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ABSTRACT
The Time-Invariant String Kernel (TISK) model of spoken word recognition (Hannagan, 
Magnuson & Grainger, 2013; You & Magnuson, 2018) is an interactive activation model 
with many similarities to TRACE (McClelland & Elman, 1986). However, by replacing 
most time-specific nodes in TRACE with time-invariant open-diphone nodes, TISK 
uses orders of magnitude fewer nodes and connections than TRACE. Although TISK 
performed remarkably similarly to TRACE in simulations reported by Hannagan et al., 
the original TISK implementation did not include lexical feedback, precluding simulation 
of top-down effects, and leaving open the possibility that adding feedback to TISK 
might fundamentally alter its performance. Here, we demonstrate that when lexical 
feedback is added to TISK, it gains the ability to simulate top-down effects without 
losing the ability to simulate the fundamental phenomena tested by Hannagan et al. 
Furthermore, with feedback, TISK demonstrates graceful degradation when noise is 
added to input, although parameters can be found that also promote (less) graceful 
degradation without feedback. We review arguments for and against feedback in 
cognitive architectures, and conclude that feedback provides a computationally 
efficient basis for robust constraint-based processing.
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1. INTRODUCTION
Consider the speech signal. A series of rapid, overlapping articulatory events creates acoustic 
patterns that human listeners can map onto series of segments (consonants and vowels). 
Cues to word boundaries are rare and probabilistic; clear breaks in the signal are more likely 
to occur within words than between words in fluent speech (Cole, Jakimik, & Cooper, 1980; 
Lehiste, 1960). Even if listeners could perfectly extract a speaker’s intended segments from the 
speech signal in a bottom-up fashion (a virtual impossibility given phonetic and phonological 
processes such as coarticulation, assimilation, and reduction), considerable challenges would 
remain. Segment sequences must be mapped onto words in memory. Words are distinguished 
by order (the orderings of /k/, /æ/, and /t/ as /kæt/, /tæk/ and /ækt/ correspond to CAT, TACK, 
and ACT) and elements can be repeated (e.g., /to/ vs. /tot/, i.e., TOE vs. TOTE), so the encoding 
scheme for spoken word recognition must represent order and repeated elements. Recognition 
of embedded words must be avoided; when CATALOG is uttered, listeners hear the intended 
word, and are apparently unaware that they have also heard patterns that correspond to CAT, 
AT, A, CATTLE, LAW, and LOG (depending on dialect), or even a possible 3-word sequence (CAT 
A LOG). The system must tolerate variability that emerges from phonological processes such 
as assimilation that merge or alter phonetic properties of segments (e.g., GREEN BEAN may 
be realized as /grimbin/; e.g., Gow, 2003), and reductions that alter segments (e.g., TO as /tə/, 
or KIND OF as /kaində/) or even remove them. For example, RECOGNIZE SPEECH may reduce 
to /rɛk^naispit∫/. At first, one might consider that such an example could be disambiguated 
lexically, except that a plausible alternative parse would be WRECK A NICE BEACH (Picone, 
Goudie-Marshall, Doddington, & Fisher, 1986). In such cases, a broader semantic context might 
be needed to constrain lexical mapping and arrive at the correct parse.

In grappling with these challenges, theories of spoken word recognition have come to agree on 
three fundamental principles: As a word is heard (incrementality), words are activated (or their 
probability is estimated; Norris & McQueen, 2008) based on degree of phonetic overlap with the 
input and their prior probability (probabilistic similarity mapping), and activated words compete 
for recognition (parallel competition).1 Theories differ in similarity metrics, and in the mechanisms 
they posit for achieving parallel activation and implementing and resolving competition (ranging 
from lateral inhibition to bottom-up or top-down inhibition, or competition implicit in Bayesian 
normalization; for a review, see Magnuson, Mirman & Harris, 2012). However, a particularly 
vexing problem is how to deal with the sequential nature of speech, as we discuss next.

1.1. THE PROBLEM OF SEQUENCE ENCODING

Sequence encoding is a fundamental challenge for models of spoken word recognition; speech 
unfolds over time, and representing phonological word forms entails representing temporal 
order (CAT vs. TACK, i.e., /kæt/ vs. /tæk/) and repeated elements (SOUL vs. SOLO, i.e., /sol/ vs. 
/solo/). To illustrate this challenge, consider the simple network in Figure 1. Here, the only 
connections are forward ones from phoneme nodes to word nodes. Note that such a network 
cannot encode temporal order. Any word node receiving input from /k/, /æ/, and /t/ in any order 
(i.e., ACT /ækt/, CAT /kæt/, TACK /tæk/, or nonwords /tkæ/, /ktæ/, or /ætk/) would be equally 
activated by any ordering of the three phonemes. Neither could such a network distinguish 
words with the same constituent phonemes but differing in repeated elements (SOUL vs. SOLO). 
The second /o/ in /solo/ would simply be more evidence that /o/ had occurred; the network 
cannot represent two instances of /o/ in different temporal positions.

1	 Shortlist B (Norris & McQueen, 2008) is a provocative outlier both in its rejection of considering ‘activation’ 
in favor of probability, but also the lack of an explicit competition mechanism; when probabilities are calculated, 
‘competition’ is implied from the zero-sum ‘game’ of calculating probabilities.

Figure 1 A simple word 
recognition network incapable 
of encoding temporal order 
or repeated phonemes 
(Magnuson, 2018a).
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Note that a model like this could be used to investigate many aspects of word recognition. 
In fact, the Merge model (Norris et al., 2000) has this structure (as well as lateral inhibition), 
and can simulate many important aspects of spoken word recognition, despite being unable 
to encode order or repeated elements. Avoiding these challenges can only be a temporary 
simplifying assumption, however. Ultimately, models of spoken word recognition must grapple 
with the representation of order and repeated elements.

The TRACE model (McClelland & Elman, 1986) takes an innovative approach to the problem. 
TRACE translates time to space, by creating time-specific duplicates of feature, phoneme, and 
word nodes. A template for CAT is maximally activated by strongly activated /k/, /æ/,2 and /t/ 
phonemes aligned with a word node standing for CAT.

Figure 2 contains a schematic outlining the complex relationships between feature, phoneme, 
and word nodes in TRACE. At the bottom of the figure, black cells stand in for the distributed 
vector of pseudo-spectral representations used as TRACE inputs. Their horizontal extent 
represents their temporal extent. Although feature patterns for adjacent phonemes overlap 
in TRACE (providing a coarse analog to coarticulation), for the sake of simplicity, we do not 
attempt to depict that overlap here.

