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A B S T R A C T   

High-fat High-fructose diets have been associated with metabolic disorders and gut microbiota dysbiosis. Thus, 
the administration of probiotic or postbiotic from the strain Lacticaseibacillus rhamnosus GG has been investigated 
as a protective strategy. The aim of this study was to analyze the impact of L. rhamnosus GG administration in 
rodents fed a high-fat high-fructose diet. Male Wistar rats with oral supplementation of L. rhamnosus GG, viable 
or heat-inactivated, for 6 weeks were evaluated for somatic measurements, food and energy intake, biochemical 
markers, and gut microbiota. The daily administration of L. rhamnosus GG, as probiotic or postbiotic, was 
beneficial in attenuating weight gain, visceral fat deposition and visceral hypertriglyceridemic phenotype. 
Furthermore, the administration of heat-inactivated L. rhamnosus GG elicited an increase of species such as 
Akkermansia muciniphila, Blautia glucerasea, Sarcina maxima and L. rhamnosus, where the interaction between 
L. rhamnosus and Blautia glucerasea attenuated metabolic markers altered by the obesogenic diet.   

1. Introduction 

The increasing consumption of energy-dense foods, enriched in fats 
and/or refined sugars, such as fructose, which is characteristic feature of 
westernized diet (Malesza et al., 2021), has been directly related to the 
prevalence increase in obesity and related metabolic diseases (Miclotte 
& Van de Wiele, 2020), such as type 2 diabetes (Ekta et al., 2020), 
cardiovascular events (Canale et al., 2021) and nonalcoholic fatty liver 
steatosis (Wang et al., 2022). Furthermore, unhealthy dietary patterns 
may impact the qualitative and/or quantitative abundance distribution 
of the gut microbiota (GM) (Beam; Clinger; Hao, 2021). 

The GM corresponds to the set of microorganisms that reside in the 
gut (Gomaa, 2020), which are directly influenced by the composition of 
the diet, and lifestyle factors (Beam; Clinger; Hao, 2021). The 

colonization and actions of bacterial populations may be closely asso
ciated with the health-disease conditions of their host (de Vos et al., 
2022). Therefore, to mitigate the deleterious responses associated with 
the adoption of westernized dietary patterns, renewed interests have 
emerged on the repercussions of probiotic (Green; Arora; Prakash, 2020) 
or postbiotic (Brandão et al., 2021) supplementation on GM abundance, 
richness, and diversity. 

In this context, probiotics concerns to living microorganisms that 
confer proven beneficial effects on health when consumed in adequate 
quantities (Hill et al., 2014). This concept stands out some probiotic 
species such as Lacticaseibacillus rhamnosus GG (L. rhamnosus GG), which 
can survive in pH gastric acid, media containing bile and can adhere to 
the mucosa of enterocytes and proliferate, eliciting numerous trophic 
and biological effects on the host metabolic health (Capurso, 2019). 
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Similarly, the supplementation of inactivated microorganisms (by 
heating, ultrasound methods or pH change, for example), currently 
called postbiotic products (Salminen et al., 2021), also seems to elicit 
benefits on the health of the host when consumed in appropriate 
amounts (Vinderola et al., 2022). In addition, postbiotic management 
seems to be safer as concern processing, transport, and storage, as well 
as providing greater safety of ingestion for immunosuppressed in
dividuals (Brandão et al., 2021). 

This research hypothesizes that daily supplementation of probiotic 
or postbiotic containing L. rhamnosus GG can mitigate the harmful 
metabolic effects of a diet rich in saturated fat and fructose, in addition 
to favoring a healthier microbial balance in the gut. Therefore, the study 
aims at analying the influence of L. rhamnosus GG supplementation, on 
its viable or inactivated form on somatic measures, food consumption 
pattern, metabolic markers, and gut microbiota composition on a rodent 
model fed a diet rich in fat and fructose. 

