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A B S T R A C T   

In this study, we analysed 7Be weekly surface measurements from six Spanish laboratories from 
2006 to 2021. The Kolmogorov–Zurbenko filter was applied to the six 7Be time series, and 
following an iterative process, the original data were divided into two fractions: one related to 
variations characterized by periods above 33 days (including, among others, the seasonal cycle) 
and the second noisier fraction related to mechanisms originating from variations with periods 
below 33 days. Both fractions were independent at the six locations. The second machine-based 
step using random forest models was applied with the aim of identifying the most influential 
inputs to the observed 7Be concentrations, and machine learning-inspired regression models were 
fitted. With respect to seasonal components, the results indicated that the memory of the system 
was the most influential input, as expected by the large fraction of variance explained by the 
seasonal cycle, followed by that of humidity and wind-related variables. For the fraction corre-
sponding to periods below 33 d, precipitation-, humidity-, and radiation-related variables were 
the most influential. This methodology has made it possible to successfully describe the major 
mechanisms known to be involved in the generation of the surface 7Be concentrations observed in 
Spain.   

1. Introduction 

Since the discovery of 7Be in 1955 [1], extensive research has been conducted to understand its formation and transport mecha-
nisms [2]. The associated results show that it is a naturally occurring gamma-emitting radionuclide produced through the spallation 
processes of galactic cosmic rays and solar energetic particles [3,4] hitting light atomic nuclei (nitrogen and oxygen). With a half-life 
T1/2 of 53.22 days [5], it is prevailingly formed in the stratosphere (~2/3) and the remainder (~1/3) is produced in the upper 
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troposphere [6–10], with estimated global average production rates of 0.041 and 0.027 atoms cm− 2s− 1, respectively, for the solar 
minimum [11]. Once formed, the nuclei are quickly oxidized; they then attach themselves to accumulation mode aerosol particles (<1 
μm) [12–14] and follow their transport in the atmosphere [15]. Nevertheless, the most recent studies on health effects associated to 
particulate matter [16] just ignore any additional or cumulative impact of the 7Be attached. 7Be provides integrated information on the 
both production areas and transport [17] on a short time scale [4], and it has thus become a proxy that enables quantitative de-
scriptions of fundamental dynamic atmospheric processes [18]. Moreover, long-term variations in 7Be have recently been used as 
tracers of climate change [19] and global warming [20]. 

The observed airborne 7Be activity concentration is the result of a balance between sources that increase the activity concentration 
and sinks that have the opposite effect [21]. Accordingly, among the sources of 7Be, the inverse correlation between sunspot number 
and an increased radiative budget has been widely documented in literature [7,18,22–28]. Furthermore, tropopause height [29], 
altitude [11,17,18,30], decreasing latitudes [23,24,27] and sudden intrusions of 7Be from the upper atmosphere [31] have been found 
to play similar roles. However, natural radioactive decay, wind scattering and precipitation washout from the air are mechanisms that 
reduce 7Be concentrations at the local level [32–34]. Due to its close correlation with precipitation, other variables, such as relative 
humidity, typically appear to be inversely correlated with 7Be concentrations [26,35–37]. This inverse relationship has also been 
reported in remote locations, such as the Arctic [38]. In the particular case of Spain, several studies conducted at a local level [28] and 
within a limited time frame [39] have also highlighted this negative correlation between 7Be and precipitation related variables. 

In this respect, finding a model that can relate the observed airborne 7Be activity concentration to local meteorological conditions is 
the aim of environmental modelling using radionuclides as tracers [40–42]. As such, a variety of techniques such as multiple linear 
regression [27], factor regression [22], time series analysis [3], Fourier analysis [7] and regression trees [43] have been used to 
determine relationships or analyse individual correlations between surface 7Be concentrations and meteorological variables. Models 
based on machine-learning algorithms, such as random forest (RF) [25,44], have also succeeded in explaining more than 70 % of the 
overall variability in 7Be surface concentrations using meteorological inputs. In the case of Spain, it is worth mentioning a previous 
study based on artificial neural networks to predict 7Be values at a monthly time scale [45]. 

Considering the above, the current study was conducted with the aim of providing, for the first time, a complete picture of the 7Be 
field throughout Spain corresponding to the 2006–2021 period. For consistency, the same methodology was applied to the data from 
six laboratories that comprise the Spanish Sparse Network for Environmental Surveillance [46], and the procedure employed was as 
follows: the Kolmogorov–Zurbenko (KZ) filter was used to identify the most relevant periodicities involved in the generation of 7Be in 
Spain, and RF was used to determine the relationship between 7Be observations and meteorological variables for the broadband signals 
obtained in the former step. 

This paper is organised as follows: Section 2 presents the data and methodology, including a description of the 7Be measurement 
stations in Spain and the parameters selected from ERA5 reanalysis. The KZ filter (Section 2.2.1) and random forest (Section 2.2.2) are 
also introduced. The results are presented in Section 3, and Sections 4 and 5 present the main results and discuss the relevant con-
clusions, respectively. 

