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ABSTRACT In recent years, interest in monitoring Physical Activity (PA) has increased due to its positive
effect on health. New technological devices have been proposed for this purpose, mainly focused on sports,
which include Machine Learning algorithms to identify the type of PA being performed. However, PA
monitoring can also provide data useful for assessing the recovery process of people with impaired lower-
limbs. In this work, a Machine-Learning based Physical Activity classifier design procedure is proposed,
which makes use of the data provided by a Sensorized Tip that can be adapted to different Assistive Devices
for Walking (ADW) such as canes or crutches. The procedure is based on three main stages: 1) defining
a wide set of potential features to perform the classification; 2) optimizing the number of features by a
Random-Forest approach, detecting the most relevant ones to classify five relevant activities (walking at a
normal pace, walking fast, standing still, going up stairs and going down stairs); 3) training the ML-based
classifiers considering the optimized feature set. A comparative analysis is carried out to evaluate the
proposed procedure, using three ML-based classifier (Support Vector Machines, K-Nearest Neighbour and
Artificial Neural Networks), demonstrating that the proposed approach can provide very high success rates
if proper feature selection is carried out. This work presents four relevant contributions to the PA monitoring
area: 1) the approach is focused on people that require ADW, which are not considered in other approaches;
2) an analysis of the features to characterize gait in people that require ADW is carried out; 3) a design
procedure to optimize the number of features using a Random-Forest approach is used, avoiding a typical
‘‘brute force’’ procedure; and 4) a comparative analysis is carried out to demonstrate the validity of the
approach.

INDEX TERMS Instrumented crutch, rehabilitation, machine learning, physical activity classification,
random forest, artificial neural network, support vector machine, K-nearest neighbor.

I. INTRODUCTION
Lower-limb mobility plays an important role on autonomy
and quality of life. Neurological diseases or trauma injuries
that affect the mobility of the lower-limb have a great impact
on the lives of people suffering from them. Hence, trying to
fully or partly recover this function is one of the main goals
when designing a rehabilitation strategy for these patients [1].

The associate editor coordinating the review of this manuscript and
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In order to be effective, rehabilitation interventions must
be adapted to the status of the patient during the whole
rehabilitation process [2]. This also includes the selection of
the assistive device that better fits patient needs according to
her/his functionality. If the patient has lost the ability to walk
autonomously, the use of wheel chairs or scooters is the better
option, while crutches or canes are typically used when the
gait function is maintained. Hence, therapist are required to
assess patient status periodically to monitor the evolution on
the status of the patient.
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Patient assessment is typically performed using the data
collected through tests carried out in clinical settings.
However, monitoring the types of Physical Activity (PA) the
patient performs throughout the day is becoming increasingly
important in the functional assessment of patients, due to
the well-known benefits it has on their health and its con-
tribution to the prevention of non-communicable diseases
[3], [4]. It also allows interpreting the results of the periodic
clinical tests and giving individualized recommendations and
feedback on how much and how to perform these activities in
order to aid in the recovery process.

In order to perform PA identification, three main steps
are typically carried out: 1) data related to the patient is
captured by a monitoring device; 2) a set of features that
allow characterizing PA is extracted from the raw sensor data;
and, 3) the set of features are processed by a classifier, which
detects the particular PA being executed. The main works
related to each step will be summarized next.

Regarding the data capture and monitoring, different tech-
nological solutions have been proposed [5]. The most pop-
ular ones are wearable devices, which have to be attached
to specific places of the lower-limb of the patient, and
typically capture motion data using Inertial Measurement
Units (IMUs) [6]–[10] or biomedical signals such as EMG
[11], [12]. A number of commercial devices exist on the mar-
ket, such as XSens [13], BioStampRC [14], Tracmor [15]),
FlexiForce [16], BioCapture [12]). These solutions require
to be properly placed and attached to the limbs, and may
generate rejection on patients. In order to reduce the impact
of monitoring devices the use of the integrated sensors
of smartwatches and mobile phones has been proposed
[17]–[20]. These latter devices do not have a specific place-
ment in the body, but, on the other side, this positioning
flexibility and the variability introduced by parasitic motions
are issues to be considered when processing the data.

