing PCC and improving patient care.
© 2024 The Author(s). Published by Elsevier Ltd on behalf of King Saud Bin Abdulaziz University for Health 
Sciences. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/ 
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Introduction

The ongoing evolution of the COVID-19 pandemic is making it 
increasingly clear that patients in the acute phase of the disease are 
just the visible crest of a far larger iceberg. For many COVID-19 pa-
tients, the end of the acute stage of infection is only the beginning of 
another difficult experience, known as post-COVID condition (PCC) 
or long-COVID [1]. It is estimated that between 10–20% of those 
infected do not fully recover and develop persistent and disabling 
symptoms after acute infection [2–4]. Recently, the World Health 
Organization (WHO) established a Delphi consensus defining it as a 
condition appearing in individuals with a history of likely or con-
firmed SARS-CoV-2 infection [5]. Typically, symptoms emerge three 
months after the initial onset and persist for at least two months, 
without the possibility of being explained by a different diagnosis. 
The most prevalent symptoms reported in individuals with PCC in-
clude fatigue and dyspnea, with a combined prevalence ranging 
from 35% to 60% depending on the follow-up period (Fig. 1) [6]. 
Additional symptoms commonly observed are cough (20–25%), an-
osmia (10–20%), ageusia (15–20%), and joint pain (15–20%). In gen-
eral, patients with sequelae are characterized by inflammation 
excessive chronic disease and ongoing angiogenesis, suggesting an 
inadequate or deficient innate immune response in the interferon 
system, suboptimal inflammatory mechanisms, and early-stage 
macrophage dysfunction [7]. A recent analysis has evidenced sus-
tained inflammation and activation of the immune response for at 
least 8 months after initial infection [8]. This prolonged condition 
significantly diminishes the quality of life for those affected [9]. PCC 
is most frequently diagnosed in individuals between the ages of 36 
and 50 years. Notably, the majority of PCC cases occur in non-hos-
pitalized patients who experienced a mild acute illness, as they 
constitute the majority of overall COVID-19 patient population [10].

In an unprecedented global effort to overcome the pandemic, 
progress in knowledge about SARS-CoV-2 has been both vertiginous 
and constant over the past three years [11]. Most of the shots have 
been invested in sequencing the genome of the virus and studying 
the proteins that are present in its membrane, which has unques-
tionable value since it is necessary for the development of vaccines 
through procedures implemented in several laboratories. However, 
there are other factors of comparable importance that have not re-
ceived so much attention. An example is the role played by the lipid 
profile of COVID-19 patients both during the acute infectious pro-
cess, the evolution of the disease and even in the medium-long term 
sequelae. Like previous viral SARS-CoV epidemics [12], the infection 
caused by SARS-CoV-2 is also impacting the human im-
munometabolism and leading to long-lasting effects. In this regard, 
targeted and untargeted mass spectrometry-based lipidomics 

studies have been carried out on different COVID-19 cohorts [13–29]. 
Despite the heterogeneity of these studies and the use of different 
technologies, all of them have revealed a significant disruption in the 
plasma lipidome of COVID-19 patients in all the stages of the disease 
and in the recovery phase [17]. In most of the studies published so 
far, some lipid species are upregulated while others are down-
regulated. These findings unveil an intricate regulation influenced by 
multiple concurrent factors, including the patient’s immune status 
and the presence of comorbidities. Chen et al. [30], for example, 
reported that lipid metabolism remained dysregulated in COVID-19 
patients who tested negative for viral nucleic acid but remained 
hospitalized. Acosta-Ampudia et al. also found that dysregulation 
persisted after discharge, with studies showing altered levels of 
unsaturated fatty acids such as arachidonic and linoleic acid two 
months post-discharge [18]. Continued disturbances in lipid meta-
bolism were linked to long-term chronic discomfort and immune 
dysregulation in COVID-19 survivors six months after discharge [19]. 
These disturbances were characterized by dysregulated levels of 
triglyceride (TG), leukotriene B4 (LTB4), prostaglandin E2 (PGE2), 
polyunsaturated fatty acids including 5-hydroxyeicosatetraenoic 
acid (5-HETE), 12-HETE, and 15-Oxo-eicosatetraenoic acid (oxoETE). 
Further studies, such as that by López-Hernández et al. [20], found 
alterations in acylcarnitines and glycerophospholipids (phosphati-
dylcholines-PCs and lysophosphatidylcholines-LPCs) in patients 
presenting at emergency rooms at symptom onset. A follow-up two 
years after the initial infection revealed increased levels of several 
lipids, including glycerophospholipids and sphingolipids, in the 
plasma of recovered patients who experienced mild to severe 
COVID-19 infections [29]. Interestingly, some lipid species (i. e. PCs) 
previously downregulated during the active phase of the disease 
were found to increase in post-COVID-19 patients, even compared to 
negative controls. Conversely, Li et al. reported significantly down-
regulated total levels of LPCs, phosphatidic acids (PAs), phosphati-
dylcholines (PCs), phosphatidylethanolamines (PEs), 
phosphatidylserines (PSs), and ceramides (Cers) in elderly survivors 
nine months post mild infection [19]. This discrepancy might be due 
to the studied patient population, consisting solely of mildly affected 
individuals stratified by age, and a shorter duration post-acute dis-
ease [29]. Notably, PCs exhibited mixed results, as their regulation 
appears to be dependent on infection severity [21].

The association between lipidomic changes and clinical symp-
toms in PCC patients highlights the importance of developing di-
agnostic and therapeutic strategies that specifically target lipid 
pathways and/or lipid membrane composition. Rigorous investiga-
tion of these persistent lipidomic variations is vital, as they may be 
directly linked to the enduring symptoms seen in these individuals. 
Furthermore, enhancing our understanding of these lipidomic al-
terations could pave the way for the creation of more efficient 
treatments, since these changes could be fundamentally associated 
with the health complications observed in patients with long-lasting 
COVID-19 symptoms. For instance, the lipidomic changes seen in 
PCC patients could be directly related to the sustained inflammation 
and immune response activation characteristic of this condition. A 
significant proportion of antimicrobial peptides (AMPs), small pep-
tides found in all organisms’ initial innate defense barrier, are pro-
grammed to target cell membranes [31,32]. They recognize and 
interact exclusively with membranes displaying a lipid composition 
deemed "pathogenic". Inherently, these AMPs aim to detect un-
specific foreign lipid patterns caused by infections, with the intent to 
eliminate the affected cells. However, in situations where the host 
cell membranes’ composition is altered, AMPs could perceive this 
change as pathogenic, thereby promoting systemic inflammation in 
PCC patients [33].

