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Goppa codes were defined by Valery D. Goppa in 1970. In 
1978, Robert J. McEliece used this family of error-correcting 
codes in his cryptosystem, which has gained popularity in 
the last decade due to its resistance to attacks from quantum 
computers. In this paper, we present Goppa codes over the 
p-adic integers and integers modulo pe. This allows the 
creation of chains of Goppa codes over different rings. We 
show some of their properties, such as parity-check matrices 
and minimum distance, and suggest their cryptographic 
application, following McEliece’s scheme.
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In 1970, Valery D. Goppa defined a new class of error-correcting codes over a finite 
field Fq, nowadays known as Goppa codes [6]. If we consider q to a prime number p, from 
an algebraic point of view, Goppa codes are Zp-subspaces of Zn

p . As error-correcting 
codes, there also exists a decoding algorithm for them, i.e., a method to find the closest 
codeword to a given element in Zn

p , provided the distance between them is smaller than 
the error-correcting capability of the Goppa code. In 1978, Robert J. McEliece presented 
his cryptosystem [9], a method to encrypt a message by encoding an information vector 
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and adding errors artificially. For his cryptosystem, he suggested the use of binary Goppa 
codes and, while other approaches of code-based cryptosystems have been successfully 
attacked, his scheme remains mostly intact. Despite its drawbacks (such as its large key 
sizes), this scheme has regained popularity due to his quantum resistance and age [12].

In this paper, we define Goppa codes over the p-adic integers and Zpe, i.e., the ring of 
integers modulo pe, based on the original idea from Goppa, and we hint a potential cryp-
tographic application of them. In 2005, Antonio A. de Andrade and Reginaldo Palazzo 
generalized Goppa codes to finite rings [1], but using a different approach. However, we 
will rely on the generalization of Goppa’s original introduction [6]. This definition was 
suggested by Markel Epelde et al. in 2020 for Z4 [5] and, while de Andrade’s generaliza-
tion of the decoding algorithm still works, our definition allows to show some additional 
properties. Both the definition and its basic consequences can be seen in Section 1. In 
Section 2, we describe the chains of Goppa codes and the relations between their parity-
check matrices. In Section 3, we show how to get isomorphic Goppa codes over different 
rings by changing one of the parameters of the code. Changing the other parameter leads 
to some other results in Section 4. Finally, their potential cryptographic application is 
shown in Section 5.

Let us fix h ∈ N ∪ {0}, let n ∈ N and let p be a prime number. We will denote by 
Rpe = GR(pe, h) the Galois extension of degree h of Zpe for any e ∈ N, and by Rp∞ the 
Galois extension of degree h of the ring of p-adic integers Zp∞ , i.e.,

Rp∞ =
{
a0 + pa1 + · · · + peae + · · · | ai ∈ Fph , ∀i ∈ N ∪ {0}

}
.

Observe that this ring is formed by formal infinite sums of elements in an extension of 
degree h of Zp.

Let i, j ∈ N ∪ {∞} such that i ≥ j. We denote by ψpi,pj : Rpi → Rpj the natural 
projection of elements in Rpi to Rpj , and by ψ̂pi,pj the extension of ψpi,pj to n-tuples in 
Rn

pi . Moreover, we define Ψpi,pj : Rpi [X] → Rpj [X] as the natural generalization of ψpi,pj

to polynomials, i.e., satisfying Ψpi,pj (
∑n

k=0 akX
k) =

∑n
k=0 ψpi,pj (ak)Xk for a n ∈ N.

1. Definition and basic properties

Let us define Goppa codes over Zpe , generalizing Goppa’s original definition in [6].

Definition 1. Let e ∈ N ∪ {∞}, L = (α1, . . . , αn) ∈ Rn
pe and g ∈ Rpe [X] of degree r < n

such that ψpe,p(αi) �= ψpe,p(αj) for i �= j and g(αi) is a unit, i.e., ψpe,p(g(αi)) �= 0 for 
every i ∈ {1, . . . , n}. The Goppa code of parameters L and g over Zpe is defined as

Γpe(L, g) =
{
c ∈ Zn

pe |
n∑

i=1

ci
X − αi

≡ 0 (mod g(X))
}
.

Example 1. Let h = 4, and let p = 2, e = 3 and Rpe = Z8[α], where α is an element of 
multiplicative order ph − 1 = 15. Let g(X) = X3 + α4X2 + α5X and, for instance,
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L = (1, α, α4, α3, α5, α11, α14, α2, α8, α13, α9, α12, α6).

Then Γ8(L, g) is the code generated by

G = (2 1 2 5 5 2 0 3 2 5 3 3 6).

This code has length 13, 8 elements and minimum distance 7.

Remark 1. Let α ∈ Rpe and g ∈ Rpe [X] such that g(α) is a unit. Then,

(X − α)−1 = −g(α)−1
(
g(X) − g(α)

X − α

)

modulo g(X).

The previous remark allows the proof of the following lemma.

Lemma 1. Let e ∈ N ∪ {∞}, let Γpe(L, g) be a Goppa code of length n, and C = {c ∈
Zn

pe | cH� = 0}, where

H =

⎛⎜⎜⎜⎜⎝
g(α1)−1 g(α2)−1 . . . g(αn)−1

α1g(α1)−1 α2g(α2)−1 . . . αng(αn)−1

α2
1g(α1)−1 α2

2g(α2)−1 . . . α2
ng(αn)−1

...
...

. . .
...

αr−1
1 g(α1)−1 αr−1

2 g(α2)−1 . . . αr−1
n g(αn)−1

⎞⎟⎟⎟⎟⎠ (1)

and r = deg g. Then, C ⊆ Γpe(L, g) and, if the leading coefficient of g is a unit or e = ∞, 
the equality holds.

