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Abstract: The first organocatalytic diastereo- and 
enantioselective addition of N3-Aryl 2-benzylthio-3,5-
dihydroimidazol-4-ones, generated from racemic amino acid 
derivatives, to C-2 substituted azaarene N-oxide aldehydes has 
been developed. The reaction affords a series of valuable syn-
aldol adducts with heteroatom-functionalized contiguous 
quaternary-tertiary stereocenters in an excellent stereoselective 
manner. A highly reactive and selective squaramide–tertiary 
amine catalyst taking advantage of an intramolecular-assisted 
activation of the squaramide by an additional free NH amide 
functionality promotes the reaction. Theoretical DFT (B3LYP/6-
31+G(d) + CPCM (dichloromethane)) study support the 
mechanistic activation. Further acidic hydrolysis of the O-benzoyl 
protected aldol adducts yielded the corresponding optically active 
2-(1-hydroxyalkyl) azaarene-functionalized quaternary 
hydantoins with excellent yields and without the loss of 
enantiopurity.  

Chiral structural skeletons with tetrasubstituted stereogenic 
centers attached at the α C(sp3) position of a carbonyl moiety are 
prevalent in natural products or bioactive substances i and not 
unexpectedly, the type and extend of activity of these chiral 
compounds depend, among other factors, on the configuration of 
this stereocenter.ii For this reason, in recent years, much effort 
has been devoted to the search of new active methylenes with a 
defined structure that can be easily deprotonated and be used in 
the synthesis of these targets in a stereochemically-controlled 
manner. For instance, one of the strategies to obtain these goals 
is the use of α-enolizable lactam or (thio)lactone based 
heterocycles as pronucleophiles that under appropriate opening 
conditions afford α-amino acid, α-hydroxy and α-mercapto 
derivatives with a tetrasubstituted stereocenter (Figure 1).iii  

Although the addition of these heterocyclic nucleophiles has 
been carried out satisfactorily under soft enolization conditions to 
different electrophiles (essentially to Michael acceptors), only two 
examples of asymmetric addition to aldehydes exists in the 
literature,iv in spite of that this transformation allow the formation 
of optically active β-hydroxy carbonyl building blocks with 
congested neighboring heteroatom-functionalized quaternary-
tertiary stereocenters. The use of these substrates in aldol 
reactions is relatively limited due to the possibility of the retro-aldol 
reaction occurring under proton transfer conditions, especially 
with aromatic aldehydes that generate the aldol products more 
sensitive to the reverse reaction.v 
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Figure 1. α-enolizable lactam or (thio)lactone-based heterocycles as 
pronucleophiles. 

Nitrogen containing heterocycles are among the most 
significant structural components of pharmaceutical and 
agricultural chemicals. vi  From all N-heterocycles approved by 
U.S. FDA until 2013, azaarenes containing aromatic structure 
core was the second most commonly used, being the C2 position 
the preferred one for substitution with a frequency of two-thirds.vii 
For this reason, asymmetric and non-asymmetric modifications in 
position 2 of the azaarene ring are being studied intensively in the 
last years and especially in the two last.viii Among all these 2-
substituted azaarenes chiral 2-(oxymethyl)azaarene skeleton is 
frequent structural motif in optically active compounds,  as 
agrochemicals,ix in biologically active compounds,x or, due to their 
stability and excellent coordinating ability with a wide range of 
metal ions, as chiral ligands. xi  Some of the most powerful 
methods for obtaining 2-(oxymethyl)azaarenes with adjacent 
tertiary-tertiary stereocenters are by addition of carbon 
nucleophiles to azaarene-2-carbaldehydes and to a lesser extent 
by asymmetric transfer hydrogenation of 2-acylazaarenes.xii The 
C-C bond formation approach it has been better developed and
the most efficient results have been achieved through the addition 
of allyl-transition metals complexes  (Figure 2a), xiii   silyl enol
ethers (Figure 2b),xiv catalytically formed enamines (Figure 2c)xv

and by chemoenzymatic addition of activate methylene (Figure
2d) xvi  to azaarene-2-carbaldehydes. As far as we know, no
methods that employ the addition of nucleophiles to azaarene-2-
carbaldehydes that can generated effectively vicinal tertiary-
quaternary stereocenters in a single reaction step has been
described so far.xvii We envisioned that the synthesis of these
targets might be achieved by an aldol reaction between
heterocyclic nucleophiles and pyridine-2-carbaldehydes under
soft enolization conditions.
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Previous study:
Stereocontrolled creation of C-C adjacent tertiary-tertiary stereocenters.