2. Material and methods 

2.1. Data 

2.1.1. 7Be data and study area 
The activity concentration of 7Be in airborne particulates is routinely measured on a weekly basis by the European Radioactivity 

Environmental Monitoring Sparse Network, which conducts high-sensitivity measurements. In Spain, six surveillance stations 
comprise the Spanish Sparse Network for Environmental Surveillance under the commitment of the Spanish Nuclear Safety Council 
(CSN). These six stations are spread along the national territory including the Iberian Peninsula and the Canary Islands, and they are 
associated with the following institutions indicated in decreasing latitudinal order: Universidad del País Vasco (UPV_1), Bilbao; 
Universidad Politécnica de Cataluña (UPC_1), Barcelona; CIEMAT (ICI_28), Madrid; Universidad de Extremadura (UCC_1), Cáceres; 
Universidad de Sevilla (USE_1), Sevilla and Universidad de La Laguna (ULL_3), Santa Cruz de Tenerife. It is of note that 7Be data from 
UPV_1 were obtained directly from measurements conducted at the Bilbao station and that these (together with those from other 
stations that comprise the Spanish Sparse Network corresponding to the 2006–2021 period) are publicly available and can be 
downloaded from the website maintained by the CSN (https://www.csn.es/kprgisweb2/index.html?lang=es). 

Table 1 
2006–2021 7Be activity concentration averages, coordinates of laboratories, and ERA5 nearest grid points used to retrieve meteorological variables. 
(*) Only available from July 2008 onwards.  

Lab. name Average ± SD [mBq/m3] Longitude ◦E Latitude ◦N LonERA5 ◦E LatERA5 ◦N 

upv_1 3.30 ± 1.41 − 2.94955 43.26136 − 3 43.25 
upc_1 3.70 ± 1.4 2.11606 41.38384 2 41.5 
ICI_28 4.30 ± 1.55 − 3.72454 40.45647 − 3.75 40.5 
ucc_1 (*) 4.60 ± 1.63 − 6.34887 39.48154 − 6.25 39.5 
use_1 4.10 ± 1.47 − 5.98677 37.35919 − 6 37.25 
ULL_3 4.50 ± 1.33 − 16.29109 28.45667 − 16.25 28.5  
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Table 1 summarizes the 7Be activity concentration averages and corresponding standard deviations measured within the 
2006–2021 period at each laboratory, as well as the associated coordinates. In the particular case of the UCC_1 laboratory, weekly 7Be 
data were only available from July 2008 onwards. For ease of visualization, laboratory locations are displayed in Fig. 1 together with 
the average 7Be concentrations. 

After a brief examination of the averaged values of the six locations in Table 1, a value for the entire Spanish territory of 4.00 ± 0.50 
mBq− 3can be obtained. However, differences between stations are apparent from the standard deviations. 

2.1.2. Measurement stations 
Aerosol samples are obtained using a high-volume aerosol sampling station ASS-500 device with a nominal flow rate of 500 m3 h− 1. 

The unit contains a polypropylene filter (44 × 44 cm2) that is replaced weekly. Details of the sample handling are described in another 
study [35]. The dry weight of the dust trapped by the filter is determined from the difference in the weight of the filter before and after 
exposure. The 7Be activity concentration is measured using high purity Germanium (HPGe) detectors with a counting time longer than 
two days. The relative detector efficiencies are in the range of 40–90 %, and at a resolution between 1.77 and 1.92 keV at 1.33 MeV of 
60Co. The background measurements are obtained using blank filters. The mean measurement uncertainty (coverage factor k = 2) for 
7Be is approximately 6 % at all six stations. It must be mentioned that before submitting observations to the CSN and being then made 
public, a quality control of data is carried out at each laboratory with strict data validation standards (ENAC ISO 17025) [47]. As a 
result, a very high percentage of reliable weekly observations (>99 %) have been available for the six laboratories. 

2.1.3. Sunspot number 
Previous studies worldwide, and particularly those on surface 7Be observations conducted in Northern Spain [28,35], indicate that 

the sunspot number is a proxy for the upper-atmosphere and is negatively correlated with the 7Be concentrations observed. Therefore, 
the daily total sunspot number (SSN) over the entire solar disk for 2006–2021 was downloaded from the Royal Observatory of Belgium 
[48] and incorporated into the analysis. 

2.1.4. ERA5 reanalysis 
ERA5 is the 5th generation of the European Centre for Medium-Range Weather Forecasts (ECMWF) atmospheric reanalysis of 

Fig. 1. Location of laboratories and 7Be activity concentration average corresponding to the 2006–2021 period.  
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global climate product, and it covers the period January 1940 to the present [49]. It was produced by the Copernicus Climate Change 
Service (C3S) at the ECMWF [50] and it provides hourly estimates of numerous atmospheric, land, and oceanic climate variables. The 
data cover the Earth on a 30 km grid and resolve the atmosphere using 137 levels from the surface up to a height of 80 km. ERA5 
includes information regarding the uncertainties of all variables at reduced spatial and temporal resolutions. It is based on 4D-Var data 
assimilation using Cycle 41r2 of the Integrated Forecasting System (IFS), which was operational at the ECMWF in 2016. Compared 
with its predecessor, ERA-Interim [51], ERA5 has a significantly enhanced horizontal resolution (31 km grid spacing vs. 79 km for 
ERA-Interim), and it benefits from a decade of development in model physics, core dynamics, and data assimilation. A complete set of 
hourly ERA5 data is available in the C3S Climate Data Store (CDS) [52], and the primary properties are listed in Table 2. 