Once the raw data has been captured by the monitoring
device, the second step is to extract a set of features that
will allow to characterize the different PA. For this purpose,
the use of time-series segmentation using time-windows is
a common approach, as it allows to reduce the number of
data to be processed [21], [22]. In the case of gait monitoring,
the selected window typically matches a step. Hence, features
of different nature that allow to characterize each step can
be extracted from these windows. Statistic (mean, standard
deviation,. . . ) [10], [15], [23]–[25], frequency [19], [26] or
phase [9] operations are typically applied to the captured
variables for this purpose. In addition, in the particular case
of gait, features such as the average speed, time between
steps or the number of steps [27] have also been proposed.
It is to be noted that there is no standarized approach to define
these features, and that in general, a brute force approach is
used in which a wide set of features is defined so that the
classifier to be designed has enough input data to perform
its job.

Finally, in the third step, using the set of selected fea-
tures, the PA identification or classification is performed.

Machine Learning (ML) techniques such as K-Nearest
Neighbour (K-NN) [10], [24], [28], Support Vector
Machine (SVM) [29]–[31] and Artificial Neural Networks
(ANN) [15], [32]–[34] are the preferred solution for gait-
related PA classification due to their flexibility and capability
of generalization, which provide acceptable results with a
success rate up to 91% [15]. Note that all these approaches are
of supervised nature, and require a set of properly designed
training data in which the selected features are the input, and
the type of PA to be identified are the outputs. In the case of
gait-related PA the proposed classifiers typically identify if
the patient is walking (at an habitual or normal speed or faster,
i.e. running), going up and down stairs or standing
still [9], [15], [28], [32], [35].

The three-step procedure detailed previously provides a
general methodology for PA classification. However, it is to
be noted that there is no standarized approach to be followed
in each step, and that different open research areas still exist.
In particular, the feature selection procedure is typically car-
ried out using a brute force approach, in which a wide set
of possible features are proposed as inputs to the ML-based
Physical Activity classifier, so that it can have enough data
to perform the classification. This approach, however, leads
to non-optimal classifiers, which typically use more features
than required leading to oversized solutions, as the relative
importance of each feature is not usually analyzed.

Moreover, all the aforementioned works are designed for
people that do not require Assistive Devices for Walking
(ADW) such as crutches or canes. However, several parame-
ters change significantly in the case of people that use ADW,
as they present non-symmetrical gait and parameters such
as the load applied to the ADW might be relevant. These
differences have to be considered in the three-step procedure.
Recent works have demonstrated that patients that require
ADW in their rehabilitation process require specific moni-
toring approaches [36], being sensorized ADW devices the
best option for this population [37]–[41]. Hence, the set of
features to be defined also has to consider ADW data.

Based on the previous analysis, in this work, a novel
approach for the development of Physical Activity classifiers
for patients that require ADW is proposed. The proposed
approach aims to give some insight into the previously cited
issues, with four relevant contributions: 1) The approach is
focused on people that require ADW, which are not consid-
ered in other works; 2) A comprehensive set of features to
classify five relevant types of Physical Activity is proposed
and analyzed ; 3) A Feature Selection methodology based
on a Random-Forest approach is proposed; and, 4) A thor-
ough comparative analysis using three ML approaches
(K-NN, SVN and ANN) is carried out to validate the pro-
posed approach.

The rest of the work is structured as follows. Section II
presents the Sensorized Tip and its sensorization capabilities.
Section III details the set of tests carried out to generate the
database used to develop the ML-based PA classificators.
In Section IV a thorough analysis of the potential features
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proposed in the literature for gait monitoring is carried out,
and the proposed methodology to select the most relevant
features and train three different ML-based PA classificators
using K-NN, SVN and ANN approaches is detailed. Finally,
in Section V, a comparative analysis is carried out to evaluate
the approach. Finally, the most important ideas are summa-
rized in Section VI.

