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Figure 1: Renewable electricity generation growth by technology by 2050 
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Abstract— The wind-wave excitations cause structural 
vibrations on the Floating Offshore Wind Turbines (FOWT) 
pressing the power generation efficiency and reducing the life 
expectancy. In particular, tower-top displacement and barge-
type platform pitch dynamics are extremely sensitive to wind 
speed and wave elevation to the point that may even lead to 
structural instability in extreme conditions. Having into 
account that computational techniques such as Artificial 
Neural Networks (ANNs) are widely used in artificial 
intelligence because of their strong predicting and forecasting 
capabilities, the aim of this article is to create a deep-layer 
ANN model that incorporates Oscillating Water Columns 
(OWCs) into the barge platform. This ANN model enables to 
address stability issues of the hybrid floating offshore wind 
platform. The proposed control-oriented model has been 
successfully validated to achieve adequate dynamic behavior 
and structural performance using FAST. 

Keywords— Artificial neural network, barge platform, 
floating offshore wind turbine, oscillating water column. 

I. INTRODUCTION

According to global energy forecast data, energy demand 
will increase by 4.6% in 203 due to climate change and the 
emerging and developing economies Chen et al. (2022). To 
address basic demands, the global market is being 
redirected towards sustainable energy resources. Despite the 
availability of multiple renewable energy sources, wind and 
wave generation have expanded dramatically in the recent 
decade, as illustrated in Figure 1. In pursue of these green 
policies many studies have been conducted on ocean energy 
resources, such as Rusu and Onea (2013). 

Europe is compelled by the energy roadmap to have a 
marine energy infrastructure able to cover approximately 10% 
of its energy consumption from wave and tidal energy by 2050 
Khojasteh et al. (2022). Several countries, including the UK and 
Spain, have already taken this approach and in this path to 
development, Wave Energy Converters (WEC) have gained 
significant importance Windt et al. (2022). 
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Figure 2: Barge-based FOWT with four OWCs 

Figure 3: Geometry of the standard barge platform 

Governments are paying increasing attention to wind 
energy, which is a clean, abundant, and sustainable resource 
Zeng et al. (2022). Installing onshore wind turbines near 
residential areas would result in a slew of issues, including noise 
and aesthetics. To prevent these issues, wind turbines must be 
pushed way into deep water. Due to increased wind speed and 
lesser wind shear, FOWTs have a higher power generation 
efficiency than onshore/nearshore wind turbines Rudolph et al. 
(2004). As a result, the development of FOWT is increasingly 
gaining traction as a method for overcoming the energy crisis 
Haritos (2007). 

Wave energy is a resource captured from the oscillation of 
the ocean surface. One of the methods used to extract this 
energy is known as the Oscillating Water Column (OWC), 
which uses the movement of waves to compress the air inside a 
chamber. That compressed air is used to move a turbine, which 
is responsible for the production of electricity Garrido et al. 
(2022).  

Researchers recently unveiled a hybrid platform for 
generating energy from both wind and waves. P. Aboutalebi et 
al (2021) demonstrated the feasibility of integrating four OWCs 
systems in barge platforms. This topology appears to be a 
promising approach subject to active structural control as shown 
in Figure 2. In comparison to spar and tension leg platforms, the 
size and design of the barge platform makes it easier to create 
space for wave energy converter integration Chuang et al. 
(2021). 

The nature of the resources that provoke vibration of the 
barge-type offshore wind turbine in diverse maritime situations 
is unpredictable, which makes reducing unwanted motion from 
hybrid platforms a difficult task. Hybrid FOWT-OWC control is 
a comparatively new but complex topic of study. The primary 
goal of the hybrid system is to reduce power output fluctuations 
while minimizing platform fatigue levels. However, new 
approaches are required to reduce the external disturbances, 
outages, and parameter uncertainty of the off-shore system that 
remain higher in comparison to those of an on-shore wind 
turbine. 

There have been a number of passive and active 
stabilization and vibration reduction approaches for FOWT. 
The structural dynamic properties of an offshore hybrid plat- 
form are complex but the dynamic behavior in the frequency 
domain is straightforward. Many researchers Amaechi et al. 
(2022) have investigated the response amplitude operators 
(RAOs) of platform motion in the frequency domain for 

various types of offshore wind turbines and created a floating 
platform to ensure the overall stability of the wind turbine 
system. 

Furthermore, researchers have also researched on the 
dynamic aspects of offshore wind turbines in the time 
domain. Jonkman et al. [Jonkman (2009) Prowell et al. 
(2010)] established a time domain simulation tool named 
FAST that is based on the equations of Kane and have 
deploy it to examine the dynamic responses of various wind 
turbines in detail. 

