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Abstract

Most poverty measures in the literature depend on the three components of poverty, incidence, intensity and inequality among 
the poor. However, the implication of each component on the final poverty measure is something that has not been studied. It 
has been shown that families of parameter-dependent poverty indices can be more or less sensitive to transfers among the poor, 
depending on the value of the parameter taken. This value will affect the sensitivity of the family of measures to the inequality 
among the poor. In this paper we intend to carry out an analogous study for the three components of poverty. We provide three 
poverty rankings of some poverty measures according to their sensitivity to incidence, intensity and inequality. In fact, we offer 
orderings for all the rank-dependent poverty measures and two families of rank-independent poverty measures.
© 2022 The Author. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Since the seminal work of [18] it has been widely accepted that a poverty measure should be sensitive to the 
incidence of poverty, the intensity of poverty and the inequality among the poor. Hence, several poverty measures 
have been decomposed in these three terms. Some of these decompositions can be seen in [13] and [1].

However, we could ask to what extent each component contributes to the final poverty value, and, we could also 
ask what difference it makes choosing one poverty index or another.

With respect to the inequality component of poverty, in the literature it is widely accepted that poverty measures 
should take into account distribution-sensitivity, that is, the inequality among the poor, see [7] and [24]. In fact, the 
degree of distribution-sensitivity of some transfers has always been regarded as an important factor. Nevertheless, 
there are few formal definitions of distribution-sensitivity comparisons of these measures, see [25], [6] and [2].

Zheng [25] provides a theoretical base to compare distribution-sensitivity for a class of additively separable poverty 
indices. However, the criterion introduced by Zheng does not allow comparisons among rank-dependent poverty mea-
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sures. Therefore, Bosmans [6] introduces a condition for rank-dependent poverty measures, based on the dominance 
of the indices’ vector of weights, which allows such comparisons in terms of their distribution-sensitivity to some 
specific transfers. Aristondo and Ciommi [2] also propose a criterion to sort the rank-dependent poverty measures in 
terms of a mathematical value called orness, which can be interpreted as a distribution-sensitivity classification.

However, so far no study has been carried out comparing poverty measures in terms of their sensitivity to the 
other two components of poverty, that is, incidence and intensity. In fact, it would be very intuitive to think that if 
one measure is more sensitive than another with respect to the inequality among the poor, perhaps it is less sensitive 
to either one or both of the other two components. For this reason, in this paper we will focus on the sensitivity of 
decomposable poverty measures to their three poverty components. In addition, we will provide three rankings of the 
poverty measures according to their three components; incidence, intensity and inequality of the poor.

For this purpose, we use the Shapley decomposition method which has also been used in dynamic poverty studies 
such as [14], [4], and so on. Kakwani [14] decomposes poverty changes in growth and inequality changes, and pro-
poses a way to apply the Shapley method. In fact, he provides a new method to eliminate each contributory factor by 
assigning the arithmetic mean of all the possible combinations that can be made with the value in time 1 and value 
in time 0. In addition, Aristondo and Onaindia [4] decompose poverty changes in incidence, intensity and inequal-
ity changes, and they follow Kakwani’s procedure to eliminate the determinants in order to compute the marginal 
contributions of the changes in the three poverty components to the global poverty change.

All these dynamic methods are very interesting and could be applied in turn with the method proposed in this paper 
since they are complementary. In fact, in any poverty study, we could use first the method proposed in this paper to 
choose the most appropriate decomposable poverty index, and then we could apply any dynamic method to analyse 
changes in poverty and their different types of components, such as growth and distribution, or incidence, intensity 
and inequality, see also [16], [10].

Summarizing, we offer a classification for almost all the decomposable poverty measures in terms of their sensitiv-
ity to incidence, intensity and inequality among the poor. Firstly, we present the decompositions of the existing poverty 
measures in the literature in terms of these three components. Then, we compute the relative marginal contributions 
of the three components to the total poverty value using the Shapley decomposition methodology, see [19]. Finally, 
we provide three classifications for the poverty measures, depending on the three components’ relative marginal con-
tributions to the total poverty.

We want to note that these rankings will allow us to choose the most appropriate poverty measure for each empirical 
study according to which of the three components we want to give more strength or importance to. Moreover, in static 
poverty studies, this work will allow us to know the absolute and relative contributions to the final poverty value of 
each of the components for all the decomposable indices.

We wish to add that the rankings in terms of the sensitivity to inequality among the poor proposed in this paper 
coincide with those proposed by [6] and [2].

Finally, we will see that incidence and intensity’s relative marginal contributions to poverty are exactly the same 
for all the measures, and all of them are delimited between one third and one half. On the other hand, inequality’s 
relative marginal contributions are always lower than those of incidence and intensity for all the measures, and the 
values are higher than 0 and lower than one third.

The paper is classified as follows; section 2 is devoted to notations, definitions and the presentation of the poverty 
measures and their decompositions. In section 3 we show the Shapley decomposition in the three terms of the mea-
sures, and section 4 offers the three rankings of the measures in terms of their three contribution values. Finally, we 
can see the concluding remarks and the appendix with the proofs in section 5 and Appendix A, respectively.

2. Notations and definitions

In what follows, we introduce some basic notations and definitions. We consider a population consisting of n ≥
3 individuals. Let x = (x1, . . . , xn) be the income vector distribution, xi ∈ R++ represent the income of the i−th 
individual and D = ⋃

n≥3 R
n++ be the set of all distributions.1 For a given x ∈ D, let us denote by x(1) ≤ · · · ≤ x(n) and 

x[1] ≥ · · · ≥ x[n] the non-decreasing and non-increasing rearrangement of the coordinates of x, respectively. Whereas, 

1 R++ is the set of real values higher than 0.
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Table 1
Rank-dependent poverty measures.