Despite the clear importance of lipidomic analysis for under-
standing COVID-19 and its long-term effects, the focus of current 
research in lipidomics is primarily on the active stages of the disease. 

Fig. 1. Symptom prevalence in PCC [6], with fatigue and dyspnea being most 
common, and highlight on lipidomics, used in the present study.
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Regrettably, only a limited number of studies exist that explore li-
pidomic changes in patients with persistent symptoms after the 
acute phase of infection. This leaves a significant gap in our 
knowledge of lipidomic alterations in PCC patients. Thus, there’s a 
pressing need to extend research in this particular field. By thor-
oughly investigating these enduring alterations, we may uncover 
their relationship with ongoing symptoms and contribute to the 
development of effective, personalized treatments.

In this study, we have applied untargeted lipidomics on a cohort 
of plasma samples of patients suffering PCC. Using a qualitative/ 
quantitative strategy for comprehensive determination of polar li-
pids by LC–MS/MS in human plasma [34], and interpreting the re-
sults using data mining (DM) and Machine Learning (ML) tools, we 
have been able to obtain a complete profile of the polar lipid fraction 
(almost 400 polar lipids) from the plasma samples of 147 PCC pa-
tients. Our results highlight a profound alteration of different lipid 
subclasses and explore the potential relationship between the lipid 
alteration and the sustained inflammation and activation of the 
immune response characteristic of PCC. Furthermore, they also open 
the door to the capability of a specific lipid subset to predict COVID- 
19 patients’ outcome (Fig. 2).

Materials and methods

Recruitment of patients

The analysed plasma samples from recovered COVID‐19 patients 
(n = 152) come from a cohort of patients enrolled in a PCC clinical 
study for the medical monitoring of symptoms evolution. Some of 
them were asymptomatic from the beginning of the infection (13 
over 152). All of them had been infected with SARS-CoV-2 virus, 
from early 2020 to middle 2021 and diagnosed by RT‐PCR assay 
targeting viral RNA from nasal swab samples and/or by IgG detection 
assay in blood. Blood samples were collected at different stages after 
the first symptoms, but only once for each patient. The time between 
the infection and the blood draw varies from 0 (the virus was still 
active in 3 patients at the moment of the blood draw) to 15 months. 
According to the PCC monitoring, every patient has a medical eva-
luation of the symptoms 90 days and 9 months after the infection 
(Fig. S1A). Moreover, another evaluation is set for the day of the 
blood draw. All the samples were collected within the same geo-
graphical region (Galicia, Spain). The procedures, mainly tempera-
ture, clotting tube and clotting time, were the same.

All plasma samples were collected through the CHUS Biobank 
[35] under a protocol approved by the Santiago-Lugo Committee of 

Ethics and Clinical Research (2021/079). The methods were carried 
out in accordance with the approved guidelines. The CHUS Biobank 
complies with the quality management, traceability and biosecurity, 
set out in Spanish Law 14/2007 of Biomedical Research and in Royal 
Decree 1716/2011. The study was conducted according to the De-
claration of Helsinki [36]. All study subjects provided written in-
formed consent.

Blood sample processing

Blood samples were collected from each patient, with 5–8 mL of 
whole blood being drawn into EDTA vacutainers. These were then 
centrifuged at 1600 rpm for 10 min at a temperature of 23 °C in order 
to separate the blood cells from the plasma. Post-collection, the 
plasma samples were portioned out and preserved at -80 °C until the 
time of analysis.

Lipidomic LC–QqQ MS/MS analysis

The analysis was carried out by following the method proposed 
by López-Bascón et al. [34]. For sample preparation, plasma samples 
(150 μL) were deproteinized with 350 μL of LC–MS-grade methanol 
(Fisher Scientific, Madrid, Spain). The mixture was vortexed for 
2 min using a vortex shaker from IKA (Wilmington, NC, USA), and 
then centrifuged for 10 min at 4 °C and 14,500 ×g in a Sorvall Legend 
Micro 21 R microcentrifuge supplied by Thermo Scientific (Waltham, 
MA, USA). After centrifugation, the supernatant was transferred to a 
glass insert and evaporated in a concentrator Plus speed-vac from 
Eppendorf (Hamburg, Germany). Subsequently, it was reconstituted 
with 80 μL of MeOH and 5 μL of the lipidomic internal standards mix, 
vortexed for 5 min, and analyzed. This solution contained the fol-
lowing deuterated standards dissolved in methanol: PE(15:0/18:1)- 
d7 and PG(15:0/18:1)-d7 at 15 μg mL−1, LPC(16:0)-d62 at 12.5 μg mL−1, 
PC(16:0)-d62 at 80 μg mL−1 and PC(15:0/18:1)-d7 at 30 μg mL−1. Same 
procedure was followed for QC samples using a pool of all samples.

The LC–MS/MS analysis was performed by a Thermo Scientific 
UltiMate 3000 series LC system coupled to a Thermo Scientific QqQ 
TSQ Quantum™ Access MAX detector (Waltham, MA, USA). The QqQ 
detector was equipped with a heated electrospray ionization (HESI) 
source. Chromatographic eluates were monitored by tandem mass 
spectrometry in positive or negative MRM detection mode. 
Chromeleon™ software (version 6.80) was used for controlling the 
LC system, TSQ Tune software (version 1.2.1) was used to control the 
detector parameters and, finally, Thermo Xcalibur™ software (ver-
sion 3.0.63) was used for methods and worklists creation. LC 