Proof. Let g(X) =
∑r

i=0 giX
i and c ∈ Zn

pe . Then, cH� = 0 implies cH�H�
g = 0, where

Hg =

⎛⎜⎜⎜⎜⎝
gr 0 0 . . . 0

gr−1 gr 0 . . . 0
...

...
. . . . . .

...
g2 g3 . . . gr 0
g1 g2 . . . gr−1 gr

⎞⎟⎟⎟⎟⎠ .

Observe that, when the leading coefficient of g is a unit, the condition is equivalent since 
Hg is invertible. Since Zp∞ is an integral domain, the condition is also equivalent if 
e = ∞. This matrix equality represents the following equations



4 M. Epelde / Finite Fields and Their Applications 84 (2022) 102097
gr(c1g(α1)−1 + · · · + cng(αn)−1) = 0
gr−1(c1g(α1)−1 + · · · + cng(αn)−1) + gr(c1α1g(α1)−1 + · · · + cnαng(αn)−1) = 0

...
g1(c1g(α1)−1 + · · · + cng(αn)−1) + g2(c1α1g(α1)−1 + · · · + cnαng(αn)−1)

+ · · · + gr(c1αr−1
1 g(α1)−1 + · · · + cnα

r−1
n g(αn)−1) = 0

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
,

which can be written compiled into one polynomial equality. Namely,

r−1∑
k=0

⎛⎝r−k∑
j=1

gk+j

n∑
i=1

ciα
j−1
i g(αi)−1

⎞⎠Xk = 0.

Rearranging the terms, it follows that

n∑
i=1

cig(αi)−1
r−1∑
k=0

Xk
r−k∑
j=1

gk+jα
j−1
i = 0. (2)

Note that

r−1∑
k=0

Xk
r−k∑
j=1

gk+jα
j−1
i =

r∑
j=1

gj

j−1∑
k=0

αj−k−1
i Xk =

r∑
k=0

gk

(
Xk − αk

i

X − αi

)
= g(X) − g(αi)

X − αi
.

Since the degree of g is greater than the term on the left-hand side of (2), this equation 
can be written as

n∑
i=1

ci

(
g(αi)−1 g(X) − g(αi)

X − αi

)
≡ 0 (mod g(X)).

Therefore, cH� = 0 implies (and is equivalent to, when the leading coefficient of g is a 
unit or e = ∞)

n∑
i=1

ci
X − αi

≡ 0 (mod g(X)), i.e., c ∈ Γpe(L, g). �

Remark 2. When c ∈ Γpe(L, g) if and only if cH� = 0, we say that H is a parity-check 
matrix for the code. However, this is an abuse of the term, since the entries of H do 
not necessarily belong to Zpe . In order to write a parity-check matrix in strict sense, we 
would have to expand each entry as a column formed by its coordinates with respect to 
a Zpe-basis of Rpe , and then remove the redundant rows of the matrix.

Example 2. Substituting the entries of the matrix H defined as in (1) for the code in 
Example 1 with their coordinates with respect to the Z2-basis {1, α, α2, α3} results in 
the parity-check matrix
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H =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4 3 7 7 4 4 7 0 3 6 3 1 4
0 7 7 6 1 7 5 4 3 7 3 6 7
6 6 7 4 7 5 7 7 6 6 2 4 5
5 2 5 4 7 3 4 6 6 6 0 5 3
4 6 0 2 0 5 1 3 3 6 1 6 6
0 3 7 0 7 0 5 6 5 2 5 5 0
6 3 4 0 3 4 7 2 0 5 7 4 7
5 0 5 5 4 7 1 1 5 1 1 2 5
4 0 0 1 4 3 1 1 2 1 3 2 1
0 6 6 3 0 2 1 3 3 3 2 3 1
6 3 3 5 6 2 6 5 7 4 2 7 6
5 3 3 3 5 0 7 3 4 6 0 4 7

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Recall that a code over a ring R is said to be free if it is isomorphic to Rk for some 
k. We now prove the following lemma.

Lemma 2. The Goppa code Γp∞(L, g) is a free code, i.e., a free Rp∞-submodule of Rn
p∞ .

Proof. By Lemma 1, Γp∞(L, g) is defined as the dual of the code with generator matrix 
H in (1), and every dual code in Zp∞ is free [4]. �

With Lemmata 1 and 2, we can prove the following theorem, which consists of the 
basic properties of Goppa codes as defined in Definition 1.

Theorem 1. Let e ∈ N ∪ {∞} and let C = Γpe(L, g) be a Goppa code. Then,

(i) If e = ∞, dimRp∞ C ≥ n − h deg g. Otherwise, |C| ≥ pe(n−h deg g).
(ii) For any j < e, C ∩ pjZn

pe = pjψ̂−1
pe,pe−j (Γpe−j (ψ̂pe,pe−j (L), Ψpe,pe−j (g))), where 

ψ̂−1
pe,pe−j (A) denotes the preimage of a subset A ⊆ Zn

pe−j through the projection 

map ψ̂pe,pe−j . In particular, C ∩ pe−1Zn
pe is isomorphic as a Fp-linear space to 

Γp(ψ̂pe,p(L), Ψpe,p(g)), and to

Γpj (ψ̂pe,pj (L),Ψpe,pj (g)) ∩ pj−1Zn
pj .

(iii) For any j ∈ N∪{∞} with j < e, ψ̂pe,pj (C) is a subcode of Γpj (ψ̂pe,pj (L), Ψpe,pj (g))). 
As a consequence, if e = ∞ and for a j ∈ N, Γpj (ψ̂pe,pj (L), Ψpe,pj (g)) ⊆ pZn

pj , 
then C = {0} and n ≤ h deg g. Moreover, if e ∈ N and C is free, then 
Γpj (ψ̂pe,pj (L), Ψpe,pj (g)) = ψ̂pe,pj (Γpe(L, g)).

