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Abstract

This note focuses on ordering two families of rank-dependent poverty measures in terms of their distribution-sensitivity. It has 
been proved that a real value, between 1/2 and 1, called orness, which is assigned to every rank-dependent poverty measure, can 
be interpreted as a distribution-sensitivity indicator. Therefore, the rank-dependent poverty measures can be classified in terms 
of their distribution-sensitivity using the orness value assigned to them. This ranking has already been carried out for numerous 
poverty measures. However, two families of poverty measures, the Kakwani and the S-Gini families, which are defined for every 
real parameter larger than one, have only been ranked for natural values of their parameters. This note broadens the classification 
of these families for every real parameter larger than one, that is, for every member of these two families. It also provides a ranking 
between the two families for the same parameter. It concludes that for higher values of the parameter, the families will be more 
sensitive to the bottom part of the distribution. Furthermore, for the same value of the parameter, the Kakwani index will be more 
sensitive to poor incomes than the S-Gini index. In addition, we will see that the proposed ranking for the two families in terms of 
the orness value will be analogous to other distribution-sensitivity criteria existing in the literature.
© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

In the literature, it is widely accepted that an income increase of a poor individual should decrease poverty, namely 
the monotonicity axiom. In addition, Kakwani [19] argues that a poverty measure should be more sensitive to what 
happens among the bottom levels of the distribution and he proposes some sensitivity axioms related with income 
increments and income transfers. This means that poverty measures should be more sensitive to income increments 
the lower that income is. With respect to income transfers, it is widely accepted that an income transfer from a better-
off poor individual to a worse-off poor one, namely the transfer principle, should decrease poverty, see Sen [23]
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and [24]. In this case, the degree of distribution-sensitivity imposed by the transfer principle is minimal, since the 
distributional improvement produced by the transfer does not involve the loss of the mean income, see Chakravarty 
[9] and Zheng [30]. Nevertheless, the poverty measures go beyond transfer principle and most of them are able to 
tolerate some sacrifices of the mean income in return for a distributional improvement. Moreover, we want to note 
that there exist poverty measures that are able to sacrifice higher mean income values than others, for a distributional 
improvement. That is, the satisfaction of this property will depend on the amount of the mean loss.

There are numerous papers in the literature that offer poverty measures’ rankings according to their distribution-
sensitivity to income increments/decrements, or to different income transfers, see Zheng [31], Bosmans [8], Aristondo 
and Ciommi [2]. More recent papers analyze the distribution-sensitivity of poverty measures using the Shapley 
method. Datt [12] studies the case of multidimensional poverty measures and Aristondo [1] offers the ranking of 
many poverty measures not only in terms of their distribution-sensitivity but also in terms of their incidence and 
intensity sensitivity.

In addition, Urrutia and Puerta [22] propose some new transfers that will be more sensitive to high incomes, that 
is, at the top of the distribution.

Zheng [31] was the first to offer a theoretical method and a ranking for the class of subgroup-consistent poverty 
measures in terms of their distribution-sensitivity. Bosmans [8] compares rank-dependent poverty measures in terms 
of their distribution-sensitivity to two transfers called lossy transfers and lossy equalization transfers, which involve 
the loss of the mean income as a consequence of distributional improvement. Aristondo and Ciommi [2] expand 
Bosmans’ proposal to welfare functions and they also propose a new ranking criterion based on a mathematical value, 
called orness, assigned to every welfare and poverty measure.

The orness value is a numerical value assigned to every ordered weighted averaging, or OWA, operator. The OWA 
operators were introduced by Yager [26] as a new aggregation technique and in recent years they have received 
great attention, and have been applied in different fields, such as decision making under uncertainty, fuzzy system, 
welfare and so on (see Yager and Kreinovich [29], Fodor and Roubens [15], Yager [28], García-Lapresta et al. [16], 
Aristondo et al. [5] and [6] and Aristondo and Ciommi [3]). The orness of an OWA operator was also introduced with 
the intention of offering a ranking of the OWA operators. This ranking classifies the OWA operators with regard to 
their location between two extreme situations, the OR and the AND. The OR value is the maximum orness value, 
and it means full compensation among criteria and the last minimum one. The AND means that a higher degree of 
satisfaction of one of the criteria can compensate for a lower degree of satisfaction of another.

Aristondo and Ciommi [3] show that every rank-dependent poverty measure can be decomposed in terms of an 
OWA operator, and then, an orness value can be assigned. Therefore, they show that all the rank-dependent poverty 
measures can be classified in terms of their corresponding orness value. And following the orness definition, they 
show that the orness value will be greater for higher weights applied to smaller income values, that is, the sensitivity 
of the measures for low incomes would be higher for higher orness values. Consequently, Aristondo and Ciommi [3]
prove that the orness value assigned to every welfare and poverty index can be interpreted as a distribution-sensitivity
indicator. Additionally, they prove that for some specific welfare functions and poverty measures, those with linear 
weights, the orness classification and the classifications offered by Bosmans [8], in terms of lossy transfers and lossy 
equalizations, are equivalent.

