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Abstract: In recent years, there has been significant interest in incorporating micro-actuators into
industrial environments; this interest is driven by advancements in fabrication methods. Piezoelectric
actuators (PEAs) have emerged as vital components in various applications that require precise
control and manipulation of mechanical systems. These actuators play a crucial role in the micro-
positioning systems utilized in nanotechnology, microscopy, and semiconductor manufacturing; they
enable extremely fine movements and adjustments and contribute to vibration control systems. More
specifically, they are frequently used in precision positioning systems for optical components, mirrors,
and lenses, and they enhance the accuracy of laser systems, telescopes, and image stabilization devices.
Despite their numerous advantages, PEAs exhibit complex dynamics characterized by phenomena
such as hysteresis, which can significantly impact accuracy and performance. The characterization
of these non-linearities remains a challenge for PEA modeling. Recurrent artificial neural networks
(ANNs) may simplify the modeling of the hysteresis dynamics for feed-forward compensation.
To address these challenges, robust control strategies such as integral fast terminal sliding mode
control (IFTSMC) have been proposed. Unlike traditional fast terminal sliding mode control methods,
IFTSMC includes integral action to minimize steady-state errors, improving the tracking accuracy
and disturbance rejection capabilities. However, accurate modeling of the non-linear dynamics of
PEAs remains a challenge. In this study, we propose an ANN-based IFTSMC controller to address
this issue and to enhance the precision and reliability of PEA positioning systems. We implement
and validate the proposed controller in a real-time setup and compare its performance with that of a
PID controller. The results obtained from real PEA experiments demonstrate the stability of the novel
control structure, as corroborated by the theoretical analysis. Furthermore, experimental validation
reveals a notable reduction in error compared to the PID controller.

Keywords: recurrent neural network; integral fast terminal sliding mode control; piezoelectric
actuator; hysteresis

1. Introduction

High-precision positioning was primarily limited to academic domains. However,
advancements in fabrication methods since the turn of the century have opened up new
possibilities for incorporating micro-actuators into industrial environments. Piezoelectric
actuators (PEAs) have since become indispensable in numerous applications requiring
precise control and manipulation of mechanical systems. They are integral components in
the micro-positioning systems used in nanotechnology, microscopy, and semiconductor
manufacturing and facilitate extremely fine movements and adjustments [1]. Addition-
ally, PEAs are employed in precision positioning systems for optical components, mirrors,
and lenses [2], enhancing the accuracy of laser systems, telescopes, and image stabilization
devices [3]. They also play a vital role in vibration control systems by damping or controlling
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vibrations in mechanical structures and machinery to improve stability and reduce noise [4,5].
In the medical field, PEAs are utilized in devices such as micro-manipulators for minimally
invasive surgery, ultrasound imaging equipment, and drug delivery systems [6]. Further-
more, in aerospace and defense applications, PEAs contribute to tasks such as fine-tuning
flight control surfaces, actuation in precision instruments, and vibration isolation in sensi-
tive equipment [7,8]. Overall, PEAs serve as essential components in mechatronic systems,
including robotics, enabling precise positioning of robotic arms, grippers, and end-effectors
and providing better control motion in various industrial domains [9].

PEAs offer several advantages, such as improved precision positioning, fast response
times, and a wide range of operating frequencies. They are capable of producing large
forces and displacements with relatively low power consumption, making them suitable
for applications requiring high dynamic performance and energy efficiency. Moreover,
piezoelectric materials exhibit inherent stiffness and mechanical stability, enabling precise
control and positioning at micrometer and nanometer scales [10]. Additionally, they are
compact, lightweight, and resistant to electromagnetic interference, making them suitable
for use in harsh environments and confined spaces. Unfortunately, PEAs present some
limitations. They typically operate over limited displacement ranges and exhibit nonlinear
behavior due to certain phenomena such as hysteresis [11,12], creep [13], and temperature
sensitivity [14]. Furthermore, they require high driving voltages and sophisticated control
electronics, which can increase system complexity and cost [15]. Additionally, piezoelectric
materials are brittle and can be susceptible to fatigue and degradation over time, particu-
larly under cyclic loading conditions [16]. Despite these challenges, advances in material
science, manufacturing techniques, and control strategies continue to expand the capabili-
ties and applications of PEAs. Hysteresis is a crucial and extensively studied phenomenon,
particularly in systems where high precision is essential, such as guidance systems. It can
introduce errors of up to 22% [17], significantly impacting accuracy. Moreover, hysteresis
cannot be overlooked as it not only affects achieving the desired position but can also lead
to system instability [18].

Hysteresis in PEAs is a complex phenomenon resulting from the interaction between
mechanical strain and an electric field. When subjected to an electric field, the polarization
of the material’s domains becomes aligned in an arbitrary direction [19]. As the electric
field increases, the poles of the material align with the field, resulting in elongation due
to the ferroelectric effect. When the electric field decreases, the poles attempt to return
to their initial orientations but with a certain deviation from their original positions [20].
This difference between the initial and final states of the polarization creates a hysteresis
loop, which manifests as a lag in the actuator’s response to changes in the applied voltage
or force. Addressing hysteresis is essential for enhancing the accuracy and reliability of
piezoelectric-based systems in different applications [21].