At each time step t in a TRACE simulation, pseudo-spectral input patterns are applied. Feature 
nodes aligned with input slice t (that is, time-specific feature nodes) are activated by the 
bottom-up input at time t. Subsequently (from step t + 1 onward), bottom-up input is not applied 
at slice t. However, feature detectors aligned at slice t that were activated by input continue 
to be active for many time steps, because their activations are a summative combination 
of their bottom-up input and previous activation. The latter is scaled by a decay parameter, 
such that a unit’s activation will eventually diminish to a defined baseline level in the absence 
of new input. Similarly, phoneme nodes are aligned at specific time slices, and receive input 

2	 TRACE only has 14 phonemes; typically, instances of /æ/ are coded as /a/ in TRACE.

Figure 2 TRACE’s time-as-
space encoding (Magnuson, 
2018b). At the bottom, inputs 
corresponding to /k/, /æ/, and 
/t/ have specific alignments 
(in TRACE, these would be 
distributed representations 
of over-time pseudo-spectral 
features). Those inputs 
activate phoneme templates 
aligned with them, which in 
turn activate aligned words. 
Darkness of shading indicates 
degree of activation. The 
maximally-activated copies 
of CAB, CAT and TAB are 
those aligned with the input, 
though degree of activation 
reflects amount and temporal 
distribution of phonetic 
overlap (CAB > CAT > TAB).
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from feature nodes aligned with them in time. As long as the aligned feature nodes are active, 
the aligned phoneme nodes will receive bottom-up input. Phoneme nodes’ activations are a 
function of bottom-up input and decay-scaled prior activation, as well as lateral inhibition from 
other phoneme nodes with which they overlap in time, and lexical feedback (described below). 
Phoneme nodes send bottom-up activation to nodes corresponding to words containing them 
that are aligned (at least partially) in time with the phoneme node. Word nodes also send 
feedback to phoneme nodes that send them bottom-up input. As “time” progresses in a TRACE 
simulation, inputs aligned with specific time points activate aligned features, phonemes, and 
words. This time-specific “reduplication” strategy – aligning copies of each feature, phoneme, 
and word in memory with specific time points – allows TRACE to represent temporally ordered 
sequences, including sequences with repeated elements. Thus, given the input /dæd/ (DAD), 
the first and second instances of /d/ would activate independent /d/ nodes.

This reduplication strategy is frequently criticized. Indeed, McClelland and Elman (1986) 
discussed plausibility concerns (p. 77). Some have argued that this scheme is simply implausible 
(e.g., Grossberg & Kazerounian, 2011; Norris, 1994), largely because of the numbers of nodes and 
connections it would take to implement a realistic phoneme inventory and lexicon. Magnuson 
(2015) presents a case for the TRACE architecture as a kind of echoic memory. Hannagan et al. 
(2013) estimate how many nodes and connections a realistically-sized version of TRACE would 
require, and estimate that a version with 40 phonemes and 20,000 words would require ~1.3 
million nodes and more than 40 billion connections. Given estimates that the human brain 
contains approximately 86 billion neurons and 150 trillion synapses (Azevedo et al., 2009), it is 
not clear that we can rule out the TRACE solution based on intuitions about the plausibility of 
numbers of units and connections required. However, it does raise the question of whether a 
more compact representation might be possible, which leads us to a discussion of the TISK model.

1.2. ORIGINS AND INNOVATIONS OF TISK

The idea of TISK originally came from discussions between Jonathan Grainger and TH, and 
eventually included JM. The aim was to keep the explanatory power of the TRACE model while 
dispensing with its duplicated time-specific units. Hannagan et al. (2013), inspired by models of 
visual word recognition developed by Grainger and others using open bigram codes (Whitney, 
2001; Grainger & van Heuven, 2003; Dehaene et al., 2005), asked whether a simpler interactive 
activation model of spoken word recognition could be implemented with a variant of open diphone 
coding. Open diphones are adjacent or non-adjacent phoneme pairs that occur in a string. For 
example, the (ordered) open diphones of ACT (/ækt/) are /æk/, /kt/, and /æt/ (see Table 1 for several 
more examples). As it turns out, such lists are highly distinctive. To encode the lists in a length-
independent fashion, we can create a phoneme × phoneme matrix (corresponding to all possible 
diphones),3 and simply enter the count of each diphone for a word. This then is a kind of string 
kernel4 for words: we can manipulate or compare representations of words of any size through 
vector/matrix operations (i.e., the operations are identical since they are computed over matrices).

TISK’s architecture is presented schematically in Figure 3. Time-specific phoneme input nodes 
feed to time-invariant N-phone nodes (corresponding single phone and diphone nodes), but 
via what Hannagan et al. dubbed a symmetry network (in recognition of prior work on the topic 
by Shawe-Taylor, 1993). The symmetry network does not activate all open diphones equally. 
It privileges ordered diphones and activation is inversely proportional to distance between 
diphone members (e.g., /st/ would be less activated by SPOT than STOP). This followed work 
by Dandurand, Hannagan and Grainger (2013) showing that weight gradients can emerge in 

3	 If we include a “blank” for the second position, we can also encode each single phoneme in a word, crucially 
providing a means for including words consisting of a single phoneme.

4	 A kernel function in mathematics translates a mapping (typically, a nonlinear mapping) to a matrix form 
where the original function can be expressed as a matrix operation (typically inner product). A string kernel is 
a variant of this where the mapping is between strings. For words, one of the key challenges this addresses is 
differences in word length. If we can recode words as the frequencies of occurrences of distinct diphones (in a 
phoneme-by-phoneme matrix, or as bigrams in a letter-by-letter matrix for visual words), we translate each word 
to a same-dimensional object (the element-by-element matrix). Then we can potentially compute things like 
word-to-word similarity using matrix operations. In TISK, we also leverage this idea to recode the ‘templates’ for 
words as the set of ordered (open) diphones they contain (open diphones allow gaps between phoneme pairs, 
such that /kæt/ has the ordered open diphones /kæ/, /kt/, and /æt/). This is what allows TISK to replace the large 
number of reduplicated, time-specific phoneme and word templates required by TRACE with time-invariant open 
diphones (as well as phoneme nodes).
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models of visual word recognition trained to be invariant to the location of the word input on 
a simulated retina. It also built on work by Hannagan and Grainger (2012), who noticed the 
similarity between N-gram schemes for visual word recognition, and a versatile technique called 
“string kernels” that has been used in text classification (Lodhi et al. 2002) and computational 
biology (Leslie & Kuang, 2004). Building on these two strands of work, the TISK symmetry network 
uses weight gradients as well as gating connections to accurately activate N-phone nodes, even 
in the presence of repeated phonemes. For more details about the symmetry network and TISK 
more generally, see Hannagan et al. (2013). Note that the full code for TISK is freely available 
(You & Magnuson, 2018; https://github.com/maglab-uconn/TISK1.0; also, updated code from 
this project is also available at https://github.com/maglab-uconn/TISK_FEEDBACK).