To model the correlation between measured 7Be activity concentrations and meteorological observations, surface and upper at-
mosphere variables are considered. In addition, shortwave radiation routines used by the ECMWF in ERA5 [53] consider the inter-
annual variability of solar activity using yearly varying values of Total Solar Irradiance. 

For each laboratory, the following 13 daily meteorological variables at the nearest ERA5 grid point (Table 1) were selected for 
analysis:  

• Surface variables  
1 Surface pressure sp (Pa)  
2 10 m zonal wind component u10 (m s− 1)  
3 10 m meridional wind component v10 (m s− 1)  
4 2 m dewpoint temperature d2m (K)  
5 2 m temperature t2m (K)  
6 Downward UV radiation at the surface uvb (J m− 2)  
7 Top net solar radiation tsr (J m− 2)  
8 Evaporation e (m of water equivalent)  
9 Total column rain water tcrw (kg m− 2)  

10 Total precipitation tp (kg m− 2)  
11 Total cloud cover tcc (− ) [0 − 1]  

• Upper atmosphere variables (500 hPa)  
1 Ozone mass mixing ratio O3 (kg kg− 1). The reason for including ozone levels at such a height is that intrusions from the 

stratosphere can be detected if the concentration of ozone rises. It can be expected that in this case, 7Be can also be transported 
downwards and then be detected on the surface.  

2 Vertical velocity ω (Pa s− 1). This parameter measures the downward velocity from the upper atmosphere. Since 7Be is generated 
there, positive values might be associated to surface observations due to transport from the upper layers of the atmosphere. 

2.2. Methodology 

2.2.1. Kolmogorov–Zurbenko filter 
The KZ filter is a nonparametric smoothing technique used to detect distinct changes in a highly noisy time series. It belongs to a 

class of low-pass filters that can be used with missing values. The KZ filter has two parameters: m, a positive odd integer which 
represents the length of the moving average window, and p, the number of iterations of the moving average obtained according to 
Equation (1), 

Yi =
1
m

∑j=
(m− 1)

2

j=−
(m− 1)

2

Xi+j (1) 

As in regular moving averages, in this equation X represents any original time series of any type. The i index corresponds to the 
position in the original vector X. j is the number of positions before and after position i that are used to calculate the moving average. Y 
is the resulting time series after applying equation (1). The same equation (1) can be applied p times to the resulting Y time series in an 
iterative manner. 

KZ filters are used in various fields, including those relating to atmospheric pollutants [54–56]. In the particular case of 7Be, they 

Table 2 
ERA5 dataset properties.  

Property Value 

Temporal resolution 1-hourly 
Spatial resolution 30 km 
Vertical resolution 137 levels up to 80 km 
Coverage Global 
Time period January 1940 to present 
Produced by Copernicus Climate Change Service (C3S) at ECMWF 
Data variables Atmospheric, land, and oceanic climate variables 
Data access C3S Climate Data Store (CDS)  
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have been used to smooth the original data and obtain a superior graphical representation of observations [25], and to detect the 
synoptic fraction of 7Be at a referential station [18] at Mt Cimone (Italy, 2165 m.a.s.l.). This filter can be used to identify trends or 
changes in data that may be difficult to detect because of noise. Furthermore, the KZ filter can be used to separate the contributions of 
cycles below and above a given threshold periodicity according to Equation (2) [56] as follows, 

mp0.5 ≤ N (2) 

In this respect, the window length m and number of iterations p of the filter can be modified to determine the cut-off period N for 
what is passed through the filter. 

Following previous studies conducted by the authors with other atmospheric elements [56], the KZ filter was applied in the current 
study to split the original data from the six Spanish laboratories (Fig. 1) into a filtered time series and random residuals associated with 
the noisy fraction of the original measurements. To achieve this within the framework of an iterative process with many cut-off periods 
obtained from different combinations of m and p, the KZ filter was applied to logarithmic data from six laboratories according to 
standard methodology [54–56]. In all laboratories, only a small fraction <1 % of missing 7Be weekly values were present. In these 
cases, the standard KZ methodology was applied, and the moving averages (Equation (1)) were calculated using the available data. 

Original observations can be understood as the sum of apportions associated to different periodicities. Under this approach, by 
selecting the m and p parameters (Equation (2)), the KZ filter allows splitting the original observations into:  

1. A filtered fraction associated to the contributions of the rest of the periodicities above a given threshold N given by Equation (2).  
2. The residuals, associated to the contributions of the rest of periodicities not included in the filtered fraction. 

By simply adding the filtered fraction and the residuals, the original time series of the observations can be reconstructed. 
The objective of this work was to obtain for each laboratory a division into two meaningful fractions, each associated to two 

different groups of independent mechanisms and periodicities. An indicator that this type of partition has been achieved and an 
optimal cut-off period has been identified, had to be that the filtered and residual fractions were statistically independent. To achieve 
this, in the frame of an iterative process, for each tentative combination of m, p and N the residuals and filtered series were tested to 
check whether the following two conditions were met:  

1. The two fractions, the residuals, and the filtered time series were independent. For this purpose, the correlations and covariances 
between the two fractions were calculated. Correlations near zero (below 0.05) values for the covariances below 5 % of the overall 
variance were clear indicators of independence between both fractions.  

