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Universitario de Cruces. Their interest in researching in the field of healthcare has
served as our inspiration. Your insightful discussions and constructive feedback have
consistently contributed to the enhancement of this dissertation.

I would like extend my sincere thanks to Mihaela van der Schaar for providing me
with the outstanding opportunity to collaborate as a visiting researcher in the Depart-
ment of Applied Mathematics and Theoretical Physics at the University of Cambridge.

I am eternally thankful to my colleagues at BCAM. I could not have asked for
a more exceptional team to accompany me along this journey, your friendship and
encouragement have been invaluable to me. Thank you for enhancing the academic
research in this thesis through countless discussions, but, above all, for making this
time a memorable experience.

Last but not least, I would like to express my deepest gratitude to my family and
friends. You have consistently been my unwavering support, standing by my side and
encouraging me to persevere until the very end. Thank you for being there through
every challenge and celebrating the highs with me. You are my best gift.





Abstract

Electronic Health Records (EHRs), which store extensive patient and treatment data,
provide an opportunity for machine learning models to capture disease progression
patterns over time. Each medical record in these repositories is composed by a set
of clinical variables, including a medical action, a diagnosis, and a timestamp. The
medical action describes the trajectory of a patient in the healthcare system and the
diagnosis associates each medical event with a specific disease. Therefore, a patient’s
treatment trajectory is characterized by a chronological sequence of medical records.

The primary objective of this dissertation is to develop methodologies that pro-
vide an understanding of patients’ treatment progression through meaningful pattern
recognition in EHRs. Generative models are powerful approaches for this purpose,
as they enable the learning of the underlying data distribution, and offer an inter-
pretable representation of disease dynamics from data. These models have additional
benefits, including pattern identification, data augmentation, anomaly detection, and
uncertainty estimation in predictions, among others.

In contrast to generative approaches, most existing deep learning models in health-
care focus on accurately predicting future events rather than comprehensively modeling
disease progression. Understanding disease progression remains challenging for these
methods due to various factors, including limited data availability, data quality prob-
lems like missing diagnosis data, and the need for interpretable results in healthcare
settings. Generative models provide more interpretable patterns of disease dynamics,
require less quantity of data and work properly even in the presence of missing data.
Although previous generative models have advantages over deep learning models, they
often make simplified assumptions for capturing the evolution of diseases. Further re-
search is required to appropriately model key medical aspects such as the sequential
occurrence and relationship of consecutive medical events, the irregular time intervals
between records, and the coexistence of multiple diseases when diagnoses are missing.

This dissertation presents unsupervised methodologies to provide interpretable un-
derstanding of the progression of disease trajectories. To this end, we develop methods
based on different sequence classification techniques. On the one hand, we propose a
methodology based on partitional clustering for identifying disease treatment subtypes
from EHRs with missing diagnosis information. Specifically, the methodology is based
on the K-medoids approach with an adaptation of the edit distance, which enables to
determine a representative for each subtype of treatments. On the other hand, we pro-



pose various probabilisitic generative models for sequences of medical events to analyze
different scenarios in disease dynamics. The models include latent variables to cap-
ture treatment progression, temporal irregularity and comorbidities in medical data.
We introduce efficient methods for learning these models, combining the Expectation-
Maximization algorithm and dynamic programming.

The effectiveness of the methodological proposals is evaluated using a real-world
dataset from Osakidetza, the public healthcare system in the Basque Country, Spain.
Each patient in these EHRs is represented by a sequence of medical services over time,
with only 19% of these medical events having an associated diagnosis value. We include
practical applications involving breast cancer patients, demonstrating the relevance and
potential impact of the models. In summary, this dissertation presents methodologies
that offer valuable insights into disease dynamics while addressing the unique challenges
presented in EHRs.
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Chapter 1

Introduction

Disease progression, which refers to the natural evolution of medical conditions over
time, is a critical area of research in healthcare [1]. In recent years, machine learning
models have gained substantial significance within this context, offering personalized
insights into disease trajectories and progression trends [2, 3]. These insights are par-
ticularly valuable for diseases like cardiovascular disease, cancer, and diabetes, which
evolve slowly throughout a patient’s lifetime.

Healthcare institutions regularly record medical data in repositories known as Elec-
tronic Health Records (EHRs) for monitoring patients’ health status throughout their
clinical history. These EHRs contain a vast amount of patient and treatment infor-
mation, including demographics, diagnoses, medications, procedures, costs, medical
resources and so on (see Figure 1.1). While their primary purpose is efficient medi-
cal management, EHRs present the opportunity to develop machine learning methods
that can effectively capture disease progression patterns. Indeed, these models can help
discover associations between the shared characteristics of similar patients, identify a
data-driven taxonomy of the progression of treatments associated with a disease, reduce
the uncertainty in a patient’s expected treatment trajectory and timing, and analyze
comorbidities by uncovering the relationships among them [4].

Developing models for EHRs faces a variety of data challenges, limitations, and
quality issues [1, 4]. In this dissertation, we highlight and address the following ones:

• Heterogeneity: EHRs contain numerous distinct medical events associated with
different diseases, and the occurrence of these events can be influenced by the
individual preferences and characteristics of patients and healthcare professionals.
Furthermore, patient responses to treatments can differ, even for the same disease,
leading to variations in the sequence and medical events that occur during their
treatment trajectories [5]. This variability in medical events and patient responses
makes each patient’s medical history unique.

• Incomplete information: it is likely that many observations will be missing in a
healthcare dataset. Moreover, EHRs are commonly limited to a specific period of
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Figure 1.1: A simplified EHR structure represented as a timeline. Diagnosis code C50
corresponds to malignant neoplasm of breast, and I47 to paroxysmal tachycardia.

time, and therefore, significant events may occur outside this period, leading to
incomplete clinical histories and treatment trajectories.

• Irregularity: the events in healthcare settings occur randomly and irregularly, as
patients visit the hospital when clinical care is needed. Therefore, in EHRs, the
time elapsed between patient’s visits is irregular.

• Interpretability: it is crucial that both the machine learning models and their
generated outcomes from EHRs are not only accurate but also easily understand-
able and interpretable. Thus, healthcare professionals will rely on these models
to make informed decisions about patient care, treatment strategies, and disease
management.

• Uncertainty: the absence of diagnostic values in many medical records, together
with the prevalence of comorbidities (the coexistence of multiple diseases) among
patients, creates uncertainty regarding the association between medical events
and specific diseases. In other words, since patients may suffer from coexist-
ing diseases, certain medical records lack clear associations with specific disease
treatments due to missing diagnosis values in the EHRs (Figure 1.2).

1.1 Dataset

Our research is conducted in collaboration with the public healthcare system (Os-
akidetza) in the Basque Country, Spain. Specifically, with the economic-financial de-
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Medical record with missing diagnosis

Medical record with diagnosis type 1

Medical record with diagnosis type 2

Clincal history trajectory

Treatment trajectory 
associated with a disease

Figure 1.2: Uncertainty in medical actions associated with a diagnosis due to comor-
bidity and missing values.

partment of the Hospital Universitario de Cruces. They provide us with a dataset that
integrates care information with economic information. These EHRs enable the track-
ing of all the resources used in the treatment of a disease throughout a patient’s clinical
history, and presents the traceability of the whole clinical care process. In contrast to
several publicly available EHR datasets, such as MIMIC-III [6] or eICU [7], our dataset
does not include clinical outcomes.

This dataset collects 82,712,233 records from 2016 to 2019, involving a total of
729,134 patients treated at various levels of healthcare, including one hospital, eleven
outpatient clinics, and emergency care. The information captured in this dataset is
related to billing data, mostly in categorical form, and includes information about the
medical specialties, procedures, diagnoses represented using ICD-10 codes (Interna-
tional Classification of Diseases) [8], among others (Figure 1.1).

Each patient’s clinical history is characterized by a chronological sequence of medical
events from EHRs. In turn, each medical event is defined by a medical action, a
diagnosis, and a timestamp. In this dissertation, we use medical services as medical
actions (see Table 1.1), but any other variable that represents the clinical trajectory
of a patient could be used. The diagnosis variable allows us to associate each medical
event with a specific disease, although it frequently contains missing values. In fact,
only 19% of these recorded events have associated diagnoses.

This dissertation will propose methodological approaches for this sequential data,
such as the segmentation of disease treatments, the identification of treatment subtypes
and their progression stages, modeling the irregular time intervals between medical
events within a treatment, and tracking the evolution of comorbidities when various
diseases coexist.
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Abbreviated form Full Form
ANES Anesthesia
CONS Consultation
DHOSP Day Hospital
EXTC External Consultation
FUNT Functional Testing
HCRI Critical Care Hospitalization
HOMEH Home Hospitalization
HOSP Hospitalization
INCO Interconsultation
LABO Laboratory
NUCM Nuclear Medicine
NURS Nursing Unit
OSAT Osatek (Magnetic Resonance Service)
PATH Pathological Anatomy
PAU Post Anesthesia Care Unit
PHAR Pharmacy
PHARAMB Hospital Pharmacy Services
RADI Radiology
REHA Rehabilitation
RTER Radiotherapy
SURG Surgery Unit
SWH Surgery without Hospitalization
UCRI Nursing Critical Care Unit

Table 1.1: Description of the medical services of the dataset.

1.2 Existing methods for disease progression mod-

eling

This section provides a brief overview of machine learning models developed for disease
progression tasks. We discuss how these methods have addressed EHR data challenges
when making outcome predictions through supervised learning and extracting mean-
ingful patterns through unsupervised learning.

Recently, deep learning techniques have been introduced to identify sequential and
temporal patterns within a patient’s medical history, enabling them to predict future
scenarios, including diagnosis [9–17], procedures [10, 14, 16, 18], and hospital readmis-
sions [14,16,19,20]. The effectiveness of these models is often attributed to the capacity
of the neural networks to learn nonlinear distribution and representation of data, as
well as to capture long-term dependency in sequences [21]. However, the complexity of
these approaches often limits their interpretability, making it challenging for healthcare
professionals to gain a deep understanding of the temporal evolution of a disease [21,22].
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Some works have attempted to develop interpretable models based on Recurrent
Neural Networks (RNNs) in the field of healthcare [9, 11, 12]. These models use atten-
tion mechanisms to understand underlying disease dynamics and provide explanations
for their discriminative predictions. However, their problem scope often differs from
our research, as their ambiguity regarding the association between medical events and
diagnoses is related to entire hospitalization episodes, as illustrated in Scenario 2 of Fig-
ure 1.3. In addition, they might not be suitable for handling missing data or providing
a probabilistic framework for addressing outcome uncertainties due to their determin-
istic internal structure. In [13] the authors propose a predictive model to overcome
these major uncertainty issues and produce a comprehensive estimate of future disease
progression trajectories. Nevertheless, this method relies on complete medical data
without missing values, which might not be realistic in practice [23].

SET OF DIAGNOSES SET OF DIAGNOSES SET OF DIAGNOSES

Medical events

Diagnoses

A ? ? C B ? ? D A ? ? ? ? A B?

Medical events

Diagnoses

SCENARIO 1

SCENARIO 2

Figure 1.3: Different uncertainty problems and scenarios regarding the association of
diagnosis to medical events. The circles refer to the medical events, the green squares
to diagnoses (some of them are missing) and gray rectangles to hospitalization episodes.
The contributions of this dissertation address the problem in scenario 1.

Another research line in disease progression modeling involves the use of probabilis-
tic methods to capture disease dynamics in an accurate and interpretable manner. For
instance, probabilistic topic models based on Latent Dirichlet Allocation (LDA) [24]
have been proposed to discover disease clusters and patient subgroups [25–28]. These
methods highlight the heterogeneous nature of a disease and the importance of develop-
ing models based on disease subtyping. Their main goal is to identify distinct treatment
subgroups, but they do not adequately take into account the temporal progression of a
treatment as a time series. They do not model the order of events in a sequence and
focus only on event frequency within the sequences. Therefore, they are not well-suited
for capturing disease dynamics.

Regarding the temporal dynamics of diseases, one aspect that has received lim-
ited attention is the estimation of irregular time intervals between consecutive medical
events. Despite the high prediction accuracy of deep learning methods when it comes to
future medical events, they rarely estimate the irregular time elapsed between medical
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events. However, modeling irregular time intervals in EHRs can lead to more effi-
cient healthcare and improved clinical resource management. Existing models, such as
Doctor AI [10], which is a RNNs-based approach, analyze patients’ medical history to
predict both the next diagnosis and the timing of the next medical visit. Other methods
incorporate irregularities into the model, although their primary goal is prediction of
medical outcomes rather than time estimation. For instance, DeepCare [14], which is
built upon Long Short Term Memory units, incorporates temporal decay and attention
mechanisms to account for temporal irregularity and importance variation in hospital
visits for diagnosis prediction. Deepr [19] is a Convolutional Neural Network based ap-
proach that detects clinical motifs while handling irregular timing in EHRs to predict
readmission within a time window. Even if these models include the irregular timing
in their structure to learn sequential and temporal patterns, ongoing research is needed
to address irregular time-related challenges and enhance temporal representation of
disease progression.

Certain methodologies focus on a broader range of diseases and consider the simulta-
neous occurrence of multiple conditions in a patient [10,17,21,25,29–31], which is often
referred to as comorbidities. While these approaches can predict and assess potential
future diseases for healthcare providers, they do not offer a complete understanding of
how comorbidities interact, evolve, or dynamically influence each other. Consequently,
there is a need for dynamic progression methods that account for disease interactions
over time, particularly in cases of comorbidity progression, as patients with one chronic
disease typically develop other conditions over time [32–34].

A potential approach to model sequences is the use of Hidden Markov Models
(HMMs) [30,35–42]. These generative models are based on latent variables that are ca-
pable of uncovering disease evolution patterns from heterogeneous types of treatments
in EHRs. As a result, they assist clinicians in obtaining more informative assessments
of patients’ clinical health status by relating these latent variables to meaningful clin-
ical information. In addition, they are practical models for purposes such as imputing
missing values and simulating new treatment trajectories. A specific type of Markovian
models, the continuous-time hidden Markov models, attempt to address the irregular
timing between events in sequences, capturing the time intervals between hidden vari-
ables as a means to model disease progression [30, 39, 40]. Some models account for
comorbidities but they overlook the fact that medical data may contain missing diag-
nostic values (Scenario 1 in Figure 1.3) [30,34]. Additional research is necessary in this
field to appropriately address the shortcomings of the existing generative models.

1.3 Unsupervised learning from sequences of events

This section provides a brief introduction to the fundamental unsupervised learning
techniques that support our models. These methodologies are essential for segmenting
and modeling sequences of medical events, allowing us to uncover hidden patterns and
relationships in EHRs. Sequence segmentation achieves the purpose of addressing the
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heterogeneity and variability present in treatment trajectories, while sequence modeling
enables to extract valuable patterns of progression from sequences of medical events.
Both challenges are tackled by including latent variables into our models.

1.3.1 Sequence segmentation

Given the heterogeneity in treatment trajectories, our goal is to group patients with
similar treatment patterns and establish a representative for each category. To achieve
this, we build our models upon different sequence segmentation methods [43]: par-
titional clustering based on distances and probabilistic clustering using mixtures of
distributions.

Partitional clustering. Partitional clustering refers to the process of dividing a
population into disjoint groups whose union forms the original set. The partitional
clustering technique we use is the K-medoids algorithm, which aims to identify K
clusters in a dataset and represents clusters with actual data points (medoids). To
do so, the algorithm iteratively minimizes the dissimilarity of each data point to all
other points within the same cluster and chooses the data point with the lowest total
dissimilarity as the medoid. At each iteration of the algorithm, each data point is
assigned to only one cluster, and the medoids of the clusters are redefined.

Formally, suppose we have a set A, then, the goal is to partition A into K clusters.
That is, create a partition Ak for k = 1, ..., K, where

⋃K
k=1Ak = A and Ai ∩Aj = ∅

for any i ̸= j. Each Ak is represented by a medoid.
The set A is commonly compossed by Rd vectors, that is, A = {a1, ...,aN} with ai ∈

Rd. Then, the distance is often measured by the L1 or L2
2 norm. In our case, the set A

is compossed by discrete sequences with varying length. Then, an appropriate distance
measure must be employed, such as the edit distance [44]. This metric calculates the
minimum number of editing operations required to transform one discrete sequence
into another. These operations are usually defined in terms of insertion, deletion, and
substitution of one symbol for another, often with different costs for each of these
operations.

In the following section, we explain how using probabilistic approaches leads to
more flexible assignments of the sequences to clusters, in a way that captures the level
of uncertainty over the most appropriate assignment.

Probabilistic clustering. Probabilistic clustering is a technique that involves par-
titioning a dataset into groups based on probabilistic models. Such methods are often
based on the assumption that the data are generated by a mixture of underlying proba-
bility distributions, for instance, mixture of Gaussians. These generative models include
a latent variable that probabilistically associates data points with clusters learned from
the data. As a result, each cluster can be represented in various manners, for instance,
by using the mean and variance, or by the data point with the highest probability of
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belonging to that cluster in the dataset, among others. Note that the probability dis-
tributions can be generalized to different kinds of data, such as numerical, categorical
or sequential data.

In our case, instead of data points we use sequences of different lengths. Then, sup-
pose we have a set of sequences A = {a1, ...,aN}, which correspond to the treatments
in EHRs. The random variable a is assumed to be distributed according to a mixture
of K components. Each component (cluster) is represented by a parametric distribu-
tion, and therefore, the entire data set is modeled by a mixture of these distributions.
Formally, the mixture distribution of a can be expressed as follows:

p(a) =
K∑
k=1

p(ck)p(a|ck),

where a is the observed sequence, p(ck) is the probability of belonging to the cluster k,
and p(a|ck) is the conditional probability distribution of the observation a given that
it belongs to the cluster k. It must be satisfied that

∑K
k=1 p(ck) = 1.

The objective is to estimate the parameters of the underlying probabilistic model
that best fit the observed data. This is achieved using the Expectation-Maximization
(EM) algorithm [45], which maximizes the likelihood from the given dataset considering
that the data is incomplete. EM algorithm iteratively follows these two steps until
convergence: the E-step determines the expected probability of assignment of sequences
to clusters with the use of current model parameters; and the M-step determines the
optimum model parameters of each mixture by using the assignment probabilities as
weights.

1.3.2 Sequence modeling

Given the significance of the order of events in a sequence, our research focuses on Hid-
den Markov Models (HMMs), which capture dependencies among sequence elements.
An HMM extends the concept of Markov model by introducing hidden states in their
structure. In an HMM, it is assumed that there is a set of hidden states generating
observations. An HMM has two primary components: the transition model, which de-
scribes the evolution of states over time; and the observation model, which describes
the manifestation of the state in the observed space. In Figure 1.4, the latent states
are denoted as s, with st corresponding to patient’s state at time t, and observations
are denoted as a where at represents the observed event at time t.

Formally, consider a sequence of m observations a = (a1, . . . , am) and its underlying
sequence of latent states s = (s1, . . . , sm) where st belongs to the set of latent states S
for all t. Then, the joint probability distribution of an HMM is given by

p(a, s|θ) = p(s1)p(a1|s1)
m∏
t=2

p(st|st−1)p(at|st).
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......s1 s2 st−1 st st+1 sm

a1 a2 at−1 at at+1 am

1

Figure 1.4: Hidden Markov Model structure.

EM algorithm for HMM. EM algorithm is used to maximize the likelihood function
of the HMM, which efficiently learns the parameters of models with latent variables [46].
The likelihood function is obtained from the joint distribution by marginalizing over
the latent variables, that is, summing over all possible latent state sequences, S:

p(a|θ) =
∑
s∈S

p(a, s|θ).

The maximization of the complete-data log-likelihood is not directly feasible due to
the unavailability of the complete dataset. That is, we do not know the corresponding
values of the latent variables for each observation. Our knowledge of the values of the
latent variables is given only by the posterior distribution p(s|a,θ). Therefore, since it
is not possible to use the complete-data log-likelihood, the EM algorithm considers its
expected value under the posterior distribution of the latent variables.

The EM algorithm starts with some initial selection for the model parameters, θold,
and iterates until convergence as follows:

• Expectation (E-step): In the E-step, the aim is to find the expected value of
the complete-data log-likelihood with respect to the latent states s given the ob-
served sequence a and the current parameter estimates. This involves calculating
the posterior distribution of the latent states given the observations, p(s|a,θold).
Then we use this posterior distribution to find the expectation of the complete-
data log-likelihood function, as a function of the parameters, θ. This expectation,
denoted Q(θ,θold), is given by

Q(θ,θold) = Es|a,θold [log p(a, s|θ)] =
∑
s∈S

p(s|a,θold) log p(a, s|θ).

• Maximization (M-step): In the M-step, the goal is to maximize Q(θ,θold)
with respect to the parameters θ in which p(s|a,θold) are treated as constants.
That is,

θ̂ = argmax
θ

Q(θ,θold).
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This optimization problem with respect to θ can be solved in closed form using
the method of Lagrange multipliers.

Each iteration of the EM is guaranteed to increase the log-likelihood and the algo-
rithm is guaranteed to converge to a local maximum of the likelihood function [46].

We can see an HMM as a special kind of mixture model in which the different
components of the mixture are dependent on each other through transitions. Thus,
the clustering of sequence data with a mixture of HMMs can be considered a two-level
mixture model.

1.4 Contributions

This section describes the contributions and provides an outline of the dissertation. The
main objective is to develop methodologies for unsupervised learning from sequences
of medical events that effectively uncover the underlying patterns of disease dynamics.
Our contributions can be summarized as follows: firstly, we develop a methodology to
extract the treatment of a specific disease from the whole medical history of a patient
considering missing diagnosis data in EHRs; then, we propose both partitional and
probabilistic clustering methods for identifying subtypes of treatments; finally, within
the probabilistic approaches, we present generative models to capture the progression
of disease treatments, incorporate the time variable, and manage patients with comor-
bidities.

1.4.1 Methodology for identifying representative treatment pat-
terns from EHRs.

Chapter 2 introduces a general methodology with a twofold objective. Firstly, to extract
complete treatments associated with a specific disease from EHRs, taking into account
that these repositories contain patients’ entire medical histories with co-occurring dis-
eases (Figure 1.2). Secondly, to identify the treatments that are representative of the
dataset. The methodology is specifically designed to address missing diagnosis data and
the variability observed in treatment trajectories within EHRs. This method serves as
a preliminary framework for the unsupervised classification of disease treatments.

To address the first objective, given that the association between events and diag-
noses is often not explicitly documented (Figure 1.2), we introduce a relevance measure.
This measure effectively identifies and represents treatment trajectories associated with
a specific diagnosis. Subsequently, we establish several selection criteria to ensure the
selection of complete end-to-end treatments within the dataset.

