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Summary

Sports injuries stand as undesirable side effects of athletic participation. They carry severe
implications for athletes’ health, affecting not only their overall well-being but also their
professional careers by interrupting training sessions and participation in competitions.
This, in turn, affects the team’s overall performance and impacts the financial aspects of
the sports clubs. Consequently, considerable efforts are directed towards understanding
the mechanisms of sports injuries, as some may be mitigated through injury prevention
programs.

Thus, partly driven by the ever-increasing amount of data now being collected, re-
search on sports injuries has attracted significant attention across various fields, includ-
ing statistics. There is an increasing tendency towards using data-based analysismethods.
Appropriate statisticalmodels can assistmedical staff inmonitoring athletes’ health status
and prescribing tailored training and prevention programs.

Yet, successfully modelling sports-related injuries remains a real challenge. Sports
injuries result from the dynamic interaction of multiple risk factors. That is, their oc-
currence is influenced by a combination of physiological, biomechanical, psychological,
environmental, and individual factors. Importantly, an athlete’s risk of injury is not a
fixed characteristic; it continuously changes based on the interplay of multiple risk fac-
tors. Besides, athletes can sustain multiple injuries, with subsequent ones often being
affected by previous ones. Therefore, a proper statistical model should encompass the
complex time-varying and recurrent nature of injuries. Recurrent Events Analysis offers
a compelling approach for examining such relationships over time between time-varying
exposures and outcomes.

In this regard, the focus of this dissertation is on developing statistical models for re-
current events in sports injury data, which can be directly applied in practical settings
through software implementations. We develop and assess various time-to-event mod-
elling approaches to address a range of research questions arising in real-world contexts
with sports injury data. These methodological advancements are driven by interdisci-
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plinary research, conducted in close collaboration with the Medical Services of Athletic
Club, and are motivated by real-world applications. These applications are based on dis-
tinct football injury data sets, namely, the functional screening tests data, the external
training load data, and the web-scraped football injury data. These data sets have specific
characteristics and give rise to specific research questions:

• Functional screening tests data consist of data from professional female football
players who underwent functional screening tests during a regular football season.
These tests encompass a series of screening assessments that evaluate the strength,
power, joint stability, movement patterns and asymmetries. The data also include
non-contact lower limb time-loss injuries sustained by the players.

• External training load data gather information on non-contact time-loss injuries
for 36 professional male football players over two consecutive seasons, along with
regularly collected external training load variables.

External training load refers to any external stimulus applied to the player that is
measured independently of their internal characteristics. Such external loads elicit
physiological and psychological responses in each individual, following interaction
with, and variation in several other biological and environmental factors. A variety
ofmeasures, including training or competition time, distance covered, speed, power
output, sprints, and more, can be used to quantify the external load.

In this case, these variables are measured using Global Positioning System (GPS)
devices integrated into vests worn by players during every match and training ses-
sion.

• Theweb-scraped football injury data, named “transfermarkt” data because the data
are scraped from the webpage of the same name, provide information on injuries
and match sheets from the five major European male football leagues –the English
Premier League, the German Bundesliga, the Spanish LaLiga, the Italian Serie A
and the French Ligue 1– spanning the seasons from 2005-2006 to 2021-2022. These
data serve to illustrate all the fundamental concepts and measures implemented in
the statistical open-source software R.

The related practical questions are: (a)Which functional screening testsmost affect in-
jury risk in football? (b)How do past training exposures influence injury risk in football?
and (c) How can we make the developed models in (a) and (b) accessible and useful?
Each question is addressed in a specific chapter and is related to a particular objective.
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xi SUMMARY

From a statistical point of view, our focus centers on time-to-event analysis or survival
analysis methods. Particularly, we investigate and assess shared frailty Cox models and
flexible recurrent time-to-event models to account for the dynamic, time-varying, and
recurrent nature of sports injuries.

In summary, the dissertation has three main objectives:

(a) To assess different variable selectionmethods together with shared frailty Coxmod-
els for identifying biomechanical risk factors for subsequent sports injuries. Chap-
ter 3 addresses this objective.

(b) To develop and assess a flexible recurrent time-to-event approach for modelling the
effects of training load on subsequent sports injuries. Chapter 4 addresses this ob-
jective.

(c) To develop software that implements the statistical methods for analyzing sports
injury data proposed in this dissertation. Chapter 5 addresses this objective.

In alignment with these objectives, Chapter 2 introduces the common methodology
that supports the subsequent development and evaluation of models. It provides a com-
prehensive overview of the epidemiological measures that describe and quantify injury
occurrences and general regression models suitable for sports injury data. The chapter
establishes a robust framework that serves as the basis for the forthcoming chapters.

Chapter 3 tackles the problem of identifying the most relevant functional screening
tests and estimating player-specific injury risk over time. We employ shared frailty Cox
models for this purpose.

However, in cases where the number of covariates and parameters to be estimated is
large, shared frailty Cox models may encounter convergence problems. This is partic-
ularly problematic for small sample data. Therefore, it becomes essential to reduce the
number of parameters to be estimated and efficiently select a subset of relevant variables
associatedwith the risk of injury. To do so, we compare several variable selectionmethods
for time-to-event data analysis, including regularized Cox methods such as Best Subset
Selection (BeSS), Least Absolute Shrinkage and Selection Operator (Lasso), Elastic Net,
Ridge regression, and Group Lasso, as well as Boosting in Cox regression.

We assess the performance of the shared frailty Cox models, which include different
sets of previously selected variables, with respect to prediction accuracy. This assessment
is conducted through a simulation study designed to evaluate the applicability and ro-
bustness of the discussed statistical approach, under three hypothetical controlled situa-

xi



SUMMARY xii

tions, reflecting sports injury data contexts. Throughout these scenarios, special attention
is given to the impact of varying sample sizes.

Chapter 4 focuses on flexible modelling of time-varying exposures and recurrent
events to analyze the effects of training load on team sports injuries, particularly in foot-
ball. Players are repeatedly exposed to high competition demands that, in turn, increase
the strain on their bodies and exposure to the risk of injury. This continuous exposure,
manifested through training loads applied over varying time periods and with varying
magnitudes, represents the cumulative stress frommultiple training sessions andmatches
over time.

To address this, we propose the use of the Piece-wise exponential Additive Mixed
Model (PAMM) with weighted cumulative exposure-type (WCE) cumulative effects.
This model considers the intensity and duration of past exposures to sports participa-
tion, as well as dependencies induced by subsequent injuries. We demonstrate that the
PAMM framework allows for the estimation of highly flexible models.

Recognizing that past exposures may not have an everlasting effect, we develop a
method to identify a relevant time window during which past exposures have an impact.
Indeed, as time passes, the effect of exposures recorded long ago may disappear. Addi-
tionally, PAMMs require data to be transformed into an appropriate format. We imple-
ment code support for an already available R function that performs this transformation.
Our code implementation for data transformation provides support for the specific case
of data including recurrent events with time-dependent covariates.

Exhaustive simulation studies assess the ability of the proposed models to simultane-
ously estimate both, flexibleWCE-type effects and heterogeneity resulting from recurrent
events. These simulation studies also evaluate the performance of the developed meth-
ods in selecting the maximum length of the time window in which past exposures are
cumulatively associated with the hazard.

Chapter 5 covers the aspect of software development. Throughout this dissertation,
we employ the statistical open-source software R as a tool for implementing and evalu-
ating statistical models, processing and tidying the data, and presenting results in both
visual and tabular formats. All these computational developments are publicly available,
either as documented code repositories or packages, promoting the principles of open
science and enabling complete reproducibility.

This chapter begins with an overview of existing R packages in the field of sports
medicine. We acknowledge that there is a shortage of R packages designed for this field
and emphasize the need for dedicated software. Next, we introduce our self-developed
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xiii SUMMARY

R package, named injurytools. It is a fully documented package that facilitates the data
analysis workflow and automates common tasks performed in practice with sports in-
jury data. The chapter employs a hands-on approach to illustrate its usage, similar to the
guidance provided on the package’s companion website. We not only detail the technical
aspects of the package but also underscore its real-world applicability. Therefore, through
a comprehensive exploration of data structure principles and functionalities, we provide
practitioners with powerful tools for effective sports injury data analysis.

Finally, Chapter 6 concludes the dissertation with the main conclusions of the work
and considerations for further research. The proposed statistical modelling approaches
represent a fair trade-off between flexibility, accuracy, adequacy, computational efficiency,
and interpretability. In the end, we enumerate all the scientific contributions derived from
the work presented in this dissertation.

The statistical advancements developed in this dissertation contribute to ongoing ef-
forts in sports injury prevention, providing insights, methodologies, and accessible soft-
ware implementations for sports medicine practitioners.
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Laburpena

Kirol-lesioak jarduera fisikoa egitearen albo-kaltetzat har daitezke. Eragin kaltebera dute
kirolarien osasunean, ongizate orokorrari ez ezik, beraien ibilbide profesionalari ere era-
giten baitie. Batetik, entrenamendu saioak eteten dituzte eta bestetik, lehiaketetan parte
hartzea galarazi. Horrek, era berean, eragina du taldearen jardun orokorrean, eta baita
kirol kluben finantza kontuetan ere. Ondorioz, kirol-lesioen mekanismoak ulertzea ga-
rrantzia handikoa da eta ahalegin handiak egiten ari dira bide horretan. Lesio batzuk
prebentzio-programen bidez arindu edota saihets daitezke.

Horri lotuta, eta hein batean datuak biltzeko dagoen egungo erraztasunari lotuta,
kirol-lesioei buruzko ikerketak arreta handia erakarri du hainbat arlotan, estatistikan
barne. Gero eta joera handiagoa dago datuetan oinarritutako metodoak erabiltzeko.
Izan ere, eredu estatistiko egokiak lagungarriak suerta daitezke medikuentzat, hala nola,
kirolarien osasun-egoera monitorizatzerako eta entrenamendu- eta prebentzio-programa
egokituak preskribatzerako garaian.

Hala ere, benetako erronka da kirol-lesioak egokiro modelizatzea. Kirol-lesioak
arrisku-faktore askoren elkarrekintza dinamikoaren ondorio dira. Hau da, faktore fisio-
logiko, biomekaniko, psikologiko, ingurumeneko eta indibidualen arteko konbinazioek
eragiten dute lesio gertaeran. Horrez gain, kirolariaren lesio-arriskua ez da ezaugarri
finko bat; arrisku hori etengabe aldatzen den zerbait da, faktore askoren elkarreraginean
oinarrituta. Gainera, kirolariek lesio ugari izan ditzakete, aurretiazko lesioek hurrengo
lesioetan eragina izaten baitute maiz. Horrenbestez, eredu estatistiko egoki batek kon-
tuan hartu behar ditu lesioen izaera konplexua, aldakorra eta errepikakorra. Ildo horreta-
tik, Getaera Errekurrenteen Analisiak (Recurrent Events Analysis, ingelesez) metodologia
baliagarria eskaintzen digu, denboran aldakorrak diren aldagai azaltzaile zein erantzun
aldagai errekurrenteen arteko, denboran zeharreko, harremanak aztertzeko.

Beraz, tesi honen ardatza, kirol-lesioen datuetarako, gertaera errekurrenteetako eredu
estatistikoen garapena eta eredu hauek testuinguru praktikoetan zuzenean aplikagarri
egiten dituen software-aren garapena, dira.
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Kirol-lesioen inguruko testuinguru eta ikerketa-galdera desberdinei erantzun asmoz,
biziraupen analisiko metodologian oinarritzen diren hainbat eredu garatu eta ebaluatzen
ditugu. Aurrerapen metodologiko guztiak, diziplina-arteko ikerketek bultzatu dituzte,
Athletic Club-eko Zerbitzu Medikuarekin lankidetza estuan. Futboleko lesioetan oinarri-
tutako datu-multzo desberdinek sustatu dituzte aurrerapenok, hain zuzen: screening test
funtzionalen datuek, entrenamenduko kanpo-kargen datuek, eta web-etik karrakatu edo
eskrapeatutako futboleko lesioen datuek. Datu hauek berariazko ezaugarriak dituzte eta
berariazko ikerketa-galderak planteatuarazten dizkigute:

• Screening test funtzionalen datuek, futbol denboraldi batean, emakumezko futbo-
lari profesionalek osatutako screening test funtzionalen inguruko informazioa dute.
Test hauek hainbat probek osatzen dute, hala nola, indarra, artikulazioen egonkor-
tasuna, mugimendu-patroiak eta asimetriak ebaluatzea helburu dituzten probek.
Datu hauen artean daude, halaber, jokalariek sufritutako lesioak. Hau da, kontak-
tuzkoak ez diren, beheko gorputz-adarrei eragin dien eta denbora galera suposatu
duten kirol-lesioak.

• Entrenamenduko kanpo-kargen datuek kontakturik gabeko eta denbora-galera su-
posatu duten lesioei buruzko informazioa dute. Bi denboralditan zehar, entrena-
mendu eta partida bakoitzean, 36 gizonezko futboalari profesionalengandik jaso-
tako kanpo-kargek osatzen dituzte datuok.

Entrenamenduko kanpo-karga jokalariari aplikatzen zaion kanpoko edozein esti-
mulu da, haren barne-ezaugarriak edozein direla ere neurtzen dena. Kanpo-karga
hauek erantzun fisiologiko eta psikologikoak sortzen dituzte indibiduo bakoitzean,
beste faktore biologiko eta ingurumeneko batzuen arteko elkarrekintzaren eta
aldaketaren ondoren. Hori kuantifikatzeko, entrenamendu- edo norgehiagoka-
denbora, egindako distantziak, abiadura, potentzia eta sprintak bezalako neurriak
erabil daitezke, besteak beste.

Kasu honetan, jokalariek partida- eta entrenamendu-saio bakoitzero janzten di-
tuzten txalekoetan integratutakoKokapen SistemaGlobaleko (GPS) gailuak erabiliz
neurtzen dira aldagai horiek.

• Web-etik eskrapeatutako futbol lesioen datuek, “transfermarkt” data deitu dio-
guna –datuak izen bereko web-orritik eskrapeatzen baitira–, 2005-2006 eta 2021-
2022 denboraldien bitarteko, Europako bost futbol-liga nagusietako –Ingalaterrako
Premier League, Alemaniako Bundesliga, Espainiako LaLiga, Italiako A Seriea eta
Frantziako Ligue 1–, gizonezkoen futbol-taldeetako lesioei eta partida-fitxei bu-
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ruzko informazioa dute. Datu hauek balio dute kode irekiko software estatistikoan
pausatutako oinarrizko kontzeptu eta neurri guztiak erakustarazteko.

Datu hauei lotuta, honako galderak egin ditzake batek: (a) Zein screening proba
funtzionalek eragiten diote gehien futboleko lesio-arriskuari? (b)Nola eragiten diete ira-
ganeko entrenamendu esposizioek futboleko lesioak izateko arriskuari? eta (c)Nola egin
ditzakegu erabilgarri eta eskuragarri (a) eta (b)-n garatutako ereduak? Galdera bakoitza
kapitulu jakin batean lantzen da, eta helburu jakin batekin lotuta dago.

Metodologia estatistikoari dagokionean, biziraupen analisiko metodoetan zentratzen
gara. Zehazki, shared frailty Cox ereduak eta flexible recurrent time-to-event ereduak iker-
tzen eta ebaluatzen ditugu, eredu hauek aintzat hartzen baitituzte kirol-lesioen izaera
dinamiko, errekurrente eta denbora aldakorra.

Hori horrela, tesi honek hiru helburu nagusi ditu:

(a) Aldagaiak hautatzeko metodo desberdinak ebaluatzea, shared frailty Cox ereduekin
batera, (ondorengo) kirol-lesioen arrisku-faktore biomekanikoak identifikatzeko.
3. Kapituluan lantzen dugu helburu hau.

(b) Recurrent time-to-event arloko eredu flexible bat garatzea eta ebaluatzea, entrena-
menduko kanpo-kargek (ondorengo) kirol-lesioetan duten eragina modelizatzeko.
4. Kapituluan lantzen dugu helburu hau.

(c) Kirol-lesioen datuen azterketarako, tesi honetan proposatutako eredu estatistikoak
kodean inplementatzea eta softwarea garatzea. 5. Kapituluan lantzen duguhelburu
hau.

Helburu horiekin bat, 2. Kapituluan oinarrizko metodologia aurkezten dugu, on-
dorengo ereduen garapenari eta ebaluazioari bide egingo dionmetodologia. Lesioen ger-
taera deskribatzen eta kuantifikatzen duten neurri epidemiologikoak aurkezten ditugu,
eta kirol-lesioen datuetarako egokiak diren erregresio orokorreko ereduak azaltzen di-
tugu. Hots, hurrengo kapituluetarako oinarri izango den marko sendo bat ezartzen du
kapitulu honek.

3. Kapituluan, screening test funtzional garrantzitsuenak identifikatzearen eta denbo-
ran zeharreko, jokalari bakoitzari dagokion, lesio arriskua estimatzearen inguruko pro-
blema aztertzen dugu. Shared frailty Cox ereduak erabiltzen ditugu helburu honi heltzeko.

Hala ere, estimatu beharreko aldagai eta parametro kopurua handia den kasue-
tan, shared frailty Cox ereduek konbergentzia-arazoak izan ditzakete. Bereziki arazo-
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tsua da hori datuen lagin tamaina txikia denean. Beraz, funtsezkoa da estimatu beha-
rreko parametro-kopurua murriztea eta lesio-arriskuari lotutako aldagai garrantzitsuen
azpimultzo bat eraginkortasunez hautatzea. Horretarako, aldagaiak hautatzeko hainbat
metodo erabili ditugu, time-to-event arloan kokatzen direnak. Hala nola: Cox-en metodo
erregularizatuak, Best Subset Selection (BeSS), Least Absolute Shrinkage and Selection Opera-
tor (Lasso), ElasticNet,Ridge regression, etaGroup Lasso; etaBoosting-aCox-en erregresioan.

Aurretik hautatutako aldagai-multzoak dituzten shared frailty Cox ereduen portaera
ebaluatzen dugu aurresateko gaitasunarekiko. Ebaluazio hori egiteko –eztabaidatutako
eredu estatistikoen aplikagarritasuna eta sendotasuna ebaluatzeko– simulazio azterketa
bat egiten dugu eta kirol-lesioen datuen testuinguruak islatzen dituzten hiru agertoki
hipotetiko planteatzen ditugu horretarako. Agertoki horietan, lagin-tamaina desberdinen
eraginari aparteko arreta jartzen diogu.

4. Kapituluan, denboran aldakorrak diren esposizioen eta gertaera errekurrenteen
arteko modelizazio flexiblea aztertzen dugu, entrenamenduko kanpo-kargek taldeko
kirol-lesioetan duten eragina aztertzeko, futboleko lesioetan bereziki. Kirolariek
lehia-eskakizun handiei aurre egin behar izaten diete etengabe, eta honek areagotu
egiten ditu beraien gorputzeko muskuluen gainkargak eta lesioak sufritzeko arriskua.
Entrenamendu-karga hau, intentsitate eta magnitude desberdinetan aplika dakioke
jokalariari. Karga hau, finean, entrenamendu-saio eta partida ugariren ondorioz, jokalari
bati ezartzen zaion estres akumulatua da.

Hortaz, Piece-wise exponential Additive Mixed Model (PAMM) deituriko ereduen
markoa erabiltzea proposatzen dugu, weighted cumulative exposure motako (WCE) efektu
akumulatuak dituena. Eredu honek kontuan hartzen ditu aurretiazko kirol esposizioen
intentsitate eta iraupenak, eta ondoz-ondoko lesioek indibiduo bereko datuetan sortzen
dituzten dependentziak. Kapituluan zehar argi ikusten da, eredu oso flexibleak zenba-
testeko aukera ematen duen markoa dela, PAMM ereduen markoa.

Bestalde, iraganeko esposizoek ez dute zertan betiereko efektu bat eduki. Hau da,
denbora pasa ahala, aspaldi erregistratutako esposizioen eragina desagertu egin daiteke.
Hori kontuan izanik, metodo bat garatzen dugu iraganeko esposizioen eragin-eremua edo
eragin-leihoa identifikatzeko. Aitzitik, PAMM eredu bat doitzeko, formatu egoki batera
transformatu behar dira datuak. Bada, transformazio hori egiten duen R-ko funtzio bati
euskarri berri bat gehitzen diogu. Gure kodeak, kasu konkretu baterako datuen –gertaera
errekurrenteak eta denboran aldakorrak diren aldagaiak dituzten datuen– transformazioa
ahalbidetzen du.

Simulazio-azterketa sakonen bitartez, proposatutako ereduen gaitasuna ebaluatzen
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dugu. Zehatz esanda, WCE motako efektu flexibleak eta gertaera errekurrenteek sortu-
tako heterogeneotasuna aldi berean estimatzeko gaitasuna. Era berean, iraganeko espo-
sizioeen eragin-eremuaren gehienezko luzeera identifikatzeko metodoen gaitasuna eba-
luatzen dugu.

5. Kapitulua software-aren garapena aurkezteari eskaintzen diogu. Tesi osoan zehar,
kode irekiko R software estatistikoa erabiltzen dugu eredu estatistikoak inplementatu eta
ebaluatzeko, datuak txukundu eta prozesatzeko, eta emaitzak formatu grafiko zein tabu-
larrean aurkezteko. Garapen konputazional hauek guztiak eskuragarri daude, bai erre-
positorio publiko gisa, baita dokumentatutako kode-pakete gisa ere, zientzia irekiaren
printzipioak sustatuz eta erreproduzibilitatea ahalbidetuz.

Kapitulu honetan, kirol medikuntzaren alorrerako dauden R-ko paketeen ikuspegi
orokor bat aurkezten dugu. Azpimarra egiten dugu, bateko, alor honetarako diseinatu-
tako R-ko paketeen eskasian, eta besteko, software espezifiko baten beharrean. Ondoren,
eta aipatutako behar horri erantzun asmoz, guk garatutakoR-ko paketea aurkezten dugu,
injurytools izena jarri dioguna. Paketeak berariazko funtzio eta tresna egokiak eskaintzen
ditu, kirol-lesioen datu analisia errazten du eta ohiko zenbait zeregin automatizatzen
ditu. Kapituluko atal honek tutorial traza hartzen du. Paketearen alderdi teknikoa ze-
hazteaz gain, bere erabilera eta aplikagarritasuna erakusten dugu, paketeak berak daka-
rren webgune osagarrian egiten denaren antzera. Beraz, datuen egituraren printzipioak
eta funtzionalitateak sakon aztertuz, tresna baliotsuak eskaintzen dizkiegu erabiltzaile eta
profesionalei, kirol-lesioei buruzko datuak eraginkortasunez azter ditzaten.

Azkenik, 6. Kapituluak tesiari itxiera ematen dio. Bertan, lanaren ondorio na-
gusiak eta etorkizuneko ikerketetarako gogoetak plazaratzen ditugu. Proposaturiko
modelizazio estatistikoek oreka egokia erakusten dute flexibilitatearen, zehaztasunaren,
egokitasunaren, eraginkortasun konputazionalaren eta interpretagarritasunaren artean.
Azkenburuan, tesi honetatik eratorritako ekarpen zientifiko guztiak zerrendatzen ditugu.

Tesi honetan garatutako aurrerapen estatistikoak, kirol-lesioen prebentzioan egiten
ari diren ahaleginen beste ekarpen bat dira, eta kirol-medikuntzako profesionalentzat
metodologia aproposa, software eskuragarria eta ideia berriak ahalbidetzen dituzte.

xix
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Chapter 1

Introduction

1.1 Outline

This dissertation focuses on the statistical analysis of sports injury data, addressing sit-
uations where the risk of injury occurrence varies over time, numerous exposure vari-
ables are observed –some of which change over time– and repeated measurements are
involved. It contributes to the field of time-to-event or survival analysis. The main goal
is to develop practical and accessible statistical modelling approaches for sports injury
data, which can be directly applied in sports medicine through software implementations
for practitioners. These methodological advancements are driven by interdisciplinary re-
search, conducted in close collaboration with the Medical Services of Athletic Club, and
are motivated by real-world applications in sports injury prevention science. Specifically,
these developments are based on football injury data, stemming from diverse contexts
and raising various research questions. All contributions include flexible implementa-
tions of the methodological approaches in the statistical open-source software R (R Core
Team, 2023), available either as documented code repositories or packages, promoting the
principles of open science and enabling complete reproducibility.

This introductory chapter provides a brief overview of the research questions ad-
dressed and motivates their statistical relevance. It concludes by outlining the three pro-
posed objectives and describing the organization of the remainder of the dissertation.

1.2 Motivation and scope

Injury prevention has been declared a priority in 21st-century disease prevention (Dorney
et al., 2020). It is crucial not only for individual well-being but also for public health.

3
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When it comes to sports, injuries are undesirable side effects of sports participa-
tion (Van Mechelen et al., 1992). Sports injuries have serious consequences for athletes’
health, affecting not only their well-being but also their professional careers by disrupt-
ing training and competition participation. Consequently, these injuries affect overall
team performance (Hägglund et al., 2013) and have significant implications for club fi-
nances (Ekstrand, 2013; Lutter et al., 2022). In this sense, considerable efforts are directed
towards understanding the underlying mechanisms of injuries, as some can be mitigated
through injury prevention programs.

Thus, partly driven by the ever-increasing amount of data now being collected, re-
search on sports injuries has attracted significant attention across various fields, including
Statistics. There is a growing trend towards using data-based analysis methods. Indeed,
the application of suitable statistical models can assist medical staff in monitoring ath-
letes’ health status and in prescribing tailored training and prevention programs, offering
meaningful insights into injury risk. However, several publications have cautioned that
statistical errors are common in this research area and deserve special attention (Nevill
et al., 2007; Nielsen et al., 2018; Kim and Lee, 2019). During the “2019 Methods Matter
Meeting”, international researchers with expertise in research methods in sports science
highlighted pertinent statistical and epidemiological issues for consideration in the injury
modelling process (Nielsen et al., 2020). Recent publications by Sainani et al. (2021) call
for increased statistical collaboration in sports medicine and sports injury prevention re-
search, while Casals and Finch (2017) emphasizes the importance of sports biostatisticians
as essential members of sports science and medicine teams for injury prevention.

Ruddy et al. (2019) provide an overview of existing strategies to monitor and model
the occurrence and duration of sports injuries, encompassing both classical statistical and
machine learning models. They also highlight several limitations of these models due to
the unique characteristics of sports injury data. Recent perspectives in sports medicine
and injury prevention suggest that sports injuries result from the dynamic interaction of
multiple risk factors, making them “complex” phenomena (Bolling et al., 2018). There-
fore, an appropriate statistical model should encompass the complex, time-varying and
recurrent nature of injuries: a player’s injury susceptibility may change over time, and a
player can sustainmultiple injuries, with subsequent injuries often influenced by previous
ones (Hägglund et al., 2006; De Visser et al., 2012).

This dissertation focuses on the dynamic, time-varying nature of injuries. It advocates
for the use of time-to-event methods and develops and assesses various approaches to
address a range of research questions that arise in real-world contexts with sports injury
data.
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Use of some technical terms

In this dissertation, certain terms related to sportsmedicine are used interchangeably. The
following remarks are provided to clarify their usage.

Remark 1.1 Unless otherwise specified, the term “injury” refers to “sports injuries”. In
general, the term “players” is used, but it may be interchangeably referred to as “athletes”
in some contexts.

Remark 1.2 The term “sports injury” encompasses a wide range of definitions. When the
terms “injury” or “sports injuries” are used, they generally refer to non-contact injuries
that result in time loss. Injuries resulting from contact with another player or object are
not considered. Additionally, injuries that do not result in a loss of time, meaning those
allowing the player to fully participate in future match play or training sessions despite
requiring medical attention, are also excluded.

Remark 1.3 The term “subsequent injury” is used to describe injuries occurring in the same
player. This term is preferred over “recurrent injury”, which is typically defined as an
injury of the “same” type. The use of “subsequent injury” adheres to a broader definition.
It does not only refer to the same index injury but also: to an injury in the same location,
though not precisely the same type; an injury in another location but the same type; or an
entirely different injury (Fuller et al., 2007).

Readers are also referred to the “Consensus Statement on Injury Definitions and Data
Collection Procedures in Studies of Football (soccer) Injuries” by Fuller et al. (2006) for a com-
prehensive guide on standardized injury definitions and data collection procedures in
football-related injury research.

1.2.1 Motivating data sets

In the following section, a brief overview is provided of the various data sets that have
motivated the statistical developments in this dissertation. These include: (a) functional
screening tests data, (b) external training load data, and (c) “transfermarkt” data. Each
data set is intricately linked to a specific objective, which will be outlined in the next Sec-
tion 1.3. Further details about these data will be presented in their respective chapters.

(a) Functional screening tests data

These observational data were recorded during the 2017-2018 football season by the med-
ical staff of Athletic Club, specifically focusing on the 22-player professional female foot-
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ball team. Throughout that season, players conducted regular screening tests consisting
of various medical evaluations. These evaluations included functional movement tests
to assess biomechanical factors and muscle imbalances, anthropometric measurements,
range of motion assessments, dynamometries, core strength evaluations, drop jump me-
chanics, and countermovement jumps (see Figure 1.1). The purpose of these tests was
to evaluate movement patterns and identify any asymmetries, thereby providing insights
into mechanical restrictions and potential injury risks.

CMJ
Countermovement 
jump test

CORE
Lumbopelvic strength test

Drop Jumps
Unilateral and bilateral vertical 
Drop Jump mechanics test

Cross over hop
Test of the mechanics of the 
triple longitudinal cross jump

ROM & Flexibility
Psoas, quadriceps, ankle, hip 
etc. range of movement

Dynamometry
Isometric strength test, 
quadriceps, hamstrings

Anthropometrics
Height, seated height, length 
tibia, femur

Figure 1.1: An illustration of the types of functional screening tests conducted to evaluate
movement patterns and asymmetries.

This series of tests resulted in a high-dimensional data setting, with the tests being
repeated at three different moments during the season. The main goal is to identify those
tests that most significantly influence the risk of non-contact lower limb injuries and to
estimate how the risk changes over time among different players.

(b) External training load data

These observational data, collected during the 2017-2018 and 2018-2019 football seasons,
include information on non-contact time-loss injuries and external training load variables
for the 36 professional male football players at Athletic Club.

The external training load is defined as any external stimulus applied to a player, mea-
sured independently of the player’s internal characteristics. Such external loads trigger
physiological and psychological responses in each individual, following interaction with,
and variation in, several other biological and environmental factors (Soligard et al., 2016).
A variety of measures, such as training or competition time, distance covered, speed,
power output, sprints, and more, can be used to quantify the external load.
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In this case, the external training load variables were regularly tracked during each
match and training session using Global Positioning System (GPS) devices (see Fig-
ure 1.2). Consequently, the status of both the explanatory and outcome variables vary
over time.
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Figure 1.2: Longitudinal profiles of the Average Metabolic Power training load variable for
four players. Each bar in the graph corresponds to amatch (coloured in blue) or a training
session (in green). Periods duringwhich playerswere injured aremarkedwith grey areas,
delineated by red vertical lines. Top: the scale represents calendar dates. Bottom: the scale
represents the session number of each player.