2. The residuals were Gaussian with a zero average, as expected for the fractions corresponding to noise. Or put in other words, the net 
apportion during the period analysed of a great number of high-frequency, rapidly varying mechanisms is zero. In this study, the 
Pearson chi-square normality test [57,58] was applied to the residuals, and their averages were computed. 

For the ease of interpretation of the conclusions derived from the statistical indicators analysed in this paper, interested readers are 
referred to the work by Crawley [59], where the basics of correlation coefficients, (co)variances, normality tests averages and other 
statistical tools are explained in detail. 

2.2.2. Random forest 
Random forest (RF) is a popular machine-learning algorithm used for both classification and regression problems. It is based on 

regression trees and comprises many trees that operate as an ensemble, and the algorithm uses bagging and feature randomness to 
construct regression trees. RF is typically used in regression problems where highly nonlinear relationships between a given output and 
a set of candidate inputs can be expected. An important aspect of RF is that it computes the deterioration in the mean square error 
(MSE) associated with the removal of each input. This technique therefore yields an objective quantitation of the relative importance of 
each input (in percentage terms) for predicting the output [60]. The mathematical aspects of RF have been extensively described 
[61–63]. In this study, RF models were applied to each dataset obtained from the six laboratories. 

With the same aim of relating 7Be observations to meteorological variables, Długosz et al. [22] recently applied a factor regression 
to each year of their study in central Poland. Seasonal RF models were fitted to the entire dataset in Poland using weekly averages in 
other studies [25,44]; the results were used to identify the most influential meteorological variables on 7Be, and they also focused on 
analysing their individual correlations with 7Be concentrations. In addition, Ioannidou et al. [27] built a multiple regression model (at 
a daily scale) between 7Be observations and meteorological variables, and they were able to explain about 40 % of the variance using 
this. 

Returning to the aim of the current study, which was to build a regression model for each Spanish laboratory between 7Be, sunspots, 
and meteorological variables at their nearest locations, RF was selected because highly nonlinear relationships were expected. To 
implement the RF algorithm, it is necessary to remember that models need to be built at a compatible time scale between inputs and 
outputs. However, this was not the case for the weekly sampling rate of 7Be and the time scales of ERA5 meteorological variables, 
which ranged from hourly to daily. To overcome this difficulty, several options were considered, and many tests conducted to obtain 
the optimal solution that maximised the explanatory power of the RF models. Finally, we attributed the accumulated weekly 7Be 
concentrations to the midpoint of the week and utilised the daily inputs of the 13 variables (see Section 2.1.4) corresponding to that 
specific day at the nearest grid point from the 7Be measuring laboratories (Table 1). During this initial process, it was observed that the 
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7Be concentrations retained up to two weeks memory from past observations of the 7Be concentrations, upper-atmosphere variables 
(O3 and ω) and sunspot numbers, in particular. Taking this observation into consideration, these delayed variables were also incor-
porated into the RF models resulting in a total of 22 variables as candidate inputs to explain the 7Be concentrations at each laboratory 
(i.e. 13 + 1 (daily sunspot number) + 2 × 4 (one and two weeks’ memory of: 7Be concentrations, O3, ω and sunspot numbers)). 

A second major observation from the preliminary study was that the explanatory power of random forests was maximised when 
applied separately to the two independent fractions obtained from the KZ filter. Thus, a total of 6 × 2 = 12 RF models were fitted 
independently. 

To gain further insights into the quality of the fitting model, different sets of data were used for 1) training the RF models and 2) 
testing the RF models. In this respect, data corresponding to the entire 2006–2021 period were divided into two parts: the first half to 
train the RF models (years 2006–2013: 400 weeks) and the second half (years 2014–2021: 400 weeks) to test the RF models. In doing 
so, possible bias associated with using the same dataset for both the training and fitting of the RF models was avoided, and the 
performance of the quality of fit of the models could be assessed. 

Previous studies have successfully applied RF and its associated methodology to regression problems when using other geophysical 
variables [64,65]. Following such previous experience and inspired by the RF standard procedures in regression applications [61], the 
number of selected variables at each splitting node was seven, representing roughly one third of the number of inputs (7 ≈ 22/3). Each 
RF model was built using 1000 regression trees. 