Measure wi

PGR 1
n

S
2(q+0.5−i)

qn

SST
2(n+0.5−i)

n2

T
2(n+1−i)
(n+1)n

Tτ
τn+1−2i

(τ−1)n2 , τ ≥ 2

the arithmetic mean is denoted as μ(x) = (x1 + · · · + xn)/n. Let us denote by z ∈ R++ the poverty line, such that, an 
individual i ∈ {1, . . . , n} is defined as poor if xi < z and as non poor if xi ≥ z.

So doing, q = q(x, z) denotes the number of poor people, for a given distribution x, and the poor distribution and 
its mean is defined as xp = (x(1), . . . , x(q)) and μp = μ(xp) = (x(1) + · · · + x(q))/q , respectively. Without loss of 
generality we establish that n > q ≥ 2.

2.1. Rank-dependent poverty measures

A poverty measure is a non-constant function P : D × R++ → R whose value P(x, z) denotes the poverty level 
associated with an income distribution x and the poverty line z. The normalized gaps for incomes below the poverty 
line are defined as the relative distance between the income value and the poverty line, and for incomes above, it 

is defined as zero. Formally: gi = max
{

z−xi

z
,0

}
. Finally, g = (g1, . . . , gn) denotes the normalized gap vector and 

gp = (g[1], . . . , g[q]) the normalized gap vector of the poor. The arithmetic mean of the normalized gaps of the poor is 
denoted as μgp = μ(gp) = (g[1] + · · · + g[q])/q . In poverty measurement, a rank-dependent poverty measure is a one 
whose individual’s weight depends only on its place in the distribution with respect to the others. Formally:

Definition 1. A poverty measure P : D ×R++ →R is rank-dependent if for each income distribution x ∈ D and any 
fixed poverty line z ∈R++, it takes the following expression

P(x, z) =
q∑

i=1

wi

z − x(i)

z
=

q∑
i=1

wig[i], (1)

where w1 ≥ w2 ≥ · · · ≥ wq . In addition, if the weights decrease strictly then the transfer axiom2 is satisfied.

Table 1 collects the rank-dependent poverty measures proposed in the literature, namely the Poverty Gap Ratio, 
PGR, [18] index, S, the [20] index, SST , the [23] index, T , and the Thon class, Tτ , [12].3 We want to note that the 

Thon class on indices for τ = 2 is exactly the SST index and for τ = 2 + 1

n
the T index is obtained.

The [22] index, namely Ta , is also a rank-dependent poverty measure. However it is defined in terms of the censored 

income, ̃x = (x(1), · · · , x(q), z · · · , z), as follows, Ta = 2

μ(̃x)n2

∑n
i=1(μ(̃x) − x(i)).

All these poverty measures can be decomposed in terms of the Headcount ratio, H, the Income gap ratio, M, and 

the Gini index of the gap of the poor, G. The Headcount ratio is defined as H = H(x) = q

n
. The Income gap ratio 

2 The transfer axiom states that, given other things, a pure transfer of income from a poor individual to any other individual that is richer must 
increase the poverty measure.

3 See [6] and [2] for detailed definition of the above listed rank-dependent poverty measures.
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Table 2
Rank-dependent decompositions.

Measure Decomposition

PGR HM

S HM(1 + G)

SST HM(2 + H(G − 1))

T
HM(2n + 1 + nH(G − 1))

n + 1

Tτ
HM(τ − H + HG)

τ − 1
, τ ≥ 2

Ta
HM(1 − H + HG)

1 − HM

as M = M(x) = 1

q

∑q
i=1

z − x(i)

z
, and the Gini index of the gap of the poor has the following form; G = G(gp) =

1

2q2μ2
gp

∑q
i=1

∑q
j=1

∣∣gi − gj

∣∣.
Then the above rank-dependent poverty measures can be decomposed as in Table 2, see [1].
In the following section we will concentrate on rank-independent poverty measures.

2.2. Rank-independent poverty measures

The rank-independent poverty measures are those indices defined in terms of the income of each individual relative 
to the poverty line. That is, they do not depend on the place individuals take in the distribution. The family of poverty 
measures introduced by [9], henceforth FGT family, takes the form:

FGTα = FGTα(x) = 1

n

q∑
i=1

(
z − x(i)

z

)α

α ≥ 0, (2)

where α is the poverty aversion. Note that for α = 0 and α = 1 we have the H and PGR measures, respectively. For 
α ≥ 2 the measure is averse to transfers of income from a poor person to a less poor one. That is, they will take into 
account the inequality among the poor. Hence, this family could be decomposed in terms of incidence, intensity and 
inequality among the gap of the poor for every α ≥ 2, see [3]. The inequality family used in this decomposition is the 
Generalized Entropy family measured for the gaps of the poor. It is defined as follows:

Gα = GEα(gp) = 1

q(α2 − α)

q∑
i=1

((
g[i]
μgp

)α

− 1

)
f or α ≥ 2. (3)

And the decomposition has the following form:

FGTα = HMα
[
1 + (α2 − α)Gα

]
f or α ≥ 2.

Finally, we introduce another family of poverty measures proposed by [8]. They notice that the Sen index can be 
written as a combination of incidence, intensity and inequality of the gap of the poor measured by the Gini index. 
Hence, they propose another poverty measure replacing the [11] inequality index with the [5] inequality measure as 
follows:

CHUα = CHUα(x) = q

n

[
1

q

q∑
i=1

(
z − x(i)

z

)α
] 1

α

f or α ≥ 1. (4)

Aristondo [1] proposes the decomposition of this family of poverty measures using the extended part of [5] family 
of inequality measures proposed by [15] for the gaps of the poor. It can be written as follows:
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Aα = Aα(gp) = 1 −
(

1

q

q∑
i=1

(
g[i]
μgp

)α)− 1
α

f or α > 1. (5)

And this family is decomposed as:

CHUα = HM

1 − Aα

f or α > 1.