It is evident from published works that various 
researchers are working on highly nonlinear 5MW FOWT 
dynamics Basack et al. (2021). Their investigation on control 
simulations rely on linearization techniques, assumptions, 
and the pursuit of the desired operating points. M'zoughi et 
al. (2022) have created a simplified FOWT-OWC model that 
takes into account two DOFs and employs PID Control 
techniques. 

In this context, this article presents a novel advanced 
control-oriented artificial neural model, which is able to 
approximate the system nonlinear dynamics, with the target 
to implement controllers that minimize both platform pitch 
and top-tower displacement. The deployment of a control 
oriented artificial neural network model for the hybrid wave 
and wind barge platform is the main key novelty in this 
work. Even though significant efforts have been made to 
develop hybrid platforms for energy generation, no 
investigation has been performed to control the hybrid 
generation and platform stability Belloli et al. (2020). This 
ANN based computational machine learning algorithms are 
frequently used in the field of artificial intelligence due to 
their great predictive capabilities  Marugán et al. (2018). As 
a result, in a control-oriented framework, a novel dynamic 
model of the system is established to facilitate the utilization 
of closed control loops, which are capable of mitigating 
undesirable platform vibrations.  

II. PROPOSED HYBRID FLOATING SYSTEM

Following J. Jonkman barge platform with a single 
moonpool in the center and dimensions of 40mx40mx10m, 
we have previously integrated four OWC moonpools at each 
corner of the platform so that they can be used as active 
control of the structure. Various numerical engineering 
programs have been used to create such hybrid platform i.e, 
Multisurf, WAMIT, FAST and MATLAB. 

A. Geometry Design

The geometry of the platform is created using MultiSurf.
We concentrated on two different platforms, each with its 
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Figure 4: Geometry of the four OWC-based barge platform 

Figure 5: Training performance of ANN1. (a) Convergence history.(b) Regression curves 

own set of characteristics. The first platform is a standard 
barge platform, as shown in Figure 3, while the second 
platform is a barge platform with four OWCs in the corners, 
as shown in Figure 4. 

B. Advanced Hydrostatic and Hydrodynamic Computations

The input to the FOWT model is considered as
unidirectional regular waves and can be represented as 

(1) 

where the speed for the wave propagation is c=λ f.  λ 
denotes the wavelength, that  measures the distance 
between successive crests, and A is the wave amplitude from 
Still Water Level (SWL) to the wave crest. 

The dynamics of a barge type 5MW FOWT where four 
OWCs are embedded may be described in time-domain as 

(2) 

where  is the mass inertia, t is the time, u is the control in- 
puts, and  is the second time derivative of the jth Degree of 
Freedom (DoF). 

The generalized external forces acting on the system is 
represented by the term on the right-hand side of (2), which 
includes the aerodynamic load on the blades and nacelle, 
hydrodynamic forces on the platform, elastic, and servo 
forces.  

In the frequency domain, the generalized system for the 

linear equations of motion can be expressed as 

(2) 

where , , and may be represented as 
inertia, damping, and stiffness matrices, respectively. 
and  represented as the drag of waves and hydrodynamic 
forces imposed by Power-take-off (PTO). 

WAMIT is a diffraction panel program for linear 
analysis of surface wave interactions with various types of 
floating and submerged structures. This software can be used 
to assess a variety of traits. The matrices were obtained using 
the Multisurf file directly into WAMIT to retrieve the 
hydrostatic and hydrodynamic coefficients.  WAMIT can be 
coupled to MultiSurf to use the geometric floating model to 
calculate the hydrodynamic loads caused by water pressure 
on wetted surfaces.  

III. ANN-BASED FOWT MODEL

An Artificial Neural Network (ANN) is a biologically 
inspired framework that can mimic and perform tasks as 
closely as possible to the human brain. ANNs are used to 
learn from data in order to make future predictions and are 
capable of recognizing patterns and making judgments based 
on previously stored information. A basic structure has been 
given in Figure 5. 

The data transfer from the input layer to the output layer 
is the so called feedforward network. The sum function 
stablish the connection between the jth neuron in the current 
layer and all N neurons in the previous layer as 

(5) 

through the weights where  is the sum, b j is the bias, 
and N is the total number of neurons in the previous layer. 

Then, this sum  is passed through an activation function as 

(5)
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Figure 6: Platform Pitch from FAST and ANN platform 

Figure 7: Fore-aft displacement from FAST and ANN 

where  is output of neuron and is the activation 
coefficient for the  jth neuron. 