2. Material and methods 

2.1. Animals, diet, and experimental design 

Thirty-four male Wistar rats (Envigo, Barcelona, Spain) of 8–9- 
weeks-old were purchased and acclimated in accordance with the in
stitution’s guide for care and use of laboratory animals upon approval of 
the ethics committee of the University of the Basque Country (M20/ 
2021/214). The animals were separated in pairs (2 animals/cage), kept 
in polycarbonate cages, and placed in 22 ± 2 ◦C, with 12 h light–dark 
cycle. After an adaptation period (6 days), the rats were allocated into 
four experimental groups according to the dietary intervention: control 
(C), high-fat high-fructose (HFHF), high-fat high-fructose + probiotic 
(PRO) and high-fat high-fructose + postbiotic (POST) for 6 weeks. 
During this experimental period, animals had free access to water (ad 
libitum). Both the distribution of the experimental groups and diet 
composition are described as follows (Fig. 1). 

Probiotics and post-biotics (L. rhamnosus GG, live or inactivated by 
heat, in the concentration of 109 CFU/day) were diluted in a solution 
containing PBS (phosphate-buffered saline) and 5% sucrose, and offered 
once a day through oral gavage, according to the proposal by Zhang 
et al. (2005) and Li et al. (2009). The animals of Control and HFHF 
groups received sucrose-enriched PBS as vehicle, which was also 
administered once a day through oral gavage (Keshavarz Azizi Raftar 

et al., 2021). 

2.2. Body weight, food consumption and energy efficiency 

At the end of the 6 weeks of experimental period, the animals were 
weighed on a digital scale following standardized procedures. Food 
intake was evaluated by subtracting the amount of feed offered and the 
rest in the cage every 24 h and the average intake was calculated for 
each animal. Total energy intake was estimated based on daily food 
intake. The Energy Efficiency Coefficient (EEC) was calculated and ac
count the caloric intake influences on the weight gain, as previously 
estimated (Milton-Laskibar et al., 2021), where: EEC = weight gain/ 
total energy intake [weight gain = final body weight – initial body 
weight]. 

2.3. Biochemical markers 

To assess circulating glucose concentrations, blood samples were 
derived from the tail vein one-week prior sacrifice after an overnight 
fasting using a glucometer (Medisense, Abingdon, UK) and blood 
glucose test strips (Optium Xceed, Abbott Diabetes Care). At the end of 
the experimental period, the animals were anesthetized (chloral hy
drate) and sacrificed after fasting (8–12 h) by cardiac exsanguination. 
Blood samples were centrifuged (1000x g for 10 min, at 4 ◦C) for serum 
separation, which were stored at − 80 ◦C until analyses. The serum de
terminations were assessed with commercially available spectrophoto
metric kits for triglyceride (TG) determination (Biosystems, Barcelona, 
Spain). The triglyceride and glucose index (TyG) was calculated as a 
surrogate marker of insulin resistance (Simental-Mendía, Rodríguez- 
Morán, Guerrero-Romero, 2008), were: TyG = [Ln (TG × glucose/2)]. 

The lipid profile also included the analysis of total cholesterol (Bio
Systems 11505) and HDL (High density lipoprotein - BioSystems 
11557). The atherogenic index [Log (TG/HDL)] was estimated to eval
uate the impact of the high-fat high-fructose diet and probiotic or 
postbiotic supplement on cardiovascular risk as described by Niroumand 
et al. (2015). For the assessment of ALT (alanine aminotransferase) and 
AST (aspartate aminotransferase) levels, commercially available kits 
were also purchased (Biosystems, Barcelona, Spain). 

Fig. 1. Experimental design. HFHF: High-fat high-fructose diet group. PRO: High-fat high-fructose diet + probiotic group. POST: High-fat high-fructose diet +
postbiotic group. kcal/g: kilocalories/grams. CFU: Colony-Forming Unit. C: Celsius. 
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2.4. Weight of tissues, muscle, and body fat 

After blood collection, the hepatic index, visceral (epididymal, 
mesenteric and perirenal) and subcutaneous adipose tissues were 
dissected. Similarly, the soleus muscle was excised, and the tissues were 
weighed. Then the relative value (%) of each tissue compared to the final 
body weight was calculated. In a complementary way, the visceral 
hypertriglyceridemic phenotype (VHP = TyG × visceral fat) was esti
mated, which interpreted the relationship between TyG and visceral fat, 
as another marker of insulin resistance associated with dietary fat con
tent and nutritional imbalances, with derived to human 
hypertriglyceridemic-waist phenotype (de Cuevillas et al., 2021). 