3. Shapley decomposition of the poverty measures

The [19] decomposition is a technique extended from game theory to applied economics by [21] and [17]. In this 
decomposition method, we need to assume an indicator, for example I , a function that depends on some determinants. 
In this paper, we will focus on three determinants, a, b and c. Hence, the indicator I will be a function of these three 
parameters, that is, I (a, b, c). Now, we want to note that there are 3! = 6 ways of ordering the three determinants;

(a, b, c), (a, c, b), (b, a, c), (b, c, a), (c, a, b) and (c, b, a). (6)

The Shapley decomposition will allow us to know the marginal contributions of each determinant to the overall value 
I (a, b, c). The respective marginal contributions of the determinants a, b and c are defined as all the possible ways 
in which each of these determinants can be eliminated taking into account that these determinants can be eliminated 
first, second or third. For example, C(a) is defined as the marginal contribution of a to the function I (a, b, c). If a is 
eliminated first, its contribution to the overall value of function I will be I (a, b, c) − I (0, b, c). The given weight to 
this possibility is 2/6 since in equation (6) we can see that there are two cases in which a appears first. If a is eliminated 
second, it implies that another determinant has been eliminated first. Following equation (6) we can see that there exist 
two possibilities, eliminating first b or c. For (b, a, c), the contribution is I (a, 0, c) − I (0, 0, c) and for (c, a, b), the 
contribution is I (a, b, 0) − I (0, b, 0). The weights for these two cases are 1/6, since it appears once. And finally, if a
is eliminated third, the other two determinants have already been eliminated. In this case, we have two cases (b, c, a)

and (c, b, a), which entails a weight of 2/6, and the contribution of a is I (a, 0, 0) − I (0, 0, 0) = I (a, 0, 0). Finally 
we may summarize the three cases in order to obtain the marginal contribution of determinant a, namely C(a). The 
other two marginal contributions corresponding to determinants b and c, namely C(b) and C(c), can be similarly 
computed. And finally, it is proved that I (a, b, c) = C(a) + C(b) + C(c) is satisfied.

In this paper we will apply this methodology to decomposable poverty measures in order to obtain the marginal 
contributions of the three components of poverty to the total poverty value.

As mentioned before, all the poverty measures presented in the paper can be decomposed in the three terms of 
poverty; incidence, intensity and inequality. Therefore, all the poverty measures can be written as an aggregative 
function of incidence, H , intensity, M , and inequality among the poor, I , as follows:

P = fP (H,M, I). (7)

Then, the Shapley decomposition can be applied to the aggregation function fP and the determinants H , M and I . The 
marginal contribution of incidence, intensity and inequality among the poor to the total poverty value P are denoted 
as, CHP = CP (H), CMP = CP (M) and CIP = CP (I), respectively. Note that we have added the suffix P to each 
marginal contribution in order to differentiate the marginal contributions associated to different poverty measures.

As mentioned before, there are 3! = 6 ways of ordering the three determinants. And the marginal contributions of 
the three determinants are all the possible ways of eliminating them first, second and third.

Following the methodology presented, the three marginal contributions are written as follows:

CHP = CP (H) =2

6

(
fP (H,M, I) − fP (0,M, I)

)
+ 1

6

(
fP (H,0, I ) − fP (0,0, I )

)
+

1

6

(
fP (H,M,0) − fP (0,M,0)

)
+ 2

6

(
fP (H,0,0)

)
,

(8)

CMP = CP (M) =2

6

(
fP (H,M, I) − fP (H,0, I )

)
+ 1

6

(
fP (0,M, I) − fP (0,0, I )

)
+

1 (
fP (H,M,0) − fP (H,0,0)

)
+ 2 (

fP (0,M,0)
)
,

(9)
6 6
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Table 3
Poverty Contributions of the Rank-dependent poverty measures.

P RCHP RCMP RCIP

PGR
1

2

1

2
0

S
2G + 3

6(G + 1)

2G + 3

6(G + 1)

G

3(G + 1)

SST
H(2G − 3) + 6

6H(G − 1) + 12

H(2G − 3) + 6

6H(G − 1) + 12

GH

3H(G − 1) + 6

T
3 + 6n − 3nH + 2nHG

6 + 12n + 6nH(G − 1)

3 + 6n − 3nH + 2nHG

6 + 12n + 6nH(G − 1)

nHG

3 + 6n + 3nH(G − 1)

Tτ
H(2G − 3) + 3τ

6H(G − 1) + 6τ

H(2G − 3) + 3τ

6H(G − 1) + 6τ

HG

3H(G − 1) + 3τ

Ta
H(2G − 3) + 3

6H(G − 1) + 6

H(2G − 3) + 3

6H(G − 1) + 6

HG

3H(G − 1) + 3

CIP = CP (I) =2

6

(
fP (H,M, I) − fP (H,M,0)

)
+ 1

6

(
fP (0,M, I) − fP (0,M,0)

)
+

1

6

(
fP (H,0, I ) − fP (H,0,0)

)
+ 2

6

(
fP (0,0, I )

)
.

(10)

Then, from the Shapley definition, we have that;

fP (H,M, I) = CHP + CMP + CIP . (11)

In this paper we will compute the marginal contributions of the three components for different poverty measures. 
However, in order to be able to make comparisons between indices and to provide rankings for different poverty 
measures according to their marginal contributions, we will use the relative marginal contributions for each poverty 
measure.

Therefore, the three relative marginal contributions of the determinants are defined by dividing the marginal con-
tributions by the global function value as follows:

RCHP = CHP

fP (H,M, I)
; RCMP = CMP

fP (H,M, I)
; RCIP = CIP

fP (H,M, I)
. (12)

Then, it is straightforward to see that we have RCHP + RCMP + RCIP = 1.
Note that these three values will always be between 0 and 1. Therefore, multiplying by 100, these values could be 

interpreted as the contribution percentage to the global poverty value assigned to each poverty component. The vector 
of the relative marginal contributions for every poverty measure P can be written as (RCHP , RCMP , RCIP ).

In the following subsection we compute the relative marginal contributions of the three poverty components for all 
the poverty measures defined in section 2.

3.1. Rank-dependent poverty measures

All the above presented rank-dependent poverty measures can be expressed as an aggregative function of H , M
and I = G, where G is the Gini index of the gap of the poor individuals as fP (H, M, G).