Fig. 2. Workflow of the untargeted lipidomics approach: 147 plasma samples from PCC patients were deproteinized using LC-MS-grade MeOH, vortexed, and centrifuged. The 
supernatant was reconstituted with MeOH and a lipidomic internal standards mix, vortexed, and analyzed. The LC-MS/MS analysis used positive or negative MRM detection mode. 
Mobile phase A was 60:40 (v/v) water:acetonitrile, while phase B was 85:10:5 (v/v) isopropanol:acetonitrile:water. The chromatographic eluates were monitored by MS/MS in 
MRM mode. Data analysis involved bivariate analysis, unsupervised clusterization, statistical modeling, and ML. A Multinomial Regression model with logit link was used to 
classify and understand lipidomic differences between PCC groups and asymptomatic patients. Additionally, a Random Forest model analyzed the classification based on lipidomic 
concentrations.
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separation was performed by using a Kinetex C18 100 A column 
(100 mm × 3 mm i.d., 2.6 µm particle size) from Phenomenex 
(Madrid, Spain) protected with a C18 precolumn (4 mm × 3 mm) also 
from Phenomenex. The composition of mobile phase A was 60:40 (v/ 
v) deionized water:acetonitrile, while phase B was 85:10:5 (v/v) 
isopropanol:acetonitrile:deionized water. Acetonitrile and iso-
propanol were provided by Fisher Scientific (Madrid, Spain), while 
deionized water was supplied by a mili-Q water purification system 
(Millipore, Bedford, MA, USA). Both phases contained 5 mM am-
monium formate and 0.1% (v/v) formic acid as ionization agents [37], 
also acquired from Fisher Scientific. The injected volume was 5 μL, 
and the injector needle was washed 5 times between injections with 
80% MeOH. The autosampler was kept at 6 °C to increase sample 
stability. The column compartment was thermostated at 40 °C. The 
LC pump was programmed at a flow rate of 0.4 mL min–1 and the 
elution gradient was as follows: from mins 1 to 20, the percentage of 
phase B was modified from 40 to 100%, and the final phase was hold 
for 6 min. A post-time of 6 min was used to regain the initial con-
ditions for the next analysis. The eluate from the chromatographic 
column was monitored by MS/MS in MRM mode. For all MRM 
transitions, the scan width, scan time, and collision energy were m/z 
0.002, 0.1 s, and 20 V, respectively. The settings of the HESI source 
were as follows: flow rate and temperature of the drying gas, 10 L 
min−1 and 325 °C, respectively; the nebulizer pressure, 50 psi; and 
the capillary voltage, 2000 V. The instrument was calibrated and 
tuned as recommended by the manufacturer for which polytyrosine- 
1,3,6 standard (Fisher Scientific) was employed.

Data treatment

Lipidomics data
The chromatographic peak areas were used as quantitative re-

sponses, while the retention time was used as a qualitative parameter. 
The TraceFinder™ software (version 3.2.512.0) allowed generating a 
data set containing the peak area of detected lipids in each sample. 
Data variability minimization was carried out by calculating the ratio 
between the peak area of each lipid and that of the corresponding 
deuterated standard from the most similar chemical family. After the 
obtention of the lipidomic profiles, lipidic concentrations were nor-
malized by MS Total Useful Signal (MSTUS), making the summation 
for a given patient be equal to 1. In order to get a better and a general 
understanding of the possible differences among the lipid con-
centrations, they have been grouped into the following lipidic fa-
milies, reducing the number of variables from 417 to 13: ceramides 
(Cers), diglycerides (DGs), lysophosphatidylcholines (LPCs), lysopho-
sphatidylethanolamines (LPEs), lysophosphatidylglycerols (LPGs), 
phosphatidic acids (PAs), phosphatidylcholines (PCs), phosphatidy-
lethanolamines (PEs), phosphatidylglycerols (PGs), phosphatidylino-
sitols (PIs), phosphatidylserines (PSs), sphingomyelin (SMs) and 
triglycerides (TGs).

Clinical data
Clinical data from each patient was summarized in around 150 

variables. The variables can be classified according to several cate-
gories: anthropometric data, clinical situation prior to infection, 
medication prior to infection, COVID diagnosis, COVID hospitaliza-
tion data (including medication to treat COVID), PCC evaluation after 
90 days, PCC evaluation after 9 months, PCC evaluation at the mo-
ment of the blood draw, and other non-grouped variables. For more 
details, refer to Table S1 and Fig. S1. Considering the evaluations 
after 90 days and 9 months, a new variable reflecting patient im-
provement has been introduced. If there is a decrease in the number 
of symptoms between the evaluations at 90 days and 9 months, this 
is considered as improvement. The same concept is applied to the 
evaluation at the time of blood extraction to determine if there’s 
improvement in another subsequent evaluation (90 days or 9 

months, depending on the time differences). When the extraction is 
performed later than the 9 months evaluation, the condition is 
considered Not Applicable (NAp). The demographic and clinical 
Characteristics of the study population are represented in Table S2.

Statistical analysis, data mining and machine learning

All the data pre-processing and analysis has been performed 
using own-developed codes in Python. These codes are based on the 
following packages: Pandas [38] and Numpy [39] to read and process 
the data, Scipy [40], Statsmodels [41] and Scikit-learn [42] for spe-
cific statistical analysis and Data Mining (DM) or Machine Learning 
(ML) algorithms, and Matplotlib [43] and Seaborn [44] to create the 
data representations. Data pre-processing includes the grouping of 
clinical variables, their quantification, or the removal of those con-
taining blank elements. The continuous variables, representing di-
verse lipid concentrations, were normalized using a logarithmic 
transformation. This approach allowed handling of values within a 
comparable magnitude and consistent variances. A covariance esti-
mation was also applied to the lipidomic data, revealing two outlier 
cases. In the pursuit of an accurate final analysis, these two outliers, 
along with three active cases, were eliminated. This resulted in a 
total of 147 patients included in the final dataset.

Data analysis is divided into bivariate, unsupervised clusterization, 
and statistical modelling and ML approach. The bivariate analysis was 
performed across all clinical and analytical variables, looking for 
pairwise relationships to identify association, dependence, or corre-
lation between highly related variables. According to the sample size, 
expected frequencies and variable type, appropriate tests have been 
applied. When comparing categorical variables (dichotomous or 
polychotomous), the dependence between them has been studied by 
Pearson’s χ² (with or without Yates’ correction) or Barnard’s test. 
Dependence between categorical and ordinal variables has been 
analysed by the Cochran-Armitage or the linear Pearson’s χ² test. 
Finally, numerical variables have been analysed against dichotomous 
(using t-test, Welch’s t-test, or Mann–Whitney–Wilcoxon test), poly-
chotomous or ordinal (using ANOVA or Kruskal-Wallis tests), or nu-
merical variables (Pearson’s correlation). For all these tests, the p- 
value of 0.05 was established as the limit for significance. Normality 
and homoscedasticity were tested using normaltest from scipy.stats 
(based on D′Agostino and Pearson’s test) and Levene’s test, respec-
tively. The post hoc tests employed when analysing the ANOVA and 
Kruskal-Wallis results are Tukey’s and Dunn’s tests, respectively.