Hysteresis in PEAs can be reduced through various techniques and approaches [22].
One approach involves improving the design and fabrication of the piezoelectric material
itself to minimize hysteresis. This may include optimizing the material composition, struc-
ture, and processing techniques to achieve more uniform polarization behavior. Another
common method is to implement compensation algorithms in the control system to account
for the non-linearity caused by hysteresis. These algorithms can use mathematical models
or experimental data to predict and counteract the hysteresis effect in real time.

To mathematically model hysteresis behavior, several models have been developed.
The Preisach model [23] represents hysteresis using a distribution of hysterons, while the
Jiles–Atherton [24] model adapts concepts from magnetic materials to describe piezoelectric
hysteresis. The Bouc–Wen model, commonly used in structural engineering, captures
non-linear hysteresis through a set of differential equations [25]. Additionally, the Prandtl–
Ishlinskii model decomposes hysteresis into elementary operators, allowing for accurate
representation of a wide range of hysteresis behaviors [26]. Each model offers unique
advantages and complexity levels, enabling engineers to select the most appropriate model
based on application requirements and experimental data.
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Machine learning techniques have become increasingly prevalent for modeling the
hysteresis behavior of PEAs from experimental data. Among the principal machine learning
approaches for this purpose are artificial neural networks (ANNs) [27–29], support vector
machines (SVMs) [30], random forests [31], and Gaussian processes (GPs) [32]. These
machine learning techniques provide flexible and data-driven approaches to hysteresis
modeling, enabling accurate predictions and enhanced understanding of the dynamic
characteristics of PEAs [27]. Recurrent artificial neural networks (RNNs) have become
a powerful tool for modeling non-linear dynamics [33] such as PEA hysteresis behavior.
Unlike feed-forward neural networks, RNNs have feedback connections that allow them to
retain information about previous states, making them adequate for modeling dynamic
systems with temporal dependencies, such as hysteresis phenomena. By incorporating
feedback loops, RNNs can capture the temporal dynamics of the input–output relationship
in PEA systems, enabling them to effectively model hysteresis loops over time.

The rate dependency of PEA hysteresis is a critical factor in its performance, particu-
larly when operating across a wide range of frequencies. Traditional hysteresis models are
often rate-independent and fail to accurately capture the dynamic behavior of PEAs under
varying conditions. This dependency manifests as changes in the width of the hysteresis
loop and the amplitude of displacement response, especially at higher frequencies.

Laboratory experiments have been performed to characterize the rate-dependent hys-
teresis properties of a piezoceramic actuator under various excitations in the 0.1–500 Hz
frequency range and have revealed larger hysteresis loop widths and lower displacement
response amplitudes above 10 Hz. A rate-dependent Prandtl–Ishlinskii model has been
developed and validated and showed very good agreement with experimental data across
different input types and frequencies [34]. The paper models the rate-dependent behavior
of piezoelectric materials using a three-dimensional finite element framework by applying
a rate-dependent polarization framework to cyclic electrical loading at various frequencies.
The onset of domain switching is determined by the reduction in free energy, and intergran-
ular effects are captured via a probabilistic approach. Numerical simulations for PIC-151
ceramics show good agreement with experimental electric displacement versus electric
field data [35]. This paper presents a novel modified inverse Preisach model to compen-
sate for the rate-dependent hysteresis of a piezoelectric actuator across varying frequency
ranges. By adopting the fast Fourier transform method to select proper µ-density functions
and weights, the proposed model forms a real-time online rate-dependent compensator,
significantly improving the tracking control accuracy of the actuator [36].

Robust controllers ensure stability and performance in control systems amidst un-
certainties and disturbances. These controllers are designed to maintain desired system
behavior even in the presence of variations or unknown factors. The use of robust control
techniques systems can effectively mitigate external disturbances and uncertainties, thus
enhancing their resilience and reliability. Robust controllers have been explored for PEA
positioning with proven results. A robust control scheme based on inverse models and
accompanied by a stability analysis is presented in [16]. This approach yielded favorable
outcomes, achieving an error of approximately 0.5 µm. Several first-order sliding mode con-
trol (SMC) approaches have been devised and employed for PEAs, despite the significant
drawback posed by chattering [37,38]. Integral sliding mode control (ISMC), introduced
in [39], offers another strategy for mitigating static error. However, its practicality dimin-
ishes when a mathematical model is employed due to the complexities of the dynamics,
leading to reduced control accuracy [40]. Integral fast terminal SMC (IFTSMC) controllers
have proven their robustness, fast convergence, and ability to handle uncertainties and
disturbances effectively. The addition of integral action to fast terminal SMCs ensures that
any steady-state errors are minimized. This integral action helps to improve the tracking
accuracy and disturbance rejection capabilities of the controller. The IFTSMC scheme has
been proven in different domains, with promising results [41–43].