TISK thus may be viewed as a potential successor to or extension of TRACE that addresses the 
critique of time-specific nodes. However, TISK has not been tested on the entire broad range of 
results that TRACE accounts for (Magnuson & Crinnion, 2022). Hannagan et al. (2013) focused 
on a subset of particularly critical phenomena in spoken word recognition (the time course of 
phonological competition, and the relations between a variety of lexical dimensions and recognition 
time in TISK vs. TRACE) to establish initial plausibility of the model. However, they did not consider 
a broad class of phenomena in spoken word recognition that have particular relevance for ongoing 
theoretical debates: apparent top-down lexical effects. Our primary goal here is to address this gap.

1.3. FEEDBACK AND THEORIES OF SPOKEN WORD RECOGNITION

A particularly salient point of disagreement in theories of spoken word recognition concerns top-
down feedback from words to sublexical representations. TRACE (McClelland & Elman, 1986) is 
an interactive-activation model with arguably the deepest and broadest coverage of spoken 
word recognition (cf. Magnuson et al., 2012, Magnuson & Crinnion, 2021). Top-down effects in 
TRACE emerge from lexical-phonemic feedback. In contrast, Norris, McQueen, and Cutler (2000; 

Figure 3 Overall TISK 
architecture (Figure 3 from 
Hannagan et al., 2013). Inputs 
are presented one at a time 
on time-specific copies of each 
possible phoneme. Phonemes 
activate corresponding 
diphones and single nodes in 
the N-phone layer. N-phone 
units activate corresponding 
words. Lateral inhibition 
governs lexical competition 
(indicated by knobbed 
recurrent link in top right). The 
greyed out arrow from words 
to N-phones indicated that 
the original TISK model did not 
have lexical feedback (which is 
the only structural alteration 
in the model introduced in 
this paper). The symmetry 
network (not shown; see 
Figure 4 from Hannagan et al., 
2013) allows an input like /ba/ 
to activate both the /ba/ and 
/ab/ diphones, but activates 
the diphone corresponding to 
the input order much more 
strongly. See Hannagan et al. 
(2013, pp. 5–6) for details.

WORD ORDERED OPEN DIPHONES

CAT kæ, kt, æt

TACK tæ, tk, æk

ACT æk, æt, kt

DAD dæ, dd, æd

ADD æd

SOUL so, sl, ol

SOLO so x 2, sl, ol, oo

Table 1 Examples of ordered 
open diphones.

https://github.com/maglab-uconn/TISK1.0
https://github.com/maglab-uconn/TISK_FEEDBACK


6Magnuson et al.  
Journal of Cognition  
DOI: 10.5334/joc.362

see also 2016) have argued that purely feedforward systems can do anything a feedback system 
can do, so long as they include a mechanism for post-perceptual behavior consistent with top-
down influences (e.g., via post-lexical integration of phonemic input and lexical knowledge). As 
TISK is a derivative of TRACE, our goal here is to make TISK more comparable to TRACE and 
assess the possibility of adding feedback to TISK. Without feedback, top-down effects are out 
of scope for TISK. We will return briefly to theoretical disagreements concerning feedback in the 
Discussion.

Consider two important top-down effects in spoken word recognition. First, there is the Ganong 
(1980) effect, where phoneme identification is influenced by lexical status. For example, compared 
to a nonword continuum between iss and ish, where participants are asked to identify the final 
consonant, identification shifts towards /s/ if the continuum is instead between a word and 
nonword pair like kiss-*kish, but towards /∫/ given *fiss-fish. Thus, either lexical context modulates 
phonetic perception (the interactive or feedback assumption), or it has a post-perceptual 
influence on responses (the feedforward assumption). Another fundamental top-down effect 
in spoken word recognition is phoneme restoration (Samuel, 1981a, 1981b, 1996, 1997; Warren, 
1970). If a phoneme in a word is replaced by silence, it leaves a salient gap, and participants 
have no trouble reporting that the word is not intact and can identify which phoneme is missing. 
In contrast, when a phoneme is replaced by noise, participants typically report that the word 
is intact but has noise added to it. They have difficulty specifying which phoneme the noise is 
aligned with, and report perception consistent with lexical context (e.g., if noise, denoted as #, 
replaces a phoneme in the word after, the noise is heard as /t/ in /æf#^r/ but as /f/ in /æ#t^r/). 
This implies that noise provides enough bottom-up support for the missing phoneme to be filled 
in, either perceptually via lexical feedback or via post-perceptual lexical integration.

While such top-down effects are quite salient, a less obvious benefit of feedback is to make 
models more robust to noise. Top-down feedback (in concert with lateral inhibition in TRACE; 
Magnuson et al., 2024) promotes accuracy and faster processing given noisy inputs (Magnuson 
et al., 2018). While more subtle, this may be the more important impact of feedback.

2. ADDING LEXICAL FEEDBACK TO TISK
Again, there are several reasons to add feedback to TISK. Any comprehensive model of spoken 
word recognition must be able to account for top-down effects, and feedback allows TRACE to 
plausibly simulate many such effects (McClelland & Elman, 1986). As discussed above, however, 
at least some effects considered to be “top-down” can be simulated without feedback (Norris 
et al., 2000). However, graceful degradation is another important motivation for feedback in 
interactive activation models (Dell, Chang & Griffin, 1999; McClelland & Elman, 1986 [e.g., pp. 
6–7]; McClelland & Rumelhart, 1981, 1989), which turns out to have important implications 
for the feedback vs. autonomy debate. Graceful degradation seems to be less familiar to most 
cognitive scientists (e.g., it received no discussion in the Norris et al., 2000, target article or 
in the accompanying commentaries), although it is one of the original, primary motivations 
for feedback in interactive activation models (for example, when noise is added to inputs, 
feedback promotes gradual declines in performance rather than an abrupt collapse; McClelland 
& Rumelhart, 1981).

These points direct us to a clear agenda for simulations with feedback (from words to 
N-phones) added to TISK. First, can we identify a non-zero feedback parameter that will (a) 
afford plausible top-down effects while allowing robust word recognition, without impeding 
the model’s ability to simulate the phenomena attested by Hannagan et al. (2013), including 
(b) the time course of phonological competition and (c) item-specific correlations with TRACE 
and (d) lexical dimensions (word length, numbers of different competitor types, etc.)? Finally, 
(e) will feedback in TISK allow the model to exhibit graceful degradation given noisy inputs 
(i.e., will feedback preserve accuracy and processing efficiency)? We address these issues in 
the following order: parameter discovery, replication of earlier simulations (time course, similar 
item-specific recognition times as for the original TISK model and TRACE, similar item-specific 
correlations with lexical dimensions), simulations of crucial top-down phenomena in spoken 
word recognition, and performance in noise (testing for graceful degradation). All code required 
to reproduce our simulations, analyses, and figures is available at https://github.com/maglab-
uconn/TISK_FEEDBACK.

https://github.com/maglab-uconn/TISK_FEEDBACK
https://github.com/maglab-uconn/TISK_FEEDBACK
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2.1. SIMULATION 1: TIME COURSE AND LEXICAL DIMENSIONS

2.1.1. Parameters

We used a trial-and-error process for parameter exploration. We began with a value of positive 
feedback from words to their constituent N-phones. We assessed mean accuracy over the 
211-word (original TRACE) lexicon, and if accuracy was lower than approximately 80%, we 
examined errors for clues as to what was impeding accuracy. If we found a parameter setting 
that would allow reasonable accuracy, we then examined the model’s ability to simulate top-
down effects (with phenomena like those discussed below). If feedback was not strong enough 
for plausible top-down effects, or if error patterns implied parameter changes were needed, 
we would adjust parameters and retest. We iterated this process, gradually increasing our 
accuracy threshold.