Proof. Let r = deg g, let H be as defined in (1) and let H ′ be a parity-check matrix over 
Zpe of the code C′ = {c ∈ Zn

pe | cH� = 0}. As a consequence of Remark 2, H ′ has at 
most rh rows, |(C′)⊥| ≤ |Zpe |rh = perh. Hence, if e ∈ N, |C′| = |Zn

pe |/|(C′)⊥| ≥ pe(n−rh). 
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Since, by Lemma 1, C′ ⊆ C, this proves the result. If e = ∞, from Lemma 2 it follows that 
Γpe(L, g) is a free code and, since from Lemma 1 it follows that C = C′, a parity-check 
matrix of C has at most rh rows and its dimension must be greater than n − rh.

For part (ii), pjc ∈ Γpe(L, g) ∩pjZn
pe if and only if 

∑n
i=1 p

jci/(X−αi) ≡ 0 (mod g(X))
or, equivalently 

∑n
i=1 ci/(X − αi) ≡ 0 (mod g(X)) and modulo pe−j . This is exactly 

the condition for c to be a lift of a codeword in Γpe−j (ψ̂pe,pe−j (L), Ψpe,pe−j (g)). Taking 
j = e − 1 establishes that the set of multiples of pe−1 in a Goppa code is isomorphic as 
a Fp-linear space to its traditional Goppa code projection.

Finally, let us prove (iii). By definition, c ∈ Γpe(L, g) if and only if 
∑n

i=1
ci

X−αi
≡

0 (mod g(X)). This congruence is also true modulo pj , so ψ̂pe,pi(c) belongs to 
Γpj (ψ̂pe,pi , Ψpe,pj (g)).

In particular, if e = ∞, ψ̂p∞,pj (C) is a free subcode of Γpj (ψ̂pe,pj (L), Ψpe,pj (g)), so if 
C �= {0} then Γpj (ψ̂pe,pj (L), Ψpe,pj (g)) � pZn

pj .
Moreover, if Γpe(L, g) is free for an e ∈ N, then ψ̂pe,pj (Γpe(L, g)) is also free and a 

subcode of Γpj (ψ̂pe,pj (L), Ψpe,pj (g)). Let k be the dimension of C. Since ψ̂pe,pj (C) is free 
in Zpj , it has cardinality pjk. On the other hand, by part (ii) and since C is free,

|ψ̂pe,pj (C)| = |C ∩ pe−jZn
pe | = pjk.

Since ψ̂pe,pj (C) ⊆ C and they have the same cardinality, the equality holds. �
Example 3.

1. Let C be the code in Example 1. Observe that, as claimed in part (i) of the previous 
theorem,

8 = |C| ≥ pe(n−h deg g) = 23(13−4·3) = 8.

Moreover, C4 = Γ4(ψ̂8,4(L), Ψ8,4(g)) and C2 = Γ2(ψ̂8,2(L), Ψ8,2(g)) are the codes 
generated by matrices

G4 = (2 1 2 1 1 2 0 3 2 1 3 3 2)

and

G2 = (0 1 0 1 1 0 0 1 0 1 1 1 0),

respectively. On the other hand, C ∩ 4Zn
8 and C4 ∩ 2Zn

4 are generated by

G3 = (0 4 0 4 4 0 0 4 0 4 4 4 0)

and
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G1 = (0 2 0 2 2 0 0 2 0 2 2 2 0),

respectively. As stated in part (ii) of the previous theorem,

C ∩ 4Z13
8

∼= C4 ∩ 2Z13
4

∼= C2

as {0, 1}-linear spaces. Finally, since C is free, not only are ψ̂8,4(C) and ψ̂8,2(C) sub-
codes of C4 and C2, respectively, but the equality also holds here, as established in 
part (iii) of the theorem.

2. Let g be the same as in Example 1, and let

M = (1, α, α4, α3, α5, α11, α14, α2, α8, α13, α9, α12) ∈ Rn
8 .

Then, D = Γ8(M, g) is the code generated by

Q = (0 4 0 4 4 0 0 4 0 4 4 4).

Now, 2 = |D| ≥ 812−4·3 = 1, satisfying part (i) of Theorem 1, and, according to part 
(ii), D = D ∩ 4Z12

8
∼= D4 ∩ 2Z12

4
∼= D2, where D4 = Γ4(ψ̂8,4(M), Ψ8,4(g)) and 

D2 = Γ2(ψ̂8,2(M), Ψ8,2(g)) is generated by

Q4 = (0 2 0 2 2 0 0 2 0 2 2 2)

and

Q2 = (0 1 0 1 1 0 0 1 0 1 1 1).

Moving to part (iii), ψ̂8,4(D) = {0} is included in D4 and D2, and ψ̂4,2(D4) = {0}
is included in D2, but the projections and the codes are not identical. Finally, since 
D ⊆ 4Z12

4 , we know that Γ2∞(M ′, g′) = {0} for any lift M ′ and g′ of M and g, 
respectively.

Remark 3. Part 1 of Example 3 shows an instance of a Goppa code over Z8 being a 
lift of the corresponding Goppa codes over Z4 and Z2, and the code over Z4 being a 
lift of the corresponding code over Z2. However, as we can see in part 2 of the same 
example, in general, the codes Γpe(L, g) over Zpe are not lifts of its equivalent over Zp, 
Γp(ψ̂pe,p(L), Ψpe,p(g)). For instance, in that example the code over the 2-adic integers is 
trivial, whereas the codes over Z8, Z4 and Z2 have cardinality 2. In fact, none of them 
are lifts of the codes below.