To achieve the second goal, we propose to use the K-medoids algorithm, which
groups similar treatments and represents these groups using actual sequences of medical
actions (treatments) from EHRs. To enable the comparison of discrete sequences of
varying lengths, we propose the normalized edit distance metric.
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The effectiveness of this methodology is demonstrated using breast cancer patients
as a case study, obtaining five groups of treatment patterns. These results have been
compared with clinical practice guidelines and validated by healthcare professionals,
which highlight the robustness and practical relevance of the proposed methodology.
Furthermore, it can be easily applied to other types of diseases.

1.4.2 Modeling disease progression patterns

Chapter 3 introduces a probabilistic generative model to discover treatment subtypes
of a disease and their progression stages. To do so, the model classifies sequences of
medical actions into different subtypes based on their evolution over time. This is
a probabilistic extension of the partitional approach outlined in Chapter 2 that also
incorporates sequence modeling based on the progression of the medical events.

To achieve this, the model incorporates a hierarchical structure of latent variables
associated with each sequence of actions. These latent variables have a twofold purpose:
classifying sequences and segmenting them into distinct stages based on their progres-
sion patterns. The model parameters are learned using the EM algorithm. We propose
an adaptation of the conventional forward-backward algorithm [47] for the learning
process to reduce the complexity to be polynomial.

The evaluation of our generative model consists of two parts: initially, we use syn-
thetic data to demonstrate that the learning procedure recovers the generative model
underlying the data. Subsequently, we assess the model’s potential to provide treat-
ment classification and staging information using real-world data of breast cancer pa-
tients. To validate its practical utility, we compare the results with clinical guidelines
and validate them with medical professionals. This model can be seen also as a tool
for classification, simulation, data augmentation, and imputation of missing data in
healthcare applications.

1.4.3 Modeling time-dependent disease progression patterns

Chapter 4 proposes an extension of the probabilistic generative model presented in
Chapter 3. This extension incorporates temporal information to capture the irregu-
lar time intervals between consecutive medical actions within the sequence of medical
events.

For this purpose, the structure of the model considers latent variables that classify
treatments into subtypes based on the patient sequence of medical events and the time
intervals, segment treatments into subsequences of patterns of disease progression, and
model the irregular time between every pair of medical events. It offers flexibility in
modeling the time distribution, allowing the choice of the most appropriate distribu-
tion based on the available data. To ensure efficient learning of the parameters, we
use the EM algorithm with an adaptation of the forward-backward algorithm to the
characteristics of our generative model.
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Through synthetic and real data experiments, we demonstrate the effectiveness of
our approach in learning the model underlying the data, estimating the irregular timing
between medical actions and classifying treatments into different subtypes. To show
the significant impact of including temporal data in our approach, we conduct both
qualitative and quantitative comparisons of the model against the one proposed in
Chapter 3, which does not incorporate irregular temporal information. By considering
this information, the model provides healthcare professionals with a more informative
view of how a disease may progress over time.

1.4.4 Modeling treatments of coexisting diseases with frequently
missing diagnosis

Chapter 5 presents a probabilistic generative approach for modeling the progression of
comorbidites, which is specifically designed to handle EHRs with substantial missing
data in the diagnosis variable (Scenario 1 in Figure 1.3). This model is a generalization
of the method proposed in Chapter 3 to handle multiple co-existing diseases. The
main objectives of this model include disentangling the medical history of patients
into treatments associated with comorbidities, learning the model associated with each
identified disease treatment, and grouping subtypes of patients with similar coevolution
of comorbidities.

To this end, the model considers a latent structure for the sequences: a latent class
to define the evolution of the comorbidities; and a latent sequence of diagosis to re-
late each observed medical event of a clinical history to a disease. Additionally, the
model describes the different joint evolution of coexisting diseases based on the active
comorbidities of the patient at each moment of their clinical history. The learning
process is performed through the EM algorithm, which efficiently addresses the ex-
ponential complexity of the latent variable configurations with a proposed dynamic
programming-based approach.

The evaluation of the method is carried out both on synthetic and real-world data.
The experiments using synthetic data demonstrate that the learning process effectively
learns the generative model that underlies the data. Furthermore, the experiments
conducted on real medical data, for patients with breast cancer and cardiovascular dis-
eases, show accurate results in the segmentation of sequences into different treatments,
subtyping of patients and diagnosis imputation.



Chapter 2

A methodology for identifying
representative treatment patterns
from EHRs

2.1 Introduction

The increasing availability of EHRs offers the opportunity to improve healthcare by
learning from past patient information. One important step towards this objective is
to learn data-driven representations of diseases. In this sense, disease subtyping has
gained significant attention in healthcare research, focusing on the identification and
classification of subgroups of patients who share similar characteristics within a specific
disease [48]. The discovery of disease subtypes can benefit healthcare management
tasks, such as reducing uncertainty in an individual’s expected treatment, estimating
the expected costs of care or evaluating adherence to medical guidelines [1].

Process mining techniques have been applied to identify representative clinical tra-
jectories and treatment patterns within EHRs [26, 49–52]. These methods involve ex-
tracting knowledge from sequences of events, with individual medical activities consid-
ered as such events [5]. Due to the heterogeneous behavior of medical data, these models
often result in complex outcomes that are hard to interpret [51]. Furthermore, the rep-
resentative treatments obtained from these models are artificial trajectories, which do
not describe appropriately the actual treatments recorded in EHRs.

Machine learning methods provide a potential solution to address these challenges
by grouping patients into more homogeneous subgroups. In the healthcare domain,
clustering techniques have been widely used for this purpose. For instance, some works
focus on hierarchical clustering using similarity metrics like the longest common sub-
sequence distance [53], DBScan with Levenshtein distance [54] or fuzzy c-means [55].
Others use K-means to cluster patients and then represent the trajectories of each
cluster with directed graphs where the edges indicate the flow of the events in the
trajectories [52]. These methodologies do not assume missing data and often fail in

13
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adequately representing the clusters with actual treatment trajectories from EHRs.
In addition to this clustering methods, probabilistic generative models have also

been developed to capture the heterogeneous nature of diseases. Some of these models
include LDA-based approaches [25–28], which do not account for the order of medi-
cal events. Additionally, HMM-based techniques [30, 40, 42] have been proposed for
identifying disease clusters and patient subgroups based on the evolution of continuous
medical variables or the occurrence of comorbidities. Rather than extracting represen-
tative treatment trajectories from EHRs, these models are developed to identify shared
characteristics within each cluster, such as similar values for the continuous variables
or common comorbidities within each cluster.

The objective of this chapter is to introduce a general methodology for identifying
the representative treatment trajectories for a disease from EHRs. In this methodology,
we specifically tackle the challenges in EHRs of both missing data and heterogeneous
treatments trajectories among patients. The main contribution of this chapter is the
proposal of a general framework that allows us to: (i) identify the medical actions
in EHRs associated with a particular disease; (ii) extract the complete end-to-end
treatment of patients related to the target disease from EHRs; and (iii) discover the
typical treatment trajectories followed by patients with a specific diagnosis.

To illustrate this in a real scenario, we apply the methodology to the real-world
dataset described in Section 1.1. We then compare the outcomes with clinical practice
guidelines and discuss the results with healthcare professionals to assess their alignment
with the treatments administered in practice.

The rest of this chapter is organized as follows. Section 2.2 briefly describes the
problem formulation and notation. Section 2.3 presents the methodology for identifying
the representative treatments in EHRs. Section 2.4 discusses the outcomes, and finally,
Section 2.5 draws the conclusions of the chapter.

2.2 Problem formulation

A patient’s treatment trajectory associated with a disease, denoted by a, is a sequence
of medical actions collected during repeated hospital visits. In our context, these actions
indicate the medical service that a patient has visited, including primary care, surgery
unit, hospitalization, and more (Table 1.1). Let A be the set of all the possible medical
actions, then, we define a (disease) treatment trajectory as

a = (a1, ..., am),

where ai ∈ A represents the i-th medical action of a patient. In addition, each medical
action a is related to a more detailed medical specialty x (see Figure 1.1). Therefore,
each sequence of medical actions is related to a more detailed sequence of medical
specialties, defined as

x = (x1, , ..., xm),
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where xi belongs to the set of all the medical specialties, X, such as gynecology, hema-
tology, radiation oncology, and so on.

Note that the treatment trajectory, a, represents a subsequence of a patient’s entire
healthcare trajectory, excluding actions that are not related to the target disease and
preserving those directly relevant to the disease. Extracting these specific subsequences
from EHRs is not straightforward due to the frequent presence of incomplete diagnosis
codes in these repositories. The lack of diagnostic values in many medical records,
combined with the presence of comorbidities, introduces uncertainty regarding the as-
sociation between medical events and specific diseases (as illustrated in Figure 1.2).
Therefore, the first problem of this chapter is to establish a method for directly extract-
ing disease treatment trajectories from EHRs related to a target disease, especially in
cases where diagnoses are missing.

Furthermore, the heterogeneity among patients often leads to different progression
patterns and a variety of treatments for the same disease. The second problem fo-
cuses on the unsupervised classification of the disease treatment trajectories and the
subsequent data-driven representation of the trajectories in EHRs.

2.3 Methodology

This section presents the methodology (Figure 2.1) for identifying and representing
typical treatments of a disease that patients follow within the healthcare system. For
this purpose, we develop a methodology to extract complete end-to-end treatments
associated with a diagnosis of interest from the entire medical history of the patients.
Subsequently, we apply a clustering method with the aim of discovering the different
subtypes of disease treatment trajectories. Note that clustering is an unsupervised
technique and it is performed without prior knowledge about the disease. Therefore,
although the validation of the clusters could be performed in terms of compactness or
coherence, we determined that the most appropriate evaluation of our approach was by
checking the results with medical guidelines and physicians. We proceed in this way to
validate the applicability of the whole methodology.

2.3.1 Creation of healthcare trajectories from EHRs

The first step is to convert the original EHRs into healthcare trajectories, which repre-
sent the clinical history of a patient (Figure 1.1). This structure involves transforming
EHRs into chronological sequences of medical actions, in such a way that each patient
has an associated healthcare trajectory. These sequences are discrete and of different
lengths, leading to significant variations in patients’ medical histories. For instance, one
patient might have only two hospital visits for routine check-ups, while another patient
with a chronic disease may frequently visit the hospital for therapy, medical tests, and
other procedures.
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Figure 2.1: Methodology of the study.

2.3.2 Extraction of complete end-to-end treatments associated
with a diagnosis

This section explains the extraction of complete end-to-end treatment trajectories as-
sociated with a target diagnosis from the entire healthcare trajectories of patients. We
achieve this through the following steps: (i) identifying the medical actions directly
associated with a disease, thereby defining the disease treatment trajectory for the
diagnosis of interest by excluding actions related to other coexisting diseases; (ii) se-
lecting patients with a high probability of having the entire diagnosis-related treatment
recorded in the dataset through the application of specific selection criteria. Ultimately,
this process enables us to obtain eligible disease treatment trajectories from EHRs for
the subsequent unsupervised classification and identification of typical treatment pat-
terns for the disease.

Identification of medical actions associated with a diagnosis. We define a
relevance measure to identify the typical medical actions related to the diagnosis of
interest. These medical actions are then used to create the disease treatment trajectories
a.

To formulate the relevance measure, we analyze the sequence of medical specialties
visited during patients’ healthcare trajectory. The dataset is divided into two groups
of sequences: sequences with at least one diagnosis of interest recorded, and sequences
without it. Within each group, we calculate the average frequency of the medical
specialties by patient, and the relevance is then determined by the ratio of the mean
frequency of these individual values between the two groups. A higher relevance value
indicates greater importance of the specialty for the disease. Therefore, we establish a
threshold λ in such a way that if the relevance is higher than λ, the medical specialty
is considered typical of the disease. That is, the medical specialty x ∈ X is considered



CHAPTER 2. IDENTIFYING REPRESENTATIVE TREATMENT PATTERNS 17

typical of the disease if

fxD

fxR

≥ λ. (2.1)

Both fxD
and fxR

represent the mean frequency of visits to a medical specialty x ∈
X among patients with the diagnosis of interest and the remaining of the patients,
respectively. Finally, to obtain the disease treatment trajectory a, we extract the
medical actions from the entire healthcare trajectory whose medical specialties are
considered typical of the disease.

Identification of patients with complete end-to-end treatments. Healthcare
trajectories might contain medical actions related to similar diseases (e.g., different
types of cancer), making it challenging to discern the specific diagnosis targeted in
the treatment trajectory. Additionally, there might be treatments that began before or
concluded after the recording period of the dataset, or even incomplete treatments with
lost follow-up. We propose various general selection criteria to address these issues:

• Ensuring that the disease treatment trajectory is directly focused on the aimed
diagnosis: a requirement to exclude patients with similar coexisting diseases (and
therefore, treatments) recorded in their medical histories.

• Avoiding treatments started before the recording period of the dataset or treat-
ments which did not finish before the closing date: medical procedures that are
crucial for diagnosing a disease must be required in every disease treatment tra-
jectory. Likewise, the absence of diagnosis-related actions in the first and last
months of the recording period is an important requirement to obtain end-to-end
treatments.

• Avoiding treatments with incomplete follow-up: a minimum follow-up time and
a minimum amount of actions recorded are essential.

These selection criteria must be adjusted specifically to each disease, taking into
account that the initial or final medical actions, as well as the typical time intervals
between initial and final actions, vary depending on the specific diagnosis being consid-
ered. Once these criteria are established, they are applied one by one to the dataset to
exclude patients that do not meet the specified requirements. The primary motivation
behind this data reduction is to identify patients who are highly likely to have the
complete end-to-end treatment for the disease recorded in the dataset.

2.3.3 Clustering: K-medoids with edit distance

This section describes the process to identify the subtypes of treatments and their
representatives. The main idea is to group together treatments in such a way that
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trajectories within a group are similar to each other but are dissimilar to trajectories
assigned to other groups. Therefore, the use of a clustering method [56] seems to be a
logical and promising approach.

We need to select a suitable distance measure that enables the comparison of discrete
sequences of actions with variable lengths. For this purpose, the most commonly used
sequence distance is the Levenshtein distance (or edit distance) [44], which enables us
to calculate the similarity (or dissimilarity) between pairs of sequences.

The definition of the distance is as follows. Given two strings a1 and a2 over a
finite alphabet, the edit distance between a1 and a2 can be defined as the minimum
weight of transforming a1 into a2 through a sequence of weighted edit operations.
These operations are usually defined in terms of insertion, deletion, and substitution of
one symbol for another, possibly with different costs for each of these operations. In
this work, the cost of insertion and deletion is 1, whereas the cost of substitution is 2.
Nevertheless, the edit distance is not sufficient for many applications comparing strings
with different lengths. Hence, normalization should be applied to appropriately rate the
weight of the edit errors concerning the sizes of the objects that are compared [44,57].

We use the K-medoids clustering method [43] to divide a dataset of N sequences
A = {ai}Ni=1 into distinct groups based on the similarity or dissimilarity between se-
quences. This method is a variation of the K-means algorithm but more appropriate
for making clusters of sequences of actions for serveral reasons: i) it can be computed
using distances between every pair of sequences of actions; ii) it does not require to
compute the centroid of a given set of sequences, which is computationally intractable
and can generate senseless sequences; iii) each cluster of sequences is characterized by
a real sequence of actions, known as the medoid; and iv) it is more robust to noise and
outliers.

Specifically, a common used K-medoids clustering algorithm is Partitioning Around
Medoids (PAM) [58]. The fundamental concept behind PAM is as follows: it seeks to
identify K representative medoids (representative treatments) in a dataset, and subse-
quently assigns each data point to the closest medoid, thereby creating clusters (sub-
groups of treatments). The primary objective is to minimize the sum of dissimilarities
between the objects in a cluster and the medoid of that cluster.

• Step 1. Initial step: arbitrarily choose K of the N sequences as the medoids to
form initial clusters.

• Step 2. Assignment step: associate each sequence to the closest medoid.

• Step 3. Update step: for each medoid m and each sequence a associated to m,
swap m and a and compute the average dissimilarity of a to all the sequences
associated with m. Select as the medoid of the cluster the sequence a with the
lowest average dissimilarity.

Repeat alternating steps 2 and 3 until there is no change in the assignments.

Thus, by using K-medoids clustering, we avoid generating artificial sequences of
actions for characterizing each group. In fact, the representative sequences are actual
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treatment trajectories belonging to the dataset. Obtaining these sequences of actions
that minimize the mean distance relative to the rest of the sequences of the group is an
NP-hard problem.

2.4 Experimental evaluation

This section describes the evaluation of the proposed methodology for extracting, seg-
menting and representing treatment trajectories from EHRs.

2.4.1 Dataset

We conduct a case study involving breast cancer patients to validate the proposed
methodology. This analysis is based on the dataset provided by the public health
care system Osakidetza, which has been introduced in Section 1.1. The methodology is
applied on data exclusively from the years 2016 and 2017, in which the 75% of diagnoses
are missing.

2.4.2 Extraction of complete end-to-end treatments associated
with breast cancer

First of all, the target population comprised 1456 patients with breast cancer diagnosis
out of 579,798 patients between January 1, 2016, and December 31, 2017. This se-
lection of patients from the dataset is made according to the International Statistical
Classification of Diseases and Related Health Problems (10th revision) [8], where every
code starting by C50 corresponds to breast cancer diagnosis.

Identification of medical actions associated with breast cancer. The associa-
tion of actions with a diagnosis is made through the relevance of the medical specialties
(Equation (2.1)). Table 2.1 shows those medical specialties whose relevance is higher
than λ = 3, that is, the medical specialties given at least 3 times more frequently
in breast cancer patients. Only the medical actions carried out in these 18 medical
specialties are included when creating the final treatment trajectories of patients with
breast cancer. Once these treatment trajectories are extracted, 21 patients out of 1456
had no action occurring in these medical specialties, therefore, they are excluded from
the study.

Identification of patients with complete end-to-end treatments. Once the
association between actions and breast cancer diagnosis is known, we can extract for
each patient the subsequence of actions that describe the treatment of breast cancer,
a. However, these sequences may be incomplete. Hence, we will select the sequences
of actions that have high probability of describing complete treatment trajectories of
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Medical Specialties Relevance Medical Specialties Relevance
Gynecologic Oncology 85.9 Gynecology 9.3
Radiotherapy 78.3 Genetic Laboratory 8.8
Plastic Surgery 66.0 Surgery Unit 5.8
Medical Oncology 36.4 Anesthesia 5.6
Day Hospital 16.5 Home Hospitalization 4.8
Nuclear Medicine 11.7 Pathological Anatomy 4.2
Day Surgical Hospital 10.5 Hospitalization 3.5
Genetics 10.2 Others 3.3
Major Burns Unit 9.5 Radiology 3.0

Table 2.1: Relevance of the medical actions associated with breast cancer diagnosis.

breast cancer. In order to do that, we propose some selection criteria, listed in Figure 2.2
and explained as follows.

First of all, the patients with any other type of cancer diagnosis apart from breast
cancer are filtered out, otherwise, we could not distinguish which cancer diagnosis the
treatment is focused on. Moreover, to ensure that the pathology has been diagnosed in
the recording period of our dataset, at least one record of a breast biopsy procedure is
required. It is the only definitive diagnostic procedure to determine if the suspicious area
is cancerous [59], and therefore, should be performed for every breast cancer diagnosed
patient.

Regarding the recording time of treatments, we consider that a treatment is com-
pletely recorded in the dataset if there is no diagnosis in the first and last months.
Therefore, the breast cancer diagnosis must be between the 1st February 2016 and the
30th September 2017. If any patient with a breast cancer diagnosis record out of this
period was included, we assume that it is the continuation of the treatment previously
started or the continuation after 2017.

For the same reason, we need to avoid radiotherapy or chemotherapy actions in
the last period of the dataset. Radiotherapy is delivered daily or every 2 days, and
chemotherapy every 1-3 weeks [59]. Therefore, if there exists any radiotherapy or
chemotherapy action in the last 3 weeks of 2017, it means that it is an unfinished
treatment.

Likewise, the period of medical assistance recorded must be at least 3 months once
the patient has been diagnosed with breast cancer. Additionally, the minimum number
of associated actions in their treatment trajectories must be at least 15 in order to
avoid incomplete sequences of actions, this could mean that patients abandoned the
treatment or their follow-up was lost for some reason.

After applying these selection criteria, there are in total 440 out of 1456 patients
(30.2%) with a high probability to present a complete treatment of breast cancer in
the EHRs. These breast cancer treatment trajectories are made up of the actions
occurred in the medical specialties in Table 2.1 and they are the eligible sequences for



CHAPTER 2. IDENTIFYING REPRESENTATIVE TREATMENT PATTERNS 21

Figure 2.2: Proposal for the selection criteria for breast cancer diagnosis.

the unsupervised classification. The treatment trajectories are of variable lengths, in
fact, the minimum treatment trajectory is made of 15 actions and the maximum one of
217 actions. The distribution of these durations of treatments is shown in Figure 2.3.

2.4.3 Representative treatments and their adherence to clini-
cal practice guidelines

K-medoids algorithm is applied to the eligible disease treatment trajectories to identify
the treatment patterns for breast cancer patients, with K ranging from 2 to 10. From
5 clusters on, the treatment patterns are repeated, and therefore, we consider a total of
5 subtypes, which are shown in Figure 2.4. The 5 horizontal lines are the representa-
tive disease treatment trajectories (medoids), and the vertical lines correspond to the
hospital services visited by the representative patients over time.

To validate the results, the representative trajectories are compared with clinical
practice guidelines, specifically, with the European Society for Medical Oncology breast
cancer guideline [59, 60]. These guidelines provide updated state-of-the-art recommen-
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Figure 2.3: Distribution of the length of the breast cancer treatment trajectories.

dations on management of breast cancer (diagnosis, treatment and follow-up). Besides,
the outcomes have been also contrasted and approved by physicians.

The 5 sequences obtained fundamentally represent different treatment trajectories
to deal with breast cancer. We can see in Figure 2.4 that all of them start with
Consultation, Pathological Anatomy, Nuclear Medicine and Radiology visits. In these
hospital services, the breast examinations and tests are carried out: in Radiology tests
such as sonography, mammogram or even some radiography; in the case of Pathological
Anatomy and Nuclear Medicine, the biopsy test and cancer diagnosis. According to
the clinical practice guideline, a biopsy must be done before any type of treatment is
initiated and the five groups accomplish it in Pathological Anatomy actions.

The main therapies of each group are as follows (Figure 2.5):

• Group 1: Surgery + Chemotherapy + Radiotherapy (66 patients, 15
%). The representative disease treatment trajectory involves a 15-week course
of chemotherapy (within the recommended duration of 12-24 weeks) after breast-
conserving surgery, and then, a month of radiotherapy is administered. According
to the guideline suggestions, if both therapies are used, chemotherapy should
usually precede radiotherapy, as done in this case.