After a few iterations, we determined that there were three key parameters that could be 
adjusted to provide the full complement of desired outcomes (a–e above). First, of course, we 
needed positive feedback from words to constituent N-phones. Second, feedback tended to 
cause resonance between word and N-phone layers that would lead to the activation of too 
many words. For example, given the input /dal/ (DOLL), the lexical node for DOLL would send 
feedback to /d/, /a/, /l/, /da/, /dl/, and /al/ nodes at the N-phone level. These would enhance 
activation of doll, but also any word containing any of these elements (e.g., SADDLE and DRILL 
would contain /dl/), allowing them to send feedback to elements that had not occurred. We 
discovered that we could avoid “runaway” activation by both increasing decay at the N-phone 
level and by including a small amount of negative feedback to a word’s non-constituents (i.e., a 
small amount of inhibition to every N-phone or single phone that is not part of a word, similar 
to top-down inhibition in early interactive activation models, e.g., McClelland & Rumelhart, 
1981). Table 2 lists key parameters we considered altering, with the three parameters that 
were ultimately altered in bold font. We have not searched the parameter space exhaustively. 
However, our explorations suggest that stable performance requires ratios among parameters 
similar to those in Table 2.

We also considered that the original TISK parameters might not provide the best possible 
performance in noise without feedback. We therefore explored the parameter space without 
feedback with the aim of finding parameters that would allow the model to continue to exhibit 
fundamental target behaviors described below while maximizing performance in noise. We 
present details of our parameter space exploration for models with and without feedback in 
Appendix 1. For now, because the most robust parameters for the model without feedback differ 
from the original TISK parameters, we will present results in the following simulations using the 
new parameter set (while noting that the original TISK model and the version with feedback and 
parameters optimized for graceful degradation differ only slightly and qualitatively in the following 
simulations – with the exception, of course, of the final graceful degradation simulations).

Before turning to top-down effects, let us consider whether TISK performs similarly with and 
without feedback on the tasks evaluated by Hannagan et al. (2013). Figure 4 addresses this 
by first examining mean activation over time for different categories of potential phonological 

PARAMETER ORIGINAL TISK OPTIMIZED 
WITHOUT FEEDBACK

OPTIMIZED WITH 
FEEDBACK

Input phoneme decay 0.010 0.001 0.001

N-phone decay 0.001 0.001 0.100

Word decay 0.010 0.050 0.050

Phoneme to N-phone 1.000 0.100 0.100

Diphone to word 0.050 0.050 0.050

Single phone to word 0.010 0.010 0.010

Word to word inhibition –0.005 –0.005 –0.010

Positive word to N-phone feedback 0.150

Negative word to N-phone feedback –0.050

Table 2 Original (without 
feedback) parameters for TISK, 
and parameters that promote 
high performance with 
feedback. Parameters in the 

‘optimized without feedback’ 
column that differ from 
original parameters are in bold. 
Parameters in the ‘optimized 
with feedback’ column that 
differ from parameters in the 

‘optimized without feedback’ 
and/or ‘original TISK’ columns 
are also in bold.
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relatives. To conduct this comparison, we conducted 211 simulations with TRACE and with two 
versions (with and without feedback) of TISK. For each model, there were 211 simulations (one 
for each word in the original TRACE lexicon). For every target word, we tracked target activation 
over time, as well as the mean activation of every item in two categories of phonological 
relatives (cohorts and rhymes) over time (e.g., for /dal/, the activation of every word beginning 
/da/ would be included in the [onset] cohort mean, and every three-phoneme word ending 
in /al/ would be in the rhyme category). If a word had no relatives in a category, it would 
not contribute to the mean for that category. As a baseline reference, we simply tracked the 
mean activation of all words; given 211 words, this mean approaches the minimum possible 
activation value. Although the mean values are somewhat damped when feedback is added 
to TISK, the crucial consideration is that the rank ordering of competitors is similar for all three 
models.5

Figure 5 extends our examination of how similar the performance of TISK is (with and without 
feedback) to TRACE by comparing item-specific recognition times (RTs) for each model. 
Recognition time was operationalized as the cycle at which the target word exceeded all other 

5	 The models differ in that 0.0 is the lowest possible activation in TISK while activations can become 
negative in TRACE; hence, rank order is the crucial concern. Note that negative activations in TRACE can be easily 
transformed to positive predictions using, e.g., the Luce choice rule (R.D. Luce, 1959; cf. Allopenna, Magnuson, & 
Tanenhaus, 1998).

Figure 4 Mean time course for 
targets and different classes 
of competitors in TRACE 
and TISK with and without 
feedback (including the original 
model, as well as the version 
with parameters ‘optimized’ 
for graceful degradation, as 
detailed later). Each line 
represents the mean for a 
class of items over all 211 
words in the original TRACE 
lexicon. Cohorts overlap in the 
first two phonemes. Rhymes 
overlap in all but the first 
phoneme. Unrelated is the 
mean activation of all words 
in the lexicon. Ribbons indicate 
standard error.
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word’s activations by at least 0.05 and then continued to exceed all others by that amount for 
at least 10 cycles (cf. Hannagan et al., 2013), and subsequently remained the most activated 
word until the end of the simulation. Mean accuracies were 100% for TRACE, 99% for the original 
TISK without feedback (TISK), and 97% for TISK with feedback (TISKfb). As can be seen in Figure 
5, item-specific RTs for correctly recognized items were remarkably similar for the three models.

Figure 6 goes deeper by examining how item-specific RTs in the three models (plus a fourth 
variant: TISK without feedback with parameters optimized for accuracy in noise, as described 
in Simulation 5) relate to several lexical dimensions: word length (in phonemes), number of 
embeddings (words embedded in the target, e.g., CAT has AT embedded within it), number of 
cohort (onset) competitors (overlapping in the first two phonemes), number of “ex-embeddings” 
(words the target embeds within, e.g., CAT embeds within CATALOG), number of “DAS” neighbors 
(i.e., words differing from the target by a single phonemic deletion, addition, or substitution; 
Luce & Pisoni, 1998), and number of “rhyme” items (words differing from the target only in first 
position, whether by deletion, addition, or substitution; e.g., CAT’s rhymes include SCAT, BAT, 
MAT, SAT, and AT). The dimensions are ordered according to the sign and magnitude of their 
prediction on RT; longer words are recognized more slowly, having more embeddings or cohorts 
is associated with slower RT, and having more ex-embeddings, neighbors or rhymes is associated 
with faster RT. The potential reasons for these relationships is beyond the scope of this paper 
(Magnuson, in preparation, discusses this in detail); our focus is instead the similarities between 
models. All models show the similar patterns, and are even generally similar in the strength of 
each correlation (although TISK without feedback with parameters optimized for performance in 
noise [third row] differs for ex-embeddings, neighbors and rhymes, as we discuss in Section 2.5).