II. SENSORIZED TIP FOR GAIT MONITORING
In order to monitor the performance of people that require
ADW, different approaches can be used, as analyzed in
Section I. Wearable devices, although widely used, present
some drawbacks for this population, as they may generate
rejection due to the need of attaching the sensors to the limbs,
and do not consider the interaction force between the ADW
and the patient, which provides relevant monitoring data.
Smartphones andwatches, on the other hand, present parasitic
motions that have to be considered.

Hence, several works have proposed to sensorize ADW,
providing a noninvasive approach that provides accurate
measurements of both ADW motion and interaction force
[37]–[41]. In particular, in this work the Sensorized Tip pro-
posed in [41] (Figure 1) is used to capture gait data. Differ-
ent from the other cited approaches in which a sensorized
crutch or cane is designed, the proposed Sensorized Tip can
be attached to the personal crutch or cane used by the patient,
which is typically adapted to his/her needs.

FIGURE 1. Sensorized Tip to Capture Gait Data.

The Sensorized Tip integrates three sensors in its alu-
minum enclosure. A 9 degrees-of-freedom Inertial Measure-
ment Unit MTi-3 by XSens provides linear acceleration data,
angular speed and magnetic field in the local (x, y, z) axes.

FIGURE 2. Lateromedial and Anteroposterior angles in the ADW.

In addition, this device integrates a proprietary algorithm
based on a Kalman filter that allows to estimate the roll-
pitch-yaw Euler angles in the global reference frame (Roll
and Pitch dynamic error of 0.5◦, and Yaw dynamic error 1◦).
The aforementioned data can also be used to estimate the
anteroposterior and lateromedial crutch angles (see Figure 2).
A BMP280 barometer provides information on atmospheric
pressure, which allows to estimate the relative height of the
device (relative precision of 0.12hPa). Finally, a C9C piezo-
electric force sensor by HBM, with 1 kN range, provides
information on the axial load exerted by the patient. The
overall weight of the Tip is 160g.

The 16 sources of data provided by the aforementioned
sensors are captured by a nRF52832 microprocessor, which
adds a timestamp and sends the processed data with a 20ms
period to a mobile phone device using the Bluetooth Low
Energy (BLE) protocol. The data is stored in the phone using
a self-developed app, so that it can be processed later. The
capturing system is powered by a standard 5V powerbank,
which is placed externally to the Tip in order to minimize the
weight of the device (Figure 1).
The full characterization of the measurement errors and

the integrated algorithms for the Sensorized Tip can be
found at [41].

III. DATA BASE FOR CLASSIFIER DESIGN
In order to develop a Physical Activity classifier using
Machine Learning approaches, a proper data base is required,
in which the selection of the types of PA to be identified is a
key issue.

As analyzed in Section I, when considering gait-related PA
classifier five types of PA are typically considered [9], [15],
[28], [32], [35]: walking at a normal pace; walking at a fast
pace (approximately 30% faster than normal pace); going up
stairs; going down stairs; and standing still. The identification
of these types of PA will allow to monitor the activity of
a patient through its daily life, defining patterns of activity,
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sedentariness, etc,. . .This data can be used by the therapist to
provide individualized recommendations or to detect possible
modifications in the patient functional status [26], [42].

In order to capture relevant data for the classifier design,
a total of five tests have been carried out using a crutch in
which the Sensorized Tip detailed in Section II was attached:
• Walking 30m in a straight line at the normal speed.
• Walking 30m in a straight line at a speed higher than
normal (approximately 30% faster).

• Standing still for approximately 10 seconds.
• Going up an 11-step flight of stairs.
• Going down an 11-step flight of stairs.
The tests were carried out by 11 healthy volunteers from

the research group of the authors (4 women and 7 men,
ranging between 24-48 years), at the facilities of the Faculty
of Engineering of Bilbao UPV/EHU. Each test was repeated
three times for each volunteer.