• Group 2: Surgery + Radiotherapy + Hormonal Therapy (89 patients,
20.3 %). This representative patient combines radiotherapy and hormonal ther-
apy. The representative patient in this case undergoes a combination of radiother-
apy and hormonal therapy. According to medical guidelines, hormonal therapy
can be safely administered concurrently with radiotherapy and typically lasts 5-10
years. However, it’s important to note that the dataset collects information over a
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Figure 2.4: Clustering results. Representative medoids considering 5 groups. See Ta-
ble 1.1 for the description of the medical actions in the legend.

period of up to 2 years, making it challenging to corroborate long-term follow-up
outcomes.

Hitherto, it is worth mentioning that there exist two types of surgery when it
comes to breast cancer: breast-conserving surgery, in which the surgical team
removes the tumor but tries to keep as much of the breast as possible (it is the
preferred local treatment option for the majority of early breast cancer patients,
in fact, this procedure is performed in most of the groups); or mastectomy, in
which the whole breast is removed. In this latter case it is possible to have no
therapy after surgery, and in general terms, these are commonly early invasive
breast cancer patients [59].

• Group 3: Surgery + Hospitalization (108 patients, 24.6%). We suspect that
this particular class corresponds to the group of patients who undergo mastec-
tomy, as they receive no further therapy after the surgical procedure. Instead,
their post-surgical care involves a series of hospitalization actions combined with
nursing interventions. These hospitalizations after undergoing surgery might be
due to complications, that is, deviations from guidelines since nothing is explic-
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Figure 2.5: Clustering results. Treatment patterns of each class. See Table 1.1 for the
description of the medical actions in the legend.

itly mentioned there about hospital stays. This group constitutes one of the
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highest number of patients, however, we suspect that some of these patients may
come from other hospitals only for surgical treatment. This conclusion arises
from discussions with practitioners and clinicians who have indicated that it is
not common to have such a significant number of patients without post-surgical
therapy in their regular practices.

• Group 4: Surgery + Radiotherapy (137 patients, 31.2%). This group of pa-
tient describes the most simple and common delivered treatment. The representa-
tive patient undergoes breast-conserving surgery, and then receives postoperative
radiotherapy, which is highly recommended in practice guidelines.

Until now, all the representative treatments start therapy after undergoing surgery,
which known as Adjuvant Systemic Treatment. However, the remaining group
is the only one that also receives therapy before undergoing surgery. This type
of treatment is called Neoadjuvant Systemic Treatment and should be used to
reduce the extent of surgery in locally advanced and large operable cancers.

• Group 5: Chemotherapy + Surgery + Hospitalization + Radiotherapy
(40 patients, 9.1%). According to the guidelines, when Neoadjuvant Systemic
Treatment is used, all chemotherapy should be delivered preoperatively as done
in this case. In particular, 8 rounds of chemotherapy were delivered in 16 weeks,
which comes with the recommendation of 12-24 weeks. Furthermore, they men-
tion that magnetic resonance imaging of the breast, which is a test used to detect
breast cancer and other abnormalities, is the most accurate modality for assess-
ing the extent of residual disease following Neoadjuvant Systemic Treatment. It
should also be carried out before initializing the treatment for proper compara-
tive evaluation. In this patient, it was conducted in the Radiology unit after the
first 5 sessions of chemotherapy and once the entire therapy was completed. Af-
ter breast-conserving surgery, postoperative radiotherapy was delivered, strongly
recommended by the clinical guideline. We can observe also in this group some
hospitalization actions that deviate from established medical practice guidelines.

The follow-up of the patients is not clearly defined since our dataset only covers
2 years. However, in these 2 years, based on the clinical guideline recommendations,
regular visits should be made every 3-4 months. These regular visits correspond to
Consultations in the final part of the representative disease treatment trajectories.
Furthermore, annual bilateral (after breast-conserving treatment) and/or contralateral
mammography (after mastectomy) is also recommended. Bilateral mammography in
Radiology was performed in the 5 groups. In some cases, they also have Functional
Testing actions (groups 1, 2, 3 and 4) or Nuclear Medicine actions (group 1), which are
also likely to be related to the follow-up.
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2.5 Discussion

The methodology is designed to tackle the missing information and heterogeneity in
EHRs. In addition to that, we also face the difficulty of having comorbidity together
with missing diagnosis. The effectiveness and applicability of this methodology have
been tested using breast cancer patients, but it can be applied to identify distinct treat-
ment patterns for various other medical conditions, including short-duration diseases.
Subsequently, a comparison of the outcomes with clinical practice guidelines can be
conducted to determine whether they are adhered in practice. It is also worth men-
tioning that the identified treatment patterns might be useful for detecting deviations
in the treatments from these guidelines.

However, there are some limitations to the application of the proposed methodology.
For common diagnoses, such as acute sinusitis, it may fail to identify associated actions
effectively. Patients with this type of usual pathologies may visit regular medical spe-
cialists (e.g., primary care or consultations), and therefore are unlikely to present high
relevance values. That is, they will have no distinctive medical specialty in order to
extract the associated disease treatment trajectories (see Equation (2.1)).

Another limitation arises when attempting to extract complete treatments from
EHRs for long-duration diseases, exceeding the recording time of the EHRs. These
pathologies will have no complete treatments in the dataset as required in the proposed
methodology. In fact, in the particular case of breast cancer, some treatments usually
finish with hormonal therapy for 5-10 years, however, the recording time of the dataset
is of 2 years. In [30] the authors designed a method for creating complete treatments
of pseudopatients by merging partial treatments. That is, they align the final part of
some patients’ disease treatment trajectories that coincide, to some extent, with the
initial part of others.

Furthermore, the proposed methodology does not take full advantage of the temporal
information. Incorporating the time variable could enhance the results in multiple ways
[61], such as better identification of diagnosis-associated actions and improved clustering
outcomes. Timestamps could be included in the definition of an action asτ = ti− ti−1).
Then, actions with a τ value higher than a threshold ρ could be excluded from disease
treatment trajectories. For instance, in breast cancer cases, it would not make sense
to have a surgical action without any prior breast cancer-related action (e.g., a biopsy
procedure) within a 2-month period. Likewise, the cluster outcomes might be improved
if the time were considered when defining the proper distance for comparing sequences:
the larger the τ value, the larger the penalization between actions, even if the hospital
services match.

In the subsequent chapters we extend this methodology to capture the progression
of medical actions over time. This means that the methodology would not only consider
the chronological order of medical actions within treatment trajectories but also how
medical actions evolve as a patient undergoes a treatment. This enhancement involves
tracking changes in patients’ health states and the progression patterns of medical ac-
tions. By doing so, we obtain a more comprehensive and dynamic representation of
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disease treatment trajectories, which offers valuable insights into the temporal progres-
sion patterns of treatments.

2.6 Conclusion

This chapter proposes a methodology to identify treatment patterns for a disease of in-
terest using EHRs, even when diagnosis information is incomplete or missing. Through
the definition of a relevance measure and several selection criteria, we extract com-
plete end-to-end treatments composed by the medical actions directly associated with
a specific diagnosis. Then, we use the K-medoids algorithm with the normalized edit
distance as a distance metric to group patients and identify representative treatment
patterns from EHRs.

Practical applications with breast cancer patients demonstrate the model’s ability
to extract complete end-to-end treatments from clinical data with missing values, seg-
ment treatment populations, and depict this population with a set of representative
treatments from EHRs. It is important to highlight the potential applicability of the
methodology to a wide range of diseases. The validation of the experimental results
by healthcare professionals and the alignment of the treatments with clinical practice
guidelines further improves the reliability of the proposed methodology.





Chapter 3

A probabilistic generative model for
disease progression

3.1 Introduction

Disease progression research aims to improve the understanding of complex and hetero-
geneous pathologies. This is achieved by modeling the evolution of disease trajectories
over time, taking into account changes in patients’ health states and considering the
chronological order of medical events. Generative models have shown the potential to
capture these disease dynamics from sequential medical data. However, creating accu-
rate models to understand this progression in sequences of events remains a fundamental
challenge in the field of medical informatics.

In Chapter 2, we revealed substantial variability in treatment trajectories, highlight-
ing the need for models that account for disease treatment subtypes. To tackle this
variability, the method proposed in the previous chapter employs a partitional cluster-
ing approach based on sequence distances. This technique associates each treatment
trajectory with a unique cluster, and represents the clusters through treatments ex-
tracted from EHRs. However, it does not explicitly model the evolution of treatment
trajectories as disease progression models do. A probabilistic clustering model could
effectively capture the progression dynamics, while simultaneously considering diverse
subtypes of treatments.

The importance of addressing the heterogeneity in clinical trajectories has been also
evidenced by works based on the conventional LDA that aim to identify subgroups
of patients with similar trajectory characteristics [25–28]. However, these approaches
often assume that all individuals are at a unique treatment progression stage, limiting
their ability to account for treatment progression. Additionally, they face challenges in
capturing the temporal order of medical events, as they primarily model the frequency
of each event type rather than being generative models of the sequential medical events.

HMMs have been widely used for disease progression due to their easy interpretabil-
ity and their temporal relation assumption in data. Most existing HMMs [12,35–39,62]

28
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assume that all patients evolve through the same latent state transition dynamics, thus
ignoring the heterogeneity of different subtypes of disease progression. Other proba-
bilistic approaches that simultaneously address disease state progression and treatment
subtyping [30, 40–42] are limited to model the evolution of observed data through a
latent process and do not directly handle the sequential dependence within medical
actions, that is, the order in which the medical events occur.

Various predictive deep learning models have also been developed for healthcare
settings [10, 12–15, 19, 20, 63]. They not only ignore the variability in treatments, but
also their hidden states do not correspond to clinically meaningful variables such as the
treatment evolution patterns provided by probabilistic models. While these methods
succeed in predicting a target outcome, they do not provide a generative model of
the disease progression to identify patients with similar disease progression patterns,
to understand the evolution of treatments through interpretable distributions of stage
transitions, or to simulate populations of treatment trajectories.

This chapter introduces a probabilistic generative model that employs latent classes
to cluster treatment trajectories and latent stages to identify their temporal progression
within each subtype. In summary, the key contributions of this work are as follows:

• We model EHRs using a probabilistic generative model built on Markov models to
capture the order of occurrence of the events. The model discovers the subtypes
of treatments by grouping the sequences of medical actions into different classes
according to their evolution and identifies the progression stages of the treatments
over time.

• We efficiently learn the model with the EM algorithm [45] and a dynamic programming-
based method that reduces the complexity of the model learning process from
exponential to polynomial.

• We evaluate the learning performance of the model in multiple simulated datasets
of different sizes with to demonstrate that the model underlying the data is re-
covered.

• We apply the model on a breast cancer dataset to represent the progression of the
different classes of treatments and their phases. The results are contrasted with
clinical guidelines and approved by physicians.

The remainder of this chapter is organized as follows. Section 3.2 describes the
problem formulation. Section 3.3 introduces the novel probabilistic generative model
and the learning process of the parameters by means of the EM algorithm. Section 3.4
presents the results of the synthetic data experiments that evaluate the performance of
the proposed method, and the application of the model on a real-world dataset. Section
3.5 discusses the contributions and limitations of our approach. Finally, Section 3.6
draws the conclusions.
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3.2 Problem formulation

A patient’s treatment trajectory, represented as a, consists of a sequence of medical
actions accumulated during multiple hospital visits associated with a specific disease.
In our context, these medical actions indicate the medical service that a patient has
visited, including primary care, surgery unit, hospitalization, and more (see Table 1.1).
Let A be the set of all the possible medical actions, then, we define a (disease) treatment
trajectory as

a = (a1, ..., am),

where ai ∈ A represents the i-th medical action of a patient.
Given a dataset of medical records, the objective is to develop a probabilistic gen-

erative model to effectively capture the disease subtypes and the progression patterns
from a set of sequences.

3.3 Methodology

This section describes the proposed probabilistic generative model and the procedure
for the inference and the parameter estimation.

3.3.1 Model definition

The general idea is to develop a probabilistic generative model to learn the underlying
distribution of a set of discrete sequences of different lengths. We assume that sequences
of actions have an associated hierarchical structure of latent variables: at the top-level,
we consider that sequences belong to latent classes representing the different subtypes of
treatments; at the lower-level, we assume that the sequences of actions progress through
a set of latent ordinal-valued stages over time, that is, each action of a sequence has an
associated stage that indicates the phase of progression of the treatments at that time
point. The goal, therefore, is to simultaneously infer these latent classes of treatments
and their progression stages to capture the heterogeneity of the sequences of medical
actions.

For the definition of the generative model, we consider that an action depends
on the sequence’s most recent action and stage within a class. Furthermore, a stage
within a class depends on the current action and the previous stage. The duration of
the progression stages for each sequence is likely to be different because each patient
evolves at their own rate, and consequently, the lengths of the sequences of actions vary.
For that reason, we introduce the virtual end-of-treatment action am, which allows to
implicitly model the length of a population of sequences of actions. The inclusion of
this end-of-treatment action prevents the generative model from creating sequences of
infinite length. Besides, we consider that the sequences of actions always start in the
first stage, representing the initial steps of the treatment. We assume that all the classes
of treatments have the same number of stages. The definition of such stages makes it
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possible to segment each class of treatments into subsequences that are related to their
progression. Note that equivalent stage values across different treatment classes denote
distinct subsequences, which allows the model to be more flexible and to better fit a
population of sequences of actions. With these assumptions, we develop a generative
process built on Markov models that classifies and segments sequences automatically.

Let a = (a1, ..., am) be the sequence of medical actions representing a treatment of
a patient associated with a disease. The medical actions ai belong to a set A which is
the set of all the possible medical actions including the virtual end-of-treatment action.
Let s = (s1, ..., sm) be the sequence of latent stages of the treatment associated with the
sequence of actions a. The stages si belong to a set S = {1, ..., r} that represents all the
possible stages of a treatment trajectory. Finally, let c be the latent class of treatment
which a belongs to. The classes c belong to a set C = {1, ..., k} that represents the
subtypes of treatments for a disease. Furthermore, we assume that the progression
stages of a sequence of actions are non-decreasing, that is, a sequence can not progress
backward. Therefore, st ≤ st+1 for all t = 1, ...,m− 1.

...

... ...

...a1 at−1 at at+1 am

s1 st−1 st st+1 sm

c

1

Figure 3.1: Generative model defined by the conditional distributions p(at|at−1, st−1, c)
and p(st|at, st−1, c) for sequences of actions a, latent sequences of stages s and latent
classes c.

The proposal for the probabilistic generative model is as follows (see Figure 3.1):

a) Draw a class of treatment c ∼Mult(θC)

b) Draw the initial medical action and the initial stage

a1|c ∼ Cat(πc
A), s1|a1, c ∼ Cat(πa1,c

S ).

c) For each timestamp index t:

i) Draw a medical action from p(at|at−1, st−1, c), the transition matrix of the
Markov model conditioned on the action at−1, the stage st−1 and the class
c. That is,

at|at−1, st−1, c ∼ Cat(θ
at−1,st−1,c
A )
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ii) Draw a stage si from p(st|at, st−1, c), the transition matrix of the Markov
model conditioned on the action at, the stage st−1, and to the class c, that
is,

st|at, st−1, c ∼ Cat(θ
at,st−1,c
S )

Translating the generative process into a joint probability model results in the ex-
pression:

p(a, s, c) = p(c)
m∏
t=1

p(at, st|at−1, st−1, c) (3.1)

where
p(at, st|at−1, st−1, c) = p(at|at−1, st−1, c) · p(st|at, st−1, c)

and p(a1, s1|a0, s0, c) = p(a1, s1|c). Furthermore, s1 = 1, am = end, and st−1 ≤ st for
all t.

In light of the above, p(c) is a multinomial distribution that describes the probability
of drawing a class from the set of classes of treatments C. We define θC as the set of
such probabilities:

θC = {p(c) : c ∈ C} (3.2)

In addition, we define the Markov models from which the actions and stages are drawn
as follows (see Figure 3.1). The first conditional distribution is given by a set of |C|
transition matrices of size |A||S| × |A| whose model parameters are:

θA = {θa,s,c
A : a ∈ A, s ∈ S, c ∈ C} = {p(a′|a, s, c) : a, a′ ∈ A, s ∈ S, c ∈ C}. (3.3)

The other conditional distribution is given by a set of |C| transition matrices of size
|A||S| × |S| whose model parameters are:

θS = {θa,s,c
S : a ∈ A, s ∈ S, c ∈ C} = {p(s′|a, s, c) : a ∈ A, s, s′ ∈ S, c ∈ C}. (3.4)

Finally, the parameters of the initial generative model for medical actions and stages
are defined as πc

A and πa,c
S , respectively.

For the sake of simplicity, we define the classes of treatments with a fixed number
of stages. This way, the notation is simplified and it is easier to understand the main
idea of the model. However, it is possible to define a more flexible model in terms of
stages. It may be the case that some sequences are incomplete because the treatment
of a patient is still in progress by the closing date of the dataset. With this flexibility,
the model manages to segment the complete sequences into the maximum number of
stages r+, but also the incomplete sequences into a lower number of stages, ranging
from r− to r+.
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3.3.2 Maximum likelihood parameter estimation

This section introduces the learning procedure of the parameters of the model. Given
an observed sequence of actions a = (a1, ..., am) and its underlying latent sequence of
stages s and class c, we can compute the likelihood function from the joint distribution
in Equation (3.1) by marginalizing over the latent variables

p(a;θ) =
∑
c

∑
s

p(a, s, c;θ).

As discussed in Section 1.3.2, the complete dataset, including the respective la-
tent variable values for each observation in D, is unavailable. Hence, we use the EM
algorithm [46] to find an effective framework for maximizing the likelihood function.
This involves considering the maximization of the expected value of the complete-data
log-likelihood concerning the posterior distribution of the latent variables, denoted as
p(s, c|a):

max
θ

∑
a∈D

∑
s∈Sa

∑
c∈C

p(s, c|a) · log p(a, s, c;θ) (3.5)

where Sa is the set of all the potential configurations of the sequences of stages for
a, and θ = {θA,θS,θC} the parameters of the model to be learned. Note that each
sequence a contributes equally to the model regardless of its length, and this is achieved
because ∑

c∈C

∑
s∈Sa

p(s, c|a) =
∑
c∈C

∑
s∈Sa

p(s|a, c) · p(c|a) = 1. (3.6)

The EM algorithm starts with some initial selection for the model parameters and
iterates as follows:

E-step. In this step, the goal is to calculate the posterior distribution of the latent
variables given the observed sequence of actions a, that is, p(s, c|a). We then use this
posterior distribution to evaluate the expectation of the logarithm of the complete-data
likelihood function, as a function of the parameters θ (Equation (3.5)).

M-step. In the maximization step the aim to update the parameters of the generative
model to maximize the likelihood of the observed data in Equation (3.5), based on the
expected values of the latent variables computed in the E-step.

3.3.2.1 Efficient learning of the parameters of the model

Suppose that we have a training set D = {ai}Ni=1 that consists of a set of sequences of
actions a = (a1, ..., am), a latent variable of stages s = (s1, ..., sm) and a latent variable
of classes c.

In the E-step, we are interested in finding the marginal posterior distribution p(s′|a, c)
and p(s, s′|a, c) for s′, s ∈ S to learn the maximum likelihood estimate parameters. To
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achieve this, we need to marginalize p(s|a, c) and compute the probability of all the
sequences of stages with the form (s1, ..., st−2, s, s

′, st+1, ..., sm) in c for each s, s′ ∈ S.
Recall that this requires

(
m−2
r−1

)
number of configurations for s (the last stage is fixed),

which is exponential. Adopting the notion of the forward-backward algorithm used for
learning HMMs [46], we develop a generalization of this dynamic programming method
for the specific characteristics of our model, which avoids the exponential complexity.
The conventional algorithm does not suffice for constructing our forward-backward
filtering algorithm since we need to account for the direct sequential relation between
the observations, as well as the classes and the latent correlation structures of stages
on observed actions.

Let us assume that fc(t, s) is the sum of the probabilities of all the sequences of
stages (s1, ..., st) in the class c that ends at st = s, and gc(t, s) is the sum of the
probabilities of all the sequences of stages (st+1, ..., sm) that starts at st = s in the class
c. Then,

fc(t, s) =
∑
s1:t−1

p(a1:t−1, s1:t−1|c) · p(at|at−1, st−1, c)p(st = s|at, st−1, c) (3.7)

gc(t, s) =
∑

st+1:m

p(at+1:m, st+1:m|st = s, c), (3.8)

where ai:j = (ai, . . . , aj) and si:j = (si, . . . , sj).
Now, we can express the sum of the probabilities of the sequences for which st−1 = s

and st = s′ as

p(st−1 = s, st = s′|a, c) =
p(st−1 = s, st = s′,a|c)

p(a|c) . (3.9)

Using Equations (3.7) and (3.8),

p(st−1 = s, st = s′,a|c) =

=
∑
s1:t−2
st+1:m

p(a1:t−1, s1:t−2, st−1 = s|c) · p(at|at−1, st−1 = s, c) · p(st = s′|at, st−1 = s, c)·

p(at+1:m, st+1:m|st = s′, c)

=fc(t− 1, s) · p(at|at−1, st−1 = s, c) · p(st = s′|at, st−1 = s, c) · gc(t, s′)

We can store the values obtained from the functions fc and gc for t ∈ {1, ...,m}
and s ∈ S in a matrix of size r × m associated with each function. Using dynamic
programming, we efficiently compute fc and gc and reduce the number of computations
for the parameter estimation. The functions fc and gc are defined as recursive functions
as follows (see Figure 3.2):
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fc(t, s) =p(at|at−1, s, c) · p(s|at, s, c) · fc(t− 1, s)

+ p(at|at−1, s− 1, c) · p(s|at, s− 1, c) · fc(t− 1, s− 1)

gc(t, s) =p(at+1|at, s + 1, c) · p(s + 1|at+1, s, c) · gc(t + 1, s + 1)

+ p(at+1|at, s, c) · p(s|at+1, s, c) · gc(t + 1, s)

s1

s2

s3

s4

t − 1 t t + 1

f

g

1

Figure 3.2: Dynamic programming procedure developed to learn the parameters of
the model. The orange box represents Equation (3.9), and f and g correspond to the
recursive functions. The black arrows generate all the possible sequences of stages that
pass through the orange box. Note that in this example the maximum stage r+ is the
same as the minimum stage r−.

The functions fc and gc are defined in such a way that consecutive stages st−1 and st
are non-decreasing, st−1 ≤ st for t = 1, ...,m. Intuitively, we use dynamic programming
and marginalize over p(s|a, c) in an exponential number of stages in order to obtain
p(st = s|a, c) and p(st−1 = s′, st = s|a, c).