Two of the poverty families classified according to Aristondo and Ciommi’s [2] orness classification are the Kak-
wani family [19] and the S-Gini family [25]. These two families are defined in terms of real parameters larger than 
one. However, Aristondo and Ciommi [3] only provide an orness classification of these two families for natural val-
ues of the parameters. Therefore, the aim of this note is to extend the classification of these two families for all real 
parameters greater than one, which is precisely the set where these two families are defined. In addition, we also offer 
a ranking between the two families for the same value of the parameter.

With these orderings we will offer a classification of the two families according to the weights assigned to the 
bottom of the distribution, that is, the individuals most affected by poverty. This will enable us to choose the most 
appropriate measure for any empirical work.

The paper is organized as follows. Section 2 introduces aggregation functions, OWA operators and the orness
value. Section 3 is devoted to poverty measures, and more precisely to rank-dependent poverty measures and the way 
they can be rewritten as OWA operators. In section 4 different distribution-sensitivity criteria are introduced and in 
section 5 the orness classification for the two families is provided. Finally, section 6 offers some concluding remarks.
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2. Aggregation functions and OWA operators

In this subsection we begin with a brief summary of the basic notations about aggregation functions and OWA 
operators.

Consider the [0, 1]n domain with n ≥ 2. Vectors in [0, 1]n are denoted by x = (x1, . . . , xn), with 1 = (1, . . . , 1) and 
0 = (0, . . . , 0). Given x, y ∈ [0, 1]n, by x ≥ y we mean xi ≥ yi for ∀i ∈ {1, . . . , n}, and by x > y we mean x ≥ y and 
x �= y. For x ∈ [0, 1]n, the non-decreasing and non-increasing form of the vector are denoted as x(1) ≤ · · · ≤ x(n) and 
x[1] ≥ · · · ≥ x[n], respectively. And the arithmetic mean of x ∈ [0, 1]n is denoted by μ(x) = (x1 + · · · + xn)/n.

Then, we define an aggregation function.

Definition 1. A function A : [0, 1]n −→ [0, 1] is called an n-ary aggregation function if it is monotonic1 and A(0) = 0, 
A(1) = 1.2

An ordered weighted averaging operator is a particular case of an aggregation function, hereafter OWA operator, 
introduced by Yager [26].

Definition 2. Given a vector of weights w = (w1, . . . , wn) ∈ [0, 1]n satisfying 
n∑

i=1
wi = 1, the OWA operator associ-

ated with w is the aggregation function Aw : [0, 1]n −→ [0, 1] defined as follows,

Aw(x) =
n∑

i=1

wi x[i] . (1)

And every OWA operator has an assigned numerical value called orness.

Definition 3. Given an OWA operator Aw associated with a system of weights w = (w1, . . . , wn) ∈ [0, 1]n satisfying 
n∑

i=1
wi = 1, the orness of an OWA operator is defined as follows,

orness(Aw) =
n∑

i=1

n − i

n − 1
wi . (2)

The maximum orness value is obtained with the weights w = (1, 0, · · · , 0), that is orness(w) = 1, while the min-
imum orness value is obtained with weights w = (0, 0, · · · , 1) and gives orness(w) = 0. The average, orness(w) =
1/2, is obtained with weights w = (1/n, 1/n, · · · , 1/n). The OWA operators with monotonic weights are either or-
like or and-like. Accurately, for non-increasing weights w1 ≥ w2 ≥ · · · ≥ wn we have or-like OWA operators, while 
for non-decreasing weights w1 ≤ w2 ≤ · · · ≤ wn we obtain and-like OWA operators.

3. Poverty measures and rank-dependent poverty measures

Firstly, we present some notations, basic definitions and axioms about poverty measures.
Consider a population of n ≥ 3 individuals. An income vector distribution is defined as x = (x1, . . . , xn) where 

xi ∈ R++ is the income of the i-th individual and D = ⋃
n≥3 R

n++ represents the set of all distributions. The poverty 
line is defined as z ∈ R++; and an individual i ∈ {1, . . . , n} is defined as poor if xi < z and as non-poor if xi ≥ z. 
We denote Q = Q(x; z) = {i ∈ {1, · · · , n} : xi < z}, and q = q(x; z) the set and the number of poor individuals, 
respectively, where n > q ≥ 2. The total distribution mean is defined as μ(x) = (x1 + · · · + xn)/n. With the intention 

of analyzing the individual shortfall, normalized gaps are defined as gi = max
{

z−yi

z
,0

}
and the normalized gap 

vector is denoted by g = (g1, . . . , gn) which is defined in [0, 1]n. Without loss of generality, any x ∈ D is ordered in 

1 A is monotonic if x ≥ y ⇒ A(x) ≥ A(y), for all x, y ∈ [0; 1]n . Given x, y ∈ D, by x ≥ y we mean xi ≥ yi ∀i ∈ {1, · · · , n}.
2 In what follows, the n-arity is omitted whenever it is clear from the context.
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a non-decreasing way; x1 ≤ · · · ≤ xn. Consequently, the normalized gaps of the poor are defined in a non-increasing 
way; g1 ≥ · · · ≥ gq .

