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Abstract

Voluntary motor control is thought to be predicated on the ability to efficiently integrate and process so-
matosensory afferent information. However, current approaches in the field of motor control have not fac-
tored in objective markers of how the brain tracks incoming somatosensory information. Here, we asked
whether motor performance relates to such markers obtained with an analysis of the coupling between
peripheral kinematics and cortical oscillations during continuous movements, best known as corticokine-
matic coherence (CKC). Motor performance was evaluated by measuring both gross and fine motor skills
using the Box and Blocks Test (BBT) and the Purdue Pegboard Test (PPT), respectively, and with a biome-
chanics measure of coordination. A total of 61 participants completed the BBT, while equipped with elec-
troencephalography and electromyography, and the PPT. We evaluated CKC, from the signals collected
during the BBT, as the coherence between movement rhythmicity and brain activity, and coordination
as the cross-correlation between muscle activity. CKC at movements’ first harmonic was positively asso-
ciated with BBT scores (r=0.41, p=0.001), and alone showed no relationship with PPT scores (r=0.07,
p=0.60), but in synergy with BBT scores, participants with lower PPT scores had higher CKC than expected
based on their BBT score. Coordination was not associated with motor performance or CKC (p>0.05).
These findings demonstrate that cortical somatosensory processing in the form of strengthened brain–
peripheral coupling is specifically associated with better gross motor skills and thus may be considered
as a valuable addition to classical tests of proprioception acuity.
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Significance Statement

Whether standing upright, jogging, or in Olympic competition, our nervous system not only sends out motor
commands prompting muscles to contract but also receives incoming information to fine-tune motor ac-
tions. Though the machinery involved in sensing mechanical changes is well-described, the neural process-
ing of this information is not, making its relevance to motor function unresolved. We found that the coupling
strength between peripheral kinematics and cortical activity was related to motor function and at most, only
weakly related to conventional muscle-only assessments. We present the novel behavioral relevance of this
coupling and its specific relationship to grossmotor skills. Our study paves the way for including novel brain-
centered approaches to complement classical assessment sensorimotor functions in health and disease.
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Introduction
Proprioception is the sense of position and movement of our own body. While the “hardware” of proprioception,

consisting of a collection of sensory mechanoreceptors located in muscles, tendons, joints, and the skin, provides kine-
matic data for the brain, central processing, akin to “software,” must integrate and use this information to update motor
programs (Han et al., 2016; Imai and Yoshida, 2018; Palva and Palva, 2018; Tuthill and Azim, 2018). Currently, much of the
literature describing the proprioceptive sense relies on peripheral proprioceptive acuity testing, with common tasks in-
cluding threshold to detection of passive motion, joint position reproduction, or active movement extent discrimination.
While these tasks have been useful in risk identification or in a variety of clinical and sport-specific settings (de
Noronha et al., 2006; Hobbs et al., 2010; Mir et al., 2014), they do not describe the “software” of proprioception.
Although the cortical and subcortical areas active during proprioceptive stimulation are well known (Goble et al., 2011),
the neurophysiological mechanisms therein are still poorly described. The characterization of these mechanisms appears
crucial considering that changes in movement sense are implicated across countless pathologies (Dietz, 2002), during
aging (Ferlinc et al., 2019), and in competitive sports (Han et al., 2016).
It is clear that the field of motor control would benefit from an approach that examines how the brain tracks incoming

proprioceptive information. A promising method in that respect is corticokinematic coherence (CKC), the coupling be-
tween cortical activity and limb kinetics or kinematics that occurs during repetitive movement tasks at movement frequen-
cies (Bourguignon et al., 2011, 2012; Piitulainen et al., 2013a). Indeed, studies comparing CKC during active and passive
movements and using directionality approaches suggest that CKC specifically assesses the cortical processing of soma-
tosensory proprioceptive afferences (Piitulainen et al., 2013a, 2018a; Bourguignon et al., 2015). CKC studies have already
revealed differences in proprioception in the case of children with cerebral palsy and elderly adults (Piitulainen et al.,
2018b; Démas et al., 2022). Though CKC appears to be a viable tool to probe the neural tracking of proprioceptive infor-
mation, its relationship to motor performance is yet unexplored.
Motor performance is a highly multidimensional concept. A common subdivision distinguishes between gross and fine

motor skills. In this regard, the Box and Blocks Test (BBT) and the Purdue Pegboard Test (PPT) are regularly used in the
rehabilitative medicine field to characterize these two aspects of motor performance. While both tasks require the use of
the upper extremity, the BBT relies more on gross motor function, whereas the PPT necessitates more fine motor control
(Gardner and Broman, 1979; Mathiowetz et al., 1985). Importantly, the highly repetitive nature of the BBT makes it an
especially suitable task for CKC analysis (Marty et al., 2015a).
Yet another determinant contributor to motor performance is coordination (Bernshteın̆, 1967). In biomechanics, coor-