In order to generate the database, a segmentation procedure
was followed [28]. This procedure is carried out by consider-
ing each cycle of use of the crutch, which is composed by
a stance phase (in which the crutch is in contact with the
ground), and the swing phase (in which the crutch is lifted
though the air and no contact exists). This way, the raw data
provided by each sensor is divided in sequential windows,
each associated to a crutch cycle. The initial point of each
window is defined at the very first start of the stance phase,
in which the crutch tip contacts the ground. This can be easily
detected by considering the force sensor signal, as seen in
Figure 3, as no force exist in the swing phase. The total num-
ber of segmented windows generated in the aforementioned
tests are summarized in Table 1.

TABLE 1. Number of Windows per Physical Activity (PA). Test and Training
Sets.

Note that in the case of Standing Still, the aforementioned
approach is no longer valid, as no crutch cycles exist. In these
scenarios a virtual step is considered as a fixed segmentation
window of 1.8s, which is slightly longer than the average
cycle time for the cycles considered in the walking at normal
pace scenario.
Once the database is defined, it will be divided into two

balanced sets (Training and Test), as required by the design
procedure of supervised ML-based approaches [43]. The
Training set will be used to train the proposed ML-based
PA classificators. For that purpose, a balanced set has been
defined, with approximately the same number of windows
considered for the different identified types of PA. This
allows to train the classifier with the same relative importance
for each type of PA. The Test set, in the other hand, will be

FIGURE 3. Cycle of use of an ADW and its phases. Data Segmentation in
windows by using the data acquired from the force sensor.

used to test the designed classifiers. Hence, Test data will
not be used in the PA classifier design procedure, but for the
validation analysis carried out Section V. Note that in this
latter case, a balancedwindow selection has also been carried,
so that the tested classification success rates can be similar in
nature for each type of PA to be identified [44], [45].

IV. MACHINE LEARNING-BASED PA CLASSIFIER
DESIGN METHODOLOGY
The use of segmentation allows to define discrete units of
data, one for each crutch cycle, fromwhich a series of features
can be extracted. These features, which may be diverse in
nature (statistical, frequency based,. . . ) can be used to char-
acterize each cycle, and be used as inputs for the PA classifi-
cation system to be developed. In this section, a methodology
is detailed to select the most appropriate features and design
the ML-based PA classificator.

The proposed methodology is summarized in Figure 4:
First, a set of potential features based on the ones proposed in
the literature is proposed (Section IV-A). This set is defined
with a high number and variety of features, so that the
maximum amount of information can be considered. Then,
in a second step, a Random-Forest approach is used to deter-
mine the relative importance of each feature, allowing to
order the potential feature set considering the relevance of
each feature (Section IV-B).This ordered set will be used
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FIGURE 4. Feature selection methodology.

to design the ML-based classifier. In a third step, the set
of optimal hyperparameters will be calculated for each set
of n features to be considered as inputs. Finally, using the
selected hyperparameters and the set of n features selected
(based on their relevance), the ML approach will be trained
(Section IV-C). An analysis and evaluation of the procedure
will be carried out in Section V.

A. POTENTIAL FEATURES SET GENERATION
Features are related to the data sources available, as they are
used to extract, using a simpler metric, a particular charac-
teristic of the signal contained in the segmented window. For
the particular case detailed in this work, 17 sources of data are
considered based on the data provided by the Sensorized Tip
(Section II): 9 associated to the raw IMU data (x, y, z compo-
nents of acceleration, angular speed and magnetic field in the
local axes); 5 related to the processed IMU data (RPY Euler
Angles, and crutch anteroposterior and lateromedial angles);
1 related to the force sensor value, which is filtered; and,
2 associated to the barometer signal (filtered and unfiltered).