Unsupervised data analysis was focused on the search of clusters 
or groups of populations according to their lipidomic profile. After 
the grouping of lipids by the families previously presented, a k- 
means clustering was applied first on the population that still pre-
sented PCC symptoms in the day of blood draw and, second, on the 
asymptomatic group. Other cluster algorithms (spectral and ag-
glomerative clustering) were tested, but the k-means has been se-
lected according to its greater Silhouette Score (SS) and due to the 
normality of the obtained groups. Using the same argument, the 
number of clusters has been established at 2 for each group. Finally, 
a Multinomial Regression model with logit link is proposed l to 
classify and understand the differences between PCC groups and 
asymptomatic patients based on their lipidomic concentrations. The 
discrimination ability of the model was evaluated by means of the 
receiver operating characteristic (ROC) curves and the confusion 
matrix applying the one-vs-rest comparison. In addition, the dis-
crimination ability was validated using a 10-fold cross validation. 
Hence, the model’s capability to distinguish between different 
groups was not only assessed but also corroborated with this vali-
dation approach. In addition to the Multinomial Regression model, a 
Random Forest model was also implemented to further analyze the 
classification of PCC groups and asymptomatic patients based on 
their lipidomic concentrations. The Random Forest algorithm offers 
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an insightful perspective by evaluating the importance of each 
variable in the classification. The performance and discriminative 
power of both models were compared and evaluated using ROC 
curves, confusion matrices with one-vs-rest comparison, and a rig-
orous 10-fold cross-validation method to ensure the reliability of our 
findings.

Results and discussion

Clinical features and time evolution of PCC-19 patients

In the current study, a cohort of 147 patients, derived from data 
pre-processing, were examined, all of whom had been exposed to the 
SARS-CoV-2 virus, with varying degrees of symptom manifestation 
and COVID-19 severity (Fig. S1). The patient severity was classified 
using a categorical scale that ranged from (0) asymptomatic; (1) mild - 
denoting patients exhibiting COVID-19 symptoms but not requiring 
hospitalization; (2) moderate - patients requiring hospitalization, but 
not ICU admission; and (3) severe - patients necessitating ICU ad-
mission. Analysis based on this classification revealed a correlation 
between the severity of illness and certain pre-existing health con-
ditions, namely hypercholesterolemia, hypertension, diabetes, obe-
sity, and smoking history (current or past). The Cochran-Armitage test 
confirmed a significant association between these health condition 
variables prior to SARS-CoV-2 infection and the COVID-19 severity 
scale (Fig. 3). Additionally, there was a significant correlation between 
sex/gender and the degree of COVID-19 severity. However, since many 
of the aforementioned variables are also influenced by sex (smoking) 
and age (other conditions), they are considered confounding factors 
(Fig. S2) [45]. Taken together, the bivariate analysis of the patient’s 
pre-existing health conditions and the severity scale suggests, as ex-
pected, that pre-existing health problems can contribute to a more 
severe COVID-19 infection scenario.

The analysis of the progression of COVID-19 symptoms over time 
reveals that there are still 115 patients experiencing one or more 
evaluated symptoms after 90 days, and 103 patients after 9 months 

(Fig. 4-top and Fig. S1A). The most prevalent symptom among PCC 
patients is physical deconditioning, affecting 71% of patients after 90 
days and 68% after 9 months. Other characteristic symptoms include 
difficulty focusing, myalgias, insomnia, alopecia, headache, cough or 
hoarseness, anosmia or ageusia, and myopathy (Table S1 and Fig. 4). 
These symptoms persist not only after 90 days but also after 9 
months following the infection.

The bivariate analysis reveals a correlation between the presence 
of symptoms at both evaluation time points (90 days and 9 months) 
and the severity of illness during COVID-19 infection: individuals 
with a higher severity exhibit a greater percentage of PCC symptoms 
(Fig. 4-down). When considering each symptom independently, 
statistically significant differences are found in the correlation be-
tween the severity scale and physical deconditioning, alopecia, and 
myalgias after 90 days (Fig. S4). Additionally, it is noteworthy that 
there is no significant difference between severity groups based on 
the date of COVID-19 diagnosis (Fig. S3).

At the time of blood collection for lipidomics analysis (Fig. S1B), 
41 patients were already asymptomatic, while 106 exhibited PCC 
symptoms, resulting in two distinct groups: the asymptomatic group 
(No Symptoms, N = 41) and the symptomatic group (Mild-to-Severe 
Symptoms, N = 106). As mentioned earlier, the time elapsed between 
infection and blood draw ranged from 0 to 15 months (Fig. 5-left). 
One might expect that patients diagnosed with COVID-19 well be-
fore the extraction date would already be asymptomatic. However, 
surprisingly, there is a slight difference between the asymptomatic 
and symptomatic PCC groups (p-value=0.045), but in the opposite 
direction: the distribution of PCC patients extends more towards 
larger time differences (Fig. 5-right).

Differential lipidomic signature discerns between PCC phenotypes

Bivariate analysis along both cohorts at the moment of blood 
collection [No Symptoms (N = 41) and Mild-to-Severe Symptoms 
(N = 106)] and lipidomic data (see Data treatment, in Methods), re-
veals significative differences in three lipid families: LPGs, PEs, and 

Fig. 3. Graphical representation of pre-existing health conditions associated with increased severity in COVID-19 outcomes. The variables considered, in sequence, include 
hypercholesterolemia, arterial hypertension, smoking status (categorized as ’yes’ for both former and current smokers), diabetes, and obesity. Each plot displays the Cochran- 
Armitage test’s p-value. The proportion of the population with each condition is represented in orange (Yes), while those without are in blue (No). ’N’ indicates the number of 
patients in each group.
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Fig. 4. Top: Display of PCC symptoms evaluated and their occurrence among the study participants at two time points - 90 days (blue) and 9 months (orange) post-infection. 
Down: Graphical representation showing the presence (dark) or absence (light) of PCC symptoms and their correlation with the severity scale of the initial COVID-19 infection (0: 
asymptomatic, 1: mild, 2: moderate, 3: severe), evaluated at 90 days (left) and 9 months (right) post-infection. Each plot includes the p-value from the Cochran-Armitage test. ’N’ 
denotes the number of patients in each group.