Once the poor individuals are defined, we need to aggregate individual poverty values in order to obtain a global 
poverty value.

Definition 4. A poverty measure is defined as a non-constant function P(x; z) : D ×R++ → [0, 1] that measures the 
poverty level associated with the distribution x and the poverty line z.

A number of axioms are usually assumed for a poverty measure, see other papers [30], [4] and [17].

• Focus axiom (F): P(y; z) = P(x; z) whenever y ∈ D is obtained from x ∈ D by a change to a non-poor individual 
that is also non-poor after the change.

• Replication Invariance axiom (RI): P(y; z) = P(x; z) whenever y ∈ D is obtained from x ∈ D by a k replication, 

that is y =
k︷ ︸︸ ︷

(x, ...,x) for some k ∈ N .
• Symmetry axiom (S): P(y; z) = P(x; z) whenever y ∈ D is obtained from x ∈ D by a permutation.
• Monotonicity axiom (M): P(y; z) < P(x; z) whenever y ∈ D is obtained from x ∈ D by a simple increment to a 

poor person.
• Normalization (N): P(x; z) = 0 iff no one lives in poverty.
• Weak Transfer axiom (WT): P(y; z) < P(x; z) (P (y; z) > P (x; z)) whenever y ∈ D is obtained from x ∈ D by a 

progressive (regressive) transfer3 with at least the recipient (donor) being poor with no one crossing the poverty 
line as a consequence of the transfer.4

• Monotonicity Sensitivity axiom (MS): P(y; z) − P(x; z) > P(y’; z) − P(x; z) whenever y, y’ ∈ D are obtained 
from x ∈ D by the same amount of decrement to poor incomes xi and xj , respectively, where xi < xj .

The first poverty measure introduced in the literature is the headcount-ratio, denoted by H = q/n, which is the 
percentage of poor people. It captures exactly the incidence of poverty and satisfies F, RI, S and N. However, it violates 
M, WT and MS since it does not take into account the intensity and the differences between the poor.

If we compute the mean of the normalized gaps with respect to the population, we obtain another well-known 
measure of poverty, named the poverty gap ratio, and defined as

PGR = PGR(x; z) = 1

n

q∑
i=1

z − xi

z
= 1

n

q∑
i=1

gi . (3)

It captures the incidence and the intensity of poverty and satisfies F, RI, S, N and M. However, it violates WT and 
MS since it does not take into account the inequality among the poor. However, in the literature there exist numerous 
poverty measures that satisfy the transfer (WT) axiom. In this paper we will focus on two families of rank-dependent 
poverty measures.

Rank-dependent poverty measures are those poverty indices for which individuals’ weights depend only on their 
place in the distribution with respect to the others. The definition is introduced below.

Definition 5. A poverty measure P(x; z) : D ×R++ → [0, 1] is rank-dependent if for each income distribution x ∈ D

and any fixed poverty line z ∈R++, it takes the following expression

P(x; z) =
q∑

i=1

wi

z − xi

z
=

q∑
i=1

wigi , (4)

where as mentioned, g1 ≥ · · · ≥ gq and x1 ≤ · · · ≤ xq . In addition, a poverty measure needs to satisfy w1 ≥ w2 ≥
· · · ≥ wq and if the weights decrease strictly then the transfer axiom (WT) is satisfied.

3 Progressive (Regressive) transfer: y ∈ D is obtained from x ∈ D by a progressive (regressive) transfer if there exists i and j , i < j , such that 
yi − xi = xj − yj > 0 (< 0), yj > xi and yk = xk for all k �= i, j .

4 There are numerous transfer axioms depending on whether they are poor or not before and after the transfer, see Zheng [30].
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The two rank-dependent poverty measures we focus on are the Kakwani family of poverty measures [19], Kk , and 
the S-Gini class of poverty measures, Gσ ; see Kakwani [19], Donaldson and Weymark [13] and Chakravarty’s [10]. 
The two families are defined as follows:

Kk(x; z) =
q∑

i=1

⎡
⎢⎢⎢⎣q(q + 1 − i)k

n
q∑

i=1
ik

⎤
⎥⎥⎥⎦gi , k ≥ 1 , k ∈R . (5)

Gσ (x; z) =
q∑

i=1

[(
n + 1 − i

n

)σ

−
(

n − i

n

)σ ]
gi , σ ≥ 1 , σ ∈ R . (6)

These two families satisfy F, S, M, N and MS; and WT is satisfied for every Kakwani index and for every S-Gini 
index for α > 1. In the literature, it is well known that the parameters k and σ are directly related with the measure’s 
sensitivity to income transfers at different income positions. That is, for larger values of k and σ , the measures are 
more sensitive for transfers at the bottom of the distribution. In fact, in the literature, the two parameters are considered 
as the measures’ poverty aversion indicators.