dination is defined as the relation between muscle activations acting toward the achievement of a motor task (Kimura
et al., 2021). The neuronal underpinning of coordination is not fully understood, but an increasingly acknowledged
mechanism is the simultaneous control of multiple muscles by specialized spinal circuits, commonly known as muscle
synergies (Saltiel et al., 2001; d’Avella et al., 2003; Kuppuswamy and Harris, 2014). Motor coordination can be assessed
through the electromyographic (EMG) assessment of neuromuscular activations between muscles.
In this study, we estimated CKC between cortical activity and rectified EMG signals, as done previously (Piitulainen et

al., 2013b; Bourguignon et al., 2019), with the aim of assessing its relationship to two types of motor skills, as measured by
the BBT (gross) and PPT (fine). Additionally, coordination during the BBT was assessed to test its relationship with motor
performance and with CKC. Correspondingly, we hypothesized that (1) CKC strength would be positively correlated with
BBT and PPT scores and that (2) enhanced muscular coordination would coincide with better motor scores. Finally, since
CKC is thought to represent the processing of incoming sensory afferents, based on previous directional coupling anal-
yses (Piitulainen et al., 2013a; Bourguignon et al., 2015), and coordination to rely on spinal mechanisms for motor control,
we hypothesized that (3) these two measures would be at most, weakly related.

Methods
Participants. A total of 61 healthy adults (32 females; mean±SD age, 23.9 ± 3.5 years; range, 18–34 years) participated

in the study. All participants were right-handed according to the Edinburgh Handedness Inventory (mean±SD score, 72.6
± 9.9; range, 57–90; Oldfield, 1971) and reported no history of neurological or motor impairments. Participants had no prior
experience with the BBT and PPT. The protocol was approved by the ethics committee of the Université libre de Bruxelles.
All subjects gave written informed consent in accordance with the Declaration of Helsinki.

Experimental design. Participants were fitted with an EEG cap with 64 electrodes (waveguard original, ANT Neuro).
Additionally, participants were fittedwith electrodes on threemuscles of the right upper extremity: first dorsal interosseous
(FDI), biceps brachii, and anterior deltoid.
Participants completed three trials of the BBT with the right hand (Fig. 1). The BBT requires a participant to transfer as

many small wooden blocks as possible across a 15.2 cm tall barrier with the designated testing hand, during 1 min of test-
ing (Mathiowetz et al., 1985). One hundred and fifty 2.5 cm3 wooden blocks were placed in random orientations in the par-
tition on the side of the testing hand. A participant's score was equal to the number of blocks moved over the barrier, to an
identical, but empty partition, in 1 min. The experimenter instructed the participants to move the blocks as quickly as
possible and encouraged them throughout each trial.
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Participants completed five trials of one subset of the PPT, in which they used only their right hand to transfer metal pegs
from their starting position, in the upper right-hand side of the board, to the right column with small holes spaced along the
length of the board (Fig. 1). Each participant was instructed to transfer as many pegs as possible in 30 s.
The experimenter performed one trial of the BBT and PPT to show the participant how to perform it properly.

Data acquisition. EEG and EMG signals were recorded during the BBT trials. The EEG signals were continuously
recorded with a conventional cap in a layout based on the extended international 10–20 system for electrode placement.
The nasion, inion, and midsagittal plane of the head were used as anatomical landmarks to place the cap. The EEG cap
was connected to an EEGmobile amplifier (eegoTM, ANTNeuro). Electrode-skin impedance levels were kept below 20 kΩ
with electrolyte gel. Brain activity was visualized and sampled at 1,000 Hz using the eegoTM software (v1.9.1; ANT Neuro)
running on an interactive tablet.
The EMG signals were continuously recorded with bipolar electrodes. EMG electrodes were connected directly to the

EEG amplifier and signals were recorded on auxiliary channels of the EEG amplifier. EMG signals were sampled at
1,000 Hz. Proper placement of EMG electrodes on respective muscle bellies was verified during isometric contractions.