Fig. 5. Left: Frequency distribution frequency distribution of patients, denoting the time interval between their COVID-19 infection and the subsequent blood draw. Right: 
Comparison of the asymptomatic (No Symptoms) and symptomatic (Mild-to-Severe Symptoms) groups regarding the time interval between COVID-19 infection and blood draw. 
The Mann-Whitney U test p-value indicates a slight but significant difference between the two groups (asymptomatic, N = 41; PCC, N = 106). The violin plot displays the median 
value as a white dot at the center of the inner box plot.
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LPCs. Notably, patients exhibiting PCC Mild-to-Severe Symptoms show 
heightened levels of LPGs and PEs, with LPCs levels inversely lower 
(Fig. 6-upper panel). The analysis further suggests an intriguing 
correlation between elevated LPGs and PEs levels and a higher se-
verity of the original COVID-19 infection: the more severe the 
COVID-19 infection, the higher the concentrations of LPGs and PEs in 
the patient’s plasma at the time of blood collection. Conversely, a 
decreasing trend is observed in LPCs, but no statistically significant 
difference was detected for this lipid relative to the COVID-19 se-
verity scale (Fig. 6-lower panel).

The distributions observed for several lipid families suggest the 
presence of at least two distinct populations within both the asymp-
tomatic and PCC groups. This is especially remarkable for DGs, PAs, 

PGs, PSs, Cers, and PEs families (see Fig. 7 and Fig. S5). Interestingly, 
the existence of these subgroups does not appear to be clearly linked 
to any of the studied clinical variables. Therefore, an alternative ap-
proach was employed using unsupervised analysis to gain further in-
sights into this issue. By applying the k-means algorithm to the 13 lipid 
families, the asymptomatic (No Symptoms) and symptomatic (Mild-to- 
Severe Symptoms) PCC groups were each divided into two novel sub-
groups: As_1 and As_2 for the asymptomatic patients (with 25 and 16 
patients, respectively), and PCC_1 (with 50 patients) and PCC_2 (with 
56 patients) for the Mild-to-Severe Symptoms PCC patients (Fig. S1B). 
The quality of cluster classification was assessed using the Silhouette 
Score. As illustrated in Fig. S6, the values of this parameter are positive 
for all patients, with the exception of two. Furthermore, all groups 

Fig. 6. Top: Comparison of the asymptomatic (No Symptoms) and symptomatic (Mild-to-Severe Symptoms) PCC groups based on the logarithm of the relative concentration of 
lipids displaying significant differences: LPG, PE, and LPC. Down: Comparison of the COVID-19 severity scale groups based on the logarithm of the relative concentration of the 
same lipids. For both comparisons, the corresponding p-value from the statistical test is provided. The comparison for lipids without significant differences is presented in Fig. S5. 
The median value is represented as a white dot within the central box plot.

Fig. 7. Comparison of asymptomatic clusters based on two variables showing significant differences. Left: Obesity, where the percentage of patients with obesity is represented in 
orange, while those without obesity are depicted in blue. Right: Time difference between diagnosis and blood draw. The p-value resulting from the corresponding statistical test is 
displayed alongside each plot. In the violin plot, the median value is represented as a white dot in the center of the inner box plot.
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exhibit Silhouette Scores above and below the mean, with the PCC_1 
group displaying the highest degree of asymmetry. This indicates a 
slightly higher variability in how well the data points within the PCC_1 
group match their own cluster compared to others.

The comparison of the clinical variables corresponding to the 
asymptomatic groups (As_1 and As_2) reveals a remarkable homo-
geneity between both populations. Most of the clinical variables do 
not exhibit significant differences, except for obesity and the time 
interval between COVID diagnosis and blood extraction (Fig. 7). The 
time difference may not have significant causality unless accom-
panied by other parameters. However, the varying proportions of 
obesity in the two groups could potentially explain the division 
based on lipid profiles. Furthermore, the comparison between the 
asymptomatic subgroups, As_1 and As_2, in terms of the lipid pro-
file, demonstrates a significant statistical difference in the con-
centration of Cers, LPCs, PAs, PCs, PEs, PGs, PIs, PSs, SMs, and TGs. 
The concentration of all these lipid families is decreased in As_1 (the 
group with a higher proportion of obesity), except for LPCs, which 
exhibits a significant increase for these patients (Fig. S7).

A comprehensive analysis was conducted on the two subgroups 
identified within the symptomatic PCC cohort (PCC_1 and PCC_2), 
revealing intriguing relationships. Similar to the asymptomatic 
groups, these subgroups also exhibited a remarkable homogeneity in 

terms of clinical variables. Obesity and the time interval between COVID 
diagnosis and blood extraction were no longer statistically different 
between the subgroups. Additionally, no significant differences were 
observed for sex, age, hypertension, hypercholesterolemia, smoking. A 
comprehensive review of the symptomatic profiles of these sub-
groups revealed a striking homogeneity across the range of symptoms 
assessed at 90 days, 9 months, and at the time of blood draw (Table S3
and Fig. S8), with the exception of "Cough and/or hoarseness_9m". 
Here, we found a statistically significant difference (p = 0.049 using 
Barnard’s test), suggesting a possible divergence in symptomatology 
that could correlate with lipidomic alterations. While our study de-
sign primarily focused on the presence of symptoms, the severity of 
these conditions was not quantitatively assessed. This limitation 
precludes us from drawing a direct association between the symptom 
severity and the lipidomic signatures observed. Future studies could 
benefit from a prospective design that includes a detailed severity 
scale for symptoms, potentially unveiling a link between the lipi-
domic profiles and the intensity of PCC symptoms.

However, a few variables demonstrated potential differences 
based on the p-value of the corresponding statistical tests. These 
variables included certain medications (such as antimalarials, qui-
nolones, and ritonavir/lopinavir) administered to the patients during 
their COVID treatment and the date of diagnosis (Fig. 8). Notably, not 

Fig. 8. Comparison of the symptomatic PCC clusters (PCC_1 and PCC_2) based on four variables with significant differences: a) COVID treatment with antimalarials; b) COVID 
treatment with quinolones; c) COVID treatment with ritonavir or lopinavir; d) Date of diagnosis. PCC_1 group is represented in green, while PCC_2 group is indicated in orange. 
The p-value resulting from the corresponding statistical test is displayed alongside each plot. In the violin plot, the median value is depicted as a white dot in the center of the 
inner box plot.