This work proposes an ANN-based IFTSMC controller for piezoelectric actuator
positioning. The ANN solves the necessity of having an accurate model of the non-linear
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dynamics of PEAs. The proposed controller is implemented in a real-time setup to validate
the proposed solution. The performance of the PEA IFTSMC controller is compared to that
of a PID controller since PID controllers are frequently used in the literature as reference
controllers [44,45].

The paper is structured as follows: Section 2 presents and discusses the hardware
utilized and provides a brief overview of the hysteresis phenomenon. Furthermore, it
introduces the ANN-based IFTSMC: with subsections dedicated to the discontinuous terms
and the ANN. Additionally, a Lyapunov analysis is included to demonstrate the stability of
the system with this novel controller. Finally, Section 3 evaluates the real-time performance
of the ANN: presenting results and comparisons between the PI controller and the ANN-
based IFTSMC. Finally, Section 4 provides the conclusion: summarizing the findings and
discussing the implications of the study.

2. Materials and Methods
2.1. Hardware

This study utilizes commercial hardware from Thorlabs: specifically, the PK4FYC2
stack actuator. This actuator comprises multiple piezoelectric chips bonded together with
epoxy and glass beads. It operates on a micrometric scale, and its elongation is measured
using four strain gauges arranged in a Wheatstone bridge configuration. The actuator
accepts voltage inputs ranging from 0 to 150 V, with 150 V resulting in the maximum
displacement of 38.5 µm. The manufacturer specifies a maximum error of 15%, primarily
attributed to hysteresis, which can be mitigated by implementing a PID controller within a
feedback control system. Additional technical specifications are provided below.

The voltage range of 0–150 V is generated using a single-channel driver cube, Thorlabs
KPZ101, which is specifically recommended for the PEA. This driver cube is versatile and
is compatible with a wide range of actuators. It offers convenient operation in open-loop
mode without requiring a peripheral computer. Additionally, it can function in closed-loop
mode with an external 0–10 V signal, scaling it up to 0–150 V for the PEA, with a maximum
allowed bandwidth of 1 kHz.

Due to the Wheatstone-bridge-based measurement method, the elongation is repre-
sented as a resistance change, which can be challenging to read due to the small values
involved. To address this issue, the manufacturer recommends using the pre-amplifier
AMP002. This pre-amplifier amplifies the small differences in a 0–2 V signal, which is then
fed into a cube reader: the Thorlabs KSG101. This reader displays the PEA extension on
an embedded LED viewer and provides an output signal ranging from 0 to 10 V. Table 1
provides the technical details of the PEA elements.

As mentioned earlier, both the driving and measurement signals operate within a
0–10 V range. Therefore, a dSpace DS1104 board is utilized for acquisition and control
purposes. This hardware is equipped with real-time interface (RTI) capabilities, reducing
compilation time for driving algorithms and enabling real-time control tuning. The board
is connected via a peripheral component interconnect (PCI) bus to a Dell Precision Work-
station T3500 (Warszawa, Poland) featuring an Intel 64 2.4 GHz microprocessor and 18 GB
of available memory.

The control architecture is exclusively designed in Simulink 2022B by MathWorks
and is implemented through dSpace RTI. This architecture is designed with flexibility
for real-time operation and facilitates gain tuning and performance metric calculation.
Real-time visualization of data is achieved using ControlDesk 2022B, while MATLAB by
MathWorks is utilized for data processing and visualization. A sampling time of 1 kHz is
established for all experiments, aligning with the relationship between data acquisition and
hardware physical limitations. Figure 1 provides a schematic overview of the flow between
the hardware and software components.
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Table 1. Thorlabs hardware technical details.

PEA PK4FYC2 Value Units

Dimensions 7.3 × 7.3 × 7.3 mm
Maximum displacement 38.5 µm

Blocking force 1000 N
Resonant frequency 34 kHz

Maximum error 15 %

Driver Cube KPZ101

Output driving voltage for PEA 150 V
Input driving voltage 0–10 V

Maximum output bandwidth 1 kHz

Reader Cube KSG101

Output range 0–10 V
Resolution 1 ηm

Pre-Amplifier AMP002

Output range 0–2 V

Figure 1. Scheme of the software and hardware implementation.

2.2. Hysteresis

PEA hysteresis refers to the phenomenon observed in PEAs whereby the displacement
of the actuator depends not only on the current input voltage but also on its previous
history. This behavior arises due to the inherent properties of the material used in PEAs,
which exhibit hysteresis characteristics. Hysteresis in PEAs occurs because the material
undergoes irreversible changes in its internal structure when subjected to an electric field,
resulting in a lag or memory effect in the actuator’s response. Specifically, when the input
voltage is increased or decreased, the actuator’s displacement may not immediately follow
the input signal due to this hysteresis effect. Instead, the displacement may lag or exhibit a
different trajectory depending on the previous history of the input voltage. This hysteresis
behavior can complicate the control of PEAs as it introduces non-linearities and memory
effects that must be accounted for in the control algorithm. Therefore, understanding and
modeling PEA hysteresis is essential for designing effective control strategies to accurately
predict and control the actuator’s behavior.
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The hysteresis cycle in PEAs refers to the characteristic loop-shaped behavior observed
when plotting the actuator’s displacement against the applied voltage. This cycle typically
consists of two main phases: the loading phase and the unloading phase.