The results from Simulation 1 demonstrate that we can add feedback to TISK without disrupting 
the model’s similarity to TRACE. The time course of different kinds of phonological competition 
are quite similar, and TISK retains its high similarity to TRACE in item-specific RTs with feedback 
on, and there are only very subtle quantitative differences in item-specific RTs between TISK 
with and without feedback apparent in our examination of how a variety of lexical dimensions 
relate to recognition time. With this fundamental consideration of prior results resolved, we can 
turn to the details of specific top-down effects.

2.2. SIMULATION 2: GANONG EFFECT

For Simulation 2, we compared the ability of TISK with and without feedback to simulate the 
Ganong effect (Ganong, 1980). In the Ganong paradigm, we begin with a continuum from one 
phoneme to another (e.g., changing gradually from /s/ to /∫/, e.g., ess to esh) and establish a baseline 
identification pattern across the continuum (e.g., rate of “s” [vs. “sh”] responses at each step). If 
we add context such that the continuum changes from a word to a nonword (e.g., from bus /b^s/ 
to *buhsh /b^∫/, or from *russ /r^s/ to rush /r^∫/), human listeners’ identification rates will change. 
Specifically, they will make more responses consistent with the lexical endpoint, typically shifting 
the category boundary away from the lexical endpoint (e.g., for /b^s to /b^∫/, they will make more 
“s” responses, and the shift to “sh” responses will happen closer to the unambiguous /∫/ endpoint).

To simulate the Ganong effect with TISK, we selected ten 4-phoneme words from the lexicon 
(appeal, box, boost, duty, greet, least, school, shield, screw, and ugly). For each word, we conducted 
a Ganong simulation at each position by creating nonwords replacing the phoneme at the critical 
position, and then creating a continuum blending from the original phoneme to the replacement. 
For example, for /duti/ (duty), we created continua between /duti/ and four nonwords: /buti/, 

Figure 5 RT correlations 
for original TISK (without 
feedback), TISKfb (TISK with 
feedback), and TRACE. Left 
panel: TISKfb vs. TISK. Middle 
panel: TISKfb vs. TRACE. Right 
panel: original TISK vs. TRACE. 
Diagonal grey lines indicate 
the identity line, dashed lines 
indicate best linear fit.



Figure 6 item-specific RTs in TRACE, TISKfb (with feedback), TISK without feedback with parameters optimized for noise, and original 
TISK (without feedback), as a function of lexical dimensions for the 211-word TRACE lexicon. Dimensions: Length is number of phonemes, 
Embeddings is how many words embed within the target word (e.g., CAB and IN embed in CABINET), Onset competitors are cohorts (words 
overlapping in the first two phonemes), ex-Embeddings are the number of words the target word embeds into (e.g., CAB embeds in CABINET, 
CABARET, etc.), Neighbors are the number of words differing from the target by no more than a 1-phoneme deletion, addition, or substitution 
(so-called DAS neighbors), and Rhymes items are items that mismatch the target only at the first phoneme (by deletion, addition, or 
substitution; e.g., for CAT, these would include AT, SCAT, and BAT).

Figure 7 Lexical effects on phoneme activations (Ganong effects) for ten 4-phoneme words (Simulation 2). We observe robust Ganong effects 
(lexical restoration) at each position with lexical feedback enabled, with stronger effects in later positions. The key results are that (a) greater 
ambiguity is apparent for continuum steps near the nonword endpoint and (b) the upward shift for the center continuum step (4). Error ribbons 
indicate standard error.
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/d^ti/, /duri/, and /dut^/. So in Figure 7, for the Position 4 panel, the relevant simulation for /
duti/ would be the /duti/ to /dut^/ continuum. We aggregated results by averaging activations 
of the lexically-consistent phoneme and its nonword replacement, and calculating ‘predicted 
proportion of choices’ as the ratio of the peak activations for those two phonemes. In Figure 7, we 
observe robust Ganong effects (lexical restoration) at each position in the model with feedback, 
with stronger effects in later positions (consistent with TRACE simulations of phoneme restoration 
in TRACE reported by Magnuson, 2015). This increase of the effect at later positions is a result of 
greater lexical activation as more bottom-up input is received. Thus, feedback allows TISK to 
simulate the Ganong (lexically-driven phoneme restoration) effect.

2.3. SIMULATION 3: RETROACTIVE EFFECTS OF FEEDBACK

In Simulation 3, we focus on retroactive influences of lexical feedback on the activation of 
phonemes given ambiguous input, where the disambiguating lexical context only emerged 
at the final phoneme (so-called right-context effects; see simulations described by McClelland 
& Elman [1986] on the following pages for related results: pp. 27, 29, 30 [their Figures 8–11]; 
pp. 66–69). For this simulation, we used the lexical items plug and blush. If we replace the 
onsets of these items with a stimulus halfway between /p/ and /b/ (denoted by /#/), we create 
an ambiguity that will be sustained until the final phoneme is presented. We conducted 
simulations where the inputs were either the clear lexical inputs /pl^g/ or /bl^∫/ to establish 
baseline activations for /p/ and /b/ (we added blush to the TRACE lexicon for this simulation; 
note also that plush was not in the lexicon). Then we conducted simulations where the input 
was /#l^g/ (disambiguated as plug at the final phoneme) or /#l^∫/ (disambiguated as blush at 
the final phoneme).

The results are plotted in Figure 8. Left panels show results with the _lug context (either /pl^g/ 
when it is intact, or /#l^g/ when it is ambiguous); right panels show results with the _lush 
context (/bl^∫/ when it is intact, or /#l^∫/ when it is ambiguous). Upper panels show results with 
feedback; lower panels show results without feedback. In each panel, we plot activations for 

Figure 8 Retroactive phoneme 
restoration by following 
context (Simulation 3). In the 
lexicon, plug and blush are 
words, but *blug and *plush 
are not (even though plush 
is a word in English). Note 
that the delayed activations 
of ambiguous phonemes is 
due to failure to reach the 
activation threshold from the 
initial input. The discrete delay 
of 10 cycles is due to new TISK 
inputs ‘arriving’ every 10 cycles.
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/p/ and /b/ given intact vs. ambiguous inputs. Without feedback (lower panels), lexical contexts 
have no effects, and the ambiguous stimuli drive equivalent activations of /p/ and /b/. With 
feedback (upper panels), the initial phase of activation is identical for both contexts because 
it is driven purely by the bottom-up input. As more context arrives, we see changes primarily 
in diminished decay of lexically-consistent phonemes (e.g., ambiguous /p/ in the upper left 
panel). However, the effects are different for the two ambiguous contexts, with differences 
emerging around cycle 20. The initial differences are stronger activation of /p/ than /b/ prior 
to disambiguation. This occurs because there are more words that begin with /p/ than /b/ in 
the model’s lexicon. The effects are stronger for the _lush context; this emerges because there 
are 4 items with the diphone /^S/ in the lexicon, but 7 with /^g/. Since the items activated 
by feedback will compete with the ambiguous onset position, having a smaller number of 
items sharing the pattern leads to greater ultimate activation. Thus, Simulation 3 shows clear 
retroactive effects of feedback.