Data preprocessing. EEG signals were imported into MATLAB (R2019b, MathWorks) where custom scripts combined
with functions from the FieldTrip toolbox (Donders Institute for Brain, Cognition, and Behavior; Oostenveld et al., 2011)
were used for data analysis. EEG signals at electrodes affected by excessive noise levels (mainly due to bad electrode-
skin contact) were reconstructed by interpolation of the signals from the surrounding electrodes as done previously
(Perrin et al., 1989). Electrodes were considered noisy when they matched at least one of the three criteria: (1) too
high wide-band amplitude, (2) too high ratio between high- and low-frequency amplitudes, and (3) too low correlation
with other channels, as proposed previously (Bigdely-Shamlo et al., 2015). Details of the methods and default values
used for these three criteria can be found in Bigdely-Shamlo et al. (2015). EEG signals were then re-referenced to a com-
mon average. Thereafter, independent component analysis was applied to the EEG signals filtered through 0.5–45 Hz,
with the EEG data being decomposed into 20 independent components using the FastICA algorithm (dimension
reduction, 25; nonlinearity, tanh; Hyvärinen et al., 2000; Vigario et al., 2000). The spatial distribution and time series
of each component were visually analyzed for each trial, with 1–6 components corresponding to eyeblink and heartbeat
artifacts, or nonuniform noise selected for removal. The corresponding components were subsequently subtracted
from raw EEG signals.
As a preliminary step to correct for slow drift, movement, and power-line artifacts, EMG signals recorded during the BBT

trials were filtered between 20 and 295 Hz with notch filters at 50 Hz and harmonics using a zero-lag fast Fourier
transform-based filter and rectified (Fig. 2A). We then applied a processing procedure to correct for changes in EMG am-
plitude across cycles. To do this, fast and slow envelopes were extracted from each rectified EMG by smoothing it with a
Gaussian kernel that implements a low-pass filter at 3 and 0.7 Hz, respectively (Fig. 2A). These frequencies were chosen to

Box and Blocks Test Purdue Pegboard Test

Reference

Deltoid

Biceps

FDI

Figure 1. Experimental setup. Participants performed the BBT (left) while equipped with a 64-channel EEG cap and bipolar EMG electrodes on the FDI,
biceps, and deltoid. Once a block is selected and picked up, the participant moves their hand over the barrier and releases the block. Participants per-
formed the PPT (right) unequipped. Pegs were transferred from the starting position to the next available small hole.
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capture the range of expected movement frequencies (1–1.5 Hz). The ratio of the fast envelope and the slow envelope
represents the muscle recruitment trace (Fig. 2B). It emphasizes the periodicity of the individual muscle activity within
each movement cycle while removing the influence of nonstationarity across cycles.

EMG processing. During the BBT, three parameters of muscle activity were extracted from the upper extremity: coor-
dination, regularity, and EMG modulation depth.
Motor coordination was assessed with two different methods: cross-correlation and mutual information. Both are fit

for clinical translation as neither is computationally demanding. Cross-correlation is an established method for com-
paring EMG signals between different muscles (Hawkes et al., 2012). This approach measures the similarity in shape
between two curves, with regard to the temporal characteristics of the signals (Hawkes et al., 2019). Here, the Pearson
correlation coefficient was estimated between each pair of the three muscle recruitment traces with delays ranging
from −2 to 2 s, by steps of 20 ms (Fig. 2C). For each pair, the maximum in absolute value was retained, and the average
across pairs was taken as the correlation-based coordination measure. Mutual information analysis has been estab-
lished as another similarity index, with successful use in assessing motor coordination (Samani et al., 2017).
Importantly, this method detects linear and nonlinear statistical dependencies between time series, whereas cross-
correlation is limited to the assessment of linear dependence (Jeong et al., 2001). Upon analysis of the activity of
the deltoid muscle across participants, we noticed a biphasic activation pattern along the movement cycle.
Therefore, the mutual information approach was adopted to capture potential nonlinear relationships between signals
that otherwise would not have been identified. Mutual information was estimated between each pair of the three upper
extremity muscle recruitment traces. Three types of mutual information were computed and averaged across muscle
pairs: (1) mutual information directly applied to the muscle recruitment traces; (2) mutual information applied to the
phase of the muscle recruitment traces, as extracted with the Hilbert transformation; and (3) permutation mutual
information (Cheng et al., 2018). In the two first cases (1 and 2), mutual information was applied to the data quantized

Figure 2. Processing of EMG signals. A, Excerpt of pre-processed EMG signals for the FDI, biceps, and deltoid from a representative participant. From
each of the rectified EMG signals (dark gray traces) were extracted a fast (blue traces) and a slow (red traces) envelope. B, Muscle recruitment traces for
each of the muscles, obtained as the ratio between the fast and slow envelopes. C, Cross-correlations between pairs of muscle recruitment traces. Their
maximal amplitude was taken as an estimate of motor coordination. D, Auto correlations for the same muscle recruitment traces. The amplitude of their
side peaks was taken as a measure of regularity.
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into 10 equally populated bins. In the last case (3), mutual information was applied to the permutation order derived
from four adjacent time points with a distance of 100 ms. Thus, permutation mutual information determined whether
the order obtained by sorting the values over the four time points in one signal tended to predict the presence of one or
more other orders in the other signal.
Regularity was assessed because it could bias our estimation of coordination and CKC, the latter two being expected to