P.F. Garrido, L.S. Castillo-Peinado, F. Priego-Capote et al. Journal of Infection and Public Health 17 (2024) 588–600

595



all medications used for COVID-19 treatment exhibited significant 
differences between the two PCC subgroups. Nevertheless, it is 
crucial to acknowledge that these variables are correlated due to the 
evolving nature of COVID treatments over time. Identifying the 
confounding variable in this scenario presents a challenging task. A 
comparison between the received drug treatment and the date of 
diagnosis is presented in Fig. S9. It reveals that certain medications 
were predominantly administered to individuals infected at the 
onset of the pandemic. These medications, ranked in order of sig-
nificance, include antimalarials, ritonavir/lopinavir, tocilizumab, and 
other antibiotics. Azithromycin, quinolones, antibiotics (of all kinds), 
and beta-lactams were used in both early and later cases. The re-
maining medications were more widely applied in the later cases.

The comparison of lipid profiles between the PCC_1 and PCC_2 
subgroups reveals significant differences across all lipid families, 
except for LPGs, Cers, and LPEs (Fig. S10). The concentration of PAs, 
PCs, PEs, PGs, PIs, PSs, SMs, and TGs is increased in PCC_2, while LPCs 
and DGs exhibit higher levels in PCC_1 compared to PCC_2.

In order to compare the lipid composition of the asymptomatic 
and symptomatic PCC populations, the two asymptomatic clusters 
(As_1 and As_2) were merged to create a population size (N = 41) 
similar to that of PCC_1 (N = 50) and PCC_2 (N = 56). Additionally, the 
only distinguishing factor between the asymptomatic groups was 
obesity, which did not impact the symptomatic PCC groups. The li-
pids were ordered from the lowest to the highest relative con-
centration and are depicted in Fig. 9. The symbol "*" is used to 
indicate significant differences between the three groups, while "#X- 
X" signifies that the difference is not present between the specified 
groups (A for asymptomatic, L1 for PCC_1, and L2 for PCC_2). For the 
post hoc tests, the significance threshold for p-values was adjusted 
to 0.01to accentuate the differences between the populations. The 
mean values, standard deviation, and interquartile range (IQR) for 
each cluster are summarized in Table S4, while Table S5 provides a 
summary of the relative concentrations without applying the loga-
rithm transformation, reflecting the original scale of the data.

The comparison of the three populations reveals that the 
Asymptomatic and PCC_1 clusters exhibit more similarities with 
each other than with PCC_2. The PCC_1 group primarily consists of 
patients who were infected during the initial phase of the pandemic 
(1st semester of 2020) and received treatment with Antimalarials, 
Ritonavir/Lopinavir, or Quinolones in higher proportions. Although 
not statistically significant, the results (Fig. S11a and b) demonstrate 
a clear trend: a greater percentage of patients classified as PCC_1 
show improvement compared to PCC_2. This observation is evident 
in both the 9-month evaluation and after blood extraction. It is 
important to note that only the number of symptoms, rather than 
their severity, was considered for this evaluation, as retrospective 
assessment of severity is not feasible. It is plausible to consider that 
the lipidomic profile of individuals with PCC may have changed over 
time between the infection and extraction, potentially influencing 
their classification into different groups. However, no significant 
differences have been observed among the three groups with respect 
to this variable (Fig. S11c). However, the date of diagnosis has a more 
profound association with lipidomic variations (Fig. S12), indicating 
that early-pandemic infections share more similarities in lipidomic 
alterations regardless of the blood draw timing. This suggests that 
the initial infection period may play a more significant role in lipi-
domic outcomes than the elapsed time before sampling.

Classification Models for Grouping PCC Patients Based on Lipidomic 
Profiles: A Comparative Analysis

The lipidomic profile identified for the asymptomatic individuals 
and the two symptomatic PCC groups provides a basis for classifying 
an infected patient into one of these groups. Both a multinomial 
regression model (MR) and a random forest (RF) classification were 
employed for this purpose. Both the MR and RF methods present 
unique advantages. The MR, a parametric model, provides more di-
rect interpretability due to its coefficients. These coefficients offer 
tangible insight into the relationships between the predictors (lipid 

Fig. 9. Comparison of lipid Profiles among Asymptomatic (blue), PCC_1 group (green), and PCC_2 group (orange). Kernel density estimates (KDEs) are used to display the 
frequency distributions for ease of comparison. An asterisk (*) denotes a significant difference (p-value < 0.05) when comparing the clusters for each lipid family. Additionally, a 
"#" followed by "Cluster1-Cluster2" indicates pairs of groups that, after post-hoc comparison, exhibit no statistical differences (p-value > 0.01).
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concentrations) and the response (patient group classification), 
making the impacts of the disease more understandable. 
Contrastingly, the RF is a non-parametric method known for its 
flexibility and proficiency in capturing complex, non-linear re-
lationships and interactions between variables. Despite being less 
straightforward to interpret compared to MR, the RF method’s 
strength lies in its potential to deliver highly accurate classification 
performance, especially with complex data structures.

In the employed MR model, the symptomatic PCC clusters served 
as the response variables, with the asymptomatic group acting as the 
reference category. Initially, all lipid families’ relative concentrations, 
expressed as decimal logarithms, were incorporated as explanatory 
variables. The final selection of variables was achieved through an 
Akaike Information Criterion (AIC) stepwise algorithm. This proce-
dure identified DGs, LPGs, PAs, PIs, PSs, and SMs as the variables of 
interest. These chosen variables’ corresponding fitted coefficients are 
presented in Table 1 and Table 2. It’s crucial to note that while not all 
of these six variables are significant for both comparisons (PCC_1 
and PCC_2 versus Asymptomatic), their collective presence is ne-
cessary for the integrity of the multinomial regression model. When 
examining the PCC_1 versus Asymptomatic comparison, the re-
presentative lipids critical for classification appear to be LPGs, PSs, 
and SMs. In contrast, in the comparison of PCC_2 with the Asymp-
tomatic group, DGs, PAs, PIs, and PSs emerge as the most relevant 
lipids.