During the loading phase, as the voltage applied to the PEA increases, the actuator
undergoes a corresponding displacement, typically in the positive direction. This dis-
placement is non-linear and may exhibit gradual increases or sudden jumps depending
on factors such as the voltage magnitude and rate of change. As the voltage continues
to increase, the actuator reaches its maximum displacement, which corresponds to the
maximum voltage applied.

In the unloading phase, when the voltage is decreased, the actuator begins to retract
or return to its original position. However, due to hysteresis effects, the actuator’s dis-
placement may not immediately decrease in proportion to the voltage reduction. Instead,
the displacement lags behind the voltage change, resulting in a different trajectory com-
pared to the loading phase. This lag or memory effect is characteristic of hysteresis and is
a key factor that complicates the control of PEAs. Figure 2 shows the hysteresis of a PEA
when a 1 Hz triangular signal is applied. The different curves correspond to the loading
phase and the unloading phase.

Figure 2. Hysteresis through a complete cycle.

2.3. Control Design and Performance Metrics

In this research, the focus was on implementing and evaluating two distinct control
architectures through practical experimentation to ascertain their efficacy and performance
in real-world scenarios. The experimental setups were designed to embody these archi-
tectures and provide a tangible platform for analysis and comparison. Figure 3 illustrates
a schematic representation of these structures. To optimize the control process, the con-
trollers were endowed with specific degrees of freedom, which were primarily associated
with tuning constants that were crucial for their operation. The tuning process involved
iteratively adjusting these constants to achieve the desired control outcomes. A key aspect
of this tuning methodology was the utilization of the integral of the absolute error (IAE)
reduction technique. This approach aims to minimize the error between the desired and
actual control responses by optimizing the controller’s parameters. In Equation (1), the first
term represents the expression for the IAE, which serves as the objective function for
parameter optimization.
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IFTSMC PEA

ANN

PID PEA

+ -
error reference control action V position

prediction V

control action Vreference error position

(a)

(b)

+ -

Figure 3. Control schemes for (a) the proposed ANN-based IFTSMC and (b) the PID controller.

In addition to the IAE, which serves as a pivotal metric for evaluating guidance
performance, this study incorporates two supplementary metrics: the root-mean-square
error (RMSE) and the relative root-mean-square error (RRMSE). These additional metrics,
inspired by the methodology outlined by the authors of reference [46], provide nuanced
insights into the control system’s efficacy by quantifying the magnitude and relative
significance of deviations between observed and desired outcomes. The RMSE, calculated
as the square root of the average of the squared differences between actual and reference
values across all samples, offers a measure of the overall accuracy of the control system.
On the other hand, the RRMSE normalizes the RMSE against the range of the reference
values, providing a relative measure of error that facilitates comparison across different
datasets. By integrating these supplementary metrics alongside the IAE, this research aimed
to furnish a comprehensive assessment of the control system’s performance, enabling a
nuanced understanding of its effectiveness at meeting desired guidance objectives.

IAE = ∑N
i=1|ei|∆t

IAEmean = ∑N
i=1|ei |∆t

N

RMSE =
√

1
N ∑N

i=1 e2
i

RRMSE = 100 ·
√

∑N
i=1 e2

i / ∑N
i=1 ri

(1)

2.4. PI Control

Proportional–integral (PI) control is a widely used method in control engineering
and is renowned for its simplicity and effectiveness at regulating various systems across
diverse industries. Rooted in the principles of feedback control, a PI controller combines
proportional and integral actions to achieve desired system performance.

Proportional control provides control action that is proportional to the current error,
allowing the system to respond to deviations from the set point. However, it may lead
to steady-state errors if there are inherent system biases. Integral control is designed to
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eliminate steady-state errors by continuously integrating the error signal over time and
adding it to the control signal. The integral action acts to reduce the accumulated error over
time. The aim of control is to keep the actuator within the reference position. Thus, the error
is defined as the difference between the real position and the reference position, as shown
by Equation (2). By combining proportional and integral actions, PI control provides a
balance between responsiveness and stability, making it suitable for a wide range of control
applications. The control function u of the PI controller is shown in Equation (3):

er = x − xre f (2)

u = kp er + ki

∫ t

0
er · dt (3)

where er is the error, x is the measured position, xre f is the reference position, u is the
control action, and kp and ki are the proportional and integral gain coefficients, respectively.
The PI controller faces challenges in determining optimal proportional and integral gain
coefficients and is susceptible to variations in system load. Tuning kp and ki requires
understanding system dynamics and often involves trial and error or advanced methods.
Load variations can lead to deviations from desired set points, causing oscillations or slow
responses. Despite challenges, the PI controller remains popular due to its simplicity and
effectiveness in various industrial applications.