increase with more regular movements. Regularity can be defined as the consistency of a given muscle activation pattern,
where high regularity corresponds to similar activation patterns across cycles of a given task and low regularity results
from heterogeneous activation patterns. With this view in mind, regularity can be assessed using autocorrelation, as
done more commonly in gait kinematic investigations (Kobayashi et al., 2014) and in studies of sensorimotor coordination
(Carroll et al., 2001), where the EMG signal for a designated muscle is compared to itself across successive time lags. The
autocorrelation coefficient is 1 at time 0 and decreaseswith increasing delays imposed on the signal. However, in rhythmic
activities, positive side peaks appear at integer multiples of cycle duration with negative side peaks in between; the more
regular the signal, the greater the magnitude of the side peaks. Therefore, we estimated the Pearson autocorrelation for
three muscle recruitment traces with delays ranging from −2 to 2 s, by steps of 20 ms, and quantified regularity with the
magnitude in the absolute value of the first negative and positive side peaks (Fig. 2D).
The modulation depth of muscle recruitment traces was assessed to quantify the salience of rhythmic EMG activity.

It was quantified with the coefficient of variation, later averaged across the three muscles. This parameter is important
to control for as it has the potential to bias regularity, coordination, and CKC measures. Indeed, the latter three measures
are expected to decrease with decreasing modulation depth, simply because movement cycles become less clearly
represented.

EEG processing. CKC was calculated for the three 1-min-long trials of the BBT combined. The coherence was com-
puted between rectified FDI muscle activity and each EEG signal. Noteworthily, a rectified EMG signal picks upmovement
rhythmicity much like an accelerometer, so that its coherence with EEG signals at movement frequencies can be safely
termed CKC (Piitulainen et al., 2013b; Bourguignon et al., 2019). Coherence is an extension of the Pearson correlation co-
efficient to the frequency domain, which quantifies the degree of coupling between two signals, for example, the CKC
strength, by providing a number between 0 (no linear dependency) and 1 (perfect linear dependency) for each frequency
(Halliday et al., 1995).
For coherence analyses, the continuous data were split into 5 s epochs with 4 s epoch overlap, leading to a frequency

resolution of 0.2 Hz (Bortel and Sovka, 2007). EEG epochs where the signal amplitude of at least one electrode exceeded
five standard deviations above the mean were excluded to avoid contamination of the data by internal or external noise
sources. We then performed a coherence analysis (Halliday et al., 1995), yielding cross-, power, and coherence spectra—
between EEG and rectified EMG signals. Themagnitude squared coherence was chosen as the couplingmeasure as done
in previous CKC studies (Bourguignon et al., 2011, 2012, 2013, 2015; Piitulainen et al., 2013b, 2015; Marty et al., 2015b).
Individual power and coherence spectra were used to identify peak CKC, which occurred at the approximate movement
frequency (F0) and its first harmonic (F1). Maximum values at F0 and F1 across all electrodes, excluding those located on
the edge of the cap, were extracted for each individual. Topographic distributions of CKC, visualized using the FieldTrip
toolbox (Halliday et al., 1995; Oostenveld et al., 2011), confirmed that peaks in coherence were identified in the neighbor-
hood of electrodes above the primary sensorimotor cortex (SM1), contralateral to the movement.
The SNR of the EEG signal is a potential confounding factor in coherence analysis, where decreased SNR leads to de-

creased coherence. To take this factor into account, we assessed it at F0 and F1, for the electrode with maximum CKC. It
was estimated as the power at the considered frequency (F0 or F1) divided by the geometric mean of the power ±2 fre-
quency bins away.

Code accessibility. The code/software described in the paper is freely available online at https://osf.io/46bsg/?view_
only=a6355d5112bd4e878525814ed8ca6b9e. The code is available as Extended Data.

Statistical analysis. Individual CKC values were compared against a surrogate distribution to determine significance.
Surrogate coherence was evaluated between original EEG and Fourier transform surrogate reference signals (1,000 rep-
etitions). The Fourier transform surrogate of a signal is obtained by computing its Fourier transform, replacing the phase of
the Fourier coefficients by random numbers in the range (−π; π) and then computing the inverse Fourier transform. The
threshold for statistical significance was set to p<0.05 and was obtained as the 95th percentile of the distribution of the
maximum coherence across 1–4 Hz and across all considered electrodes.
Correlation between motor performance scores (BBT and PPT), EMG-based parameters, and CKC values were as-

sessed via Spearman's rank-order correlation test. It should be noted that a very strong correlation (r>0.8) was identified
within the four measures of motor coordination and within the two measures of regularity. Therefore, related parameters
were combined into a unique measure by averaging them after classical standard normalization (mean subtraction and
division by the standard deviation).
Potential confounding factors for regularity, coordination, and CKC (our dependent variables) were assessed by corre-

lation and corrected when the correlation was statistically significant. Specifically, when a significant correlation was