In the case of PCC_1, most of the variables appear to lack a sig-
nificant influence (p-value > 0.05) on the category. However, three 
variables - log([LPG]), log([PS]), and log([SM]) - demonstrate sig-
nificant p-values (0.008, 0.005, and 0.002, respectively). Log([LPG]) 
presents a positive coefficient, indicating that a unit increase in the 
log of [LPG] multiplies the odds of the outcome being PCC_1 by a 
factor of approximately 1.8 × 10³ , according to the calculated Odds 

Ratio (OR). It should be noted, however, that the confidence interval 
for this variable is notably wide, ranging from 6.9 to 450,000, sug-
gesting high uncertainty. In contrast, log([PS]) and log([SM]) both 
exhibit negative coefficients, suggesting a decrease in the odds of the 
outcome being PCC_1 with each unit increase in these variables. 
Remarkably, log([SM]) displays the highest level of significance 
among all variables for PCC_1. For the interquartile range (IQR) of 
measured values in all patients, the odds may vary up to 300 times 
higher (for LPG) or 96 and 6.8 × 10³ times lower (for PS and SM), 
indicating the potential influence of these variables on the PCC_1 
classification. This means that, for the whole study and range values, 
the most relevant lipid family that could differentiate between 
PCC_1 and the Asymptomatic groups may be the SMs, followed by 
LPGs and PSs.

For PCC_2, a different set of variables appears to exert a sig-
nificant influence. These include log([DG]), log([PA]), log([PI]), and 
log([PS]) with p-values of 0.044, 0.007, 0.005, and 0.021, respectively. 
Log([PA]) and log([PI]) both demonstrate large positive coefficients, 
indicating a critical role in augmenting the odds of the outcome 
being PCC_2. Notably, with each unit increase in log([PA]), the odds 
of the outcome being PCC_2 are multiplied by approximately 11,000. 
However, the confidence interval for this variable is very wide (from 
12 to 10 million), suggesting considerable uncertainty in this esti-
mate. In contrast, log([DG]) and log([PS]) decrease the odds of the 
outcome being PCC_2 with each unit increase, with log([PS]) 
showing a more substantial negative effect. Considering just the 
significant lipids for the PCC_2 classification, the odds may vary up 
to 4.0 × 10³ and 43 times higher (PA, PI) or 5.6 and 1.4 × 10³ times 
lower (DG and PS), which again, signifies the potential influence of 
these variables on the PCC_2 classification.

Therefore, considering the range of studied lipid relative con-
centrations and the interquartile range of the measured values, SM, 
PA, and PS are the lipid families with the most remarkable con-
tribution to differentiating the Asymptomatic and the PCC clusters.

The model’s performance was validated using a 10-fold cross- 
validation method and evaluated through a Receiver Operating 
Characteristic (ROC) curve (Fig. 10) and a confusion matrix (Table 3), 
using the one-vs-rest comparison approach. Table 3 presents the 
confusion matrix which provides insights into the model’s predictive 
capabilities across the three categories. For the Asymptomatic ca-
tegory, the model correctly identified 17 cases, while it classified 14 
cases as PCC_1 and 10 as PCC_2, revealing a propensity to over-
estimate the PCC conditions in Asymptomatic patients (false posi-
tives). In contrast, the model displayed superior performance in the 
classification of PCC_1 and PCC_2 cases. For PCC_1, the model ac-
curately identified 40 cases while misclassifying 9 as Asymptomatic 
and 1 as PCC_2. Similarly, for PCC_2, the model correctly classified 46 
cases, with minor misclassifications of 9 cases as Asymptomatic and 
1 as PCC_1. These outcomes suggest that the model is generally 
robust in detecting and correctly categorizing PCC_1 and PCC_2 
conditions. However, a significant challenge arises with the 
Asymptomatic population, primarily due to its similarity with the 
PCC_1 group. Notably, the model does not consider symptoms in its 
classification, relying solely on the lipidomic profile of each patient. 
The model’s classification capability improves when distinguishing 
between the two proposed symptomatic PCC clusters, demon-
strating the efficacy of the model for this particular task, provided at 
least one PCC symptom is present.

The ROC curves shown in Fig. 10 provide further insights into the 
model’s performance. The Area Under the Curve (AUC) values differ 
for each category, reflecting the varying predictive accuracy of the 
model. The AUC for Asymptomatic cases is 0.66, suggesting a fair, but 
not exceptional, predictive accuracy, while the AUC values for PCC_1 
and PCC_2 are considerably higher at 0.89 and 0.92, respectively. 
These values denote a high predictive accuracy, with the model 
successfully ranking a random positive example over a negative one 

Table 1 
Fitted coefficients obtained from the multinomial regression model for the PCC_1 
category. The table displays the constant term (const), which represents the baseline 
outcome’s log odds when all predictors are zero. Each variable’s coefficient, standard 
deviation, p-value (for significance testing), Odds Ratio (OR), and the range of the 95% 
Confidence Interval for the OR are included. Variables with significant p-values 
(p  <  0.05) in each comparison are highlighted, indicating a significant contribution to 
the model. 

PCC_1 Coef. std p-value OR [0.025 0.975]

const -11.4 8.8 0.196 1.1E−05 3.5E−13 3.6E+02
log([DG]) 0.7 1.1 0.527 2.1E+00 2.2E−01 1.9E+01
log([LPG]) 7.5 2.8 0.008 1.8E+03 6.9E+00 4.5E+05
log([PA]) 1.4 2.0 0.489 4.0E+00 7.8E−02 2.1E+02
log([PI]) -0.6 1.3 0.654 5.6E−01 4.5E−02 7.0E+00
log([PS]) -6.0 2.1 0.005 2.4E−03 3.8E−05 1.6E−01
log([SM]) -10.1 3.2 0.002 4.0E−05 7.1E−08 2.2E−02

Table 2 
Fitted coefficients obtained from the multinomial regression model for the PCC_2 
category. The table displays the constant term (const), which represents the baseline 
outcome’s log odds when all predictors are zero. Each variable’s coefficient, standard 
deviation, p-value (for significance testing), Odds Ratio (OR), and the range of the 95% 
Confidence Interval for the OR are included. Variables with significant p-values 
(p  <  0.05) in each comparison are highlighted, indicating a significant contribution to 
the model. 