These GPS devices, integrated into vests worn by players, are primarily used for mon-
itoring and collecting data on their physical performance and movements. They provide
real-time data on a variety of performance metrics, including distance covered, speed, ac-
celerations, decelerations, change of direction, metabolic power, jumps and impacts, and
distance covered at different intensities, among others.

The aim is to assess the potential relationship between external training load variables
and non-contact time-loss injuries; namely, how the training load, from multiple train-
ing sessions and matches, cumulatively affects, over a period of time, a player’s risk of a
(subsequent) football injury.

(c) “transfermarkt” data

These data are observational, web-scraped data from the five major European male foot-
ball leagues –the English Premier League, the German Bundesliga, the Spanish LaLiga,
the Italian Serie A and the French Ligue 1– spanning the seasons from 2005-2006 to 2021-
2022. The data comprise injury andmatch sheet data obtained throughweb scraping from
the popular German website https://www.transfermarkt.com/. It is one of the largest
sports websites and provides football information such as scores, results, statistics, trans-

https://www.transfermarkt.com/
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fer news, and fixtures, as well as football players’ injury histories (see Figure 1.3).

Figure 1.3: An example of the web scraped injury data, available on the “transfermarkt”
webpage: https://www.transfermarkt.com/adam-lallana/verletzungen/spieler/43530.

As these data are publicly available, they are particularly useful for illustrating all the
fundamental concepts and measures implemented in the statistical software R.

1.3 Objectives

This dissertation pursues three main objectives:

(a) To assess different variable selectionmethods together with shared frailty Coxmod-
els for identifying biomechanical risk factors for subsequent sports injuries (Chap-
ter 3).

(b) To develop and assess a flexible recurrent time-to-event approach for modelling the
effects of training load on subsequent sports injuries (Chapter 4).

(c) To develop software that implements the statistical methods for analyzing sports
injury data proposed in this dissertation (Chapter 5).

https://www.transfermarkt.com/adam-lallana/verletzungen/spieler/43530
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Each specific objective is developed in three independent chapters in Part II, using a
common methodology presented in the following Chapter 2.

More precisely, Chapter 2 introduces the fundamental statistical modelling ap-
proaches for sports injury prevention research proposed throughout this dissertation.
Part II covers the individual contributions that are the core of this dissertation, compris-
ing: Chapter 3, dedicated to analyzing and evaluating regularized Cox and shared frailty
models in the context of sports injury data, characterized by a high number of covariates
and a low number of events; Chapter 4, proposes and evaluates a flexible methodology
for investigating the association between (past) training load and (subsequent) injuries;
and Chapter 5, which emphasizes the necessity for dedicated software and introduces the
self-developed injurytoolsR package. The dissertation concludes with Chapter 6 summa-
rizing the main findings and suggesting directions for future research. In addition, each
chapter begins by outlining its primary research contributions and, in Chapter 6, all sci-
entific contributions derived from this dissertation are collectively enumerated.





Chapter 2

Statistical modelling approaches for
sports injury data

Statistics play a crucial role in sports injury research, offering valuable and essential meth-
ods for extracting meaningful information from injury events. This research field fre-
quently employs statistical methodologies to address a variety of important questions,
which include the frequency of injuries, their severity, and associations with potential risk
factors (e.g., athletes’ biomechanics, physiological markers, training loads), among other
topics. Yet, successfully modelling sports-related injuries remains a real challenge due to
their complex and multifactorial nature (Van Mechelen et al., 1992; Meeuwisse, 1994). In
this context, the following statement by Phillips (2000) holds particular relevance:

“Sports injuries occur when athletes are exposed to their given sport and they occur under
specific conditions, at a known time and place.”

In the following sections, we introduce measures to describe injury occurrence. Then, we
focus on modelling injuries and present two general regression models that describe how
potentially related variables can explain the event of injury when injuries are viewed as
either (a) count data (e.g., injury incidence modelling) or (b) time-to-event data (e.g.,
injury hazard modelling) for analysis. Finally, we present a methodological framework
that links both approaches, allowing for the estimation of highly flexible models.

2.1 Measures of injury occurrence

We adapt key epidemiological measures, such as rates and prevalence –which quantify
the frequency and distribution of diseases within a population– for the context of sports
injuries.

11
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A rate is a measure that consists of a denominator and a numerator over a period of
time. The denominator can represent various time metrics (e.g. the number of minutes
trained and played, the number of matches played, or calendar days). A rate reflects
the speed at which new injury events occur. On the other hand, prevalence denotes the
proportion of a population that is injured at a given point in time. It can be interpreted as
the probability that, at time t, a randomly selected player from the population will have
the injury.

More precisely, after defining the specific injury under study, we define the injury
incidence rate, the injury burden rate and the prevalence.

Definition 2.1. Injury incidence rate is the number of new injury cases (I) per unit of player-
exposure time, i.e.,

Ir =
I

∆T
,

where ∆T is the total time under risk of the study population.

Definition 2.2. Injury burden rate is the number of days lost (nd) per unit of player-
exposure time, i.e.,

Ibr =
nd

∆T
,

where ∆T is the total time under risk of the study population.

Definition 2.3. Prevalence, or period prevalence, is the number of players that have reported
the injury, divided by the total player population at risk at any time during the specified
period of time (∆T time window), i.e.,

P =
X

N
,

where X is the number of injury cases and N is the total number of players in the study
at any point in the time window ∆T . X includes players who already had the injury at
the start of the time period and those who suffered it during that period.

Assuming the number of incidence cases (I or nd) follows a Poisson distribution, the
computation of confidence intervals for rates can be done using the Poisson or the normal
distribution based on the central limit theorem.

Let Ir (Ibr) be the underlying true incidence rate (burden rate), whose estimator is

ˆ︁Ir = I

∆T
.
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It can be assumed that I (nd), the number of incident cases (days lost) throughout the
total time under risk, ∆T , follows a Poisson distribution with parameter Ir ·∆T . Hence,
the expected value and the variance of Ir are Ir and Ir/∆T , respectively. This leads to the
approximate confidence interval under large sample conditions:

CI(Ir; 1− α) = Îr ± z1−α/2 ·
√︂

Îr/∆T ,

where 1−α is the confidence level and z1−α/2 the (1−α/2)-quantile of the standard normal
distribution.

With regards to prevalence, P , given a sample of independent observations and as-
suming that X follows a binomial distribution with parameters n and P , there are var-
ious ways to compute a confidence interval for P , which include: using the binomial
distribution (exact interval, Clopper and Pearson 1934), using Jeffreys interval (Bayesian
approach, Jeffreys 1946; Brown et al. 2001) or using the normal distribution. The latter,
also known as Wald interval or asymptotic interval, is based on the central limit theorem
and calculated as:

CI(P ; 1− α) = P̂ ± z1−α/2 ·
√︂
P̂ (1− P̂ )/N,

where 1−α is the confidence level and z1−α/2 the (1−α/2)-quantile of the standard normal
distribution.

Based on this, statistical inference can be carried out by comparing estimates from two
different populations or at different time points usingmethods such as the exact binomial
test, the test of equal or given proportions, or theWald test for two incidence rates, among
others. We refer the reader to Chapter 5 for examples of these measures in practical ap-
plications.

We list some remarks to keep in mind:

Remark 2.1 Rates, either the injury incidence rate or injury burden rate (Ir or Ibr), are
not ratios and they are not interpreted as a probability. Their unit is (person-time)−1, e.g.
per 1000h of player-exposure, per player-season etc.

Remark 2.2 Rates, either Ir or Ibr, can be studied in cohort studies, but not in case-control
or cross-sectional studies.

Remark 2.3 Injury prevalence can be estimated in cross-sectional studies, but not in co-
hort or case-control studies.

Remark 2.4 Injury prevalence depends on injury duration: the longer the duration, the
higher the prevalence.
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Remark 2.5 Injury incidence rate (likelihood) and injury burden rate (severity) should
be reported and assessed in conjunction rather than in isolation (Bahr et al., 2018).

Remark 2.6 Before computing any of those values, it is important to clearly define the time
scale for each measure. Incidence-based measures, which provide a standardized time
window for the population at risk (e.g., injuries per hour) are preferred over measures
in which the time at risk varies among individuals (e.g., injuries per athletic exposure,
injuries per number of matches, see Stovitz and Shrier (2012)). Using measures with
standardized time scales facilitates the comparison of statistics across different cohorts
and sports (Waldén et al., 2023).

2.2 Regression models for injury data

In the following, we comprehensively present various regression modelling approaches,
analyzing the outcome variable “injury” from twoperspectives: as count data and as time-
to-event data.

2.2.1 Injuries as count data

Let Yl be a random variable representing the number of injuries (or the number of days
lost due to injury) sustained by player l at time period ∆tl, which he or she has been
exposed to the risk of injury1. Consider X = (1, X1, . . . , Xp) as a set of predictors which
can include both continuous or categorical variables.

To analyze the possible relationship between this set of predictor variablesX and the
response variable Y , let us first assume that Yl follows a Poisson distribution with mean
µl = λl · ∆tl, where λl corresponds to either the previously defined Ir or Ibr. We also
assume a linear relationship between the predictors and some function of the expected
outcome. Then, wemodel a Poisson generalised linearmodel (PoissonGLM), also known
as a log-linear model, as,

ηl = g (E(Yl|X l)) = X ′
lβ + log (∆tl) , l = 1, . . . , L. (2.1)

where X ′
l is the lth row-vector of covariates of player l, β = (β0, β1, . . . , βp)

′ is the vector
of unknown regression coefficients, g(·) is the link function, in this case, g(E(Yl|X l)) =

g(µl) = log(µl), and log(∆tl) is the offset term.
1By convention, we have opted to use the letter Y . It represents either previously defined I or nd.
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The vector of regression coefficients β of model (2.1) are usually estimated by the
maximum likelihood method, for which the log-likelihood, l(·), is given by:

l (β; l) = log

(︄
L∏︂
l=1

f(Yl)

)︄
=

L∑︂
l=1

log (f(Yl)) =

=
L∑︂
l=1

log
(︁
λyl
l exp(−λl)/yl!

)︁
=

L∑︂
l=1

(yl log λl − λl − log(yl!))
log(λl)=

∑︁
i xl,iβi+log(∆tl)
=

=
L∑︂
l=1

(︄
yl

(︄
p∑︂

i=1

xl,iβi + log(∆tl)

)︄
− exp

(︄
p∑︂

i=1

xl,iβi + log(∆tl)

)︄
− log(yl!)

)︄
.

Then, to find out the vector β that maximizes the log-likelihood function, one must solve
the following equation, setting the score function Ui equal to zero:

Ui =
∂l(β)

∂βi
= 0 ⇔ xi (y − exp (xiβi)∆t) = 0, ∀i ∈ {1, . . . , p}. (2.2)

Generally, to solve the given equation and obtain the maximum likelihood estimatorsˆ︁β1, . . . , ˆ︁βp, an iterativeweighted least squares algorithm is employed, utilizing a numerical
method procedure such as the Newton-Raphson technique.

It is also worth noting that one can equivalently derive the solutions in Eq. (2.2) by
taking advantage of the fact that the Poisson distribution belongs to the exponential fam-
ily.

Besides, to account for the fact that a player might sustain multiple injuries in dif-
ferent time periods –thereby introducing some dependency in the data from the same
individual–, we assume that, conditional on a random effect bl, Yl follows a Poisson dis-
tribution. This leads us to model a Poisson generalised linear mixed model (Poisson
GLMM), also known as the log-linear mixed effects model,

ηl = g (E(Yl|X l, bl)) = X ′
lβ + bl + log (∆tl) , l = 1, . . . L, (2.3)

where bl ∼ N
(︁
0, σ2

b

)︁ and the remaining terms are defined in the same way as in
model (2.1).

Similarly, the maximum likelihood method can be used to estimate the regression co-
efficients in model (2.3). The estimation is based on the marginal likelihood where the
random effects are integrated out. A penalized iteratively re-weighted least squares al-
gorithm can be used to solve the maximization problem in combination with numerical
calculation methods such as the Laplace method for integral approximation, the penal-
ized quasi-likelihood, the adaptive Gauss-Hermite quadrature or Monte Carlo methods.
We refer to McCullagh and Nelder (1989) and McCulloch et al. (2003) for more details.
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More importantly, the regression setting allows us to compute incidence rates (IR)
and incidence rate ratios (IRR) given a predictor or a pair of sets of predictors. To do so, it
is enough to take the exponent of the estimated ˆ︁βi coefficient. Besides, the random effect
bl in Eq. (2.3) informs us about the inherent susceptibility of a player to get injured.

Example 2.1. For the sake of simplicity, let’s assume that X1 is a binary variable (e.g.,
indicating having suffered a previous injury). The IR for a player having condition X1

(i.e., whenX1 is true), and all other variables equal to zero or at their reference values, is:

IR := E (Yl|(x1 = 1, x2 = 0, . . . , xp = 0)) = exp (β0 + β1x1 + log (∆tl)) ,

and the IRR of a player having conditionX1 compared to not having it, while holding all
else equal, is:

IRR :=
E (Yl|(x1 = 1, x2, . . . , xp))

E (Yl|(x1 = 0, x2, . . . , xp))
= exp (β1) .

Confidence intervals of these measures can be computed on the link scale, based on
the standard error of ˆ︁βi and on Student’s t-distribution. The exponential of the interval
endpoints is taken to interpret the results on the response scale.

However, Poisson regression models frequently face specific challenges, such as
overdispersion, where the variance of the data is greater than the mean, and zero inflation,
which refers to an excess of zero counts.

In the context of sports injuries, these issues often arise, as the distribution of the
“injury-related” variable –the number of injuries or the number of days lost due to injury–
typically exhibits right-skewness, and (fortunately) a significant presence of zero val-
ues (Shrier et al., 2009). When overdispersion is present, an alternative to Poisson regres-
sion is the Negative Binomial (NB) regression model. Additionally, in cases where there
are many zeros in the data, the zero-inflated Negative Binomial model is suggested (Lambert,
1992; Yau et al., 2003).

The zero-inflated negative binomial model

The zero-inflated negative binomial (ZINB) distribution is a mixture of distributions ex-
pressed as,

ZINB ∼

⎧⎨⎩0, with prob. p non-susceptible population,
NB(y; r, t), with prob. 1− p susceptible population,



17 Chapter 2. Statistical modelling approaches for sports injury data

or equivalently,

P (Y = 0) = p+ (1− p) ·NB(0; r, t) = p+ (1− p)tr, 0 < p < 1,

P (Y = y) = (1− p) ·
(︃
y + r − 1

r − 1

)︃
tr(1− t)y, y = 1, 2, . . . and 0 < p < 1.

When considering explanatory variables, the parameters of a zero-inflated negative bino-
mial mixed model are modelled as,

logit(pl) = ξl = X ′
lγ + ul,

log(λl) = ηl = X ′
lβ + bl,

(2.4)

where pl and λl parameters2 are linearly related to the covariates through the link func-
tions; u and b are player-related random effects normally distributed as N(0, σ2

u) and
N(0, σ2

b ), respectively; and we assume same covariates for both submodels, although this
does not necessarily have to be the case.

Given that we are interested in the overall effects of risk factors, rather than in the
specific effects (i.e., γ and β corresponding to each submodel), we need to work out the
expressions for the coefficients associated with the covariates in model (2.4). For more
details on how to derive the overall incidence rates (IR) and incidence rate ratios (IRR)
in a ZINB model, please refer to Appendix A and to Preisser et al. (2012).

Example 2.2. For simplicity, let’s suppose thatX1 is a binary variable (e.g., having a pre-
vious injury). Then, the IR of a player having conditionX1, with all other variables equal
to zero or at their reference values, is,

IR := E (Yl|(x1 = 1, 0, . . . , 0)) =
exp (β0 + x1β1)

1 + exp (γ0 + x1γ1)
,

and the IRR of having the conditionX1 compared to not having it, holding all else equal,
is,

IRR :=
E (Yl|(x1 = 1, x2, . . . , xp))

E (Yl|(x1 = 0, x2, . . . , xp))
= exp (β1)

1 + exp (γ0)

1 + exp (γ0 + γ1)
.

Regarding coefficient estimation, one can employ either the expectation-maximization
(EM) algorithm or the Newton–Raphson method to derive the maximum likelihood es-
timates. The likelihood function of this model, which can be factorized into two terms, is
not explicitly denoted here. See Yau et al. (2003) and Min and Agresti (2005) for details.

2The parameter pl refers to the probability that individuals are from the non-susceptible population and
the parameter λl to the mean of the negative binomial distribution for the susceptible population.
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In order to calculate the confidence intervals of the previous measures, the model-based
semi-parametric bootstrap can be used.

The use of ZINBmodels in the field of sportsmedicine has not yet becomewidespread,
even though ZINBmodels often provide a much better fit for injury count data compared
to the Poisson distribution. One reason for the limited popularity of ZINB models may
be the challenges in interpretation. It may prove difficult to understand that the composi-
tion of two respective subpopulations is a theoretical and mathematical construct. Some
recent publications that apply this model class to study risk factors of football injuries
include Rommers et al. (2020) and Monasterio et al. (2023a,b).

Limitations

When it comes to modelling the relationship between exposure variables and injury risk,
the models described in this section often fail to account for the changing nature of many
risk factors or the time-varying nature of the outcome variable (risk of injury). A player’s
risk of injury is not a fixed characteristic, players continuously change their susceptibility
to injury based on the interplay of multiple risk factors. As such, Time-to-Event anal-
ysis offers a compelling alternative approach for examining the relationships over time
between time-varying exposures and time-varying outcomes (Nielsen et al., 2016, 2019).

2.2.2 Injuries as time-to-event data

This approach – encompassing thosemethods employed in Time-to-Event analysis or Sur-
vival analysis field– is applicable when players are followed over the course of time, such
as in a prospective cohort study or randomized trial. The outcome of interest is broadly
defined as the time until the occurrence of an injury (event) and data analysis is regularly
performed before or without complete knowledge of all injury event times. For example,
a study might be finished with players not experiencing the injury or players may drop
out of the study, resulting in incomplete observations, known as censoring.

The important concepts here are: (i) time origin, (ii) time scale and (iii) censoring. The
time origin refers to the point at which we start observing or following a player in the
study, which in general, in this dissertation, is the time of inclusion (baseline) into the
study. The time scale denotes the variable used to identify the “time at risk”, i.e. the time
period at which the players are at risk of sustaining an injury. For example, this could be
minutes or hours of exposure, calendar days, weeks or sports season. Censoring occurs
when the information available for some players is incomplete. This may happen because
the injury event occurs before a player enters the study, or because the study ends before
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the injury event takes place. In some cases, the only known information is that the injury
occurredwithin a specific time frame. There are various types of censoring, which depend
on the monitoring approach adopted in the study. In this dissertation, we assume right-
censoring: if an injury event is not observed, it is only known that the actual time of the
injury event is later than a certain value. Reasons for not observing the injury event may
include the end of the study, a player’s transfer to another team, or a player quitting sports
for reasons unrelated to the injury of interest.

All in all, it is crucial to accurately define these three concepts: time origin, time scale
and censoring.

Definition 2.4. Let Tl be the time until player l suffers a (predefined) injury. Then, T
is a non-negative random variable that can be characterized by either of the following
functions:

(i) The hazard function, λ(t),

λ(t) := lim
∆t→0+

P (t ≤ T < t+∆t | T ≥ t)

∆t
. (2.5)

(ii) The cumulative hazard function, Λ(t),

Λ(t) :=

∫︂ t

0
λ(u) du . (2.6)

(iii) The survival function, S(t) and the cumulative distribution function, F (t),

F (t) := 1− S(t) := P (T ≤ t) = 1− exp (−Λ(t)) . (2.7)

In addition, the following relationships are satisfied, among the previously defined
functions:

λ(t) = lim
∆t→0+

P (t ≤ T < t+∆t)

∆tP (T ≥ t)
=

f(t)

S(t)
=

−dS(t) /d(t)

S(t)
= − d

dt
(log(S(t))) ,

and thus,
S(t) = exp

(︃
−
∫︂ t

0
λ(u) du

)︃
, for all t ≥ 0.

One may consider λ(t) dt as the instantaneous risk of occurring the injury event in the
interval [t, t+dt), knowing that it has not yet occurred for that time. Moreover, due to the
dynamic nature of survival data, a characterization of the distribution by the hazard func-
tion is very convenient. In fact, the hazard function does not change when conditioning,
it is already conditioned on survival time.
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Observable data

In the presence of right-censoring, let T1, T2, . . . , Tn be a sample of (partially observed)
times and C1, C2, . . . , Cn random censoring. We assume that Cl is independent of Tl for
all l = 1, 2, . . . , L, or at least that the distribution of survival times T provides no infor-
mation about the distribution of censorship times C and vice versa, i.e. non-informative
censoring. Then, the observable data is (Y1, δ1), (Y2, δ2), . . . , (YL, δL)where

Yl = min {Tl, Cl} , δl = 1{Tl≤Cl} =

{︄
1, Tl ≤ Cl,

0, Tl > Cl.

The random variable δl is the no-censorship indicator, although it is usually known as the
censorship indicator.

Remark 2.7 In the presence of censoring the hazard remains “undisturbed”. For this rea-
son, it is said that survival analysis is hazard-based. That is: what is the probability of
observing the actual event time in the small time interval [t, t+dt), conditional on the fact
that neither event nor censoring has happened before t?

The interval [t, t + dt) is so small that, assuming T and C to be different, at most one is
in [t, t + dt): if the event occurs in [t, t + dt), it will be observed (still supposing Y =

min{T,C} ≥ t). Because C and T are independent, the probability that the event occurs
in [t, t+ dt), conditional on Y ≥ t, is the same as in the absence of censoring,

λ(t) · dt = P (T ∈ [t, t+ dt) | T ≥ t) = P (T ∈ [t, t+ dt), T ≤ C | min{T,C} ≥ t) ,

as a consequence, wemay estimate the instantaneous hazard function from censored data.

Following, we show that using product integration results in an estimation of the sur-
vival function.

Since dΛ(u) = λ(u) du = P (T ∈ [u, u+ du) | T ≥ u), we may write,

1− dΛ(u) = P (T ≥ u+ du | T ≥ u) . (2.8)

The survival function should then be an infinite product over conditional probabilities of
Eq. (2.8). We call such an infinite product, a product integral and write T. So,

S(t) =

t

T
0

(1− dΛ(u))) (2.9)

≈
K∏︂
k=1

(1−∆Λ(tk)) ≈
K∏︂
k=1

P (T > tk | T > tk−1), (2.10)
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where 0 = t0 < t1 < t2 < . . . < tK−1 < tK = t partitions the time interval [0, t] in K

(small) intervals and ∆Λ(tk) = Λ(tk) − Λ(tk−1). Now, the right-hand side of Eq. (2.7)
can simply be seen as a solution of the product integral in Eq. (2.9). The product integral
itself shows up with the Kaplan-Meier estimator of the survival function.

Remark 2.8 In Eq. (2.9), when Λ(t) is absolutely continuous, using that for small du,
exp(−λ(u) du) ≈ 1− λ(u) du, we have that:

S(t) =

t

T
0

(1− dΛ(u)) =

t

T
0

(1− λ(u) du) = exp

(︃
−
∫︂ t

0
λ(u) du

)︃
= exp(−Λ(t)).

The Kaplan-Meier estimator of S(t) is obtained by estimating the ∆Λ(t). The latter
can broadly be expressed as,

∆Λ̂(tk) =
d(tk)

n(tk)
, (2.11)

where d(tk) denotes the number of injury events that have occurred within (tk−1, tk] and
n(tk) the number of players at risk just prior to tk. If 0 < t1 < t2 < . . . < tK ≤ t is the
ordered sequence of the observed injury event times, then, plugging Eq. (2.11) into the
product integral,

ŜKM(t) =

K∏︂
k=1

(︂
1−∆Λ̂(tk)

)︂
=

K∏︂
k=1

(︃
1− d(tk)

n(tk)

)︃
. (2.12)

Figure 2.1 illustrates the estimated survival probabilities using the Kaplan-Meier
method in Eq. (2.12). More specifically, it illustrates the probabilities of remaining free
fromafirst-time football injury3, based ondifferent time scales: panel (a)minutes of expo-
sure, (b) hours of exposure, and (c) number of training sessions and matches completed.
It becomes clear that the result can differ depending on the time scale used.

In Time-to-Event data analysis, there are different parametric, semi-parametric, and
non-parametric regression models available to incorporate covariate information into the
statistical model. They are generally built by specifying the class of hazard function, λ(t).
Here, we describe the Cox proportional hazards model and the shared frailty Cox model, as these
are the main models we employ throughout this dissertation.

The Cox proportional hazards model

The Cox proportional hazards model, introduced in the influential publication by Cox
(1972), is often referred to as semi-parametric because it is comprised of a parametric part

3We use the so-called “external training load data” for this illustrative Figure 2.1.
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Figure 2.1: Estimation of Kaplan-Meier curves for time-to-first injury outcome, displayed
as a function of time scale: panel (a) minutes of exposure, (b) hours of exposure, and (c)
number of training sessions and matches completed.

(covariate effects) and a non-parametric part (baseline hazard). Specifically, the hazard
function for a player l, with covariate values zl(t) = (z1l(t), . . . , zpl(t))

′, is modelled as,

λl(t | z(t)) = λ0(t) exp
(︁
z′
l(t)β

)︁
=

= λ0(t) exp (z1l(t)β1 + . . .+ zpl(t)βp) , l = 1, . . . , L, t ≥ 0,
(2.13)

whereβ is a vector of regression coefficients and λ0(t) is the baseline hazard. That is, λ0(t)

is a hazard function of a player with Z = 0, assumed common for all players, which is
left unspecified and estimated nonparametrically, e.g., by the Nelson-Aalen estimator or
its variants.

To estimate the parameters β of Cox proportional hazard model in Eq. (2.13), the
partial likelihood is maximized:

LP (β) =
N∏︂
i=1

⎛⎝ exp(z′
i(t)β)∑︁

j∈R(ti)
exp
(︂
z′
ji
(t)β

)︂
⎞⎠δi

,

where N is the total number of observations (e.g. N = L, the number of total players,
when studying time-to-first injury; or N =

∑︁L
l=1 nl, when studying time-to-subsequent

injuries, where nl is the total number of injury events that a player has been at risk of), δi
the censorship indicator and R(ti) is the risk set, i.e., the set of players who are at risk at
time ti. Note that the baseline hazard cancels out.

The shared frailty model

The shared frailty model (Hougaard, 1995; McGilchrist and Aisbett, 1991) is a frailty
model, which allows for dependence between several survival times through a frailty term
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that is shared by all the survival times pertaining to a player or, in general, to a cluster.
This way, the survival times of a player who sustains multiple injuries –times that are re-
lated to each other– have the same level of frailty attached to them. In this context, frailty
models are random effects models, expressed as,

λl(t | z(t), bl) = λ0(t) exp
(︁
z′
l(t)β

)︁
αl = (2.14)

= λ0(t) exp (z1l(t)β1 + . . .+ zpl(t)βp + bl) , b ∼ N(0,D),

for l = 1, . . . , L, t ≥ 0 andwhereβ is a vector of regression coefficients, λ0(t) is the baseline
hazard and αl = exp(βl) is the frailty term associated with player l. In this dissertation,
we assume that it follows a log-normal distribution.

Hence, the frailty measures the specific risk level for a cluster or a player’s recurrent
time-to-event process, and, given α, the survival times are assumed to be independent.

BothCox proportional hazards and shared frailty regressionmodels have amultiplica-
tive structure. In fact, the effect of a covariate Zi, i = 1, . . . , p, is described by factors of
proportionality, exp(βi), which is a commonly used effect measure known as the hazard
ratio (HR):

HR =
λ(t | z′ = (0, . . . , 0, zi, 0, . . . , 0))

λ(t | z′ = (0, . . . , 0))
= exp(βi).

In our context, it relates the hazard atmoment t of a playerwith profile z, λ(t | z), with the
hazard of a player with profile z = 0 at the same time, λ0(t), keeping all other covariates
equal. The HR does not depend on t. Thus, the effect of association remains constant over
time, hence the name proportional hazards.

Other interesting extensions of the Cox model include joint models (Tsiatis et al.,
1995), where one fits a stochastic model both for the covariate processes and for how
these influence the hazard rates; and multi-state models (Putter et al., 2007), to analyze
the evolution of a process of interest (e.g., time-to different event types (states) such as
injury, recovery, second injury etc.). Furthermore, we will shift our attention to another
powerful alternative approach.

2.3 Piece-wise Exponential Additive Mixed Model

The Piece-wise Exponential AdditiveMixedModel (PAMM, Bender et al. 2018) is amodel
class that allows for the estimation of very flexible survival models including a vari-
ety type of covariate effects: time-varying non-linear covariate effects, cumulative ef-
fects of time-varying covariates and random effects. It is the semi-parametric extension
of the Piece-wise Exponential Model (PEM, Holford 1980; Whitehead 1980; Friedman
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et al. 1982). Both require a specific representation of the data. The data transformation is
part of the modelling process, and this makes the survival analysis tasks become Poisson
regression tasks.

The representation of the data involves partitioning the follow-up period into a finite
number of intervals and assuming that hazards are piece-wise constant in each of these
intervals. In the following section, we show that, under certain assumptions, PEMs are es-
sentially Poisson generalized linear models with likelihoods proportional to the (partial)
likelihood of a corresponding Cox model.

Quoting Carstensen (2005), the conceptual idea behind this fact is explained as:

“if survival studies are viewed in the light of the demographic tradition, the basic observation
is not one time to event (or censoring) for each individual, but rather many small pieces of
follow up from each individual [...] Modelling of rates rather than time to response becomes
the focus; the basic response is now a 0/1 outcome in each interval, albeit not independent, but
with a likelihood which is a product across intervals”.

Equivalence between the Cox and Poisson model

Let us define the follow-up time as (0, tmax] and the cut points that partition the study
follow-up time into J intervals as κj , j = 0, . . . , J , where 0 = κ0 < κ1 < . . . < κJ = tmax.

In the context of PEM, assuming that the risk is constant in each interval j, i.e., λ0(t) = λ0j

for all t ∈ (κj−1.κj ], the Cox model in Eq. (2.13) simplifies to:

λ0(t) = λ0j exp
(︁
x′
lβ
)︁
, ∀t ∈ (κj−1, κj ], j = 1, . . . , J, (2.15)

which does not depend on t, given the interval j.