Corollary 1. Let e ∈ N ∪ {∞} and let C = Γpe(L, g) be a Goppa code. The minimum 
distance of C satisfies d(C) ≥ deg Ψpe,p(g) +1. Furthermore, if e = ∞, Γp∞(L, g) satisfies 
d ≥ deg g + 1.
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Proof. Let e ∈ N. Observe that one can always find a (non-zero) codeword c of minimum 
weight such that c ∈ C∩pe−1Zn

e . In fact, if c is a multiple of ps but not a multiple of ps+1, 
then pe−s−1c ∈ C ∩pe−1Zn

e and w(pe−s−1c) ≤ w(c). According to part (ii) of Theorem 1,

C ∩ pe−1Zn
e = pe−1ψ̂−1

pe,p(Cp),

where Cp = Γp(ψ̂pe,p(L), Ψpe,p(g). Observe that C0 is a traditional Goppa code, having 
minimum weight d(C0) ≥ deg Ψpe,pg + 1.

If e = ∞, let H be as defined in (1) and let c ∈ Γpe(L, g) be a non-zero codeword. 
Then, by Lemma 1 cH� = 0 so there exist w(c) linearly dependent columns in H. 
However, any r × r submatrix of H reduces to a Vandermonde matrix with a non-zero 
determinant, so w(c) ≥ r + 1. Therefore, if x, y ∈ Γpe(L, g) are two distinct codewords, 
d(x, y) = w(x − y) ≥ r + 1. �
2. Parity-check matrix

In this section, we show the relation between Goppa codes of the same parameters over 
different rings and their parity-check matrices. First, we present the following lemma, 
the proof of which can be found in [8].

Lemma 3. Let e ∈ N, and let f be a regular polynomial in Zpe [X]. Then, there exist 
a polynomial f∗ ∈ Zpe [X] and q ∈ Zpe [X] such that Ψpe,p(f) = Ψpe,p(f∗), f(X) =
q(X)f∗(X) and the leading coefficient of f∗ is a unit.

We can also show the following relation between Goppa codes with similar polynomial 
parameters.

Lemma 4. Let e ∈ N ∪ {∞} and let Γpe(L, g) be a Goppa code. Then, if there exists 
polynomial g∗(X) such that its leading coefficient is a unit, g is a multiple of g∗ and 
Ψpe,p(g∗) = Ψpe,p(g), then Γpe(L, g) ⊆ Γpe(L, g∗). Moreover, if e ∈ N, the equality 
holds.

Proof. Let g∗, q ∈ Rpe [X] be such that the leading coefficient of g∗(X) is a unit, 
g∗(X)q(X) = g(X) and Ψpe,p(g∗) = Ψpe,p(g). Therefore, for some unit u in Zpe , 
Ψpe,p(q) = ψpe,p(u) �= 0, so q(X) = u + pm(X). This implies that, if e ∈ N, q(X) is a 
unit, its inverse being 1 − pu−1m(X) + p2u−2m(X)2 + · · ·+ (−1)e−1pe−1u1−em(X)e−1.

Therefore, Γpe(L, g) = Γpe(L, q · g∗) and c ∈ Γpe(L, g) iff

n∑
i=1

ci
X − αi

≡ 0 (mod q(X)g∗(X)).

Multiplying the term in the left-hand side by 
∏n

i=1(X−αi), it follows that c ∈ Γpe(L, q ·
g∗) if and only if q(X)g∗(X) divides
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n∑
i=1

ci
∏

1≤j≤n
j �=i

(X − αi).

Therefore, if c ∈ Γpe(L, g) then g∗(X) divides this term. In fact, if q(X)g∗(X) divides the 
term then also g∗(X) divides this term. Since (g∗(X), X−αi) = 1 for every i ∈ {1, . . . , n}, 
this is equivalent to c ∈ Γpe(L, g∗). Observe that this code is well defined, since for all 
i ∈ {1, . . . , n}, ψpe,p(g∗(αi)) = ψpe,p(g(αi)) �= 0. �

With this information, we can give an explicit expression for a parity-check matrix of 
every Goppa code.

Theorem 2. Let e ∈ N ∪ {∞} and let C = Γpe(L, g) be a Goppa code.

(i) If e = ∞, H as in (1) is a parity-check matrix for C.
(ii) If e ∈ N and g∗ ∈ Rpe [X] is the polynomial satisfying the conditions in Lemma 4, 

then

H∗ =

⎛⎜⎜⎜⎜⎜⎝
g∗(α1)−1 g∗(α2)−1 . . . g∗(αn)−1

α1g
∗(α1)−1 α2g

∗(α2)−1 . . . αng
∗(αn)−1

α2
1g

∗(α1)−1 α2
2g

∗(α2)−1 . . . α2
ng

∗(αn)−1

...
...

. . .
...

αr∗−1
1 g∗(α1)−1 αr∗−1

2 g∗(α2)−1 . . . αr∗−1
n g∗(αn)−1

⎞⎟⎟⎟⎟⎟⎠ (3)

is a parity-check matrix for C, where r∗ = deg g∗.

Proof. The first part is straightforward from Lemma 1. Let e ∈ N. By Lemmata 3 and 
4, there exists g∗ ∈ Rpe [X] with a unit as leading coefficient such that C = Ψpe,p(g∗)
and Γpe(L, g) = Γpe(L, g∗). Since the leading coefficient of g∗ is a unit, by Lemma 1, H∗

is a parity check matrix for C. �
Example 4. Let us consider the parameters in Example 1, and let f(X) = 2α14X4 +(1 +
2α3)X3 + 3α4X2 + α5X. Since the leading coefficient of g is a unit, Ψ8,2(g) = Ψ8,2(f)
and f(X) = (1 + 2α14X)g(X), from Lemma 4 it follows that Γ8(L, f) = Γ8(L, g) and H
from Example 2 is a parity-check matrix for Γ8(L, f).

Remark 4. We have presented a parity-check matrix for any Goppa code Γpe(L, g). This 
allows the use of the efficient decoding algorithm from [1], based on the parity-check 
matrix, in our context.

Let us see how the relations between the parity-check matrices for different values of 
e. In order to prove that, we introduce a topological result.
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Definition 2. A non-empty family A of subsets of a set X is said to have the finite 
intersection property (FIP) if the intersection over any finite subcollection of A is non-
empty.