2.5. ANN

The challenges faced by traditional PEA models in accurately representing system
dynamics are multifaceted. One of the primary issues arises from the presence of asym-
metric effects, which can introduce non-linearities into the system’s behavior. Additionally,
the complexity of model implementation often necessitates sophisticated mathematical
formulations, leading to high computational demands. As a result, conventional PEA
models may struggle to adequately capture the intricacies of system dynamics, particularly
when confronted with real-world complexities.

To address these challenges, an alternative approach leveraging artificial neural net-
works (ANNs) has emerged. ANNs offer a powerful tool for learning complex non-linear
relationships directly from data, making them well-suited for modeling systems with
hysteresis and other non-linear phenomena. By integrating an ANN into the control frame-
work, the linearity and hysteresis dynamics can be effectively compensated for, enhancing
the accuracy and robustness of the model. The ANN adaptively compensates the control
signal based on the system’s current state and past history. By learning from the system’s
behavior, the ANN can effectively compensate for hysteresis and non-linearities, improving
the overall performance of the control system.

Identifying hysteresis using artificial neural networks (ANNs) typically involves archi-
tectures capable of capturing non-linear relationships and memory effects. Recurrent neural
networks (RNNs)—particularly, long short-term memory (LSTM) networks—are often
suitable for this task due to their ability to retain information over time. LSTM networks can
effectively model temporal dependencies, making them suitable for capturing hysteresis
behavior, which involves the system’s response being influenced by its historical states.
Additionally, gated recurrent unit (GRU) networks, a variant of RNNs similar to LSTMs,
can also be used for hysteresis identification. GRUs have a simpler architecture compared to
LSTMs but still possess memory capabilities that allow them to capture temporal dependen-
cies effectively. Overall, RNN architectures like LSTMs and GRUs are commonly preferred
for identifying hysteresis due to their ability to model complex temporal relationships,
making them suitable for tasks involving memory and non-linear dynamics.

For this research a GRU-based RNN was selected due to its ability to effectively model
temporal dependencies in the data while mitigating issues like over-fitting and vanishing
gradients. Additionally, GRUs have been shown to perform well in various sequence
modeling tasks, including non-linear modeling, natural language processing, and time
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series prediction. The GRU-based LRNN structure has four layers formed by the input
layer, GRU layer, as shown in Figure 4, fully connected layer, and an output regression layer.
GRUs contain gating mechanisms that control the flow of information within the network,
allowing them to capture and retain relevant information over longer sequences. The key
components of a GRU layer include the update gate (z), which determines how much of
the previous hidden state to retain and how much of the new candidate activation to add
to the hidden state; the reset gate (r), which controls how much of the previous hidden
state to forget when computing the new candidate activation; the candidate activation,
which is new memory content computed based on the input at the current time step and
the previous hidden state and serves as a candidate for updating the current hidden state;
and the hidden state (h), representing the memory of the network at each time step and
updated based on the candidate activation controlled by the update gate.

Figure 4. GRU layer information flow diagram.

2.6. ANN-Based IFTSMC

IFTSMC, or intermittent feedback terminal sliding mode control, represents a novel
approach to terminal sliding mode control developed by Venkataraman and Gulati [47] at
the Jet Propulsion Laboratory. Unlike traditional sliding mode control techniques, IFTSMC
is characterized by its non-linearity and robustness. This innovative approach combines
the advantages of integral control and terminal sliding mode control and offers robust
performance, finite-time convergence, and enhanced tracking accuracy.

The integration of integral action ensures steady-state precision by eliminating steady-
state error, while the terminal sliding mode component enables rapid convergence to the
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desired trajectory, even in the presence of uncertainties and disturbances. This unique com-
bination makes IFTSMC well-suited for a wide range of applications, including aerospace,
robotics, power systems, and renewable energy.

The control law uc in IFTSMC comprises two distinct terms: a discontinuous term usw,
which is responsible for maintaining the system on the sliding surface, and an equivalent
term ueq, which is designed to drive the system towards the sliding surface [48]. The com-
bined command law, expressed by Equations (5) and (6), encapsulates the control action
necessary for reducing the tracking error in Equation (4):

er = x − xre f (4)

uc = uann + usmc (5)

usmc = ueq + usw (6)

where uann represents the output of the ANN, and the term usmc comprises both the
equivalent and the discontinuous components.

The discontinuous term usw is defined in Equation (7), while calculation of the equiva-
lent term is done later on in Equation (19).

usw = −K · sign(s) (7)

where s is the sliding surface, and K must be a positive constant.
The sliding surface s is represented in Equation (8):

s = ėr + αer + λ(
∫ t

0
er dt)

p
q (8)

where t is the time at the moment, and α, λ, p, and q are positive constants, with 1 < p
q < 2

being satisfied.