Now, if we pay attention to the previous section, we can see that the definition of OWA operators and the rank-
dependent poverty measures are very close. In general, rank-dependent poverty measures are not OWA operators, since 
they do not fulfill 

∑q

i=1 wi = 1. However, every rank-dependent poverty measure can be normalized and rewritten as 
the product of a normalization factor, invariant to transfers, and its normalized poverty measure, which will be an OWA 
operator; see Aristondo and Ciommi [3]. In what follows, we add the prefix N to the name of each rank-dependent 
poverty index in order to refer to the normalized rank-dependent poverty measure.

Therefore, we rewrite the Kk and the Gσ measures as the product of a normalization factor and their normalized 
poverty index NKk and NGσ :

Kk(x; z) = H ·
q∑

i=1

⎡
⎢⎢⎢⎣ (q + 1 − i)k

q∑
i=1

ik

⎤
⎥⎥⎥⎦gi

= H · NKk(x; z) , 1 ≤ k ∈R .

(7)

Gσ (x; z) =
(

1 − (1 − H)σ
)

·
q∑

i=1

[
(n + 1 − i)σ − (n − i)σ

nσ − (n − q)σ

]
gi

=
(

1 − (1 − H)σ
)

· NGσ (x; z) , 1 ≤ σ ∈ R ,

(8)

where H = q/n is the headcount ratio. The proof of these two statements, (7) and (8), can be seen in Aristondo and 
Ciommi [3].

Now the orness values of the two families, the Kakwani and the S-Gini families, can be computed. For more 
information see Aristondo and Ciommi [3].

orness(NKk) = 1

(q − 1)
q∑

i=1
ik

q∑
i=1

(
ik+1 − ik

)
, 1 ≤ k ∈R . (9)

orness(NGσ ) = 1

(q − 1)(nσ − (n − q)σ )

q∑
i=1

(
(n + 1 − i)σ − (n − i)σ

)
(q − i) , 1 ≤ σ ∈R . (10)

From the definition of the rank-dependent poverty measures we know that the weights are ordered in a non-
decreasing way. Consequently, the weights of the corresponding OWA operator will also be ordered in the same 
way. Following OWA literature, see Yager [27], the OWA operators with weights ordered in a non-decreasing way are 
named or-like operators and those with weights ordered in a non-increasing way, and-like. Liu and Lou [20] show that 
the orness value for the or-like operators are always between 1/2 and 1, and between 0 and 1/2 for the and-like ones. 
5
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Hence, for the non-dressiness of the rank-dependent poverty measures’ weights, our orness values will be always 
between 1/2 and 1.

4. Distribution-sensitivity criteria using the orness values

In this section we will concentrate on the poverty measures’ classification in terms of their distribution-sensitivity. 
As mentioned before, the two poverty families presented in the paper satisfy the monotonicity sensitivity axiom. This 
axiom states that a poverty measure should be more sensitive to income decrements/increments in a poor person’s 
income, the poorer the person is.

By orness definition, we know that the orness value is greater for higher weights at the top of the normalized gap 
distribution. That is, the greater the orness value is, the higher the weights applied to small incomes are. Hence, this 
sensitivity at the bottom of the income distribution can be interpreted as a distribution-sensitivity measure. Therefore, 
poverty measures could be classified in terms of their orness value. In fact, the concept of orness is defined as a 
measure of optimism that lies within the unit interval and between 1/2 and 1 for rank-dependent poverty measures. 
This numerical value indicates how close the measure of poverty is to the maximum operator (OR) or the minimum 
operator (AND). The maximum orness value, or OR value, is obtained with the weights w = (1, 0, · · · , 0) which gets 
orness(W) = 1 and it is exactly the relative gap of the poorest individual, that is W = g1. While the minimum orness
value in the poverty field is w′ = (1/n · · · , 1/n). For these weights we have orness(W ′) = 1/2 and the measures ob-
tained is the poverty gap ratio (PGR). Note that the W will only be affected by transfers of increments/decrements to 
the poorest individual. On the other hand, W ′ = PGR index is not affected by any transfers, and the increments/decre-
ments in a poor person’s income will not have a greater effect on the measure the poorer the person is.

In this paper we focus on classifying the rank-dependent poverty measures in term of their assigned orness value. 
Let us see the following definition.

Definition 6. Let P and Q be two rank-dependent poverty measures and NP and NQ their corresponding normalized 
measures. Then, if orness(NP ) < (≤) orness(NQ) is satisfied we will denote P ≺ (�) Q.