Proposed work: 
Stereocontrolled creation of adjacent quaternary-tertiary stereocenters.
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Figure 2. Previous works and our proposal for the formation of optically active 
quaternary-tertiary chiral 2-(oxymethyl)azaarene derivatives. 

Results and Discussion 

Background and working plan. Hydantoins are a privileged 
class of heterocyclic scaffold that are encountered as core 
structural elements in natural products and pharmaceuticals.xviii 
Recently, we found that heterocycles of type I, II and III reacts 
selectively with some Michael acceptors (e.g., nitroolefins and 
acrylate equivalents), using active squaramide-tertiary amine 
bifunctional catalysts, yielding 5,5-disubstituted hydantoins with a 
variety of substitution patterns at N1, N3 and C5 positions after an 
acid or basic hydrolysis (Figure 3).xix  

N

N

O

O

E

N
N

O

R1

BnS

Ar

H-bond/BB* (cat.)

H3O

· high ee's
· versatility at N1,N3,C5

III

or
Electrophile (E)

or OH
NR2

N

O

R1

BnS
R2: acyl
R2: alkyl, aryl

I
II  
Figure 3. Advances in the asymmetric synthesis of 5,5-disubstituted hydantoins. 

We thought that the development of a new and effective 
method that can generate optically active 5,5-disubstituted 
hydantoins with a vicinal tertiary (pyridin-2-yl)methan-1-ol group 
would be important, since it could give access to compounds with 
high potential medicinal value. Among all classes of hydantoins, 

N3-arylated ones are of particular interest since this substitution 
pattern is often found in valuable pharmaceuticals that are 
currently being explored by many groups.xx For this purpose, we 
envisioned that the N3-aryl 2-benzylthio-3,5-dihydroimidazol-4-
ones III in combination with azaarenes-2-carbaldehydes could be 
perfect substrates to be used as pro-chiral starting materials for 
synthesizing optically active 2-(1-hydroxyalkyl) azaarene units 
having a N3-aryl 5,5-disubstituted hydantoin functionality group in 
the adjacent position. 

To achieve this goal, the aldol reaction between the N3-
phenyl 2-benzylthio-3,5-dihydroimidazol-4-one 1a, prepared from 
DL-phenylalanine and phenylisothiocyanate, and the 
commercially available pyridine-2-carbaldehyde 2a in the 
presence of our recently developed bifunctional catalyst C1 was 
evaluated.xxi The reaction gave almost full conversion at 0 ºC, but 
the aldol product 3 was obtained with poor diastereo- and 
enantioselectivity. 
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Scheme 1. 

At this point, we decided to change the substrate, pyridine-
2-carbaldehyde 2a, in order to get more rigid transition state with 
the catalyst and be able to increase the stereoselectivity. The 
oxidation of 2a to its corresponding N-oxide (4a) was successfully 
carried out in the Cu(II)/Box-catalyzed Mukaiyama aldol and oxo-
hetero-Diels-Alder reactions.xxii It is believe that, the stronger six 
membered chelated structure of the reacting N-oxide 
intermediate, may induce a different reactivity and selectivity 
compared with the non-oxidized pyridine. Previously, these 
substrates have not been used in organocatalytic reactions and  
could potentially be ideal substrates to perform the aldol reaction 
with 1a with high stereoselectivity.  

Initially, the reaction of N

xxiii

3-Phenyl 2-benzylthio-3,5-
dihydroimidazol-4-one 1a with 4a in CH2Cl2 at 0 ºC in the 
presence of 10 mol% of bifunctional catalyst C1 (10 mol %) was 
examined (Table 1). Under these conditions, the reaction gave full 
conversion, and interestingly the reaction favored the formation of 
the syn-aldol with excellent diastereo- and excellent enantiomeric 
excess  and no retro-aldol reaction was observed even after 
column chromatographic purification (entry 1). The N-methylated 
catalyst C2 was less stereoselective and did do not reach full 
conversion (for a more detailed explanation see below), 
demonstrating the need of an additional free NH amide group to 
give good stereocontrol and reactivity (entry 3). However, the 
conversion and diastereoselectivity dropped significantly after 
replacing the aminoquinine group in C1 with the (S)-3,3-dimethyl-
1-(piperidin-1-yl)butan-2-amine scaffold (C3, 82% conv., 1.5:1 dr, 
entry 4). Similarly, for bifunctional catalysts C4 and C5, widely 
used in additions involving polar reactivity, the aldol reaction also 