For each segmented window, the time evolution of these
17 data sources can be processed to extract a feature. This is
carried out by applying an operator, whichmay be of different
nature (statistical, time-based,. . . ). Although the particular
case of people that require ADW has not been analyzed in
the literature, based on the operators proposed in the related
works and the clinical experience of the authors, the following
set of operators are proposed:
• Statistic-based operators: They are widely used in gait
characterization works, as they are easily applied to
any data source. Mean value, standard deviation, vari-
ance, kurtosis, correlation coefficients XY (i.e., between
X and Y signals), percentiles, area under each curve and
interquartile ranges [15], [23]–[25] have been selected
to be applied to the data provided by all sensors. In the
particular case of correlation coefficients, the correlation
between the different angles/axes values provided by
a sensor are considered, i.e. correlation between the
accelerometer x and y signals, correlation between roll
and pitch Euler Angles, etc.

• Motion-based operators: The values of motion-related
sources of data in specific events allows to define fea-
tures related to the use of the ADW. In particular, the

values associated to the start of the stance phase (Stance
Start Value), the end of the stance phase (Stance End
Value) and the value associated to the maximum support
(Value at Max. Force) are of particular interest. The
Amplitude, defined as the absolute difference between
the maximum and minimum values of a motion variable
is also defined.

• Time-based operators: Measuring the time between spe-
cific events allows to obtain spatio-temporal features.
In the case of ADW, cycle time, this is, the time between
consecutive starts of the stance phase, allows to define
speed-related features [27]. The use of theADWcan also
be defined by comparing the relative percentage of the
cycle time the patient uses the device for support, this
is, the time of the stance phase with respect to the cycle
time (Stance Phase %) [11].

By combining the set of data sources and the defined oper-
ators, a full set of 176 features can be defined. All are sum-
marized in Table 2, where an X defines a feature (or features)
that has been obtained by applying a particular operator (row)
to a data source (column). Note that this set of 176 features
is extracted for each ADW cycle, following the segmentation
procedure detailed in Section III.

B. FEATURE SELECTION USING
RANDOM-FOREST APPROACH
The aforementioned set of 176 features can be used to develop
ML-based PA classifiers. This way, the set of features will be
considered as the input to the classifier, which will identify a
type of PA for each ADW cycle as seen in Figure 4.

However, this brute force approach, which is typical in the
works cited in the introduction is not an efficient one. First,
a high number of features increases the computational cost
of the classifier. Second, the feature selection impacts the
performance of the classifier, as some features may be not
be related to the types of PA considered, or even some are
correlated one with the other. Hence, in order to optimize the
PA classifier design, proper feature selection approachesmust
be used.

Detecting the best feature set to design an PA classi-
fier is not a trivial task. In recent years, Machine Learn-
ing approaches have demonstrated their ability to analyze
the relative importance of different features when analyzing
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TABLE 2. Features generated from the data provided by the sensorized tip (R=Roll, P=Pitch, Y=Yaw, A=Anteroposterior, L=Lateromedial).

a classification or regression problem. One of the most inter-
esting approach in this field is the Random Forest (RF)
[46], [47] approach, which consists on the generation of a
wide set (forest) of different decision trees for classification
purposes. The trees are generated using a set of random
samples and features, so that in the training procedure, dif-
ferent features can be tested. This technique has been used
in different application fields such as diagnosis [48], mineral
process industries [49] or DNA analysis [50], to estimate
the relative importance of each feature. This way the most
relevant ones can be identified, and the ones that are redun-
dant or unimportant eliminated.

Hence, in this work, a Random-Forest approach is pro-
posed to analyze the relative feature significance to the PA
classification. For that purpose, only the samples contained
into the Training Set defined in Section III have been used.
The proposed RF has been implemented using Matlab’s
Statistics and Machine Learning Toolbox [51] and experi-
mentally tuned considering the following set of hyperparam-
eters: the number of trees in the forest has been tuned to
5000; a sample with replacement strategy has been selected;
a node size of 1 was defined; the number of variables ran-
domly chosen at each split (mtry) has been tuned to

√
M ,

whereM is the total number variables; and the predictor used
has been the interaction-curvature to avoid the disturbances
caused by correlated features.