In addition, we want to note that there exists a link between the rank-dependent poverty measures’ classification 
through the orness value and the classification of these measures in terms of their sensitivity to lossy transfers. That 
is, transfers from a better-off poor individual to a worse-off poor individual that involve the loss of the mean income 
with the benefit of a distributional improvement.

A minimal transfer axiom considers an income transfer from a better-off poor individual to a worse-off poor 
individual where the amount given by the donor is exactly the amount received by the recipient. However, if the donor 
gives more than the recipient gets, then only those poverty measures which value sufficiently the redistribution will 
approve the transfer. Note that this kind of transfer will also depend on the amount of the mean loss.

Atkinson [7] and Okun [21] were the first to define this type of lossy transfers to measure the relative importance 
attributed to the distribution. Since then, lossy transfers have been used to explain the inequality aversion of many 
social welfare functions (see [18], [14] and [11]).

For this purpose, we need to define the following two transfers among the poor.

Definition 7. Let x and y be two income distributions in D. Then y is obtained from x by a lossy transfer among the 
poor if nx = ny = n, qx = qy = q and y = (x1, x2, . . . , xi + α, . . . , xj − β, . . . , xq, xq+1, . . . , xn) where 0 < α < β

and xi < xi + α ≤ xj − β < xj < z.

Definition 8. Let x and y be two income distributions in D. Then y is obtained from x by a lossy equalization among 

the poor if nx = ny = n, qx = qy = q and y = (θ, . . . , θ, xq+1, xq+2, . . . , xn) where q · θ <
q∑

i=1
xi .

Now, we say that a poverty measure P is at least as distribution-sensitive for lossy transfers among the poor or 
lossy equalization transfers among the poor as a poverty measure Q, if P registers a poverty increment for each lossy
transfer or lossy equalization transfer among the poor for which Q does. The definitions are shown below:
6
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Definition 9. Let P(·; z) and Q(·; z) be two poverty measures and suppose that y is obtained from x by a lossy 
transfer among the poor. Then P is at least as distribution − sensitive∗ for lossy transfers among the poor as Q if 
Q(y; z) ≤ Q(x; z) implies P(y; z) ≤ P(x; z).

Definition 10. Let P(·; z) and Q(·; z) be two poverty measures and suppose that y is obtained from x by a lossy 
equalization among the poor. P is at least as distribution − sensitive∗∗ for lossy equalization among the poor as Q
if Q(y; z) ≤ Q(x; z) implies P(y; z) ≤ P(x; z).

Moreover, a poverty measure P(·; z) is more distribution-sensitive than P(·; z) for lossy (lossy equalization) trans-
fers among the poor if P(·; z) is at least as distribution-sensitive as P(·; z) and P(·; z) is not at least as distribution-
sensitive as P(·; z) for lossy (lossy equalization) transfers among the poor.

Aristondo and Ciommi [3] prove that if two poverty measures can be ranked in terms of lossy transfers or lossy 
equalization transfers criteria, they can also be classified in terms of the orness value. In addition, they also show that 
the classification for the first order rank-dependent poverty measures in terms of their orness value is equivalent to the 
classification in terms of their distribution-sensitivity to lossy transfers or lossy equalization transfers introduced by 
Bosmans [8].5

In addition, in this paper we will see that the Kakwani and S-Gini indices are ordered equivalently with respect 
to their parameter value for the three distribution-sensitivity rankings; lossy transfers, lossy equalization transfers and 
orness value.

5. Orness classification

As mentioned, the orness value can be interpreted as a distribution sensitivity indicator of the rank-dependent 
poverty measures and they can be ordered in terms of this value. Aristondo and Ciommi [3] classify most of the 
rank-dependent poverty measures in terms of their assigned orness value. However, they do not offer a classification 
for every member of the Kakwani and S-Gini families. The orness ranking of these two families has only been done 
for natural values of the two parameters k and σ . In fact, Aristondo and Ciommi [3] prove that Kk ≺ Kk+1 and 
Gσ ≺ Gσ+1 for ∀σ, k, q, n ∈N , n > q ≥ 2, k ≥ 1 and σ ≥ 1.

Nevertheless, both the Kakwani and S-Gini families can be computed for any real value of the parameters, k ∈ R
with k ≥ 1 for Kk and σ ∈R with σ ≥ 1 for Gσ . Therefore, in this note we offer an orness classification for these two 
families for every real value of the parameters larger than one.

The following propositions show the orness classification for the family of Kakwani indices. Focusing on the 
orness value for the members of the Kakwani family we can classify them as follows:

Proposition 1. The members of the Kakwani family of poverty indices, {Kk}k≥1, can be classified with respect to their 
orness value as follows:

Kk ≺ Km , 1 ≤ k < m , ∀k,m ∈R . (11)

Proof of Proposition 1. See Appendix.

This proposition shows that the larger the k value, the larger the orness value.
The next proposition offers the orness classification for every member of the S-Gini family, that is, every parameter 

σ ∈R.