PCC_2 Coef. std p-value OR [0.025 0.975]

const 13 12 0.291 3.3E+05 1.9E−05 5.7E+15
log([DG]) -2.8 1.4 0.044 5.9E−02 3.7E−03 9.2E−01
log([LPG]) 3.2 3.1 0.314 2.3E+01 5.1E−02 1.1E+04
log([PA]) 9.3 3.5 0.007 1.1E+04 1.2E+01 1.0E+07
log([PI]) 4.6 1.6 0.005 9.7E+01 4.1E+00 2.3E+03
log([PS]) -8.7 3.8 0.021 1.6E−04 9.7E−08 2.6E−01
log([SM]) -1.8 5.1 0.729 1.7E−01 8.4E−06 3.6E+03
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approximately 89% and 92% of the time for PCC_1 and PCC_2 cases, 
respectively.

Building upon the results obtained from the MR model, the ap-
plication of the Random Forest (RF) algorithm to the lipidomic data 
was conducted. The RF model consisted of 140 trees and was con-
structed using a 10-fold cross-validation method to ensure its ro-
bustness. The comparison of the RF model with the MR model in 
terms of AUC and confusion matrices revealed similar results, as 
depicted in Fig. 10 and Table 3. This consistency in outcomes pro-
vides confidence in the relevance and accuracy of the models. To 
assess the importance of variables in the RF model, Table 4 presents 
the importance scores, expressed in percentage, for each lipid family. 
The scores range between approximately 5% and 12%. While de-
termining the most relevant variables in the RF model is not as 
straightforward as in the MR model, it is evident that the SM and PA 
lipid families receive high importance scores. This observation aligns 
with the findings obtained from the MR classification. In conclusion, 

the results obtained from the RF model not only validate the findings 
of the MR model but also provide additional insights into the lipi-
domic data. The convergence of results from both models empha-
sizes the significance of the SM and PA lipid families in the 
classification process.

Conclusions

In this study, we examined a cohort of 147 patients with varying 
degrees of symptom manifestation and COVID-19 severity to gain 
insights into the clinical features, symptom evolution, and lipidomic 
profiles of PCC patients. Our findings revealed two distinct popula-
tions, one of them resembling asymptomatic individuals. The analysis 
demonstrated the persistence of several symptoms, such as physical 
deconditioning, cognitive difficulties, and various manifestations, 
highlighting the chronic nature of PCC. These findings emphasize the 
need for continued medical attention and support for individuals with 
persistent symptoms following a COVID-19 infection.

Importantly, the lipidomic analysis revealed differential lipi-
domic signatures associated to PCC, with increased levels of lyso-
phosphatidylglycerols (LPGs) and phosphatidylethanolamines (PEs), 
along with decreased levels of lysophosphatidylcholines (LPCs). 
These lipid alterations provide insights into the underlying patho-
physiological mechanisms and suggest potential biomarkers for PCC. 
Furthermore, our findings revealed distinct alterations in specific 
anionic lipids, supporting the hypothesis that antimicrobial peptides 
(AMPs) may play a role in the inflammatory response observed in 
PCC [46]. Understanding the mechanisms underlying the in-
flammatory response and the specific role of AMPs could pave the 
way for the development of targeted therapeutic interventions to 
alleviate symptoms and improve the outcomes of PCC patients.

In addition, the analysis of medication usage revealed potential 
associations between certain drugs, such as antimalarials, quino-
lones, and ritonavir/lopinavir, and the symptomatic subgroups. 
Further investigation is warranted to understand the specific impact 
of these medications and their role in PCC.

The classification models developed, namely multinomial re-
gression (MR) and random forest (RF), demonstrated efficacy in both 
categorizing patients into asymptomatic and symptomatic PCC 
groups based on their lipidomic profiles, and quantifying the odds of 
belonging to each group. This dual functionality provided valuable 
insights into the distinct lipidomic signatures of each group, while 
also revealing the magnitude of influence each lipidomic profile has 
on group classification.

In the MR analysis, certain lipid variables were found to be as-
sociated with different PCC clusters compared to the asymptomatic 

Fig. 10. Mean ROC curves obtained by the one-vs-all method for each PCC cluster possibility. The ROC curves for Random Forest (RF) are depicted in green, while Multinomial 
Regression curves are represented in orange. The legend displays the corresponding mean AUC (Area Under the Curve) for each model.

Table 3 
Confusion matrix comparing the classification of patients according to the proposed 
Multinomial Regression (MR) and Random Forest (RF) models. The columns indicate 
the predicted classification, while each row represents the expected value. 

Asympt 
(MR)

PCC_1 
(MR)

PCC_2 
(MR)

Asympt (RF) PCC_1 (RF) PCC_2 
(RF)

Asympt 17 14 10 11 19 11
PCC_1 9 40 1 8 41 1
PCC_2 9 1 46 5 2 49

Table 4 
Importance score (in %) obtained for each lipid in the Random 
Forest classification model. 

Lipid family Importance (%)

SM 11.9
PG 9.8
PA 9.5
PI 9.4
TG 9.3
PS 7.7
PC 7.7
LPC 6.8
PE 6.6
DG 5.9
LPG 5.8
Cer 4.8
LPE 4.8
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group. For PCC_1, LPGs, PSs, and SMs were identified as significant, 
while for PCC_2, DGs, PAs, PIs, and PSs were relevant. Notably, log 
([SM]) showed the highest significance for distinguishing PCC_1, 
followed by LPGs and PSs. In PCC_2, log([PA]) and log([PI]) had po-
sitive coefficients, while log([DG]) and log([PS]) had negative coef-
ficients. These findings suggest the potential role of specific lipid 
alterations in differentiating symptomatic PCC clusters from the 
asymptomatic group. On the other hand, the importance analysis of 
the RF model highlighted specific lipid families, including SMs, PGs, 
PAs, PIs, TGs, PSs, PCs, LPCs, PEs, DGs, LPGs, Cers, and LPEs, as crucial 
factors in the classification process. This diversity also implies that 
the pathophysiological mechanisms of the disease may vary among 
these subgroups, warranting more tailored research and therapeutic 
approaches. Furthermore, the broad range of lipid importance un-
derscores the complexity of the disease and the necessity to consider 
multiple lipidomic signatures when designing further investigations 
or therapeutic strategies.

While the models showed promising results, there is room for 
improvement, particularly in accurately classifying asymptomatic 
cases. Future research should focus on refining the models, in-
corporating additional variables, and conducting targeted studies to 
establish absolute concentrations of biomarkers. These advance-
ments will not only enhance our understanding of the molecular 
mechanisms underlying PCC but also pave the way for potential 
therapeutic interventions.
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