In the M-step, we use the posterior distributions computed using Equation (3.9) as
constants to maximize Equation (3.5) with respect to the parameters θ. This max-

imization is achieved using Lagrange multipliers (see Appendix A.1). If θa,s,ca′ , θa
′,s,c

s′

denote a component in θa,s,c
A , θa,s,c

S , respectively, the model parameters corresponding
to the transition from the pair (a, s) to (a′, s′) given the class c where a, a′ ∈ A and
s, s′ ∈ S are updated as follows:

θa,s,ca′ =

∑
a∈D

∑ma

t=1 1a,a′(at−1, at) · p(st−1 = s|c,a)∑
a′∈A

∑
a∈D

∑ma

t=1 1a,a′(at−1, at) · p(st−1 = s|c,a)
(3.10)

θa
′,s,c

s′ =

∑
a∈D

∑ma

t=1 1a′(at) · p(st−1 = s, st = s′|c,a)∑
s′∈S

∑
a∈D

∑ma

t=1 1a′(at) · p(st−1 = s, st = s′|c,a)
(3.11)

where

1a,a′(at−1, at) =

{
1 if at−1 = a, at = a′

0 otherwise
.

and

1a′(at) =

{
1 if at = a′

0 otherwise.
.
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Finally, if θc denotes a component in θC , we update the probability of the class of
treatments c ∈ C as follows:

θc =

∑
a∈D p(c|a)∑

c∈C
∑

a∈D p(c|a)
. (3.12)

At each iteration of the algorithm, we combine the expectation and maximization
steps for each sequence of actions a in such a way that we avoid storing, in the E-step,
the exponential number of probabilities of all the possible sequences of stages and classes
for the entire dataset D. In addition, note that the proposed dynamic programming
based method allows the EM algorithm to be solved considering the exponential number
of sequences of stages with a computational complexity of O(N ·m2), where m is the
length of the longest sequence of actions.

The large amount of possibilities in the combination of pairs of sequences of actions
and stages creates problems of sparsity in the Markov models. Once the maximum
likelihood estimation of the parameters assigns zero probability to some transition,
there is no possibility to obtain in the subsequent step a different value for that pair
of action-stages. We solve this problem by smoothing the parameters of the Markov
models in each iteration of the EM algorithm.

3.3.3 Inference on latent classes and stages

Given the proposed model and the observed sequences of actions, we can efficiently
make inference regarding the latent classes and stages by means of the dynamic pro-
gramming based algorithm (see Section 3.3.2.1) in spite of their exponential number of
configurations. In this way, we can compute:

• The probability of the latent classes given a sequence of actions p(c|a) or the
entire dataset p(c).

• The probability of a latent sequence of stages given a sequence of actions and a
class, p(s|a, c).

• The probability of being in each latent stage of a class at each time point given
the observed sequences of actions, that is, p(st = s|a, c) for t = 1, ...,ma.

• The probability of a sequence of actions given a class, p(a|c).
• The probabilities p(st, c|a) and p(st−1, st, c|a) computed in the EM algorithm

(Equations (3.10) and (3.11)) for the parameter estimation.

• Expectations such as Ep(s,c|a;θ′)[log p(a, s, c;θ)].

Subsequently, these inferences can be used to find the most probable latent class for
each sequence of actions, and group together those with common evolution patterns. In
addition, in order to show the general behavior of a class, the groups can be represented
by the most probable sequences of actions. All these probabilities are calculated with
a polynomial time complexity using the dynamic programming based method.
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3.4 Experimental results

This section empirically shows two types of results. Firstly, we use synthetic datasets
of different sizes to evaluate the behavior of the learning algorithm by comparing the
learned models with the original generative model underlying the data. The correspond-
ing source code is publicly available1. Secondly, we apply the model on real-world EHRs
involving breast cancer patients to classify their treatment trajectories and segment
them in different progression stages.

3.4.1 Results on synthetic data

We firstly create a probabilistic generative model pθ, whose parameters are generated
as follows: p(c) is sampled from a uniform Dirichlet distribution with parameters α = 1;
p(a′|a, s, c) is also sampled from a uniform Dirichlet distribution with parameters α = 1
for a, a′ ∈ A, s ∈ S and c ∈ C; and p(s′|a, s, c) is sampled from a Dirichlet distribution
setting α = 0.7 for the parameters whose corresponding transition stays in the same
stage (s′ = s) and setting α = 0.3 for those that progress to a different stage (s′ ̸= s),
for a ∈ A, s, s′ ∈ S and c ∈ C. The fundamental reason for setting a lower value
when the transition progresses to a different stage is to generate more realistic phases
by avoiding subsequences of stages which are too short.

For the sake of simplicity, we fix the total number of classes |A| = 3, the minimum
number of stages r− = 3, and the maximum number of stages r+ = 4 to sample the
training sets of sizes N = {300, 400, 500, 600, 700, 800, 900, 1000, 2000, 3000} using the
randomly generated model pθ (see Appendix A.2 for more details about the training
sets). In particular, we use 10 unique actions to generate these sequences. Apart from
that, we also sample a test set of 4000 sequences from pθ in order to evaluate the
learning process.

The objective is to show that the proposed learning algorithm is able to recover the
generative model. Therefore, we fit the model on the training sets using the EM-based
procedure proposed in Section 3.3.2. In the initialization of the EM algorithm, we
segment the sequences of actions into equal-length intervals of stages and we initialize
the probability of each sequence to belong to the classes with the uniform distribution.
We then add a probability ϵ = 0.1 to the true class to avoid relabeling in the results.
After training the model, we analyze the evolution of the quality of the learned models
as the training set size n ∈ N increases. For each value n ∈ N we obtain a new
model θn = {θn

A,θ
n
S,θ

n
C} and we measure the quality of such a model by using the log

likelihood of Equation (3.5) normalized by n to make the datasets comparable.
The experiment is carried out five times, considering in each of them a different

random generative model pθ, from which the training sets and the test sets are gen-
erated. Figure 3.3 shows the fitting and generalization ability of our model by means
of the average log likelihood. The average log likelihood of the learned models on the

1https://github.com/onintzezaballa/ProbGenerativeModel
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Figure 3.3: Fitting and generalization of synthetic models.

training sets (solid orange line) quantifies the fitting of the models to the data, while
on the test set (solid blue lines) it measures its ability of generalization. The dotted
lines correspond to the average log likelihood of the 5 original generative models evalu-
ated in the training (orange) and test (blue) datasets. We can see that as N increases,
the curves that quantify the fitting and generalization of the learned models converge
to the curves of the original generative models. This means that, given a sufficiently
large dataset, the proposed learning algorithm recovers the original generative model
underlying the data.

3.4.2 Results on real data

This section shows the application of the model on a real-world dataset of breast cancer,
where we represent the classification and stage progression of the sequences of actions
associated with such disease. The achieved results were compared with clinical practice
guidelines [59] and discussed in detail with physicians to check their coherence and
validity.

3.4.2.1 Dataset

We use a dataset provided by the public health care system Osakidetza, introduced
in Section 1.1. This dataset records the sequences of medical actions of patients for
any diagnosed disease from 2016 to 2019. As in Chapter 2, we focus our attention
on the breast cancer treatment population. Note that the dataset contains complete
and incomplete sequences of actions. Therefore, individuals with treatments which
have already started are excluded from this study, however, those that continue their
treatments are included. The resulting dataset consists of 645 sequences of actions,
whose average length is of 115 actions, the minimum sequence length is 63 and the
maximum is 369 (see Figure 3.4 for more details). They are generated by 23 unique
medical actions (Table 1.1), whose frequency in patients and their transition frequency
are shown in Appendix A.3.
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Figure 3.4: Histogram of the lengths of treatments in the EHRs.

3.4.2.2 Hyperparameters

The hyperparameters (classes, minimum stage and maximum stage) of the model are
set before the learning procedure. Regarding the class, we use the method developed
in Chapter 2 to appropriately pick the number of different classes of treatments and
initialize in the same group those treatments with similar trajectories. We obtain a total
of 5 classes of treatments and we set the minimum and maximum stages as r− = 3 and
r+ = 4 respectively. For the initialization of these stages, the sequences of actions are
divided into equal-length intervals of stages.

We replicate the experiment of Section 3.4.1 with the breast cancer dataset. In this
case we randomly create the training sets of sizes N = {100, 200, 300, 400, 500, 600},
leaving 45 sequences of actions out to create the test set. Figure 3.5 shows the results
of 5 experiments where the generalization curve and the fitting curve of the models
converge to the same point. Therefore, we can conclude that the size of the dataset is
large enough to learn the generative model, and the hyperparameters chosen beforehand
are appropriate for the breast cancer dataset, as well as the smoothing parameter with
value 0.2.

3.4.2.3 Analysis of breast cancer treatments

The first application of the generative model is the representation of the evolution of the
breast cancer disease, by classifying the different sequences of actions and identifying
their multiple phases of progression over time.

Considering the hyperparameters of the previous section and randomly initializing
the sequences of stages, we trained the model using the EM-based procedure described
in Section 3.3.2. The classification of sequences of actions is carried out by associating
each sequence of actions a with the most probable class c∗ (Section 3.3.3), that is,

c∗ = argmax
c

p(c|a). (3.13)
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Figure 3.5: Fitting and generalization of the breast cancer generative model.

The evolution patterns of the sequences of actions of each class are characterized by
a representative sequence. This is defined as the most probable sequence of actions a
within each class (Section 3.3.3) normalized by the length of a, in order to avoid the
probability p(a|c) to exponentially decrease as long as the length of a increases. That
is,

a∗ = argmax
a

log p(a|c)
|a| . (3.14)

Finally, the sequence of stages associated with the representative sequence a∗ is given
by the most probable stage at each time point (Section 3.3.3), that is,

s∗t = argmax
s∈S

p(st = s|a∗, c∗) (3.15)

in such a way that the representative sequence of stages associated with the represen-
tative sequences of actions a∗ is s∗ = (s∗1, ..., s

∗
m).

We show in Figure 3.6 the five representative breast cancer treatments (sequences
of actions) that characterize the progression classes and stages. The width of the
horizontal lines refers to the size of the groups. The vertical lines refer to the medical
actions ordered in time. To get a better insight into the behavior of the sequences of
actions, we explain the major patterns of the representative treatments, which are real
sequences of actions from EHRs, as follows (see Table 3.1).

To begin with, the diagnosis of breast cancer is based on clinical examination in
combination with imaging and confirmed by pathological assessment [59]. Every class
of treatments in Stage 1 includes this diagnosis process (performed on radiology, nuclear
medicine and pathological anatomy medical services), and before any type of treatment
is initiated, as recommended.

There exist two types of surgeries when it comes to breast cancer: breast-conserving
surgery, in which the surgical team removes the tumor but tries to keep as much of the
breast as possible (it is the preferred local treatment option for the majority of early
breast cancer patients); or mastectomy, in which the whole breast is removed [59].

The main patterns identified by the model witihin each group are as follows:
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Figure 3.6: Representative treatments of breast cancer segmented in the different phases
of evolution.

• Group 1: Surgery + Chemotherapy + Radiotherapy (166 patients, 25.7 %).
The vast majority of these sequences of actions undergo breast-conserving surgery
(Stage 1), followed by chemotherapy (Stage 2) and radiotherapy (Stage 3). Ac-
cording to the guideline suggestions, if both therapies are used, chemotherapy
should usually precede radiotherapy, as done here. This type of treatment used
after primary treatments, such as surgery, is called adjuvant treatment and its
aim is to decrease the chance of cancer recurrence. Some of these patients also
include adjuvant hormonal therapy in their Stage 4.

• Group 2: Surgery + Radiotherapy (134 patients, 20.7 %). The sequences
of actions in this group begin with breast-conserving surgery (Stage 1). This is
followed by radiation therapy (Stage 2), which is highly recommended after this
type of surgery by the medical guidelines. Regular follow-up actions are given in
Stages 3 and 4.

• Group 3: Surgery + Hospitalization + Hormonal Therapy (84 patients,
13.1%). This group represents patients undergoing mastectomy (Stage 1). Hos-
pitalization actions (Stage 2) and additional surgical events (Stage 4) are due
to breast reconstruction. These patients are followed up with diagnostic tests
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N STAGE 1 STAGE 2 STAGE 3 STAGE 4

GROUP 1 25.7%
Medical examinations Chemotherapy Radiotherapy Medical examinations
Diagnostic tests Diagnostic tests
Surgery

GROUP 2 20.7%
Medical examinations Radiotherapy Medical examinations Medical examinations
Diagnostic tests Diagnostic tests
Surgery

GROUP 3 13.1%
Medical examinations Hospitalization Medical examinations Hormonal therapy
Diagnostic tests Diagnostic tests Surgery
Surgery

GROUP 4 23.3%
Medical examinations Radiotherapy Hormonal therapy Hormonal therapy
Diagnostic tests Medical examinations
Surgery Diagnostic tests

GROUP 5 17.2%

Medical examinations Radiotherapy Chemotherapy Medical examinations
Diagnostic tests Hospitalization Diagnostic tests Diagnostic tests
Chemotherapy
Surgery

Table 3.1: Evolution patterns of the breast cancer treatments obtained from the learned
generative model.

and physical examinations in Stage 3. Finally, they have hormonal therapy as
adjuvant treatment (Stage 4).

• Group 4: Surgery + Radiotherapy + Hormonal Therapy (150 patients,
23.3%). Individuals in this group undergo breast-conserving surgery (Stage 1)
and postoperative radiotherapy (Stage 2), as suggested. Additionally, they take
hormonal therapy as adjuvant systemic treatment (Stage 3) and followed up with
clinical examinations (Stage 4).

• Group 5: Chemotherapy + Surgery + Radiotherapy + Chemotherapy
(111 patients, 17.2%). Neoadjuvant systemic therapy is treatment administered
preoperatively to reduce the extent of surgery in locally advanced and large oper-
able cancers. This is the case for this group of patients, who receive neoadjuvant
chemotherapy before breast-conservative surgery or mastectomy (Stage 1). After-
wards, they complete their adjuvant treatment with radiotherapy (Stage 2) and
chemotherapy (Stage 3). They are followed up in Stage 4.

See Appendix A.3 for more details about the behavior of the medical actions within
each class of treatments.

3.5 Discussion

The main contribution of this chapter is the development of a novel probabilistic gen-
erative model, which characterizes the progression of the treatment trajectories of a
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disease. State-of-the-art disease progression approaches [12–14, 25–28, 30, 36–42] par-
tially adopt the main properties of our model, which we consider essential in order to
describe and understand the behavior of the treatment trajectories. In particular, our
model simultaneously classifies the heterogeneous sequences of actions based on their
treatment evolution over time, segments the sequences of actions in different progression
stages of the disease, and captures the sequential dependence between medical actions.

Another contribution of this work is the proposal of an efficient learning process of
the parameters of the model to make the computation of the EM algorithm feasible.
Exact inference often requires high computational cost for learning, in fact, an ad hoc
algorithm would require an exponential complexity. We propose a generalization of the
forward-backward algorithm for the learning process to reduce this complexity to be
polynomial.

Treatment subtyping and phase identification are useful to extract potential infor-
mation, such as essential or critical treatment behaviors and their causal dependencies
in treatment sequences, as well as to understand disease mechanisms and health prac-
tices. Apart from classification and segmentation of treatment trajectories, another
benefit of our model is the simulation of artificial sequences of actions that resemble
original treatments. Then, the model can be regarded as a data augmentation tool
when little information is available, for example, for rare diseases. In addition to this,
since healthcare datasets are frequently incomplete and the removal of missing values
may result in a dataset that is too small or induce statistical bias [1], the model has
the ability to impute such missing values in the trajectories of patients or reconstruct
incomplete sequences of actions. In terms of interpretability, our model provides eas-
ier comprehension and explanation for healthcare professionals than other approaches
developed in the healthcare setting [10,15,19,20,63].

Let us also mention some limitations of our approach. The stages are defined as
ordered discrete values of progression and in their evolution only two steps are allowed:
to be increased in one stage with respect to the previous stage; or be maintained in
the same one. In a more realistic scenario, diseases with recurrent stages would be con-
sidered, and, consequently, the sequences of actions could pass through the same stage
more than once or move from one stage to another without setting an ordered progres-
sion. However, this assumption requires a modification in the dynamic programming
procedure that would exponentially increase the complexity of the model. On the other
hand, as in many other classification machine learning methods, the number of classes
is not a flexible parameter and has to be chosen beforehand. Despite this, we solved
this problem by initializing the classes of treatments with the clustering of sequences
outlined in Chapter 2, where the number of classes that best fits the data was selected.
For the minimum and maximum stages, we could estimate their value by including them
in the learning process of the model, assuming again an increase in its complexity.

Finally, addressing the irregular timing between medical actions is crucial for as-
sessing a patient’s health condition. In fact, temporal patterns can reveal important
insights into disease progression. From a clinical perspective, it can lead to more effi-
cient management, better personalized patient care and more accurate predictions [1].
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Chapter 4 proposes an extension of this generative model by including the modeling of
the irregular temporal gaps between medical events.

3.6 Conclusion

This chapter proposes a probabilistic generative model to capture the treatment vari-
ability of a disease and its progression. The generative model is defined as a mix-
ture of models for sequences of medical events. These models incorporate a latent
variable representing the progression stage, capturing the underlying dynamics of the
medical events. We efficiently learn the model using the EM algorithm and a dynamic
programming-based method. The proposed model enables to identify subtypes of treat-
ments for a disease, determine the stage of progression of treatments, and simulate new
treatment trajectories.

We demonstrate the potential of our generative model as a treatment classification
and stage identification tool in breast cancer patients. We further validate the proposed
learning process by a simulation experiment, where the original model is recovered. Note
that the proposed approach can be applied to any progressive disease, such as other
types of cancers, respiratory diseases or neurodegenerative diseases.





Chapter 4

Time-dependent probabilistic
generative models for disease
progression

4.1 Introduction

EHRs contain a large amount of essential information for monitoring patients’ health
status throughout their clinical history. The temporal component of EHRs, which
collects the sequence of medical events in the healthcare system over time, is important
for understanding patients’ treatment trajectories and identifying patterns in them.
In contrast to other types of time series data with regularly recorded observations,
EHRs exhibit irregular time intervals between patients’ visits [29]. This requires the
development of models that effectively handle the variability and irregularities inherent
in EHRs [1].

Chapter 3 presents a probabilistic generative approach for modeling both subtypes
of treatments and their progression over time, considering regularly observed medical
events. However, learning the irregular time intervals between patients’ visits would
achieve a more accurate representation of disease dynamics. This modeling process is
essential to provide a deeper understanding of the diverse temporal characteristics that
may exist depending on the subtype of treatment the patient is undergoing.

Recently, deep learning techniques have been introduced to predict specific outcomes
based on the progression of a disease [10,11,21], with high prediction accuracy in future
events but often overlooking the irregular temporality inherent in EHRs. While some
methods have incorporated the irregular time information in their models [10, 13, 14,
16,21], they rarely focus on estimating the time intervals between consecutive medical
events. Moreover, their lack of interpretability makes challenging the understanding of
the underlying temporal dynamics of diseases. Consequently, there is a need for more
interpretable models in the context of time-dependent disease progression [21,22].

In this regard, probabilistic generative models enable to make representations of

45
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the temporal progression within sequences of medical events through parametric mod-
eling, resulting in more interpretable outcomes for healthcare professionals. In the
literature, various adaptations of Markov models have been used to capture disease
state transitions and model the temporal progression of diseases [30, 35, 36, 38–40, 42].
However, some of these approaches primarily focus on modeling the time intervals be-
tween hidden variables and do not explicitly address the time elapsed between observed
events [30,39,40]. The latter consideration is critical for accurately estimating the time
between consecutive medical events in real-world scenarios, and therefore, for estimating
the temporal progression of an entire treatment.

This chapter presents an extension of the probabilistic generative model introduced
in Chapter 3. This method employs a latent class of treatments to categorize sequences
of medical events into different subtypes and a latent sequence of stages to segment the
sequence of events into subsequences of progression patterns. One of the key contri-
butions of the present work is the incorporation of the time elapsed between medical
actions within the disease treatment trajectory. With this approach, we aim to achieve
the following objectives: (i) model the irregular time intervals between medical events;
(ii) discover the different subtypes of disease progression in terms of the sequence of
medical events and the time elapsed between them; and (iii) segment the sequences into
progression patterns of treatments.

The main contributions of this chapter are as follows:

• We propose a probabilistic generative model based on Markov models that in-
corporates temporal information between medical events to model the underlying
dynamics of disease treatments. Our model is flexible in terms of time distribu-
tion, allowing for the incorporation of the most appropriate distribution based on
the available data. Specifically, we propose three parametric distributions to effec-
tively model the irregular time intervals between medical actions: the geometric,
exponential, and Weibull distributions.

• The model includes a class of treatments, which is a hidden variable that en-
ables the grouping of patients. While in Chapter 3 the class is based on the
sequence of medical events, in this chapter the class also has influence on the
time intervals between these events. Additionally, it incorporates a hidden se-
quence of progression stages, which segments treatments into distinct patterns of
evolution. To efficiently learn the parameters of our generative model, we use the
EM algorithm [45] with a dynamic programming-based method.

• We demonstrate the effectiveness of our approach in uncovering the underlying
data distribution, predicting the irregular timing between medical events, and
classifying treatments into different subtypes using synthetic and real data (Sec-
tion 1.1).

The remainder of the chapter is organized as follows: Section 4.2 introduces the
problem formulation, Section 4.3 presents our proposed generative model and describes
the methodology in detail. Section 4.4 presents the experimental setup and the results.
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Section 4.5 discusses the contributions and limitations of our approach. Finally, Section
4.6 draws the conclusions.

4.2 Problem formulation

A patient’s treatment associated with a disease, denoted by a, is a sequence of medical
actions collected during repeated hospital visits. Let A be the set of medical special-
ties (for instance, radiology, radiotherapy, hospitalization, etc), we define a patient’s
treatment as

a = (a1, ..., am)

where ai ∈ A represents the i-th medical action of a patient. Each sequence of medical
actions has an associated sequence of time intervals,

τ = (τ1, ..., τm)

where τi ∈ R is the time interval between ai−1 and ai, for i = 2, ...m. We initialize τ1
as 0 to indicate the starting point of the treatment.

Given a dataset of medical records, the objective is to develop a probabilistic genera-
tive model to effectively capture the temporal dynamics of the disease and the variability
in treatment patterns.

4.3 Methodology

This section describes the proposed probabilistic generative model and the learning
procedure of the model.