Lemma 5. A space X is compact if and only if every collection of closed subsets of X 
satisfying the finite intersection property has non-empty intersection.

Proof. The proof of this lemma can be found in [10]. �
In the following theorem we consider Rp∞ as a topological group under addition. The 

topology is defined by the open neighbourhoods of x ∈ Rp∞ , N (x) = {x + (pi)}i∈N . By 
basic properties of topological groups, Rp∞ is compact and these neighbourhoods are 
also closed sets in Rp∞ [3].

Theorem 3. Let {gpi}i∈N∪{∞} be an infinite chain of regular polynomials such that gpi ∈
Rpi [X] and Ψpi,pj (gpi) = gpj for every i, j ∈ N ∪ {∞} such that i ≥ j. Then, there 
exists {g∗pi(X)}i∈N∪{∞} a sequence of polynomials with leading coefficient a unit and 
g∗pi ∈ Rpi [X], such that

(i) Ψpi,p(g∗pi) = Ψpi,p(gpi),
(ii) g∗pi(X) divides gpi(X),
(iii) Ψpi,pj (g∗pi) = g∗pj ,

for every i, j ∈ N ∪ {∞} such that i ≥ j.

Proof. We consider

S = {m ∈ Rp∞ [X] | degm ≤ r},

where r = deg gp∞ . Since S is the direct sum of r compact spaces, it is also compact with 
the sum topology. The sets m(X) + (pi) ∩ S form closed neighbourhoods of m(X) ∈ S, 
since they are direct sum of closed sets of Rp∞ . Let

Se =
{
g∗ ∈ S | ψp∞,pe(g∗) has leading coefficient a unit,

ψp∞,p(g∗) = ψp∞,p(gp∞), ψp∞,pe(g∗) | gpe

}
=

{
g∗ ∈ S | ψp∞,pe(g∗) has leading coefficient a unit,

∃q ∈ Rp∞ [X] s. t.
{
g∗(X) ≡ gp∞(X) (mod p)
g∗(X)q(X) ≡ gp∞(X) (mod pe)

}
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for all e ∈ N. Note that the Se are closed in S, since there are finitely many polynomials 
in S modulo pe, and if g ∈ S then also g + (pe) ∩ S ⊆ Se, so Se is the union of finitely 
many closed subsets of S. Moreover, by Lemma 3, the Se are non-empty, and Se ⊆ Se−1
for e ≥ 2, so the A = {Se}e∈N satisfies the FIP. By Lemma 5, the intersection of the 
subsets of A is non-empty, so there exists g∗p∞ ∈ S such that the leading coefficient of 
g∗p∞ is a unit and there exists qe(X) ∈ S such that g∗p∞(X)qe(X) = g(X) modulo pe for 
any e ∈ N. Now, let us consider

Ye = {q ∈ S | q(X)g∗p∞(X) = g(X) (mod pe)},

for every e ∈ N. Applying the same lemma, there exists q ∈ S such that g∗p∞(X)q(X) =
gp∞(X) modulo pe for any e ∈ N, so there exists g∗p∞ ∈ Rp∞ [X] and q(X) ∈ Rp∞ [X]
such that the leading coefficient of g∗p∞ is a unit and g∗p∞(X)q(X) = gp∞(X), so g∗p∞

divides gp∞ .
Let {g∗pi}i∈N with g∗pi = Ψp∞,pi(g∗p∞) ∈ Rpi [X]. Since g∗p∞ ∈ Si, g∗pi divides gpi . 

Moreover, since Ψp∞,pi(gp∞) = gpi ,

Ψpi,p(g∗pi) = Ψpi,p(Ψp∞,pi(g∗p∞)) = Ψp∞,p(g∗p∞) = Ψp∞,p(gp∞) = Ψpi,p(Ψp∞,pi(gp∞))

= Ψpi,p(gpi).

Finally,

Ψpi,pj (g∗pi) = Ψpi,pj (Ψp∞,pi(g∗p∞)) = Ψp∞,pj (g∗p∞) = g∗pj ,

for any i, j ∈ N ∪ {∞} such that i ≥ j. �
Example 5. Let

g3∞(X) = 3X2 +
(

1 +
∞∑
i=2

3i
)
X +

∞∑
i=1

3i ∈ R3∞ [X],

and {g3i}i∈N∪{∞} such that g3i = Ψ3∞,3i(g3∞) ∈ R3i [X]. By definition, these sequence 
forms a chain of lifts of Ψ3∞,3(g3∞) = X, since, for any i ≥ j,

Ψ3i,3j (g3i) = Ψ3i,3j (Ψ3∞,3i(g3∞)) = Ψ3∞,3j (g3∞) = g3j .

Let us find a sequence {g∗3i}i∈N∪{∞} satisfying the conditions in Theorem 3. Observe 
that

g3∞(X) =
(
X +

∞∑
i=1

3i
)

(3X + 1). (4)

Let g∗3∞(X) = X +
∑∞

i=1 3i ∈ R3∞ [X], and g∗3i = Ψ3∞,3i(g∗3∞) ∈ R3i [X] for i ∈ N. Since 
g∗3∞ is monic, the g∗i are also monic. Moroever, for any i ≥ j,
3
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Table 1
Some examples of the polynomial chains described in Theo-
rem 3.

Z3i g3i (X) g∗
3i (X)

Z3∞ 3X2 +
(
1 +

∑∞
i=2 3i

)
X +

∑∞
i=1 3i X +

∑∞
i=1 3i

...
...

...
Z27 3X2 + 10X + 12 X + 12
Z9 3X2 + X + 3 X + 3
Z3 X X

Γp∞ (L, g)

Γpe (ψ̂p∞,pe (L),Ψp∞,pe (g))

Γp2 (ψ̂p∞,p2 (L),Ψp∞,p2 (g))

Γp(ψ̂p∞,p(L),Ψp∞,p(g))

Γp∞ (L, g∗)

Γpe (ψ̂p∞,pe (L),Ψp∞,pe (g∗))

Γp2 (ψ̂p∞,p2 (L),Ψp∞,p2 (g∗))

Γp(ψ̂p∞,p(L),Ψp∞,p(g∗))

⊆

=

=

=

..
.