2.5. Gut microbiota analyses 

Fecal samples were collected in vivo at the end of the experimental 
period, where the animals were stimulated with abdominal massage and 
feces stored in sterile containers at − 80 ◦C until analyses. All fecal 
sample preparation, DNA extraction and 16S sequencing and bio
informatic analysis followed the protocol described by Milton-Laskibar 
et al. (2021). The statistical analysis of gut microbiota composition was 
performed using Microbiome Analyst® platform (v.2.0). All samples 
were submitted to normalization using centered-log ratio for later esti
mation of relative abundance/richness, and alpha diversity (Shannon 
and Chao-1 index were compared by groups of diet). Beta diversity was 
represented using ordination method by PCoA and estimated by Bray- 
Curtis distance index. 

2.6. Statistical analyses 

The results were expressed as mean ± standard deviation. Shapiro- 
Wilk test was used to assess the normality of data. The One-way anal
ysis of variance (ANOVA) followed by Bonferroni post-test was used to 
compare the body and organs weights, food consumption and 
biochemical determinations, and Shannon and Chao-1 index by groups 
of diet. The Mann-Whitney/Kruskal-Wallis, Permutation Multivariate 
Analysis of Variance (PERMANOVA), Sparse Estimation of Correlations 
among Microbiomes (SECOM- Pearson 2), and EDGE (Enhanced Data 
Rates for GSM Evolution) tests were used for analyses of the gut 
microbiota composition, as appropriate. Considering the significance, 
them hold of p < 0.05 and statistical analysis were performed with the 
Stata v15.0 and in the Microbiome Analyst platform (v2.0). 

3. Results 

At the beginning of the study the animals had similar body weight 
averages (about 273 g) and were set under the same breeding condi
tions. However, at the end of the experimental period differences were 
found among groups on somatic, feed and energy intake, and 
biochemical markers (Table 1), where the outcomes demonstrated that 
the administration of probiotics or postbiotics mitigated some delete
rious effects induced by the high-fat high-fructose diet. A marginal effect 
on EEC was also found, evidencing a putative effect of the interaction on 
this parameter. 

When evaluating the distribution of bacterial phyla present in GM, it 
was noted the predominance of Firmicutes (C: 94%, HFHF: 96%, PRO: 
95% and POST: 96%) and Verrucomicrobia (C: 5%, HFHF: 1%, PRO: 3% 
and POST: 2%), as well as absence of Bacteroidetes for all experimental 
groups. However, when the absolute and relative abundance of genera 
and species were identified, it could be verified that the consumption of 
high-fat high-fructose diet reduced the abundance, while the use of 
probiotic or postbiotic seems to maintain it (supplementary Fig. S1a and 
S1b). The analysis revealed no differences in alpha species diversity 
among the four experimental groups (Fig. 2). 

When comparing dietary groups, a difference was featured (p =
0.001) concerning the beta diversity of bacterial genus, highlighting the 

genera Alkaliphilus, Lactococcus, Clostridium, Lactobacillus, Blautia and 
Akkermansia, and species (Fig. 3). 

Through the correlation analysis it was possible to observe a 
connection between the species, despite differences in their propor
tionality per group (supplementary figure S2). Likewise, it was 
demonstrated that the consumption of the high-fat high-fructose diet 
supplemented with probiotics or postbiotics is associated with different 
bacterial species distribution patterns, which demonstrates that both, 
dietary intake, and L. rhamnosus GG supplementation, has a varied 
impact on the composition of the GM (Fig. 4). 

Bacterial species such as Akkermansia muciniphila, Blautia glucerasea, 
Sarcina máxima, and L. rhamnosus stood out when comparing the impact 
of different nutritional interventions (p < 0.05). In addition, it was 
demonstrated that the high-fat high-fructose diet is associated with 
lower species amounts. When evaluating the impact of the consumption 
of probiotics or postbiotics, it was observed that the use of postbiotic 
resulted in greater changes in GM bacterial species (Fig. 5). 

Additionally, there was an important modulation of the interaction 
between the species L. rhamnosus and Blautia glucerasea. The coexistence 
of the two bacteria, observed in greater quantity in the groups supple
mented with probiotic and postbiotic derivatives of L. rhamnosus GG, 
exerted important benefit on: (i) body fat deposition, where the presence 
of L. rhamnosus and increase of Blautia glucerasea favored the control of 
body adiposity in the visceral region (Fig. 6A); (ii) serum glucose, where 
the increasing interaction between L. rhamnosus and Blautia glucerasea 
reflected in lower concentrations of fasting glucose (Fig. 6B); (iii) TG and 
TyG index, which were reduced in the presence of the two bacterial 
species (Fig. 6C and 6D, respectively), even before the consumption of 

Table 1 
Somatometric, food intake and biochemical-related parameters of rats fed a 
high-fat high-fructose diet and supplemented with probiotics or postbiotics for 
six weeks.   