Proposition 1. The relative marginal contributions associated to each component for all the rank-dependent poverty 
measures presented in the paper can be seen in Table 3.

Proof. See in the appendix.

It is very interesting to note that if we focus on the relative contributions of the three components, those of incidence 
and intensity are exactly the same for all the rank-dependent poverty measures.
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Table 4
RCH , RCM and RCI for FGTα family.

P RCHP RCMP RCIP

FGTα
2α2Gα − 2αGα + 3

6α2Gα − 6αGα + 6

2α2Gα − 2αGα + 3

6α2Gα − 6αGα + 6

(α − 1)αGα

3α2Gα − 3αGα + 3

Table 5
RCH , RCM and RCI for CHUα family.

P RCHP RCMP RCIP

CHUα
3 − Aα

6

3 − Aα

6

Aα

3

3.2. Rank-independent poverty measures

This section is devoted to computing the relative marginal contributions of two families of decomposable rank-
independent poverty measures, FGTα and CHUα .

We have seen in the previous section that the FGTα family of poverty measures can be rewritten as an aggregate 
measure of H , M , and I = Gα , that is fFGTα (H, M, Gα), where Gα is the Generalized Entropy family measured for 
the gaps of the poor.

Proposition 2. The relative marginal contributions associated to the FGTα family are shown in Table 4.

Proof. See in the appendix.

With respect to the CHUα family, it can also be rewritten as an aggregative function fCHUα(H, M, I = Aα) where 
the inequality measure of the poor individuals is measured by the extended Atkinson family of inequality index.

Proposition 3. The corresponding relative marginal contributions associated to the CHUα family are shown in Ta-
ble 5.

Proof. See in the appendix.

We will now try to give a ranking of the poverty measures depending on these three aspects.

4. Poverty measures rankings in terms of incidence, intensity and inequality

In this section we will rank the poverty measures in terms of their components’ relative marginal contributions. In 
fact, these rankings will allow us to choose the most appropriate measures depending on the study we want to carry 
out. In fact, we will be able to know to what extent the choice of one index or another will influence the results.

For this purpose we introduce some definitions.

Definition 2. A poverty measure P will have a higher (not lower) Headcount ratio contribution than a poverty measure 
P ′ if RCHP > (≥)RCHP ′ and will be denoted as P �H (�H )P ′.

Definition 3. A poverty measure P will have a lower (not higher) Headcount ratio contribution than a poverty measure 
P ′ if RCHP < (≤)RCHP ′ and will be denoted as P ≺H (
H )P ′.

Analogously, the definitions for the income gap ratio and the inequality among the poor.

Definition 4. A poverty measure P will have a higher (not lower) Income gap ratio contribution than a poverty 
measure P ′ if RCMP > (≥)RCMP ′ and will be denoted as P �M (�M)P ′.
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Definition 5. A poverty measure P will have a lower (not higher) Income gap ratio contribution than a poverty 
measure P ′ if RCMP < (≤)RCMP ′ and will be denoted as P ≺M (
M)P ′.

Definition 6. A poverty measure P will have a higher (not lower) Inequality contribution, measured by the inequality 
index I , than a poverty measure P ′ if RCIP > (≥)RCIP ′ and will be denoted as P �I (�I )P

′.

Definition 7. A poverty measure P will have a lower (not higher) Inequality contribution, measured by the inequality 
index I , than a poverty measure P ′ if RCIP < (≤)RCIP ′ and will be denoted as P ≺I (
I )P

′.

4.1. Rank-dependent poverty measures

Once the contributions of the components to all the poverty indices have been computed, we will provide three 
rankings for the rank-dependent poverty measures according to the incidence, intensity and inequality contributions 
to the measure.

The following proposition shows the rank-dependent poverty measures previously presented ranked in terms of the 
Headcount Ratio contribution.

Proposition 4. The poverty measures of S, SST , T and T a can be ordered in terms of the Headcount Ratio’s relative 
marginal contribution to the final poverty value as follows:

S 
H T a 
H SST = T2 
H T 
H PGR , if H <
1

2
,

T a 
H S 
H SST = T2 
H T 
H PGR , if H >
1

2
,

T a ≡H S 
H SST = T2 
H T 
H PGR , if H = 1

2
.

(13)

Proof. See in the appendix.

The next proposition gives us a ranking for the family of Tτ indices:

Proposition 5. Taking into account that T2 = SST and T2+ 1
n

= T are satisfied, the Tτ family can be ranked in terms 
of the Headcount Ratio’s relative marginal contribution for different values of τ as follows;

SST = T2 
H Tt 
H T = T2+ 1
n


H Tr 
H Ts , 2 < t < 2 + 1

n
and 2 + 1

n
< r < s. (14)

Proof. See in the appendix.

Secondly, we will rank the poverty measures in terms of their sensitivity to the intensity of poverty. As mentioned, 
these orderings will be exactly the same as the ones for incidence.

Proposition 6. The poverty measures of S, SST , T and T a can be ordered in terms of the Income Gap Ratio’s relative 
marginal contribution to the final poverty value as follows:

S 
M T a 
M SST = T2 
M T 
M PGR , if H <
1

2
,

T a 
M S 
M SST = T2 
M T 
M PGR , if H >
1

2
,

T a ≡M S 
M SST = T2 
M T 
M PGR , if H = 1

2
.

(15)

Proof. It is analogous to Proposition 4. �

180



O. Aristondo Fuzzy Sets and Systems 454 (2023) 173–189
The next proposition gives us a ranking for the family of Tτ indices:

Proposition 7. Taking into account that T2 = SST and T2+ 1
n

= T are satisfied, the Tτ family can be ranked in terms 
of the Income Gap Ratio’s relative marginal contribution for different values of τ :

SST = T2 
M Tt 
M T = T2+ 1
n


M Tr 
M Ts , 2 < t < 2 + 1

n
and 2 + 1

n
< r < s. (16)

Proof. It is analogous to Proposition 2. �
Finally, we will be able to rank the poverty measures in terms of their sensitivity to the inequality among the poor 

individuals.