 

 
 
 
 
 

proceeded with low selectivity (entries 5 and 6). The C6 catalyst, 
which previously was used by our group in the addition of 2-
(cyanomethyl) azaarene N-oxides to α'-hydroxy enones, failed to 
give high stereocontrol. (entry 7).xxiv At this point, it was clear that 
the best reaction conditions were achieved with the catalyst C1. 
In order to achieve better stereocontrol, the reaction was run at 
lower reaction temperature (-10 °C) which led to a significant 
enhancement in the diastereoselectitity (entry 2). 
 
Table 1. Catalyst screening for the reaction of N3-Phenyl 2-benzylthio-3,5-
dihydroimidazol-4-ones 1a with N-oxide aldehyde 4a.[a] 
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[a] The reactions were performed using 0.11 mmol of 4a, 0.121 mmol of 1a and 
10 mol% catalyst in 0.6 mL CH2Cl2. [b] Data in parentheses refer to the yield 
after chromatography. [c] dr estimated by 1H NMR spectroscopy and by HPLC. 
[d]  Ee of major diastereomer as determined by HPLC. [e] Reaction conducted 
using 2 equivalents of 1a (0.22 mmol). 

 
With the established optimal reaction conditions, we then 

examined the scope of the aldol addition reaction of structurally 
diverse 2-benzylthiodihydroimidazolones (1a-g), with different 
substituents at the amino acid site location, in the reaction with a 
series of naked azaarene-carbaldehyde N-oxides 4a and 5a. As 
shown in Table 2, different substitution patterns can efficiently 
engage at the C5 position of the heterocycle. In general, the aldol 
reaction proceeds smoothly in a highly stereoselective manner 
and with excellent yields (>87%, isolated as a mixture of 
diastereomers). Imidazolones from phenylalanine and other α-
amino acid derived imidazolones with different functional groups 
(allyl and alkylesters) are employable as nucleophilic reacting 

partners (adducts 6c, 6d and 6e). The weakest acidity of adducts 
provided with simple alkyl groups (R = Et, i-Bu) did not make 
difficult to form the reactive carbanion at –20 ºC, however, a 
marked variation of selectivity was observed between these 
substituents based probably on the steric differences (adduct 6f 
vs 6g). Fortunately, the process was not limited to pyridine-2-
carbaldehyde N-oxide. For instance, quinoline-2-carbaldehyde 5a 
afforded the desired aldol product 7a in 90% yield and a high 
stereoeselectivity (94% ee and 11:1 d.r.).  

 
Table 2. Catalytic and asymmetric Aldol reaction between 1b-g and azaarene-
2-carbaldehyde N-oxides 4a and 5a.[a] 
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6aa, 16 h, -10 ºC, 93%
30:1 dr, 95% ee>

6ea, 48 h, -10 ºC, 87%
10:1 dr, 93% ee
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[a] The reactions were performed using 0.11 mmol of 4a-5a, 0.22 mmol of 1a-g 
and 10 mol% catalyst C1 in 0.6 mL CH2Cl2. [b] dr estimated by 1H NMR 
spectroscopy and by HPLC. [c]  Ee of major diastereomer as determined by 
HPLC. 

 
The scope of substituted N3-aryl 2-benzylthio-3,5-

dihydroimidazol-4-ones and azaarene N-oxide aldehydes was 
also evaluated (Table 3). N3-aryl Imidazolones bearing either 
para-substituted electron-donating groups or electron-
withdrawing groups on the N3-aromatic ring were well tolerated in 
the reaction with 2a and provided the aldol adducts 7h, 7i, and 7j 
in excellent yield (>90%) and with high stereoselectivity (>19:1; 
>90% ee). Interestingly, this reaction also occurred efficiently with 
substituent at the meta- and ortho-position position relative to the 
aniline group of the imidazolone (7k and 7l). Under these 
conditions, the reaction tolerated both electron-donating and -
withdrawing groups attached at different positions of the pyridine 
ring regardless of the substituent on the prochiral center of the 