Control HFHF PRO POST p value 

Final body weight 
(g) 

407 ± 1 481 ± 1* 436 ± 1 436 ± 1 <0.01 

Food intake (g/ 
day) 

20 ± 0.5 21 ± 0.4 20 ± 0.6 20 ± 0.5 0.39 

Total energy intake 
(kcal) 

3.323 ±
255 

4.043 ±
189* 

3.803 ±
313* 

3.827 ±
262* 

<0.01 

EEC (g/kcal) 4.2 ± 0.6 4.3 ± 1.7 4.1 ± 0.8 4.2 ± 0.5 0.06 
Visceral fat (%) 5.3 ± 1 7.5 ± 3* 5.5 ± 1# 5.6 ± 1# <0,01 
Subcutaneous fat 

(%) 
2.9 ± 1.0 3.9 ± 0.7 2.9 ± 0.6 2.6 ±

0.2# 
<0,01 

Soleus muscle (%) 0.07 ±
0.0 

0.07 ±
0.0 

0.07 ±
0.0 

0.07 ±
0.0 

0.41 

Liver (%) 2.7 ± 0.0 4.6 ±
0.2* 

4.4 ±
0.1* 

4.3 ±
0.1* 

<0.01 

Glucose (mmol/L) 4.9 ± 0.3 5.5 ± 0.3 4.7 ± 0.2 4.7 ± 0.3 0.11 
TG (mg/dL) 123 ± 12 204 ±

17* 
159 ± 5* 173 ± 8* <0.01 

TyG index (mg/dL) 8.6 ± 0.3 9.2 ±
0.3* 

8.8 ±
0.1# 

8.9 ± 0.2 <0.001 

Total cholesterol 
(mg/dL) 

78 ± 9 85 ± 8 82 ± 5 77 ± 2 0.77 

HDL-c (mg/dL) 12 ± 1 12 ± 1 10 ± 1 11 ± 1 0.25 
Atherogenic index 

(mg/dL) 
1.01 ±
0.1 

1.26 ±
0.0* 

1.23 ±
0.1* 

1.22 ±
0.1* 

<0.01 

ALT (U/L) 14 ± 3 47 ± 11* 32 ± 3 28 ± 3 <0.01 
AST (U/L) 44 ± 2 101 ±

22* 
56 ± 7 61 ± 5 0.02 

VHP 184 ± 44 320 ±
117* 

213 ±
70# 

222 ±
61# 

<0.01 

C: Control group. HFHF: High-fat high-fructose diet group. PRO: High-fat high- 
fructose diet + probiotic group. POST: High-fat high-fructose diet + postbiotic 
group. EEC: Energy Efficiency Coefficient. g: Grams. kcal: Kilocalories. TG: 
Triglycerides. TyG index: Triglycerides and Glucose index. HDL-c: High Density 
Lipoprotein Cholesterol. ALT: Alanine aminotransferase. AST: Aspartate 
aminotransferase. VHP: “Visceral hypertrigluceridemic” phenotype *vs C. #vs 
HFHF. One-way ANOVA followed by Bonferroni’s post-test. 
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the high-fat high-fructose diet, as shown in Table 2. These findings 
demonstrate the efficacy of the L. rhamnosus GG strain supplementation, 
viable or inactivated, on the modulation of body composition and con
centration of metabolic markers, as an effective therapeutic strategy to 
prevent adverse metabolic effects associated with the high-fat high- 
fructose diet consumption. 