3. Results 

3.1. KZ filter 

The KZ filter was applied to the 7Be time series for the 2006–2021 period of each laboratory, and the initial datasets were split into 
two fractions: one corresponding to the filtered time series and the other to the residuals. It is of note that for the combination of m = 33 
and p = 1, the obtained fractions met the two conditions mentioned in Section 2.2.1. This meant that for a cut-off periodicity of 33 days 
(Equation (1)), the two fractions turned out to be independent and the residuals obtained were Gaussian with average zero. The final 
statistical indicators of the time series for the six laboratories are summarized in Table 3: the correlation between the filtered time 
series and the residuals are listed in column 2, and columns 3 and 4 show the proportions of the original variance represented by the 
filtered time series and the residuals, respectively. For the filtered time series, the corresponding proportion values roughly range 
between 47 % and 74 %, whereas the values for the residuals span between 26 % and 52 %. The sum of columns 3 and 4 is displayed in 
column 5, and this shows a total of nearly one for each pair of fractions, which suggests that the covariances are negligible. These 
observations show that the filtered time series and residuals are independent for the six laboratories. Column 6 shows that Pearson Chi- 
squared results are p > 0.05 for all cases, which implies that the residuals are Gaussian for all laboratories (at the 95 % confidence 
level). Finally, column 7 shows that the averages of the residuals are zero, indicating that their overall contribution is null. 

To summarize this idea, the 33 day cut-off period was identified under the assumption that the residuals obtained should be 
Gaussian with 0 average and independent from the KZ-filtered time series. As mentioned above, the idea was to split the driving 
mechanisms (KZ filtered time series, associated to periodicities above the 33 day threshold) and the additional low impact factors with 
a null contribution in the long-term (associated to periodicities below the same threshold). To that purpose, in the framework of an 
iterative loop several cut-off periods were tested and the statistical indicators associated to each solution were computed. Only the 33 
day period solution met those conditions for the residuals (correlation near 0, covariances near 0, Gaussian residuals with average 
almost 0) as can be seen in Table 3. 

In consideration of all the results presented above, the following assumptions were made: the cut-off period of 33 d clearly divided 
the 7Be time series of the original signal into two fractions. As such, two independent contributions were obtained, one corresponding 
to cycles with periodicities above 33 d (filtered fraction) and the other (residuals) with periodicities below 33 d (Fig. 2). A statistical 
analysis indicated that the two fractions at all the laboratories were independent, thus confirming the different nature of the mech-
anisms involved. 

However, it is also of note that a different approach was used by Tositti et al. [18], who employed a KZ filter with m = 21 and p = 3 
to split the time series into contributions associated with seasonality and synoptically influenced deviations from the seasonal cycle, 
respectively. Although the authors did not provide further information about the variability associated with each fraction, and they did 
not specifically calculate the cut-off frequency, by substituting into Equation (2), a value of 36 days can be found. Despite the singular 
location of Mt. Cimone and the differences in the sampling rates employed (48 h at Mt. Cimone vs. 1 week employed in this study), the 

Table 3 
Statistical indicators of the KZ filtered time series and residuals with m = 33 and p = 1 for 2006–2021.  

Lab. 
name 

Corr. KZ & 
Resid 

Variance proportion 
KZ. 

Variance proportion 
Resid 

Variance proportion KZ +
Resid. 

Pearson ChiSquare Resid. 
pvalue 

Resid. 
Average 

UPV_1 0.00 0.55 0.49 1.04 0.148 0.00 
UPC_1 0.03 0.55 0.43 0.98 0.055 0.00 
ICI_28 0.04 0.62 0.35 0.97 0.162 0.00 
UCC_1 0.01 0.74 0.26 1.01 0.065 0.00 
USE_1 0.04 0.47 0.52 0.99 0.078 0.00 
ULL_3 0.04 0.51 0.47 0.98 0.246 0.00  
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Fig. 2. 2006–2021 7Be concentrations at the six Spanish laboratories (orange): a) UPV_1, b) UPC_1, c) ICI_28, d) UCC_1, e) USE_1, f) ULL-1. The KZ 
filtered time series are depicted in black. Residuals are depicted in grey. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the Web version of this article.) 
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Table 4 
RF model performance for the test dataset and most influential inputs (2014–2021) (KZ filtered fractions).  

Lab R2 1st ΔMSE [%] 2nd ΔMSE [%] 3rd ΔMSE [%] 4th ΔMSE [%] 5th ΔMSE [%] 6th ΔMSE [%] 

UPV_1 0.87 7Be_kz-1 74.43 tcrw_kz 51.64 ω_kz_2 51.11 sp_kz 46.48 tp_kz 44.22 ω_kz 42.61 
UPC_1 0.88 7Be_kz-1 75.82 ω_kz 46.41 tcrw_kz 46.32 sp_kz 45.7 ω_kz_2 42.87 tp_kz 40.83 
ICI_28 0.90 7Be_kz-1 53.43 sp_kz 48.85 u10_kz 46.37 e_kz 43.8 tp_kz 42.94 SSN_kz_1 42.16 
UCC_1 0.87 7Be_kz-1 55.16 d2m_kz 39.65 u10_kz 36.83 e_kz 34.9 ω_kz 33.39 7Be_kz_2 32.97 
USE_1 0.79 7Be_kz-1 81.44 e_kz 54.42 tcrw_kz 48.43 u10_kz 48.33 sp_kz 43.01 ω_kz 42.28 
ULL_3 0.85 7Be_kz-1 101.34 tcc_kz 46.43 t2m_kz 45.86 v10_kz 43.56 tp_kz 42.49 d2m_kz 42.07  

A
. N
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Table 5 
RF model performance for the test dataset (2014–2021) and most influential inputs (Residuals).  