For the linear and nonlinear functions, Multi-Layer 
Perceptron (MLP) is a commonly used feed-forward ANN 
network. For the selection of the best model, the network that 
has the lowest Mean Squared Error (MSE) is usually chosen 
M’zoughi et al. (2020). The expression for the MSE can be 
defined as 

(6) 

where n is the total number of observations,  is target out- 
put, and the estimated output by ANN. For best results, the 
Levenberg-Marquardt algorithm (LMA) is used and is 
responsible for updating the weights and reducing the MSE. 
LMA is an iterative minimization algorithm that employs an 
average between the Gauss-Newton and the gradient descent 
method M’zoughi et al. (2020) approximating the Hessian as 

(7) 

and its gradient can be calculated using the jacobian matrix  

(8) 

where the Jacobian is the matrix that contains the first 
derivatives of the network errors with respect to weights and 
biases as 

(9) 

and the gradient of performance may be defined as 

(10) 
The LMA uses this approximation to the Hessian matrix in 
the following newton like update 

(11) 

The ANN model has five hidden layers, each of which 
has a linear activation function (ReLU) in the output layer 
and a sigmoid activation function for the neurons in the 
hidden levels. ANN is created using a number of different 
steps and with several software. Multisurf is used to define the 
structural geometry of the platform. The hydrodynamic, 
elastodynamics, and added masses are then calculated using 
WAMIT. This data from WAMIT has been introduced to 
FAST to perform the aerodynamics computations. Finally, 
the computational design of ANN is done in 
MATLAB/Simulink after incorporating the data from FAST.

IV. SIMULATION AND RESULTS 

The ”NREL offshore 5MW baseline wind turbine” 
mounted on a floating barge is tested and simulated in this 
part using FAST and MATLAB/Simulink. Simulations have
been performed to identify the optimal ANN model using a 

multi-layer perceptron to achieve the best performance. 70% 
of the data was used for training, 15% for validation, and 
15% for testing. Multilayer networks can perform almost any 
linear and nonlinear computation and can arbitrarily 
approximate any acceptable function. The ANN model 
presents five hidden layers, each with a sigmoid activation 
function for those neurons in the hidden levels, and a linear 
activation function (ReLU) in the output layer. The lowest 
MSE is chosen to achieve satisfactory results as shown in 
Figure 5 

TABLE I. MODEL PERFORMANCE CHARACTERISTIC 

Performance Observations MSE R 

Traning 17925 0.0692 0.98199 
Validation 3841 0.0691 0.98192 

Test 3841 0.0694 0.98151 

A. Validation Results

The validation has been carried out once the ANN
model has been designed and trained. The ANN-based 
model is represented by the red (solid) curve, whereas the 
FAST model is represented by the blue (dashed) curve. 
Simulating the nonlinear model for a long enough time to 
dampen out the transient state yielded a periodic steady state 
condition for this type of system. The first 500 runs were 
omitted to avoid transients. The network’s inputs are waves 
with 5 meters amplitude and wind speed with step-wise 
increment from 8 to 15m/s.

For sea depths, of more than 60 meters, FOWT-OWC is a 
viable option. As a result, they have an extra six degrees of 
freedom of motion. These additional motions, particularly the 
platform pitching motion and tower fore-aft can have a 
considerable impact on turbine loads and power production 
and this is the reason behind the interest in these factors. The 
platform pitch angle and fore-aft displacement are depicted in 
Figure 6 and Figure 7. They show that the model was 
adequately trained and that there is a high agreement 
between the values obtained from FAST and the proposed 
ANN model, with minor differences for non-representative 
low wind  speeds. 
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The results reveal that the suggested control-oriented 
ANN model is remarkably precise at tower displacements, 
and platform pitch. In this sense, the forecasting and 
predicting characteristics of ANN model make them an 
efficient and promising option for modelling complex 
systems, such as FOWT-OWC hybrid systems, simplifying 
further research for platform stabilization closed-loop 
controller implementation. 

V. CONCLUSIONS

The development and evaluation of artificial neural 
network models of a hybrid floating offshore wind turbine 
with embedded oscillating water columns have been 
presented in this article. Hydrodynamics and FAST 
aerodynamics properties for the entire hybrid system were 
used to collect the data. The proposed ANN model primarily 
designed to replicate the hybrid FOWT-OWC system 
behaviour and structural performance. To accomplish this 
objective, the model was trained with the appropriate 
parameters while keeping a low MSE target function in 
consideration. The model was then tested for a range of wind 
and wave scenarios to verify their computational efficiency, 
validity, and accuracy, as well as to compare the outputs of 
the ANN-based FOWT model to those of the complete non-
linear computationally demanding FAST model.  

The findings demonstrate the superior performance of the 
proposed control-oriented ANN model for predicting 
platform pitch and top tower displacements.   

In the future, this work will use machine learning control 
algorithms with a feedback loop to mitigate unwanted 
platform motion. Last, but not the least, this work will also 
be expanded to include uncertainties and irregular waves for 
robust modeling and control of hybrid systems. 
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