Then, if the time-to-event data are structured in a certain way: with event indicators
δlj and offsets olj for all intervals j in which player l is at risk; the likelihood of a Poisson
regression model,

E(δlj |xl) = exp
(︁
log(λj) + x′

lβ + olj
)︁
,

is proved to be proportional to model in Eq. (2.15) –see section A.2 in the Appendix A
where this equivalence is demonstrated.

Consequently, the twomodels are equivalent with respect to the maximum likelihood
estimator (MLE) of β.

λl(t|xl) =
E(δlj |xl)

tlj
, where tlj = exp(olj).

Specifically, the Cox proportional hazardsmodel and the Poissonmodel provide the same
estimates if there are no ties in the data (i.e., no subjects experiencing the event at the
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same time) and if all unique event (and censoring) times are used as interval cut points
to transform the data to the PEM format.

Despite this equivalence between the Cox proportional hazards and the Poisson
model, and although the PEM representation is not new, research in the field of survival
analysis has mostly been centered around the Cox model and its extensions. Part of the
reason for the predominance of the Cox model, in contrast to PEM, has been its computa-
tional efficiency, especially for increasing J , and the availability of the Cox routine in stan-
dard statistical software. Today, however, there is an R package, called pammtools (Ben-
der and Scheipl, 2018), that facilitates all the steps involved –such as data transformation,
model fitting, and visualization– in the analyses of PEMs and PAMMs.

Data transformation

As already mentioned, time-to-event data requires to be transformed in a particular way.
Given intervals (κj−1, κj ] and observed survival times yl, for each time interval j that
player l is under risk, j = 1, . . . , J and l = 1, . . . , L, the transformation is done by creating
(a) an event-specific indicator δlj and (b) an offset variable olj = log(tlj). Formally:

(a) δlj is 1 if both yl ∈ (κj−1, κj ] and yl = Tl. Otherwise, δlj is 0.

(b) olj = log(tlj) denotes the time player l is under risk in interval j in the logarithmic
scale and tlj = min(yl − κj−1, κj − κj−1).

Table 2.1: Left: Data in the “standard” time-to-event format for two players, l ∈ {1, 2}.
Player 1 has been injured at y1 = 4, whereas player 2 has been censored at y2 = 15. Right:
Data in piece-wise exponential format with one row per interval in which a player was in
the risk set, and intervals are defined by the cut points 0, 5, 10, 15, 20.

l yl δl

1 4 1
2 15 0

l j (κj−1, κj ] δlj tlj olj = log(tlj)

1 1 (0, 5] 1 4 log(4) = 1.4

2 1 (0, 5] 0 5 log(5) = 1.6

2 2 (5, 10] 0 5 log(5) = 1.6

2 3 (10, 15] 0 5 log(5) = 1.6

Webriefly illustrate this preprocessing step, from a standard time-to-event data format
to a piece-wise exponential data format, in Table 2.1. See also the “data-transformation”
vignette of the pammtools R package.

https://adibender.github.io/pammtools/articles/data-transformation.html
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Figure 2.2: Reproduced and slightly modified from Bender et al. (2018). (a): Hazard rate of
a Gompertz distribution; (b): partitioning of the follow-up into J = 4 intervals; (c): es-
timate of the hazard rate via interval-specific piece-wise constant hazards, obtained by
fitting a PEM to the data.

General formulation of PAMMs

If the follow-up partition is chosen carefully, PEMs and PAMMs enable researchers to
benefit from the methodological and algorithmic advancements developed for general-
ized additive mixed models (GAMMs, Wood 2017).

Figure 2.2 illustrates the basic idea of PEM and PAMM for time-to-event data by apply-
ing it to survival times drawn from aGompertz distribution. To estimate the true underly-
ing Gompertz hazard rate (Figure 2.2, panel (a)), the follow-up is partitioned into a fixed
number of intervals (here J = 4) with interval cut-points κ0 = 0 < . . . < κJ = 20 (Fig-
ure 2.2, panel (b)) and a constant hazard is estimated for each interval (Figure 2.2, panel
(c)). Thus, the name piece-wise exponential, because the hazard rate of an exponential
distribution is constant over time.

While the approximation in Figure 2.2 may seem crude, with a sufficient number of
cut-points, PEM and PAMM estimates closely correspond (or are even equivalent to) Cox
regression estimates, as previously shown.

The difference between a PEM and a PAMM lies in their respective approaches for
the estimation of the baseline hazard and other smooth, time-varying effects. PAMM, in
contrast to PEM, flexibly models the baseline hazard and other time-varying effects using
penalized splines. This way, it resolves the arbitrary choice of the cut-points that partition
the follow-up time, and thus avoids overfitting and instability issues (Bender et al., 2018).
In practice, one can simply use a relatively large number of cut-points and use spline basis
functions evaluated e.g. at κj , the right end of each interval, and penalize the wiggliness
of the estimate via penalized splines, e.g. via P-splines (Eilers and Marx, 1996) based
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on differences of neighbouring basis coefficients (refer to Bender 2018 for an empirical
discussion on the placing of cut points).

In this regard, a general PAMM of the hazard rate of the i-th injury (event) of the l-th
player with covariate vector zl(t), is given by:

λil (t|zl(t), bl) = λ0(t) exp

(︄
p∑︂

k=1

fk(zlk(t), tj) + bl

)︄
=

= exp

(︄
β0 + f0(tj) +

p∑︂
k=1

fk(zlk(t), tj) + bl

)︄
, ∀t ∈ (κj−1, κj ], (2.16)

where each element represents:

• tj . In each interval j, tj is a constant time, e.g. tj = κj , the right end of the interval,
or tj = κj+κj−1

2 , the midpoint of the interval, so that the hazard functions continue
to be of the PEM family.

• f0(tj), smooth log-baseline hazard rate and exp(β0 + f0(tj)), baseline hazard rate.
Penalized splines are used to estimate f0(tj), so it can flexibly recover the shape of
the baseline hazard. For example, baseline hazard may change rapidly at the begin-
ning of the study, and have a less steep growth thereafter. It can be expressed as the
linear combination of B-spline basis functions, Bm(tj): f0(tj) =

∑︁M
m=1 γ0mBm(tj).

•
p∑︁

k=1

fk(zlk(t), tj). Very general types of effects for each covariate zlk(t). It can denote
anything from a linear time-constant effect, linear time-varying effect, to smooth
time-varying effect or cumulative effects. See Bender et al. (2018) for a comprehen-
sive overview of the possible effect specifications in PAMM.

• bl. Random intercept term associated to player l, l = 1, . . . , L.

While any method that can optimize Poisson likelihood with offset can be used for
PEM estimation, for the PAMM model class –embedded in the context of GAMMs– all
the current methods and highly developed software implementations for GAMMs can be
transferred.

In Chapter 4 we deepen on the PAMM model class for the context of recurrent time-
to-event data and cumulative effects.
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Chapter 3

Time-to-event modelling and
variable selection for recurrent
football injury data
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Küchenhoff, H. & Lee, D.-J. (2023). Prediction of sports injuries in football: a recurrent
time-to-event approach using regularized Cox models. AStA Advances in Statistical Anal-
ysis, 107(1-2), 101-126.

Code repository

https://github.com/lzumeta/TimeToEvent-InjurySim

3.1 Context

In this chapter, we focus on lower-limb injuries that frequently occur in women’s football
–one of the fastest-growing sports worldwide. Lower-limb injuries are of great concern
due to their severity and given their high incidence in women football players (Crossley
et al., 2020). During a regular season, the medical staff –which includes medical doctors,
physiotherapists, and strength and conditioning coaches, among others– conducts regular
screening tests for various purposes, which include injury prevention, rehabilitation, and
fitness conditioning. The tests consist of a series ofmedical evaluations, such as functional
movement tests that assess biomechanical factors and muscle imbalance. All tests are
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designed to monitor the players’ health status, identify those predisposed to injury, and
consequently, optimize both the player’s and the team’s performance. In addition, these
tests commonly include the quantification of inter-limb asymmetries, which may help in
identifying players at a higher risk of lower-limb injuries. Some studies have indicated
that bilateral strength asymmetry could be a significant risk factor for musculoskeletal
injuries (Croisier et al., 2002, 2003; Knapik et al., 1991; Hewett et al., 2005). However, the
scientific evidence supporting the efficacy of these screening tests remains limited (see
McCall et al., 2015; Bahr, 2016, for a review).

An important aspect is that a high number of functional tests are made in each evalu-
ation, see Figure 1.1 in Chapter 1. The number of these functional screening tests requires
special attention in the modelling process, especially when the interest –from a practical
perspective– lies in sparse and interpretable models. Besides, and as already mentioned
before, a player’s injury susceptibilitymay change over time, and shemay also suffermore
than one injury. Hence, to adequately account for all these relevant aspects, we consider
variable selection methods and shared frailty Cox models in this chapter.

Related work

Recurrent events models, such as shared frailty Cox models, are widely used in many
biomedical studies, but their application in sports injury research has been insufficiently
explored (Nielsen et al., 2016). Applications of frailty models in the field of sports in-
jury include studies that identify risk factors for contact injuries, including subsequent
injuries, in professional rugby league players (Gabbett et al., 2012); analyse the training
load and shoulder injuries in a large youth handball cohort (Møller et al., 2017); study
the genetic association with hamstring injuries in soccer players (Larruskain et al., 2018).
Furthermore, in recent times, researchers have increasingly applied machine learning ap-
proaches, primarily using classification techniqueswhere a binary outcome (injured/non-
injured) is predicted (e.g. Rossi et al., 2018). Whilemachine learningmethods are appeal-
ing and powerful tools in many applications, they typically require large sample sizes for
training and hyperparameter tuning. Besides, most classical machine learning methods
do not explicitly account for recurrent events or easily handle imbalance classes, such as
when there are very few injuries or injured players compared to ready-to-play.

In the application of shared frailty Coxmodels, challenges persist, particularly when a
large number of predictors and numerous parameters increase the complexity, potentially
leading to convergence issues in the estimation of frailty terms (McGilchrist and Aisbett,
1991; Therneau et al., 2003). This is particularly problematic for small sample data, as
is often the case with sports injury data. Moreover, the data are frequently limited to
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individual teams or a small sample of players, resulting in a small total number of injuries
from a statistical point of view. Therefore, it becomes essential to reduce the number of
parameters to be estimated and to efficiently select a subset of relevant variables associated
with the risk of injury.

Aim of the work

The aim of the work is to assess the adequacy and performance of a family of statistical
methods for time-to-event data analysis in the context of injury data, focusing on regu-
larization techniques and Cox regression. Our objective is to compare the performance of
frailty models that include different sets of previously selected variables, with respect to
prediction accuracy.

The work has two major components: (i) an empirical analysis using real data from a
single team with 22 players to compare the performance of different approaches, and (ii)
a simulation study that systematically evaluates all considered variable selectionmethods
across three different scenarios and varying data sizes.

Outline

In the following section 3.2, we present the methods used, i.e. different regularized Cox
models to perform variable selection and shared frailty Cox models to fit the data with a
reduced number of variables. Then, in section 3.3, we describe the data that motivated the
work and the results obtained from the analysis of these data. In section 3.4, we explain
the simulation study carried out and finally, in section 3.5, we conclude with a general
discussion.

3.2 Methods

We follow a two-step strategy to manage the large number of potential covariates from
the functional screening tests data. In the first step, we utilize various variable selection
techniques based on regularized Cox models that do not explicitly account for repeated
measures. Next, we fit shared frailty Coxmodels using the most relevant variables –those
comprising a reduced number of variables selected by each method in the first step.

Notation

Wedefine the primary outcome variable as the exposure time inminutes for a player until
the occurrence of an injury, denoted as a non-negative random variable T and the censor-
ship as a random variableC. The observed data are then composed by the set {(Yl, δl, Xl),
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l = 1, . . . , N}, where Yl = min{Tl, Cl} and δl = I{Tl ≤ Cl} is the censorship indicator and
N the total number of observations. We assume that censoring is non-informative and
that given xl, yl and δl are independent.

3.2.1 Regularized Cox methods

We study six different regularized Coxmodels. Namely, Best Subset Selection (BeSS,Wen
et al. 2020b), Least Absolute Shrinkage and Selection Operator (Lasso, Tibshirani 1997),
Elastic Net (Zou and Hastie, 2005), Ridge regression (Hoerl and Kennard, 1976), Group
Lasso (Yuan and Lin, 2006) and Boosting in Cox regression (Bühlmann et al., 2007). Ex-
cept for the latter, estimation of these models, in the context of survival analysis, is per-
formed maximising the penalized Cox partial log-likelihood (Cox, 1972, 1975). That is,

argmax
β∈Rp

pl(β)− λ∥β∥0 = argmax
β∈Rp

pl(β)− λ

p∑︂
j=1

I({βj ̸= 0}) (Best Subset Selection)

argmax
β∈Rp

pl(β)− λ∥β∥1 = argmax
β∈Rp

pl(β)− λ

p∑︂
j=1

|βj | (Lasso regression)

argmax
β∈Rp

pl(β)− λ∥β∥22 = argmax
β∈Rp

pl(β)− λ

⎛⎝ p∑︂
j=1

β2
j

⎞⎠ (Ridge regression)

argmax
β∈Rp

pl(β)− λ
(︁
(1− α)∥β∥22 + α∥β∥1

)︁ (Elastic Net)

argmax
β∈Rp

pl(β)− λ

G∑︂
g=1

∥βg∥2 = argmax
β∈Rp

pl(β)− λ

G∑︂
g=1

√︂
(β2

1 + . . .+ β2
ng
) (Group Lasso)

where λ ≥ 0 and α ∈ (0, 1) are the regularization tuning parameters and pl(β) is
the Cox partial log-likelihood to be maximized subject to a constraint, that is a penalty
function to be multiple of a L1 or L2-norm, or a L0-seminorm. For Group Lasso, the
vector of coefficients is partitioned into G groups of size ng, i.e. β = (β′

1, . . . ,β
′
G)

′. We
use the type of (functional screening) test as the grouping factor, see Table B1 inAppendix
B; and then, all these G groups are equally penalized. For the sake of simplicity, we only
consider Elastic Net with α = 0.5. We estimate the best regularization parameter λ by 10-
fold cross-validation, for which we use the same cross-validation splits across all models
to enable a fair comparison of their performance.

It is worth noticing that, although the Ridge regression technique itself is not a variable
selection method, we include it as a regularized method for the comparisons. Hence, the
estimated coefficients’ 95% confidence intervals are generated via bootstrap, andwe check
whether the interval includes zero or not. To determine variable selection, we consider
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that the variables are selected, when their corresponding coefficients’ 95% confidence in-
tervals do not include zero (Chatterjee and Lahiri, 2010; Sartori, 2011).

The sixth regularization method, a Boosting approach in Cox regression, relies on a
rather different idea. Instead of directly optimizing the penalized likelihood, coefficients
are obtained via an iterative process. For the scope of this work, we focus on likelihood-
based boosting (Tutz and Binder, 2006). The negative partial log-likelihood is used as a
loss function f(·) in the negative gradient algorithm –or L2-Boosting. The algorithm re-
sults in refitting residualsmultiple times so that the solution of the partial log-likelihood is
updated by a small factor in each boosting iteration. Regularization is implicitly achieved
by the early stopping of the algorithm, and then, variable selection is enabled by updating
a single coefficient in each iteration. We select the number of boosting iterations, i.e. the
tuning parametermstop, via a 10-fold cross-validation.

3.2.2 The shared frailty model

We fit the occurrence of non-contact lower-limb injuries by shared frailty Cox
model (Hougaard, 1995; McGilchrist and Aisbett, 1991). Such a model considers the de-
pendence, that observations within the same player possibly share, by including a player-
specific random effect that acts on the baseline hazard in a multiplicative way. The frailty
term accounts for unobserved heterogeneity, as observations within each player may be
correlated; and individual characteristics –variables that differentiate players from one
another– may often remain unobserved or, in some cases, be unmeasurable.

Let’s specify the total number of players by L, where the l-th player has nl observa-
tions (the maximum injury number that player l has been at risk of) indexed by il (the
i-th injury that player l has been at risk of), so that the repeated measures are explicitly
accounted for the data observed, i.e. {(Yil , δil , Xil), il = 1, . . . , nl and l = 1, . . . , L}. We
denote N as the total number of observations, which is the sum of the number of obser-
vations for each player: N =

∑︁
L
l=1nl. To deal with recurrent events, we consider the

so-called gap time approach (Kelly and Lim, 2000; Ullah et al., 2014). This gap time ap-
proach determines the risk interval of each player, in such a way that a new risk interval
is set every time the player has totally recovered from an injury and starts to train. Thus,
each recurrent event is represented by a separate interval and once an injury has occurred
the player is “at-risk” from the starting point of the previous injury recovery, where the
time is reset to zero. For a visual representation, see Figure 3.1.

Technically, each observation of the data set corresponds to a single player: some play-
ers had not been injured at all during the follow-up, and contributed to censored survival
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Figure 3.1: Illustration of the risk interval formulation. Left: an example of recurrent
time-to-event data representation. Right: the gap time approach representation where
each time to an event or censoring is a separate risk interval.

times; others, sustained at least an injury and are, thus, represented by one or multiple
survival times.

The hazard rate, at time t, for the i-th observation (representing the number of injury
events) of the l-th player is given by:

λil(t|αl,xil) = αlλ0(t) exp
(︁
x′
il
β
)︁
= (3.1)

= λ0(t) exp
(︁
x′
il
β + z′

il
bl
)︁
, il = 1, . . . , nl, l = 1, . . . , L,

where λ0 is the unspecified baseline hazard, p the number of covariates, β = (β1, . . . , βp)
′

the vector of coefficients, xil the corresponding row of this observation in the design ma-
trix X and αl, or bl = ln(αl), the player’s frailty term, where matrix Z is a N × L sparse
matrix such that zil = 1, when il-th observation corresponds to player l and 0 otherwise.
We use penalized partial likelihood to estimate the regression coefficients and the frailty
terms (Ripatti and Palmgren, 2000). As stated by Gasparini et al. (2019), the choice of a
particular parametric frailty distribution has minimal impact on the estimation and test-
ing of regression coefficients. We assume the log-normal distribution for the αl frailty
term, i.e. the Gaussian distribution for bl = ln(αl), given the fact that the models fitted to
functional screening tests data gave best fits with this distribution according to the Akaike
information criterion.

Equivalently, the marginal survival function, i.e. the probability of a player not sus-
taining an injury at time t, given the covariates, can be derived from Eq. (3.1), integrating
out the frailty term from the conditional survival probability as,

S(t|x) =
∫︂ ∞

−∞
S(t|b,x)g(b)db = (3.2)

=

∫︂ ∞

−∞
S0(t)

exp(X′β+Z′b)g(b)db,
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where b = (b1, . . . , bL) represents the vector of the frailties and g(·) its density function.

Based on the survival function, it is possible to predict players’ injury probabilities for
times t > 0. In particular, the marginal approach of the survival function in Eq. (3.2),
i.e. a population-averaged probability, includes predictions for new players which have
not been part of the data used to fit the model. On the contrary, the conditional sur-
vival probability approach does not allow estimating predictions of new players –in this
case player-specific predictions– since their frailties are unknown. The chosen gap time
approach for recurrent events allows predictions of future survival times following an in-
jury, provided that the survival time to be predicted falls within the range of recorded
event times used to fit the model.

3.2.3 Evaluation of frailty models

We assess the predictive performance of frailty models through the Brier Score (BS) and
the Integrated Brier Score (IBS), i.e. the area under the BS curve (Gerds and Schumacher,
2006; Graf et al., 1999). The Brier Score (BS) is a time-dependent predictive measure
used to assess a model’s overall performance (Steyerberg et al., 2010). It is commonly
employed in survival analysis because it copes with the fact that risk prediction in this
field is expressed in terms of probabilities.

Formally, the BS at time point t is a weighted mean squared error between predicted
survival probability and observed survival status. Besides, inverse probability of censor-
ing weighting (IPCW, Gerds and Schumacher 2006) is used to account for observations
under risk, regardless they are eventually censored or not, and thus, to make use of all
available information. Let G(t) = P (C < t) be the censoring distribution and N be the
total number of observations. Then, the BS is formulated as,

BS(t|Ŝ(t|x)) = 1

N

N∑︂
i=1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(0−Ŝ(t|xi))

2

Ĝ(ti)
ti ≤ t, δi = 1

(1−Ŝ(t|xi))
2

Ĝ(t)
ti > t

0 ti ≤ t, δi = 0.

(3.3)

The BS ranges from 0 to 1, with smaller values corresponding to a better prediction.
Should random guessing be employed, survival probabilities of 0.5 would be assigned
and a BS of 0.25 would be obtained for a random guess.

The IBS is calculated as an overall measure of themodel’s performance across all avail-
able time points:
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IBS(BS(t), τ) = 1

τ

∫︂ τ

0
BS(u, Ŝ)du,

where τ = tmax, or 0 < τ < tmax.

Due to the lack of external validation data, and to avoid overfitting, we use the so-
called “bootstrap .632+” approach (Efron and Tibshirani, 1997). This method strikes a
balance between the apparent BS estimate and the bootstrap BS estimate. It has been
demonstrated to provide accurate estimates (Binder and Schumacher, 2008). For addi-
tional details on this estimation method, please refer to section B.2 in Appendix B.

3.3 Application to functional screening tests data

Data

We analyse functional screening tests data from a female football team comprising 22
players, which was prospectively followed during the 2017-2018 season. The data include
records of players’ exposure –specifically, the time spent training and playing matches,
measured in minutes–, as well as time-loss non-contact lower-limb injuries (Fuller et al.,
2006), recorded by the club’s medical staff. Lower-limb non-contact injuries were
recorded when a player was unable to participate in a future training session or match
due to a physical complaint resulting from football training or match play, and was con-
sidered injured until the medical staff cleared the player for full participation in training
andmatch play (Fuller et al., 2006). Players completed biomechanical and functional con-
ditioning screening tests at three different moments during the season: in the preseason,
mid-season and at the end of the season. From 200 measured variables, a total of 28 vari-
ables were selectively included based on medical experts’ criteria. For a detailed list of
these variables, please see Table B1 in Appendix B. These variables comprise anthropo-
metric data, as well as results from biomechanical functional tests, assessed as bilateral
strength asymmetries of the lower limbs, defined by Impellizzeri et al. (2007).

Concerning outcome variable T , we consider that players’ follow-up started at the
beginning of the season, i.e. when the first screening test was conducted, and continued
until mid-season. At this moment, when new covariates are collected, we reset the time
origin of the primary outcome to zero. Consequently, if a player does not sustain an injury
during the first (or second) half of the season, we consider the exposure time as censored
at the moment of the second screening (or at the season’s end). Refer to Figure 3.2 for a
better insight.
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Figure 3.2: Horizontal timeline of football players using functional screening tests data.
The red cross indicates the exact moment of the injury occurrence, the blue circle denotes
the moment when the player is fully recovered and the bold black line represents time
lost due to injury. The three vertical lines correspond to the moment when the screening
tests were performed.

Figure 3.2 presents a comprehensive overview of each player’s injuries, the number
of days lost until full recovery and return to competition, as well as the screening tests
each player completed. Data from the third series of screening tests were not utilized, as
players’ follow-up concluded at that point.

Results

A total of 12 players sustained lower-limb injuries, with the team experiencing 19 injuries
in total: seven players were injured once, four players twice, and one player sustained
injuries on four occasions. Meanwhile, 45% of the players remained injury-free. The me-
dian exposure time for a single player was 13,302 minutes and the cumulative exposure
time for the entire team was approximately 250,000 minutes. The team’s injury incidence
rate was 4.56 injuries per 1000 hours of exposure, and the injury burden was 178.67 days
lost due to injury per 1000 hours of total exposure.

The results from the variable selection techniques highlight the unique characteristics
of each method. Group Lasso tends to select more variables –all variables within the
same group– whereas all other techniques, BeSS, Lasso, Elastic Net, Ridge regression and
Cox Boosting, are more restrictive in selecting relevant variables. Figure 3.3 graphically
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Figure 3.3: Summary of the selected variables (in dark blue) by each variable selection
method considered.

displays a summary of the variables that were selected and those that were not by each
of the methods. Regarding model sparsity, BeSS yields the most parsimonious model,
estimating only 2 out of the 28 variables to be non-zero coefficients. Lasso, Elastic Net and
Ridge regression, though using different penalizations, select the same variables. ‘ASLR
lumbar strength LSI’ and ‘Drop jump vertical propulsion LSI’ are the only variables selected
by all considered methods, followed by ‘Horizontal jumping impact forces LSI’ and ‘Drop
jump mechanical power LSI’, which are selected by five of them.

In Figure 3.4, we present the effects of the selected variables on injury risk, accom-
panied by their 95% confidence intervals, excluding those from the Group Lasso method.
The frailty termproves to be significant in allmodels, emphasizing the need to incorporate
such a multiplicative random effect. Additionally, in Figure 3.5, we show the predictive
performance of each shared frailty Cox model. Generally, apart from the model based on
Group Lasso-selected variables, there is minimal variation in the prediction error curves
across the different regularization methods. The model fitted with BeSS-selected vari-
ables shows superior predictive performance, with the model employing Cox Boosting-
selected variables ranking closely behind. Models based on variables selected by Lasso,
Elastic Net, and Ridge regression demonstrate marginally improved performance over
the model without any covariate information or frailty term, i.e. the Kaplan-Meier curve
derived from all data observations. Conversely, themodel based onGroup Lasso-selected
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Figure 3.4: Hazard ratios and 95% confidence intervals of the fitted shared frailty Cox
models with the set of variables selected by BeSS, Lasso, Elastic Net, Ridge regression
and Cox Boosting. Log scale is used for the x-axis.
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Figure 3.5: Comparison of Brier Score estimates using the bootstrap .632+methodwith 30
bootstrap samples for four Gaussian frailty models, each fitted with variable sets selected
by BeSS, Lasso (Elastic Net and Ridge regression), Group Lasso, and Cox Boosting. A
Kaplan-Meier curve serves as the reference model, without considering any variables or
frailty terms.

variables exhibits the least favourable performance. This discrepancymay be attributed to
the fact that the variables chosen by the other regularizationmethods span several groups
of screening tests. In general, the prediction errors at early follow-up times are low and
comparable across allmodels. However, at later time points, the prediction error increases
since less information is available.
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3.4 Simulation study

Due to limitations caused by the characteristics of functional screening tests data, we con-
duct a simulation study to explore several hypothetical controlled situations. The objec-
tive is to evaluate the applicability and robustness of the statistical approaches discussed,
by establishing three hypothetical controlled situations reflective of sports injury data con-
texts. In these scenarios, we pay special attention to the impact of varying sample sizes.

3.4.1 Simulation design

The simulation procedure is summarized in three steps, following, in part, the structured
strategy proposed by Morris et al. (2019) for planning simulation studies:

Step 1: Generation of the data

The underlying data-generating process is designed to closely emulate the original func-
tional screening tests data, characterized by a time-to-event outcome with many censored
observations and a high number of covariates.

We consider three different scenarios: (i) augmenting the original application data by
resampling through bootstrap and adding random noise; and generating time-to-event
observations that arise from covariates that share (ii) a weak correlation and (iii) a high
correlation. The detailed explanation of these three scenarios is provided in the following
“Parameters defining simulation setting” section.

In this regard, we employ a modified version of the random spline method, proposed
by Harden and Kropko (2019), to simulate the true underlying data-generating process.
This method does not assume any distributional form for the baseline hazard function
and thus, it matches the Cox model’s inherent flexibility. It requires initially determining
the number of points –or knots– to be drawn to fit a cubic spline for the baseline hazard
function. The method is slightly modified in a way to include a multiplicative random
effect, i.e. a frailty term (see section B.3 in Appendix B).

Step 2: Fitting the models

We fit the six regularized Cox methods described in the previous Section 3.2 and select
small sets of variables. Afterwards, for each of the six sets of selected variables, we fit
shared frailty Cox models to the data, accounting for the players’ unobserved variability.
We assume that the frailty term follows a Gaussian distribution, in accordance with the
functional screening tests data analysis.
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Step 3: Performance Measures

We repeat the previous two steps Nsim times, for a given prespecified configuration. Fi-
nally, we assess the models by a number of different measures that evaluate both, (i) the
model performance and (ii) the predictive accuracy of the final shared frailty models.
We compare the model performance by assessing how well the estimated models repre-
sent the underlying true model. Thus, we evaluate the selection of significant variables
through the measures presented in Table 3.1; additionally, we quantify the differences
between the true and estimated coefficients by the mean squared error (MSE), defined
as,

MSE =
1

Nsim

Nsim∑︂
n=1

p∑︂
j=1

(︂
β̂
(n)

j − βj

)︂2
.

Table 3.1: Summary ofmeasures used to evaluate the performance of variable selection
methods.

Measure Description
(Optimal value)† (Abbreviation)

Average model size The average number of variables included in
(2,6,4,5,5,5,5,5,5) model (AMS).

The average number of falsely The average number of variables incorrectly
selected variables (0) selected (ANFS).

Average number of falsely The average number of incorrectly excluded
non-selected variables (0) variables, i.e. variables that really have an effect and

their corresponding coefficient is estimated as zero
(ANFNS).

† The value one would obtain if the variable selection method always found the correct model. For the
first cell, i.e. the average model size, it refers to each one of the settings.

On the other hand, we evaluate the predictive accuracy of the shared frailty models
using the BS and the IBS. This evaluation is repeated for each Nsim replica. To summa-
rize the overall predictive accuracy, we report the medians of the IBS in the [0,1000] and
[0,3500] time intervals.

Parameters defining simulation settings

In this section, we provide detailed descriptions of the three simulation scenarios. See
Table 3.2 and Table 3.3 for a summary. Table 3.2 shows fixed parameters common to all
settings, while Table 3.3 lists parameters unique to each setting, such as the true vector
of coefficients, true vector of frailties, number of players and number of observations per
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each.

Table 3.2: Fixed parameters for the simulation study.

Parameter Value

Number of simulated data (Nsim) 100
Maximum observed time (Tmax) 4000
Censorship 75%
Frailty distribution Gaussian
Knots 500

The first scenario (see the first block in Table 3.3) is designed according to the results
obtained from the application data analysis. Within it, we consider three different settings
based on the estimated coefficients obtained from these data. In the first setting, the vector
of coefficients β, that generates the underlying true data, is fixed to be the vector of coef-
ficients estimated by the frailty model based on BeSS-selected variables. The second and
third settings follow the same approach. The second setting uses the vector of coefficients
β obtained by the frailty model based on Lasso, Elastic Net and Ridge regression-selected
variables. Meanwhile, the third setting uses the vector obtained from the frailty model
based on Cox Boosting-selected variables. Furthermore, we assume that the data consists
of 66 players, equivalent to three average-sized teams, denoted as L = 66. Each player has
three repeated observations, represented as nl = 3 for all l = 1, . . . , L, and there are p = 28

variables. To expand the design matrix of the application data, we incorporate resampled
rows by drawing bootstrap samples with replacement and repeating each sampled value
three times with an added random noise. The grouping vector used for the Group Lasso
remains consistent with the application data, reflecting the categorization based on the
type of functional screening test.