Lab R2 1st ΔMSE [%] 2nd ΔMSE [%] 3rd ΔMSE [%] 4th ΔMSE [%] 5th ΔMSE [%] 6th ΔMSE [%] 

UPV_1 0.32 tp_res 14.28 ω_res 12.36 v10_res 10.48 uvb_res 9.8 SSN_res 9.26 7Be_res_1 8.8 
UPC_1 0.19 sp_res 17.43 7Be_res_2 9.48 v10_res 8.58 tsr_res 8.36 ω_res 7.45 t2m_res 8.4 
ICI_28 0.32 tp_res 36.29 tcrw_res 26.48 ω_res 20.97 sp_res 18.69 tsr_res 17.54 ω_res_1 16.7 
UCC_1 0.24 tp_res 25.83 SSN_res_1 29.42 SSN_res_2 23.6 SSN_res 20.99 tcrw_res 15.28 sp_res 14 
USE_1 0.21 tcrw_res 20.21 tp_res 14.63 tsr_res 10.98 uvb_res 10.21 tcc_res 9.96 7Be_res_1 7.9 
ULL_3 0.17 tp_re 25.52 v10_res 13.69 tsr_res 11.11 e_res 10.31 uvb_res 9.53 tcc_res 17.4  
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same cut-off frequency was obtained in both studies. 
To interpret the fraction representing the residuals in Table 3 in terms of the variables from their Gaussian distribution at all lo-

cations, a diversity of random factors is called. Some of them are of synoptic origin, according to Ref. [18], together with others such as 
precipitation or advection to/from other locations. Furthermore, as their combined net contribution to local 7Be averages is zero, none 
of these factors can be said to be dominant in the long term. However, as with other atmospheric elements like pollen [66] further 
research is needed in order to elucidate the specific synoptic mechanisms involved. 

The raw data of the 7Be activity concentrations, KZ-filtered time series, and residuals for the six Spanish laboratories are shown in 
Fig. 2. From these plots, a clear seasonality can be distinguished from the KZ-filtered fractions in the six laboratories, with the maxima 
in summer and the minima in winter. However, in addition to this, the filtered fractions feature persistent differences among the six 
locations, as indicated by the averaged 7Be activity concentrations and the corresponding standard deviations shown in Table 1. 
Therefore, as highlighted in previous studies, it is essential to note the importance of local conditions [24]. In this respect, one study 
[20] analysed daily data sets from 70 global IMS monitoring stations covering almost 20 years (from September 2003 to September 
2019) and compared the annual average 7Be concentrations with the annual average cosmic rays. The results indicated that only 18 out 
of the 62 stations showed significant positive correlations (α = 0.05) for the years 2004–2018. In the other stations (37) either weakly 
positive results or negative (7 stations) correlations were noted but results were not significant at a 95 % confidence level. At these 
stations, the authors concluded that the effect of cosmic rays on the activity concentration of 7Be in the air was overprinted by at-
mospheric processes as well as by the mixing of old and fresh air masses during transport. 

3.2. Random forest 

An improved understanding of the most influential variables on the observed 7Be activity concentrations was obtained by applying 
the RF models. Based on the observed maximised explanatory power of the RF models mentioned in Section 2.2.2., fitting was con-
ducted separately for each resulting fraction after applying the KZ33,1 filter to the 22 candidate input variables in two steps. The 
training step was accomplished by fitting the models for both fractions of the data corresponding to the 2006–2013 period, and their 
performances were then verified when the trained models from the previous step were fed data from the 2014–2021 period. The results 
for each of the six laboratories are summarized in Tables 4 and 5, where R2 (the square of the correlation coefficient) represents the 
fraction of the overall variability in the 7Be concentrations explained by the RF models. The relevance of each input is described by the 
mean square error increase (ΔMSE, in percentage terms) as it represents the ratio relating to the effect of subtracting the aforesaid input 
on the overall RF model. Accordingly, the six most influential variables can be depicted from their associated ΔMSE values in Tables 4 
and 5. 

The correspondence between the RF models and the variances of the KZ33,1 filtered fractions of 7Be ranged between 47% and 74 % 
(Table 3) and are shown in Table 4. The high R2 values registered in all laboratories indicate that between 80 % and 90 % of the 
observed 7Be filtered fractions can be explained by the KZ33,1 filtered fractions of the inputs. In all the cases, the filtered memory of the 
7Be concentration is the most important input. Meteorological variables with clear seasonal behaviour (t2m_kz, u10_kz and v10_kz), and 
those more closely related to the yearly water cycle (tcrw_kz, tcc_kz, d2m_kz, e_kz and sp_kz) are the most influential. In all cases, the 
averages of the residuals are zero (Table 3), which explains the clear seasonality exhibited by the 7Be concentrations (driven by their 
KZ33,1 filtered fractions) at the six laboratories (Fig. 2). 

Notably, the filtered or seasonal component of the upper atmosphere variable ω was also an important input at 4 laboratories. In 
this respect, ω represents the downward vertical velocity from the upper atmosphere, and it was only analysed at the nearest vertical 
location from each laboratory. ω_kz can be understood as a (probably imperfect) proxy of the seasonal mechanisms involved in 7Be 
transportation from the upper atmosphere. The influence of KZ33,1 filtered fraction also featured memory (Table 4). The changes in 
SSN with periodicities above 33 days (SSN_kz) appeared to only be relevant in one laboratory (ICI_28), whereas their influence at the 
other laboratories was not among the most important (Table 4) 7Be KZ33,1 filtered fraction inputs. 