2.4. SIMULATION 4: PHONEME RESTORATION

In Simulation 4, we turn to another classic top-down effect using an analog to the phoneme 
restoration paradigm (Samuel, 1981a,b, 1996, 1997; Warren, 1970). In a phoneme restoration 
paradigm, a phoneme is replaced either with noise or with silence (typically in a lexical 
context where there is only one possible completion for the replaced phoneme, e.g., #uxury 
or _uxury [where # indicates noise and _ indicates silence] can only be restored as luxury). 
The two kinds of replacement yield very different effects. If a phoneme is replaced by noise, 
a listener typically reports hearing all the phonemes in the word, and will likely have difficulty 
identifying the precise location of the noise. If a phoneme is replaced by silence, the gap is 
salient, and listeners can report the precise location of the silence and which specific phoneme 
is missing. Another difference is that noise-replaced phonemes can drive selective adaptation 
(Samuel, 1997), as though the actual phoneme had been repeated, but silence cannot. The 
interpretation of this pattern is that noise provides sufficient bottom-up activation that the 
missing phoneme is “filled in” by feedback. As a result, the listener not only cannot reliably 
report which phoneme has been replaced, but is uncertain of the position of the noise. This 
means that the critical pattern a model must be able to simulate is (a) robust activation of a 
lexically-consistent phoneme when it is replaced with noise, but (b) weak or absent activation 
when it is replaced with silence (see Grossberg & Kazerounian, 2011, 2016 and Magnuson, 
2015, for a debate about how phoneme restoration should be modeled).

To test TISK’s ability to simulate phoneme restoration with and without feedback, we used the 
same ten 4-phoneme words from Simulation 2. For each item, we conducted 48 simulations; 
2 models (feedback of no feedback) × 4 phoneme positions × 6 input types (intact phoneme, 
silence replacement [the phoneme replaced by zero input], or noise replacement [silence plus 
noise with standard deviation of 0.2, 0.3, 0.4, or 0.8]). We examined the activations of the 
“expected” phonemes each position (e.g., /d/, /u/, /t/, and /i/ for duty) when they were intact 
versus when they were replaced with silence or increasingly strong noise. Again, in a successful 
simulation, replaced phonemes should be robustly activated given sufficient noise input, but 
should be activated weakly or not at all given replacement with silence.

The results are shown in Figure 9. First, consider the results without feedback (top row). There 
is no activation whatsoever of the replaced phoneme given silence replacement or noise with 
standard deviation of 0.2, and slightly graded activations given noise, very near the level of 
activation observed for intact phonemes.6 In contrast, large lexical effects are readily apparent 
with feedback (bottom row). Noise with SD greater than 0.2 drives robust activation of the 
‘expected’ phoneme on average, but activations from noise are much lower than activations 
from intact phonemes. Thus, TISK with feedback generates a plausible pattern of results that 
are transparently linkable to results with human subjects.

6	 Noise with SD > 0.2 drives similar phoneme activations as intact phonemes in TISK without feedback due to 
the threshold function governing activation. When the noise SD is 0.2 or less, total input to the phoneme node (a 
combination of bottom-up input and its own previous state adjusted by decay) does not reach threshold and so 
its resulting activation remains 0. When noise SD > 0.2, the threshold is reached, and the ‘missing’ phoneme still 
reaches saturation-level activation. With the parameters optimized for feedback, the maximum (saturation) level 
is approximately 0.62, but noise inputs do not drive phoneme activations near that level, resulting in qualitatively 
different levels of phoneme activation given silence, noise, or intact input.



2.5. SIMULATION 5: GRACEFUL DEGRADATION

The obvious impact of including feedback in a model is that it can provide a mechanism 
for simulating (and explaining) top-down effects. A less obvious but crucial consideration is 
that feedback promotes graceful degradation: gradual rather than catastrophic declines in 
performance given noise or parameter changes (see Magnuson, Mirman, Luthra, Strauss & 
Harris, 2018, for extended discussion as well as demonstrations that feedback in the TRACE 
model promotes higher accuracy and faster word recognition given noisy inputs). We tested 
TISK with and without feedback for graceful degradation with series of full-lexicon simulations 
(that is, one simulation for every word in the original 211-word TRACE lexicon) while gradually 
increasing the amount of Gaussian noise added to input patterns. At each of 15 levels of noise 
(SD 0.01 to 0.15 in steps of 0.01), we conducted 15 full-lexicon runs (with SD > 0, the noise 
would vary and therefore performance might as well; multiple runs allow us to establish more 
stable performance estimates).

However, there is no reason to suspect that the default TISK parameters represent the best 
possible performance without feedback; these parameters were originally chosen without 
any consideration for performance under noise. To ensure we were putting the autonomous 
(no feedback) and feedback versions of TISK on maximally equal footing, we explored the 
parameter space more fully both with and without feedback. The details of these parameter 
space explorations are presented in Appendix 1. These explorations led to the ‘optimized’ 
parameters with and without feedback presented in Table 2 above.

We present results in Figure 10 for accuracy and recognition time. With optimized parameters, 
TISK exhibits graceful degradation with or without feedback; that is, with a gradual decline in 
accuracy as noise increases, rather than a collapse (as we see for the original parameters without 
feedback). However, we do observe a significant advantage from feedback in terms of accuracy.

It is also notable that the optimized feedforward variant of TISK differs markedly from the other 
models in Figure 6, where we plot model RTs relative to various lexical dimensions. Specifically, 
it shows weaker associations with Neighbors and Rhymes, and a reversed relationship with ex-
embeddings. We have not attempted to determine why this model differs from the others in 
these ways, as we expect the theoretical gain from such inquiry would be slight at best.