Proposition 8. The poverty measures of S, SST , T and T a can be ordered in terms of the inequality’s relative 
marginal contribution to the final poverty value as follows:

PGR 
G T 
G SST = T2 
G S 
G T a , if H <
1

2
,

PGR 
G T 
G SST = T2 
G T a 
G S , if H >
1

2
,

PGR 
G T 
G SST = T2 
G S ≡G T a , if H = 1

2
.

(17)

Proof. See in the appendix.

The next proposition gives us a ranking for the family of Tτ indices:

Proposition 9. Taking into account that T2 = SST and T2+ 1
n

= T are satisfied, the Tτ family can be ranked in terms 
of the inequality’s relative marginal contribution for different values of τ :

Ts 
G Tr 
G T = T2+1/n 
G Tt 
G SST = T2 , 2 < t < 2 + 1

n
and 2 + 1

n
< r < s. (18)

Proof. See in the appendix.

4.2. Rank-independent poverty measures

The following propositions show the rank-independent poverty measures ranked in terms of their three contribu-
tions.

Proposition 10. The family of poverty measures FGTα can be ordered in terms of the contributions of their three 
components, for ∀α, β ∈R and 2 ≤ α < β:

FGTβ ≺H FGTα,

FGTβ ≺M FGTα,

FGTβ �Gα FGTα.

(19)

Proof. See the appendix.

Proposition 11. The family of poverty measures CHUα can be ordered in terms of the contributions of their three 
components, for ∀α, β ∈R and 1 ≤ α < β:

CHUβ ≺H CHUα,

CHUβ ≺M CHUα,

CHU � CHU .

(20)
β Aα α
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Proof. See in the appendix.

Finally, we will also be able to delimit the three contributions associated to every poverty measure. The following 
proposition establishes the bounds for the contributions concluding that the contributions of incidence and intensity 
are equal, and always higher than that of inequality.

Proposition 12. Given a poverty measure P , the vector of contributions (RCHP , RCMP , RCIP ) is always delimited 
as follows:

(RCHP ,RCMP ,RCIP ) ∈
[

1

3
,

1

2

]
×

[
1

3
,

1

2

]
×

[
0,

1

3

]
. (21)

Proof. See in the appendix.

5. Concluding remarks

We have computed the relative marginal contributions of the three components of poverty; incidence, intensity and 
inequality, to the total poverty value.

Indeed, we believe that knowing these contributions will help us to choose the most appropriate poverty measure 
when measuring poverty. In the literature there are numerous poverty families that depend on a parameter whose value 
varies according to the sensitivity of the measures to transfers among the poorest, i.e. the inequality of the poor.

With these rankings, we manage to rank families according to inequality’s relative marginal contribution to poverty, 
and also to rank them according to the relative marginal contributions of incidence and intensity.

We would like to note that interestingly, the marginal contributions of incidence and intensity are identical for 
all measures. Moreover, not only have we ranked several families, but we have also managed to rank all the rank-
dependent measures.
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Appendix A

Proof of Proposition 1. We need to compute equations (8), (9) and (10) for all the indices.

• For PGR = HM :

CHPGR = 2

6
(HM − 0) + 1

6
(0 − 0) + 1

6
(HM − 0) + 2

6
(0) = 1

2
HM ,

CMPGR = 2

6
(HM − 0) + 1

6
(0 − 0) + 1

6
(HM − 0) + 2

6
(0) = 1

2
HM ,

CIPGR = 2

6
(HM − HM) + 1

6
(0 − 0) + 1

6
(0 − 0) + 2

6
(0) = 0. 

Hence, the relative ones are (RCHPGR,RCMPGR,RCIPGR) = (1/2, 1/2, 0).
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• For S = HM(1 + G):

CHS = 2

6
(HM(1 + G) − 0) + 1

6
(0 − 0) + 1

6
(HM − 0) + 2

6
(0) = 1

6
HM(3 + 2G),

CMS = 2

6
(HM(1 + G) − 0) + 1

6
(0 − 0) + 1

6
(HM − 0) + 2

6
(0) = 1

6
HM(3 + 2G),

CIS = 2

6
(HM(1 + G) − HM) + 1

6
(0 − 0) + 1

6
(0 − 0) + 2

6
(0) = 2

6
HMG. 

Hence, dividing the three values by S and operating, we obtain the relative ones. 

(RCHS,RCMS,RCIS) =
(

3 + 2G

6(1 + G)
,

3 + 2G

6(1 + G)
,

G

3(1 + G)

)
.

• For SST = HM(H(G − 1) + 2):

CHSST = 2

6
(HM(H(G − 1) + 2) − 0) + 1

6
(0 − 0) + 1

6
(HM(2 − H) − 0) + 2

6
(0) = HM

6
(H(2G − 3) + 6),

CMSST = 2

6
(HM(H(G − 1) + 2) − 0) + 1

6
(0 − 0) + 1

6
(HM(2 − H) − 0) + 2

6
(0) = HM

6
(H(2G − 3) + 6), 

CISST = 2

6
(HM(H(G − 1) + 2) − HM(2 − H)) + 1

6
(0 − 0) + 1

6
(0 − 0) + 2

6
(0) = 2

6
HMG. 

Hence, dividing the three values by SST and operating, we obtain the relative ones. 

(RCHSST ,RCMSST ,RCISST ) =
(

H(2G − 3) + 6

6H(G − 1) + 12
,

H(2G − 3) + 6

6H(G − 1) + 12
,

G

3H(G − 1) + 6

)
.