..
.

..
.

..
.

Fig. 1. A map showing the relations between the different Goppa codes presented in this paper. The poly-
nomials of Goppa codes on the right column have a unit as leading coefficient.

Ψ3i,3j (g∗3i) = Ψ3i,3j (Ψ3∞,3i(g∗3∞)) = Ψ3∞,3j (g∗3∞) = g∗3j .

In particular, for every i ∈ N ∪ {∞},

Ψ3i,3(g∗3i(X)) = X = Ψ3i,3(g3i(X)).

Finally, considering Equation (4) modulo pi,

g3i(X) = g∗3i(X)Ψ3∞,3i(3X + 1),

so g∗3i divides g3i . Hence, the sequence of polynomials {g∗3i}i∈N∪{∞} satisfies the condi-
tions established in Theorem 3. Table 1 shows some examples of these polynomials.

Remark 5. Lemma 4 creates an infinite chain of codes, as seen in Fig. 1. In general, it 
is not true that Γp∞(L, g) = Γp∞(L, g∗). For instance, let g(X) ∈ Rp∞ [X] such that 
deg g > h deg g∗. By the Singleton bound, Corollary 1 and Theorem 1,

dimZp∞ Γp∞(L, g) ≤ n− d(Γp∞(L, g)) + 1
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≤ n− deg g

< n− h deg g∗

≤ dim Γp∞(L, g)

This result also lets us set a parity-check matrix for a chain of Goppa codes.

Corollary 2. Let Γp∞(L, g) be a Goppa code, and let g∗ ∈ Rp∞ [X] be the polynomial 
from Theorem 3. Then, Γp∞(L, g) has parity-check matrix (1), and for any e ∈ N, 
Γpe(ψ̂p∞,pe(L), Ψp∞,pe(g)) has parity-check matrix 

(
ψp∞,pe(H∗

ij)
)
, where H∗ is the ma-

trix defined in (3).

Proof. It is a direct consequence of Theorems 2 and 3. �
3. Direct lifting of Goppa codes

Next, we want to show some special chains of isomorphic Goppa codes for different 
values of e ∈ N. We start by the proving some easy computations in Rpe .

Lemma 6. Let e, k ∈ N, a + pe−1b ∈ Rpe a unit and g ∈ Rpe [X].

(i) (a + pe−1b)k = ak + pe−1kak−1b.
(ii) If a is a unit, (a + pe−1b)−1 = a−1(1 − pe−1a−1b).
(iii) g(a + pe−1b) = g(a) + pe−1bg′(a), where g′ denotes the derivative of g.

Proof. Part (i) can be proved using the binomial formula, and the proof for part (ii) is 
straightforward. For part (iii), let g(X) =

∑r
i=1 giX. By part (i) of this lemma,

g(a + pe−1b) =
r∑

i=1
gi(a + pe−1b)i =

r∑
i=0

gia
i + pe−1b

r∑
i=1

giia
i−1 = g(a) + pe−1bg′(a). �

Now, we show the intersection of two Goppa codes over Zpe generated by the same 
polynomial modulo pe−1. For the sake of simplicity, from now on we take the components 
of the parameter L to be units, but these results can be extended to any Goppa codes.

Lemma 7. Let e ∈ N, let Γpe(L, g) be a Goppa code and let L′ = (β1, . . . , βn) ∈ Fn
ph . Let 

g∗ be a monic polynomial satisfying the conditions from Lemma 3. If c ∈ Γpe(L, g), then 
c ∈ Γpe(L + pe−1L′, g) if and only if

n∑
i=1

cig
∗(αi)−1αj−2

i (αig
∗(αi)−1g∗′(αi) + j − 1)βi = 0 (mod p)

for all j ∈ {1, . . . , deg g∗}.
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Proof. Let c ∈ Γpe(L, g). According to Theorem 2,

n∑
i=1

ciα
j−1
i g∗(αi)−1 = 0, j ∈ {1, . . . , r},

where r = deg g∗. Similarly, c ∈ Γpe(L + pe−1L′, g) if and only if

n∑
i=1

ci(αi + pe−1βi)j−1g∗(αi + pe−1βi)−1 = 0, j ∈ {1, . . . , r}.

By Lemma 6, this is equivalent to

n∑
i=1

ci(αj−1
i + pe−1(j − 1)βiα

j−2
i )g∗(αi)−1(1 − pe−1βig

∗(αi)−1g∗′(αi)) = 0,

j ∈ {1, . . . , r}.

The equations above can be written as

n∑
i=1

ciα
j−1
i g∗(αi)−1 + pe−1

n∑
i=1

cig
∗(αi)−1αj−2

i (αig
∗(αi)−1g∗′(αi) + j − 1)βi = 0,

j ∈ {1, . . . , r}.

Since c ∈ Γpe(L, g), it follows that c ∈ Γpe(L + pe−1L′, g) if and only if

n∑
i=1

cig
∗(αi)−1αj−2

i (αig
∗(αi)−1g∗′(αi) + j − 1)βi = 0 (mod p)

for all j ∈ {1, . . . , r}. �
As a consequence, for every Goppa code over Zpe , there exists an isomorphic Goppa 

code over Zpe+1 .

Theorem 4. Let e ∈ N and let Γpe(L, g) be a Goppa code. There exists L′ ∈ Fn
phk such 

that, for any f ∈ Rpe+1 [X] such that Ψpe+1,pe(f) = g,

Γpe+1(L + peL′, f) = pψ̂−1
pe+1,pe(Γpe(L, g)).