Research Article: New Research 5 of 12

January 2024, 11(1). DOI: https://doi.org/10.1523/ENEURO.0384-23.2023. 5 of 12

https://osf.io/46bsg/?view_only=a6355d5112bd4e878525814ed8ca6b9e
https://osf.io/46bsg/?view_only=a6355d5112bd4e878525814ed8ca6b9e
https://osf.io/46bsg/?view_only=a6355d5112bd4e878525814ed8ca6b9e
https://doi.org/10.1523/ENEURO.0384-23.2023
https://doi.org/10.1523/ENEURO.0384-23.2023


identifiedwith a confounding variable, themean subtracted confounding variable was regressed out of the dependent var-
iable, resulting in a new corrected dependent variable. When more than one confounding factor was identified, they were
regressed out sequentially, taking care of orthogonalizing each of them with respect to the previously removed ones. For
regularity, the potential confounding factor was modulation depth as clearer variations in the EMG envelope may corre-
spond to increased regularity. For coordination, potential confounding factors were regularity and modulation depth. For
CKC, potential confounding factors were modulation depth, regularity, and EEG SNR.
A partial information decomposition (PID; Ince, 2017; Ince et al., 2017) analysis was used to dissect the information

about CKC brought by motor performance. PID is a method to describe the extent by which two explanatory variables
bring unique information about a target (information present in one variable but not in the other), redundant information
(information common to the two variables), and synergistic information (information emerging from the interaction of
the two variables; Kunert-Graf et al., 2020). In this way, PID was used to estimate the unique, redundant, and synergistic
information brought by BBT and PPT performance about CKC. PID analysis was implemented in MATLAB, from all three
variables with Gaussian copula rank normalization done (Williams and Beer, 2010; Ince et al., 2017; Park et al., 2018).
Following, partial information was calculated with a redundancy lattice as done previously (Williams and Beer, 2010;
Ince et al., 2017; Park et al., 2018). For statistical assessment and conversion into easily interpretable z scores, measures
of information were compared to the distribution of these measures obtained after permuting motor scores across sub-
jects (1,000 permutations).

Results
Gross and fine motor skill assessment
Participants’ scores on the BBT, which assesses gross motor skills, ranged from 54 to 98 blocks transported during a

single 1 min trial, with an average (±SD) of 76.2 (±7.6) blocks. These scores are compatible with existing normative data of
healthy adults, as reported in females, 78 (±10.4), and males, 77 (±11.6; Mathiowetz et al., 1985).
On the more dextrous task, the PPT, participants’ scores ranged from 11 to 19 inserted pegs, with an average of 15.7

(±1.7) pegs inserted. These scores are comparable to normative data from young, healthy adults as reported in females,
16.6 (±2.1), and males, 15.7 (±1.7; Yeudall et al., 1986).
Figure 3 presents the relation between BBT and PPT scores. Both were significantly correlated (r=0.39, p=0.002).

However, the magnitude of this association was not particularly strong, confirming that BBT and PPT assess partially dif-
ferent aspects of motor performance. Overall, existing variability and decoupling in test scores lend support to the notion
that participants possess differing motor control profiles.

EMG modulation depth, regularity, and coordination
The EMG modulation depth across participants possessed a mean (0.23) that was relatively high compared to its SD

(0.03), indicating that the modulation of muscle activity was captured similarly across participants.
The two measures of regularity, including the negative and positive autocorrelation side peaks, were highly related

(r = 0.81, p<0.0001). Therefore, these two measures were combined into one measure of regularity of muscle activity.
This resulting measure of regularity showed a significant positive correlation with EMG modulation depth (r=0.49,
p < 0.0001). To account for this association, the regularity measure was corrected for EMG modulation depth.
The four coordination measures extracted from the cross-correlation and mutual information analyses were highly

related (0.80 < r<0.95, p<0.0001). Therefore, these measures were combined into a unique measure of coordination.
The resulting coordination measure was significantly correlated with EMG modulation depth (r=0.59, p<0.0001).
Consequently, the coordination measure was corrected for EMGmodulation depth. In addition, we identified another sig-
nificant relationship between corrected coordination and corrected regularity measures (r=0.76, p<0.001). Therefore, the
coordination measure was corrected for both EMG modulation depth and regularity.

Figure 3.Relationship between PPT scores (pegs inserted in 30 s) and BBT scores (blocks transferred in 1min). Circles indicate individual values, and their
linear regression line is in red. The correlation value and associated significance level are indicated in the bottom right corner.
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Notably, there was no significant correlation between regularity and BBT (r=0.15, p=0.24) or PPT scores (r=0.12,
p = 0.37) or between coordination and BBT (r=−0.01, p=0.92) or PPT scores (r=0.07, p=0.62).