Stability Proof

The PEA is considered as a second-order mechanical system [49] as in Equation (9):

mẍ + bẋ + kx + d fh(x) = d u + P (9)

where m is the mass, b is the damping, k is the stiffness, x is the position, d is the piezo-
electric coefficient, fh(x) is the hysteresis, u is the input voltage, and P is the uncertainties,
unmodeled dynamics, and perturbations. The piezoelectric coefficient d is defined as
the product of the stiffness and the maximum displacement divided by the maximum
driving voltage.

The control signal is designated by Equation (5). The term uann contains a linear part
and the hysteresis, so it can be decomposed as in Equation (10):

uann = ulinear + fann(x) (10)

The term fann(x) is analogous to fh(x) in Equation (9). The term ulinear can be defined
as the mechanical system without taking into account hysteresis or perturbations, as in
Equation (11):

ulinear =
1
d
(mẍre f + bẋre f + kxre f ) (11)

where xre f is the reference position.
Replacing it in Equation (10) uann gives Equation (12):

uann =
1
d
(mẍre f + bẋre f + kxre f ) + fann(x) (12)
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Combining the control signal from Equation (12) in Equation (9) gives Equation (13)
as follows:

mẍ + bẋ + kx + d fh(x) = mẍre f + bẋre f + kxre f + d fann(x) + d u + P (13)

where u = ueq + usw.
The error is defined as er in Equation (4), and there will always be a difference between

what the ANN predicts and the actual outcomes. This error is a natural part of the learning
process for ANNs and arises due to various factors such as the complexity of the problem
being tackled and the limitations of the network architecture. This error is defined with
ϵann in Equation (14) as the difference between the ANN’s prediction of the hysteresis and
the actual hysteresis. This simplifies Equation (13) in Equation (15):

ϵann = fann(x)− fh(x) (14)

mër + bėr + ker = d ϵann + d u + P (15)

From Equation (15), we can obtain the second derivative of the error in Equation (16):

ër = − b
m

ėr −
k
m

er +
d
m

ϵann +
d
m

u +
P
m

(16)

The sliding surface defined in Equation (8) is derived to obtain Equation (17). Then,
Equation (16) is substituted in (17) to obtain Equation (18):

ṡ = − b
m

ėr −
k
m

er +
d
m

ϵann +
d
m

u +
P
m

+ α ėr + λ
p
q

er (
∫ t

0
er dt)

p−q
q (17)

To simplify Equation (17), all the uncertainties are encapsulated under the term ρ:

ρ =
d
m

ϵann +
P
m

(18)

From Equation (17), we obtain the term ueq when ṡ = 0, as shown in Equation (19):

ueq =
b
d

ėr +
k
d

er −
m
d

ρ − usw − m
d

α ėr −
m
d

λ
p
q

er (
∫ t

0
er dt)

p−q
q (19)

The obtained control law can be analyzed with the Lyapunov theory of stability.
If there exists a positive definite function Rn → R so that V(x) > 0, V(0) = 0, V(∞) = ∞,
and V̇(x) < 0∀x ̸= 0, the dynamical system is asymptotically stable. Therefore, a Lyapunov
candidate function that satisfies the requirements is proposed in Equation (20):

V(s) =
1
2

s2 (20)

The derivative of the above Equation is expressed in Equation (21), and we substitute
Ṡ from Equation (17):

V̇(s) = s ṡ = s
(
− b

m
ėr −

k
m

er +
d
m

ϵann +
d
m

u +
P
m

+ α ėr + λ
p
q

er (
∫ t

0
er dt)

p−q
q

)
(21)

As u = usmc = ueq + usw, it can be replaced in Equation (21) to obtain Equation (22):

V̇(s) = s ṡ = s
(
− b

m
ėr −

k
m

er +
d
m

ϵann +
d
m

(ueq + usw)) +
P
m

+ α ėr + λ
p
q

er (
∫ t

0
er dt)

p−q
q

)
(22)
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By replacing Equation (19) in the expression above, we obtain Equation (23):

V̇(s) = s(− b
m

ėr −
k
m

er + ρ − d
m

k sign(s) + α ėr + λ
p
q

er (
∫ t

0
er dt)

p−q
q

+
b
m

ėr +
k
m

er − α ėr − λ
p
q

er (
∫ t

0
er dt)

p−q
q )

= s ρ − k · s · sign(s)

= s ρ − k|s|

(23)

Therefore, it can be established that to satisfy the condition V̇(s) < 0, the switching
constant must be k > |ρ|. The conventional use of the sign(s) function often introduces a
phenomenon known as the chattering effect, which is characterized by rapid and erratic
switching between control actions. In order to mitigate this effect, a common approach is
to replace the sign(s) function with a hyperbolic tangent function tanh(βs). The hyperbolic
tangent function provides a smooth transition between positive and negative values of s,
thus reducing abrupt changes in control signals. By introducing a parameter β, the sen-
sitivity of the hyperbolic tangent function can be adjusted to achieve the desired level
of smoothing.