The RF models fitted with the residuals obtained after applying the KZ33,1 filter (Table 5) could only explain between 17 % and 32 
% of the variability observed in this fraction of 7Be. The R2 values were far smaller than those of the KZ33,1 fractions because the 
residuals were comparatively noisy and associated with greater rapidly changing 7Be concentrations with cycles below 33 days 
(Table 5). Additionally, at the six labels, the residuals follow a Gaussian distribution with zero average (Table 3); therefore, a high 
number of small impact effects can be expected to act jointly without a clear dominant mechanism over the rest. 

However, when the small part of the variability explained by the RF models was analysed, two major groups of variables were 
found to be the most important at all laboratories: humidity or precipitation-related variables (tp_res, tcc_res, tcwr_res, sp_res and e_res) 

Table 6 
Proportion of overall variability of 7Be explained by RF models.  

Lab Variance proportion 
KZ 

Variance proportion 
Resid. 

Variance proportion RF KZ Variance proportion RF 
Resid. 

Combined explained 
variance 

UPV_1 0.55 0.49 0.87 0.32 0.64 
UPC_1 0.55 0.43 0.88 0.19 0.56 
ICI_28 0.62 0.35 0.90 0.32 0.67 
UCC_1 0.74 0.26 0.87 0.24 0.70 
USE_1 0.47 0.52 0.79 0.21 0.48 
ULL_3 0.51 0.47 0.85 0.17 0.51  
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and radiation-related variables (SSN_res, tsr_res and uvb_res). The first group of variables is associated with the 7Be washing-out 
mechanisms, and the second group is known to be related to 7Be generation mechanisms in the upper atmosphere. Specifically, 
SSN played an important role at one laboratory (UCC_1). Surface and downward wind speed (v10_res and ω_res) were also influential 
because of 7Be transportation to/from other locations or even from the upper atmospheric layers. Again, the 7Be concentration 
memory also played an explanatory role in this fraction. 

As the filtered and residual fractions were independent (Table 3), the R2 values of the RF models for both fractions (Tables 4 and 5) 
were combined (Eq. (3)) to obtain the total amount of variance that can be explained by this approach, and the results are shown in the 
final column of Table 6. The total proportion of the variability that can be explained by this combined approach ranged from 48 % 
(USE_1) to 70 % (UCC_1). 

Varianceexplained =VarKZ • R2
RFKZ

+ VarRes • R2
RFRes

(3)  

In this equation, “Varianceexplained” represents the overall variability explained by the combined models. VarKZ/res is the proportion of 
the variability explained by the two fractions (KZ filtered/residuals). R2 

KZ/res is the proportion of the variability explained by the two 
random forests models for each of the two fractions (KZ/res). This applies to all the locations. 

4. Discussion 

This current study analysed weekly sampling data of 7Be activity concentrations from six laboratories in Spain that comprise the 
Spanish Sparse Network for Environmental Surveillance. 

Local surface 7Be concentrations alter because of sudden upper-atmosphere intrusions or washing-out from the atmosphere due to 
precipitation or advection. It is difficult to capture these rapidly changing mechanisms and determine the relationship between 7Be and 
variables that explain the observed surface concentrations throughout Spain when using only weekly averages. 

To overcome this problem, we first employed a KZ filter. The results indicated that the original 7Be time series from the six lab-
oratories could be divided into two types of fractions: filtered fractions associated with seasonal effects with cycles above 33 days, and 
residuals originating from mechanisms with periodicities below 33 days. At all the laboratories, the two fractions were independent 
thus indicating two groups of different driving mechanisms acting on the observed 7Be levels. 

Except for the similar cut-off frequency previously reported for Mt. Cimone (Italy) [18], no other studies have focused on this 
division. However, although this division was found to be common based on data from all six Spanish laboratories, it needs to be 
confirmed in other locations. If it can be mathematically determined in a wide variety of environments, it may well represent an 
intrinsic natural division of 7Be measurements between seasonal effects and the large numbers of mechanisms that act together, but 
which provide zero contribution in the long-term. 

In the second step, RF, a machine-learning technique with a high capacity to capture nonlinear relationships, was used to fit 
regression models between 7Be and the inputs. RF models were independently fitted to six laboratories for the two fractions obtained 
after applying the KZ33,1 filter. Using this combined approach, the explanatory power of the RF models ranged from 48 % to 70 %. It 
must be emphasised that, unlike many previous studies, these results corresponded to the performance of the models fed with data 
belonging to the 2014–2021 period, which differed from the data used to fit them. As such, this provides a reliable indication of the 
actual performance and the inputs involved. 

As in most previous studies, the sunspot number and surface meteorological variables at the nearest locations were used as inputs. 
However, to the best of our knowledge, this is the first time that i) the memory of the system and ii) upper-atmosphere meteorological 
variables have been incorporated into the analysis. 