CKC
Figure 4 presents a characteristic coherence spectrum and topography found for the coupling between cortical activity

and rectified FDI muscle activity during the BBT. In line with previous studies (Bourguignon et al., 2011, 2012; Piitulainen et
al., 2013a, 2018a, 2020; Marty et al., 2015a), such CKC peaked at F0 and F1. Also, the topography at each frequency
showed a tendency for CKC to peak approximately around the C3 electrode, compatible with SM1 activation, with
sources at times radially or tangentially oriented. Overall, 31 participants showed significant CKC at F0, representing
52% of our sample, while 41 participants had significant CKC at F1, accounting for 67% of our sample. Interestingly, it
was not uncommon for CKC to be higher at F1 (0.23 ±0.10) compared to F0 (0.20 ± 0.11), but this difference was not sig-
nificant (p=0.08; Wilcoxon test).

Behavioral relevance of CKC
Correlations of CKC at F0 and F1 with the BBT and PPT scores yielded different results. At F0, CKCwas not significantly

associated with BBT scores (r=−0.02, p=0.88) or PPT scores (r=−0.11, p=0.40). However, at F1, CKC was significantly
associated with BBT scores (r=0.41, p=0.001; Fig. 5A) but not with PPT scores (r=0.07, p=0.60; Fig. 5B).
Additionally, we investigated whether the association between CKC at F1 and performance could be explained by con-

founding factors. As a result, CKC was not significantly associated with EMGmodulation depth (r=0.002, p=0.99) or reg-
ularity (r=−0.009, p=0.94). These results indicate that the EMG SNR was high enough in all individuals not to noticeably
influence CKC values and that the range of movement regularity was restricted enough not to smear CKC peaks in some
individuals more than in others. Our last step to deal with potential confounding factors involved the inclusion of the SNR
from EEG activity. CKC at F1 was significantly associated with the SNR (r=0.48, p<0.0002) and hence corrected for it.
After correction, CKC at F1 was still significantly associated with BBT scores (r=0.29, p=0.021; Fig. 5C). Still, after cor-
rection, PPT scores were not significantly associated with CKC at F1 (r=0.02, p=0.85; Fig. 5D).
Finally, we tested our hypothesis that CKC is at most weakly related to motor coordination. Our data was in line with this

hypothesis, revealing nonsignificant correlation between coordination and CKC at F0 (r=0.24, p=0.07) and F1 (r=0.16,
p =0.24). And when CKC data was corrected for EEG SNR, there was a significant correlation at F0 (r=0.29, p=0.02), but
not at F1 (r=0.20, p=0.12).

PID
Figure 6A represents the information structure of BBT scores and PPT scores as related to the prediction of CKC.

BBT scores brought significant unique information about CKC (z=9.12; p=0.002), whereas PPT scores did not
(z = −0.98; p=0.97). Together, the two scores did not bring significant redundant information (z=0.38; p=0.20), but their
simultaneous observation did bring synergistic information about CKC (z=2.58; p=0.03).
Figure 6B characterizes how CKC varies according to BBT and PPT scores. Clearly, from the correlation analysis, CKC

is best predicted by BBT scores compared to PPT scores, and this is supported by the difference in unique information
that each brings to CKC. However, when plotting the variables together (Fig. 6B), it becomes apparent that the knowledge
of the PPT scores could help refine CKC prediction beyond its regression line on BBT scores. Participants with high PPT
scores tended to display reduced CKC compared to what is expected from their BBT score (below the regression line). The
same conclusions can be drawn when standardized BBT scores are subtracted from standardized CKC, and this contrast

Figure 4. Spectrum and scalp distribution of CKC for a representative individual. The CKC spectrum presents one trace for each EEG electrode, and a
horizontal red line indicates the level of statistical significance. Coherence peaked at F0 and F1, corresponding to ∼1.5 and 3 Hz, respectively, for this
particular individual. Scalp distributions are mostly compatible with tangential sources in the left SM1 cortex, although other sources might have contrib-
uted (Bourguignon et al., 2012).
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is plotted against PPT scores (Fig. 6C). Indeed, when PPT scores are low, the contrast was high, meaning that a participant
had a CKC value that was higher than expected from their BBT score, and vice versa, as attested by a significant negative
correlation (r=−0.35, p=0.006).

Discussion
In this study, we examined the relationship between CKC, a marker of cortical proprioceptive processing, and motor

performance, with the aim of establishing the behavioral relevance of CKC.We identified a significant relationship between
CKC at F1, but not F0, and motor performance of a gross motor control task. Conversely, the motor performance of a fine
motor control task was informative about CKC, but only when considered in synergy with gross motor ability. Finally,
motor coordination did not contribute tomotor performance but showed a trend of association with CKC at F0, but not F1.