Conversely, the second scenario and third scenario’s design matrices (see the second
and third blocks in Table 3.3) are generated from equally distributed normal variables.
In both scenarios, we set the vector of coefficients, β, to be the same, and we assume the
frailty term to follow a normal distribution centred at zero with a standard deviation of
0.3. The key difference between these scenarios lies in the correlation structure among
the variables. Scenario 2 assumes independent variables, whereas Scenario 3 considers a
pairwise correlation between each pair of variables xi and xj , ρi,j , to be 0.65|i−j|.

In both scenarios, we consider four sample sizes, determined by varying the number
of players, denoted as L where L ∈ {22, 66, 132, 220} players –equivalent to 1, 3, 6, and
10 football teams with an average of 22 players each. Each player has a different random
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Table 3.3: Parameter settings for each scenario of the simulation study.

Scenario Vector of coefficients Frailty term Sample size
β αl Nobs =

∑︁L
l=1 nl

Scenario 1

True model:
frailty (BeSS)

β6 = −0.754, β15 = 1.034, Estimated frailties
198otherwise βj = 0 in the (BeSS) frailty

model

True model:
frailty (Lasso,
Elastic Net,
Ridge)

β5 = 0.175, β6 = −0.731, Estimated frailties

198β10 = −0.825, β12 = 0.155, in the (Lasso) frailty
β15 = 0.424, β24 = −0.580 model
otherwise βj = 0

True model:
frailty
(Boosting)

β6 = −1.048, β10 = −0.552, Estimated frailties
198β12 = 0.076, β15 = 0.990, in the (Boosting) frailty

otherwise βj = 0 model

Scenario 2
β1 = 0.4, β2 = 0.2, β3 = 0.2,

∼ N(0, 0.32) 60, 191, 391, 670β4 = 0.2, β5 = 0.2,
otherwise βj = 0

Scenario 3
β1 = 0.4, β2 = 0.2, β3 = 0.2,

∼ N(0, 0.32) 60, 191, 391, 670β4 = 0.2, β5 = 0.2,
otherwise βj = 0

number of observations with p = 50 variables. The number of observations per player
is generated using a truncated Poisson distribution with a mean of 3, resulting in a total
of 60, 191, 391, and 670 observations. Importantly, the number of observations per player
and the frailty vector remain consistent in the second and third scenarios. The grouping
vector for Group Lasso consists of ten groups, each containing five variables, i.e. G = 10

and ng = 5.

Software issues

All computations are performed in R version 3.6.2 (R Core Team, 2023), on a 64-
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bit Linux platform with an Intel Core 2.2 GHz CPU of 2 cores and 243.4 GByte
RAM. The code for the simulations is available in the following GitHub repository:
https://github.com/lzumeta/TimeToEvent-InjurySim. The six regularized methods
are implemented through BeSS 1.0.6 (Wen et al., 2020b), glmnet 4.1-7 (Friedman et al.,
2010), grpreg 3.4.0 (Breheny and Huang, 2015) and CoxBoost 1.3 (Binder, 2013) R pack-
ages. Shared frailty Cox models are fitted using the coxph() function from the sur-

vival 3.5-5 (Therneau, 2020) package, and the BS and IBS are computed using the pec

2023.04.12 (Mogensen et al., 2012) package. The furrr 0.3.1 (Vaughan and Dancho, 2022)
package is employed for running the simulation study.

3.4.2 Results

Table 3.4 summarizes the results for the three settings in Scenario 1. With regards to the
first setting, the best model is BeSS (on which the setting is based), followed by Ridge
regression. BeSS outperforms with an average of 4.17 wrongly selected variables, anMSE
of 3.78, and IBS medians of 0.045 (between [0, 1000]) and 0.086 (between [0, 3500]). The
frailty model based on Cox Boosting-selected variables also performs well.

The second setting shows no significant differences in model performances compared
to themethods fromwhich it’s generated, i.e., the frailty model with six variables selected
by Lasso, Elastic Net, and Ridge regression. Ridge regression performs the best in terms
of MSE. BeSS is the second-best model with an average of 1.35 wrongly selected variables,
anMSE of 5.05, and good Brier Scores. Cox Boosting also shows robust performance with
respect to the IBS medians.

Regarding the third setting from Scenario 1, results indicate that not only Cox Boost-
ing, the method on which the setting is based, performs well, but BeSS and Ridge re-
gression are also suitable. BeSS stands out in certain metrics, particularly in the average
number of wrongly selected variables (0.62 versus 6.89 for Cox Boosting) and MSE (5.24
versus 6.17 for Cox Boosting). Both methods exhibit similar IBS median values.

Table 3.5 presents results for Scenario 2 and Scenario 3 for sample sizes of Nobs ∈
{60, 191, 391}. Results for the setting with Nobs = 670 observations are in Table B2 in Ap-
pendix B. In general, differences between frailtymodels decreasewith larger sample sizes,
whether considering MSE or IBS. Figure 3.6 shows that prediction errors become smaller
with more observations. For example, in Scenario 2, frailty models based on BeSS or
Group Lasso-selected variables reduce their prediction error range by 67.9% (from 0.131
to 0.042) and 72.1% (from 0.176 to 0.049), respectively, when increasing the number of
teams (and thus, the sample size) from 1 to 10. In Scenario 3, the decrease in the range of

https://github.com/lzumeta/TimeToEvent-InjurySim
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Table 3.4: Simulation results for the three different settings within Scenario 1, involving
66 players with 3 observations each, resulting in a total sample size of 198. The measures
analyzed include the AMS, ANFS, ANFNS, MSE and the median of IBS calculated over
the [0, 1000] and [0, 3500] time intervals, for all models.

Model AMS
(2,6,4)

ANFS
(0)

ANFNS
(0)

MSE
(0)

IBS
(0)

[0,1000] [0, 3500]

True model: frailty (BeSS)
BeSS 2.62 0.72 0.10 3.85 0.045 0.084
Lasso 7.91 5.93 0.02 4.29 0.046 0.087
Elastic Net 11.36 9.38 0.02 4.84 0.047 0.089
Ridge 6.11 4.17 0.06 3.78 0.045 0.086
Group Lasso 16.61 14.66 0.05 9.24 0.048 0.095
Boosting 7.38 5.39 0.01 4.29 0.046 0.086

True model: frailty (Lasso)
BeSS 4.94 1.35 2.41 5.05 0.050 0.083
Lasso 11.47 6.41 0.94 5.67 0.050 0.085
Elastic Net 14.15 8.76 0.61 6.26 0.051 0.087
Ridge 8 3.33 1.33 4.66 0.050 0.084
Group Lasso 22.51 16.8 0.29 14.57 0.056 0.097
Boosting 11.47 6.36 0.89 5.65 0.050 0.085

True model: frailty (Boosting)
BeSS 3.42 0.62 1.20 5.24 0.044 0.080
Lasso 10.19 6.77 0.58 6.06 0.045 0.083
Elastic Net 13.46 9.84 0.38 7.15 0.045 0.085
Ridge 7.32 4.16 0.84 5.50 0.045 0.082
Group Lasso 19.79 15.86 0.07 12.38 0.048 0.090
Boosting 10.10 6.89 0.59 6.17 0.045 0.082
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Table 3.5: Simulation results for Scenarios 2 and 3, which consider different correlation
structures of covariates (ρij = 0 and ρij = 0.65|i−j|) for a varying number of players, L ∈
{22, 66, 132}, resulting in Nobs ∈ {60, 191, 391} observations, respectively. The measures
analyzed include the AMS, ANFS, ANFNS, MSE and the median of IBS calculated over
the [0, 1000] and [0, 3500] time intervals, for all models.

Sample size
(Nobs)

Correlation
structure
(i ̸= j)

Frailty model
including vars.
that selected

AMS
(5)

ANFS
(0)

ANFNS
(0)

MSE
(0)

IBS
(0)

[0,1000] [0, 3500]

Nobs = 60

ρij = 0

BeSS 1.65 1.45 4.80 3.69 0.030 0.108
Lasso 1.74 1.48 4.74 56.37 0.030 0.115
Elastic Net 2.91 2.53 4.62 271.34 0.031 0.116
Ridge 4.83 4.28 4.45 57.02 0.033 0.121
Group Lasso 4.05 3.50 4.45 > 105 0.034 0.125
Cox Boosting 1.86 1.55 4.69 42.77 0.030 0.113

ρij = 0.65|i−j|

BeSS 1.67 1.04 4.37 4.90 0.040 0.109
Lasso 2.92 2 4.08 2.72 0.040 0.118
Elastic Net 5.31 3.83 3.52 2758.8 0.044 0.130
Ridge 7.49 5.36 2.87 776.0 0.047 0.138
Group Lasso 8.65 6.70 3.05 > 105 0.052 0.144
Cox Boosting 2.87 1.92 4.05 2.92 0.040 0.118

Nobs = 191

ρij = 0

BeSS 1.98 1.08 4.10 0.96 0.037 0.114
Lasso 4.75 3.28 3.53 1.10 0.037 0.114
Elastic Net 6.23 4.47 3.24 1.21 0.037 0.114
Ridge 6.23 4.23 3.00 1.21 0.037 0.114
Group Lasso 15.05 11.2 1.15 3.39 0.030 0.123
Cox Boosting 4.73 3.15 3.42 1.18 0.037 0.112

ρij = 0.65|i−j|

BeSS 2.23 0.85 3.62 1.28 0.039 0.108
Lasso 7.33 4.78 2.45 1.54 0.039 0.106
Elastic Net 9.72 6.69 1.97 1.78 0.040 0.108
Ridge 8.61 4.84 1.23 1.50 0.040 0.109
Group Lasso 19.4 14.7 0.30 > 105 0.044 0.122
Cox Boosting 6.44 3.97 2.53 1.48 0.039 0.107

Nobs = 391

ρij = 0

BeSS 2.16 0.49 3.33 0.57 0.034 0.109
Lasso 7.67 4.78 2.11 0.82 0.035 0.106
Elastic Net 9.87 6.67 1.80 0.89 0.035 0.107
Ridge 6.74 3.72 1.98 0.74 0.034 0.107
Group Lasso 17.7 12.7 0 1.09 0.035 0.112
Cox Boosting 6.22 3.62 2.40 0.79 0.034 0.106

ρij = 0.65|i−j|

BeSS 2.82 1.11 3.29 1.02 0.039 0.107
Lasso 12.14 8.53 1.39 1.18 0.039 0.104
Elastic Net 14.66 10.64 0.98 1.27 0.039 0.105
Ridge 8.90 4.82 0.92 0.99 0.039 0.105
Group Lasso 25.95 20.95 0 2.40 0.040 0.114
Cox Boosting 8.74 5.57 1.83 1.12 0.039 0.103
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Figure 3.6: Distribution of the IBS over the [0, 3500] time interval for each of the six
frailty models considered across Scenarios 2 and 3, that consider different correlation
structure of covariates, ρij = 0 and ρij = 0.65|i−j|, for varying team sizes consisting of
L ∈ {22, 66, 132, 220} players.

prediction errors for these models is 67.8% (from 0.112 to 0.036) and 78.1% (from 0.183
to 0.04), respectively.

It’s important to note that prediction errors depend on the time interval considered. In
the [0, 1000] time interval, the IBS values are comparable across different models due to
similar early-time predictions. At longer time intervals, the disparities in IBS becomemore
apparent between models. Specifically, within the [0, 1000] range, Scenario 2 exhibits
marginally lowermedian IBS values than Scenario 3. Conversely, over the longer [0, 3500]
interval, the median IBS values for Scenario 3 are slightly lower than those for Scenario 2.

When covariates in the data set exhibit low dependence, the resulting models tend to
be sparser –that is, they include fewer variables. Consequently, the average model sizes
in Scenario 2 (where ρij = 0 for all i ̸= j) are closer to the average size of the true model,
which is five. In both scenarios, smaller sample sizes lead tomore pronounced differences
in prediction error curves and in the variable selection methods’ ability to identify true
effects. For the smallest sample size, Group Lasso, and to some extent, Ridge regression
and Elastic Net, exhibit notably higher prediction error ranges and median prediction
errors compared to other methods. This trend is even more pronounced with correlated
covariates in Scenario 3 (see Figure B4 in Appendix B).

BeSS selects the fewest variables, followed by Ridge regression. In contrast, Group
Lasso selects the largest number of variables, leading to more complex models (see Fig-
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ure B3 in Appendix B). The number of falsely selected variables and incorrectly estimated
coefficients alignwith eachmethod’s selection tendencies. BeSS, selecting fewer variables,
has fewer falsely selected variables and a lower number of coefficients incorrectly esti-
mated as 0, aligning with the true effect. Group Lasso, on the other hand, results in a
high average number of falsely selected variables but a low number of coefficients incor-
rectly estimated as 0. In general, methods leading to sparse models, such as BeSS and Cox
Boosting, perform better, especially with small sample sizes. As the sample size increases,
differences between models decrease, except for Group Lasso.

3.5 Discussion

Recurrent events models have been widely used in numerous biomedical studies, but, to
our knowledge, their application in the field of sports injury prevention has been limited.
Our work aimed to provide an appropriate statistical modelling strategy for football in-
jury data, which presents some challenges, rather to provide evidence about risk factors
for lower-limb injuries. Research on sports injuries is undergoing a significant shift, with
an increasing emphasis on more powerful analytical methods. We believe that, despite
the limitations of our application, recurrent time-to-event methods hold great potential
to advance sports injury research. Further investigations in larger cohorts, spanning mul-
tiple seasons and involving various sports teams, are necessary to apply the proposed
methodological approach and increase knowledge of sports injury risk factors. In this
context, it should be noted that such expansions may introduce other levels of complex-
ity in the data; for instance, an additional random effect could account for team-specific
variations resulting from different training styles.

Contributions and practical application

The analyses and simulation studies performed suggest that the methodology presented
is useful for identifying screening tests associated with the risk of injury (variable selec-
tion), addressing the recurrent time-varying nature of sports injury data (frailty), for the
sports medicine practice in a professional football team. However, as statisticians, it is im-
portant to convey tomedical services in professional sports teams that despite conducting
numerous functional screening tests, the small sample size of individuals and lower-limb
injury events limit the usefulness for predicting the risk of injury. Our simulation study
results confirm the assumptions about the reliability and robustness of estimated effects
in such small data sets. In a real-world scenario involving 22 players, the model’s predic-
tive performance heavily relies on the choice of variable selection technique. BeSS and
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likelihood-based Cox Boosting perform well with small sample sizes common in sports
injury data. Conversely, Group Lasso, and to some extent, Ridge regression and the Elas-
tic Net, show higher prediction errors. For larger cohorts, the choice of variable selection
technique becomes less critical.

In conclusion, our work highlights the potential of shared frailty Cox models in sports
injury prevention. Though conclusions from models based on very small sample sizes
(e.g. a single football/sports team of about 20 players) should be drawn with caution
due to high variability, using data from three or six teams already leads to strong im-
provements. Regardless of the chosen modelling strategy, the key to enhancing predic-
tive performance and accuracy in injury predictions lies in the size of available data. To
gain valuable insights into sports injury prediction andmonitoring, we recommend sports
clubs invest in collecting more data, such as conducting regular functional screening tests
for several of their teams.

Limitations

Our work puts attention on the Cox model as one of the most classical approaches for
modelling time-to-event data, and its extension to recurrent events data, the shared frailty
Cox model. We first applied regularized Cox models, motivated by the large number of
covariates present in the data. In the second step, we fitted shared frailty Cox models
using a reduced set of selected variables. However, we acknowledge that the techniques
used in the first step do not account for the correlation between groups of observations,
which may result in flawed variable selection. A better approach would involve jointly
performing both steps: selecting the important variables and fitting the model.

We now discuss the choice of the methods employed and also, the ongoing research
on the (simultaneous) regularization of frailty models.

Alternative approaches and further work

While our focus has been on statistical regularization techniques for variable selection,
it’s important to note that modelling approaches with variable selection are not limited to
these methods. There are various methods available, many of which come from the field
of machine learning, including tree-based survival techniques like recursive partition-
ing and random forests, survival principal component analysis, support vector machines,
and more (LeBlanc and Crowley, 1992; Bair et al., 2006; Li and Luan, 2002). However,
it’s worth mentioning that most machine learning algorithms are based on the assump-
tion of independent and identically distributed (i.i.d.) training data. They often require
large training data sets and may not perform well with imbalanced cases, such as those
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involving a very low number of injuries, which is the case in our context. Thus, without
modifications, most machine learning algorithms are not directly applicable to non-i.i.d.
data. Future research aims to incorporate machine learning survival techniques into the
comparison of availablemethods for sports injury data. Benchmark studies involvingma-
chine learning survival approaches have been conducted in other research areas, such as
modelling disease outcomes with genome data (Herrmann et al., 2020) or multivariate
and random survival trees (Su and Fan, 2004; Ishwaran et al., 2008), but many of these
methods rely on large sample sizes for training and parameter tuning.

On the other hand, there are alternative survival methods for recurrent events data
that could be considered, including parametric survival models, variance-corrected Cox
models, and spline-based survivalmodels. Nevertheless, for our statistical analyses based
on real data, the shared frailty Cox model was preferred over all these alternatives.
Parametric survival models, like accelerated failure time models (Pan, 2001), require
making distributional assumptions about the time-to-event outcome. Variance-corrected
Cox models, such as Andersen-Gill 1982, Prentice-Williams-Peterson 1981, and Wei-Lin-
Weissfeld models 1989, address correlation by using robust standard errors to model the
marginal distribution of each event time with corrected variance. In contrast, the shared
frailty Coxmodel corrects dependence among recurrent event times by considering a ran-
dom effect. That is to say, it assumes that some players are intrinsically more or less prone
to experience an injury. Spline-based survival approaches provide a compelling frame-
work, including generalized survival models (Liu et al., 2017) and piece-wise exponential
additive mixed models (Bender et al., 2018). These models can estimate the baseline haz-
ard with smooth functions, incorporate random effects, and offer flexibility for various
covariate effects. However, they typically require estimating more parameters and de-
mand larger data sets compared to the shared frailty Cox approach.

Lastly, the literature provides some strategies to simultaneously perform variable se-
lection and frailty model estimation. A first approachwas proposed by Fan and Li (2002),
who used a penalized likelihood estimator with smoothly clipped absolute deviation
penalty (SCAD), for variable selection in gamma frailtymodels. Androulakis et al. (2012)
extend this methodology for penalized gamma frailty models, but as of yet, no open-
source software implementation is available. A recent penalization approach by Groll
et al. (2017) focuses on variable selection in frailty models with time-varying coefficients
such that single varying effects are either included, included in the form of constant effects
or totally excluded. The method is implemented in the PenCoxFrail R package (Groll,
2016). This method was beyond the scope of our work since we do not consider time-
varying covariates or time-varying effects. Newly, Hohberg and Groll (2020) proposed a
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more general Lasso Cox frailty approach allowing to perform variable selection, even for
non-time-varying covariates.
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Flexible time-to-event modelling
approaches for recurrent football
injury data

Contributing article

Zumeta-Olaskoaga, L., Bender, A. & Lee, D.-J. (2023). Flexible modelling of time-varying
exposures and recurrent events to analyze training load effects in team sports injuries.
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Code repository

https://github.com/lzumeta/flex-mod-training-loads-recu-injuries

4.1 Context

In this chapter, we study flexible modelling approaches for analyzing time-varying expo-
sures, such as training load, and recurrent events in the context of team sports injuries.
Today, we have access to a wealth of regularly collected data, primarily through Global
Positioning System (GPS) devices. These devices play a crucial role in monitoring and
quantifying various facets of training load, including the duration of training sessions
and competitions, distance covered, as well as speed and power output metrics. The ever-
increasing amount of data now being collected opens up new opportunities but also in-
troduces novel challenges.

The analysis of an athlete’s exposure status over time is widely recognized as crucial
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in understanding the aetiology of sports injuries, especially concerning recurrent, subse-
quent, and exacerbated injuries (Nielsen et al., 2020). Athletes, referred to as players in
this dissertation, are consistently exposed to high competition demands, that, in turn, in-
crease the strain on their bodies and exposure to injury risk. Effective injury prevention
depends on the athlete’s capacity to tolerate repeated exposures to injury risk.

The physical load from training and competition is often termed as training load,
which is defined as “the cumulative stress placed on an individual frommultiple training
sessions and games over a period of time” (Gabbett et al., 2014). Consequently, train-
ing load can be applied to the athlete over varying time periods and with varying mag-
nitudes (Soligard et al., 2016). Indeed, the study of training load is key to developing
effective training plan strategies that enhance athletes’ performance while also reducing
their risk of injury. The relationship between training load and injury, however, remains
uncertain (Windt et al., 2018; Griffin et al., 2020).

Quantifying this relationship requires the development of an etiologically plausible
time-varying exposure model, which estimates how previous training affects the injury
risk (Impellizzeri et al., 2023). The effects of past exposures may cumulate over time and
exhibit complex forms of association. Additionally, the model must account for potential
associations between subsequent injuries within players. To address these concerns, espe-
cially the dependencies resulting from subsequent injuries and the varying intensity and
duration of past exposures, we propose a Piece-wise exponential Additive Mixed Model
(PAMM, Bender et al. 2018) with weighted cumulative exposure-type (WCE) cumulative
effects (Sylvestre and Abrahamowicz, 2009).

Related work

PAMMs are a semi-parametric extension of the Piece-wise ExponentialModel (PEM,Hol-
ford 1980; Laird and Olivier 1981; Friedman et al. 1982) that allow for penalized estima-
tion of flexible survival models with a wide range of covariate effects, such as non-linear,
time-varying effects, cumulative effects, and/or random effects (refer to Bender et al. 2018
and Argyropoulos and Unruh 2015 for a thorough overview; see also Chapter 2). This
framework has also been shown to support the estimation of cumulative effects of time-
varying exposure histories. The WCE-type cumulative effect suggested by Sylvestre and
Abrahamowicz (2009), a weighted sum of all past exposures over a relevant time win-
dow, is a common way to address this. The weight function assigns weights to past ex-
posures based on the time elapsed since the exposure occurred, which, ideally, is deter-
mined according to the true underlying biological mechanism. They proposed to estimate
the weight function using B-spline regression.
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The PAMM methodology has been employed in many recent publications. Bender
et al. (2019) explore complex exposure-lag-response associations and provide a general
formulation of PAMMs that includes previous approaches for cumulative effects like the
WCE model and the distributed lag non-linear model (DLNM, Gasparrini et al. 2017),
as special cases. Ramjith et al. (2022) study the PAMM framework for recurrent events
analysis and show that under the assumption of proportional hazards, PAMM and the
shared frailty Cox model (McGilchrist and Aisbett, 1991) are equivalent. Danieli and
Abrahamowicz (2019) and Li et al. (2022) introduce approaches to model cumulative ef-
fects of time-varying exposures with competing risks, via cause-specific hazards model
and subdistribution hazards model for each competing event, respectively, by incorporat-
ing separateCoxWCEmodelswith an event-specificweight function. Recently, in the field
of sports medicine, Bache-Mathiesen et al. (2022) evaluated different methods to assess
the cumulative effect of training load on the risk of injury in team sports and suggested
the use of DLNM.

Aim of the work

In this work, we aim to extend the PAMM by incorporating WCE-type cumulative effects
in the recurrent events setting combinedwith amethod to identify a relevant timewindow
in which past exposures have an effect. We further demonstrate the practical application
of this model in the field of sports medicine.

Outline

The proposed modelling framework is detailed throughout section 4.2, which first in-
troduces the PAMM framework for recurrent events with time-constant covariates and
then focuses on how we adapt it to flexibly model time-varying exposures and recurrent
events, in addition to how we penalize the model for identifying a relevant window. Sec-
tion 4.3 illustrates a real-world application of this method to assess the cumulative effects
of past training exposures on the hazard of subsequent injuries in a football team, while
section 4.4 describes the simulation study carried out to evaluate the model performance.
The final section 4.5 concludes the work with a discussion.

4.2 Methods

As already mentioned in Chapter 2, PAMMs transform a survival task into a Poisson re-
gression task by partitioning the follow-up period into a finite number of intervals and
assuming that hazards are piece-wise constant in each of these intervals.
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Figure 4.1: An illustration of data transformation into PED representation using the fol-
lowing interval cut-off points: 0, 5, 20, and 100.

When we have recurrent events, the data transformation is carried out as follows:

Let’s consider that we have data in the “standard” time-to-event format, as shown on
the right-hand side of Figure 4.1. Now, ifwe take, for instance, these 0, 5, 20, and 100 values
as cut-points; we generate as many rows as there are intervals in which each player is at
risk of injury. In Figure 4.1, player 3 has suffered an injury at time 2. For this first injury
of this player (first event), we generate only one row, one interval, between (0, 5]. After
recovering from this injury, we observe the player again. The player is at risk of his/her
second event (enum = 2). Then, we generate two rows, two intervals, both with status

= 0, since the last time we observed the player (t = 20, in gap-time approach), she/he
was not injured. The offset column indicates how long the player has been at risk in that
interval. Generally, the offset is the logarithm of the length of that interval. However, in
cases like the first injury of player 3, where the player has suffered an injury, the offset is
the logarithm of the total time they have been at risk in that interval, i.e., log(2).

The challenging aspect of this transformation lies in effectively integrating or com-
bining the PED-transformed data which include event information and time-constant
covariates, with the data that contain time-dependent covariate information. We
have worked out this technical issue and implemented it in code into the pamm-

tools (Bender and Scheipl, 2018) R package. Now, the pammtools::as_ped() func-
tion provides support for this scenario, i.e. for the context of recurrent events
with time-dependent covariates. Find more details in this pull request on GitHub:
https://github.com/adibender/pammtools/pull/224.

Formally, let partition the follow-up period (0, tmax] into J intervals with J + 1 cut
points, i.e. 0 = κ0 < κ1 < . . . < κJ = tmax, and let assume the hazard to be constant in
each interval. The general expression of the hazard rate of the i-th injury (event) of the

https://github.com/adibender/pammtools/pull/224
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l-th player is given by,

λil(t|zl(t), l) := exp (f(zl(t), tj , l)) = λil,j (4.1)

for all t ∈ (κj−1, κj ], j = 1, . . . , J , t > 0 and l = 1, . . . , L; i = 1, . . . , nl, where t is the
time of interest, tj a fixed time point in the j-th interval (e.g. tj := κj), z(t) ∈ Rp poten-
tially time-dependent covariates and f(·) the effect of (time-dependent) covariates on the
hazard, that can be potentially (non-linearly) time-varying and injury-specific. This gen-
eral representation allows us to study different dependence structures arising in football
injury data.

We generally use the event times as cut-points to partition the follow-up time, follow-
ing the empirical discussion by Bender (2018).

Next, we introduce the PAMM framework for recurrent events. Initially, we present
the simpler PAMMmodels for time-constant covariates and recurrent events –namely, the
stratified PAMM and the shared frailty PAMM. Subsequently, we introduce the broader and
more flexible PAMM for modelling time-dependent covariates in the context of recurrent
events. Within this section, our emphasis is on analyzing WCE-type cumulative effects.

4.2.1 PAMM for recurrent events with time-constant covariates

Relaxing some of the terms in (4.1), we investigate the following models:

Stratified PAMMmodels

They assume different baseline hazards for each of the injury events and thus, consider
the dependence induced by the previous injuries.

λil(t|xl) := λ(t|xl, l, i) = λ0,i(t) exp(x
′
lβ) =

= exp (β0,i + f0,i(tj) + x′
lβ) , ∀t ∈ (κj−1, κj ].

Shared frailty PAMMmodels

They assume a common baseline hazard for all events (λ0,i = λ0), but account for within-
player correlation by introducing a frailty term.

λil(t|xl) := λ(t|xl, bl, i) = λ0(t) exp(x
′
lβ + bl) =

= exp (β0 + f0(tj) + x′
lβ + bl) , ∀t ∈ (κj−1, κj ],

where b ∼ N(0,D) is a Gaussian random effect.
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4.2.2 PAMM for recurrent events and time-dependent covariates

As we proceed with the modelling of injuries, the hazard rate of the i-th injury (event)
of the l-th player, given the player’s training exposure history zl(t) = {zl(tz) : tz ≤ t}, is
expressed as:

λil(t|zl(t), bl) = λ0(t) exp(g(zl, tj) + bl) =

= exp(β0 + f0(tj) + g(zl, tj) + bl), (4.2)

for all t ∈ (κj−1, κj ], t > 0 and e.g. tj := κj , where κj , j = 1, . . . , J , are the J + 1 cut
points defining J intervals that partition the study follow-up time (0, tmax]. In Eq. (4.2),
the expression β0 + f0(tj) denotes the log-baseline hazard, where f0(tj) is expressed as
a smooth term of the form ∑︁M ′

m=1 γ0mBm(tj). The term g(zl, t) =
∫︁
τ(t) h(t, tz, zl(tz))dt

denotes the cumulative effect of zl at time t, i.e. the past exposure effects of zl cumulate
over time, over a relevant time-window τ(t), resulting in a sum of weighted effects. The
dependence induced by subsequent injuries is accounted for by bl, a Gaussian random
effect (i.e. a shared frailty term) associatedwith player l, which acts as a random intercept
term for the l-th player, i.e. bl ∼ N(0, σ2

b ).

For a WCE-type effect, in Eq. (4.2), we consider time-varying exposure effects
weighted by latency t − tz and linear in z(tz). That is, the contribution of covariate z

observed at time tz with value z(tz), is defined by h(t, tz, z(tz)) := h(t − tz)z(tz), and
called partial effect. Thus, the cumulative effect g(z, t) at follow-up time t is the integral
of these partial effects over exposure times tz contained within the so-called lag-lead win-
dow, τ(t), which controls how many observations of z contribute to the cumulative effect
at time t (with the minimal requirement being that tz ≤ t).

Let z(t) = {z(tz) : tz ≤ t} = {z(tz,1), . . . , z(tz,Q)} be the set of all registered exposure
variables up to time t. Then, g(z, t) is estimated with penalized splines (e.g., by using P-
splines (Eilers and Marx, 1996, 2021) that penalize the differences of neighbouring basis
coefficients) and with quadrature weights ∆q = tz,q − tz,q−1 (and tz,0 = t), the time
difference between two consecutive exposure measurements, for numerical integration,
as follows:

∫︂
τ(t)

h(t− tz)z(tz)dtz ≈
Q∑︂

q=1

∆̃qh̃(t− tz,q) =

Q∑︂
q=1

∆̃q

M∑︂
m=1

γmBm(t− tz,q) (4.3)

with ∆̃q = z(tz)(tz,q − tz,q−1) if tz,q ∈ τ(t) and 0 otherwise; Bm(·) B-spline basis functions
and γm the associated spline coefficients.
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Penalization of the weight function

One of the challenging issues is to determine a relevant time window τ(t). Without solid
prior knowledge, it can be defined as τ(t) = {tz : t ≥ tz}, so all past exposures, collected
before actual time t, contribute to the cumulative effect g(z, t). Yet, it is plausible that
the effects of exposure variables may not be everlasting. As time passes, the effect of
exposures recorded long ago may smoothly decrease to zero and eventually disappear.
The exact length of the window, however, is usually unknown.