4.3.1 Model definition

Based on the proposed model in Chapter 3, the time-dependent generative model is also
built on Markovian assumptions and considers that a sequence of actions has a structure
of latent variables. These latent variables include the classes of treatments, which
identify similar subtypes of treatments, and the stages, which segment each treatment
into different progression patterns. We assume that all sequences of actions begin in the
first stage, representing the initial steps of the treatment, and all classes of treatments
have an equal number of stages. These stages segment the sequences within each class of
treatments into subsequences that are associated with their progression patterns. As in
Chapter 3, the same stage values from different classes of treatments represent different
subsequences, which allows the model to be more flexible. Our primary contribution
lies in expanding this model to include the irregular timing between consecutive medical
actions, assuming that this timing varies depending on the latent class of treatment.



CHAPTER 4. TIME-DEPENDENT DISEASE PROGRESSION 48

To define the time-dependent generative model, consider a = (a1, ..., am) as the
treatment sequence associated with a disease, where ai ∈ A, and let τ = (τ1, ..., τm) rep-
resent the corresponding sequence of time intervals, where τi ∈ R. Let s = (s1, ..., sm)
denote the sequence of latent stages associated with a. The stages, denoted as si,
belong to a set S = {1, ..., r} that represents all the possible progression stages of a
treatment. Finally, let c be the latent class of treatments which a belongs to. The class
of treatments c belongs to a set C = {1, ..., k} that represents all the possible classes,
corresponding to distinct subtypes of treatments for a specific disease.

It is assumed that the progression stages are non-decreasing, implying that a se-
quence cannot go backward. Thus, for any given time point i = 1, ...,m − 1, we have
si ≤ si+1. This assumption guarantees that the treatment moves forward without
skipping any stage.

The proposal for the time-dependent probabilistic generative model is as follows
(see Figure 4.1):

a) Draw a class of treatments c ∼Mult(θC)

b) Draw the initial medical action and the initial stage

a1|c ∼ Cat(πc
A), s1|a1, c ∼ Cat(πa1,c

S ).

c) For each timestamp index i:

i) Draw a medical action from p(ai|ai−1, si−1, c), that is,

ai|ai−1, si−1, c ∼ Cat(θ
ai−1,si−1,c
A )

ii) Draw a stage si from p(si|ai, si−1, c),

si|ai, si−1, c ∼ Cat(θ
ai,si−1,c
S )

iii) Draw the time interval from p(τi|ai−1, ai, c), that is,

τi|ai−1, ai, c ∼ FT (θ
ai−1,ai,c
T )

The time-dependent generative model provides flexibility in capturing the time inter-
vals between pairs of medical actions by utilizing an appropriate parametric distribution
FT (θa,a′,c

T ). It assumes that the time intervals depend on the latent class of treatments
and pairs of actions, but not on the stage of progression.

Translating the generative process into a joint probability model results in the ex-
pression:

p(a, τ , s, c) = p(c)
m∏
i=1

p(ai, si|ai−1, si−1, c) · p(τi|ai−1, ai, c), (4.1)

where
p(ai, si|ai−1, si−1, c) = p(ai|ai−1, si−1, c) · p(si|ai, si−1, c)
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...
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... ...

a1 ai−1 ai ai+1 am

s1 si−1 si si+1 sm

c

τ1 τi−1 τi τi+1 τm

1

Figure 4.1: Probabilistic generative model defined by the conditional distributions
p(ai|ai−1, si−1, c), p(si|ai, si−1, c) and p(τi|ai−1, ai, c) for sequences of actions a, se-
quences of time intervals τ , latent sequences of stages s and latent classes c. The
gray figures represent the observed variables.

and p(a1, s1|a0, s0, c) = p(a1, s1|c). Furthermore, s1 = 1, am = end, and si−1 ≤ si for
all i = 2, . . . ,m.

We use a Markov model to generate actions based on the previous action and stage
in the sequence, and another Markov model to generate stages based on the previous
stage and current action. These dependencies allow to maintain the consistency of
the sequences of events over time. The distributions F (θT ) that we consider are the
geometric, exponential and Weibull distributions.

The parameters of the initial model for medical actions and stages are denoted as πc
A

and πa,c
S , respectively. Our goal is to estimate the parameters θ = {θA,θT ,θS,θC ,πA,πS}

to capture the underlying dynamics and distributions in the data.

4.3.2 Maximum likelihood parameter estimation

This section introduces the procedure for learning the model parameters. Let D =
{(ai, τ i)}Ni=1 be the set of observed sequences of medical actions and time intervals, let
C be the set of latent classes of treatments and S the set of latent stages of progression.
We use the EM algorithm [46] to obtain the maximum likelihood estimate of the model’s
parameters in the presence of the latent variables, that is, the treatment classes and
progression stages. Note that we are not given the complete data set, meaning that
for each observation in D we lack the corresponding values of the latent variables.
Therefore, we will instead consider the expected value of the log likelihood for the
complete dataset under the posterior distribution of the latent variables, denoted as
p(s, c|a, τ ). This involves considering all possible configurations for the hidden variables
to solve the following maximization:

max
θ

∑
(a,τ )∈D

∑
s∈Sa

∑
c∈C

p(s, c|a, τ ) · log p(a, τ , s, c;θ), (4.2)
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where Sa is the set of the all possible configurations of sequences of stages for a. Note
that every pair (a, τ ) ∈ D contributes equally to the model regardless of its length due
to ∑

c∈C
s∈Sa

p(s, c|a, τ ) =
∑
c∈C
s∈Sa

p(s|c,a, τ ) · p(c|a, τ ) = 1. (4.3)

The EM algorithm allows to efficiently find the parameters that maximize the log-
likelihood following the subsequent iterative process:

E-step. In this step, we calculate the posterior distribution of the latent variables
given the observed data, that is, p(s, c|a, τ ). Then we use this posterior distribution to
evaluate the expectation of the complete-data log-likelihood function as a function of
the parameters θ (Equation (4.2)). The efficient learning procedure of these posterior
distributions is similar to the dynamic programming-based method described in Sec-
tion 3.3.2.1. Appendix B.1 shows the adaptation of this method to the specific temporal
characteristics of this time-dependent generative model.

M-step. In the maximization step, we maximize the Equation (4.2) using the posterior
distributions computed in the E-step. This maximization is achieved using the Lagrange
multiplier method, similar to that in Appendix A.1. If θa,s,ca′ , θa

′,s,c
s′ denote a component

in θa,s,c
A , θa′,s,c

S , respectively, the model parameters corresponding to the transition from
the pair (a, s) to (a′, s′) given the class c, where a, a′ ∈ A and s, s′ ∈ S are updated as
follows:

θa,s,ca′ =

∑
(a,τ )∈D

∑ma

i=1 1a,a′(ai−1, ai) · p(si−1 = s|c,a, τ )∑
a′∈A

∑
(a,τ )∈D

∑ma

i=1 1a,a′(ai−1, ai) · p(si−1 = s|c,a, τ )
(4.4)

where

1a,a′(ai−1, ai) =

{
1 if ai−1 = a, ai = a′

0 otherwise.

θa
′,s,c

s′ =

∑
(a,τ )∈D

∑ma

i=1 1a′(ai) · p(si−1 = s, si = s′|c,a, τ )∑
s′∈S

∑
(a,τ )∈D

∑ma

i=1 1a′(ai) · p(si−1 = s, si = s′|c,a, τ )
(4.5)

where

1a′(ai) =

{
1 if ai = a′

0 otherwise.

If θc denotes a component in θC , the probability of the classes of treatments c ∈ C
is updated as

θc =

∑
(a,τ )∈D p(c|a, τ )∑

c∈C
∑

(a,τ )∈D p(c|a, τ )
. (4.6)
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As mentioned earlier, various distributions, such as geometric, exponential, or Weibull,
can be used to model the time interval between each pair of actions within each class.
For each transition from a to a′ given a class c, the parameters of the geometric distri-
bution are updated as follows:

θa,a
′,c

T =
∑

(a,τ )∈D

ma∑
i=1

na

τi · 1a,a′(ai−1, ai) · p(c|a, τ ) + na

(4.7)

where na = 1a,a′(ai−1, ai) · p(c|a, τ ).
For the exponential distribution, which is the continuous analogue of the geometric

distribution,

θa,a
′,c

T =
∑

(a,τ )∈D

ma∑
i=1

na

τi · 1a,a′(ai−1, ai) · p(c|a, τ )

Finally, due to the absence of a closed-form solution for the maximum likelihood
estimation of the Weibull distribution, it is necessary to employ numerical optimization
methods to estimate the parameters (see [64] for more details).

At each iteration of the algorithm, we combine the expectation and maximization
steps for each (a, τ ) ∈ D without the need to store the exponential number of proba-
bilities for all configurations of sequences of stages and classes. Additionally, using a
dynamic programming-based method (Apprendix B.1) enables the EM algorithm to be
solved while considering the exponential number of sequences of stages, with a compu-
tational complexity of O(N ·m2), where m represents the length of the longest sequence
of actions.

To simplify the notation and provide a clearer understanding of the model’s main
idea, we establish a fixed number of stages for all classes of treatments. Nevertheless, a
more adaptable model can be defined to accommodate varying numbers of stages. With
this flexibility, the model can segment complete sequences into the maximum number
of stages, denoted as r+, while also handling incomplete sequences by using a reduced
number of stages, ranging from r− to r+.

4.4 Experimental results

This section presents the results obtained from a series of experiments conducted on
both synthetic data and real-world data. Firstly, the experiments using synthetic data
demonstrate the capability of our learning procedure to achieve a close approximation
of the original generative model. Secondly, the experiments conducted on breast cancer
patients show the applicability of the proposed model in gaining insights into the varying
time intervals between consecutive medical records, as well as in the unsupervised
classification of the treatments. The source code of the probabilistic generative model
is publicly available1.

1https://github.com/onintzezaballa/TimeDependentDiseaseProgressionModel
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4.4.1 Results on synthetic data

In this experiment, we demonstrate the learning performance of the proposed procedure
concerning the number of training samples in practical scenarios. To do so, we use a
set of artificially generated treatments derived from a randomly generated model.

First, we create a probabilistic generative model pθ, where the model’s parameters
are generated using the following procedure: θC is sampled from a uniform Dirichlet
distribution with parameters α = 1; similarly, θa,s,c

A is sampled from a uniform Dirichlet
distribution with parameters α = 1 for each a ∈ A, s ∈ S and c ∈ C; additionally, θa,s,c

S

is sampled from a Dirichlet distribution setting α = 0.7 for the parameters correspond-
ing to transitions that remain in the same stage (s′ = s) and setting α = 0.3 for the
parameters related to transitions progressing to a different stage (s′ ̸= s), for a ∈ A,
s, s′ ∈ S and c ∈ C. The reason for setting a lower value when the transition progresses
to a different stage is to generate more realistic sequences, avoiding excessively short
subsequences of stages.

This experiment is repeated for each time distribution: geometric, exponential,
and Weibull distributions. The parameters for the geometric distribution are sampled
from a Beta(5,2) distribution, for the exponential distribution they are sampled from
a Gamma(2,1) distribution, and for the Weibull distribution, the shape parameters are
sampled from U(2, 5), and the scale parameters are sampled from U(1, 1.5).

For the sake of simplicity, we set a fixed total number of classes, |C| = 2, and
define a range of stages from a minimum of r− = 3 to a maximum of r+ = 4.
These models allow us to generate training sets of various sizes, specifically N =
{300, 500, 800, 1000, 1200, 1500, 2000, 3000}, using the randomly generated model pθ.
We consider a set of 10 unique actions to create these sequences. Additionally, we
sample a test set of 4000 sequences from pθ to evaluate the learning process.

To demonstrate that the learning algorithm can provide a good approximation of
the original model with realistic training set sizes, we employ the EM-based procedure
proposed in Section 4.3.2 to fit the model on the training sets. For the EM initial-
ization, we divide the observed sequences of actions into equal-length stage intervals.
The initial parameters for the time distribution are uniform across all classes and are
estimated with the observed time intervals between actions. For the initial class model,
we initialize the probability of each sequence belonging to each class of treatments with
the uniform distribution. We then add a probability ϵ = 0.1 to the true class to which
they belong to prevent relabeling in the results. After learning the model, we analyze
the evolution of the method’s quality as the size of the training set, n ∈ N , increases.
For each value of n, we obtain a new model θn = {θn

A,θ
n
T ,θ

n
S,θ

n
C} and assess its quality

by computing the log likelihood of Equation (4.2) normalized by n, making the datasets
of different sizes comparable.

The experiment is conducted five times for each time distribution, with each exper-
iment considering a different random generative model, denoted as pθ, from which the
training sets and test sets are generated. Figure 4.2 shows the fitting and generaliza-
tion capabilities of our models by presenting the average log likelihood for the three
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time distributions. The solid orange line represents the average log likelihood of the
learned models on the training sets, indicating how well the models fit the data. On
the other hand, the solid blue lines represent the average log likelihood of the learned
models on the test set, showing their ability to generalize to unseen data. The dotted
lines correspond to the average log likelihood of the original generative models, with
the orange line representing the training dataset and the blue line representing the test
dataset. As we can see in Figure 4.2, as n ∈ N increases, the curves representing the
fitting and generalization of the learned models converge to the curves of the original
generative models. This convergence indicates that, given a sufficiently large dataset,
the proposed learning algorithm successfully recovers the original generative model that
underlies the data.
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Figure 4.2: Synthetic data results for different time distributions.

4.4.2 Results on real-world data

This section shows the utility of the generative model in real EHRs. We use the gener-
ative model in two different applications: for time interval prediction and for treatment
classification.

4.4.2.1 Dataset

We validate the model on the EHRs described in Section 1.1, which stores every out-
patient and hospital visit of patients from 2016 to 2019. As a use case, we focus
our attention on the breast cancer population, which comprises 645 patients. Their
treatments average 115 medical actions, and they are generated by 23 unique medical
specialties (selected following the procedure in Chapter 2). In total, there are 73150
transitions between pairs of actions, with a mean time interval of 10 days and a standard
deviation of 31 days.

4.4.2.2 Time prediction performance

The goal of this experiment is to determine which parametric model provides better
predictions for the time intervals between medical actions. To achieve this, our objec-
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tive is to estimate the time interval until the next medical action as time progresses.

Experiment setup: We use a cross-validation approach to assess the predictive per-
formance of the generative model. Following the results obtained in Chapter 2 and
Chapter 3, we consider 5 classes of treatments, with a minimum of 3 stages and a max-
imum of 4 stages for each treatment. In all training models, including the baselines, we
use 90% of the patients as the training set and 10% as the test set.

We train the models using the three time distributions: geometric, exponential, and
Weibull. The initial parameters for the stages and time distributions are the same as in
the synthetic experiments. However, for the initial class model, we use the K-medoids
method proposed in Chapter 2 for real-world data. Subsequently, we make predictions
for each time step by sampling a set of time intervals from the learned generative model
and using their median as the prediction for that time step. Let at = (a1, . . . , at) be the
observed subsequence of actions up to time step t, and τt = (τ1, . . . , τt) the observed
subsequence of time intervals up to time step t. We define qt(c) as the probability
distribution of classes given the subsequence of actions at and the subsequence of time
intervals τt, in such a way that qt(c) changes as time progresses:

qt(c) = p(c|at, τt).

We estimate the time interval between medical actions, τ̂t+1 for t = 2, . . . ,m, by
sampling time intervals from the generative model in the following two ways:

(a) Using the mixture of classes of treatments of the model,∑
c∈C

qt(c) · p(τt+1|at, at+1, c) (4.8)

(b) Using the class of treatments of maximum probability,

p(τt+1|at, at+1, c
∗), c∗ = argmax

c
qt(c) (4.9)

The final prediction of the time interval τ̂t+1 is given by the median of the samples
obtained using Equations (4.8) and (4.9).

Evaluation metrics: We evaluate the prediction error using the mean absolute error,
that is, |τ − τ̂ |.

Baselines: On the one hand, we use parametric and non-parametric approaches to
make predictions of the time interval until the next medical action. In the parametric
approaches, we fit the data to geometric, exponential and Weibull distributions, using
p(τ |a, a′) to estimate the time intervals. In the non-parametric approach, we predict
the time using the median of the observed time intervals between each pair of medi-
cal actions. On the other hand, we compare our model against the one proposed in
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Chapter 3. Since this model is not time-dependent, we first learn the generative model
and then fit the geometric, exponential, and Weibull distributions to the training data
as described in Section 4.3.2. We then use both the mixture of classes of the model
(Equation (4.8)) and the class of maximum probability (Equation (4.9)) to sample time
intervals and make the prediction with the median of these samples.

Prediction performance: Table 4.1 compares the results from various algorithms,
confirming that our proposed approach outperforms baseline models in the parametric
setting. Specifically, predictions using the Weibull distribution show the lowest mean
absolute error among these models. For more details on errors made by different ap-
proaches when predicting the most frequent pairs of actions, refer to Apprendix B.2.
In summary, we can conclude that the Weibull distribution performs better than other
parametric approaches, and our time-dependent model enhances prediction accuracy
for irregular time intervals.

Parametric Non-param.
Geometric Exponential Weibull Median

Empirical 16.36 17.06 18.03 3.86
Model in Chapter 3 (mixture) 4.64 4.62 4.24
Model in Chapter 3 (argmax) 4.54 4.55 4.17

Proposed model (mixture) 4.45 4.89 4.12
Proposed model (argmax) 4.57 5.21 4.25

Table 4.1: Mean absolute error in predicting the time interval until the next medical
action.

4.4.2.3 Treatment classification

In this second experiment, we aim to explore the impact of incorporating time modeling
on the representation of treatment subtypes. Using the same hyperparameters as in
the previous section, we trained the model using the EM-based procedure described
in Section 4.3.2. The classification of treatments is carried out by associating each
sequence of actions a and its corresponding τ with the most probable class c∗, that is,

c∗ = argmax
c

p(c|a, τ ). (4.10)

The dynamics of the sequences of actions of each class are characterized by a repre-
sentative sequence. This is defined as the most probable pair (a, τ ) within each class
normalized by the length of a, in order to avoid the probability p(a, τ |c) to exponen-
tially decrease as long as the length of a increases. That is,

a∗ = argmax
a

log p(a, τ |c)
|a| . (4.11)
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Figure 4.3 presents the five representative breast cancer treatments obtained using
the Weibull distribution, which is the distribution with the best results in the previous
experiment. These treatments characterize different progression subtypes. Figure 4.4
shows the same results as in Figure 4.3 without displaying the time intervals between
medical events (No event).
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Figure 4.3: Classification results for treatments associated with breast cancer consider-
ing the time between medical events. See Table 1.1 for the description of the medical
actions.

The major patterns of the representative treatments, which consists of real sequences
of actions from EHRs, are as follows:

• Group 1. Chemotherapy + Surgery + Hospitalization + Radiotherapy +
Rehabilitation (11.3 %)

• Group 2. Surgery + Hospitalization + Home hospitalization + Hormonother-
apy (18.2 %)

• Group 3. Surgery + Chemotherapy + Hospitalization + Radiotherapy (24%)

• Group 4. Surgery + Radiotherapy + Hormonotherapy (5%)

• Group 5. Surgery + Radiotherapy + Hormonotherapy (41.5%)

Figures 4.3 and 4.4 show that all the treatments start with the diagnosis process
(conducted through radiology, nuclear medicine and pathological anatomy medical ser-
vices). After receiving the specific therapy for each group, patients undergo regular
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follow-up consultations and medical tests. Note that Group 4 and Group 5 seem to be
similar subtypes, however, their primary distinction lies in the longer duration of the
treatment for patients in Group 5. All these findings related to the treatment patterns
and their duration align with clinical practice guidelines [59].
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Figure 4.4: Classification results for treatments associated with breast cancer without
representing the time intervals between the medical actions.

4.5 Discussion

This chapter proposes a probabilistic generative model that incorporates temporal infor-
mation between medical events to model the underlying dynamics of disease treatments.
This model is flexible in terms of time distribution, enabling the adoption of the most
suitable distribution for the available data. Specifically, we propose three parametric
distributions to effectively model the irregular time intervals between medical actions:
the geometric, exponential, and Weibull distributions. The model includes a latent class
variable, which makes the time modeling a mixture of these parametric distributions.

Unlike existing disease progression models [10, 13, 21, 30, 40], this is the first gen-
erative model of sequences that primarily aims to comprehend the temporal evolution
of a disease, taking into account the temporal irregularities between observed medical
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events. Our approach provides interpretable representations of the temporal progression
within sequences of actions through parametric modeling, by simultaneously capturing
both disease stage transitions and distinct disease subtypes. We would like to empha-
size that the main focus of this model is on learning the underlying distribution of a
set of sequences of medical events. By capturing the temporal dynamics of these se-
quences, we open up a wide range of potential applications, including the prediction
of medical variables, treatment classification, and the generation of new treatments, as
demonstrated in our experiments.

This identification of representative treatments is shown in Figure 4.3. Figure 4.4 of-
fers a more interpretable view of these results in terms of treatment patterns, displaying
the same outcomes as Figure 4.3 but without showing the time intervals. Comparing
these results with the representative sequences of actions obtained using the model de-
veloped in Chapter 3, which does not consider the temporal component, we can identify
several similarities. For instance, we can observe that the treatment patterns in Group
5, obtained from the time-dependent model, match those in Group 4, obtained using
the model in Chapter 3, although the proportion of patients assigned to these groups
is different. Similarly, Group 2 from the time-dependent model and Group 3 from the
model in Chapter 3 are also similar, with the exception that patients in Group 2 receive
home hospitalization. However, there are slight variations in the remaining treatments
between the two models.

The model proposed in this chapter significantly outperforms the parametric base-
lines in predicting time intervals between medical events, as shown in Table 4.1. These
results highlight the importance of considering treatment classes for modeling the ir-
regular time gaps within sequences of actions. The second set of experiments uses a
modification of the model presented in Chapter 3. This model originally does not con-
sider time information, however, to be able to compare our model with a baseline, we
introduced time interval estimation after the original model was already learned. Note
that the structure of both models is similar in terms of classes and stages, which may
explain their similar predictive results. However, our proposed model is able to slightly
improve the predictive results by jointly learning the time intervals and latent variables,
and provides a more informative representation of data in terms of medical actions and
the treatment duration.

The more accurate predictive performance of the non-parametric method in Ta-
ble 4.1 can be attributed to the robustness of the median when handling extreme time
interval values that deviate significantly from the mean. Our proposed parametric
probability distributions are more sensitive to these outliers and may not adequately
approximate to these extreme time intervals. Nevertheless, the difference in the mean
absolute error of the non-parametric method and our model is just 0.26 days.
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4.6 Conclusion

This chapter presents a comprehensive framework for incorporating temporality into
disease progression modeling. The main contribution is the proposal of a time-dependent
probabilistic generative model for unsupervised classification of treatments with irregu-
lar time intervals. The generative model allows to: (i) model the irregular time intervals
between medical events; (ii) discover the different subtypes of disease progression in
terms of the sequence of medical events and the time elapsed between them; and (iii)
segment the sequences into progression patterns of treatments.