The obtained results from this procedure are summarized
in Table 3, in which all the potential features have been
sorted in decreasing order of decreasing relative significance
according to the RF approach. Note that the RF approach
orders the features by considering their relativeweight or con-
tribution to the desired classification process, being the Area

Under the Curve of the Yaw angle and the Cycle Time some
of the most relevant features for the proposed study-case.

It is to be noted that if all weights for the 176 features
are analyzed, all present a positive weight with the exception
of the last two, related to the Barometer Interquartile Range.
This means that following the RF analysis, the features with
positive weight contribute (or add information) to the PA
classification. However, the relative importance of the most
significant one Area Under the Curve Yaw is more than
50 times higher with respect to the less significant ones.
Hence, designing an PA classifier using only some of themost
relevant ones should provide better results than the use of the
less relevant ones. In the next section, a comparative analysis
will be carried out to analyze the effect of the proposed feature
selection.

C. CLASSIFIER HYPERPARAMETER SELECTION
AND TRAINING
Once the potential set of features has been ordered according
to its relevance, a subset of n features can be selected to design
a PA classifier. The goal of the classifiers is to be able to detect
five relevant PA:Walking normal,Walking fast, Going up and
down stairs and standing still. Hence, all classifiers will be
implemented with 5 outputs/classes, one associated to each
PA type.

In this work, the three most commonly used approaches
in related works have been selected, so that a comparative
analysis can be carried out in the next section: Support Vector
Machine (SVM), K-Nearest Neighbor (K-NN) and Artificial
Neural Network (ANN).

As detailed in Figure 4, for a given set of n
relevance-ordered input features, first the optimal subset of
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TABLE 3. Feature significance and their relative weight according to Random-Forest procedure. (Magne=Magnetometer, Accel=Accelerometer,
AUtC=Area Under the Curve, 25P=25th Percentile, 50P=50th Percentile, 75P=75th Percentile, IR=Intercuartile Range, SD=Standard Deviation, Corr.
Coef.=Correlation Coefficient, Antero=Anteromedial Angle, Latero=Lateromedial Angle, WoF=Without Filter, WF = With Filter, n=Position).

hyperparameters for each ML-based classifier is to be cal-
culated. For that purpose a K-fold cross-validation approach
is proposed with K = 5 [52]. This approach allows to
effectively evaluate different ML-based models. Note that
for this purpose only the data from the Training Set defined

in Section III. is used. Once the best hyperparameters have
been chosen, these are used to train the ML-approach using
supervised methods and the Training Set data.

It is to be noted that in the case of the SVM and K-NN,
Matlab’s Statistic and Machine Learning Toolbox integrates
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the aforementioned steps, optimizing the related hyperparam-
eters (Kernel functions, number of neighbours,. . . ) [51]. For
the case of the ANN, the authors have ad hoc programmed the
hyperparameter selection. In this latter case, a single hidden
layer Multi Layer Perceptron (MLP) ANN has been selected,
with 5 output neurons (one for each PA), a number of inputs
equal to the n feature set to be processed and m hidden layer
neurons with hyperbolic tangent sigmoid activation function.
The number of hidden layer neurons m has been considered
as the hyperparameter to be tuned using the aforementioned
procedure, with m ranging from 1 to 10 neurons, since exper-
imental tests have determined that ANN with 10 or lower
neurons provide good results. Once the best (higher success
rate) value form has been selected, a Bayesian regularization-
based training algorithm is used to train the ANN.

V. COMPARATIVE ANALYSIS
In this section, a comparative analysis is carried out consid-
ering the features selected in Section IV-B. The aim is to:
1) analyze the best approach for the proposed PA classificator
application; and 2) analyze the validity of the feature selection
approach in different ML-based classification approaches.

Note that all the ML-based classifiers analyzed in this
section have been trained following the methodology pro-
posed in the previous section.

A. ANALYSIS OF THE EFFECT OF THE NUMBER OF
FEATURES CONSIDERED FOR CLASSIFICATION
In order to analyze the effect of the number of features
considered, a comparative analysis is carried out considering
the features defined in Table 3. This way, each ML-based
classification approach proposed previously is trained with
176 different feature sets following the procedure detailed in
Section IV-C. These feature sets are defined incrementally
considering the n most relevant features. This is: in the first
set, only the most relevant feature is considered; in the second
one, the two most relevant features are considered; while in
the last one, all 176 potential features are considered.