Subsequently, adapting the method by Obermeier et al. (2015) to the PAMM frame-
work, we present two approaches to penalize the weight function, allowing it to transition
smoothly to zero at the right end of the support interval: (i) a constrained-effect approach
and (ii) a ridge-penalty approach.

Constrained-effect approach

In this approach, we force the weight function, and its first derivative, to reach the zero
value at time t − tz,Q, by imposing the last two coefficients in Eq. (4.3) to be equal to
zero (Sylvestre and Abrahamowicz, 2009). Working in matrix notation, the right part of
Eq. (4.3) is given by:

g(z, t) ≈ ∆̃
′
B γ = ∆̃

′
γ̃ (4.4)

with

B =

⎛⎜⎜⎝
B1(t− tz,1) . . . BM (t− tz,1)

... ...
B1(t− tz,Q) . . . BM (t− tz,Q)

⎞⎟⎟⎠ ,

a Q × M -dimensional basis matrix of B-splines of degree d, γ a M × 1 column-vector
of associated spline coefficients and ∆̃ a Q × 1 column-vector having ∆̃q as elements for
q = 1, . . . , Q.

Therefore, the value z(t − tz,Q) is assumed to have no impact on the current risk at t,
by constraining the two last spline coefficients to zero, i.e. γ̃(Q−1) = γ̃Q = 0.

Ridge-penalty approach

This approach consists of adding a shrinkage L2-penalty to penalize the last B-spline basis
coefficients of γ in Eq. (4.4), see Obermeier et al. (2015).

Hence, we seek that the last coefficient γ̃Q to be close to zero:

γ̃Q =

M∑︂
m=1

Bm(t− tz,Q) γm ≈ 0. (4.5)
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At any chosen time point tz,q ∈ τ(t), exactly d + 1 d-degree B-spline basis functions are
non-zero. Thus, Eq. (4.5) can be expressed as,

γ̃Q =
M∑︂

m=M−d

Bm(t− tz,Q) γm ≈ 0.

Notice also that we implicitly assume that γ̃Q+1 is zero. Following, the last γ̃Q coefficient
can be forced to shrink towards zero by penalizing the last d+1 γ-coefficients by anM×M

shrinkagematrixKr, a diagonalmatrixwith all elements equal to zero except the last d+1,
which have value one, i.e. Kr = diag( 0

M−(d+1)×1
, 1
(d+1)×1

).

Then, an extra regularization parameter controls the shrinking of the last basis coef-
ficients. Large values of this parameter imply strong shrinkage of the last γ̃Q coefficient
and decrease its estimated values.

Estimation and inference

The estimation of themodel coefficients γ can be carried out bymaximizing the penalized
likelihood (Wood, 2011). In this case, for the Poisson GAMM, the model deviance l(γ) =∑︁Nl

il=1 {δil log(λil(t|zl(t), bl))− λil(t|zl(t), bl)}, with δil ∈ {0, 1} the i-th event indicator of
subject l, is penalized with a smoothing and a shrinkage matrix, Kd and Kr, giving rise
to:

lp(γ) = l(γ)− 1

2
γ ′ (λdKd + λrKr)γ.

For the smoothing penalty matrix, we use second-order differences, i.e., Kd = D′
2D2,

where D2 is the matrix representation of applying the ∆ operator to α twice: ∆2α =

∆(αj−αj−1) = αj−2αj−1+αj−2. The smoothing parameter λd penalizes large differences
in adjacent basis coefficients, while the regularization parameter λr shrinks the last basis
coefficient.

Therefore, the coefficients can be estimated via penalized iteratively reweighted least
squares P-IRLS (Marx and Eilers, 1998;Wood, 2017). The P-IRLS consists of iteratively up-
dating the coefficient estimates until convergence is reached using numerical optimization
methods of the restricted maximum likelihood. This is implemented in the gam function
from mgcv (Wood, 2017) R package.

Software specification

The analyses of the simulation study and the application are coded in R version
4.2.2, on a 64-bit Unix platform (x86_64 linux-gnu) computer, as well as on a high-
performance cluster system. The code to reproduce these analyses is available at:
https://github.com/lzumeta/flex-mod-training-loads-recu-injuries. The package msm

https://github.com/lzumeta/flex-mod-training-loads-recu-injuries
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Figure 4.2: Timeline of the football players’ follow-up period together with the injuries
they sustained. The red cross indicates the exact injury date, the blue circle the recovery
date and the bold black line the duration of the non-contact time-loss injury.

1.6.9 (Jackson, 2011) is used to draw piece-wise exponential survival times, pammtools

0.5.8 (Bender and Scheipl, 2018) and mgcv 1.8-41 (Wood, 2023) to fit the models, batch-

tools 0.9.16 (Lang et al., 2023) to structure, write down and submit the simulation experi-
ment in a convenient and reproducible fashion and the package injurytools 1.0.1 (Zumeta-
Olaskoaga and Lee, 2023) to structure and explore the external training load data set.

4.3 Application to external training load data

Data

We apply the proposed model to observational injury data from an elite male football
team that competed in LaLiga during the 2017-2018 and 2018-2019 seasons. A total of
L = 36 players were followed up and to monitor players’ performance and health status,
external training load variables (Soligard et al., 2016) (exposure variables e.g. training
and competition time, distance covered, speed, heart rate) were registered through track-
ing devices, on each match and training session. These variables measure the physical
exertion that the player has been exposed to. A total of 72 non-contact time-loss injuries
occurred among 23 players (64%, 23/36) and 15 players (65%, 15/23) were reinjured dur-
ing the follow-up, see Figure 4.2.

Our focus lies in the association between external training load and time-loss in-
juries (Fuller et al., 2006), namely, how the cumulative stress placed on a player from
multiple training sessions and matches, over a period of time, affects his risk of a (subse-
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Table 4.1: Descriptive characteristics of external training load data: summary statistics
related to injury and exposure variables overall and by session type. Injury incidence and
injury burden are reported per 1000 player-hours.

Session type

Injury-related variables Overall Training Match

Injuries, n (%) 72 26 (36.1) 46 (63.9)
Days lost, n (%) 1595 591 (37.1) 1004 (62.9)
Total follow-up sessions, median (IQR) 220.5 (163-345) 198.5 (146-277) 37.5 (19-67)
Injury incidence, (95% CI) 4.07 (3.1-5) 1.47 (0.9-2) 2.6 (1.85-3.35)
Injury burden, (95% CI) 90.1 (85.6-94.5) 33.4 (30.4-36.1) 59.7 (53.2-60.2)
Exposure variables

Average Speed (m/s), median (IQR) 3.8 (3.24 - 4.72) 3.71 (3.17 - 4.25) 6.46 (5.96 - 6.88)
Total Distance (m), median (IQR) 4689 (3586 - 6122) 4458 (3517 - 5525) 8552 (5138 - 10022)
n: number; IQR: interquartile range; 95% CI: 95% confidence interval

quent) football injury.

Table 4.1 shows the data’s descriptive characteristics, overall and by session type. In-
jury incidence and injury burden are calculated as the number of injuries (I) per player
exposure (∆T ) and the number of days lost due to injury (nd) per player exposure (Bahr
et al., 2020), Ir = I/∆T and Ibr = nd/∆T , respectively. The first calculates the rate at
which new injury occurs (likelihood), whereas the second how severe an injury is (con-
sequences). We assume that the number of injuries I (and the number of days lost nd)
throughout the total time under risk,∆T , follows a Poisson distribution and compute the
approximated confidence interval under large sample conditions. We specifically focus
on the variables average speed per session (Speed) and total distance covered per ses-
sion (Dist) as external training load variables that represent the intensity of each session.
These metrics are chosen for their clear link to physical exertion and injury risk. Average
speed reflects the sustained intensity throughout the session, while total distance indi-
cates the overall workload. Both are crucial in evaluating the cumulative stress imparted
on players, potentially leading to injuries when consistently high.

Modelling approach

We consider that the unit of the follow-up time t, as well as of the exposure time tz , to
be the n-th number of session (i.e., match and training sessions). The analysis time zero
is defined as the first session (match or training session), from July 7, 2017, in which the
player has taken part in the team. Players are followed until an injury occurs, or until they
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are transferred to another team, the end of the contract or the end of the study (May 18,
2019), whichever occurs first. Players fully recovered from an injury are followed again
until one of the previously described events occurs, see Figure 4.2.

First, to explore the data, we fit a stratified hazards model. We stratify the baseline
hazard by ’season’ (X1) and by ’injury number’ (X2) categorical variables, i.e. we allow
the baseline hazards to be different for these groups.

• X1 = ‘season’ (2-levels: 0 = ‘17-18’ and 1 = ‘18-19’).

• X2 = ‘injury number’ (2-levels: 0 = ‘at risk for a 1st-time injury’, 1 = ‘at risk for a
subsequent injury’).

Then, for player l in i-th stratum, we estimate this stratified baseline hazards model,
with no covariates, in log-scale:

log(λil(t|X l(t))) := log(λ0,i) = β0 +X1β0,1 +X2β0,2+ (4.6)
+ f 17-18

0 (tj) + f 18-19
0 (tj) + f first

0 (tj) + f recurrent
0 (tj), ∀t ∈ (κj−1, κj ]

Then, as our focus is on the association between external training load and time-loss in-
juries, we fit a PAMMwithWCE cumulative effects model and a ridge penalty. Therefore,
we consider that external training load is applied to the player over varying time periods
andwith varyingmagnitude by considering cumulative effects and we adjust for the type
of session, whether training ormatch session, since it has been suggested as one of the pri-
mary risk factors Bahr and Holme (2003); Bahr et al. (2020); and account for subsequent
injuries adding a random effect (Gaussian frailty). Thus, the log-hazard rate of player l
of the fitted model is expressed as:

log(λ(t|zl(t), bl, i)) = β0 + f0(tj)+z
type session
l (tj)β1 + g1(z

Speed
l , t) + g2(z

Dist
l , t) + bl

∀t ∈ (κj−1, κj ], tj := κj and bl ∼ N(0, σb), (4.7)

where β0 + f0(tj) indicates the log-baseline hazard rate, ztype sessionl (tj) the type of ses-
sion undertaken by player l at tj , g1 and g2 are non-linear time-varying effects of the
training load variables and bl a Gaussian random intercept term associated to player
l. The cumulative effects, g1 and g2, are defined as ∫︁τSpeed(t) h(t − tz)z

Speed
l (tz)dtz and∫︁

τDist(t)
h(t− tz)z

Dist
l (tz)dtz , and each lag-lead window, τHRt(t) and τHSR(t), is chosen to be

large enough to identify relevant past exposure effects by fitting a PAMMwith a ridge pe-
nalization. All smooth terms are estimated using P-Splines with second-order difference
penalties.
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Figure 4.3: Estimated baseline hazards by a stratified PAM model with two-factor vari-
ables: injury recurrence, whether a first-time injury (orange) or a subsequent injury
(blue); and season, 17-18 (left panel) or 18-19 (right panel).

Importantly, we add a minimum lag time of one session to minimize confounding
by indication bias (Signorello et al., 2002), i.e., we exclude the current session to have
an effect on the hazard of injury, ensuring t > tz . The rationale behind this choice is
that each session depends on the player’s physical condition and, presumably, sessions in
which a player was injured had lower intensity compared to sessions in which he had no
complaints.

Results

The results of the estimated baseline hazards from the stratified PAMM model (4.6), i.e.,
a GAMMwith two additive factor-smooth interaction terms (season and injury number),
are shown in Figure 4.3. The fact of stratifying hazards captures the unobserved player-
specific variability. It reveals that the risk of a subsequent injury is higher than the risk
of experiencing a first-time injury in both seasons. Additionally, the differences between
the risks of subsequent and first-time injuries are more pronounced at the beginning of
the follow-up times and just after recovering from the first-time injury (i.e., the initial
times of the risk sets). Moreover, the hazard rates for sustaining any injury (regardless
of recurrence) are significantly higher in the 2017-2018 season compared to the 2018-2019
season.

On the other hand, the estimated cumulative effects in model (4.7) are computed con-
sidering that all recorded Speed andDist values in the last 10 sessions prior to t (i.e., before
three weeks approximately) could have an effect on the hazard of injury at time t, repre-
sented by the lag-leadwindows τ1(t) = τ2(t) = {tz : t > tz ∧ t < tz+11}. We assume that
these windows are large enough for the model to identify relevant past exposure effects.

The estimated partial effects corresponding to Speed and Dist training load variables,
ĥ1(t − tz)z1(tz) and ĥ2(t − tz)z2(tz), are shown in Figure 4.4 (see also Figure C11 in Ap-
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Figure 4.4: Top: Estimated partial effects surface (left-hand panel) and one-dimensional
slices through the previous surface with respect to the covariate Speed, z1(tz) = zSpeed(tz) ∈
{3.2, 4, 5} (middle panel) and the latency t − tz ∈ {1, 4} (right panel) on the log-hazard
scale. Bottom: the analogue for the covariate Dist, where the estimated one-dimensional
partial effects are conditioned on the values z2(tz) = zDist(tz) ∈ {3500, 4800, 7000} and
t− tz ∈ {1, 4}.

pendix C). The results suggest that no more than seven sessions in the past are of interest
with regards to Speed and Dist variables cumulative effects. Both cumulative effects are
estimated to have a non-linear decaying effect on the covariate z with respect to latency
and a linear effect on latency with respect to the covariate z. Regarding the estimated
partial effects of both variables, the values contributing the most to the hazard are those
most recently recorded, while the contribution of values recorded longer ago diminishes.
Although there is not much difference in the trend, the greater the average speed and
the total distance covered in recent sessions, the greater the impact on the resulting cu-
mulative effect is. The Gaussian frailty term (random intercepts), which accounts for the
correlation between subsequent injuries from the same player, is statistically significant
(p-value< 0.01), with σ̂b = 0.22 as the estimated variance. Players who suffered more in-
juries (e.g., Id04, Id28) have a higher baseline hazard of injury, as observed in Figure 4.5,
which shows the estimated smooth log-baseline hazard, f̂0(t), togetherwith the estimated
player-specific smooth log-baseline hazard. Concerning the session type effect, match ses-
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Figure 4.5: Estimated team smooth baseline hazard (in black) and player-specific smooth
baseline hazard (coloured line in each panel), together with confidence intervals (grey
shadow) of the team’s smooth baseline hazard estimate, in log scale.

sions have a higher risk of injury compared to training sessions (β̂1 = 2.45 and p-value <
0.01). See also Table C5 and Figure C13 in Appendix C where the estimated linear and
non-linear effects are presented.

4.4 Simulation study

We conduct extensive simulation studies to evaluate the proposed models and to inves-
tigate their properties. In particular, we aim to (i) assess the ability of the model to si-
multaneously estimate both, flexible WCE-type effects and heterogeneity resulting from
recurrent events; and (ii) study the implementation of penalties on the basis coefficients to
select the maximum length of the time window in which past exposures are cumulatively
associated with the hazard.

4.4.1 Data generation

We draw survival times from the piece-wise exponential distribution. Let nl be
the maximum event number that individual l has been at risk for and l =
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1, . . . , L. Then, it suffices to specify a vector of piece-wise constant hazards λ =

(λ11 , λ21 , . . . , λn1 , λ12 , λ22 , . . . , λn2 , . . . , λ1L , λ2L , . . . , λnL), in intervals defined by J + 1

cut-points, i.e., by the vector of interval borders κ = (0 = κ0, . . . , κJ = tmax). That is,
λil is composed of (λil1, λil2, . . . , λilJ), where each element λilj is the hazard rate of i-th
event for individual l in the interval j, il = 1, . . . , nl and j = 1, . . . , J ; and can be de-
fined through a function of time t, current and past exposure covariates z and a random
effect bl, i.e. λil,j(t|z, b) = f(t, z, b) = exp

(︂
const.+ f0(t) +

∫︁
{tz :t≥tz} h(t− tz)z(tz)dt+ bl

)︂
,

evaluated at time t = κj .

Then, we draw recurrent survival times from the piece-wise exponential distribution
(PEXP), t ∼ PEXP(λ,κ), for which the algorithm is outlined in Table C1 in Appendix
C. The hazard rate vector λ is defined based on the simulation settings described in the
following section. All further details on data generation are provided in section C.1 in
Appendix C.

4.4.2 Scenarios and parameter settings

We simulateNsim = 500 times a cohort of L = 500 individuals with exposures recorded at
tz,1 = 1, tz,2 = 2, . . . , tz,Q=40 = 40days before the time atwhichwemodel the hazard, zl =

(zl(tz,1), zl(tz,2), . . . , zl(tz,Q)), and draw survival times from the piece-wise exponential
distribution under four different true weight functions, h(t− tz), (a) exponential decay, (b)
bi-linear (c) early peak and (d) inverted U shapes, each defined over a [0, tz,Q] interval (see
the black curves in Figure 4.6); and under three different levels of heterogeneity between
recurrent events, σb ∈ {0.05, 0.5, 1}, indicating very low heterogeneity, low heterogeneity
and high heterogeneity, respectively (see also Figure C1 in Appendix C).

We then fit three different PAMMs with WCE-type cumulative effects: a model with
no constraint (Uncons.), adding a constraint (Constr.) and adding a ridge penalty (Ridge).
The performance of themodels is evaluated by graphical inspection of the estimated ĥ(t−
tz) function in comparison to the true simulated h(t− tz) function; the accuracy of these
WCE-type cumulative effects estimates are also evaluated via themean RMSE, i.e., RMSE,
over all simulation runs, as:

RMSE =
1

Nsim

Nsim∑︂
n=1

⌜⃓⃓⎷ 1

Ntz

40∑︂
t−tz=0

(︂
h(t− tz)− ĥ(t− tz)(n)

)︂2
,

where Ntz = 41, since t− tz = {0, 1, 2, . . . , 40} takes 40 +1 number of different values.
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Figure 4.6: True vs. fitted partial effect weight function h(t−tz) for scenario σb = 1. Rows:
Uncons. model (top row), Constr. model (middle row) and Ridge model (bottom row).
Columns: (a) exponential decay, (b) bi-linear, (c) early peak and (d) inverted U. True shapes
used for simulation are depicted as solid black lines and the mean (point-wise averages)
of all simulation runs are depicted in solid red lines. A random sample of 100 individual
estimated weight functions are shown as grey curves.

We assess the accuracy of the standard deviation of the random effects, σ̂b, through:

RMSE =

⌜⃓⃓⎷ 1

Nsim

Nsim∑︂
n=1

(︂
σb − σ̂

(n)
b

)︂2
.

We also evaluate the rate at which the estimated confidence interval of WCE-type cumu-
lative effects estimates contains the true estimand h(t− tz), computing the mean coverage
at the 1− α confidence level, i.e. Coverageα, as:

Coverageα =
1

Nsim

Nsim∑︂
n=1

[︄
1

Ntz

40∑︂
t−tz=0

I
(︂
h(t− tz) ∈

[︂
ĥ(t− tz)

(n) ∓ ζ1−α/2σ̂
(n)

ĥ

]︂)︂]︄
,

where ζq is the q-quantile of the standard normal distribution and σ̂ĥ the standard error
of the estimated ĥ(t− tz).
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Figure 4.7: Distribution of the RMSE (left), the squared error of σb (middle) and the 95%
point-wise coverage (right) across all simulation settings (Nsim = 500).

4.4.3 Results

The results regarding the estimation of the weight function ĥ(t − tz) for scenarios with
σb = 1 and true weight functions (a)-(d) are shown in Figure 4.6 (the rest of the sce-
narios are shown in Figures C2-C7 in Appendix C). In general, the model estimates ef-
fectively capture the underlying weight function. Models incorporating an additional
penalty (middle and bottom panels), referred to as Constr. and Ridge models, perform
better for scenarios in which the exposures that occurred relatively long ago (e.g. from
the 20th lag on) have little impact on the risk, as observed in shapes (b) and (c). Among
the settings considered, the most accurate estimation of h(t − tz) is obtained for shape
(b) bi-linear and a ridge penalty, according to RMSE and 95% coverage. This model has a
mean RMSE of 0.007 and a mean coverage of 84.9% (refer to Table C2 in Appendix C).

Figure 4.7 shows boxplots of the distribution of the RMSE, the 95% point-wise cover-
age (across all time points), and the squared error of σb across all simulation settings. The
shape of the true weight function is independent of the estimation of the standard devia-
tion of the random effect, σb. Besides, the estimates are less accurate for higher values of
σb. Note that the 95% coverage of h(t− tz) for shapes (a), (c), and (d) shows underfitting,
specifically in models where the weight function is penalized, due to the form of the true
weight function considered and the way the point-wise coverage is calculated.
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4.5 Discussion

Contributions and practical application

We extended and assessed the PAMMmodel class to the context of recurrent events with
time-dependent covariates, modelled as WCE-type cumulative effects. By introducing a
ridge penalty to diminish the influence of past exposures registered long ago, we pre-
sented a method to determine a relevant time window based on data. Lastly, motivated
by the research question regarding the association between external training load and
(subsequent) time-loss injuries, we have applied the proposedmethodology to the sports
medicine context.

Simulations indicate that PAMMwith ridge penalization is the method that yields the
most accurate estimates for the partial effects, ĥ(t, tz, z(tz)) = ĥ(t−tz)z(tz). The additional
ridge penalization of the weight function enables us to identify the relevant window τ(t)

at which past exposures cumulatively affect the hazard at time t, as also demonstrated in
our application on football injury data. We propose usingwide timewindows to properly
determine the exposure time at which, from that time on, the estimated effects are close
to zero.

Limitations

Simulation studies indicate that the model can recover a number of clinically plausible
shapes for the true weight function under various levels of heterogeneity. Without prior
knowledge about the form of association for time-varying exposures, the model proved
to capture well a variety of shapes, estimating them from the data via P-splines. How-
ever, for non-smooth effect shapes, such as piece-wise constant or bi-linear, alternative
methods like adaptive splines (Friedman, 1991) or treed distributed lag non-linear mod-
els (TDLNM, Mork and Wilson 2022), might be of interest.

In addition, future research should consider evaluating the impact of the number of
events per subject –kept fixed in our simulation study– on themodel performance, as well
as to explore distributions other than Gaussian, for example, Gamma distributed random
effects, which are popular in the context of survival analysis (Balan and Putter, 2020).

Alternative approaches and further work

From a practical point of view, the presented modelling framework provides a suitable
approach to flexibly model training load exposures and analyze their effects on subse-
quent football injuries, with respect to alternative measures of training load exposures
commonly used in the literature (refer to Table C6 in Appendix C). For example, the
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widely known and used acute chronic workload ratio (ACWR, Hulin et al. 2014), and
its variants (Lolli et al., 2019; Wang et al., 2020), limit to summarize past observations
into a predefined unweighted metric, through a ratio of two rolling averages –last 7 days
(acute load) over the last 28 days (chronic load). The same applies to the exponentially
weightedmoving averages (EWMA,Williams et al. 2017) metric, suggested as an alterna-
tivemeasure of rolling averages. While EWMAmore accurately accounts for the decaying
nature of fitness and fatigue effects over time compared to rolling averages, both may fall
short in accurately reflecting various changes in past training exposures, as well as con-
sidering prespecified time windows that could either be superfluous or insufficient. Our
method, in contrast, estimates cumulative effects and relevant timewindows based on the
data rather than predetermined metrics. Future research should assess the application
of negative binomial and zero-inflated models within the PAMM framework to address
overdispersion and the excess of zeros issues (i.e., the low number of injuries).

By highlighting the potential value of PAMMs with WCE effects in assessing recur-
rent events in sports medicine, our work contributes to enriching the existing literature.
We believe that this methodology would help in designing and comparing personalized
training plans with insights into the risk of injury.
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Zumeta-Olaskoaga L., Lee D.-J. (2023). injurytools: A Toolkit for Sports InjuryData Anal-
ysis. https://cran.r-project.org/package=injurytools

Code repository

https://github.com/lzumeta/injurytools

In the previous chapters, we have highlighted specific code repositories that were pur-
posefully created for each of the research objectives. The statistical open-source software
R (R Core Team, 2023) has been employed as a comprehensive tool for implementing
and evaluating statistical models, processing and organizing the data, and presenting re-
sults in both visual and tabular formats. All these computational developments have been
made publicly available to ensure full reproducibility.

In the following, we outline the current landscape of existing R packages in the field
of sports science and emphasize the necessity for a dedicatedR tool for sports injury data.
Subsequently, we present the R package we have developed, called injurytools (Zumeta-
Olaskoaga and Lee, 2023). The package offers general and standardised routines that
simplify the workflow of sports injury data analysis and is intended to be used in practice.

75

https://cran.r-project.org/package=injurytools
https://github.com/lzumeta/injurytools


5.1. Statement of need 76

5.1 Statement of need

A systematic review by Casals et al. (2023), focusing on sports-related packages in the
Comprehensive RArchiveNetwork (CRAN) repository (https://cran.r-project.org/), has
emphasized a growing trend in the development of R packages, along with books and
tutorials within the R ecosystem, specifically designed for various sports environments.
Of the eighty-one packages that met their eligibility criteria, as of 18 February 2021, fifty
(61.7%) were categorized under the “sports performance analysis” category. The predom-
inant functionality was web scraping (n = 43, 53.1%), with basketball (n = 14, 17.3%)
being the most represented sport, closely followed by soccer (referred to as football in
this dissertation, n = 12, 14.8%). Furthermore, the Sports Analytics CRAN Task View
(https://CRAN.R-project.org/view=SportsAnalytics) provides a comprehensive list of
packages in sports analytics.

There is a notable scarcity of R packages tailored for sports medicine. According to
Casals et al. (2023), only a small fraction (four out of eighty-one, or 4.9%) of the packages
are related to the “athlete heatlh” category. These existing packages are primarily focused
on injury categorization or calculating Injury Severity Scores (ISS) based on the Interna-
tional Classification of Diseases (ICD) codes, potentially serving as alternatives tomanual
injury severity scoring. However, to our knowledge, there is currently no R package that
specifically addresses the comprehensive needs of sports medicine, particularly in sports
injury data management. To fill this gap, we have developed the injurytools R package
following the guidelines of the most extensive resource on how to generate an R package
(Wickham and Bryan, 2023).

As an additional remark, the development of the injurytools R package originated
from our efforts to organize and standardize the code that we found ourselves using re-
peatedly. By consolidating this code into a comprehensive package, accompanied by de-
tailed documentation, our goal is to enhance its broader dissemination and ease of use
within the sports medicine community.

5.2 The injurytools R package

injurytools is a user-friendly R package developed for the field of sports medicine to fa-
cilitate the data analysis workflow and automate common tasks typically encountered in
handling sports injury data.

The package is structured in four main blocks that include convenience functions de-

https://cran.r-project.org/
https://CRAN.R-project.org/view=SportsAnalytics
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Prepare

Preprocess data in a 
standardized format.

prepare_inj()
prepare_exp()
prepare_all()

Describe

Compute sports injury 
summary statistics.

injsummary()
injprev()

Visualize

Visualize relevant    
information.

gg_injphoto()
gg_injbarplot()
gg_injriskmatrix()
gg_injprev_polar()

Model

Via other R packages.

survival, survminer, 
pammtools, epitools, 
glmmTMB, mgcv, msm, mstate, 
countreg, pscl…

…

Figure 5.1: The sports injury data analysis workflow in injurytools R package.

voted to (a) data preparation, (b) estimation of epidemiological measures, (c) data vi-
sualization and (d) data modelling (see Figure 5.1). Above all, all these functionalities
are meant to offer standardized procedures for the specific field of sports injuries. On
the R CRAN, there are packages related to some of the injurytools package features, such
as the Epi (Carstensen et al., 2023), epiR (Stevenson et al., 2023), epitools (Omidpanah
et al., 2020) packages, which contain functions for epidemiological data analysis. How-
ever, they are more broad in nature and do not cover the particular needs of the sports
injury data analysis.

Furthermore, injurytools is a fully documented package that includes a companion
website, available at https://lzumeta.github.io/injurytools/, created using the R package
pkgdown (see Wickham et al., 2022). This website provides detailed function references
and their corresponding help files, alongwith vignettes that demonstrate and guide users
through the package’s application.

5.2.1 Summary

The injurytools package’s most recent version on CRAN is v.1.0.3, which was released on
14 November 2023. Table 5.1 contains a list of all the functions available in the package, as
well as the data sets that comewith it to exemplify those functions. Formore details, check
out each function’s help files (help(function) or ?function in R) and see the reference
page on https://lzumeta.github.io/injurytools/reference/index.html.

Following, we showcase the main functionalities of the package on the included
data set. These are the injury data for Liverpool Football Club’s male first-team
players over two consecutive seasons, 2017/2018 and 2018/2019, scrapped from
https://www.transfermarkt.com/ website and comprise information on these player’s

https://lzumeta.github.io/injurytools/
https://lzumeta.github.io/injurytools/reference/index.html
https://www.transfermarkt.com/
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Table 5.1: Function reference in the injurytools package.

Function Description

Prepare sports injury data
prepare_inj() Prepare injury data in a standardized format
prepare_exp() Prepare exposure data in a standardized format
prepare_all() Create the final and required data frame (injd object)

Compute injury summary statistics
injsummary() Estimate injury summary statistics
injprev() Calculate injury prevalence

Visualize sports injury data
gg_injphoto() Plot injuries over the follow-up period
gg_injbarplot() Plot player’s injury incidence/burden ranking
gg_injprev_polar() Plot polar area diagrams showing players’ prevalence
gg_injriskmatrix() Plot risk matrices

Data sets
raw_df_exposures Minimal example of exposure data
raw_df_injuries Minimal example of injury data
injd Example of an injd object

match exposures and injuries they sustained during the matches4.

5.2.2 Usage

When using injurytools package, the very first step every user has to follow is to prepare
data, to create a standardized data frame. Let us illustrate the functions intended to facil-
itate this data preprocessing step and what the final data set is like.

(a) Data preparation

Data can be collected in several ways and by several means. A conventional approach
is to collect and store data as events occur. In the context of sports medicine, it is common
to store injury records on one hand, and in a separate table, data related to training and
competitions/matches (exposure time among others). Following this, we consider that the

4These data sets are provided for illustrative purposes. Wewarn that theymight not be accurate and could
potentially include discrepancies or incomplete information compared to what actually occurred.
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user has the raw data in two separate data sets that we call injury and exposure data,
respectively5. See Figure 5.2.