4. Discussion 

The adoption of an unbalanced macronutrient pattern rich in satu
rated fat and fructose for 6 weeks lead to adverse metabolic changes and 
a GM imbalance, as already demonstrated in other experimental studies 
(Bramlage et al., 2021. Tan et al., 2021. Shu et al., 2022). To mitigate 
these changes, the use of L. rhamnosus GG as a probiotic has already been 
studied as related with the production of protective biofilm of the mu
cosa (Lebeer et al., 2011), decreased apoptotic cell processes and pres
ervation of intestinal cytoskeleton integrity (Mohseni et al., 2021). 
Furthermore, associated lecithin-like proteins 1 and 2 can inhibit the 

proliferation of some pathogens, in addition to reducing the expression 
of various markers of inflammation (Lin et al., 2008), as well as 
increasing the production of interleukin-10, interleukin-12 and tumor 
necrosis factor-α in macrophages (Peña & Versalovic, 2003). 

However, it has been reported that use of L. rhamnosus GG as a single 
probiotic strain has some limitations associated with its survival and 
functionality (Szajewska; Hojsak, 2020). Therefore, the use of heat- 
inactivated cells has emerged as a new plausible alternative, which 
recently were associated with partial prevention of hepatic oxidative 
stress and inflammatory state induced by this dietary pattern rich in fat 
and fructose in an animal model (Arellano-García et al., 2023). 

In the current study, the results show that there was no remarkable 
difference in the oral administration of probiotic or postbiotic on some 
screened metabolic variables. Indeed, both supplements showed a ten
dency to attenuate the increase final body weight, which may reflect the 
reduction in visceral and subcutaneous fat in animals that received 
viable or inactivated L. rhamnosus GG, resembling that described by 
Crovesy et al. (2017). The same way demonstrated a tendency to slow 

Fig. 2. Alpha diversity by Chao1 (A) and Shannon (B) index of bacterial species of GM of Wistar rats with consumption of high-fat high-fructose diet and sup
plementation with probiotics or postbiotics. HFHF: High-fat high-fructose diet group. PRO: High-fat high-fructose diet + probiotic group. POST: High-fat high- 
fructose diet + postbiotic group. Mann-Whitney/Kruskal-Wallis Test. p > 0.05. 

Fig. 3. Beta diversity of bacterial species of GM of Wistar rats with consumption of high-fat high-fructose diet and supplementation with probiotics or postbiotics for 
six weeks. HFHF: High-fat high-fructose diet group. PRO: High-fat high-fructose diet + probiotic group. POST: High-fat high-fructose diet + postbiotic group. 
PERMANOVA Test. p = 0.001. 
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down the EEC (p = 0.06), which portrays a modulation of L. rhamnosus 
GG on the weight gain induced by energy intake, suggesting that this 
may be an adjuvant therapeutic strategy in combating obesity associated 
with dietary patterns rich in fat and fructose. 

The consumption of the high-fat high-fructose diet led to an increase 
in liver size and serum levels of hepatic transaminases, which was 
attenuated (though not significantly) in the animals supplemented with 
both, the probiotic and the postbiotic. However, there is not enough 
consensus and data to support the effects of inactive L. rhamnosus GG, 
but it was suggested that its viable form (as probiotic) favors the control 
of transaminase concentrations, and putative alternative to reduces the 
degree of hepatic steatosis and inflammation in the liver (Santos et al., 
2011). Furthermore, Liu et al. (2020) demonstrated in rodents that 
probiotic supplementation composed of L. rhamnosus GG at the con
centration of 109 CFU for 11 days was effective in decreasing the pro
duction of toxic liver bile acids and mRNA expression of hepatic fibrosis 
markers (alpha smooth muscle actin, collagen I, collagen III, 

transforming growth factor beta, tissue inhibitor of metalloproteinase 1, 
and metallopeptidase matrix 2), in addition to enhancing the suppres
sion of new bile acid synthesis and favoring their excretion through the 
feces, attenuating the propensity to liver damage, and maintaining the 
concentrations of ALT and AST. 

Neither the supplementation with probiotic or with the inactivated 
bacteria was effective in preventing the effects of the high-fat high- 
fructose diet on serum TG levels and atherogenic index, as well as did 
not influence the serum concentrations of TC and HDL, different from 
other experimental studies with probiotics (Wu et al., 2017. Ziegler 
et al., 2022) and postbiotics (Brandão et al., 2021) on the cardiovascular 
health and lipid profile. This finding may be due to the administration 
time and bacterial strain used (Costa et al., 2019), in addition to the 
bacterial inactivation method (Shin, 2010), reflecting on the different 
organic responses associated with the metabolic benefit of L. rhamnosus 
GG. Taken together, these findings corroborate that reported by Zafar 
et al. (2022) in an investigation in which Wistar rats consumed a high-fat 

Fig. 4. Heatmap graphic of bacterial species of GM of Wistar rats with consumption of high-fat high-fructose diet and supplementation with probiotics or postbiotics 
for six weeks. HFHF: High-fat high-fructose diet group. PRO: High-fat high-fructose diet + probiotic group. POST: High-fat high-fructose diet + postbiotic group. 
Sparse Estimation of Correlations among Microbiomes (SECOM- Pearson 2). 