• For T = HM(2n + 1 + nH(G − 1))

n + 1
:

CHT = 2

6

(
HM(2n + 1 + nH(G − 1))

n + 1
− 0

)
+ 1

6
(0 − 0) + 1

6

(
HM(2n + 1 − nH)

n + 1
− 0

)
+ 2

6
(0)

= HM(3 + 6n − 3nH + 2nHG)

6(n + 1)
,

CMT = 2

6

(
HM(2n + 1 + nH(G − 1))

n + 1
− 0

)
+ 1

6
(0 − 0) + 1

6

(
HM(2n + 1 − nH)

n + 1
− 0

)
+ 2

6
(0)

= HM(3 + 6n − 3nH + 2nHG)

6(n + 1)
,

CIT = 2

6

(
HM(2n + 1 + nH(G − 1))

n + 1
− HM(2n + 1 − nH)

n + 1

)
+ 1

6
(0 − 0) + 1

6
(0 − 0) + 2

6
(0) = nH 2MG

3(n + 1)
. 

Hence, dividing the three values by T and operating, we obtain the relative ones.

(RCHT ,RCMT ,RCIT ) =
=

(
3 + 6n − 3nH + 2nHG

6 + 12n + 6nH(G − 1)
,

3 + 6n − 3nH + 2nHG

6 + 12n + 6nH(G − 1)
,

nHG

3 + 6n + 3nH(G − 1)

)
.

• For T τ = HM(τ − H + HG)

τ − 1
:

CHT τ = 2

6

(
HM(τ − H + HG)

τ − 1
− 0

)
+ 1

6
(0 − 0) + 1

6

(
HM(τ − H)

τ − 1
− 0

)
+ 2

6
(0) =

= HM(3(τ − H) + 2HG)

6(τ − 1)
,

CMT τ = 2

6

(
HM(τ − H + HG)

τ − 1
− 0

)
+ 1

6
(0 − 0) + 1

6

(
HM(τ − H)

τ − 1
− 0

)
+ 2

6
(0) =

= HM(3(τ − H) + 2HG)

6(τ − 1)
,
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CIT τ = 2

6

(
HM(τ − H + HG)

τ − 1
− HM(τ − H)

τ − 1

)
+ 1

6
(0 − 0) + 1

6
(0 − 0) + 2

6
(0) = H 2MG

3(τ − 1)
.

Hence, dividing the three values by T τ and operating, we obtain the relative ones. 

(RCHT τ ,RCMT τ ,RCIT τ ) =
(

H(2G − 3) + 3τ

6H(G − 1) + 6τ
,
H(2G − 3) + 3τ

6H(G − 1) + 6τ
,

HG

3(G − 1)H + 3τ

)
.

• For T a = HM(1 − H + HG)

1 − HM
:

CHT a = 2

6

(
HM(1 − H + HG)

1 − HM
− 0

)
+ 1

6
(0 − 0) + 1

6

(
HM(1 − H)

1 − HM
− 0

)
+ 2

6
(0) =

= HM(3(1 − H) + 2HG)

6(1 − HM)
,

CMT a = 2

6

(
HM(1 − H + HG)

1 − HM
− 0

)
+ 1

6
(0 − 0) + 1

6

(
HM(1 − H)

1 − HM
− 0

)
+ 2

6
(0) =

= HM(3(1 − H) + 2HG)

6(1 − HM)
,

CIT a = 2

6

(
HM(1 − H + HG)

1 − HM
− HM(1 − H)

1 − HM

)
+ 1

6
(0 − 0) + 1

6
(0 − 0) + 2

6
(0) = H 2MG

3(1 − HM)
. 

Hence, dividing the three values by T a and operating, we obtain the relative ones. 

(RCHT a,RCMT a,RCIT a) =
(

H(2G − 3) + 3

6H(G − 1) + 6
,
H(2G − 3) + 3

6H(G − 1) + 6
,

HG

3H(G − 1) + 3

)
. �

Proof of Proposition 2. We need to compute equations (8), (9) and (10).
We have that, FGTα = HMα(1 + (α2 − α)Gα):

CHFGTα = 2

6

(
HMα(1 + (α2 − α)Gα) − 0

)
+ 1

6

(
0 − 0

)
+ 1

6

(
HMα − 0

)
+ 2

6

(
0
)

= HMα(3 + 2(α2 − α)Gα)

6
,

CMFGTα = 2

6

(
HMα(1 + (α2 − α)Gα) − 0

)
+ 1

6

(
0 − 0

)
+ 1

6

(
HMα − 0

)
+ 2

6

(
0
)

= HMα(3 + 2(α2 − α)Gα)

6
, 

CIFGTα = 2

6

(
HMα(1 + (α2 − α)Gα) − HMα)

)
+ 1

6

(
0 − 0

)
+ 1

6

(
0 − 0

)
+ 2

6

(
0
)

= (α2 − α)HMαGα

3
. 

Hence, dividing the three values by FGTα and operating, we obtain the relative ones. 

(RCHFGT α,RCMFGT α,RCIFGT α) =
(

2(α2 − α)Gα + 3

6(α2 − α)Gα + 6
,

2(α2 − α)Gα + 3

6(α2 − α)Gα + 6
,

(α2 − α)Gα

3(α2 − α)Gα + 3

)
. �

Proof of Proposition 3. We need to compute equations (8), (9) and (10).

We have that, CHUα = HM

1 − Aα

:

CHCHUα = 2

6

( HM

1 − Aα

− 0
)

+ 1

6

(
0 − 0

)
+ 1

6

(
HM − 0

)
+ 2

6

(
0
)

= HM(Aα − 3)

6(1 − Aα)
, 

CMCHUα = 2

6

( HM

1 − Aα

− 0
)

+ 1

6

(
0 − 0

)
+ 1

6

(
HM − 0

)
+ 2

6

(
0
)

= HM(Aα − 3)

6(1 − Aα)
, 

CICHUα = 2

6

( HM

1 − Aα

− HM
)

+ 1

6

(
0 − 0

)
+ 1

6

(
0 − 0

)
+ 2

6

(
0
)

= HMAα

3(1 − Aα)
. 

Hence, dividing the three values by CHUα and operating, we obtain the relative ones. 