Exposure data Injury data
player date time_expo …

Olivia 2022-07-03 70

Olivia 2022-07-04 84

Olivia 2022-07-06 75

… … …

Mia 2022-07-03 72

Mia 2022-07-04 80

… … …

player date_injured date_recovered …

Mia 2022-09-09 2022-09-19

Olivia 2022-11-01 2022-11-28

Mia 2022-11-12 2022-11-16

… … …

Figure 5.2: Illustration of minimal data required.

Thus the early task is to tidy up these two sources of data. To this end, the functions
provided by injurytools involve:

1. setting exposure and injury data in a standardized format and

2. integrating both sources of data into an adequate data structure.

We consider the raw_df_injuries and raw_df_exposures data sets available from the
injurytools package and we standardize the key column names such as the player (sub-
ject) identifier, the dates of injury and recovery (if any), the training/match/season date
and the amount of time of exposure; and set them proper names and formats by means
of prepare_inj() and prepare_exp():

df_injuries <- prepare_inj(df_injuries0 = raw_df_injuries,

player = "player_name",

date_injured = "from",

date_recovered = "until")

df_exposures <- prepare_exp(df_exposures0 = raw_df_exposures,

player = "player_name",

date = "year",

time_expo = "minutes_played")

5If the data are not recorded this way, we suggest splitting both information into separate tables and then
following the same functions provided by the package.
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Then, we apply prepare_all() to the data sets tidied up above. It is important to
specify the unit of exposure, i.e. the exp_unit argument (see ?prepare_all):

injd <- prepare_all(data_exposures = df_exposures,

data_injuries = df_injuries,

exp_unit = "matches_minutes")

head(injd)

#> # A tibble: 6 × 19

#> player t0 tf date_injured date_recovered tstart tstop

#> <fct> <date> <date> <date> <date> <date> <date>

#> 1 adam-... 2017-07-01 2019-06-30 2017-07-31 2017-11-25 2017-07-01 2017-07-31

#> 2 adam-... 2017-07-01 2019-06-30 2018-03-31 2018-05-13 2017-11-25 2018-03-31

#> 3 adam-... 2017-07-01 2019-06-30 2018-09-04 2018-10-19 2018-05-13 2018-09-04

#> 4 adam-... 2017-07-01 2019-06-30 2018-11-09 2018-12-04 2018-10-19 2018-11-09

#> 5 adam-... 2017-07-01 2019-06-30 2019-01-06 2019-01-18 2018-12-04 2019-01-06

#> 6 adam-... 2017-07-01 2019-06-30 2019-04-01 2019-05-31 2019-01-18 2019-04-01

#> # 12 more variables: tstart_minPlay <dbl>, tstop_minPlay <dbl>, status <dbl>,

#> # enum <dbl>, days_lost <dbl>, player_id <fct>, season <fct>,

#> # games_lost <dbl>, injury <chr>, injury_acl <fct>, injury_type <fct>,

#> # injury_severity <fct>

This last step integrates both the standardized injury and exposure data sets, con-
verting them into an injd S3 object with a structure suitable for further statistical anal-
yses. The resulting data set will always include the columns listed below (standardized
columns or those created by the function), as well as additional (optional) sports-related
variables:

• player: the player identifier.

• t0 and tf: the follow-up period of the corresponding player, i.e. the player’s first
and last dates observed (same value for each player).

• date_injured and date_recovered: the dates of injury and recovery of the corre-
sponding observation (if any). Otherwise NA.

• tstart and tstop: the beginning and ending dates of the corresponding interval in
which the observation has been at risk of injury.

• tstart_xand tstop_x: the beginning and ending times of the corresponding inter-
val in which the observation has been at risk of injury (it depends on the unit of
exposure time specified).

• status: the injury (event) indicator.
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• enum: an integer indicating the recurrence number, i.e. the k-th injury (event), at
which the observation is at risk.

• days_lost: the number of days lost due to injury occurred at tstop/date_injured
(if any; otherwise 0). Namely, date_recovered - date_injured in days.

For example, the first row of injd corresponds to the player Adam Lallana, to the risk
set that starts on 2017-07-01 and ends on 2017-07-31, after having played 236 minutes,
when he got firstly (enum = 1) injured (status = 1). The second row corresponds to
the risk set of being injured by a second injury (enum = 2), the set starts when he fully
recovered in 2017-11-23 and finishes when he suffered another hamstring injury. These
final data set is an R object of class injd,

class(injd)

#> [1] "injd" "tbl_df" "tbl" "data.frame"

and have the following attributes:

str(injd, 1)

#> injd [108 × 19] (S3: injd/tbl_df/tbl/data.frame)

#> - attr(*, "unit_exposure")= chr "matches_minutes"

#> - attr(*, "follow_up")= tibble [28 × 3] (S3: tbl_df/tbl/data.frame)

#> - attr(*, "data_exposures")=’data.frame’: 42 obs. of 19 variables:

#> - attr(*, "data_injuries")= tibble [82 × 11] (S3: tbl_df/tbl/data.frame)

• unit_exposure: a character indicating the unit of exposure time used in this object.

• follow_up: a data frame consisting of one row per player with their first and last
dates observed (t0 and tf columns).

• data_exposures: the preprocessed exposure data frame.

• data_injuries: the preprocessed injury data frame.

To extract one of the attributes, for example, unit_exposure, type:

attr(injd, "unit_exposure")
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#> [1] "matches_minutes"

(b) Estimation of epidemiological measures

Now, the preprocessed data are passed to injsummary() to calculate injury summary
statistics:

injds <- injsummary(injd)

What injsummary() returns as its output is a list of two elements:

str(injds, 1)

#> [1] "matches_minutes"#> List of 2

#> $ playerwise: tibble [28 × 9] (S3: tbl_df/tbl/data.frame)

#> $ overall : tibble [1 × 14] (S3: tbl_df/tbl/data.frame)

#> - attr(*, "class")= chr [1:2] "injds" "list"

#> - attr(*, "unit_exposure")= chr "matches_minutes"

#> - attr(*, "unit_timerisk")= chr "100 player-match"

#> - attr(*, "conf_level")= num 0.95

that is, the injds object consists of two data frames (two tables), which can be accessed
by typing:

# the ’playerwise’ data frame

injds[[1]] ## or injds[["playerwise"]]

# the ’overall’ data frame

injds[[2]] ## or injd[["overall"]]

The user can easily transform these objects and make them publication-ready. For
instance, the data frame resulting from injds[[2]] is split into two tables and shown in
Tables 5.2 and 5.3 in a LATEX-styled form.

Table 5.2: The formatted output from injds[[2]] showing injury summary statistics.

N in-
juries

N days
lost

Mean
days lost

Median
days lost

IQR days
lost

Total ex-
posure

In-
cidence

Burden

TOTAL 82 2049 18.97 7.5 1-20.25 74690 9.88 246.9

All in all, injsummary() can be used to compute injury summary statistics either on
a player-wise or team-wise basis. Additionally, the measures can be estimated for each
type of injury by specifying the argument var_type_injury, which should indicate the
name of the column, based onwhich injury summary statistics are computed. In this case,
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Table 5.3: The formatted output from injds[[2]] showing injury summary statistics (con-
tinuation).

Incidence 95% CI for Ir Burden 95% CI for Ibr

TOTAL 9.88 [7.7, 12] 246.9 [236.2, 257.6]

Tables 5.2 and 5.3 show the Liverpool FC’s male first-team’s number of injuries, number
of days lost, the median number of days lost, total exposure time (minutes in matches),
incidence and burden, along with their 95% confidence intervals, during 2017-2019.

Note that to provide numbers that are easy to interpret and to avoid small decimals,
injury incidence and injury burden are reported “per 100 player-match exposure”. As
in this example exposure time is minutes played in matches, we multiply the rates by
90*100 (i.e. 90 minutes lasts a football match). The reported incidence rate is estimated
as Îr = 82

74690 × 90× 100.

To calculate the injury prevalence and the proportions of injury-free players on a sea-
son basis, we use injprev() function:

prev_table1 <- injprev(injd, by = "season") ## by = "monthly"

prev_table1

#> # A tibble: 4 × 5

#> season type_injury n n_player prop

#> <fct> <fct> <int> <int> <dbl>

#> 1 season 2017/2018 Available 7 23 30.4

#> 2 season 2017/2018 Injured 16 23 69.6

#> 3 season 2018/2019 Available 2 19 10.5

#> 4 season 2018/2019 Injured 17 19 89.5

Overall, there were more injured players in the 2018/2019 season than in the previous
season.

(c) Data visualization

We now keep on exploring the data graphically. injurytools offers modern visualiza-
tion techniques. For example, to obtain a comprehensive picture of injury data, we just
type gg_injphoto():

gg_injphoto(injd,

title = "Overview of injuries:\nLiverpool FC 1st male team during

2017-2018 and 2018-2019 seasons",
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by_date = "2 month",

fix = TRUE)

The outcome is shown in Figure 5.3, which gives us an overview of the injuries sus-
tained by each player during the follow-up. Each player’s timeline is depicted horizon-
tally: the red cross indicates the exact injury date, the blue circle the recovery date and
the bold black line indicates the duration of the injury (time-loss).
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Figure 5.3: The output from the gg_injphoto() function applied to the included Liver-
pool FC players’ injury data.

We now count howmany injuries (red crosses in Figure 5.3) occurred and how severe
theywere (length of the thick black line), by type of injury. First, we use the injsummary()
function and then, we plot the injury incidence vs. the mean time-loss graph, i.e. the so-
called injury risk matrix (Fuller, 2018), through the gg_injriskmatrix() function:

# warnings set to FALSE

injds <- injsummary(injd)

injds_perinj <- injsummary(injd, var_type_injury = "injury_type")

# injds

# warnings set to FALSE

gg_injriskmatrix(injds_perinj,

var_type_injury = "injury_type",

title = "Risk matrix")

Table 5.4 shows the information stored in the injds_perinj object (i.e. the injds_-

perinjd[[2]] data frame formatted), which among others include the injury incidence
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Table 5.4: The formatted injds_perinj object (of injds class). Injury incidence and in-
jury burden are reported as 100 player-matches.

Type of in-
jury

N in-
juries

N days
lost

Total
expo

Incidence
(95% CI)

Burden
(95% CI)

Bone 11 173 74690 1.33 (0.54,2.11) 20.85 (17.74,23.95)
Concussion 16 213 74690 1.93 (0.98,2.87) 25.67 (22.22,29.11)
Ligament 9 596 74690 1.08 (0.38,1.79) 71.82 (66.05,77.58)
Muscle 25 735 74690 3.01 (1.83,4.19) 88.57 (82.16,94.97)
Unknown 21 332 74690 2.53 (1.45,3.61) 40.01 (35.7,44.31)
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Figure 5.4: The output from the gg_injriskmatrix() function applied to the included
Liverpool FC players’ injury data.

and injury burden of the team during the follow-up by injury type.

This injds_perinj object is used to plot the injury risk matrix, displayed in Figure 5.4.
The point estimate of injury incidence together with its confidence interval is plotted
against the mean time-loss per injury together with ± IQR (days). The number shown
inside the point and the point size itself, report the injury burden (days lost per player-
exposure time), the bigger the size the greater the burden. Contour lines join the values
for which the product between the x- and y-axes is the same, which results to be the injury
burden, i.e. injury incidence times mean time-loss.

As emphasized in Chapter 2, it is essential to report and evaluate injury incidence
(likelihood) and injury burden (severity) together rather than separately. To that end,
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the injury risk matrix is very useful.

After doing some exploratory data analysis and gaining a general sense of the data,
we can dig a little deeper into the data and answer some of the questions that naturally
arise. Thus, let’s briefly compare injuries that occurred in the 2017/2018 season vs. the
2018/2019 season.

We prepare two injd objects:

# warnings set to FALSE

injd1 <- cut_injd(injd, datef = 2017)

injd2 <- cut_injd(injd, date0 = 2018)

## Plot just for checking whether cut_injd() worked well

p1 <- gg_injphoto(injd1, fix = TRUE, by_date = "3 months")

p2 <- gg_injphoto(injd2, fix = TRUE, by_date = "3 months")

grid.arrange(p1, p2, ncol = 2)
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Figure 5.5: Overview of injuries that occurred during the 2017/2018 season (left) and
2018/2019 season (right). Output from the gg_injphoto() function.

Table 5.5: Injury summary statistics for each season. Injury incidence and injury burden
are reported per 100 player-matches. Output from injsummary().

Season N injuries N days lost Total expo Incidence (95% CI) Burden (95% CI)

2017-2018 26 1141 37364 6.26 (3.86,8.67) 274.84 (258.89,290.78)
2018-2019 56 908 37326 13.5 (9.97,17.04) 218.94 (204.7,233.18)

Table 5.5, numerically, and Figure 5.5, visually, outline the comparison between both
seasons.
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Who were the most injured players? And the most severely affected?

injds1 <- injsummary(injd1)

injds2 <- injsummary(injd2)

p11 <- gg_injbarplot(injds1) ## type = "incidence" by default

p12 <- gg_injbarplot(injds1, type = "burden")

p21 <- gg_injbarplot(injds2)

p22 <- gg_injbarplot(injds2, type = "burden")

# grid.arrange(p11, p21, p12, p22, nrow = 2)
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Figure 5.6: Incidence and injury burden among players for each season. Output from the
gg_injbarplot() function.

As Figure 5.6 shows, in the 2017/2018 season, playerswith the highest injury incidence
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rate and injury burden (all types of injuries) were Adam Lallana and Daniel Sturridge,
with 76.3 and 62.6 injuries, per 100 player-matches, and 6102 and 2548 days lost, per 100
player-matches, respectively. In the next 2018/2019 season, Adam Lallana is again the
player with the highest injury incidence rate and injury burden, with 77.6 injuries and
2754.3 days lost per 100 player-matches. Dejan Lovren follows him, with 45.7 injuries and
1343 days lost per 100 player-matches.

Which injuries were more frequent? And more burdensome?

We compute injury summary statistics per type of injury and plot the risk matrices.

# warnings set to FALSE

## Calculate summary statistics

injds1_perinj <- injsummary(injd1, var_type_injury = "injury_type")

injds2_perinj <- injsummary(injd2, var_type_injury = "injury_type")

## Plot

p1 <- gg_injriskmatrix(injds1_perinj, var_type_injury = "injury_type",

title = "Season 2017/2018", add_contour = TRUE)

p2 <- gg_injriskmatrix(injds2_perinj, var_type_injury = "injury_type",

title = "Season 2018/2019", add_contour = TRUE)

# Print both plots side by side

# grid.arrange(p1, p2, nrow = 1)
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Figure 5.7: Injury risk matrices for each season. Output from the gg_injriskmatrix()

function.

According to Figure 5.7, injuries that occurred in the 2017/2018 season were more
burdensome, especially those related to ligaments, that resulted in 108 days lost per 100
player-matches (36 in the 2018/2019 season). Muscle-related injuries were the next most
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burdensome ones in the 2017/2018 season, with 102 days lost per 100 player-matches (75
in the 2018/2019 season).

How many players were injury-free in each month?

We plot polar area diagrams:

gg_injprev_polar(injd, by = "monthly")
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Figure 5.8: Injury prevalence on a monthly basis for each season. Output from the gg_-
injprev_polar() function.

Overall, there were more injured players in the 2018/2019 season than in the previous
season. Looking at a monthly basis, see Figure 5.8, there were more differences with
regards to player availability, especially during the winter January/February months.

(d) Data modelling

We now provide a practical demonstration of modelling injuries in the R software.
Note that we make use of other packages to model the relationships between injuries and
variables of interest. We also skip some necessary code for the sake of brevity and refer
the reader to the corresponding injurytools Vignettes to find out all the steps.

When injuries are viewed as count data, we first explore the distribution of the rate
variables by plotting histograms as in Figure 5.9. This is useful for deciding which mod-
elling strategy to use. To this end, the following packagesmight be of interest: stats, lme4,
glmmTMB and pscl.

We illustrate how to fit four different regressionmodels, namely, the Poisson, Negative
Binomial, Zero-Inflated Poisson and Zero-Inflated Negative Binomial models (see Chap-
ter 2), by modelling the injury burden according to the player’s position in the 2017/2018

https://lzumeta.github.io/injurytools/articles/
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Figure 5.9: Histograms of injury incidence and injury burden for each season of the in-
cluded data set.

season6:

# poisson

burden_glm_pois <- glm(ndayslost ~ positionb, offset = log(totalexpo),

data = injds1718p,

family = poisson)

# poisson random effects model

# burden_glmm_pois <- glmer(formula = ndayslost ~ positionb + (1 | player),

# offset = log(totalexpo),

# data = injdsp,

# family = poisson)

# negative binomial

burden_glm_nb <- glm.nb(ndayslost ~ positionb + offset(log(totalexpo)),

data = injds1718p)

# zero-inflated poisson

burden_zinfpois <- zeroinfl(ndayslost ~ positionb | positionb,

offset = log(totalexpo),

data = injds1718p,

link = "logit",

dist = "poisson",

6We use the previously prepared injds1718p data frame.
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trace = FALSE, EM = FALSE)

# zero-inflated negative binomial

burden_zinfnb <- zeroinfl(ndayslost ~ positionb | positionb,

offset = log(totalexpo),

data = injds1718p,

link = "logit",

dist = "negbin",

trace = FALSE, EM = FALSE)

We can do the analogue to model the injury incidence as the response variable, e.g.:

# example incidence (poisson reg)

incidence_glm_pois <- glm(ninjuries ~ positionb, # + offset(log(totalexpo))

offset = log(totalexpo),

data = injds1718p,

family = poisson)

As of now, let us interpret the output of the burden_glm_poismodel:

summary(burden_glm_pois)

cbind(estimate = exp(coef(burden_glm_pois)) * c(100, 1, 1),

exp(confint(burden_glm_pois)) * c(100, 1, 1)) # for 100 player-matches

#> Waiting for profiling to be done...

Table 5.6: Estimated coefficients of the burden_glm_poismodel. IR stands for injury bur-
den rate and IRR for injury burden rate ratio.

Estimate 95 % CI

ˆ︂IR (attacker) 197.48 [172.84, 224.35]ˆ︃IRR (Defender vs. attacker) 0.97 [0.81, 1.15]ˆ︃IRR (Midfielder vs. attacker) 2.76 [2.37, 3.22]

As Table 5.6 shows, the estimated injury burden of attackers is 197.5 days lost per 100
player-matches. Besides, the injury burden of midfielders is significantly higher than that
of attackers (Adam Lallana plays as a midfielder). The corresponding estimated injury
burden rate ratio is 2.76. However, the fit is not good enough, since:

> injds1718p |>

group_by(positionb) |>

summarize(mean = mean(injburden),

median = median(injburden))

# A tibble: 3 x 3
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positionb mean median

<fct> <dbl> <dbl>

1 Attack 457. 55.5

2 Defender 188. 113.

3 Midfield 1432. 248.

> coefs_p <- coef(burden_glm_pois)

> coefs_p <- exp(c(coefs_p[[1]], coefs_p[[1]] + coefs_p[[2]],

coefs_p[[1]] + coefs_p[[3]])) * 90 * 100

> coefs_nb <- coef(burden_glm_nb)

> coefs_nb <- exp(c(coefs_nb[[1]], coefs_nb[[1]] + coefs_nb[[2]],

coefs_nb[[1]] + coefs_nb[[3]])) * 90 * 100

> data.frame(positionb = levels(injds1718p$positionb),

estimate_pois = coefs_p,

estimate_nb = coefs_nb)

positionb estimate_pois estimate_nb

1 Attack 197.4757 455.7904

2 Defender 191.2059 187.9884

3 Midfield 545.2393 1427.4855

Finally, we compare the four models. We compute the conditional predicted mean
probabilities of each model and display them over the histogram of the data to examine
the fits. See Figure 5.10.
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Figure 5.10: Histogram of injury burden in the 2017/2018 season, along with the condi-
tional predicted mean probabilities from each model.

Besides, we compute goodness of fit measures such as AIC, BIC and deviance ex-
plained and present them in Table 5.7. According to these measures, the Negative Bino-
mial model (burden_glm_nb) fits these data best.
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Table 5.7: Goodness of fit measures of the fitted models ordered according to the BIC.

Model AIC BIC Deviance Explained

Negative binomial model 200.83 205.00 13.29
Zero-inflated Negative Binomial model 204.48 211.79 2.77
Zero-inflated Poisson model 1871.10 1877.36 11.03
Poisson model 2417.26 2420.40 11.25

On the other hand, when injuries are viewed as time-to-event data, we can estimate
the probability of being injury-free over time or estimate which factors and to what extent
they affect this probability using packages such as survival, survminer, coxme or pamm-

tools.

We first show the application of the well-knownKaplan-Meier (KM)method and Cox
Proportional Hazards (Cox PH) model on sports injury data and, after that, we describe
twopossible survivalmodelling strategies that take into account the recurrence of injuries,
and data include repeated observations per player.

Methods for time to first injury

We prepare the data so that for each separate season we have an injd object with each
observation (row) corresponding to time to first injury (or end of the season, or a transfer
to another team, i.e. censored observation). The final data frames are called injd1718_-

sub and injd1819_sub. Then,

## we join both data sets by row

injd_sub <- bind_rows("17-18" = injd1718_sub,

"18-19" = injd1819_sub,

.id = "season")

We estimate the survival probabilities, ŜKM(t), in each season, as follows:

fit <- survfit(Surv(tstart_day, tstop_day, status) ~ seasonb,

data = injd_sub)

fit

#> Call: survfit(formula = Surv(tstart_day, tstop_day, status) ~ seasonb,

#> data = injd_sub)

#>

#> n events median 0.95LCL 0.95UCL

#> seasonb=2017/2018 23 16 265 152 NA
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#> seasonb=2018/2019 19 17 106 84 165

The number of first-time injuries in both seasons is similar (16 vs. 17), but the me-
dian survival probability is lower in the 2018/2019 season, i.e. in 2018/2019 the estimated
probability of being injury-free on or after the 106th day is less than or equal to 0.5 (equiv-
alently, the estimated probability of surviving 106 days (three months and a half) is 0.5),
whereas in 2017/2019 the probability of surviving the same time is 0.696 (see Figure 5.11).

Next, we plot the Kaplan-Meier curves for each season based on the above results via
the survminer::ggsurvplot() function. The graphic is shown in Figure 5.11. Addition-
ally, we have added information on the risk sets over time, the estimated median survival
probabilities for each curve and the p-value obtained from the log-rank test. There are sta-
tistical differences regarding the survival probabilities of first-time injuries between the
2017/2018 and 2018/2019 seasons.

+

+
p = 0.024

Ŝ18 19(106)=0.5 Ŝ17 18(265)=0.5
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Figure 5.11: Estimated Kaplan-Meier curves for each season from the fitmodel.

We fit a Cox PH model, that relates some player-related covariates (e.g. positionb,
age and yellow) to the injury outcome, through the hazard function, to the injd1819_sub
named data frame, as:

## create positionb column

## (so that the categories are: Attack, Defender, Goalkeeper and Midfield)

injd1819_sub <- mutate(injd1819_sub,
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positionb = factor(str_split_i(position, "_", 1)))

cfit <- coxph(Surv(tstop_day, status) ~ positionb + age + yellows,

data = injd1819_sub |>

filter(positionb != "Goalkeeper") |> droplevels())

The estimated effects of the cfit model are displayed in Figure 5.12 using the
survminer::ggforest() function. It shows the hazard ratios and 95% confidence inter-
vals, togetherwith the p-values of each covariate, and further information about the good-
ness of fit of the cfitmodel. The results, however, are not meaningful.
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Figure 5.12: Estimated hazard ratios, 95% confidence intervals and further details from
the cfitmodel.

Then, we check if the proportional hazards assumption for the Cox PH model holds
by computing the Schoenfeld residuals. See Figure 5.13. The PH assumption is violated
as the Global Schoenfeld Test p-value reveals.

Models for time to (subsequent) injuries

We use the (previously prepared) injd_sub data to fit a stratified Cox PH model. With
this model, we fit a different baseline hazard function for each level (stratum) of the
seasonb covariate (strata), i.e. λ(t|x) = λ0,k(t) exp(x

′β) for k = 1, 2.

sfit <- coxph(Surv(tstart_day, tstop_day, status) ~ age + strata(seasonb),

data = injd_sub)

summary(sfit)
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Figure 5.13: Schoenfeld residuals for each covariate in the cfitmodel.

#> Call:

#> coxph(formula = Surv(tstart_day, tstop_day, status) ~ age + strata(seasonb),

#> data = injd_sub)

#>

#> n= 42, number of events= 33

#>

#> coef exp(coef) se(coef) z Pr(>|z|)

#> age 0.01749 1.01764 0.05541 0.316 0.752

#>

#> exp(coef) exp(-coef) lower .95 upper .95

#> age 1.018 0.9827 0.9129 1.134

#>

#> Concordance= 0.6 (se = 0.069 )

#> Likelihood ratio test= 0.1 on 1 df, p=0.8

#> Wald test = 0.1 on 1 df, p=0.8

#> Score (logrank) test = 0.1 on 1 df, p=0.8

The effect of age,ˆ︃HRage = exp
(︂
β̂age

)︂
= 1.02, is not significant. However, we will keep

on and illustrate how to plot the estimates of two players of different ages, 18 years old vs.
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36 years old in both seasons, based on the fitted stratified model.
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Figure 5.14: Estimated survival probabilities of two players, a 18 year-old vs. 36 years old,
in both seasons, from the sfitmodel.

Figure 5.14 shows that the estimated risk of injury for the older player is higher in both
seasons, as the estimated survival probability decreasesmore rapidly. Moreover, there are
differences in the estimated baseline hazards. The risk of injury in the 2018/2019 season
is higher.

As a final model example, we fit a shared frailty model in which the frailty term fol-
lows aGamma distribution using the frailty(player) syntax inside survival::coxph()
function’s formula:

sffit <- coxph(Surv(tstart_minPlay, tstop_minPlay, status) ~

age + days_lost +

frailty(player, distribution = "gamma"), data = injd)

Alternatively, we can use the coxme package (there are also more packages) and fit a
model with a log-normal frailty using the (1 | player) syntax:

sffit2 <- coxme(Surv(tstart_minPlay, tstop_minPlay, status) ~

age + days_lost + (1 | player), data = injd)

By fitting this model, we are able to model the dependence between several survival
times through a frailty term that is shared by all the survival times pertaining to a player.
That is, the survival times of a player who sustains multiple injuries have the same level
of frailty attached to them.

summary(sffit)
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#> Call:

#> coxph(formula = Surv(tstart_minPlay, tstop_minPlay, status) ~

#> age + days_lost + frailty(player, distribution = "gamma"),

#> data = injd)

#>

#> n= 104, number of events= 81

#>

#> coef se(coef) se2 Chisq DF p

#> age 0.489503 0.278965 3.08 1.00 7.9e-02

#> days_lost -0.006381 0.009761 0.006744 0.43 1.00 5.1e-01

#> frailty(player, distribut 230.57 15.72 3.3e-40

#>

#> exp(coef) exp(-coef) lower .95 upper .95

#> age 1.6315 0.6129 0.9443 2.819

#> days_lost 0.9936 1.0064 0.9748 1.013

#>

#> Iterations: 10 outer, 184 Newton-Raphson

#> Variance of random effect= 2.673384 I-likelihood = -171.4

#> Degrees of freedom for terms= -2.3 0.5 15.7

#> Concordance= 0.882 (se = 0.026 )

#> Likelihood ratio test= 122.5 on 13.88 df, p=<2e-16

The estimated variance of the frailty term (random effect) is σ̂2 = 2.69 and the p-value
of the frailty term is significant. See also the model output in Figure 5.15.
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Figure 5.15: Estimated hazard ratios and frailty terms from the sffitmodel.
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Chapter 6

Conclusions and further research

This dissertation investigated the suitability of various statistical modelling approaches
for tackling specific research questions and contexts within sports injury prevention re-
search. Inwhat follows, we present themain conclusions related to each specific objective:

(a) To assess different variable selection methods together with shared frailty Cox models for iden-
tifying biomechanical risk factors for subsequent sports injuries.

We addressed the issue of the number of covariates being too large for a statistical model
to be comprehensible and interpretable in the context of functional screening tests. These
tests evaluate the strength, power, joint stability (e.g. knees, ankle, neck, etc.), movement
patterns and asymmetries. Their primary goal is to evaluate the absence of potential phys-
ical risks to athletes.

We compared several regularized Cox methods, including Best Subset Selection
(BeSS), Least Absolute Shrinkage and Selection Operator (Lasso), Elastic Net, Ridge re-
gression, and Group Lasso; and Boosting in Cox regression. We also discussed the use
of the most relevant variables for fitting shared frailty Cox models. Furthermore, we con-
ducted a simulation study to better understand the robustness of these models across
three possible scenarios.

We demonstrated that predictive performance significantly improves with the avail-
ability of more player observations. Methods that lead to sparse models and favour inter-
pretability, such as BeSS and Boosting in Cox regression, are preferred when the sample
size is small. As the sample size increases, differences between models become less pro-
nounced.

We emphasize that our primary objective was to analyze an appropriate statistical
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modelling approach for functional screening tests and sports injury data, rather than to
provide evidence about risk factors for lower-limb injuries. Predominantly, the selected
variables included those from unilateral drop jump tests and the active straight leg raise
test. Given the small sample size, the associations observed in our application study
should be interpretedwith caution. This work highlighted the existing potential of shared
frailty Cox models.

(b) To develop and assess a flexible recurrent time-to-event approach for modelling the effects of
training load on subsequent sports injuries.

We proposed a flexible modelling approach to analyze complex, non-linear associations
between external training loads and subsequent time-loss injuries. External training load
refers to the cumulative stress placed on athletes frommultiple training sessions and com-
petitions over a period of time. It is measured using various metrics, such as distance
covered, high-speed running, time, and sprints, among others; metrics that are recorded
regularly.

To achieve this, we extended and assessed the PAMM model class within the context
of recurrent events with time-varying covariates, specifically modelling them as WCE-
type cumulative effects. Additionally, we introduced a method to determine a relevant
time window based on data, incorporating a ridge penalty to minimize the influence of
exposures recorded long ago.

Simulation studies demonstrated the model’s capability to accurately recover various
shapes for the true weight function under different levels of heterogeneity. The model
effectively estimated these shapes from the data using P-splines. Furthermore, the results
indicated that PAMM with ridge penalization offers the highest accuracy in estimating
partial effects. Consequently, this method is particularly effective in identifying the rele-
vant time window during which past exposures cumulatively affect the hazard.