The memory of the system was among the most influential inputs in the seasonal fraction, whereas short-term changes in radiation, 
wind speed, and precipitation were captured by the residuals and corresponded to mechanisms with periodicities below 33 days. 

Therefore, it would be possible to ascertain the impact of past observations on the current 7Be values if the sampling rate was 
increased over a sufficiently long period. 

The relevance that the group of precipitation-related variables play confirms that the mechanisms largely identified in the literature 
(solar radiation, washing out, advection) by other observational means appear in this study. 

In the case of the upper-meteorological (500 hPa) variables selected here, ω, (the vertical downwards velocity) which describes the 
7Be movements towards the surface, was among the most relevant inputs in both fractions of the 7Be series, and it exhibited memory in 
both fractions, thus suggesting a rather complex mechanism. We suggested that this could perhaps be better captured using ERA5 data 
at additional intermediate levels over an expanded area and not only at the nearest locations. Therefore, to standardize this meth-
odology to the greatest extent possible, ERA5 data were used in all cases instead of using data from different local observational 
networks. Using ERA5 data is particularly relevant for upper-atmosphere variables, which are otherwise not easily available, and it 
allows better reproducibility in other environments. 

5. Conclusions 

This study analysed the 7Be time series measured at six Spanish laboratories corresponding to the 2006–2021 period. Applying the 
KZ filter to all time series with a cut-off frequency of 33 days enabled independent analysis of both the seasonal component and the 
noisiest fraction of the observations. As both fractions were found to be independent, they were analysed separately using RF models. 

Overall, the RF models described the major mechanisms involved in the generation, transport, and washout of 7Be in the 
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atmosphere. There were no significant variations between the overall averages of the laboratories. 
In all laboratories, for the KZ-filtered fractions 7Be observations one week before turned out to be the most influential inputs. This 

indicates the importance of the memory of the system at explaining the observations throughout the period analysed, and this was 
linked to a high fraction of the variance associated with the seasonal cycle. 

Apart from the memory of 7Be, it can be seen that the KZ-filtered fraction is driven by seasonal mechanisms, mainly those associated 
to the seasonal evolution of radiation and precipitation-related variables. These are exactly the mechanisms known to be involved in 
the generation and washing-out of 7Be. 

Based on these results, it can be concluded that Spain has a general background concentration of around 4 mBq/m3 with clear 
seasonal oscillations associated to the KZ fractions plus sudden apportions and/or eliminations from the atmosphere linked to a great 
number of low-energy mechanisms driven by periodicities below 33 days. In the long-term, these rapidly changing mechanisms 
contribute with zero mBq/m3 to the overall average at the six locations. 

In this study, for the first time, upper-atmosphere radiative (O3) and transportation variables (ω) have been used as explanatory 
variables for the 7Be models for both fractions. In general terms, these variables have turned out to be more influential than a radiation 
proxy like SSN. This also means that in this and also future studies, the portion of the solar cycle analysed –another proxy after all-is 
likely not to have a great relevance since these new variables can more directly account for the mechanisms involved. 

The combined approach employed in this study (the KZ filter followed by the application of RF models to both fractions) enabled 
explanation of between 48 % and 70 % of the overall variability in weekly 7Be observations. 

Under this novel approach, the main mechanisms known to be involved in the generation of 7Be now also appear using this new 
methodology. The analysis in terms of relevant periodicities (KZ filter) followed by random forests has allowed a more specific 
identification of the variables responsible for the surface 7Be observations. 

It is of note that, unlike many previous studies, the models’ performances were based on the use of different data from that 
employed to fit the models. Therefore, considering the high number of cases used here, it is considered that the results represent a 
realistic assessment of the methodology presented here. 

Research is currently being conducted in two directions:  

1. Determining whether dividing the 7Be time series into two fractions with a cut-off frequency of 33 days, which has been detected in 
Spanish laboratories, is also applicable at other latitudes. Many factors may be responsible for this division, and among them, the 
so-called Carrington rotation, a synodic rotation period of the sun of approximately one month [67], is currently under consid-
eration by the authors. In this respect, a harmonic analysis [68] of the series was conducted to identify the amplitudes Ai and phases 
φi in the origin of the 7Be observations. The 95 % confidence interval of the parameters, the R2 value of each fit and the distribution 
of the p-value of the fit were estimated by means of bootstrap, and the contributions of the corresponding harmonics were assessed. 
Preliminary results (not shown here) indicate that the seasonal cycle is dominant, and additional harmonics make relatively minor 
contributions. Through the use of a different methodology, these results verify those of the current study and identify the existence 
of a dominant seasonal fraction plus noisy residuals. However, this requires further investigation. 

2. The results reported in the current study were based on data obtained at 500 hPa at the nearest vertical location from each lab-
oratory. However, using ERA5 at additional pressure levels over a much wider area would provide more information about 7Be 
transportation to the surface. This could be achieved using a dimensionality reduction process via principal component analysis to 
obtain a reasonable number of variables, and this implies the need to conduct a more accurate evaluation of the seasonal mech-
anisms involved. As additional inputs are required to increase the overall fraction explained, incorporating such information in the 
RF models could increase their performance. 
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