We validate this approach through a simulation experiment, successfully recovering
the original model. Additionally, we demonstrate, using real EHRs, that the model
accurately captures underlying temporal dynamics and variability within treatment
subtypes. Practical applications of this model include the assessment of the adherence
of the treatment trajectories to medical practice guidelines, the simulation of new treat-
ments, the prediction of the next hospital visit, and the interpretable representation of
a set of treatments.





Chapter 5

A probabilistic generative model for
comorbidity progression

5.1 Introduction

In previous chapters, we focused on modeling sequences based on their subtypes and
temporal progression within the context of a single disease. We now shift our focus
to a more complex challenge: understanding and modeling the comorbidities within
patients’ clinical history. Comorbidity refers to the co-occurrence of multiple diseases
within the same patient. Considering the joint evolution of diseases offers several ben-
efits, including a deeper understanding of disease interactions, joint progression, and
relationships between diseases [29].

This chapter addresses the specific problem of modeling the joint progression of
coexisting diseases when most of the diagnoses in EHRs are missing. Probabilistic
models are a practical solution to face this challenge. Not only because they can
handle missing data, but also because they account for temporal relationships in data.
Furthermore, they are interpretable models capable of extracting clinically meaningful
representations from the inferred latent variables, as demonstrated in Chapters 3 and
4.

In the literature, most probabilistic models developed for disease progression are
extensions of LDA [25, 65] or variants of Hidden Markov models [30, 34, 35, 39, 42, 66]
that capture the evolution of disease trajectories through latent states. While medical
events are time-dependent variables, these models generally ignore the direct stochastic
dependence between such observations and are limited to modeling sequential correla-
tions of data only through latent states [66].

In general, existing models describe the evolution of single-disease trajectories in-
stead of their evolution in multiple co-existing diseases (comorbidities) settings [13,23,
35,39]. Including comorbidities in the structure of the methods is crucial for a detailed
insight into the co-occurrence patterns of diseases, and in this sense, there still remains
a need for developing an interpretable framework to capture and explain their joint pro-

60
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gression patterns [4]. The works that model the coexistence of diseases [25,30,32–34,65]
assume that diagnosis labels are available at each patient visit, which might not be true
in reality in the EHRs (see Figure 1.1 and Section 1.1). Moreover, diagnostic informa-
tion is recorded at the specific time the diagnosis is reported, however, in the subsequent
records it might not be specified.

There also exist some comorbidity progression approaches based on deep learning
techniques that have been specifically built for predicting future outcomes [21]. Some of
them construct comorbidity networks or learn multilevel embeddings of hospital visits
to predict the onset of new diseases without providing insights into disease coevolution
patterns over time [32,33,67,68]. The main purpose of these latter models is to recognize
the underlying structure within each hospital visit rather than identifying the hidden
diagnosis of most of the visits based on the dynamics of the clinical history. Some
other works have attempted to create interpretable Recurrent Neural Network-based
models [9, 11, 12] using attention mechanism to interpret hidden disease dynamics and
provide an explanation of their discriminative predictions. In general, these methods
are not motivated from a generative perspective and do not face common challenges in
the healthcare setting, such as limited data availability, missingness or uncertainty in
medical data [4, 23].

This chapter proposes a novel probabilistic generative model to address the chal-
lenges posed by EHRs, paying special attention to missing data. The objective of such
a model is threefold: (i) identify and segment the medical history of patients into treat-
ments associated with each disease they suffer from; (ii) learn the model associated with
each identified disease treatment; and (iii) discover subtypes of patients with similar
patterns of coevolution of comorbidities. For this purpose, the model considers a latent
structure for temporal sequences, where patients are modeled by a latent class defined
by the evolution patterns of their comorbidities, and each observed medical event of
their clinical histories is associated with a latent diagnosis. In other words, we seek
to extract diagnosis-associated subsequences from the complete sequence of medical
events (i.e., from the clinical history), where classes represent similar coevolution of
these subsequences of latent diagnoses.

The main contributions of this work are as follows:

• We propose a probabilistic generative model of treatment trajectories for patients
suffering from several comorbidities. The model builds on Markov models to
capture the transitions between medical events of the different diseases.

• The generative model considers a latent class variable that identifies different
subtypes of patients according to their evolution patterns of comorbidities. In
addition, the model includes a generative submodel for the treatment associated
with each comorbidity.

• The generative model is trained on EHRs that are characterized by a significant
amount of missing data related to the diagnosis variable. To address missing data,
the model considers this diagnosis variable as latent. Therefore, we propose an
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EM scheme with a dynamic programming-based method as an efficient learning
algorithm for the parameters of the model.

We use synthetic and real-world data (Section 1.1) to demonstrate the validity and
practical significance of the model. The experiments show the ability of our method to
model the progression of coexisting diseases and to extract meaningful and individual-
ized representations of the different treatments.

The remainder of this chapter is organized as follows. Section 5.2 introduces the
problem formulation. Section 5.3 describes the probabilistic generative model and the
model learning procedure. Section 5.4 presents the results of the synthetic data exper-
iments that evaluate the performance of the proposed method and the application of
the model to real-world EHRs. Section 5.5 discusses the contributions and limitations
of our approach and Section 5.6 draws the conclusions.

5.2 Problem formulation

A patient’s clinical history, denoted by h, is a sequence of medical data collected during
repeated hospital visits. Let A be the set of medical actions and D the set of diagnoses,
we define a patient’s EHRs as

h = (h1, ..., hm),

where ht = (at, dt) represents the t-th medical event of the patient, at ∈ A is the medical
specialty (for instance, oncology, hematology, cardiology, etc.) attended and dt ∈ D the
diagnosis/disease, for t = 1, ...,m. The sequence of medical specialties a = (a1, ..., am)
is an observable variable, while the sequence of diagnoses d = (d1, ..., dm) is partially
observed since it often presents missing values.

The ultimate objective is to capture the different subtypes of joint evolution of
comorbidities in EHRs. For that, we first seek to identify and segment the medical
history of patients into treatments associated with each comorbidity d ∈ D. This is
not a straightforward task as d is incomplete (Figure 5.1), and therefore, requires to
estimate the diagnosis dt ∈ d for each medical specialty visit at ∈ a. Furthermore, the
priority of treating a disease or ongoing medical therapies often involves the modification
or interruption of other treatments. For instance, the majority of anticancer therapies
are associated with some cardiovascular toxicities, ranging from asymptomatic and
transient to more clinically significant and long-lasting cardiac events [69]. Depending
on the previous existence of cardiovascular diseases and their progression, patients are
at higher risk for the development of subsequent cardiovascular injuries (e.g., heart
failure), which would lead to closer and more intense monitoring of such pathology
and may affect the cancer treatment. This means that the transition dynamics of
comorbidities depends not only on the subtype of patient, but also on the coexisting
diseases of the patient at each moment.

The problem can be seen as an unsupervised classification of a set of treatments
with different progression dynamics of their comorbidities.
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Figure 5.1: Example of EHRs with missing diagnosis information. ICD-10 code C50
corresponds to breast cancer diagnosis and I42 is a cardiomyopathy diagnosis.

5.3 Methodology

This section outlines the proposed probabilistic generative model and details the pro-
cedure for inference and parameter estimation.

5.3.1 Model definition

The proposed comorbidity generative model is built on a Markov model, which enables
the description of the sequential evolution of data through a series of transitions between
medical events (see Figure 5.2). Let a = (a1, ..., am) be the observed sequence of medical
actions that describe a patient’s trajectory, where at belongs to the set of medical
specialties A. We assume that a has an associated hidden structure of comorbidities
that relates medical actions to diseases. This means that a patient trajectory consists
of subsequences of medical actions associated with different diseases, ad for d ∈ D, and
these subsequences are mixed in a way that constitutes the clinical history h. However,
extracting the subsequences ad for d ∈ D is not trivial since most of the diagnosis are
missing.

In this hidden structure, the presence or absence of comorbidities over time is cap-
tured by a sequence of active disease states s = (s1, ..., sm) associated with a, where
each state st is the set of active diseases at each time t = 1, ...,m and represents the
comorbidity patterns of a patient in t. The set of active disease states is defined as
S = {0, 1}|D| where 1 indicates that the disease d ∈ D is active at a specific time and 0
means that disease is not active in the patient at that time. The transition dynamics
of these active disease states define the activation and deactivation of diseases, and
therefore, the possible occurrence of diseases over time. Let d = (d1, ..., dm) be the
latent sequence of diseases, where dt belongs to the set of diagnoses D = {1, ..., r} for
t = 1, ...,m. The active disease states determine the distribution of such diseases over
time, since the dynamics of the diseases depend on which comorbidities are active at
the same time. Therefore, when a comorbidity is activated or deactivated, the distribu-
tion of the remaining active diseases changes. We further consider that once an active
disease is deactivated, it cannot be present in the patient again.
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Finally, let c be the latent class which a belongs to. The class c belongs to a set C =
{1, ..., k}, which represents the subtypes of similar coevolution patterns of comorbidities
among patients. The role of this latent variable is to capture the heterogeneity among
the clinical histories based on the joint evolution of diseases. By doing so, it enables
the classification of patients into distinct groups characterized by diverse comorbidity
patterns over time. The classes influence the distribution of diseases but do not affect
the transition dynamics of medical actions. That is, the generative model assumes that
the stochastic model of the treatment of a disease is common to all patients, while it is
the evolution of diseases over time that creates the different subgroups of patients.

The proposal for the generative model is as follows (see Figure 5.2):

c dtdt�1dt�2

at�3 at�2 at�1 atat�k

dt�k dt�3...

...... ...

... dm

ama1

d1 ...

... ......s1 st�k st�3 st�2 st�1 st sm

Figure 5.2: Proposed comorbidity model defined by the conditional distributions
p(adt:t|adt:t′ , dt), p(dt|c, st) and p(st|st−1, dt−1, at−1) for observed sequences of actions
a, latent sequence of active disease states s, latent sequences of diseases d and latent
classes c.

a) Draw a class c ∼Mult(θC)

b) Sample the initial active disease state (set of potential comorbidities), the initial
disease, and the initial medical action,

s1 ∼ Cat(πS),

d1|s1, c ∼ Cat(πs1,c
D ), a1|d1 ∼ Cat(πd1

A )

c) For each time t:

i) Sample an active disease state from p(st|st−1, dt−1, at−1), that is,

st|st−1, dt−1, at−1 ∼ Cat(θ
st−1,dt−1,at−1

S )

ii) Sample a disease dt from p(dt|st, c),

dt|st, c ∼ Cat(θst,c
D )
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iii) Sample an action adt:t from p(adt:t|dt, adt:t′), that is,

adt:t|dt, adt:t′ ∼ Cat(θ
dt,adt:t′

A )

where ad:t is the t-th action associated with the disease d and ad:t′ the previous action
associated with the same disease d, so that ad is the treatment of the disease d.

Translating the generative process into a joint probability model results in the fol-
lowing expression (Figure 5.2):

p(a, s,d, c) = p(c)
m∏
t=1

p(st|st−1, dt−1, at−1) · p(dt|c, st) · p(ad:t|dt, ad:t′) (5.1)

where p(s1|s0, d0, a0) = p(s1) and p(ad:t|dt = d, ad:0) = p(ad:t|dt = d) for any value of
t = 1, ...,m.

In light of the above, p(c) is a multinomial probability distribution that describes
the probability of drawing a class from the set of classes of treatments C. We define
θC as the set of such probabilities that we have to learn:

θC = {p(c) : c ∈ C}.

The active disease states determine the coexisting diseases at each time t. The
probability of transition from a state s to s′ is defined by a Markov model, whose
parameters are:

θS = {θs,d,a
S : s ∈ S, d ∈ D, a ∈ A} = {p(s′|s, d, a) : s, s′ ∈ S, d ∈ D, a ∈ A}.

Diseases follow a categorical distribution conditioned to the set of coexisting diseases
st ∈ S at time t and the class of patient c ∈ C. Thus, for each active disease state
s ∈ S and each class c ∈ C, we have the following parameters:

θD = {θs,c
D : s ∈ S, c ∈ C} = {p(d|s, c) : d ∈ D, s ∈ S, c ∈ C}.

In addition, we define a Markov model from which the medical actions are drawn. The
conditional distributions of this model are given by a set of |D| transition matrices of
size |A| × |A| whose model parameters are:

θA = {θd,a
A : d ∈ D, a ∈ A} = {p(a′|a, d) : a, a′ ∈ A, d ∈ D}.

Finally, πS, πs,c
D and πd

A are the parameters of the initial model for the active disease
states, diseases and medical actions, respectively.

5.3.2 Maximum likelihood parameter estimation

This section introduces the learning procedure of the model parameters. Let A =
{a1, ...,aN} be the set of observed sequences of actions and let S = {s1, ..., sN} be the
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associated set of sequences of active disease states. As we mentioned in Section 5.2, the
sequence of diseases d is partially observed, providing an intuition about the onset and
end of the diseases, and therefore, about their activation and deactivation timestamps.
However, note that the activation time of a disease tends to be inherently unobservable
in EHRs since the first and last records of a diagnosis may not reliably indicate the
real time of disease onset and end. We define a time parameter τ to determine the
time interval in which a disease is active (tinit− τ, tend + τ), where tinit and tend are the
first and last time a diagnosis is observed in EHRs, respectively. Thus, we determine
the sequence of active disease states for each sequence of actions a ∈ A in such a way
that the corresponding set of sequences of diseases, Da, is limited to all the possible
sequences of diseases that coherently fit the existing diagnoses in EHRs.

The complete dataset, including the respective latent variable values for each ob-
servation in A, is unavailable. Hence, we use the EM algorithm to find an efficient
framework for maximizing the likelihood function. To learn the distribution under-
lying the sequences, we maximize the following expected value of the complete-data
log-likelihood:

max
θ

∑
a∈A
s∈S

∑
d∈Da

∑
c∈C

p(d, c|a, s) · log p(a, s,d, c;θ) (5.2)

where Da is the set of possible sequences of diseases for a, and θ = {θA,θS,θD,θC}.
Each sequence a ∈ A contributes equally to the model regardless of its length due to∑

c∈C

∑
d∈Da

p(d, c|a, s) = 1. (5.3)

Note that the maximum size of the set Da is |D||a| and exponentially increases with
the length of the sequence a. Indeed, the parameters depend on the number of diseases
we jointly model, and, in this work, we assume that the number of coexisting diseases
at a specific time, st, is moderate even though the total number of diseases |D| can be
large.

To find the parameters that maximize the log-likelihood in Equation (5.2), the EM
algorithm iterates as follows:

E-step: the objective is to find the posterior distribution of the latent variables given
the observed sequences of actions a ∈ A and the sequences of active states s ∈ S.
Afterwards, the expectation of the logarithm of the complete-data likelihood function
is computed using these values, as a function of the parameters θ = {θA,θS,θD,θC}.

M-step: In the maximization step we update the parameters of the model with the
expected values computed in the previous E-step. This maximization is achieved using
the Lagrange multiplier method.
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5.3.2.1 Efficient learning of the parameters of the model

Suppose that we have an observed sequence of actions a, an active disease state se-
quence s, a latent sequence of diagnosis d and a latent class variable c. A brute force
learning of the parameters of the model with latent variables is computationally ex-
pensive. We propose an alternative learning algorithm based on dynamic programming
to considerably reduce the number of computations, and thus, the complexity of the
model from exponential to polynomial.

Suppose that, for a sequence of actions a ∈ A, we observe the transition from at′ = a′

to at = a between two any time points t′ and t, t′ < t. Transitions between medical
actions are only allowed if they are associated with the same diagnosis. Therefore, for
the transition from at′ = a′ to at = a it must be satisfied that the sequence of latent
diagnosis has the form

(d1, ...dt′−1, d, dt′+1, ..., dt−1, d, dt+1, ..., dm)

where dt′+1, ..., dt−1 ̸= d.
In the E-step, we marginalize p(d, c|a, s) and compute the sum of the probabilities of

all the possible sequences of diseases for which dt = d. We can express the probabilities
of these sequences as

p(dt = d|a, s, c) =
p(dt = d,a, s|c)

p(a, s|c)
Let us define fc(t1, ..., tr) as the function that computes the sum of probabilities of

all the possible sequences of diseases d = (d1, ..., dt) in the class c, where (t1, ..., tr)
(r = |D|) indicates the last time that the diseases in D appear in the sequence d. We
compute the probability of all the sequences of diseases that have the disease d ∈ D at
time t as follows:

fc(t1, ..., tr) =
∑

d1,...,t−1

p(a1,...,t, s1,...,t,d1,...,t−1, dt = d|c) (5.4)

where d1,...,t−1 = (d1, ..., dt−1), s1,...,t = (s1, ..., st) and a1,...,t = (a1, ..., at).
Let us define gc(t1, ..., tr) as the function that computes the sum of probabilities of

all the possible sequences of diseases d = (dt+1, ..., dm) in c, where (t1, ..., tr) (r = |D|)
indicates the first time each disease d ∈ D appears in the sequence d. We compute the
probability of all the sequences of diseases that start with dt = d as:

gc(t1, ..., tr) =
∑

dt+1,...,m

p(at+1,...,m, st+1,...,m,dt+1,...,m|c, dt = d). (5.5)

Using Equations (5.4) and (5.5), we can express the sum of the probabilities of all
the sequences for which dt = d as follows:

p(dt = d,a, s|c) =fc(t1, ..., ti = t′, ..., tr) · p(st|st−1, dt−1, at−1) · p(dt = d|st, c) (5.6)

· p(ad:t|ad:t′ , dt = d) · gc(t1, ..., ti = t, ..., tr)
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where t′ is the previous time where the disease d is allocated. In Equation (5.6), certain
constraints need to be taken into account to determine the set of compatible sequences
of diagnoses for a, Da. See Appendix C.1 for more details.

We propose to create a matrix of size |D|× |D| associated with each function fc and
gc, each of them calculated with the recursive functions in Algorithm 1 and Algorithm 2.

Algorithm 1 Computation of fc matrix

Input: {t1, ...., tr}: set of the last time we saw each disease
θ = {θA,θS,θD,θC}: model parameters.

Output: fc(t1, ..., tr)
ti ← max{t1, ..., tr}
tj ← max{t1, ..., ti−1, ti+1, ..., tr}
t← ti
if ti − tj > 1 then
fc(t1, ..., tr) ← p(st|st−1, dt−1, at−1) · p(di|c, st) · p(adi:t|adi:t−1, d

i) · fc(t1, ..., ti−1, t −
1, ti+1, ..., tr)

else
fc(t1, ..., tr) ← p(st|st−1, dt−1, at−1) · p(di|c, st) ·

∑tj−1
t′=0 p(adi:t|at′ , di) ·

fc(t1, ..., ti−1, t
′, ti+1, ..., tr)

end if

Notice that in Algorithm 1 the statement ti − tj > 1 means that the action at time
ti = t comes from the same disease as the action in the previous time t − 1, while the
statement ti− tj = 1 means that we do not know from which previous action (or time)
the action at time t comes.

Algorithm 2 Computation of gc matrix

Input: {t1, ...., tr}: set of the first time we saw each disease
θ = {θA,θS,θD,θC}: model parameters.

Output: gc(t1, ..., tr)
ti ← max{t1, ..., tr}
t← ti + 1
gc(t1, ..., tr) ←

∑
i p(st|st−1, dt−1, at−1) · p(di|c, st) · p(at|adi:ti , di) · gc(t1, ..., ti−1, ti =

t, ti+1, ...tr)

In the M-step, we use the posterior distributions computed in E-step as constants
to maximize Equation (5.2) with respect to the parameters θ. This maximization
is achieved using Lagrange multipliers (Appendix C.2). If θd,a

′
a , θs

′,d,a
s , θs,cd , θc denote

a component in θd,a′

A , θs′,d,a
S , θs,c

D , θC , respectively, the parameters of the model are
updated as follows:
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θd,a
′

a =

∑
a∈A

∑|a|
t=1

∑
t′<t 1a′,a(ad:t′ , ad:t) · p(dt = d|a, s)∑

a∈A
∑

a∈A
∑|a|

t=1

∑
t′<t 1a′,a(ad:t′ , ad:t) · p(dt = d|a, s)

(5.7)

where

1a′,a(ad:t′ , ad:t) =

{
1 if ad:t′ = a′, ad:t = a

0 otherwise.
(5.8)

θs
′,d,a

s =

∑
a∈A

∑|a|
t=1 1a,s′,s(at−1, st−1, st) · p(dt−1 = d|a, s)∑

s∈S
∑

a∈A
∑|a|

t=1 1a,s′,s(at−1, st−1, st) · p(dt−1 = d|a, s)
(5.9)

where

1a,s′,s(at−1, st−1, st) =

{
1 if at−1 = a, st−1 = s′, st = s

0 otherwise.

θs,cd =

∑
a∈A

∑|a|
t=1 1s(st) · p(dt = d, c|a, s)∑

d∈D
∑

a∈A
∑|a|

t=1 1s(st) · p(dt = d, c|a, s)
(5.10)

θc =

∑
a∈A p(c|a, s)∑

c∈C
∑

a∈A p(c|a, s)
(5.11)

The proposed learning algorithm based on dynamic programming allows the E-step
to be polynomially solved, where the exponential number of configurations of diseases
and classes for a given sequence of actions is considered. Furthermore, the complexity
of the M-step is of order O(

∑
a∈A |a|), that is, the total number of medical actions of

the set A.
A large amount of configurations of diseases, classes, and actions creates problems

of sparsity in the parameters of the model. Once a parameter reaches a value of 0,
that parameter cannot obtain a different value in the subsequent iterations. We add
a smoothing parameter to the model in each iteration of the EM algorithm to prevent
this sparsity problem.

5.4 Experimental evaluation

This section presents two sets of experiments to validate the model. The goal of the
first set of experiments is to evaluate the ability of our learning algorithm to recover the
original generative model underlying the data, for which we use synthetic data. The
second set of experiments show some applications of the generative comorbidity model
on real-world data, such as the segmentation of the medical history of a patient into
different treatments, the identification of the different classes based on the joint pro-
gression of comorbidities, and the imputation of missing diagnoses. The corresponding
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source code is publicly available1.

5.4.1 Results on synthetic data

We perform experiments on synthetic data to show the behavior of the learning algo-
rithm in controlled environments. In these experiments the diagnoses are considered
unknown in the learning process. Since this is an artificial domain, the evaluation of
the learned model is carried out using the log-likelihood in training and test data so
that we can quantify the fitting and generalization abilities, respectively.