 

 
 
 
 
 

imidazolone ring (7m, 7n, 7o, and 7p). ***Size 7q*** Similarly, 
substrates bearing both electron-rich and electron-poor aryl 
substituents were equally effective in providing the corresponding 
addition adduct 7r in high yield and excellent stereoselectivity. 
Finally, other alkylazaarenes were also used successfully in the 
aldol reaction and the substituent on the N3-Aryl imidazolones 
could be varied with a range of electron-donating and withdrawing 
functionalities without major impact on the yield and 
stereoselectivity (8b, 8c, 8d, and 9xxx). 
Hydrolysis of adducts into 5,5-disubstituted hydantoins. 
Since both optically active (azaaryl-2-yl)methanol and quaternary 
hydantoins units are important structures in medicinal 
compounds, we thought that the combination of these features in 
the same molecule could provide adducts of high synthetic value. 
In order to demonstrate the applicability of the present method, a 
larger scale experiment with the synthesis hydantoin unit and 
removal of the N-oxide moiety were examined (Scheme 2). First, 
we proposed to access the corresponding hydantoins by directly 
treating the aldol adducts 6a under acidic or basic hydrolytic 
conditions, but unfortunately, we observed that the starting 
compounds under these conditions decomposed due to the retro-
aldol reaction. Therefore, we thought it was necessary to protect 
the hydroxyl group of the aldol reaction adduct. Fortunately, we 
were able to establish a high performance protocol in three steps 
to convert 6a, 6j, 6n and 7a into our desired hydantoin goal 
(Scheme 2). First, treatment of the aldol adducts with 1 equivalent 
of benzoic anhydride in the presence of catalytic amount of DMAP 
furnished the corresponding O-protected adducts 8 and 9 as a 
white solids in 75–93% yields. In the second step, nucleophilic 
displacement of the benzylthioether group using HCl (6 M) in 
dioxane at r. t. for 3 days gave rise to the corresponding N-phenyl 
hydantoins 10 and 11 in good yields yields without the loss of 
enantiopurity. Finallly, reduction of the amine N-oxide group on 
adducts 10a and 11a by treatment with diboron reagent (Bpin)2 
afforded pyridine 12 and quinoline 13 in 88% and 91% isolated 
yield and unaltered enantioselectivity.xxv 

The absolute and relative configurations of the new formed 
stereogenic centers were established, assuming a uniform 
reaction mechanism, by a single-crystal X-ray crystallographic 
analysis of the adduct 10n (Figure N). 
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Scheme 2. Hydrolysis of cycloadducts to 5,5-disubstituted hydantoins and 
removal of the N-oxide. 

 

 

 

Figure 1. X-ray crystallographic structure of 10n. Color code: C gray, H 
white, O red, N blue. 

Catalyst design and mechanistic insights. The desire of 
developing efficient synthetic methods encourage chemists to 
design novel catalysts with high activity and selectivity. To 
achieve these objectives, much effort has been done in the search 
of new 

xxvii

multifunctional chiral organocatalysts, i.e. catalysts 
possessing two, or more, distinct functional groups to activate the 
substrates in a controlled chiral environment. xxvi Among all the 
multifunctional activation procedures, the organocatalyst assisted 
activation model is relatively less explored than the other methods, 
but recently synthetic chemists are gradually recognizing its 
potential.   

Our initial design idea of the new catalyst C1 was that the 
additional amide group on the "non-chiral” part of the catalyst (left 
part of catalyst C1, Figure 2) could hydrogen-bond to the carboxyl 
group of the square amide and thereby influence the electrostatic 
potential and hydrogen bonding ability of the hydrogens in the 
square amide. In the methylated catalyst C2, the amide in "non-
chiral” part of the catalyst is instead pointing away from the 
carbonyl oxygen and hence no hydrogen bond activation is 
possible. 
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In order to investigate the effect of the hydrogen–bond assisted 
activation in the different catalysts (C1 and C2), we calculated the 
structures of the different catalysts at the B3LYP/6-31+G(d) level 
of theory using both the D3 correction for dispersion and CPCM 
solvent calculation (DCM) in the optimization (see Figure 5). The 
surface electrostatic potential of the two catalysts shows a 
strongly positive potential around the two hydrogens of the square 

amide and the maximum is located in between the two hydrogen 
(red region in Figure 5). This explains the square amide catalysts 
potential to bind to carbonyl compounds. The C1 catalyst has a 
larger positive potential at the maximum compared to the C2 
catalyst, but the difference is relatively small (C1: VS,max =79.8 
kcal/mol; C2: VS,max =  76.0 kcal/mol). 