We noted earlier that Magnuson et al. (2018) conducted similar explorations with TRACE. 
Magnuson et al. (2018) observed catastrophic degradation for TRACE without feedback, and 
graceful degradation with feedback. They also observed a recognition time advantage for 
feedback even without noise (see Magnuson et al., 2024, for a replication using raw TRACE 
activations rather than response probabilities). Curiously, as can be seen in the right panel of 
Figure 10, recognition times in TISK tend to be longer with feedback until we reach the highest 

Figure 9 Phoneme restoration 
given noise vs. silence 
(Simulation 4). Mean results 
from simulations with ten 
4-phoneme words. Top row: 
TISK without feedback. Bottom 
row: TISK with feedback. With 
feedback, moderate levels 
of noise (standard deviation 
≥ 0.3) drive restoration, 
although the resulting 
activation is always less than 
that observed with the intact 
phoneme. Without feedback, 
noise level matters little, and 
even modest levels of noise 
drive expected phonemes 
to saturation. Note that 
phoneme activations remain 
at approximately 0 given 
silence replacement. Error 
ribbons depict standard error.



levels of noise. What might explain this difference? The most notable difference is that the 
default parameters for TRACE were optimized for running the model with feedback. When 
Magnuson et al. compared TRACE with and without feedback, it was a matter of removing 
feedback from the feedback-optimized parameters. We took a different tack here, in terms 
of finding maximally robust parameters without feedback. A question for future research is 
whether better performance might be possible with TRACE without feedback.

However, another possibility is that the RT differences could be related to the accuracy 
differences. Specifically, the words that the model with feedback is able to recognize but are 
not recognized by the model without feedback could be particularly challenging items, and that 
could substantially raise the mean RT for the model with feedback. To investigate this possibility, 
we restrict the means to only include words that both models (with and without feedback) 
recognize. The results are showing in Figure 11. Here we see a more modest disadvantage for 
feedback, and a much earlier switch to a feedback advantage (when noise > 0.6).

To probe this further, we created scatter plots for one model run (Figure 12) and all 15 runs 
combined (Figure 13). These plots only include points for words that were recognized by both 
models at a particular noise level on a specific run. Each panel also includes annotations 
indicating how many valid cases (i.e., recognized words) there were with and without feedback, 
how many valid pairs could be plotted (those are words that were recognized by both models 

Figure 10 Effects of noise on 
accuracy and recognition time 
in TISK with feedback, and 
three variants of the model 
without feedback: the original, 
Hannagan et al. (2013) 
parameters, the no-feedback 
parameters optimized for 
graceful degradation, and 
the parameters optimized for 
feedback but with feedback 
turned off (Simulation 5). 
Ribbons indicate standard 
error. Feedback maximizes 
the ability of the model to 
exhibit graceful degradation: 
feedback preserves accuracy 
better under higher levels of 
noise. In contrast to results 
with TRACE (Magnuson et al., 
2018), the feedback benefit 
does not extend immediately 
to recognition time, though an 
advantage emerges at high 
levels of noise.

Figure 11 Effects of noise 
on accuracy and recognition 
time in TISK with feedback 
and without (with optimized 
parameters), but restricted to 
words that were recognized 
by both models. This reveals 
a smaller initial difference 
and earlier cross-over to 
a feedback advantage 
compared to Figure 10. This 
suggests that the apparent 
disadvantage for feedback is 
largely due to the additional 
words the model with 
feedback can recognize at 
higher levels of noise. Ribbons 
indicate standard error.



Figure 12 Effects of noise on recognition time in TISK with and without feedback for one model run. Each panel’s label indicates the noise level. 
Red squares plot mean RT with and without feedback.



Figure 13 Effects of noise on recognition time in TISK with and without feedback for all 15 model runs. Each panel’s label indicates the noise 
level. Red squares plot the mean RT values with and without feedback. Color indicates run.
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at that level of noise), and what proportion of words were recognized more quickly with or 
without feedback. Red squares in each panel plot mean RT for the two models. This mean value 
tends to be very close to the identity line even when RT is lower without feedback for a majority 
of items. Eventually, when noise level reaches 0.07, the mean point rises above the identity line 
(indicating faster mean RT with feedback than without). Compare this to Figure 10, where the 
RT lines cross later (at noise = 0.11). Thus, while the impact of feedback on RT is more modest 
than Magnuson et al. (2018) observed with the TRACE model, it seems that the tendency for 
higher RTs with feedback in Figure 10 is largely driven by the more challenging words that the 
model with feedback is able to continue recognizing at higher noise levels.

3. DISCUSSION
We set out to examine whether feedback could be added to the TISK model (a) without diminishing 
its ability to simulate phenomena to which it had already been applied by Hannagan et al. (2013) 
while (b) providing a basis for plausibly simulating classic top-down effects in spoken word 
recognition and (c) making the model capable of graceful degradation as inputs become noisy. 
Our five sets of simulations affirmed that all three of these were the case. Simulation 1 confirmed 
that with feedback added, TISK remains able to simulate effects to which it had previously been 
applied (Hannagan et al., 2013); it continues to perform similarly to TRACE (McClelland & Elman, 
1986) in terms of the time course of activation of targets and categories of phonological relatives, 
as well as in terms of item-specific recognition times, and associations of those recognition times 
with a variety of lexical dimensions (length, numbers of potential competitors, etc.). Simulations 
2–4 demonstrated the ability of TISK with feedback to plausibly simulate the Ganong effect, 
retroactive disambiguation from lexical context, and phoneme restoration, respectively. Finally, 
Simulation 5 demonstrated graceful degradation: as we added increasing levels of noise to 
inputs, and compared TISK with and without feedback, we found that (a) TISK exhibits graceful 
degradation with feedback, (b) without feedback (and with the original TISK parameters from 
Hannagan et al., 2013), TISK exhibits catastrophic degradation (sudden collapse of accuracy 
under modest levels of noise), although (c) we were able to find parameter combinations that 
promote more graceful degradation without feedback, but with a concomitant decline in the 
model’s ability to exhibit human-like time course of lexical activation and competition.

Simulation 5 is particularly critical with respect to theoretical debates in spoken word recognition. 
Norris, Cutler and McQueen (2000; 2016) have argued that there is no logical reason to include 
feedback in models of spoken word recognition. The crucial aspects of their argument are 
that (a) a system with feedback is more complex than one without, (b) any result that can be 
simulated with feedback can be simulated in a purely feedforward (“autonomous”) system, 
and therefore (c) there can be no general benefit of feedback; the best a system can do is tune 
its feedforward connections to provide the best estimate of the probability of each phoneme 
given some stretch of input, and appealing to lexical knowledge cannot improve recognition. 
The details of their argument are considered in depth by Magnuson et al. (2018), who also 
demonstrate that feedback in TRACE affords graceful degradation even more dramatically 
than we saw here for TISK.7 Magnuson, Crinnion, Luthra, Gaston and Grubb (2024) go further 
and detail how the joint effects of feedback and lexical activation selectively reinforce lexically-
coherent activation patterns over noise. However, Magnuson et al. (2018) did not explore the 
TRACE parameter space to determine whether parameter combinations are possible that 
would promote more graceful degradation in TRACE without feedback. This is a possibility that 
could be pursued in future research, but our primary concern here is the TISK model.