To this end, the first step of the experiment is to build a original generative model.
In order to do that, we consider random parameters. For simplicity, we perform ex-
periments with 2 and 3 comorbidities. In both cases, we set 2 classes and 10 medical
actions. The parameters of the generative model are created as follows: p(c), p(a′|a, d)
and p(d|s, c) are sampled from a uniform Dirichlet distribution for c ∈ C, a, a′ ∈ A
and d ∈ D; and p(s′|s, d, a) is also sampled from a Dirichlet distribution with α = 1
but limiting the active disease states to only activate or deactivate a single disease in
each transition. To avoid the generative model taking values too close to 0, we smooth
the sufficient statistics p(c), p(a′|a, d) and p(d|s, c) by adding 10−2, and p(s|s′, d, a) by
adding 10−3.

From the generative model we sample training sets of sizes N = {100, 300,
500, 800, 1000, 1200, 1500} and a test set of size 1500. We learn the parameters of the
model θn = {θn

A,θ
n
S,θ

n
D,θ

n
C} for each training set of size n ∈ N using the EM algorithm

proposed in Section 5.3.2. At each iteration of the EM algorithm the sufficient statistics
are smoothed by adding 10−2 to p(c), p(a|a′, d) and p(d|s, c), and 10−3 to p(s|s′, a, d).
Once the model has converged, we measure the quality of these learned models with the
log-likelihood of the data (Equation (5.2)) normalized by the total number of actions
in each dataset of size n ∈ N to make the results comparable.

This experiment is repeated five times, considering, for each of them, a different
original generative model. Figure 5.3 and Figure 5.4 show the fitting and generalization
ability of the method through the average log-likelihood of 2 and 3 comorbidities. The
average log-likelihood of the learned models on the training sets (orange solid line)
quantifies the fitting of the models to the data, while on the test set (blue solid lines)
it measures its ability of generalization. The dotted lines correspond to the average
log-likelihood of the 5 original generative models evaluated in the training (orange)
and test (blue) datasets. We can see that as the sample size increases, the curves that
quantify the fitting and generalization of the learned models converge to the curves
of the original generative models. This means that, given a sufficiently large dataset,
the proposed learning algorithm can reach the original generative model underlying the
data.

1https://github.com/onintzezaballa/ComorbidityGenerativeModel
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Figure 5.3: Fitting and generalization of synthetic generative models with 2 comorbidi-
ties.
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Figure 5.4: Fitting and generalization of synthetic generative models with 3 comorbidi-
ties.

5.4.2 Results on real-world data

This section shows the utility of the generative model on patients with breast cancer
and cardiovascular diseases, which are highly related comorbidities [69]. We use the
generative model in two different applications: we first perform an experiment to show
the segmentation of individual clinical histories into disease treatments; and then, a
population-level experiment to obtain the coevolution patterns of these two comorbidi-
ties. We further assess the results of these experiments by predicting the diagnosis of
unseen instances.

5.4.2.1 Dataset

We apply the model on the EHRs described in Section 1.1. As a use case, we focus
our attention on the comorbidities of the breast cancer population, specifically on car-
diovascular diseases. These diseases are biologically connected through some adverse
effects of cancer treatment on cardiovascular health [69]. The resulting dataset consists
of 90 clinical histories, whose average length is 140 medical actions, and they are gen-
erated by 29 unique medical specialties (selected following the process in Chapter 2).



CHAPTER 5. COMORBIDITY PROGRESSION PATTERNS 72

The percentage of missing diagnoses of these EHRs is 81%.

5.4.2.2 Hyperparameters and model specifications

We consider breast cancer patients with any diagnosis related to cardiovascular diseases,
that is, |D| = 2. According to clinical guidelines [69], patients evolve according to their
severity of short-term cardiotoxic effects caused by anticancer therapies. In order to
have a sufficient number of patients per class and after conducting experiments for
different values of the latent class, we have concluded that |C| = 2 is appropriate for
the available data.

Besides, since we are in a realistic scenario, we include prior diagnosis knowledge in
the model, so that we can obtain more accurate results and reduce the model complex-
ity. Since 19% of the diagnoses are available, we force them to remain fixed in their
original time position in the latent sequences of diseases. Varying the value of τ can
have a significant influence on both accuracy and computational efficiency. Through
experiments conducted with different values of τ = {90, 180, 360, 720, 1080, 1440}, we
observed that setting τ to 720 days gets a good balance between computational effi-
ciency and model performance. Therefore, to establish the active disease states, we
assume that the transition between two medical actions of the same disease may occur
within a maximum interval of τ = 720 days.

ACTION 1 ACTION 2 ACTION 3 ACTION 4 ACTION 5 ACTION 6 ACTION 7 ACTION 8 ACTION 9 ACTION 10 ACTION 11

BREAST CANCER Radiology Oncology Oncology Oncology Oncology Oncology Oncology Oncology Radiology

CARDIOVASCULAR 
DISEASE

Cardiology Cardiology

ACTION 12 ACTION 13 ACTION 14 ACTION 15 ACTION 16 ACTION 17 ACTION 18 ACTION 19 ACTION 20 ACTION 21 ACTION 22

BREAST CANCER Gynecology Oncology Anesthesia Anesthesia Surgery Oncological 
gynecology

Pathological 
anatomy

Gynecology Radiotherapy

CARDIOVASCULAR 
DISEASE

Cardiology Radiology

ACTION 23 ACTION 24 ACTION 25 ACTION 26 ACTION 27 ACTION 28 ACTION 29 ACTION 30 ACTION 31 ACTION 32 ACTION 33

BREAST CANCER Oncology Radiotherapy Radiotherapy Cardiology Radiotherapy Radiotherapy Radiotherapy Radiotherapy

CARDIOVASCULAR 
DISEASE

Rehabilitation Rehabilitation Rehabilitation

Figure 5.5: Disentangle of a partial clinical history of a patient with the diagnosis of
breast cancer and cardiovascular disease. The bold medical specialties represent the
real diagnosis collected in EHRs. The results are obtained from the model learned in
Section 5.4.2.3.
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5.4.2.3 Individualized segmentation of clinical histories

The first objective of the model is to segment the sequence of actions, a, into sub-
sequences associated with the different comorbidities. This is useful, for instance, for
understanding the evolution of a single disease in a patient, extracting its associated
treatment dynamics from the clinical history, or even for an informing forecast of ex-
pected costs of care and medical resources for specific diseases and patients by simulat-
ing trajectories from each disease related model.

In this experiment we train the model with the whole dataset. Then, the association
between medical specialties and diagnosis at each time t of the sequence a ∈ A is given
by the diagnosis of maximum probability at time t, that is,

max
d∈D

p(d|a, st) (5.12)

where st is the set of active diseases at time t.
Thus, we can extract the subsequence associated with each diagnosis from a patient’s

clinical trajectory h. An example of that is the segmentation of a partial clinical history
of a real patient that we show in Figure 5.5. Although in Figure 5.5 we attribute a
diagnosis to each medical event, the model allows us to assign to each medical action
the probability of belonging to any disease. In reality, a fundamental aspect of caring
for a patient undergoing potentially cardiotoxic anticancer therapy is to be treated by a
multidisciplinary team of oncologists, cardiologists, and other healthcare professionals
[69]. This means that a medical event may not be the consequence of a single disease,
but is caused by a set of diseases that co-exist over time.

5.4.2.4 Representation of the joint progression of comorbidities at population-
level

The learned generative model enables to extract knowledge about comorbidity evolution
patterns at population-level regarding the subtypes of treatments. This is a simulation
experiment to provide a representation of the different joint evolution of breast cancer
and cardiovascular diseases.

Following the generative process in Section 5.3.1, we randomly sample a set of 1000
clinical histories for each class from the learned model in the previous paragraph. The
clinical histories are of variable length and we set the maximum number of actions to
be 140. We show the joint evolution of comorbidities by calculating the probability of
a disease-related event occurring at each time point, that is,

p(dt = d|c), for all t. (5.13)

In Figure 5.6 we show the joint evolution of the breast cancer and cardiovascular dis-
eases for the 2 classes. Although breast cancer treatment clearly dominates in both
classes, the occurrence of cardiovascular treatment is different depending on the class.
The probability of treating cardiovascular diseases remains constant in the first class
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Figure 5.6: Joint evolution of comorbidities at a population-level.

(Figure 5.6a), while it increases in the initial part of the medical records in the sec-
ond class (Figure 5.6b). Therefore, class 1 may refer to patients with pre-existing
cardiovascular disease or cardiovascular risk factors undergoing potentially cardiotoxic
anticancer therapy that requires routine monitoring [69]. On the contrary, class 2 may
indicate more severe cardiovascular complications as a consequence of the harmful effect
of anticancer therapies on the cardiovascular system [69].

5.4.2.5 Imputation of diagnosis

Another application of our generative model is the imputation of missing diagnosis
values of EHRs. In other words, we seek to label a new patient’s medical events with
a diagnosis for each timestep. To assess the diagnosis assignment of the model, we
carry out a 10-fold cross-validation, where we split the dataset into training and test
sets in a 90:10 proportion. We train the model as in previous experiments, including
the diagnoses collected in the EHRs. However, in this experiment we propose the most
complex scenario for the test set, considering every diagnosis to be unknown. The
problem consists of setting a diagnosis label for each medical specialty of the test set
with Eq. 5.12, and afterward, checking them with 19% of available diagnoses as ground
truth.

We replicated the cross-validation experiment using two simplified versions of the
model (Equation (5.1)) to demonstrate the significance and utility of the latent class
and activation state variables in the assignment of diagnoses to medical events. On the
one hand, the first simplification we carry out to our original model is to delete the
class information. In this sense, we assume that there are no subtypes of progression in
comorbidities, and therefore, there are no patients with higher probability of developing
one disease over another. Then,

p(a, s,d) =
m∏
t=1

p(st|st−1, dt−1, at−1) · p(dt|st) · p(ad:t|dt, ad:t′). (5.14)

On the other hand, in the second baseline model we eliminate the activation states
from the original model, while still considering class information. This model assumes
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that comorbidities are always active throughout the entire medical history of a patient.
The joint probability of this model is defined as

p(a,d, c) = p(c)
m∏
t=1

p(dt|c) · p(ad:t|dt, ad:t′). (5.15)

Model AUC Accuracy F1-score
Breast cancer Cardiovasc.

Proposed model (Eq. 5.1) 0.81 0.84 0.90 0.75
Model without classes (Eq. 5.14) 0.76 0.80 0.85 0.71
Model without activation states (Eq. 5.15) 0.75 0.78 0.83 0.68

Table 5.1: Comparative evaluation of the models.

We can observe in Table 5.1 the improved assignment performance of our model,
which achieves higher AUC, accuracy, and F1-score values. These results highlight the
significance of including both latent classes and activation states in our model. In ad-
dition, this experiment not only supports the quality of the segmentation of clinical
histories into treatments of individual patients (Section 5.4.2.3), but also the comor-
bidity evolution dynamics captured in the simulation experiment (Section 5.4.2.4).

5.5 Discussion

This chapter proposes a novel probabilistic generative model for patients with comor-
bidities, that is, co-existing diseases. Modeling comorbidity dynamics from EHRs is not
straightforward and involves addressing challenges such as small datasets, uncertainty,
and missingness [1, 4]. We face the challenging problem where the diagnosis is missing
in most of the EHRs. This requires to contruct a model where diseases coexist without
precise information indicating when they occurred. Hence, the model is specifically
focused on the identification of the diagnoses associated with medical events and the
discovery of subtypes of similar disease coevolution patterns. To the best of our knowl-
edge, this is the first method to learn the dynamics of underlying comorbidity without
observing the entire clinical history of diagnoses.

Experiments show that the generative model can accurately estimate the diagnosis
of medical records. These results emphasize the model’s ability to extract treatment
subsequences from EHRs and capture the main subtypes of comorbidity evolution dy-
namics based on medical specialties. This correct diagnosis imputation is of great
interest for training models that require complete EHRs or avoiding loss of information
observed in other imputation methods [1].

A limitation of the proposed model is its complexity when the number of diseases
is too large. The number of parameters of the disease distribution θD to be learned
is 2|D|. Nevertheless, the number of coexisting comorbidities that we consider is not
so large as to become an intractable problem. One way to control the number of
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parameters is to assume that the number of coexisting diseases is limited, that is, only
j ≤ |D| diseases can be active at the same time. This would imply

∑
i=1,...,j

(|D|
i

)
possible combinations of active diseases at the same time. In this case, the number of
the disease distribution parameters would be |D| ·∑i=1,...,j

(|D|
i

)
. Another alternative

to deal with a larger amount of diseases would be to simplify the model by assuming
the same disease distribution throughout the entire clinical history, instead of being
dependent on the active diseases at each time.

5.6 Conclusion

Comorbidity refers to the co-occurrence of multiple diseases within the same patient.
Considering the joint evolution of diseases offers several benefits, including a deeper
understanding of disease interactions, joint progression, and relationships between dis-
eases. However, learning the joint progression of comorbidities in the presence of signif-
icant missing diagnoses is a challenging task. This missing data introduces uncertainty
regarding the association between medical events and specific diseases. Therefore, many
medical records are not directly related to any specific disease treatments.

This chapter introduces an interpretable probabilistic generative model developed to
capture the comorbidity dynamics within the context of incomplete EHRs. This model
has a specific focus on identifying missing diagnoses related to medical events and dis-
covering various subtypes of disease coevolution patterns. It proves to be effective in
scenarios where coexisting diseases follow diverse progressions based on the patient’s
active comorbidities. Practical applications involving patients with breast cancer and
cardiovascular diagnoses showcase the model’s success in diagnosis imputation, identi-
fication of treatment subsequences from clinical histories and representation of various
subtypes of comorbidity progression dynamics.





Chapter 6

Conclusions and future work

To conclude the thesis, this last chapter introduces the main conclusions of the dis-
sertation, as well as some further research directions motivated by the contributions.
Finally, the main achievements of the thesis are summarized at the end of the chapter.

6.1 Conclusions

This dissertation presents novel methodologies for unsupervised learning from sequences
of medical events. These methodologies effectively analyze disease treatments, identify
treatment patterns and model sequences of events of variable lengths. In addition, our
approaches deal with various complexities of EHRs, including missing diagnosis, the
heterogeneous nature of diseases, the irregular time intervals between actions, and the
presence of co-existing diseases.

This dissertation uses an administrative dataset provided by the public healthcare
system in the Basque Country, Spain. These EHRs enable the tracking of all the
resources used in the treatment of a disease throughout a patient’s clinical history, and
presents the traceability of the whole clinical care process. However, this repository
does not include clinical outcomes. Each patient’s clinical history is characterized by
a chronological sequence of medical events, and each medical event is represented by
a medical action, a diagnosis, and the timestamp. Within a sequence, the diagnosis
variable allows us to associate each medical event with a specific disease, although in the
19% of the medical events the variable presents missing values. The experimental results
based on this dataset validate the reliability of the proposed models and demonstrate
their diverse applications, including new data generation, missing diagnosis imputation,
treatment segmentation and time estimation.

Chapter 2 introduces a partitional methodology developed to identify representative
treatments for any disease of interest using EHRs. It systematically extracts end-to-
end treatment trajectories from EHRs using a relevance measure and multiple selection
criteria. Then, it classifies these treatments to create a comprehensive representation
of disease treatments within the healthcare system. Practical applications in breast

77
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cancer patients demonstrate the model’s ability to extract complete end-to-end treat-
ments from clinical data with missing values, segment treatment populations, and depict
this population with a set of representative treatments from EHRs. These experimen-
tal results, validated by healthcare professionals and compared with clinical practice
guidelines, demonstrates the reliability of the methodology. This research improves
the understanding of treatment patterns for a disease and highlights the importance of
considering the heterogeneous types of diseases in disease progression models.

Chapter 3 proposes a probabilistic generative model to characterize treatment vari-
ability in a disease through progression patterns. Unlike Chapter 2, which performs a
partition of the dataset for treatment classification, this chapter also focuses on under-
standing the evolution of treatments. The model classifies sequences of medical events
into distinct subtypes and segments these sequences into various progression stages.
Practical applications involving breast cancer patients demonstrate the model’s capac-
ity to classify treatments, identify their progression stages, and generate new treatment
trajectories for a disease. The model application could be extended to other progressive
diseases like other cancers, respiratory conditions, or neurodegenerative disorders that
evolve slowly over time. This probabilistic model also allows to uncover associations
between treatment trajectories of similar patients, establish data-driven taxonomies
for disease progression, and reduce the uncertainty in predicting a patient’s treatment
trajectory.

Chapter 4 presents an extension of the probabilistic generative model in Chapter 3
including the temporal information to capture the irregular time intervals between con-
secutive medical events. The model classifies treatments into different subtypes based
on the order of medical events and their time intervals, segments the treatments into
subsequences of patterns of disease progression, and model the irregular time between
every pair of medical events. It offers flexibility in modeling the time distribution,
allowing the choice of the most appropriate distribution based on the available data.
The experimental results involving breast cancer patients for both treatment classifica-
tion and time prediction demonstrate the model’s efficacy and reliability in providing
meaningful insights into disease progression patterns and accurate estimations of time
intervals between medical events.

Chapter 5 proposes a probabilistic generative model to understand comorbidity dy-
namics considering incomplete EHRs. Unlike the model developed in Chapter 3 which
focuses on single diseases, this chapter considers the modeling of multiple diseases co-
existing simultaneously. The model mainly focuses on the identification of missing
diagnoses associated with medical events and the classification of subtypes of similar
disease coevolution patterns. It is particularly suitable for scenarios where coexisting
diseases evolve differently depending on the active comorbidities of the patient. Prac-
tical applications involving patients with breast cancer and cardiovascular diagnoses
showcase the model’s success in diagnosis imputation, identification of treatment sub-
sequences from clinical histories and representation of various subtypes of comorbidity
progression dynamics.
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6.2 Future work

This section proposes various research directions based on the contributions of this
dissertation.

In the methodology proposed in Chapter 2, it would be valuable to establish a new
distance metric based on expert knowledge for comparing sequences of actions. For
instance, the relevance measure of medical specialties could be useful. Specifically, we
calculate the relevance of the medical specialties for the patients with the target diag-
nosis, which essentially indicates how more frequently each medical specialty is visited
by patients with the disease. This measurement could be interpreted as the significance
of the medical specialties for the specific disease. By including these relevance values
into the edit distance as weights, similar to the Edit Distance with Real penalties [70],
we can assign higher weights to actions that are particularly relevant to the disease.
Consequently, these actions would carry more significance when clustering sequences.

Throughout the remainder of the dissertation, we have developed our generative
models based on Markov models to capture the transition dynamics of diseases and en-
sure interpretable results. However, it is essential to acknowledge a limitation of Markov
models, which is their memoryless assumption. They consider that an individual’s cur-
rent action depends only on the previous medical action, rather than considering their
entire or partial clinical history. Then, for simulation and predictive purposes, in this
type of models an error can not be corrected after it is made and any error will be cas-
caded through all the subsequent predictions. To solve this problem, in [71], the authors
introduce a neural probabilistic model that combines an autoregressive base model with
an energy function. The base model generates predictions, and then, a transformer en-
ergy function learns to reweight the generated proposals to assign higher probabilities
to more realistic predictions. To do this adjustment of weights, they account for the
entire complete sequence, that is, past events together with predicted future events.
Future work will focus on relaxing the memoryless structure of our generative models
to capture long-term dependencies within patients’ medical history. This could pro-
vide more informative insights into the progression and relationships between medical
events.

Regarding the uncertainty between diagnosis and medical events, we propose to ex-
tend our probabilistic generative models in Chapters 3, 4 and 5 to address the Scenario
2 in Figure 1.3. That is, consider the diagnoses collectively as a set for each hospi-
talization or ICU episode instead of a single diagnosis for each medical event. This
extension would be particularly relevant for publicly available datasets like MIMIC-
III [6] or eICU [7], where diagnoses are not associated with individual medical actions
but rather with entire episodes. The problem formulation changes regarding the type of
missing data. Instead of assigning from a set of diagnoses a diagnosis to each medical
event with missing value, the new approach involves assigning a subset of diagnoses
to a subsequence of medical events. Addressing this challenge requires a modification
of the EM algorithm and the dynamic programming approach. The extension of our
generative models will not only enhance their applicability but also facilitate their val-
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idation and comparative assessments against other methods designed for this specific
scenario.

These publicly available datasets offer additional patient information that can sig-
nificantly improve our patient classification and disease progression modeling results.
For instance, they contain diverse data types, including laboratory results and vital
signs, among others. The incorporation of such a variety of data sources would provide
the model with a more informative representation of patients’ health status and medical
history over time. The model could capture continuous variations in a patient’s health
status, and therefore, improve the predictions of the onset of new diseases or potential
readmissions in the hospital.

Chapter 4 introduces a generative model to learn the irregular time intervals between
pairs of medical events. A limitation of the current approach is its reliance on parametric
modeling of the time intervals. Although parametric models, in our particular case
the Weibull distribution, have shown favorable results for time estimation, they may
not capture the full complexity and variability present in data. In future work, we
propose to address this limitation by incorporating non-parametric techniques into our
approach. For instance, non-parametric kernel density estimation [72] could provide
even more flexibility to the model and potentially capture a wider range of patterns
and distributions in the time intervals.

Finally, Chapter 5 presents a generative model to learn the co-evolution of multiple
diseases. However, certain diseases may have different activity patterns, with periods
of activity alternating with periods of inactivity. A future direction is to enhance
the comorbidity model by incorporating these variations, thereby enabling diseases to
be reactivated once their initial treatment has been completed. This extension will
be particularly valuable in scenarios where diseases have a cyclic or recurring nature.
By accounting for disease reactivation, our model will more accurately capture the
dynamic nature of diseases and how they interact with other diseases in a patient’s
medical history.

6.3 Main achievements

The research work conducted during this thesis has resulted in the following publica-
tions:

6.3.1 Journal papers

• Zaballa, O., Pérez, A., Gómez-Inhiesto, E., Acaiturri-Ayesta, T., Lozano, J. A.
(2020). Identifying common treatments from electronic health records with miss-
ing information: An application to breast cancer. PLOS ONE, 15(12), e0244004.

• Zaballa, O., Pérez, A., Gómez-Inhiesto, E., Acaiturri-Ayesta, T., Lozano, J. A.
(2022). Learning the progression patterns of treatments using a probabilistic
generative model. Journal of Biomedical Informatics, 137, 104271.
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• Zaballa, O., Pérez, A., Gómez-Inhiesto, E., Acaiturri-Ayesta, T., Lozano, J. A.
(2023). A Probabilistic Generative Model to Discover the Treatments of Coexist-
ing Diseases with Missing Data. Computer Methods and Programs in Biomedicine,
107870.

6.3.2 Conferences

• Zaballa, O., Pérez, A., Gómez-Inhiesto, E., Acaiturri-Ayesta, T., Lozano, J. A.
(2023). Time-dependent probabilistic generative models for disease progression.
Machine Learning for Healthcare (ML4H), New Orleans, United States of Amer-
ica.
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Appendix A

Probabilistic generative model for
disease progression

A.1 Lagrange multiplier method

This appendix describes the process followed to obtain the update of the model param-
eters.