Proof. Let f ∈ Rpe+1 [X] be such that Ψpe+1,p(f) = g. We consider the family of lifts of 
Γpe(L, g) with polynomial f ,

C = {Γpe(L + pe−1L′, f) | L′ ∈ Fphs , s ∈ N}.
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Since there exists a finite amount of submodules of Zn
pe+1 , C is finite. Hence, there exists 

h ∈ N large enough such that C = {Γpe+1(L + pe−1Li, f)}|C|
i=1 and Li = (β(i)

1 , . . . , β(i)
n ) ∈

Fn
phs for i ∈ {1, . . . , |C|}. Let us consider a Fphs-basis B = {1, β1, . . . , βn} of Fphs(n+1) . 

For any i ∈ N, Bi = {1, β1 − β
(i)
1 , . . . , βn − β

(i)
n } is also a basis of Fphs(n+1) . We consider 

L∗ = (β1, . . . , βn) and L∗
i = (β1 − β

(i)
1 , . . . , βn − β

(i)
n ) for i ∈ {1, . . . , |C|}. Let us show 

that

Γpe+1(L + peL∗, f) ∩ Γpe+1(L + peLi, f) ⊆ pZn
pe .

Let c ∈ Γpe+1(L +peL∗, f) ∩Γpe+1(L +peLi, f) be a non-zero codeword, and let L +peLi =
(α1, . . . , αn). Since L + peL∗ = L + peLi + peL∗

i , Lemma 7 implies

n∑
i=1

cif
∗(αi)−1αj−2

i (αif
∗(αi)−1f∗′(αi) + j − 1)βi = 0 (5)

modulo p, for a f∗ and for every j ∈ {1, . . . , deg f∗}. Let us assume ψ̂pe+1,p(c) �= 0. Since 
c ∈ Γpe+1(L + peLi, f), from Theorem 1 it follows that ψ̂pe+1,p(c) ∈ Γp(ψ̂pe+1,p(L), f)
and therefore w(ψ̂pe+1,p(c)) ≥ deg f∗ + 1. If f∗′(X) = 0, Equation (5) for j = 1 is a 
contradiction. In fact, that there are at least deg f∗ + 1 non-zero terms modulo p and 
Bi is a Fphs -basis of Fphs(n+1) , so any Fphs -linear combination of its elements being zero 
implies the coefficients being also zero. On the other hand, if f∗′(X) �= 0, it has at most 
deg f∗ − 1 roots, so at least 2 terms in Equation (5) for j = 2 are non-zero. Similarly, Bi

being a basis contradicts the equality. We conclude that Γpe+1(L +peL∗, f) ∩C ⊆ pZn
pe+1

for any possible Goppa code C, so Γpe+1(L + peL∗, f) ⊆ pZn
pe+1 . By Theorem 1,

Γpe+1(L + peL∗, f) = Γpe+1(L + peL∗, f) ∩ pZn
pe+1

= pψ̂−1
pe+1,pe(Γpe(ψ̂pe+1 ,pe(L + peL∗),Ψpe+1,pe(f)))

= pψ̂−1
pe+1,pe(Γpe(L, g)). �

Example 6. Part 2 of Example 3 shows two instances of Goppa codes over Z2e which 
are exact copies of the codes over Z2e−1 and are obtained by lifting the corresponding L
and g.

Corollary 3. Let e ∈ N, let Γpe(L, g) be a Goppa code, and let g∞ ∈ Rp∞ [X] such 
that Ψp∞,p(g∞) = g. Then, there exists L∞ ∈ Rp∞ such that ψ̂p∞,pe(L∞) = L, 
Γp∞(L∞, g∞) = {0} and for any j ≥ e,

Γpj (ψ̂p∞,pj (L∞),Ψp∞,pj (g∞)) = pj−eψ̂−1
pj ,pe(Γpe(L, g)).

Proof. The proof is the result of repeatedly applying Theorem 4 infinitely many times 
to Γe(L, g). The resultant lift of L to Rp∞ defines a series of Goppa codes over Zpj which 
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are exact copies of the original Γpe(L, g) and multiples of pj−e. Moreover, by part (iii) 
of Theorem 1, the code over the p-adic integers must be trivial. �
4. Changes in the polynomial

In the previous section, we have studied the changes in the Goppa codes by modifying 
L. Now, let us change the Goppa polynomial. First, let us recall the following result for 
Goppa codes found in [7].

Lemma 8. Let g ∈ R2[X] be a square-free polynomial. Then, Γ2(L, g) = Γ2(L, g2).

Now, we can prove the following result for p = 2. This theorem is the generalization 
of its quaternary version, shown in [5].

Theorem 5. Let g ∈ R2e [X] be a square-free polynomial with a unit as its leading coeffi-
cient, let Γ2e(L, g) be a Goppa code, and g2 ∈ R2e [X] such that deg g2 ≤ deg g. Then,

Γ2e(L, g) = Γ2e(L, g + 2e−1g2).

Proof. Let us prove Γ2e(L, g) ⊆ Γ2e(L, g + 2e−1g2) for any polynomial g2 sat-
isfying deg g2 ≤ deg g. Let c ∈ Γ2e(L, g). According to Theorem 1, ψ̂2e,2(c) ∈
Γ2(ψ̂2e,2(L), Ψ2e,2(g)). Since g is square-free, Ψ2e,2(g) is also square-free, and by 
Lemma 8, ψ̂2e,2(c) ∈ Γ2(ψ̂2e,2(L), Ψ2e,2(g)2). By Lemma 1 and since the leading co-
efficient of g is a unit, this happens when

n∑
i=1

ciα
j−1
i g(αi)−2 = 0 (mod 2)

for all j ∈ {1, . . . 2 deg g}. Equivalently,

n∑
i=1

ciα
k+j−1
i g(αi)−2 = 0 (mod 2)

for all j ∈ {1, . . . , deg g} and k ∈ {0, 1, . . . , deg g}. The equations above can be written 
as

r∑
k=0

ak

n∑
i=1

ciα
k
i α

j−1
i g(αi)−2 = 0 (mod 2)

for all j ∈ {1, . . . , deg g} and ai ∈ R2e or, equivalently,

n∑
ciα

j−1
i g(αi)−2g2(αi) = 0 (mod 2)
i=1
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for all j ∈ {1, . . . , deg g} and g2 ∈ Rpe [X] such that deg g2 ≤ deg g. Here, we have taken 
g2(X) =