We also note that many findings in spoken word recognition have not yet been tested with TISK. 
Magnuson and Crinnion (2022) provide a table listing the ~30 distinct results TRACE simulates 
in spoken word recognition. This provides an obvious agenda for extending TISK in the future.

4. CONCLUSIONS
Our aim was primarily to gauge TISK’s plausibility by increasing its scope to top-down effects 
by adding lexical-to-N-phone feedback. TISK already exhibited remarkable similarity to TRACE 

7	 For more on this ongoing debate, see Magnuson and Luthra (under review), and for robust and replicated 
empirical support for interaction (feedback), see Luthra et al. (2021; and for discussion of those results, see 
McQueen, Jesse & Mitterer [2023] and Luthra et al. [in press]).



18Magnuson et al.  
Journal of Cognition  
DOI: 10.5334/joc.362

without feedback (McClelland & Elman, 1986). With feedback, it retains its previous similarity to 
TRACE while providing plausible simulations of classic top-down phenomena and demonstrating 
graceful degradation given increasingly noisy inputs (all similar to results previously observed 
with the TRACE model).

These similarities are all the more remarkable given the architectural differences between 
TISK and TRACE. To solve the problems of encoding sequence order, including sequences with 
repeated elements, TRACE employs a “time-as-space” memory with many time-specific copies 
of each feature, phoneme, and word node. These copies allow TRACE to encode sequences and 
repeated elements (whether features, phonemes, or words) because each time-specific copy is 
independent. However, scaling to a realistic size (expanding from 14 phonemes to 40 and from 
200 words to 20,000) would require massive numbers of nodes and connections (approximately 
1.3 million nodes and more than 40 billion connections). As we discussed earlier (see also 
Hannagan et al., 2013), we would not argue that these counts by themselves suggest that 
TRACE’s solution is implausible (e.g., considered in the context of estimates of 86 billion neurons 
and 150 trillion in the typical adult human brain; Azevedo et al., 2009). However, they raise 
the question of whether a more computationally economical solution might be possible. TISK 
(Hannagan et al., 2013) replaces TRACE’s time-specific phoneme and word nodes with time-
invariant nodes – that is, single instances. It does this by using not just phonemes at the sublexical 
level, but also (semi-open) diphones (which is why that layer is called the N-phone layer). We 
describe the diphones as semi-open because, as discussed earlier, time-specific phonemic inputs 
are mapped to time-invariant diphones in a graded fashion. The /sa/ node would be slightly 
more activated given sock where its constituents are adjacent than in stock where there is a 
one-phoneme gap, which would activate /sa/ more than strong, where the gap would be two 
phonemes. Open diphone counts provide surprisingly distinctive codes; the gradient activation 
from symmetry coding is even more distinctive, and allows distinctive patterns of activation for 
ordered sequences and sequences including repeated elements. Feedback in TISK differs from 
that in TRACE in one other respect: it uses both positive and negative top-down lexical feedback. 
Positive feedback (to constituents) is much stronger, but we discovered that a small amount of 
negative feedback (to non-constituents) promoted stable performance.

Again, the similarities in performance despite these differences are remarkable. One might 
suppose they are attributable to fundamental aspects of the interactive activation architecture 
used by both TISK and TRACE. However, other models, including simple recurrent networks (Elman, 
1990) that are not interactive activation models exhibit remarkable similarity to TISK and TRACE 
(Magnuson, in preparation). It may be that the information processing constraints of spoken word 
recognition (mapping sequences “left-to-right” onto forms in lexical memory) are such that any 
system capable of simulating a few key aspects of the microstructure of human spoken word 
recognition (e.g., the time course of activation of words overlapping at onset and offset) will 
necessarily demonstrate similar time course (Figure 4) and associations with lexical dimensions 
(Figure 5). While we cannot conclude that there are no significant differences between TISK and 
TRACE, we have not yet discovered any. However, TISK’s successes reported here demonstrate 
that a key criticism of TRACE – concerning its reduplicated, time-specific nodes – does not apply to 
all instances of interactive activation models of human spoken word recognition.

APPENDIX 1: PARAMETER SPACE EXPLORATION
To optimize parameters with feedback, we explored the space defined by the parameters 
shown in Table 2. We do not present results from the full exploration, which involved thousands 
more simulations. In Figure A1, we present results across a range of positive and inhibitory 
feedback parameters (with other parameters already optimized). Panels highlighted in red with 
yellow or purple shading indicate combinations that yield robust Ganong effects (cf. Figure 
8) as well as robust graceful degradation (Figure 11). In Figure A2, we present retroactive 
phoneme restoration simulations (cf. Figure 8) as a function of feedback parameters. Yellow 
shading indicates robust phoneme restoration. Green shading indicate panels that show robust 
retroactive phoneme restoration as well as robust Ganong effects and graceful degradation 
(i.e., panels that would have yellow or purple highlighting and a red outline in Figure A1). In 
Figure A3, we present results from the parameter exploration without feedback. The purple-
shaded panels indicate parameter combinations that yield fairly robust graceful degradation 
results (cf. Figure 11).
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Figure A1 Exploration of 
positive (x-axis) and negative 
(y-axis) feedback. In each 
panel, the solid line is the 

‘graceful degradation’ result 
(see Figure 11) and the dashed 
line is the Ganong effect. The 
number in the upper right of 
each panel is mean accuracy 
over the full range of noise 
in the graceful degradation 
simulations. Panels are shaded 
yellow if mean accuracy in 
graceful degradation is > 0.5, 
or purple if mean accuracy 
was > 0.4. Panels have red 
outlines if there is a plausible 
Ganong effect (maximum 
difference ≥ 0.15, minimum 
> 0). Informally, we consider 
panels that are yellow or 
purple and highlighted in 
red to indicate parameter 
ranges that result in robust 
performance with feedback 
(approximately 16% of the 
combinations explored here).

Figure A2 Further exploration 
of positive (x-axis) and 
negative (y-axis) feedback. 
In each panel, retroactive 
lexical influence simulations 
(as in Figure 8) are plotted 
with different feedback 
parameters. For simplicity, 
intact or ambiguous cases 
that are lexically consistent 
or inconsistent are averaged. 
Cases where, given ambiguous 
input, the lexically consistent 
phoneme’s activation excedes 
the inconsistent phoneme’s 
by 0.05 and, given consistent 
input, the lexically inconsistent 
phoneme’s activation does 
not excede 0.05 are shaded 
yellow or green. Green shading 
indicates cases that yield 
robust graceful degredation 
in Figure A1 (yellow or purple 
shading with red outline). 
Thus, a fairly broad range 
of parameters yields robust 
performance with feedback 
(green shading corresponds 
to ~16% of explored 
combinations, which includes 
all cases shaded in yellow or 
purple and outlined in red in 
Figure A1).
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