3. Experimental Results
3.1. ANN Training

The ANN training process utilized data recorded from the triangular input signal,
which featured an amplitude of 150 V and a period of 1 s. The training dataset consisted
of time series data comprising the input voltage and corresponding displacement mea-
surements. Multiple sets of one hysteresis cycle were employed for training, evaluation,
and testing, with a partition ratio of 70/20/10, respectively. Detailed specifications are
provided in Table 2. The training hardware comprised a Dell Precision 3640 worksta-
tion configured with a sampling time of 0.0001 s and parallel calculation enabled across
seven cores.

Table 2. ANN training details.

Parameter Value

Data points 106,000
Training/Validation/Test 70/20/10%
Iterations 24,000
Epochs 500
Mini Batch Size 10,000 data points
Initial Learning Rate 0.0001
Validation Frequency 100 iterations
Solver sgdm
Gradient Threshold Method absolute-value

The predictions generated by the ANN exhibit remarkable accuracy for modeling
hysteresis, closely aligning with real PEA data, as depicted in Figure 5. The figure depicts
both the actual voltage and the predicted voltage over a 1 s cycle. The cycle commences at
its peak, descends to the lowest point at the 0.5 s mark, and subsequently ascends back to
the peak again. Slight discrepancies are noticeable at the extremes of hysteresis, particularly
near the maximum displacement value of 38 V (at 0.5 s), as illustrated in Figure 6. However,
these errors are relatively minor, with max absolute values around 0.1 V, as demonstrated in
Figure 6; the errors fall within an acceptable range. Excluding these specific areas, the error
remains consistently low across the entirety of the hysteresis loop: fluctuating between
0 and 0.05 V.
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3.2. Reference Tracking
3.2.1. 1 Hz Reference Signals

The PI controller and the ANN-based IFTSMC architectures described in the previous
sections were implemented on dSPACE hardware for experimental validation. Two distinct
experiments were conducted to evaluate the performance of these controllers. In the first
experiment, a 1 Hz triangular reference signal, the same as the training data used for
the ANN, was employed. This choice allowed for a direct assessment of the controller’s
performance under conditions similar to those encountered during the training phase.
Subsequently, a second experiment was conducted utilizing a 1 Hz sinusoidal reference
signal. This alternative signal was selected to evaluate the generalization capabilities of the
proposed controller beyond the specific signal used for training. By exposing the controller
to a different signal than that of the training set, the experiment aimed to assess its ability
to adapt and maintain robust performance across varying input conditions.

The parameter selection process was conducted through online tuning techniques.
Real-time performance evaluation of the controllers was based on the IAE, which needed
to be minimized to optimize system performance. To ensure the safety and stability of the
system during operation, each control structure was equipped with several safety features.
These included saturation limits to restrict the input voltage within the range of 0–150 V,
thus preventing voltage spikes or overloading of the system components. Additionally,
anti-wind-up mechanisms were implemented to mitigate the effects of integral action
saturation, ensuring stable controller operation even under extreme conditions. Table 3
shows the PI and IFTSMC parameters obtained from online tuning:

Table 3. Online parameter tuning values for PI and IFTSMC controllers.

PI Parameter Value

kp 0.05
ki 1000

IFTSMC

α 100
λ 20
K 50
β 0.1
p 2
q 3

As mentioned previously, the first experiment utilized a 1 Hz triangular function
as the reference signal. This choice was deliberate in order to introduce complexities
characterized by discontinuities, which pose challenges for the controllers in tracking
the reference accurately. The triangular waveform has an amplitude spanning nearly
the entire range permitted by the PEA, ranging from 1.84 µm to 37.7 µm. To ensure the
integrity and longevity of the PEA and other system components, this safety margin was
incorporated into the reference signal. This safety margin served to reduce stress on the
PEA by preventing it from operating at its maximum capacity, thereby mitigating the risk
of mechanical failure or damage due to excessive strain. Figure 7 show the tracking of a
5 Hz triangular reference while Figure 8 shows a more detailed zoom of the areas around
the inferior edge.

In Figure 7, both controllers are observed to track the triangular reference signal.
However, a notable difference in behavior is apparent between the two controllers. The PI
controller exhibits more erratic behavior characterized by small oscillations, which is partic-
ularly evident during the transitions between different slopes of the triangular waveform.
This behavior is expected due to the presence of discontinuities at these points, which
significantly impact the tracking performance of the PI controller.
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Figure 7. Tracking of a 1 Hz triangular signal for PI- and ANN-based IFTSMC.
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Figure 8. Zoom of the tracking of a 1 Hz triangular signal for PI- and ANN-based IFTSMC.

On the other hand, the ANN-based IFTSMC demonstrates superior overall perfor-
mance throughout the tracking process. However, it exhibits slightly poorer performance
around the edges of the triangular waveform. This can be attributed to the increased com-
plexity of non-linearities present at these points, which pose challenges for the ANN-based
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controller. Despite this, the ANN-based IFTSMC outperforms the PI controller in terms of
various performance metrics. For instance, in terms of the IAE, the ANN-based IFTSMC
achieves a value of 0.0259 µm, while the PI controller obtains a value of 0.2934 µm, repre-
senting an 11.46-fold improvement in performance. Similarly, the RMSE and RRMSE also
demonstrate significant improvements with the ANN-based IFTSMC, exhibiting 6.17-fold
and 8.72-fold improvements, respectively, compared to the PI controller.