Proposition 2. The members of the Kakwani family of poverty indices, {Gσ }σ≥1, can be classified with respect to their 
orness value as follows:

Gσ ≺ Gβ , 1 ≤ σ < β , ∀σ,β ∈R . (12)

5 First order rank-dependent poverty measures are those for which the weights are linear, that is, their form is wi = e + (i − 1)d , where e and d
do not depend on i.
7
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Proof of Proposition 2. See Appendix.

Therefore, we have ranked all the members of the Kk and the Gσ families. These results complement the ranking 
obtained by Aristondo and Ciommi [3], given that all the rank-dependent poverty measures are ordered.

Now, we will see that the maximum distribution-sensitivity value is obtained for Kk when k tends to infinity, and 
for Gσ when σ tends to infinity.

Proposition 3. The orness value of the Kk and Gσ families tend to the maximum orness value 1 when parameters k
and σ tend to infinity, respectively. That is,

P � K∞ and P � G∞ (13)

for every rank-dependent poverty measure P since orness(NG∞) = orness(NK∞) = 1.

Proof of Proposition 3. See Appendix.

Consequently, the orness value for the two limit rank-dependent poverty measures K∞ and G∞ is equal to one. 
In addition, we know that the maximum orness values are obtained for w = (1, 0, · · · , 0) weights. Hence, the corre-
sponding normalized measures of the two poverty measures must be exactly the relative gap of the poorest individual.

NK∞ = g1 = NG∞ .

It can be noted that the limit measures have the following form; K∞ = H · g1 and NG∞ = g1.
The Kakwani index has a normalization factor, H , that is invariant to lossy transfers and lossy equalizations. 

Hence, their sensitivity to these kind of transfers will be the same. To conclude, the distribution-sensitivity of these 
two measures will only focus on transfers that affect the poorest individual.

Finally, we will provide an additional poverty ordering between the members of the two families presented in the 
paper for the same value of the parameter. Proposition 4 shows that the Kk poverty index is more distribution-sensitive
than Gk for every k ∈N .

Proposition 4. The families {Kk}k≥1 and {Gk}k≥1 can be ordered in terms of their orness values for the same param-
eter k as follows:

Gk � Kk for k ∈R . (14)

Proof of Proposition 4. See Appendix.

Finally, we want to focus on the measures’ classifications in terms of lossy transfers and lossy equalization trans-
fers. Aristondo and Ciommi [3] prove that the orness classification is equivalent to the two classifications when 
weights are linear. The weights of the Kakwani and the S-Gini families are not linear and the equivalency can not be 
directly concluded. The measure rankings presented in this paper in terms of the orness value are exactly the same 
rankings as those in terms of the distribution-sensitivity of the measures to lossy transfers and lossy equalization 
transfers. In fact, Bosmans [8] proves that distribution-sensitivity for lossy transfers and lossy equalization transfers
increases with k and σ for the Kakwani and the S-Gini families, respectively.

6. Concluding remarks

We provide an easy-to-check criterion which is able to order rank-dependent poverty measures in terms of their 
distribution-sensitivity using a real value between 1/2 and 1, called orness. Most of these indices have been ranked 
in terms of this criterion. However, the classifications provided for the Kakwani and the S-Gini families of poverty 
indices are incomplete since only the rankings for natural values of the index parameters have been provided. In this 
note, we provide the orness classification for all the members of the two families in terms of their family parameter. 
We conclude that the Kakwani and the S-Gini families are more sensitive to the lower part of the distribution for higher 
values of the parameter. In addition, we have been able to rank the two families for the same value of the parameter, 
8
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concluding that for this value the Kakwani index is more sensitive to increments or transfers the lower the income is. 
Given a fixed poverty line, this ranking will allow poverty results to be compared for different measures depending 
on their sensitivity to lower incomes values. Alternatively, it will also allow a choice between the appropriate poverty 
measures taking into account their distribution sensitivity.
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Appendix A

Proof of Proposition 1. We prove this proposition by mathematical induction on q .

For q = 2, we find orness(NKk) = 1
2∑

i=1
ik

2∑
i=1

(
ik+1 − ik

) = 2k

1+2k . We need to prove 2k

1+2k < 2s

1+2s , or equivalently, 

2k (1 + 2s) < 2s
(
1 + 2k

)
which is true for every 1 ≤ k < s.

Let us assume that it is true for q:

1

(q − 1)
q∑

i=1
ik

q∑
i=1

(
ik+1 − ik

)
<

1

(q − 1)
q∑

i=1
is

q∑
i=1

(
is+1 − is

)
.

Analogously,
q∑

i=1

is ·
q∑

i=1

(
ik+1 − ik

)
<

q∑
i=1

ik ·
q∑

i=1

(
is+1 − is

)
.