The modelling framework flexibly modelled the cumulative effect of the Speed and
Dist exposure variables on subsequent injuries using the application data. The results
suggested that nomore than seven past sessions were relevant concerning the cumulative
effects of the Speed and Dist variables. Moreover, these effects were estimated to have a
non-linear decaying impact. The frailty term accounted for the correlation between subse-
quent injuries from the same playerwith an estimated variance of σ̂b = 0.22. Furthermore,
we compared this model with alternative measures of training load exposures, namely
different variants of the Acute Chronic Workload Ratio measure that utilize rolling av-
erages, exponentially weighted moving averages, and others. Our model was proven to
provide the best fit, in addition to being able to estimate cumulative effects and determine
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a relevant time window based on data.

Thework highlighted the potential value of PAMMswithWCE-type cumulative effects
in evaluating recurrent events in sports medicine. It contributed to the existing literature
and offered insights for designing and comparing personalized training plans related to
injury risk.

(c) To develop software that implements the statistical methods for analyzing sports injury data
proposed in this dissertation.

We implemented in the R software the statistical modelling approaches proposed in this
dissertation. To this end, we used existing functionalities in R and also developed new
ones. Workingwith various injury data sets across different types of tasks –preprocessing,
exploring, modelling, reporting, etc.– and creating R functions that pursued similar pur-
poses, allowed us to reflect on and identify some essential coding features. Eventually, we
established a standardized workflow and integrated the code into an R package named
injurytools, complete with accompanying documentation.

We are confident that our public code repositories and the injurytools package facili-
tate the use of the proposed approaches and make them more accessible to practitioners.
This has several important implications: it supports the development of these research
fields, facilitates the transfer of knowledge, and brings sports scientists closer to user-
friendly statistical tools, which can presumably support their decision-making process.
Finally, we hope that other researchers can verify our findings, reproduce the analysis,
and build upon our work.

Further research

The research conducted for this dissertation has highlighted several topics and identified
potential areas for further investigation in the statistical analysis of sports injuries, an area
that is still emerging.

Firstly, we are interested in evaluating how the number of injuries per player –kept
fixed in our simulation studies– affects the model performance either in the context of
functional tests data or in the external training load data. Connected to this, the distribu-
tion of the frailty term is also a subject of investigation. In this dissertation, we considered
the log-normal distribution (the Gaussian distribution in the linear predictor scale). Our
choice of a log-normal distribution for the frailty was influenced by the application data
sets. Log-normal frailty models fitted to these data showed better fits according to AIC
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rather thanmodels with a Gamma frailty. This choice was also based on the distribution’s
intuitive nature and its compatibility with more flexible predictor structures. However,
we recognize that the Gamma frailty model has a closed-form solution, making it com-
putationally less demanding. We find it interesting to assess the influence of the frailty
term’s distribution in both contexts.

Secondly, in the context of functional screening tests data, we chose the shared frailty
Cox model due to the data’s characteristics, which include few injuries and many vari-
ables. We consider an interesting topic for future study, comparing our approach with
parametric survival models and flexible spline-based survival models. Although the
parametric models require a specific distribution to be considered for the time-to-event
outcome, and the flexible spline-based survival models require more parameters to be
estimated, both might show some benefits in some other situations: predictions can be
extrapolated farther than themaximum followed-up time observed in the case of paramet-
ric survival models, like the Weibull Accelerated Failure Time (AFT) model (Kalbfleisch
and Prentice, 2011); or very flexible covariate effects can be modelled with spline-based
survival models, like with the PAMM.

We are also interested in analyzing the simultaneous modelling of variable selection
techniques and shared frailty Cox models. In this regard, the works by Groll et al. (2017)
and Hohberg and Groll (2020) are particularly noteworthy. Alternatively, Multivariate
Survival Tree (MST) models (Fan and Li, 2002; Su and Fan, 2004) might be of interest.
MST is a decision tree method capable of capturing non-linear relationships and interac-
tions between covariates and recurrent time-to-event survival outcomes. Therefore, it can
identify how risk factors interact, rather than simply selecting isolated risk factors (Bit-
tencourt et al., 2016).

Thirdly, we encouraged collecting data from multiple teams and across various sea-
sons. But, we are aware that having more data introduces additional complexity. This
complexity extends to various aspects of the study, including the study design itself, such
as deciding which data to collect and when to collect it. Additionally, it encompasses
team-level factors that can potentially influence injury risk, such as training regimens,
playing styles, and the quality of each team’s medical staff, among others. A random
effects model with different (multiple) levels of nesting, which addresses the between-
teams heterogeneity (or another type of hierarchy), would be of interest, such as the
nested frailty models, frailty interaction models or joint models (Rondeau et al., 2012;
Tsiatis et al., 1995).

Fourthly, we want to emphasize that we did not intend to analyze any causal relation-
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ships; causalitywas beyond the scope of this dissertation. We believe that causal inference
is an active and ongoing research field (Hernán and Robins, 2010; Shrier, 2007; Bittencourt
et al., 2016; Kalkhoven et al., 2021) that will provide valuable insights in the near future
to sports injury prevention research.

Finally, we plan to continue extending and updating the injurytools package, currently
at version v.1.0.3, by adding new features and improving support.

Concluding remarks

Identifying the most suitable statistical model to estimate injury occurrence is of signifi-
cant interest in practical applications. Nevertheless, we acknowledge that accurately pre-
dicting an injury is an inherently challenging task, if not impossible (Lee and Zumeta-
Olaskoaga, 2022). Sports injuries occur and will continue to occur. “We control what we
can, and know to expect the unexpected” says Lindsay Slater, a sports scientist at the Uni-
versity of Illinois (Fiscutean, 2021). There are a variety of factors, including lifestyle, bi-
ological makeup, genetic characteristics and contextual ones, that influence an athlete’s
susceptibility to sports injuries (Van Mechelen et al., 1992; Meeuwisse, 1994). Some have
suggested a more ecological view that includes context at multiple levels, i.e. at the in-
dividual, socio-cultural and environmental levels (Finch, 2006; Bolling et al., 2018); qual-
itative research that recognizes multiple realities and seeks to understand and interpret
relationships between these realities surrounding sports injury.

Althoughpredicting injurieswith absolute certainty is unfeasible, accurately assessing
an individual’s risk level in relation to physical activity and injuries is entirely achievable.
In this regard, statistical modelling is essential for understanding and quantifying the
risk of sports injuries. The primary focus here is on comprehending relevant concepts
such as association, causality, uncertainty, and complexity rather than solely predicting
an athlete’s injury (Meeuwisse, 1994; Shrier, 2007; Bittencourt et al., 2016).

All these approaches are notably data-intensive. Unfortunately, in practical applica-
tions, it is often challenging to obtain sufficient data for advanced statistical analyses. On
one hand, sports injuries, being unique and specific, occur infrequently. This is particu-
larly true for specific types of sports injuries, such as hamstring injuries, anterior cruciate
ligament injuries, spondylolysis, among others. On the other hand, sports injury data are
often limited due to the reluctance of sports clubs to share their information with com-
petitors. In this sense, when it comes to football, there are noteworthy research initiatives
that collect injury data from various clubs. These include the Union of European Football
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Association (UEFA) Champions League (UCL) Injury Study, the UEFA Elite Club Injury
Study, the UEFA Women’s Elite Club Injury Study, and the European Football Lab. The
primary goal of these initiatives, and the annual reports they produce, is to understand
the nature and frequency of injuries among elite football players. They aim to help UEFA
and the clubs develop strategies for injury prevention and player welfare, and to enhance
the overall quality of the sport.

In this context, it is crucial to highlight the importance of data collection, standardiza-
tion and storage in sports medicine (Bahr et al., 2020). It’s also worth mentioning that in
this dissertation we invested a considerable amount of time in data preprocessing. Bear-
ing this in mind, we deem it essential to establish standardized data collection protocols
across various sports tomake the task of data preprocessing as effortless and automatic as
possible. Universally accepted standards for recording injury-related datawouldmitigate
inconsistencies between data sets, discrepancies in categorical variables (such as different
names referring to the same category), irregularities in data collection periodicity, and the
inclusion of values that are not missing at random. Furthermore, such standards could
help in identifying and minimizing potential sources of bias (https://catalogofbias.org/)
and erroneous data, among other issues. With awell-defined research goal, researchers in
this fieldwould be able to outline a studydesign anddetermine the specific data necessary
for collection (Nielsen et al., 2020), without being overly concerned with the challenges
related to data recording. This approach would ultimately ensure both the reliability and
validity of the research findings.

While our simulation studies provided valuable insights, we acknowledge the im-
portance of integrating physiological, psychological, and contextual understanding into
this complex and multifaceted problem. We strongly advocate for multi- and interdisci-
plinary research in this area. Collaborating with a diverse team, including sports scien-
tists, coaches, physiologists, physical therapists, physicians, and the athletes themselves,
fosters solutions that encompass all these aspects. Such collaboration ensures that the sta-
tistical approach aligns with the practical needs of athletes and coaches, and thereby, it
is more likely to yield actionable insights. In this sense, effective communication among
collaborators and colleagues, as conveying findings in a clear and common language, is
key. “Having huge volumes of data in one thing; making sense of it is another” (DerekMcHugh,
a data scientist in Kitman Labs (Fiscutean, 2021)). As statisticians, our analyses and the
collection of data are undoubtedly useless without properly communicating the extracted
results. Similarly, communication plays a crucial role, in elite football clubs. It has been
claimed that the communication quality between the medical team and the head coach,
as well as the leadership style of the head coach, is correlated with injury rates, training

https://catalogofbias.org/
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attendance, and match availability, in elite football clubs (Ekstrand et al., 2019, 2018).

We consider that this dissertation represents a significant step towards a more com-
prehensive understanding of sports injuries from a statistical perspective. Our vision is to
see research translated into practical applications, grounded in a commitment to sound
methodology and adherence to best practices. Ongoing research is needed to provide
valuable insights into the field of sports medicine, and in particular, into the understand-
ing of the physical demands of modern football, that will eventually assist sports clubs
andmedical teams in managing players’ performance, reducing injury rates, and enhanc-
ing players’ health and safety.
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and Methodological Statistics (CMStatistics 2022), 17-19 December 2022, Londres
(United Kingdom).

• Zumeta-Olaskoaga L., Bender A. and Lee D.-J. “How do past training exposures affect
injury risk in football?”. Oral contribution. XIX Conferencia Española y VIII Encuentro
Iberoamericano de Biometría (CEB-EIB 2023), 27-30 June 2023, Vigo (Spain).

• Zumeta-Olaskoaga L., Bender A. and Lee D.-J. “Flexible modelling of time-varying
training exposures on the risk of recurrent injuries in football”. Oral contribution. 37th In-
ternational Workshop on Statistical Modelling (IWSM 2023), 17-21 July 2023, Dort-
mund (Germany).

Awards

• Best Poster Award at the 36th International Workshop on Statistical Modelling 2022
(IWSM 2022), Trieste.
Awardedwork: Zumeta-Olaskoaga L., Bender A., KüchenhoffH. and Lee D.-J.Mod-
elling the recurrence of injuries in football players using piece-wise exponential additive
mixed models.

Other conference contributions

• Lee D.-J., Zumeta-Olaskoaga L., Larruskain J., Bikandi E., Setuain I. and Lekue J.A.
“Modelling and prediction in time-to-event sports injury data: a penalized Cox regression
approach”. Oral contribution. XXXIX Congreso Nacional de Estadística e Investi-
gación Operativa y de las XIII Jornadas de Estadística Pública (SEIO 2022), 7-10
June 2022, Granada (Spain).

• Renteria J., Zumeta-Olaskoaga L., Bikandi E., Larruskain J. and Lee D.-J. “Potential
risk factors of injuries in professional football using Multivariate Survival Trees: a compari-
son of female vs. male football players”. Poster contribution. XIX Conferencia Española y
VIII Encuentro Iberoamericano de Biometría (CEB-EIB 2023), 27-30 June 2023, Vigo
(Spain).

• Álvarez O., Zumeta-Olaskoaga L., Martínez-Minaya J. and Lee D.-J. “A zero-inflated
Bayesian modeling of sports injury risk incidences?”. Poster contribution. XIX Conferen-
cia Española y VIII Encuentro Iberoamericano de Biometría (CEB-EIB 2023), 27-30
June 2023, Vigo (Spain).

• Renteria J., Zumeta-Olaskoaga L., Bikandi E., Larruskain J. and Lee D.-J. “Multi-
variate Survival Trees for prediction of lower limb injuries in professional male and female
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football players”. Poster contribution. 37th International Workshop on Statistical Mod-
elling (IWSM 2023), 17-21 July 2023, Dortmund (Germany).

Outreach activities

Public lectures

• Emakumeak Zientzian Atzo eta Gaur ekitaldia, “Florence Nightingale eta Lore Zumeta
Olaskoaga”, 7. Emakumeak Zientzian proiektua. Bidebarrieta liburutegia, Bilbao
(2023-02-17).

• “Analizando lesiones deportivasmediante la ciencia de datos”, Gymkana: La ciencia de los
datos, Mary Eleanor Spear (Stem4Girls UC3M). Universidad Carlos III de Madrid.
Getafe (2022-02-11).

• “Estatistika, kirola eta lesionatzeko arriskua. Zer zerikusi dute?”, VII. Zarautz Zientziaz
Blai. ZarautzON. Cine Modelo, Zarautz (2021-11-16).

• “Happy Stats Hour: Sports Analytics”, Adrià Arbués, Guillermo Villacampa and Lore
Zumeta, Societat Catalana d’Estadística (SoCE) (2021-01-19).

Video

• “#STATPíldora: Estadística y Deporte”, Proyecto Stat Wars (2023-06-21).

• Zientzialari 157 “Biziraupenerako analisiari esker lesio bat sufritzeko arriskua estima
daiteke”, Zientzia Kaiera UPV/EHUko Kultura Zientifikoko Katedra (2021-07-13).

Radio

• Matematika aplikatua, futbolarien lesioak aurreikusteko. Lore Zumetaren tesian ari da ere-
duak bilatzen, Euskadi Irratia, Faktoria (2023-02-09).

Written

• Lore Zumeta: “Futboleko lesioen mekanismoa hobeto ulertu nahi dugu”, Zarauzko Hitza,
(2021-11-16).

• Lore Zumeta, matematikaria: “Ikerketan hasi berria naiz, eta dena dut deskubritzeko”,
Zientzia Kaiera hedabide digitala, Emakumeak Zientzian (2020-01-03).

• “The scientists who inspired us (II): Florence Nightingale” and “Inspiratzen gaituzten
emakumeak (II): Florence Nightingale”, Lore Zumeta, BCAM News (2020-03-26).

https://www.youtube.com/watch?v=nsZY2Jdz9tc
https://www.youtube.com/watch?v=nsZY2Jdz9tc
https://www.youtube.com/watch?v=ViKki5cCT5k
https://zarauzkohitza.eus/zarautz/1636978908892-zientziaz-blai-jardunaldia
https://soce.iec.cat/happy-stats-hour/
https://www.youtube.com/watch?v=gD_hP1dD7lI
https://www.youtube.com/watch?v=yukrcbYR_hk
https://www.youtube.com/watch?v=yukrcbYR_hk
https://www.eitb.eus/eu/irratia/euskadi-irratia/programak/faktoria/osoa/9103438/matematika-lore-zumeta-bcam-matematika-aplikatua-florence-nightingale-estatistika/
https://www.eitb.eus/eu/irratia/euskadi-irratia/programak/faktoria/osoa/9103438/matematika-lore-zumeta-bcam-matematika-aplikatua-florence-nightingale-estatistika/
https://zarauzkohitza.eus/zarautz/1637049435921-lore-zumeta-futboleko-lesioen-mekanismoa-hobeto-ulertu-nahi-dugu
https://zientziakaiera.eus/2020/01/03/lore-zumeta-matematikaria-ikerketan-hasi-berria-naiz-eta-dena-dut-deskubritzeko/
https://www.bcamath.org/en/news-events/news/the-scientists-who-inspired-us-ii-florence-nightingale
https://wp.bcamath.org/news/es/2020/03/26/5383/
https://wp.bcamath.org/news/es/2020/03/26/5383/
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Appendix A

A.1 Overall effects in zero-inflated negative binomial (ZINB)
models

For simplicity, let us consider a binary variableX , e.g., xl = 1 for player l having a previous
injury, and xl = 0, otherwise. Then, given the model in Eq. (2.4), the probability of an
excess zero is modelled by logistic regression and expressed as,

pl(xl) =
exp(γ0 + xlγ1)

1 + exp(γ0 + xlγ1)
, (A.1)

and the mean injury count for the at-risk players is modelled via a negative binomial
model (i.e., log-linear model) as follows,

λl(xl) = exp(β0 + xlβ1).

The regression coefficient γ1 in Eq. (A.1) represents the log odds ratio of having an ex-
cess zero or being in the not-at-risk group for the effect of xl = 1 relative to xl = 0. The
coefficient β1 represents the log of the incidence rate ratio (IRR) for the effect of xl = 1
relative to xl = 0 in the at-risk group, i.e. log(λl(xl = 1)/λl(xl = 0)). But γ1 and β1 are not
of primary interest we seek to derive their contributions to the overall population effects.

Now, the expected mean of a ZINB distributed variable Y is E(Y |X) = λ(x)(1−p(x)).
Thus, the overall incidence rate is derived as,

IR := E(Y |xl) = λ(xl)(1− p(xl)) =

= exp(β0 + xlβ1)

(︃
1− exp(γ0 + xlγ1)

1 + exp(γ0 + xlγ1)

)︃
=

=
exp (β0 + xlβ1)

1 + exp (γ0 + xlγ1)
.
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Then, the IRR for the overall effect of xl on injuries is,

IRR :=
E (Y |(xl = 1))

E (Y |(xl = 0))
=

=
exp (β0 + β1)

1 + exp (γ0 + γ1)
/

(︃
exp (β0)

1 + exp (γ0)

)︃
=

= exp (β1)
1 + exp (γ0)

1 + exp (γ0 + γ1)
.

A.2 Equivalence between the Cox and Poisson model

Let’s assume a partition of the follow-up time into a finite number of intervals J , with J+1

cut points at κ0 < . . . < κJ , and let’s assume that the baseline hazard is piece-wise con-
stant, i.e., it remains constant within each interval j: λ0(t) = λj for all t ∈ (κj−1, κj ]. Then,
following the formulation of the Cox PH model, the l-th individual’s hazard function is
expressed as,

λ(t;xl) = λ0(t) exp
(︁
x′
lβ
)︁
:= λj exp

(︁
x′
lβ
)︁
= λlj , ∀t ∈ (κj−1, κj ]. (A.2)

Now, let j(l) be the index of the interval for which tl ∈ (κj−1, κj ], and let δlj ∈ {0, 1} be
the event indicator for individual l in interval j with δlj(l) = δl. Assuming model (A.2),
the contribution of this individual l to the log-likelihood function, l(·), is,

ll(β) = log
(︂
f(tl;xl)

δlS(tl;xl)
1−δl

)︂
= log

(︂
λ(tl;xl)

δlS(tl;xl)
)︂
=

= δl log
(︁
λlj(l)

)︁
−

j(l)∑︂
j=1

λljtlj =

=

j(l)∑︂
j=1

(δlj log λlj − λljtlj),

(A.3)

where f(tl;xl) = λ(tl;xl)S(tl;xl), S(tl;xl) = exp(−Λ(tl;xl)) = exp
(︂
−
∑︁j(l)

j=1 λljtlj

)︂
, and

δlλlj(l) =
∑︁j(l)

j=1 δljλlj , since δlj = 0, ∀j ̸= j(l).

On the other hand, if δlj ∼ Po(µlj) with mean µlj = λljtlj and probability density
function f(δlj) = µ

δlj
lj exp(−µlj)/δlj !, where we can ignore the factorial since δlj ∈ {0, 1},

and thus, δlj ! = 1. It follows that the contribution of individual l to the Poisson log-
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likelihood is given by,

ll(β) = log

⎛⎝j(l)∏︂
j=1

f(δlj)

⎞⎠ =

=

j(l)∑︂
j=1

log
(︂
µ
δlj
lj exp(−µlj)

)︂
=

=

j(l)∑︂
j=1

(δlj log(µlj)− µlj) =

=

j(l)∑︂
j=1

(δlj log(λlj) + δlj log(tlj)− λljtlj).

(A.4)

Therefore, the Poisson log-likelihood in Eq. (A.4) is proportional to Eq. (A.3), since the
term δlj log(tlj) is independent of the parameters of interest. Consequently, parameter
estimates β can be obtained by optimizing the Poisson likelihood in Eq. (A.4).





Appendix B

B.1 Complementary information on functional screening tests
data

Table B1 shows the variables included in functional screening tests data.

In these data, the definition used for the Limb Symmetry Index (LSI), which quantifies
the inter-limb asymmetry or the discrepancies in strength, function and mobility of the
legs, is the Bilateral Strength Asymmetry formula (Bishop et al., 2020; Impellizzeri et al.,
2007):

LSI = |Left leg− Right leg|
max(Left leg,Right leg) .

An LSI value of 0 indicates total symmetry between both legs, while an LSI > 0 indi-
cates asymmetry towards the leg for which the test value was higher. This definition is
unique for each player and functional screening test. The associated effect of the variable
can be easily interpreted in a statistical model.

B.2 Bootstrap .632+ estimates of the Brier score

In this section, we briefly describe the “bootstrap .632+” approach used in the calculation
of the Brier Score to avoid overfitting.

The bootstrap .632+ method was proposed in Efron (1983) and discussed in Efron
and Tibshirani (1997). In the latter, they discussed the cross-validation and the bootstrap
estimates of prediction error and showed that the bootstrap .632+ method substantially
outperforms the cross-validation in their simulation experiments. Besides, the bootstrap
.632+method for the Brier score estimate was specifically introduced in Binder and Schu-
macher (2008) and demonstrated to provide accurate estimates.
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Table B1: Detailed information on the 28 variables from the functional screening tests
data, namely, the type of screening test and the number of tests for each type.

Type of screening test Number of tests

Anthropometrics & previous injury 5
Height
Weight
Tibia + Femur length
Sum of 6 skinfolds
Previous injury

Active Straight Leg Raise (ASLR) 2
ASLR lumbar strength LSI
ASLR ROM LSI

Cross Over Hop 3
Horizontal jumping distance LSI
Horizontal jumping forces LSI
Horizontal jumping impact forces LSI

Core Strength Side 1
Core side plank LSI

Drop Jump Kinetics 4
Drop jump impact forces 1st landing LSI
Drop jump impact forces 2nd landing LSI
Drop jump mechanical power LSI
Drop jump vertical propulsion LSI

Hand-Held Dynamometry 2
Hamstring strength isometric AKE LSI
Hamstring strength isometric knee flexion 15º LSI

Isokinetics 4
Isokinetic concentric knee extension 60º LSI
Isokinetic concentric knee flexion 60º LSI
Isokinetic isometric RTD knee flexion 30º LSI
Isokinetic isometric RTD knee extension 90º LSI

KT1000 1
Anterior-posterior knee laxity LSI

Range of Motion (ROM) 4
Internal-external hip rotation ROM LSI
Knee flexion ROM LSI
Hip extension ROM LSI
Ankle dorsiflexion ROM LSI

Star Excursion Balance Test (SEBT) 2
SEBT knee extended LSI
SEBT knee flexed LSI

TOTAL 28
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Namely, the bootstrap .632+ estimate of the Brier score –the prediction error curve–
is a weighted linear combination of the apparent estimate, the bootstrap cross-validation
estimate and the no information estimate. It is implemented in the pecR package (Gerds,
2020), and the following definition is given by them:

Boot632plusErr(t, Ŝ) =
(︃
1− 0.632

1− 0.368 · ω

)︃
AppErr(t, Ŝ)+

(︃
0.632

1− 0.368 · ω

)︃
BootCvErr(t, Ŝ),

where
ω =

min(BootCvErr(t, Ŝ),NoInfErr(t, Ŝ))− AppErr(t, Ŝ)
NoInfErr(t, Ŝ)− AppErr(t, Ŝ)

.

The constant 0.632 is independent of the sample size and corresponds to the probability
of drawing with replacement subject i into the bootstrap sample: P ({(Yi, Xi)} ∈ Db) =

1− (1− 1/N)N ≈ (1− e−1) ≈ 0.632.

We refer the reader to Mogensen et al. (2012) and the R help page of pec::pec()
function for the definitions of the apparent, the bootstrap cross-validation and the no in-
formation estimate, that is, AppErr(t, Ŝ), BootCvErr(t, Ŝ) andNoInfErr(t, Ŝ), respectively.

B.3 Simulation study

Data-generating process

We base on the method proposed by Harden and Kropko (2019), referred to as the “ran-
dom spline method”, for simulating Cox data. A function in the coxed R package im-
plements the method with several options for user control. In this work, we modify the
method to allow the inclusion of a frailty term.

Below, we describe the procedure used to generate survival times, i.e. the data-
generating process (DGP), where we know and have control of the correct specification
of covariates and true values of the coefficients. We assume that the DGP is given by a
stochastic process that aligns with a Cox shared frailty model. First, we describe the gen-
eration of the baseline hazard function, and then, we outline the second part of generating
individual durations.

Step 1 Generating the baseline hazard function

This is the crucial part of the “random spline method” since it addresses the chal-
lenge of the shape of the baseline hazard to be unspecified (no parametric). The
procedure is:
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Figure B1: Reproduced from Harden and Kropko (2019). Generating a baseline hazard func-
tion via the random spline method. (a) An example of the randomly drawn time points.
(b) The cubic spline fit to those points to create the failure cumulative distribution func-
tion (CDF). (c) The transformation from the failure CDF to a failure probability density
function (PDF). (d) Plots the survivor function and (e) graphs the baseline hazard func-
tion

• Create a time index of length Tmax and draw k points, where k << Tmax. For
illustration purposes, we choose integers from 1 to 100 (Tmax = 100), and draw
k = 10 points, (x1, y1), . . . , (x10, y10). The x-coordinates for two of the k points
are set as the minimum and maximum of the time index, e.g. x1 = 1 and
x10 = 100. Then, randomly draw the remaining k−2 points from the remaining
time points with uniform probability. Set the y-coordinates at the minimum
time to be 0 and at the maximum time to be 1. Randomly draw the other k− 2

y-coordinates from aU(0, 1). Finally, sort the coordinates in ascending order, as
the cumulative distribution function (CDF) must be non-decreasing, resulting
in the order (x1 = 0, y1 = 0), (x2, y2), . . . , (x10 = 100, y10 = 1). See Figure B1,
panel (a).

• Construct the cumulative distribution function (CDF) for event occurrences
by fitting the previously drawn k points with a cubic smoothing spline. The
smoothing function presented in Hyman (1983) is used to preserve the mono-
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tonicity (Figure B1, panel (b)).
• Transform the CDF function into the baseline hazard function. To do so, first,
construct the probability density function (PDF) for failure times by comput-
ing the first differences of the CDF at each time point (see Figure B1, panel (c)).
Generate the survivor function by subtracting the failure CDF from 1 (see Fig-
ure B1, panel (d)). Finally, compute the baseline hazard by dividing the failure
PDF by the survivor function (see Figure B1, panel (e)).

Step 2 Generating individual durations

Once the baseline hazard function is generated, individual survival times are drawn
in a way that depends on user-controlled covariates and coefficient values.

• p covariates are set, either randomly or as specified by the user, forming
X = (X1, . . . ,Xp)Nxp. Also, true values for p coefficients are defined as
β = (β1, . . . , βp)

′. We set frailty terms for each player –family of observa-
tions, or cluster of the data. These terms, denoted asα = (α1, . . . , αL), follow a
Gamma distribution with shape and scale parameters equal to one and a tenth,
i.e. α Γ(k = 1, θ = 1

10). Then, we set the linear predictor vector as α exp(X ′β).

• If the hazard of the i-th injury event for the l-th player at time t is expressed as,

λil(t) = αlλ0(t) exp
(︁
X ′

il
β
)︁
,

we have that, in terms of survival probability,

Sil(t) = exp(−Λil(t)) = exp

(︃
−
∫︂ t

0
λ0(s)αk exp

(︁
X ′

il
β
)︁
ds

)︃
=

= exp

(︃
−
∫︂ t

0
λ0(s)ds

)︃αk exp
(︂
X′

il
β
)︂
= S0(t)

αk exp
(︂
X′

il
β
)︂
.

• Once we construct the true individual-specific survival function, we generate
survival times by drawing U [0, 1]. For all N observations, we determine the
time point at which each individual observation’s survival function becomes
less than this randomly drawn uniform value, see Figure B2.

• Lastly, we censor some of the observations by randomly selecting, with a uni-
form or other distribution, observations to be censored (this conforms to the
Cox model’s assumption that, conditional on the covariates, the censoring
mechanism is independent of the DGP that produces the durations).
Note: if the survival time drawn is equal to Tmax we directly censor this obser-
vation, keeping control of the censorship percentage.
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Figure B2: Reproduced from Harden and Kropko (2019). Drawing a duration for an observa-
tion from the simulated survivor function. The solid line is the baseline survivor function,
which represents the survival probability for an observation with a 0 for every covariate.
The dashed line is the survivor function for an observation whose powered linear predic-
tor is 1.425. This observation has a risk of failure at time t conditional on survival through
time t that is 42.5 per cent higher than the baseline.

Further simulation results

The source code to reproduce the simulation study, as well as the following results, can
be found at: https://github.com/lzumeta/TimeToEvent-InjurySim. In the following,
we present additional results from the simulation study in tabular and graphical forms:

• In Table B2, we report the results of the last setting within Scenarios 2 and 3 (Nobs =

670).

• In Tables B3-B5, we report additional performance measures to quantify the uncer-
tainty of the simulation estimates.

• In Figures B3-B4, we show complementary graphical results from Scenario 2 and
Scenario 3 of the simulation study.

https://github.com/lzumeta/TimeToEvent-InjurySim
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Table B2: Simulation results for Scenarios 2 and 3, which consider different correlation
structures of covariates, ρij = 0 and ρij = 0.65|i−j|, for L = 220 players resulting in
Nobs = 670 observations. The measures analyzed include the AMS, ANFS, ANFNS, MSE
and the median of IBS calculated over the [0, 1000] and [0, 3500] time intervals, for all
models.

Sample size
(Nobs)

Correlation
structure
(i ̸= j)

Frailty model
including vars.
that selected

AMS
(5)

ANFS
(0)

ANFNS
(0)

MSE
(0)

IBS
(0)

[0,1000] [0, 3500]

Nobs = 670

ρij = 0

BeSS 2.94 0.66 2.72 0.52 0.033 0.109
Lasso 12.41 8.66 1.25 0.77 0.033 0.107
Elastic Net 14.18 10.34 1.16 0.79 0.033 0.108
Ridge 7.53 4.24 1.71 0.65 0.033 0.108
Group Lasso 21.1 16.1 0 0.80 0.034 0.110
Cox Boosting 7.36 4.28 1.92 0.67 0.033 0.107

ρij = 0.65|i−j|

BeSS 3.03 1.52 2.69 0.88 0.037 0.104
Lasso 15.41 11.15 0.74 0.90 0.036 0.102
Elastic Net 17.22 12.70 0.48 0.91 0.036 0.102
Ridge 9.26 4.91 0.65 0.79 0.036 0.102
Group Lasso 32.15 27.15 0 1.44 0.037 0.107
Cox Boosting 10.53 6.89 1.36 0.90 0.036 0.101

Additional performance measures

In addition to the mean square error (MSE) reported in Chapter 3, we introduce two
additional performance measures, Bias and empirical standard error, to provide a better
interpretation of the MSE measure.