FIGURE 5. Success rate of the classifiers based on K-NN, SVM and ANN,
with respect to the number of the n most relevant features ordered
according to the RF.

Figure 5 shows the total classification success rate per-
centage for the proposed approaches with respect to the
number n of the most relevant features according to the

RF approach. This success rate is defined as the percentage of
PA samples of the Test Setwhose type the classifier identifies
correctly with respect to the total number of PA samples in
the set. Note that the samples in this latter set have not been
considered in the training procedure, so that the results can
be used to analyze also the generalization capability of the
approaches.

As it can be seen, if the seven most significant features
are considered, a success rate percentage of over 90% can be
achieved in all cases (92.8% for the K-NN, 97% for the SVM
and 96.8% for the ANN). This value increases up to 97% if
the ninemost relevant features are selected for all approaches.

The general tendency is that a higher number of fea-
tures considered allows better classification. A maximum
success rate of 98.4% (66 features) for the K-NN, 99.1%
(87 features) for the SVM and 99.6% (174 features) for the
ANN is obtained. Note that the small oscillations are due to
the randomized nature of the ML approaches training, with a
success rate variation in the range from 7 to 176 most relevant
features of 2.8% in the case of the ANN and 4.6% for the
SVM.

There is an exception in the case of the K-NN approach,
as the percentage of success decreases slightly when the
number of features is higher than 119, reaching a value lower
than 96% (92.8% with 147 and 160 most relevant features).

The results confirm that if a proper feature selection is
carried out, a small set of features can be used to design the
ML-based PA classificator, as the effect of increasing the
number of features is small in the total success rate of the clas-
sifier. Moreover, this has an impact on computational cost.
As previously stated, a K-Fold cross-validation procedure has
been used to calculate the best configuration of hyperparame-
ters for each feature set. For instance, in the particular case of
the ANN the obtained optimal number of hidden layer neu-
rons is summarized in Figure 6 for each feature set. It can be
seen that although a lower number of neurons (5-6) is required
for small values of n, the number of neurons stabilizes with
a mean of 9 neurons. Hence, selecting a moderate number of
features (for example the 7 most relevant ones) also leads to
smaller ANN and lower computational cost.

Finally, in order to illustrate the classification capabili-
ties of the ML-based PA classifiers, a particular example
of the classifiers performance is shown in Table 4, where
the Confusion Matrices for all classifiers when all features
are considered are shown. In this particular case, the overall
performance of the K-NN is 96.1%, SVM performance is
96.8% and in ANN 99.6%. However, it can be seen that the
K-NN has a problem classifyingWalking Normal case, as up
to 20 samples are identified erroneously asWalking Fast and
GoingUp Stairs. The same effect is seen in the SVM’s Confu-
sion Matrix. The ANN outperforms the previous approaches,
obtaining better results.

B. ANALYSIS OF THE EFFECT OF FEATURE SELECTION
In order to emphasize the importance of the feature selection
procedure, the procedure defined in the previous section has
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TABLE 4. Confusion matrix of K-NN, SVM and ANN with all features.

FIGURE 6. Optimal number of neurons in the hidden layer of the ANN
with respect to the number of the n most relevant features ordered
according to the RF.

been repeated from the less significant feature to the most
significant one. This is, 176 sets of features have been ana-
lyzed: the first set has considered only the less significant
feature; the second, the two less significant features; and so
on. As previously detailed, for each set of features, the opti-
mum hyperparameters have been tuned, by the use of a K-fold
procedure. For the particular case of the ANN, an average
of 7.99 neurons with a standard deviation of 1.75 neurons
have been obtained.

Results are summarized in Figure 7 for all proposed
approaches. As it can be seen, the success rates evolution
presents an increasing tendency. This is, as more significant
features are added, the classifier quality increases. Hence,
the success rate increases when adding more and more fea-
tures, from approximately 22% to 99%.