Behavioral relevance of CKC
In our study, higher BBT scores, indicating more favorable gross motor function, corresponded to stronger CKC. This

finding suggests that there is a behavioral advantage to stronger CKC on this motor task. In the following paragraphs, we
present several nonexclusive explanations for this behavioral advantage.
Previous analyses have shown that CKC likely reflects the processing of afferent somatosensory, mostly propriocep-

tive, information (Piitulainen et al., 2013a; Bourguignon et al., 2015). Therefore, increased CKC could indicate an increased
quantity of cortical resources allocated for sensory processing. Following the views whereby inefficient neural coding
could be compensated by recruiting additional neural populations (Nurmi et al., 2021), stronger CKC may represent an
increase in the utilization of neural substrate. This idea has been brought forward in another study in which stronger
CKC was associated with worse postural stability (Piitulainen et al., 2018b). But unlike during postural balance, where
the consistent need for more neural resources may be computationally unfavorable, the ability to allocate additional neural
substrates for a novel task, like the BBT in our study, could foster better integration of afferent signals. Accordingly, the
interpretation of CKC magnitude appears to be task dependent.
The relationship between CKC and task performance might also be explained by a more robust cortical representation

of proprioceptive afferences in the best performers. This is well in line with the behavioral relevance of neural entrainment
to external stimuli seen across a range of modalities, best explored in language literature where entrainment to speech
benefits comprehension (Ahissar et al., 2001; Peelle et al., 2013; Vanthornhout et al., 2018; Bertels et al., 2023), as well
as in the context of sign language observation (Malaia et al., 2021). Alternatively, higher BBT scores are likely to be
achieved with faster movements. Since muscle spindle activity has been shown to increase with faster movement

Figure 5. Relation of CKC at F1 with BBT scores (A), PPT scores (B), and EEG SNR corrected CKC at F1 with BBT scores (C) and PPT scores (D). Plots are
as in Figure 3.
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(Sasaki et al., 2018), it should result in stronger afferent volleys to the SM1 and hence increased CKC. Attention and
motivation may also vary across participants and impact both performance and CKC through the neuronal resources
allocated to the task. Thus, changes in CKC, similar to corticomuscular coherence, could be related to attention-based
parameters (Kristeva-Feige et al., 2002; Johnson et al., 2011).
Beyond the behavioral relevance of CKC for gross motor function, our PID analysis revealed that fine motor control, in

the form of PPT scores, brought more intricate synergistic information about CKC when observed together with BBT
scores. We show that individuals with enhanced fine motor skills (high PPT) tend to possess lower levels of CKC than ex-
pected, based on their gross motor skills (BBT), with the converse also holding true. This suggests that CKC is higher in
relation to features present in the BBT, but not in PPT. While both tasks rely on gross control of the arm and forearm, the
performance of the BBT likely depends on accurate proprioceptive encoding of upper limb joint positions andmovements,
while the PPT may rely more on visuomotor integration as required by the precise placement of the peg (Hinkle and
Pontone, 2021), giving less weight to proprioception. These views lay strong support to the notion that CKC is mainly
driven by proprioceptive afferences (Piitulainen et al., 2013a; Bourguignon et al., 2015), while adding the important notion
of behavioral relevance.

Figure 6. Fine-grained relationship of CKC with motor skills. A, Information structure of BBT and PPT scores predicting CKC. Ellipses outline the decom-
position of mutual information into unique information brought by BBT scores (purple), unique information brought by PPT scores (beige), redundant in-
formation present in both scores, and synergistic information not present in either score but emerging from them together. Their significance level is
indicated in each partition. B, Relationship between standardized CKC and standardized BBT scores, where individual values are color-coded for their
standardized PPT scores. C, Relationship between standardized BBT scores subtracted from standardized CKC as a function of PPT scores. Plots are
as in Figure 3.
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In assessing the relationship between CKC and BBT values, we identified the need to correct CKC values for EEG SNR,
leading to a slight decrease in correlation strength from 0.41 without correction to 0.29 with correction. However, this drop
does not necessarily indicate that the initial association between noncorrected CKC values and BBT scores was inflated.
Indeed, correcting CKC values for EEG SNR was meant to control for a bias, but also removed part of the effect we meant
to identify. Regarding the bias, it could arise because the EEG noise level typically decreases with the frequency
(Demanuele et al., 2007), leading to higher CKC values at higher frequencies if the amplitude of the genuine cortical signal
is constant. However, a previous study, though conducted on a smaller sample size than the present one, reported that
CKC was not affected by movement frequency within the range of 1–3 Hz (Marty et al., 2015b). Regarding the second
point, our hypothesis was that of an association between CKC and motor performance, which in the case of BBT is pro-
portional to movement frequency. Yet, the coherence is well known to increase with genuine signal amplitude, along with
better phase locking. Hence, under our hypothesis, it was expected that EEG SNR would increase with motor perfor-
mance. Therefore, the correlation of 0.29 obtained with corrected CKC values should be taken as a lower bound for
the strength of the association between CKC and motor performance.
While we cannot argue that motor performance depends on genetic factors giving rise to increased or decreased sen-