We need to show that it is true for q + 1. That is,

q+1∑
i=1

is ·
q+1∑
i=1

(
ik+1 − ik

)
<

q+1∑
i=1

ik ·
q+1∑
i=1

(
is+1 − is

)
.

Again, operating we have,(
q∑

i=1

is + (q + 1)s

)
·
(

q∑
i=1

(ik+1 − ik) + q(q + 1)k

)
<

(
q∑

i=1

ik + (q + 1)k

)
·
(

q∑
i=1

(is+1 − is) + q(q + 1)s

)
;

which simplifies to,
q∑

i=1

is ·
q∑

i=1

(
ik+1 − ik

)
+ q(q + 1)k

q∑
i=1

is + (q + 1)s
q∑

i=1

(
ik+1 − ik

)

−
q∑

ik ·
q∑(

is+1 − is
)

− q(q + 1)s
q∑

ik − (q + 1)k
q∑(

is+1 − is
)

< 0.
i=1 i=1 i=1 i=1

9
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Using the induction step, it reduces to show that
q∑

i=1

is ·
q∑

i=1

(
ik+1 − ik

)
+ q(q + 1)k

q∑
i=1

is + (q + 1)s
q∑

i=1

(
ik+1 − ik

)

= (q + 1)k
q∑

i=1

ik(is−k − (q + 1)s−k)(q + 1 − i) < 0;

which is trivial to prove since is−k − (q + 1)s−k < 0 and q + 1 − i > 0 for 1 < i < q + 1 and 1 ≤ k < s. �
Proof of Proposition 2. We define the following function

f (σ ) =
∑q

i=1

(
(n + 1 − i)σ − (n − i)σ

)
(q − i)

(q − 1)(nσ − (n − q)σ )
f or σ ≥ 2 .

We need to prove that it is an increasing function in σ for every σ ≥ 2. Equivalently, we will see that the derivative of 
f (σ ) is positive for σ ≥ 2. Once derived, we obtain,

f ′(σ ) =
(
(q − 1)

(
nσ lnn − (n − q)σ ln(n − q)

))(
(q − 1)(nσ − (n − q)σ )

)−2

×
(

q∑
i=1

(
(n + 1 − i)σ − (n − i)σ

)
(q − i)

)
+

+
(

q∑
i=1

(
(n + 1 − i)σ ln(n + 1 − i) − (n − i)σ ln(n − i)

)
(q − i)

)(
(q − 1)(nσ − (n − q)σ )

)−1
.

Since q, n ∈ N and n > q ≥ 2 then (n − q) ≥ 1. Consequently we have that for any σ ≥ 2 nσ − (n − q)σ ≥ 0, (
nσ lnn − (n − q)σ ln(n − q)

) ≥ 0, (n + 1 − i)σ ln(n + 1 − i) − (n − i)σ ln(n − i) ≥ 0, (n + 1 − i)σ − (n − i)σ ≥ 0
and (q − i) ≥ 0 ∀i = 1, · · · , q .

Hence, f ′(σ ) ≥ 0, and consequently f (σ ) is an increasing function in σ . �
Proof of Proposition 3. For the Kk family, we need to prove

lim
x→∞orness(NKk) = 1 .

Substituting the orness value,

lim
x→∞orness(NKk) = lim

x→∞

q∑
i=1

(
ik+1 − ik

)
(q − 1)

q∑
i=1

ik
= lim

x→∞

q∑
i=1

((
i
q

)k+1 − 1
q

(
i
q

)k
)

q−1
q

q∑
i=1

(
i
q

)k
= 1 .

For the Gσ family, we also need to prove

lim
x→∞orness(NGσ ) = 1 .

Substituting the orness value,

lim
x→∞orness(NGσ ) = lim

x→∞

q∑
i=1

(n + 1 − i)σ − (n − i)σ

(q − 1)(nσ − (n − q)σ )
(q − i) .

Operating,

lim
x→∞orness(NGσ ) = lim

x→∞

q∑
i=1

(
n+1−i

n

)σ − (
n−i
n

)σ

(q − 1)
(

1 − (n−q
n

)σ
) (q − i) = 1 . �

Proof of Proposition 4. In order to prove Proposition 4, we need two auxiliary Lemmas.
10



O. Aristondo and A. Iñiguez Fuzzy Sets and Systems 466 (2023) 108460
Lemma 1. The orness(NGk) is a decreasing function in n.

Proof of Lemma 1. Let us define f (n) a continuous function on n ∈ R:

f (n) =
∑q

i=1

(
(n + 1 − i)k − (n − i)k

)
(q − i)

nk − (n − q)k
.

In order to show that f (n) is a decreasing function in n, we will prove that f ′(n) < 0:

f ′(n) =
∑q

i=1

(
k(n + 1 − i)k−1 − k(n − i)k−1

)
(q − i)(nk − (n − q)k)

(nk − (n − q)k)2

−
∑q

i=1

(
(n + 1 − i)k − (n − i)k

)
(q − i)(knk−1 − k(n − q)k−1)

(nk − (n − q)k)2 .