Fig. 5. Impact of consumption of high-fat high-fructose diet and supplementation with probiotics or postbiotics for six weeks on the concentration of GM bacterial 
species of Wistar rats. HFHF: High-fat high-fructose diet group. PRO: High-fat high-fructose diet + probiotic group. POST: High-fat high-fructose diet + postbiotic 
group. Univariate Statistical Comparisons (EDGE), p < 0.05. 
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diet and were supplemented with probiotic containing Lacticaseibacillus 
rhamnosus FM9 and showed no differences when evaluating lipid 
markers. 

The glucose level was similar between the groups and, although data 
in the literature are scarce, when analyzing TyG, an accessible marker 
associated with prediction of insulin resistance (Lopez-Jaramillo et al., 
2023) and the VHP, which mimics a screening tool for metabolic syn
drome [TyG-WC phenotype] (Liu et al., 2020), it was possible to identify 
beneficial outcomes of both probiotic and postbiotic use, suggesting that 
the administration of viable or inactive L. rhamnosus GG is able to 
attenuate metabolic markers associated with glucose alterations. 

The composition of GM is variable and dependent on a number of 
factors, including lifestyle variables such as diet (Beam; Clinger; Hao, 
2021). Although no mechanistic route has been elucidated so far, it is 
known that the daily intake of exacerbated amount of fat and fructose in 
the diet was reflected in the reduction of absolute and relative abun
dance of fecal bacterial microorganisms, as reported by Zhang & Yang 
(2016) and demonstrated by Milton-Laskibar et al. (2021) with rodents, 

which also received diets rich in fat and fructose. In the same way, some 
experimental models fed a high-fat diet have already demonstrated a 
reduction in the abundance of Bacteroidetes (Zhang; Yang, 2016. Li et al., 
2020), notoriety, in this study, this bacterial phylum was not found. 

Although alpha diversity did not result in significant differences 
arraying dietary groups, the administration of L. rhamnosus GG was 
positive, both in its viable and inactive form, favoring the diversity of 
genera (Alkaliphilus, Lactococcus, Clostridium, Lactobacillus, Blautia and 
Akkermansia) and bacterial species (Alkaliphilus peptidifermentans, 
Alkaliphilus crotonatoxidans, Lactococcus fujiensis, Akkermansia mucini
phila, Sarcina maxima, Lacticaseibacillus hayakitensis, Erysipelothrix muris, 
Lacticaseibacillus rhamnosus, Blautia coccoides and Eubacterium dolichum) 
when comparing the four experimental groups. This reflects a distinct 
beta diversity and suggests that the use of probiotics or postbiotics 
derived from L. rhamnosus GG is able to modify the repercussions of the 
high-fat high-fructose diet on the abundance and diversity of GM. In 
addition, these findings demonstrate that both the probiotic strain and 
its inactive form can act in the gastrointestinal tract, exerting some 

Fig. 6. Effects of the interaction between L. rhamnosus and Blautia glucerasea on visceral fat deposition (A), serum glucose (B), serum triglycerides (C) and TyG index 
(D) of Wistar rats after consumption of high-fat high-fructose diet and supplementation with probiotic or postbiotic for six weeks. TyG index: Triglycerides and 
glucose index. Blue line: absence of L. rhamnosus. Red line: presence of L. rhamnosus. Regression model analysis, p < 0.05. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 

Table 2 
Regression model between L. rhamnosus and Blautia glucerasea on metabolic markers in Wistar rats submitted to high-fat high-fructose diet and supplementation of 
probiotics and postbiotics for 6 weeks.   