Note that this is a very different evolution compared with
the one analyzed in the previous section (Fig. 5). In the pre-
vious case, with few of the most significant, success rates up
to 95% could be achieved, while in this latter case, a greater
number of features are required to achieve the same perfor-
mance: 86 for SVM, 68 for ANN, and almost all features for
K-NN. This emphasizes the need of correctly selecting the
features for designing PA classifiers.

FIGURE 7. Success rate of the K-NN, SVM and ANN based classifiers, with
respect to the number of the n less relevant features ordered according to
the RF approach.

FIGURE 8. Success rate of the K-NN, SVM and ANN based classifiers, with
7 indicators as input selected according to the relative significance
provided by the RF approach.

The relevance of correctly selecting the features is also
demonstrated in Figure 8. As analyzed in the previous sub-
section, the seven most significant features provide accept-
able success rates for the classifier (over 92%). Hence, all
proposed approaches have been evaluated by considering
sets of 7 features. This is, the first 7 features have been
evaluated first, then the next 7 and so on, ordered from the
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most significant ones to the less ones. As previously detailed,
for each set of features, the optimum hyperparameters for the
three ML have been obtained in a first step (for the particular
case of the ANN, an average of 9.28 neurons with a standard
deviation of 1.24 neurons have been obtained). After training,
the resulting classifiers show that a variation of more than
50% on the performance of the classifier can exist depending
on the set of features considered.

In summary, the aforementioned results demonstrate that:
1) a proper feature selection is mandatory when designing PA
classification; 2) The proposed RF-based feature selection is
an appropriate approach to optimize the number of features;
3) the ANN and SVM-based approach is the most stable clas-
sifier, although the K-NN approach can provide good results
for the same number of features, however the best results are
obtained from the ANN-based classifier; and 4) The inclusion
of more and more features does not always imply an increase
of the success rate, as proper hyperparameter selection is
needed to handle all the input information.

VI. CONCLUSION
An individualization of rehabilitation therapies of people
suffering from lower-limb impairment is essential during
the whole rehabilitation process, specially those that require
Assistive Devices for Walking (ADW). Recently, monitoring
the types of Physical Activity (PA) carried out by the patients
in their daily life has become an important source of informa-
tion for this purpose.

In order to develop PA identification and monitoring,
proper sensorized devices and processing algorithms are
required. Typically wearable sensors have been proposed for
this purpose, although they present limitations for people that
require ADW.Moreover, in order to process PA data related to
gait, a set of gait-based features is traditionally proposed, and
brute-force approaches are followed to design the monitoring
algorithms.

Different from other works, in this paper a novel approach
for the development of PA classifiers is proposed. The
approach makes use of a Sensorized Tip that can be fitted
into the personal ADW of the patient. The 17 sources of data
available are processed to define a set of 176 features that can
be used to classify five relevant PAs (Standing Still, Walking
Fast, Walking at a Normal pace, Going Up and Going Down
Stairs).

In order to optimize the PA classificator, a Machine
Learning approach, the Random Forest approach, is used
to perform a feature selection. This allows to classify the
features depending on their relative significance for the PA
classification.

The approach is validated by implementing three different
Machine Learning-based classifiers for PA: SVM, K-NN and
ANN. Results demonstrate: 1) the validity of the proposed
approach for gait monitoring; 2) the importance of feature
selection when designing PA classifiers; 3) the validity of the
feature selection approach, as with the identified seven most
relevant features a success rate of 92-97% can be obtained,

which is higher than the results offered by other related
works (91%).

However, it should be noted that the development pre-
sented has been carried out with healthy people and in a
laboratory-based testing. For this reason, future work will
focus on studying classifier’s performance in specific pop-
ulations of people that require ADW, in order to analyze
possible drawbacks of the proposed methodology in these
cases. Moreover, more types of PA, such as going up and
down slopes, different speeds, etc will be analyzed.
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