Hence, equivalently we need to prove that

q∑
i=1

(
(n + 1 − i)k−1 − (n − i)k−1

)
(q − i)(nk − (n − q)k)

−
q∑

i=1

(
(n + 1 − i)k − (n − i)k

)
(q − i)(nk−1 − (n − q)k−1) < 0 .

Operating we have,(
nk − (n − q)k

)(
nk−1 − (n − q)k−1

)
(q − 1) (orness(NGk−1) − orness(NGk)) < 0,

which is true from Proposition 2. Hence, if it is a decreasing function for real values, it is also decreasing for natural 
values. �
Lemma 2. For every q ∈N and k ∈ R the following inequality is satisfied:

(q + 1)k −
(

(q + 1)k − qk

qk

) q∑
i=1

ik ≥ 0 .

Proof of Lemma 2. Let us define f (q) = (q + 1)k −
(

(q + 1)k − qk

qk

)∑q
i=1 ik , for some k ∈R.

It will suffice to show f (q + 1) ≥ f (q) and f (1) ≥ 0, for any k ∈ R.
For q = 1,

f (1) = 2k − (2k − 1) = 1 ≥ 0 .

Now, we will see that f (q + 1) ≥ f (q) for any q ∈N and k ∈ R.

f (q + 1) − f (q) = (q + 2)k −
(

(q + 2)k − (q + 1)k

(q + 1)k

) q+1∑
i=1

ik − (q + 1)k +
(

(q + 1)k − qk

qk

) q∑
i=1

ik

=
(
(q + 1)2

)k − (q(q + 2))k

qk(q + 1)k

q∑
i=1

ik ≥ 0,

which is true since q, (q + 1) ≥ 0 and (q + 1)2 ≥ q(q + 2) for any q ∈ N , k ∈ R. �
Hence we can now prove Proposition 4.
We need to prove that for k ∈ R, q, n ∈N and n > q ≥ 2,

orness(NKk) − orness(NGk) ≥ 0 .
11
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That is,∑q
i=1 ik (i − 1)∑q

i=1 ik
−

∑q

i=1

(
(n + 1 − i)k − (n − i)k

)
(q − i)

nk − (n − q)k
≥ 0 .

From Lemma 1, we know that orness(NGk) is a decreasing function in n. Hence, it will suffice to prove for n = q . 
That is, we need to prove the following:∑q

i=1 ik (i − 1)∑q
i=1 ik

−
∑q

i=1

(
(q + 1 − i)k − (q − i)k

)
(q − i)

qk
≥ 0 .

Operating, we have that,∑q

i=1 ik+1 − ik∑q
i=1 ik

− qk+1 − ∑q

i=1 ik

qk
≥ 0 .

Hence, we need to prove the following:

qk

q∑
i=1

ik+1 +
(

q∑
i=1

ik

)2

− (q + 1)qk

q∑
i=1

ik ≥ 0 .

We proceed by induction on q . Firstly, we will see that it is true for q = 2:

2k
(

1 + 2k+1
)

+
(

1 + 2k
)2 − (3)2k

(
1 + 2k

)
= 1 ≥ 0 .

Now suppose that is true for q ,

qk

q∑
i=1

ik+1 +
(

q∑
i=1

ik

)2

− (q + 1)qk

q∑
i=1

ik ≥ 0 .

Now computing it for q + 1:

(q + 1)k
q+1∑
i=1

ik+1 +
⎛
⎝q+1∑

i=1

ik

⎞
⎠2

− (q + 2)(q + 1)k
q+1∑
i=1

ik

= (q + 1)k

(
q∑

i=1

ik+1

)
+

(
q∑

i=1

ik

)2

+ 2(q + 1)k
q∑

i=1

ik − (q + 2)(q + 1)k
q∑

i=1

ik .

Using the inductive step for q ,

(q + 1)k

(
q∑

i=1

ik+1

)
+

(
q∑

i=1

ik

)2

+ 2(q + 1)k
q∑

i=1

ik − (q + 2)(q + 1)k
q∑

i=1

ik

≥ (q + 1)k

qk

⎛
⎝(q + 1)qk

q∑
i=1

ik −
(

q∑
i=1

ik

)2
⎞
⎠ +

(
q∑

i=1

ik

)2

+ 2

(
q∑

i=1

ik

)
(q + 1)k − (q + 2)(q + 1)k

q∑
i=1

ik .

And operating we have that

(q + 1)k

(
q∑

i=1

ik+1

)
+

(
q∑

i=1

ik

)2

+ 2(q + 1)k
q∑

i=1

ik − (q + 2)(q + 1)k
q∑

i=1

ik

≥
q∑

i=1

ik

(
(q + 1)k −

(
(q + 1)k − qk

qk

) q∑
i=1

ik

)
≥ 0,

which holds from Lemma 2. �
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