Table 3. Scope of the reaction of both substituted N3-aryl 2-benzylthio-3,5-dihydroimidazol-4-ones 1a-f and N-oxide azaares 4a-f.[a] 
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 [a] The reactions were performed using 0.11 mmol of 2a, 0.165 mmol of 1a and 10 mol% catalyst in 0.6 mL CH2Cl2. [b] dr estimated by 1H NMR spectroscopy 

and by HPLC. [c]  Ee of major diastereomer as determined by HPLC. 



 

 
 
 
 
 

 
 

 
 

Figure 5. Electrostatic potential of catalysts C1 and C2 calculated at the 
B3LYP/6-31+G(d) level of theory using both the D3 correction for dispersion and 
CPCM solvent calculation (DCM) in the optimization. 

In order to better understand the action 
of the two catalysts (C1 and C2), the potential 
energy surface of the reactants, intermediates 
and transition states of the aldol reaction was 
investigated at the B3LYP/6-31+G(d)// 
B3LYP/6-31+G(d) (Txema) level of theory 
using both the D3 correction for dispersion 
and CPCM solvent calculation (DCM). The 
calculations were performed with the N-oxide 
aldehyde 4a and a simplified imidazolones 
from Table 1 (Ph = Me, Bn = Me, Bn = H). The 
encounter between the imidazolone 1h and 
the catalyst (C1 and C2) lead to a pre-
assemble TS complex (C•1h) that is stabilized 
compared to the free catalyst and the 
imidazolone (Figure 6: –3.2 and -5.6 kcal mol-
1, respectively). From the pre-assembly 
complex, the α-hydrogen is deprotonated by 
the quinuclidine nitrogen in the bifunctional 
catalyst (via TSenolate) leading the enolate. The 

calculations show that the Gibbs free energy of activation, 
calculated from the pre-assembly complex, is similar for the both 
catalyst (13 kcal mol-1) and leads to a complex between catalyst 
and the formed enolate. The encounter between the aldehyde and 
catalyst complex leads to a new pre-assemble TS complex 
(C•4a•1h) before passing through the transition state (TSaldol) 
leading the aldol product. In the transition state for the aldol 
reaction, the nucleophilic enolate is attacking the N-oxide 
aldehyde 4a while the proton from the ammonium nitrogen is 
transferred to the oxygen in the aldehyde in a concerted fashion. 
The Gibbs free energy of activation for shows that the aldol 
reaction is the rate-limiting step of the reaction and that the barrier 
is slightly lower for catalyst C1 compared to catalyst C2 (10.7 kcal 
mol-1 compared to 11.6 kcal mol-1). This is in agreement with the 

Figure 6. Gibbs free energy diagram of the enolisation and the aldol reaction of the model 
imidazolinone 1h and N-oxide aldehyde 4a with catalyst C1 and C2 at the B3LYP/6-
31+G(d)//B3LYP/XXXXXX using the D3 dispersion and CPCM solvation (DCM). 



 

 
 
 
 
 

experimental observation that the C1 catalyst reacts faster than 
the C2 catalyst in the aldol reaction (See Table 1 and SI). 

Conclusions 

This work represents the first example of an asymmetric C(sp3)-
H addition of an organic compound to acyclopropene moiety as 
well as the first example of an asymmetric C(sp3)-H addition of a 
pyridine compound to an alkene. 
A new, quick entry to the enantioselective synthesis of 5,5- 
hydantoin surrogates. The method is general with respect to the 
substitution pattern at the N1 (alkyl, aryl, acyl), N3 (aryl) and C5 (  

Experimental Section 

For detailed description of the experimental procedures (preparation of 
templates, catalytic enantioselective reactions, transformations of adducts, 
kinetic measurements), characterization of compounds, and 
spectroscopic/chromatographic information, please see the Supporting 
Information. 
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data for this paper. These data are provided free of charge by the 
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