We consider a = (a1, ..., am) to be the observed data, s = (s1, ..., sm) the underlying
latent sequence of stages and c the latent class. We aim to obtain the model parameters
θ that maxime the following function,

θ̂ = argmax
θ

∑
s∈Sa

∑
c∈C

p(s, c|a) · log p(a, s, c;θ) (A.1)

where Sa is the set of all the potential sequences of stages for a, and θ = {θA,θS,θC}.
From Equation (A.1), we obtain∑

s∈Sa

∑
c∈C

p(s, c|a) · log p(a, s, c;θ) =

=
∑
s∈Sa

∑
c∈C

p(s, c|a) · log

(
p(c)

m∏
t=1

p(at|at−1, st−1, c) · p(st|st−1, at, c)

)

=
∑
s∈Sa

∑
c∈C

p(s, c|a)

(
log p(c) +

m∑
t=1

log p(at|at−1, st−1, c) +
m∑
t=1

log p(st|st−1, at, c)

)
(A.2)

Since the parameters we want to optimize are now independently split into three
terms in the sum, we can optimize them individually.

82
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For the first term in Equation (A.2),

∑
s∈Sa

∑
c∈C

p(s, c|a)
m∑
t=1

log p(c) =
m∑
t=1

∑
c∈C

∑
s∈S

p(st = s, c|a) log θc

=
∑
c∈C

p(c|a) log θc

To maximize with respect to θc we introduce the Lagrange multipliers ε. The La-
grangian is then given by:

L(θC) =
∑
c∈C

p(c|a) log θc + ε(
∑
c∈C

θc − 1)

where
∑

c∈C θc = 1. We get p(c|a) from the E-step and use it as a constant. Setting
the derivative equal to zero, we obtain:

∂L(θC)

∂θc
=

p(c|a)

θc
+ ε = 0 =⇒ ε = −p(c|a)

θc
(A.3)

Multiplying each side by θc and summing over c ∈ C, we obtain that

ε = −
∑
c∈C

p(c|a). (A.4)

From Equations (A.3) and (A.4), we obtain

θ̂c =
p(c|a)∑
c∈C p(c|a)

=

∑m
t=1

∑
s∈S p(st = s, c|a)∑

c∈C
∑

s∈S
∑m

t=1 p(st = s, c|a).

For the second term in Equation (A.2),

∑
s∈Sa

∑
c∈C

p(s, c|a)
m∑
t=1

log p(at|at−1, st−1, c) =

=
m∑
t=1

∑
a∈A

∑
s∈S

∑
a′∈A

p(st−1 = s, at−1 = a, at = a′, c) log θa,s,ca′

To maximize with respect to θa,s,ca′ we introduce the Lagrange multipliers λa,s for a ∈ A
and s ∈ S. The Lagrangian is then given by:

L(θA) =
m∑
t=1

∑
a∈A

∑
s∈S

∑
a′∈A

p(st−1 = s, at−1 = a, at = a′, c) log θa,s,ca′ +
∑
a∈A

∑
s∈S

λa,s(
∑
a′∈A

θa,s,ca′ − 1)

where
∑

a′∈A θa,s,ca′ = 1. We get p(st−1 = s, at−1 = a, at = a′, c) from the E-step and use
it as a constant. Setting the derivative equal to zero, we obtain:
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∂L(θA)

∂θa,s,ca′
=

∑m
t=1 p(st−1 = s, at−1 = a, at = a′, c)

θa,s,ca′
+ λa,s = 0

=⇒ λa,s = −
∑m

t=1 p(st−1 = s, at−1 = a, at = a′, c)

θa,s,ca′
(A.5)

Multiplying each side by θa,s,ca′ and summing over a′ ∈ A, we obtain that

λa,s = −
∑
a′∈A

m∑
t=1

p(st−1 = s, at−1 = a, at = a′, c) (A.6)

From Equations (A.5) and (A.6), we obtain

θ̂a,s,ca′ =

∑m
t=1 p(st−1 = s, at−1 = a, at = a′, c)∑

a′∈A
∑m

t=1 p(st−1 = s, at−1 = a, at = a′, c)

=

∑m
t=1 1(at−1 = a, at = a′)p(st−1 = s, c|a)∑

a′∈A
∑m

t=1 1(at−1 = a, at = a′)p(st−1 = s, c|a)

Finally, for the third term in Equation (A.2),

∑
s∈Sa

∑
c∈C

p(s, c|a)
m∑
t=1

log p(st|at, st−1, c) =

=
m∑
t=1

∑
s∈S

∑
a′∈A

∑
s′∈S

p(st−1 = s, at = a′, st = s′) log θa
′,s,c

s′

To maximize with respect to θa
′,s,c

s′ we introduce the Lagrange multipliers λs,a′ for s ∈ S
and a′ ∈ A. The Lagrangian is then given by:

L(θS) =
m∑
t=1

∑
s∈S

∑
a′∈A

∑
s′∈S

p(st−1 = s, at = a, st = s′, c) log θa
′,s,c

a′ +
∑
s∈S

∑
a′∈A

λs,a′(
∑
s′∈S

θa
′,s,c

s′ − 1)

where
∑

s′∈S θ
a′,s,c
s′ = 1. We get p(st−1 = s, at = a′, st = s′, c) from the E-step and use

it as a constant. Setting the derivative equal to zero, we obtain:

∂L(θS)

∂θa
′,s,c

s′

=

∑m
t=1 p(st−1 = s, at = a′, st = s′, c)

θa
′,s,c

s′

+ λs,a′ = 0

=⇒ λs,a′ = −
∑m

t=1 p(st−1 = s, at = a′, st = s′, c)

θa
′,s,c

s′

(A.7)

Multiplying each side by θa
′,s,c

s′ and summing over s′ ∈ S, we obtain that

λs,a′ = −
∑
s′∈S

m∑
t=1

p(st−1 = s, at = a′, st = s′, c) (A.8)
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From Equations (A.7) and (A.8), we obtain

θ̂a
′,s,c

s′ =

∑m
t=1 p(st−1 = s, at = a′, st = s′, c)∑

s′∈S
∑m

t=1 p(st−1 = s, at = a′, st = s′, c)

=

∑m
t=1 1(at = a′)p(st−1 = s, st = s′, c|a)∑

s′∈S
∑m

t=1 1(at = a′)p(st−1 = s, st = s′, c|a)

A.2 Heterogeneity on synthetic sequences

This appendix aims to show the variability of the synthetic sequences generated for the
experiments in Section 3.4.1. For each experiment we represent the distribution of the
lengths of the sequences, the frequency of actions and the frequency of the transition
between actions for two different sizes of the dataset.
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Figure A.1: Experiment 1: histogram of the lengths of the sequences of actions.
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Figure A.2: Experiment 1: frequency of actions and their transitions.
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Figure A.3: Experiment 2: histogram of the lengths of the sequences of actions.
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Figure A.4: Experiment 2: frequency of actions and their transitions.
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Figure A.5: Experiment 3: histogram of the lengths of the sequences of actions.
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Figure A.6: Experiment 3: frequency of actions and their transitions.
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Figure A.7: Experiment 4: histogram of the lengths of the sequences of actions.
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Figure A.8: Experiment 4: frequency of actions and their transitions.
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Figure A.9: Experiment 5: histogram of the lengths of the sequences of actions.
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Figure A.10: Experiment 5: frequency of actions and their transitions.
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A.3 Heterogeneity in sequences of real EHRs

This appendix shows the frequency of medical actions and their transitions in real
EHRs. Then, we represent these frequencies within each class of treatments that we
obtained in the experiment of Section 3.4.2.3.
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Figure A.11: Frequency (%) of medical actions in real EHRs.
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Figure A.12: Frequency (%) of the transitions between medical actions in real EHRs.

A.3.1 Inter-class heterogeneity

The objective of Figure A.13 is to show the variety of medical actions that can typically
be executed for each class, as well as the transition between them.
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(a) Class 1: Frequency (%) of actions.
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(b) Class 1: Frequency (%) of transitions.
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(c) Class 2: Frequency (%) of actions.
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(d) Class 2: Frequency (%) of transitions.
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(e) Class 3: Frequency (%) of actions.
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(f) Class 3: Frequency (%) of transitions.
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(g) Class 4: Frequency (%) of actions.
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(h) Class 4: Frequency (%) of transitions.
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Figure A.13: Frequency (%) of actions and their transitions of each class.



Appendix B

Time-dependent probabilistic
generative models for disease
progression

B.1 Efficient inference based on dynamic program-

ming

Exact parameter learning of a generative model can be computationally expensive for
long sequences. We adapt the learning procedure developed in Section 3.3.2.1 to the spe-
cific characteristics of the time-dependent generative model described in Equation (4.1).
In this case, we need to find the posterior distribution of the latent variables, p(s, c|a, τ ).
We then use this posterior distribution to evaluate the expectation of the logarithm of
the complete-data likelihood function in Equation (B.1), as a function of the parameters
θ = {θA,θT ,θS,θC}:

max
θ

∑
(a,τ )∈D

∑
s∈Sa

∑
c∈C

p(s, c|a, τ ) · log p(a, τ , s, c;θ) (B.1)

where Sa is the set of all the potential sequences of stages for a.
Let us assume that we have a training set D = {(ai, τ i)}Ni=1 that consists of a

set of treatments a = (a1, ...., am) and their corresponding sequences of time intervals
τ = (τ1, ..., τm). Let consider the underlying sequence of latent stages s = (s1, ..., sm)
where si ∈ S, and a latent variable of classes c ∈ C for each pair (a, τ ) ∈ D. We aim
to estimate the maximum likelihood parameters θ of the model in each iteration of the
EM algorithm.

In the E-step, we compute the expected values of the latent variables, which can be
thought of as the probabilities of each possible stage s ∈ S at time i in each possible
class c ∈ C. That is, the probability of all the sequences of stages with the form
(s1, ..., si−1, s, si+1, ..., sm) in c.
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Let us assume that fc(i, s) is the sum of the probabilities of all the sequences of stages
(s1, ..., si) in the class c that end at si = s, and gc(i, s) is the sum of the probabilities
of all the sequences of stages (si+1, ..., sm) that start at si = s in the class c. Then,

fc(i, s) =
∑
s1:i

p(s1:i,a1:i, τ1:i|c) (B.2)

gc(i, s) =
∑

si+1:m

p(si+1:m,ai+1:m, τi+1:m|s, c), (B.3)

where aj:k = (aj, ...., ak), τj:k = (τj, ..., τk) and sj:k = (sj, ...., sk).
Now, we can express the sum of the probabilities of the sequences for which si−1,i =

(s, s′) as

p(si−1 = s, si = s′|a, τ , c) =
p(si−1 = s, si = s′,a, τ |c)

p(a, τ |c)

Using Equations (B.2) and (B.3),

p(si−1 = s, si = s′,a, τ |c) =

=
∑
s1:i−2
si+1:m

p(s1:i−2, si−1 = s,a1:i−1, τ1:i−1|c) · p(ai|ai−1, si−1 = s, c)·

· p(si = s′|ai, si−1 = s, c) · p(τi|ai−1, ai, c) · p(si+1:m,ai:m, τi:m|si = s′, c)

=fc(i− 1, s) · p(ai|ai−1, si−1 = s, c) · p(si = s′|ai, si−1 = s, c) · p(τi|ai−1, ai, c) · gc(i, s′)

We propose to create a matrix associated with each function f and g. These func-
tions are defined as recursive functions:

fc(i, s) =fc(i− 1, s) · p(ai|ai−1, s− 1, c) · p(s|ai, s, c) · p(τi|ai−1, ai, c)

+ fc(i− 1, s− 1) · p(ai|ai−1, s− 1, c) · p(s|ai, s− 1, c) · p(τi|ai−1, ai, c)

gc(i, s) =gc(i + 1, s + 1) · p(ai+1|ai, s + 1, c) · p(s + 1|ai+1, s, c) · p(τi+1|ai, ai+1, c)

+ gc(i + 1, s) · p(ai+1|ai, s, c) · p(s|ai+1, s, c) · p(τi+1|ai, ai+1, c)

The functions fc and gc are defined in such a way that the stages are non-decreasing.
The dynamic programming method significantly reduces the number of computations
for the parameter estimation. In essence, rather than independently computing the
probability for all possible combinations of (a, τ , s, c), the dynamic programming ap-
proach reuses the transition probabilities that the sequences share.

Finally, note that, to model the time, we use the cumulative distribution function
F (x;θ) for the exponential and Weibull distributions, given their continuous nature.
In these cases, p(τ |a, a′, c) is computed as 1 − F (τ ;θT ). However, for the geometric
distribution, we use the probability density function, that is, p(τ |a, a′, c) = f(τ ;θT ).
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B.2 Time prediciton error in real EHRs

This appendix presents the mean absolute errors for time interval predictions in Fig-
ures B.1, B.2 and B.3. These mean absolute errors are calculated for the most frequent
transitions between pairs of medical specialties, allowing us to demonstrate the improve-
ments in predictions made by our model compared to empirical parametric methods.
In the following figures, lighter blue squares indicate higher predictive errors.
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(a) Geometric distribution (empirical)
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(b) Exponential distribution (empirical)
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(c) Weibull distribution (empirical)

Figure B.1: Heatmap of the mean absolute errors of the prediction of time intervals
using the empirical distributions.
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(a) Geometric distribution (our model)
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(b) Exponential distribution (our model)
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(c) Weibull distribution (our model)

Figure B.2: Heatmap of the mean absolute errors of the prediction of time intervals
using the proposed generative model. The results of our model are obtained from the
mixture of classes Equation (4.8).
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Figure B.3: Heatmap of the mean absolute errors of the prediction of time intervals
using the non-parametric model (median).





Appendix C

Probabilistic generative model for
comorbidity progression

C.1 Requirements for the transitions between med-

ical actions

This appendix outlines the requirements necessary for the transition between pairs of
medical actions. Recall that transitions between medical actions are only allowed if
they are associated with the same diagnosis. Therefore, for the transition from at′ = a′

to at = a it must be satisfied that the sequence of latent diagnosis has the form

(d1, ...dt′−1, d, dt′+1, ..., dt−1, d, dt+1, ..., dm)

where dt′+1, ..., dt−1 ̸= d.
In terms of the recursive Equations 5.4 and 5.5, we have that

p(dt = d,a, s|c) =

= fc(t1, ..., ti = t′, ..., tr) · p(st|st−1, dt−1, at−1) · p(dt = d|st, c) · p(ad:t|ad:t′ , dt = d)

· gc(t1, ..., ti = t, ..., tr)

where t′ is the previous time where the same disease d is allocated. To account for the
constraints on the set of possible configurations in the sequences of diagnosis, Da, in the
computation of the matrices fc and gc using the proposed dynamic programming-based
method, we follow the subsequent procedure:

If a is observed at time t in the sequence a, let t′ be the set of times such that we
can find the action a′ in the subsequence a1,...,t−1, that is, t′ = {y < t : ay = a′}. Let
T = (t1, ..., tr) be the vector that indicates the last time each type of disease di ∈ D,
i = 1, ..., r, appears in the sequence d = (d1, ...., dt), and let h = max t′ = max{y < t :
ay = a′}.

For each time t where the action a is observed, and for each disease di ∈ D, i =
1, ..., r, the two following options can occur:
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1. If t− h > 1:

1.1) If at least one disease has already finished before t:

For the set of finished diseases before t, df ∈ D, we use their endpoint in the
sequence d to set in the vector T the last time we have seen that disease.

For the set of unfinished diseases that are already initialized, we fix each
disease, dj ∈ D, at tj = t − 1 (j ̸= f, i) while we set tr′ = 0, ..., t − 2 in
the rest of the unfinished diseases (dr

′ ∈ D, r′ ̸= j, i, f). Take into account
that if any disease’s endpoint is fixed at t − 1, we do not have to set any
unfinished disease tj in t − 1, rather they are all fixed at tr′ = 0, ..., t − 2
(r′ ̸= i, f).
For those diseases that have not already been initialized their position in T
is fixed at 0.

1.2) If no disease has finished before t, we fix for each disease dj ∈ D their last
position in T as tj = t − 1 and the rest of the initialized diseases’ position
at tr′ = 0, ..., t− 2 (r′ ̸= j, i).

Let J = {1, ..., i− 1, i + 1, ..., r}, then we can compute p(dt = di,a, s|c) as∑
y∈t′

∑
j∈J

∑
t1,...,tr
tj=t−1

tr′ ,r
′ ̸=j,i,f

fc(t1, ..., ti = y, ..., tr)

· p(st|st−1, dt−1, at−1) · p(dt = di|c, st)·
p(at|adi:t′ = a′, dt = di) · gc(t1, ..., ti = t, ..., tr)

2. If t− h = 1:
We fix for each disease dj ∈ D their position tj at the maximum position t′,
that is, tj = h. In addition, tr′ = 0, ..., t − 2 for all r′ ̸= i, j. Then, let J =
{1, ..., i− 1, i + 1, ..., r}, then we can compute p(dt = di,a, s|c) as∑

y∈t′

∑
j∈J

∑
t1,...,tr
tj=h

tr′ ,r
′ ̸=j

fc(t1, ..., ti = y, ..., tr)·

p(st|st−1, dt−1, at−1) · p(dt = di|c, st)
· p(at|adi:t′ = a′, dt = di) · gc(t1, ..., ti = t, ..., tr)

C.2 Lagrange multiplier method

This appendix describes the process followed to obtain the update of the model param-
eters of the comorbidity progression model.
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We consider a = (a1, ..., am) to be the observed data, s = (s1, ..., sm) the correspond-
ing sequence of active disease states, d = (d1, ...., dm) the latent sequence of diagnosis
and c the latent class. We aim to obtain the model parameters θ that maxime the
following function,

θ̂ = argmax
θ

∑
d∈Da

∑
c∈C

p(d, c|a, s) · log p(a, s,d, c;θ) (C.1)

whereDa is the set of all the potential sequences of diagnosis for a, and θ = {θA,θS,θD,θC}.
From Equation (C.1), we obtain∑

d∈Da

∑
c∈C

p(d, c|a, s) · log p(a, s, c;θ)

=
∑
d∈Da

∑
c∈C

p(d, c|a, s) · log

(
p(c)

m∏
t=1

p(st|st−1, at−1, dt−1) · p(dt|st, c) · p(ad:t|ad:t′ , dt)
)

=
∑
d∈Da

∑
c∈C

p(d, c|a, s)

(
log p(c) +

m∑
t=1

log p(st|st−1, at−1, dt−1) +
m∑
t=1

log p(dt|st, c)

+
m∑
t=1

log p(ad:t|ad:t′ , dt)
)

(C.2)

Since the parameters we want to optimize are now independently split into four
terms in the sum, we can optimize them individually.

For the first term in Equation (C.2),∑
d∈Da

∑
c∈C

p(d, c|a, s)
m∑
t=1

log p(c) =
m∑
t=1

∑
c∈C

∑
d∈D

p(dt = d, c|a, s) log θc

=
∑
c∈C

p(c|a, s) log θc

To maximize with respect to θc we introduce the Lagrange multipliers ε. The La-
grangian is then given by:

L(θC) =
∑
c∈C

p(c|a, s) log θc + ε(
∑
c∈C

θc − 1)

where
∑

c∈C θc = 1. We get p(c|a, s) from the E-step and use it as a constant. Setting
the derivative equal to zero, we obtain:

∂L(θC)

∂θc
=

p(c|a, s)

θc
+ ε = 0 =⇒ ε = −p(c|a, s)

θc
(C.3)

Multiplying each side by θc and summing over c ∈ C, we obtain that

ε = −
∑
c∈C

p(c|a, s) (C.4)
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From Equations (C.3) and (C.4), we obtain

θ̂c =
p(c|a, s)∑
c∈C p(c|a, s)

=

∑m
t=1

∑
d∈D p(dt = d, c|a, s)∑

c∈C
∑

d∈D
∑m

t=1 p(dt = d, c|a, s)

For the second term in Equation (C.2),∑
d∈Da

∑
c∈C

p(d, c|a, s)
m∑
t=1

log p(st|st−1, dt−1, at−1) =

=
m∑
t=1

∑
s′∈S

∑
d∈D

∑
a∈A

∑
s∈S

p(st−1 = s′, dt−1 = d′, at−1 = a, st = s) log θs
′,d,a

s

To maximize with respect to θs
′,d,a

s we introduce the Lagrange multipliers λs′,d,a for
s′ ∈ S, d ∈ D and a ∈ A. The Lagrangian is then given by:

L(θS) =
m∑
t=1

∑
s′∈S

∑
d∈D

∑
a∈A

∑
s∈S

p(st−1 = s′, dt−1 = d, at−1 = a, st = s) log θs
′,d,a

s (C.5)

+
∑
s′∈S

∑
d∈D

∑
a∈A

λs′,d,a(
∑
s∈S

θs
′,d,a

s − 1)

where
∑

s∈S θ
s′,d,a
s = 1. We get p(st−1 = s′, dt−1 = d, at−1 = a, st = s) from the E-step

and use it as a constant. Setting the derivative equal to zero, we obtain:

∂L(θS)

∂θs
′,d,a

s

=

∑m
t=1 p(st−1 = s′, dt−1 = d, at−1 = a, st = s)

θs
′,d,a

s

+ λs′,d,a = 0

=⇒ λs′,d,a = −
∑m

t=1 p(st−1 = s′, dt−1 = d, at−1 = a, st = s)

θs
′,d,a

s

(C.6)

Multiplying each side by θs
′,d,a

s and summing over s ∈ S, we obtain that

λs′,d,a = −
∑
s∈S

m∑
t=1

p(st−1 = s′, dt−1 = d, at−1 = a, st = s) (C.7)

From Equations (C.6) and (C.7), we obtain

θ̂s
′,d,a

s =

∑m
t=1 1(at−1 = a, st−1 = s′, st = s) · p(dt−1 = d|a, s)∑

s∈S
∑m

t=1 1(at−1 = a, st−1 = s′, st = s) · p(dt−1 = d|a, s)

Similarly, we obtain the update for the third and last term in Equation (C.2). The
update of the corresponding model parameters are as follows:

θ̂s,cd =

∑m
t=1 1(st = s) · p(dt = d, c|a, s)∑

d∈D
∑m

t=1 1(st = s) · p(dt = d, c|a, s)

θ̂d,a
′

a =

∑m
t=1

∑
t′<t 1(ad:t = a, ad:t′ = a′) · p(dt = d|a, s)∑

a∈A
∑m

t=1

∑
t′<t 1(ad:t = a, ad:t′ = a′) · p(dt = d|a, s)
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