The MSE is calculated as,

MSE =
1

Nsim

Nsim∑︂
n=1

p∑︂
j=1

(︂
β̂
(n)

j − βj

)︂2
,

the bias as,

Bias = 1

Nsim

Nsim∑︂
n=1

p∑︂
j=1

(︂
β̂
(n)

j − βj

)︂
,

and the empirical standard error (EmpSE) as the long-run standard deviation of ˆ︁β
over the Nsim repetitions. That is,
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EmpSE =

⌜⃓⃓⎷ 1

Nsim − 1

Nsim∑︂
n=1

p∑︂
j=1

(︂
β̂
(n)

j − β̂j

)︂2
,

where,

β̂j =
1

Nsim

Nsim∑︂
n=1

β̂
(n)

j , for each j = 1, . . . , p.

The EmpSE depends only on the estimates β̂j .
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Table B3: Additional simulation results for the three different settings within Scenario 1,
for 66 players with 3 observations each, resulting in a sample size of 198.

Model Bias EmpSE MSE

True model: frailty (BeSS)
BeSS -0.07 1.48 3.85
Lasso 0.22 1.57 4.29
Elastic Net 0.24 1.72 4.84
Ridge 0.04 1.42 3.78
Group Lasso -0.03 2.70 9.24
Boosting 0.23 1.57 4.29

True model: frailty (Lasso)
BeSS -0.36 1.76 5.05
Lasso -0.42 1.96 5.67
Elastic Net -0.52 2.10 6.26
Ridge -0.42 1.65 4.66
Group Lasso -1.31 3.58 14.57
Boosting -0.41 1.96 5.65

True model: frailty (Boosting)
BeSS 0.17 1.69 5.24
Lasso 0.23 1.85 6.06
Elastic Net 0.16 2.12 7.15
Ridge 0.23 1.69 5.50
Group Lasso 0.36 3.10 12.38
Boosting 0.22 1.88 6.17
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Table B4: Additional simulation results for Scenarios 2 and 3, which consider different
correlation structures of covariates (ρij = 0 and ρij = 0.65|i−j|) for a varying number of
players L ∈ {22, 66} resulting in Nobs ∈ {60, 191} observations, respectively.

Sample size
(Nobs)

Correlation
structure
(i ̸= j)

Frailty model including
vars. that selected

Bias EmpSE MSE

Nobs = 60

ρij = 0

BeSS -0.61 1.63 3.69
Lasso -1.08 6.32 56.37
Elastic Net 1.61 14.73 271.34
Ridge -0.22 46.69 57.02
Group Lasso -28.34 113.52 > 105

Cox Boosting -0.64 5.47 42.77

ρij = 0.65|i−j|

BeSS -0.14 1.87 4.90
Lasso -0.37 1.34 2.72
Elastic Net -3.72 46.29 2758.8
Ridge 1.42 23.54 776.0
Group Lasso -21.55 > 105 > 105

Cox Boosting -0.37 1.38 2.92

Nobs = 191

ρij = 0

BeSS -0.35 0.72 0.96
Lasso -0.37 0.81 1.10
Elastic Net -0.33 0.86 1.21
Ridge -0.15 0.85 1.21
Group Lasso 0.36 1.64 3.39
Cox Boosting -0.25 0.84 1.18

ρij = 0.65|i−j|

BeSS -0.12 0.89 1.28
Lasso -0.48 1.03 1.54
Elastic Net -0.61 1.11 1.78
Ridge -0.40 1.01 1.50
Group Lasso -182.56 7068.27 > 105

Cox Boosting -0.39 1.01 1.48
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Table B5: Additional simulation results for Scenarios 2 and 3, which consider different
correlation structures of covariates (ρij = 0 and ρij = 0.65|i−j|) for a varying number of
players L ∈ {132, 220} resulting in Nobs ∈ {391, 670} observations, respectively.

Sample size
(Nobs)

Correlation
structure
(i ̸= j)

Frailty model including
vars. that selected

Bias EmpSE MSE

Nobs = 391

ρij = 0

BeSS 0.13 0.58 0.57
Lasso 0.29 0.74 0.82
Elastic Net 0.46 0.78 0.89
Ridge 0.39 0.69 0.74
Group Lasso 0.74 0.89 1.09
Cox Boosting 0.33 0.72 0.79

ρij = 0.65|i−j|

BeSS -0.16 0.77 1.02
Lasso -0.64 0.89 1.18
Elastic Net -0.71 0.94 1.27
Ridge -0.36 0.81 0.99
Group Lasso -0.35 1.40 2.40
Cox Boosting -0.51 0.86 1.12

Nobs = 670

ρij = 0

BeSS 0.10 0.53 0.54
Lasso 0.17 0.70 0.77
Elastic Net 0.23 0.71 0.79
Ridge 0.09 0.63 0.65
Group Lasso 0.41 0.74 0.80
Cox Boosting 0.15 0.64 0.67

ρij = 0.65|i−j|

BeSS -0.08 0.72 0.88
Lasso -0.76 0.77 0.90
Elastic Net -0.75 0.78 0.91
Ridge -0.34 0.70 0.79
Group Lasso -0.45 1.09 1.44
Cox Boosting -0.56 0.76 0.90
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Figure B3: Heatmaps of variables correctly selected (in green) and wrongly selected
(in red) across different simulation settings. Columns: Scenario 2 (left) and Scenario
3 (right). Rows: setting 1 (first row), setting 2 (second row), setting 3 (third row) and
setting 4 (fourth row).
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Figure B4: The point-wise averages of the Brier Score curve estimates using the bootstrap
.632+ method (the point-wise average prediction error) for frailty models with variables
that selected BeSS, Lasso, Elastic net, Ridge regression, Group Lasso and Cox Boosting
methods, across different simulation settings. Columns: Scenario 2 (left) and Scenario
3 (right). Rows: setting 1 (first row), setting 2 (second row), setting 3 (third row) and
setting 4 (fourth row).





Appendix C

In this appendix, we present additional information and results that, for brevity, were
not included in Chapter 4. In Section C.1, we give a more detailed explanation of the
simulation study, outlining the data generation process and all the scenarios considered;
whereas in Section C.2, we provide supplementary analyses conducted on the football
injury data.

C.1 Simulation study

To evaluate the performance of the three models, that is, PAMMs with WCE-type cumu-
lative effects: with no constraint (Uncons.), adding a constraint (Constr.) and adding a
ridge penalty (Ridge); we simulateNsim = 500 times a cohort of L = 500 individuals with
exposures recorded at tz,1 = 1, tz,2 = 2, . . . , tz,Q=40 = 40 days before the time at which we
model the hazard, zl = (zl(tz,1), z(tz,2), . . . , z(tz,Q)). Individuals’ follow-up starts after
40 days of exposure, such that every individual has a complete exposure history of 40
exposures at the beginning of the follow-up.

In the following, we describe the scenario settings that were kept fixed across the sim-
ulation runs (section C.1.1), the data generation part that was random (section C.1.2) and
the performancemeasures used to evaluate the results (section C.1.4). Finally, we present
the simulation results we obtained (section C.1.5). The R code to reproduce these analy-
ses is available at: https://github.com/lzumeta/flex-mod-training-loads-recu-injuries.

C.1.1 Simulation scenarios

We set six different true weight functions for the WCE-type –meaning, partial effects
of h(t, tz, z(tz)) = h(t − tz)z(tz) type– cumulative effects, (a)-(f), each defined over a
[0, Q] interval, and under three different levels of heterogeneity between recurrent events,
σb ∈ {0.05, 0.5, 1}, indicating very low heterogeneity, low heterogeneity and high hetero-

147

https://github.com/lzumeta/flex-mod-training-loads-recu-injuries


C.1. Simulation study 148

geneity, respectively.

For the true weight functions of the WCE-type cumulative effect, we stand on and
adapt the simulation setting presented in Sylvestre and Abrahamowicz (2009) for cumu-
lative effects of time-dependent exposures in Cox’s PH model, and set the following six
true weight functions (the last two true weight functions not shown in the main work):

(a) Exponential decay: h(t− tz) =
4.5
100e

− 1
10

(t−tz).

(b) Bi-linear: h(t− tz) =
(︁
1− t−tz

25

)︁
∗ 0.04 for t− tz ≤ 25 and 0 otherwise.

(c) Early peak: probability density function of N(0.04; 0.06) left-truncated at t = 0.

(d) Inverted U: probability density function of N(0.2; 0.06) left-truncated at t = 0.

(e) Constant: h(t− tz) = 0.02 for 0 ≤ t− tz ≤ 20 and 0 otherwise.

(f) Hat: h(t− tz) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
increasing, if t− tz ≤ 19

plateau, if 19 < t− tz ≤ 22

decreasing, if 22 < t− tz ≤ 27

0, otherwise.

0 10 20 30 40

0.00

0.02

0.04

0.06

0.08

    Exponential decay

lag: t − tz

h
(t

 −
 t

z
)

(a)

0 10 20 30 40

0.00

0.02

0.04

0.06

0.08

Bi−linear

lag: t − tz

h
(t

 −
 t

z
)

(b)

0 10 20 30 40

0.00

0.02

0.04

0.06

0.08

Early peak

lag: t − tz

h
(t

 −
 t

z
)

(c)

0 10 20 30 40

0.00

0.02

0.04

0.06

0.08

Inverted U

lag: t − tz

h
(t

 −
 t

z
)

(d)

0 10 20 30 40

0.00

0.02

0.04

0.06

0.08

Constant

lag: t − tz

h
(t

 −
 t

z
)

(e)

0 10 20 30 40

0.00

0.02

0.04

0.06

0.08

Hat

lag: t − tz

h
(t

 −
 t

z
)

(f)

Figure C1: Each of the true weight functions, (a)-(f), considered.

Each function assigns weights to past exposures based on the time elapsed since the
exposure occurred (see Figure C1). The first two functions, (a) and (b), assume that
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weights decrease monotonically as the time elapsed since exposure was recorded in-
creases. Functions (c) and (d) are non-monotonic where the weights first increase and
then decrease. In contrast to the function (d) (inverted U), in function (c) (early peak),
the maximumweight is assigned to more recent exposures and from the 20-th lag on, the
weights are zero. In other words, exposures recorded over 20 or more time units ago have
no impact at the current time. The function (e) assigns constantweights to past exposures
and again, from the 20-th lag on the resulting exposure effect disappears. Its resulting
WCE-type cumulative effect corresponds to a standard unweighted cumulative sum of
the time-varying exposure variable calculated over the previous 20 units of time. The last
function (f) is specifically designed as an extreme case to evaluate the ridge penalization
on the basis coefficients.

On the other hand, the number of events per subject, nl, is kept fixed across all sim-
ulation runs. It is drawn from a truncated Poisson distribution with a lower truncation
point equal to zero, so that we condition the variable, e.g. Y , to be Y > 0. The vector bl
associated with each individual l is drawn from a Gaussian distribution with a mean of 0
and a standard deviation σb ∈ {0.05, 0.5, 1}, and it is also kept fixed across all simulation
runs and all true weight functions.

In this manner, we construct the underlying true hazard value, λilj (l = 1, . . . , L =

500, il = 1, . . . , nl and j = 1, . . . , J = 40), for each event of each subject (il) at each time
point (κj). This value defines the intervals of the piece-wise constant hazard vector and
remains fixed in each scenario of the simulation study. Each subject’s hazard value can be
seen as the sum of: an intercept, a smooth baseline, the cumulative effect and the random
effect.

C.1.2 Generation of recurrent survival times

Once we have the vector of piece-wise constant hazards λ = (λ1, λ2, . . . , λJ=40) in inter-
vals defined by time points κ = (κ0, . . . , κJ=40), we replicate the rows of the data depend-
ing on the number of events that each individual is at risk of (we kept this number, i.e.
nl, fixed), in order to generate recurrent survival times. Then, we draw survival times
from the piece-wise exponential distribution, i.e. t ∼ PEXP(λ,κ) for which the algo-
rithm is summarized in Table C1. The main function to draw piece-wise constant rates is
implemented in R as msm::rpexp().
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Table C1: Pseudo-algorithm for drawing survival times from the piece-wise exponential
distribution (PEXP), adapted from Bender et al. (2019).

Let κj−1 be the left border of interval (κj−1, κj ], j = 1, . . . , J :

1. For l = 1, . . . L:
1.1. For il = 1, . . . , nl:

(a) Set j = 1

(b) For j = 1, . . . , J

i. Draw survival time t′ilj from Exp(λilj), set til = κj−1 + t′ilj

ii. If κj−1 < til ≤ κj or j = J : accept til
iii. Else: j = j + 1

1.2. Return vector of survival times (t1, . . . , tnl
) for subject l.

1.3. Order the above survival times vector and the subject’s il-th
event number indicator(enum).

2. Return vector of survival times:
(t11 , t21 . . . , tn1 , t12 , t22 , . . . , tn2 , . . . , t1L , t2L , . . . , tnL).

C.1.3 Model fitting

For model fitting, we use P-splines with second-order difference penalties and, 10 knots
for the smooth baseline hazard term and 15 knots for the WCE-type smooth term. We
use the restricted maximum likelihood (REML) optimization routine within the mgcv R
package.

C.1.4 Performance measures

The performance measures we use to assess the performance of the models are the mean
RMSE, mean 95% pointwise coverage, squared error, BIC and the deviance explained.

• The mean RMSE integrates the bias and the variance of ĥ into one summary mea-
sure. The root of the sum of squared differences between the estimated ĥ value and
the true h value, computed across all covariates z and t − tz lag points, and then
averaged over all the simulation runs.

RMSE(h) = 1

Nsim

Nsim∑︂
n=1

⌜⃓⃓⎷ 1

Ntz

40∑︂
t−tz=0

(︂
h(t− tz)− ĥ(t− tz)(n)

)︂2
,
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where Ntz = 41, since t − tz = {0, 1, 2, . . . , 40} takes 40 +1 number of different
values.

RMSE(σb) =

⌜⃓⃓⎷ 1

Nsim

Nsim∑︂
n=1

(︂
σb − σ̂

(n)
b

)︂2
,

• The mean 95% coverage measures the proportion that the estimated pointwise 95%
confidence interval contains h. It is calculated as:

Coverageα =
1

Nsim

Nsim∑︂
n=1

[︄
1

Ntz

40∑︂
t−tz=0

I
(︂
h(t− tz) ∈

[︂
ĥ(t− tz)

(n) ∓ ζ1−α/2σ̂
(n)

ĥ

]︂)︂]︄
,

where ζq is the q-quantile of the standard normal distribution and σ̂ĥ the standard
error of the estimated ĥ(t− tz). The closer to 0.95 the better.

• The squared error of σb is the summand of RMSE(σb), i.e. (σb − σ̂b)
2.

• The BIC and Deviance Explained are likelihood-based measures formulated to
assess the model’s goodness of fit. As described in ?mgcv::gamObject, BIC =
k ln(n)− 2 ln(L(model|data)) and deviance explained = (1−residual deviance/null
deviance). A smaller BIC indicates better performance, while a higher Deviance
Explained suggests a better fit.

C.1.5 Simulation results

Next, we present the simulation study results:

• Figures C2-C7 display the estimated weight functions for each model across all sim-
ulation settings, with the true weight function represented by the thick black curve
and the mean of the estimated curves depicted by the thick red curve.

• Tables C2-C3 present summary statistics for mean RMSE and mean Coverageα of
the estimated h(t, tz, z(tz)) and σb across all simulation settings.

• Figures C8-C10 show boxplots of the distribution of the RMSE of h(t, tz, z(tz), the
distribution of 95% point-wise coverage of h(t, tz, z(tz)) and the squared error of σb
across all simulation settings.

• Table C4 displays the proportion of times each model is considered the “best”, de-
termined by either BIC or Deviance Explained in each simulation run across all set-
tings. This represents the number of times a specific model has the lowest BIC or
the greatest Deviance Explained among the three candidate models.
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Figure C2: A random sample of 100 estimated weight functions (in grey) for the Uncons.
model (1st row), Constr. (2nd row) and Ridge model (3rd row), for scenarios σb = 0.05

(left), σb = 0.5 (middle) and σb = 1 (right), together with the true weight function (in
black), shape (a), and the mean curve (in red).
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Figure C3: A random sample of 100 estimated weight functions (in grey) for the Uncons.
model (1st row), Constr. (2nd row) and Ridge model (3rd row), for scenarios σb = 0.05

(left), σb = 0.5 (middle) and σb = 1 (right), together with the true weight function (in
black), shape (b), and the mean curve (in red).
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Figure C4: A random sample of 100 estimated weight functions (in grey) for the Uncons.
model (1st row), Constr. (2nd row) and Ridge model (3rd row), for scenarios σb = 0.05

(left), σb = 0.5 (middle) and σb = 1 (right), together with the true weight function (in
black), shape (c), and the mean curve (in red).
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Figure C5: A random sample of 100 estimated weight functions (in grey) for the Uncons.
model (1st row), Constr. (2nd row) and Ridge model (3rd row), for scenarios σb = 0.05

(left), σb = 0.5 (middle) and σb = 1 (right), together with the true weight function (in
black), shape (d), and the mean curve (in red).
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Figure C6: A random sample of 100 estimated weight functions (in grey) for the Uncons.
model (1st row), Constr. (2nd row) and Ridge model (3rd row), for scenarios σb = 0.05

(left), σb = 0.5 (middle) and σb = 1 (right), together with the true weight function (in
black), shape (e), and the mean curve (in red).
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Figure C7: A random sample of 100 estimated weight functions (in grey) for the Uncons.
model (1st row), Constr. (2nd row) and Ridge model (3rd row), for scenarios σb = 0.05

(left), σb = 0.5 (middle) and σb = 1 (right), together with the true weight function (in
black), shape (f), and the mean curve (in red).
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Table C2: Simulation results for Nsim = 500 in each scenario setting, presented in terms
of mean RMSE and mean coverage (α = 0.05) of ht,tz ,z(tz), and RMSE of σb.

Data generation mechanism Model Mean RMSE Mean Coverage

WCE shape Heterogeneity ht,tz ,z(tz) σb ht,tz ,z(tz)

σb = 0.05 Uncons. 0.012 0.255 0.912
σb = 0.05 Constr. 0.010 0.254 0.837
σb = 0.05 Ridge 0.009 0.251 0.753

σb = 0.5 Uncons. 0.012 0.208 0.889
σb = 0.5 Constr. 0.011 0.208 0.804
σb = 0.5 Ridge 0.009 0.209 0.755

σb = 1 Uncons. 0.011 0.232 0.904
σb = 1 Constr. 0.010 0.232 0.830

(a) Exponential decay

σb = 1 Ridge 0.008 0.234 0.774

σb = 0.05 Uncons. 0.007 0.129 0.863
σb = 0.05 Constr. 0.006 0.128 0.898
σb = 0.05 Ridge 0.005 0.127 0.889

σb = 0.5 Uncons. 0.007 0.185 0.847
σb = 0.5 Constr. 0.007 0.187 0.874
σb = 0.5 Ridge 0.006 0.186 0.869

σb = 1 Uncons. 0.009 0.379 0.819
σb = 1 Constr. 0.008 0.381 0.851

(b) Bi−linear

σb = 1 Ridge 0.007 0.380 0.849

σb = 0.05 Uncons. 0.009 0.142 0.865
σb = 0.05 Constr. 0.009 0.142 0.839
σb = 0.05 Ridge 0.009 0.142 0.853

σb = 0.5 Uncons. 0.009 0.161 0.868
σb = 0.5 Constr. 0.009 0.161 0.844
σb = 0.5 Ridge 0.009 0.160 0.855

σb = 1 Uncons. 0.010 0.338 0.862
σb = 1 Constr. 0.009 0.338 0.844

(c) Early peak

σb = 1 Ridge 0.009 0.338 0.851
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Table C3: Simulation results forNsim = 500 in each scenario setting, presented in terms of
mean RMSE and mean coverage (α = 0.05) of ht,tz ,z(tz), and RMSE of σb (continuation).

Data generation mechanism Model Mean RMSE Mean Coverage

WCE shape Heterogeneity ht,tz ,z(tz) σb ht,tz ,z(tz)

σb = 0.05 Uncons. 0.009 0.130 0.888
σb = 0.05 Constr. 0.008 0.130 0.870
σb = 0.05 Ridge 0.008 0.128 0.750

σb = 0.5 Uncons. 0.010 0.181 0.839
σb = 0.5 Constr. 0.010 0.182 0.819
σb = 0.5 Ridge 0.009 0.184 0.684

σb = 1 Uncons. 0.011 0.385 0.818
σb = 1 Constr. 0.011 0.386 0.797

(d) Inverted U

σb = 1 Ridge 0.011 0.387 0.648

σb = 0.05 Uncons. 0.009 0.137 0.740
σb = 0.05 Constr. 0.009 0.138 0.728
σb = 0.05 Ridge 0.009 0.138 0.722

σb = 0.5 Uncons. 0.010 0.164 0.700
σb = 0.5 Constr. 0.009 0.162 0.698
σb = 0.5 Ridge 0.009 0.163 0.714

σb = 1 Uncons. 0.010 0.343 0.718
σb = 1 Constr. 0.010 0.341 0.704

(e) Constant

σb = 1 Ridge 0.009 0.342 0.718

σb = 0.05 Uncons. 0.011 0.134 0.854
σb = 0.05 Constr. 0.010 0.133 0.855
σb = 0.05 Ridge 0.010 0.135 0.861

σb = 0.5 Uncons. 0.011 0.167 0.850
σb = 0.5 Constr. 0.011 0.167 0.850
σb = 0.5 Ridge 0.010 0.163 0.861

σb = 1 Uncons. 0.012 0.346 0.858
σb = 1 Constr. 0.011 0.346 0.860

(f) Hat

σb = 1 Ridge 0.011 0.343 0.869
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Figure C8: Distribution of the RMSE of h(t, tz, z(tz)) across all simulation settings (Nsim =

500).
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Figure C9: Distribution of the 95% point-wise Coverage of h(t, tz, z(tz)) across all simu-
lation settings (Nsim = 500). The horizontal black line is set at a 0.95 nominal coverage
value.
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Figure C10: Distribution of the squared error of σb across all simulation settings (Nsim =

500).
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Table C4: Frequency of the models that yield best BIC and Deviance Explained in each
replication of the simulation, Nsim = 500, across all scenarios.

Data generation mechanism

WCE shape Heterogeneity Lowest
BIC
Uncons.
(%)

Lowest
BIC
Constr.
(%)

Lowest
BIC
Ridge
(%)

Largest
Dev.
Uncons.
(%)

Largest
Dev.
Constr.
(%)

Largest
Dev.
Ridge
(%)

σb = 0.05 3 18 79 76 15 9
σb = 0.5 4 20 76 78 16 6

(a) Exponential decay

σb = 1 5 18 77 77 21 2

σb = 0.05 5 17 78 68 16 16
σb = 0.5 2 35 63 62 8 29

(b) Bi−linear

σb = 1 2 34 64 65 8 27

σb = 0.05 2 18 80 79 7 14
σb = 0.5 3 29 68 66 6 28

(c) Early peak

σb = 1 3 24 73 66 9 25

σb = 0.05 6 18 76 70 16 14
σb = 0.5 4 18 77 72 14 14

(d) Inverted U

σb = 1 2 14 83 73 15 12

σb = 0.05 13 24 64 50 29 21
σb = 0.5 18 25 57 37 39 24

(e) Constant

σb = 1 21 23 56 34 51 15

σb = 0.05 4 31 65 60 5 36
σb = 0.5 9 51 41 30 7 63

(f) Hat

σb = 1 5 48 46 36 5 59
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C.2 Application to external training load data

C.2.1 Model specification and results

The log-hazard rate of player l of the model we fit is expressed as:

log(λ(t|zl(t), bl, i)) = β0 + f0(tj) + ztype session
l (tj)β1 + g1(z

Speed
l , t) + g2(z

Dist
l , t) + bl

∀t ∈ (κj−1, κj ], tj := κj and bl ∼ N(0, σb),

where:

• β0 + f0(tj) indicates the log-baseline hazard rate,

• z
type session
l (tj) the type of session undertaken by player l at tj (whether match or
training session),

• g1 and g2 are non-linear time-varying effects of the training load variables, i.e.
the cumulative effects defined as, ∫︁τSpeed(t) h(t − tz)z

Speed
l (tz)dtz and ∫︁τDist(t)

h(t −
tz)z

Dist
l (tz)dtz ,

• and bl a Gaussian random intercept term associated with player l.

The lag-lead windows are defined to be large enough to identify relevant past ex-
posure effects by fitting a PAMM with a ridge penalization. In this regard, we define
τSpeed(t) = τDist(t) = {tz : t > tz ∧ t < tz + 11}, meaning that all Speed and Dist values
recorded in the last 10 sessions prior to t (i.e. before threeweeks approximately) can affect
the hazard of injury at time t.
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Figure C11: Estimated partial effects for covariates Speed, ĥ1(t− tz)z1(tz), (left panel) and
for Dist, ĥ2(t − tz)z2(tz), (right panel) displayed over their respective lag-lead windows.
Note: lag-lead windows are cut for the sake of clarity.
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The estimated partial effects for different combinations of t and tz , with zSpeed(tz) =

3.9 ∀tz and zDist(tz) = 4700 ∀tz , and the resulting cumulative effects, ĝ(zSpeed, t) and
ĝ(zDist, t), are shown in Figures C11 and C12, respectively. In Table C5 the summary of
the estimated model coefficients is shown, and in Figure C13, the shapes of the estimated
smooth baseline and player random effect are shown.
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Figure C12: Estimated cumulative effects, ĝ(z1, t) = ĝ(zSpeed, t) and ĝ(z2, t) = ĝ(zDist, t),
for zSpeed(tz) = 3.9 ∀tz and zDist(tz) = 4700 ∀tz , respectively.

Table C5: Model summary.

A. parametric coefficients Estimate Std. Error t-value p-value
(Intercept) -7.2664 0.9198 -7.8997 < 0.0001
Type session:match 2.4481 0.2679 9.1371 < 0.0001
B. smooth terms edf Ref.df F-value p-value
Baseline 2.1280 2.6029 11.1358 0.0109
Speed cumulative effect 0.8981 1.1243 4.5324 0.0522
Dist cumulative effect 2.4947 2.9676 11.2029 0.0195
Player random effect 9.2944 35.0000 14.2589 0.0373

C.2.2 Comparison to conventional training load measures

We consider two measures widely used in the sports medicine and exercise physiology
literature, namely, ACWR with rolling averages and ACWR with EWMA, as well as the
unweighted sum of the past training exposures.

ACWR stands for acute chronic workload ratio and was introduced to model the rela-
tionship between changes in load and injury risk (Killen et al., 2010; Gabbett et al., 2016).
It is a ratio describing the acute training load (e.g. the training load of the last week) to
the chronic load (e.g. the training load of the last 4 weeks).
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Figure C13: Estimated log-baseline hazard, the shaded area representing the point-wise
95% confidence interval (left); and a quantile-quantile plot for the player random effect
(right).

The concept is based on Banister’s fitness-fatigue model (Banister and Calvert, 1980)
where the acute load dictates the “fatigue” state of an athlete, whereas the chronic load
dictates the athlete’s overall “fitness”. They are intended to reflect the athlete’s prepared-
ness.

The ACWR measure compares the load the athlete has performed (acute) relative to
the load the athlete has prepared for (chronic). The time frames (or windows) for acute
and chronic workloads represent the time needed to dissipate the negative (fatigue) and
positive (fitness) effects of training. In general terms:

ACWR :=
Acute Load
Chronic Load .

Commonly, and despite critiques, the rolling average has been the most frequently
usedmethod to account for the cumulative effects of training load, acute and chronic. The
rolling average of a training load variable denoted by z, over a n-sized time-lag window,
is defined by:

RAn,k(z) =
zk−n+1 + zk−n+2 + . . .+ zk

n
,

where k is the last value in the time-lag window.

Alternatively, exponentially weightedmoving averages (EWMA) have been proposed
to summarize the cumulative effects of training load. In this case, EWMA is defined as:

EWMAt(z) = zt · λa + (1− λa) · EWMAt−1(z),
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with the time decay constant typically defined by λa = 2
N+1 , whereN is 7 and 28 days, for

acute and chronic loads, respectively. This measure acknowledges the weekly variations
in load. The effect of training decays over time since it places "more weight" on recent
loads and less on distant ones in the past.

Then, one can compute ACWR using either rolling averages or EWMA to quantify the
acute and chronic load. Typically, 7 and 28 days are used, respectively, as the time-lag
windows of the acute (numerator) and chronic (denominator).

These measures have been largely discussed and criticised in the literature, as they
have several conceptual and mathematical limitations. We refer the reader to Wang et al.
(2020) for a thorough review and discussion.

In summary, the models we consider differ only in the definition of the cumulative
effects:

• ACWR (rolling avg.) model. All the model terms of the main model remain the
same except for the cumulative effects of zSpeed and zDist, which we replace with:

g(z, t) = ACWRt(z) =
RA7,t(z)

RA28,t(z)
.

• ACWR (EWMA) model. All the model terms of the main model remain the same
except for the cumulative effects of zSpeed and zDist, which we replace with:

g(z, t) = ACWRt(z) =
EWMA7,t(z)

EWMA28,t(z)
.

• Unweighted summodel. All themodel terms of themainmodel remain the same ex-
cept for the cumulative effects of zSpeed and zDist, which we define as the cumulative
(unweighted) sum of the past six exposures (sessions), i.e.:

g(zSpeed, t) =
tz>t−7∑︂
tz<t

zSpeed(tz) and g(zDist, t) =
tz>t−7∑︂
tz<t

zDist(tz).

To compare the model performance, we compute likelihood-based measures. The re-
sults are shown in Table C6, ordered from the best performance to the least, according to
the BIC measure.
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Table C6: Likelihood-based measures regarding the goodness-of-fit of the fitted models,
ordered according to BIC.

Model AIC Deviance Deviance Explained BIC

PAMMWCE ridge model 717.21 539.58 20.57 866.41
Unweighted sum model 802.74 628.49 7.48 924.92
ACWR (rolling avg.) model 804.24 625.67 7.89 950.49
ACWR (EWMA) model 796.74 616.54 9.24 951.02
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