∑r
k=0 akX

k. Since c ∈ Γ2e(L, g), by Lemma 1 and since the leading coefficient 
of g is a unit, 

∑n
i=1 ciα

j−1
i g(αi)−1 = 0 for all j ∈ {1, . . . , deg g}, so this is equivalent to

n∑
i=1

ciα
j−1
i g(αi)−1 + 2e−1

n∑
i=1

ciα
j−1
i g(αi)−2g2(αi) = 0

for all j ∈ {1, . . . , deg g} and g2 satisfying the hypothesis. Finally, by Lemma 6, the 
expression above can be written as

n∑
i=1

ciα
j−1
i g(αi)−1(1 − 2e−1g(αi)−1g2(αi)) = 0

for all j ∈ {1, . . . , deg g} and g2 satisfying the conditions of the theorem. Since the leading 
coefficient of g + 2e−1g2 is also a unit, this is equivalent to c ∈ Γ2e(L, g + 2e−1g2). �
Corollary 4. Let e ∈ N, g ∈ R2e [X] and let g∗ ∈ R2e [X] be the polynomial that, by 
Lemma 3, has the same projection as g and has a unit as its leading coefficient. Let 
g2 ∈ R2e [X] such that deg g2 ≤ deg g∗. If Ψ2e,2(g) is square-free,

Γ2e(L, g) = Γ2e(L, g∗ + 2e−1g2).

If q is the polynomial satisfying q(X)g∗(X) = g(X), then

Γ2e(L, g) = Γ2e(L, g + 2e−1qg2).

Proof. The proof follows directly from Theorem 5. �
Example 7. Let us consider again Example 1. Observe that g(X) = X(X2 +α4X +α5), 
and X2+α4X+α5 has no roots in R8, so g is square-free in R8. By the previous theorem, 
we can check that Γ8(L, (1 +4α2)X3 +α4X2 +(α5 +4α)X +4) is generated by the same 
generator matrix G from Example 1.

5. Applications to cryptography

Goppa codes are the core of the original McEliece cryptosystem [9]. This cryptographic 
scheme, as well as Niederreiter’s [11], can be generalized to rings.

Definition 3. Let e ∈ N ∪ {∞}, n ∈ N and C ⊆ Zn
pe be a Zpe -linear code with generator 

matrix G, error-correcting capacity t ≥ t0 and an efficient decoding algorithm D. We 
define the Zpe McEliece cryptosystem as follows. The secret key is formed by G, D, a 
random permutation matrix P and a random nonsingular matrix S. The pair (G′, t0)
forms the public key, where G′ = SGP . We define the encryption function as E(m) =
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mG′+z, where z ∈ Zn
pe is a randomly generated error satisfying w(z) ≤ δ. The decryption 

process consists of: first, multiplying the ciphertext by P−1, then apply the decoding 
algorithm D and finally solving linear equation systems.

The security of the McEliece cryptosystem is based both on the NP-hardness of the 
decoding problem of random linear codes over Zpe, and the indistinguishability of the 
code C, i.e., one should not be able to separate C from a random Zpe-linear code.

Regarding the former, Elwyn R. Berlekamp, McEliece and Henk C.A. van Tilborg 
proved the difficulty of the problem in [2] for the case pe = 2. This proof can be gener-
alized to Zpe-linear codes [13]. On the other hand, the original McEliece cryptosystem 
uses binary Goppa codes, and this family of codes still seems to be the most reliable 
today. When e ∈ N, one can prove that the distinguishability problem for the binary 
Goppa codes can be reduced to the distinguishability of pe-ary Goppa codes. In fact, 
both distinguishability problems are equivalent.

Theorem 6. Let e ∈ N. The distinguishability problems for Goppa codes over Zp and Zpe

are equivalent.

Proof. Let us assume there exists a distinguisher D for Goppa codes over Zpe , i.e., a 
polynomial time algorithm to distinguish the code. Let C = pe−1ψ̂−1

pe,p(Γp(L, g)). Accord-
ing to Corollary 3, C is a Goppa code over Zpe for some Le and ge such that ψ̂pe,p(Le) = L

and Ψpe,p(ge) = g. Applying D to C identifies C, hence distinguishing Γp(L, g).
Now, let us assume there exists a distinguisher D for p-ary Goppa codes, i.e., a polyno-

mial time algorithm to distinguish a Goppa code over Zp. Let C the p-ary code isomorphic 
to Γpe(L, g) ∩pe−1Zn

pe . According to Theorem 1, C is a Goppa code of parameters ψ̂pe,p(L)
and Ψpe,p(g). Applying D to C identifies C, hence also distinguishing Γpe(L, g). �

This result rises the potential cryptographic interest of Goppa codes. In fact, if p =
2, the security of every Goppa code reduces to the security of the original McEliece 
cryptosystem, which is considered by far one of the safest cryptographic schemes, even 
resisting attacks by a quantum computer [12].

6. Conclusions and future work

In this paper, we have presented Goppa codes over the p-adic integers and integers 
modulo a power of p. We have proved their basic properties, and some isomorphisms be-
tween Goppa codes over different rings. Finally, while we leave the possible applications 
of Goppa codes over the p-adics as future work, we have shown a possible cryptographic 
application of these codes over the integers modulo pe. This is interesting due to the rais-
ing popularity of code-based cryptography as one of the few quantum-resistant families 
of cryptographic schemes.
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