sory processing ability or occurs as a result of a lifetime of motor practice, there is evidence for both to be true. Recently,
the Piezo2 gene, expressed primarily in peripheral sensory neurons, but also found in the brain, has been linked to inter-
individual variability in the functionality of mechanosensation (Nagel and Chesler, 2022), suggesting the efficacy of pro-
prioceptive processing could be dependent on genetics. Alternatively, motor skill practice and motor learning are two
extremely well-described behaviors known to modify brain activity (Kantak and Winstein, 2012).

Coordination
In using EMG recordings during the BBT, we assessed muscle coordination and identified how it relates to motor per-

formance and CKC. Here, coordination refers to the similarity in muscle activation patterns across movement cycles.
We did not identify a significant relationship between muscle coordination and BBT scores. Although we expected that

increased coordination values would coincide with higher BBT scores, our result is not entirely surprising. In the BBT,
blocks sit randomly within one partition. Participants must adjust each block transfer depending on their selection, result-
ing in variable joint trajectories (Hebert et al., 2014) and correspondingly variable muscle activation patterns. Therefore, a
flexible motor control strategy in which muscle activation patterns differ depending on block selection may point towards
efficient motor control, while coordination, as defined in this study, is less relevant.
Correlations for CKC at F0 and F1 and coordination revealed no significant relationships, except for a weak one when

CKC at F0 was corrected for EEG SNR. These findings support our initial hypothesis that CKC and coordination hinge on
different mechanisms.

Limitations and perspectives
Owing to the dynamic nature of the task, our EEG recordings were contaminated to some degree with movement arti-

facts. During the BBT, participants were instructed to keep their heads still and facial muscles relaxed, but in practice, this
was challenging. This likely reduced the precision of CKC estimation and could explain the lack of relationship identified
between motor performance and CKC at F0. Artifacts were noticeable as increased coherence at electrodes on the edge
of topographic plots, which is why these were excluded from the analyses.
Another reasonwhy CKC at F0was not found to be behaviorally relevant could rest in its susceptibility to heartbeats and

resultant artifacts, which tend to occur around the same frequency. However, heartbeat artifacts were sought and sup-
pressed with independent component analysis. Alternatively, previous studies have also suggested that CKC at F1
may not merely represent the harmonic of CKC at F0 (Pollok et al., 2004, 2005; Bourguignon et al., 2012; Piitulainen et
al., 2013a). Simple flexion/extension movements could arise due to the integration of the two volleys of sensory informa-
tion caused by flexion and the extension within a movement cycle (Pollok et al., 2004, 2005; Bourguignon et al., 2012;
Piitulainen et al., 2013a). Likewise, during the BBT, participants performed back-and-forth movements during one cycle.
Critically, the main findings of this study are correlative in nature, meaning they do not disentangle causes and conse-

quences. Future studies designed to modulate cortical processing of somatosensory information (e.g., via stimulation) or
motor dexterity (e.g., via training) may clarify the mechanisms underlying the identified relationships.
Still, the present study opens up important perspectives for future clinical studies and practice. That is, CKC and coor-

dination represent informative measures that could be gathered in the framework of the BBT, providing amore global view
of a patient's motor control and hopefully improving clinical decision-making.
Lastly, it could be argued that CKC should be interpreted only in the context of the task from which it is derived—BBT in

our case. Nevertheless, previouswork has established that CKCmeasured in one context could be related to performance
in another completely different task. Specifically, CKCmeasured during passive ankle movements was found to be related
to the amplitude of standing postural sway (Piitulainen et al., 2018b). Hence, CKC may represent a global index of propri-
oceptive processing, suggesting it is warranted to compare CKC across task types. Therefore, in aiming to develop a nu-
anced understanding of CKC's relationship to gross and fine motor control, we compared CKC magnitude to BBT and
PPT performance. Future work investigating how CKC varies across tasks in the same individual should clarify to which
extent CKC reflects some innate cortical proprioceptive processing ability as opposed to task-specific demands.
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Conclusion
Our study confirms the ability to evaluate CKC during a dynamic and variable task such as the BBT and establishes CKC

as a behaviorally relevant marker of effective cortical proprioceptive processing, where high values of CKC are predictive
of good gross motor function. CKCmeasurement may favorably complement classical behavioral assessments of propri-
oception in contexts where proprioceptive acuity is in question, help discern if the brain is involved in proprioceptive def-
icits, or assess plasticity related to improving cortical processing.
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