(RCHCHUα,RCMCHUα,RCICHUα) =
(

3 − Aα

6
,

3 − Aα

6
,
Aα

3

)
. �

Proof of Proposition 4. We need to prove some statements.
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• S 
H T a for H <
1

2
, T a 
H S for H >

1

2
and T a ≡H S for H = 1

2
.

We need to compute,

RCHS − RCHTa = 2G + 3

6G + 6
− (2G − 3)H + 3

6H(G − 1) + 6
.

Equivalently and operating,

RCHS − RCHTa = (6G(2H − 1))

(6G + 6)(6H(G − 1) + 6)
.

Since 0 ≤ H ≤ 1 and 0 ≤ G ≤ 1, then 6G + 6 ≥ 0, 6H(G − 1) + 6 ≥ 0 and then 6G(2H − 1) ≥ 0 if H ≥ 1

2
and 

6G(2H − 1) ≤ 0 if H ≤ 1

2
.

• S 
H SST

We need to prove that,

RCHS − RCHSST = 2G + 3

6G + 6
− 2GH − 3H + 6

6H(G − 1) + 12
≤ 0.

Equivalently and operating,

RCHS − RCHSST = 12G(H − 1)

(6G + 6)(6H(G − 1) + 12)
≤ 0.

Since 0 ≤ H ≤ 1 and 0 ≤ G ≤ 1 are satisfied, then 6G +6 ≥ 0, 6H(G −1) +12 ≥ 0 and 12G(H −1) ≤ 0. Hence, 
it is proved.

• T a 
H SST

We need to prove that,

RCHT a − RCHSST = (2G − 3)H + 3

6(G − 1)H + 6
− 2GH − 3H + 6

6H(G − 1) + 12
≤ 0.

Equivalently and operating,

RCHT a − RCHSST = −6GH

(6(G − 1)H + 6)(6H(G − 1) + 12)
≤ 0.

Since 0 ≤ H ≤ 1 and 0 ≤ G ≤ 1 are satisfied, then 6(G − 1)H + 6 ≥ 0, 6H(G − 1) + 12 ≥ 0 and −6GH ≤ 0. 
Hence, it is proved.

• SST 
H T

We need to prove that,

RCHSST − RCHT = H(2G − 3) + 6

6(G − 1)H + 12)
− nH(2G − 3) + 6n + 3

6(Hn(G − 1) + 2n + 1)
.

Equivalently and operating,

RCHSST − RCHT = − HG

6((G − 1)H + 2)((G − 1)nH + 2n + 1)
≤ 0.

Since n > 1, 0 ≤ H ≤ 1 and 0 ≤ G ≤ 1 are satisfied, then −HG ≤ 0, (G −1)H +2 ≥ 0 and (G −1)nH +2n +1 ≥
0. Hence, it is proved.

• T 
H PGR

We need to prove that,

RCHT − RCHPGR = nH(2G − 3) + 6n + 3

6(Hn(G − 1) + 2n + 1)
− 1

2
.

Equivalently and operating,
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RCHT − RCHPGR = − HGn

6((G − 1)Hn + 2n + 1)
≤ 0.

Since n > 1, 0 ≤ H ≤ 1 and 0 ≤ G ≤ 1 are satisfied, then −HGn ≤ 0 and (G − 1)Hn + 2n + 1 ≤ 0. Hence, it is 
proved. �

Proof of Proposition 5. We need to prove Tr 
H Ts , for 2 < r < s. Hence, we may prove that

RCHTr − RCHTs = (2G − 3)H + 3r

6((G − 1)H + r)
− (2G − 3)H + 3s

6((G − 1)H + s)
≤ 0 , for 2 < r < s.

Equivalently and operating

RCHTr − RCHTs = GH(r − s)

62((G − 1)H + r)((G − 1)H + s)
≤ 0 , for 2 < r < s.

Since 0 ≤ H ≤ 1 and 0 ≤ G ≤ 1 are satisfied, then (G − 1)H + r, (G − 1)H + s ≥ 0 and we have prof the state-
ment. �
Proof of Proposition 8. We need to prove some statements.

• PGR 
G T

It is true since RCIT > 0 and RCIPGR = 0.
• T 
G SST

We need to prove,

RCIT − RCISST = nHG

3 + 6n + 3nH(G − 1)
− HG

3(H(G − 1) + 2)
≤ 0.

Equivalently and operating,

RCIT − RCISST = − HG

(3 + 6n + 3nH(G − 1))(H(G − 1) + 2)
≤ 0.

That is true since q ≥ 2, 0 ≤ H ≤ 1 and 0 ≤ G ≤ 1.
• SST 
G S

We need to prove,

RCISST − RCIS = GH

3(G − 1)H + 6
− G

3G + 3
≤ 0.

Equivalently and operating,

RCISST − RCIS = 2G(H − 1)

3(G + 1)(GH − H + 2)
≤ 0.

That is true since 0 ≤ H ≤ 1 and 0 ≤ G ≤ 1.
• SST 
G T a

We compute,

RCISST − RCIT a = GH

3(G − 1)H + 6
− GH

3(G − 1)H + 3
≤ 0.

Equivalently and operating,

RCISST − RCIT a = − GH

3(GH − H + 1)(GH − H + 2)
≤ 0.

That is true since 0 ≤ H ≤ 1 and 0 ≤ G ≤ 1.
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• S 
G T a if H ≥ 1

2
and T a 
G S if H ≤ 1

2
.

We compute,

RCIS − RCIT a = G

3G + 3
− GH

3(G − 1)H + 3
.

Equivalently and operating,

RCIS − RCIT a = − G(2H − 1)

3(G + 1)(GH − H + 1)
.

Since 0 ≤ H ≤ 1 and 0 ≤ G ≤ 1 it is proved. �
Proof of Proposition 9. We need to prove Ts 
H Tr , for 2 < r < s. Hence, we may prove that,

RCHTs − RCHTr = HM((s − H) + HG)

s − 1
− HM((r − H) + HG)

r − 1
≤ 0 , for 2 < r < s.