Coefficient SE R-squared 95% CI p value 

Visceral fat 
L.rhamnosus##Blautiaglucerasea 

− 2.148084 0.8878254 0.1492 − 3.961265 − 0.334902 0.02 

TG 
L.rhamnosus##Blautiaglucerasea 

− 10.77666 3.943153 0.1894 − 18.82966 − 2.723671 0.01 

Glucose 
L.rhamnosus##Blautiaglucerasea 

− 3.809208 1.226887 0.2824 − 6.318475 − 1.299942 0.04 

TyG index 
L.rhamnosus##Blautiaglucerasea 

− 0.1066183 0.027401 0.2929 − 0.1626596 − 0.050577 0.01 

TG: Triglycerides. TyG index: Triglycerides and Glucose index. SE: Standard error. CI: Confidence Interval. 
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beneficial effects on microbial modulation. 
When evaluating the correlation between species it was possible to 

note distinct distribution patterns, characterizing each experimental 
group distinctly, as demonstrated by observing the Akkermansia muci
niphila, Lactococcus lactis, Lactococcus fujiensis and Lacticaseibacillus 
hayakitensis, which is in greater proportion in the control group when 
compared to the others, whereas the L. rhamnosus and L. camelliae are 
more prevalent in the supplemented groups. This distribution demon
strates that the administration of L. rhamnosus GG, viable or inactivated, 
modulates the repercussions of the high-fat high-fructose diet in GM 
composition, by increasing or decreasing specific bacterial species, 
possessing a potential power over the health status of the host, as 
observed by Brandão et al. (2021). 

When trying to determine the influence of the supplementation 
exerted on the composition of bacterial species of GM in animals that 
consumed the high-fat high-fructose, it was possible to highlight 
important and superior action of postbiotics in the expression of some 
species, such as Akkermansia muciniphila, Blautia glucerasea, Sarcina 
maxima and L. rhamnosus. In particular, the lack or decrease in the 
concentrations of Akkermansia muciniphila, which is a commensal bac
terium, as observed in the HFHF group, is already associated with the 
onset of multiple diseases (obesity, diabetes and hepatic steatosis, for 
example) (Cani et al., 2022) and, the beneficial modulation of its fecal 
concentration observed especially when using L. rhamnosus GG in its 
inactive form, suggests the potential therapeutic effect of supplemen
tation of this postbiotic in GM rebalancing on the metabolic homeostasis 
of the host. 

The increase in L. rhamnosus concentrations in both supplemented 
groups (PRO and POST) reiterate the feasibility of the methodology used 
in the preparation and administration of supplementation containing 
L. rhamnosus GG. In addition, the increase and maintenance of survival 
of this commensal specie is associated with metabolic health of the host 
(Yan et al., 2019), and has a symbiotic effect with other bacterial species 
(Chamberlain et al., 2022), as demonstrated by the current study 
through the interaction between L. rhamnosus and Blautia glucerasea, 
which reflected on the attenuation of visceral fat deposition, serum 
glucose concentration, triglycerides and TyG index. 

Although there are few studies highlighting the potential effect of the 
genus Blautia and related species, such as Blautia glucerasea, on the 
composition of GM and repercussions on health (Hossomi et al., 2022), 
in recent years it has been reported its important antibacterial activity 
against pathogens associated with inflammatory and metabolic diseases, 
and has an important role in the symbiotic relationship between 
different bacterial species that reside in the gut (Liu et al., 2021) and 
participate in biotransformation reactions of bioactive food compounds 
(Furuya et al., 2010. Hum, Kim, & Han, 2016). 

Taken together, our findings on the present report corroborate the 
previously described beneficial effects on Blautia and confirm the posi
tive impacts of a symbiotic relationship with other species, stimulated 
using probiotics and postbiotics derived from L. rhamnosus GG, reflect
ing on the overall balance of GM composition and metabolic health in 
the face of nutritional insults such as the high-fat high-fructose diet. 

5. Conclusion 

Supplementation of the strain L. rhamnosus GG, in its viable or 
inactive form, can control weight gain and mitigate metabolic changes 
associated with the consumption of a diet rich in fat and fructose. 
However, when analyzing the repercussions of nutritional interventions 
on the GM, the daily administration of postbiotic was more effective in 
modulating commensal bacterial species, which were positively associ
ated with the regulation of metabolic markers of insulin resistance and 
body fat, suggesting the potential therapeutic effect of supplementation 
of L. rhamnosus GG via modulation of the GM. 
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