Equivalently and operating,

RCHTs − RCHTr = (r − s)(1 − H + HG)

(s − 1)(r − 1)
≤ 0 , for 2 < r < s.

Since 0 ≤ H ≤ 1 and 0 ≤ G ≤ 1 are satisfied, then 1 − H + HG ≥ 0. Hence, we have prof the statement. �
Proof of Proposition 10. For ∀α, β ∈R and 2 ≤ α < β , we have,

RCHFGTα = RCMFGTα = 2α2Gα − 2αGα + 3

6α2Gα − 6αGα + 6
and RCIFGTα = (α − 1)αGα

3α2Gα − 3αGα + 3
.

We need to see that,

RCHFGTβ − RCHFGTα < 0
(

analogously RCMFGTβ − RCMFGTα < 0
)
.

Operating we have,

RCHFGTβ − RCHFGTα = 2(β2 − β)Gβ + 3

6(β2 − β)Gβ + 6
− 2(α2 − α)Gα + 3

6(α2 − α)Gα + 6

= (α2 − α)Gα − (β2 − β)Gβ

6((α2 − α)Gα + 1)((β2 − β)Gβ + 1)
.

Equivalently, we need to prove that,

(α2 − α)Gα − (β2 − β)Gβ =
q∑

i=1

(
g[i]
μgp

)α

−
q∑

i=1

(
g[i]
μgp

)β

< 0.

With respect to the inequality relative marginal contributions:

RCIFGTβ − RCIFGTα = (β2 − β)Gβ

3(β2 − β)Gβ + 3
− (α2 − α)Gα

3(α2 − α)Gα + 3
= − (α2 − α)Gα − (β2 − β)Gβ

3((α2 − α)Gα + 1)((β2 − β)Gβ + 1)
.

Hence, for RCIFGTβ − RCIFGTα > 0 we need to prove the same statement

(α2 − α)Gα − (β2 − β)Gβ =
q∑

i=1

(
g[i]
μgp

)α

−
q∑

i=1

(
g[i]
μgp

)β

< 0.

Therefore, we only need to prove that 
∑q

i=1

(
g[i]
μgp

)β

>
∑q

i=1

(
g[i]
μgp

)α

for all ∀α, β ∈R for 2 < α < β .

For this purpose, we will see that f (a) = ∑q

i=1

(
g[i]
μgp

)a

is an increasing function in ∀a ∈R and a ≥ 1.

The derivative of the function with respect to a is:
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f ′(a) =
q∑

i=1

(
g[i]
μgp

)a

ln

(
g[i]
μgp

)
.

It will be proved by induction:
For a = 1, we have,

f ′(1) =
q∑

i=1

(
g[i]
μgp

)
ln

(
g[i]
μgp

)
.

We have obtained the Theil index which is always higher than 0.
Now, suppose that it is true for a:

q∑
i=1

(
g[i]
μgp

)a

ln

(
g[i]
μgp

)
> 0.

Then, we will see that is true for a + 1:
Suppose that g[1] ≥ g[2] ≥ · · · ≥ g[s] ≥ μgp ≥ g[s+1] ≥ · · · ≥ g[q]. Then, we have

s∑
i=1

( g[i]
μgp

)a( g[i]
μgp

)
ln

( g[i]
μgp

)
+

q∑
i=s+1

( g[i]
μgp

)a( g[i]
μgp

)
ln

( g[i]
μgp

)
.

For gi ≤ μgp , we have( gi

μgp

)a( gi

μgp

)
ln

( gi

μgp

)
≥

( gi

μgp

)a

ln
( gi

μgp

)
, since

gi

μgp

≤ 1 and ln
( gi

μgp

)
≤ 0.

And for gi ≥ μgp , we have( gi

μgp

)a( gi

μgp

)
ln

( gi

μgp

)
≥

( gi

μgp

)a

ln
( gi

μgp

)
, since

gi

μgp

≥ 1 and ln
( gi

μgp

)
≥ 0.

Consequently;

q∑
i=1

( g[i]
μgp

)a+1
ln

( g[i]
μgp

)
>

q∑
i=1

( g[i]
μgp

)a

ln
( g[i]
μgp

)
> 0. �

Proof of Proposition 11. This proposition is satisfied if Aβ > Aα for ∀α, β ∈ R and β > α ≥ 1.
We will see that Aα is an increasing function on α.
Suppose we have,

f (α) = Aα = Aα(g) = 1 −
(

1

n

q∑
i=1

(
g[i]
μgp

)α)− 1
α

.

The derivative with respect to α:

f ′(α) = 1

α

(
1

n

q∑
i=1

(
gi

μgp

)α)− 1
α
−1

·
(

1

n

q∑
i=1

(
gi

μgp

)α

ln

(
gi

μgp

))
.

The first part is positive and the second one is also positive for ∀α ∈ R and α ≥ 1, since it has been proved in 
Proposition 10. �
Proof of Proposition 12. For RCHP ; we have that RCHP ≤ RCHPGR = 1

2
for every P presented in the paper. On 

the other hand, we need to see that RCHS ≥ 1
and RCHTa ≥ 1

. Note that RCHS = 2G + 3
>

G = RCIS

3 3 6(G + 1) 6(G + 1)
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and RCHTa

H(2G − 3) + 3

6H(G − 1) + 6
>

HG

3H(G − 1) + 3
= RCIT a . Hence, since RCHS = RCMS and RCHT a = RCMT a

and RCHP + RCMP + RCHP = 1 is satisfied for every measure, then RCHS, RCHT a ≥ 1

3
. And then, 

1

3
≤ RCHP

for every rank-dependent poverty measure P . Analogously, we have 
1

3
≤ RCMP ≤ 1

2
and consequently 0 ≤ RCIP ≤

1

3
for the rank-dependent poverty measures.

Now, we need to prove the same for the FGTα and CHUα families. It is very easy to see that RCHP = RCMP >

RCIp for the two families. And they are also delimited by the PGR index RCHP ≤ RCHPGR . Hence, the proposi-
tion is proved. �
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