Figure 9 depicts the error with respect to the reference signal throughout the experi-
ment and provides further insight into the performance of the two controllers. Consistent
with the observations made earlier, the PI controller exhibits oscillatory behavior, which
is particularly pronounced around the edges of the triangular waveform. As illustrated
in the figure, these oscillations result in significant error spikes, with values exceeding
0.4 µm during the transitions between different slopes. Moreover, the change of sign in the
error between positive and negative slopes indicates that the PI controller consistently lags
behind the reference signal, which is a characteristic inherent to this controller type.
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Figure 9. Error of the tracking of a 1 Hz triangular signal for PI- and ANN-based IFTSMC.

In contrast, the ANN-based SMC displays a different error profile. At the points of
slope change, the ANN-based controller exhibits a small error, which can be attributed to
the non-linearities and modeling inaccuracies inherent in the ANN model in this region.
Specifically, at the lower point of the slope change, the error spike reaches approximately
1.8 µm, while at the upper point, the error remains much smaller, below 0.1 µm. This
discrepancy suggests that the ANN model is more accurate in tracking the upper portion
of the waveform compared to the lower portion. Throughout the rest of the path, the error
oscillates around the origin, with values consistently below 0.05 µm. Overall, the error
analysis provides further evidence of the superior performance of the ANN-based SMC
over the PI controller, particularly in terms of error magnitude and consistency.

The experimental evaluation was extended to include soft reference signals with sinu-
soidal characteristics, with the aim of assessing the controllers’ ability to track more gradual
changes and the ANN’s generalization ability. Despite the anticipated improvement in
tracking performance, as the sinusoidal edges introduced smoother transitions compared to
the triangular trajectories, Figure 10 and the zoomed Figure 11 reveal that the PID controller
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still struggles to accurately follow these signals. However, it exhibits a slight improvement
in response compared to the previous results, indicating a degree of adaptability to the
softer input.

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

5

10

15

20

25

30

35

40

Reference

ANN-IFTSMC

PI

Figure 10. Tracking of a 1 Hz sinusoidal signal for PI- and ANN-based IFTSMC.

In contrast, the ANN-based IFTSMC demonstrates superior error management even
when confronted with the softer reference signals. As illustrated in the figure, the ANN-
based controller effectively mitigates errors associated with the gradual transitions, main-
taining performance levels comparable to those achieved with the sharper triangular signals.
Notably, the similarity in amplitudes between the soft and sharp signals facilitates a smooth
transition in the slope of the reference trajectory, enabling the ANN-based controller to
operate with consistent efficacy across different signal profiles. The experiment revealed
a drawback, specifically in the lower portion of the sinusoidal wave trajectory. At this
juncture, the ANN-based controller exhibits suboptimal generalization capabilities, leading
to a deviation from the reference trajectory. However, this error is swiftly rectified through
the action of the switching term, which effectively corrects the deviation and restores the
system’s alignment with the desired trajectory. While the ANN demonstrates robust perfor-
mance across the majority of the sinusoidal wave, its limitations start to become apparent in
regions that deviate from the training scenario. Despite this discrepancy, the ANN’s ability
to rapidly adapt to and correct errors underscores its effectiveness at maintaining overall
trajectory tracking performance, even in the presence of challenging signal dynamics and
modeling inaccuracies.
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Figure 11. Zoom of the tracking of a 1 Hz sinusoidal signal for PI- and ANN-based IFTSMC.

Figure 12 provides a visual representation of the observed discrepancy, which is partic-
ularly evident in the error performance of the ANN-based IFTSMC controller. Throughout
the trajectory, the controller maintains a consistently low error rate, with a minor spike
reaching just under 0.1 µm observed at the specified point. However, this error is swiftly
corrected, and the controller promptly resumes tracking the reference trajectory with min-
imal deviation. Conversely, the PI controller exhibits a lower error rate compared to its
performance on the triangular signal. The smoother transitions inherent in the sinusoidal
wave effectively mitigate the abrupt changes in slope observed in the previous trajectory.
Despite this improvement, the metrics once again underscore the superior performance of
the ANN-based IFTSMC controller, reaffirming its effectiveness in trajectory tracking tasks.
With respect to the IAE, the ANN-based IFTSMC achieves 8.77-times better results than the
PI controller, and for both RMSE and RRMSE the performance is 6.9 times better.

In this research, the primary objective was to achieve a reduction in error across
the specified trajectories, thereby enhancing overall accuracy. Consequently, the IAE
was targeted for reduction through the tuning of corresponding controller gains. Subse-
quently, performance metrics were calculated over the duration of the reference signals
used in the experiments. Table 4 presents a comprehensive comparison of the IAE, RMSE,
and RRMSE values obtained for both controllers across the two different signal types:
offering insights into their relative effectiveness at error reduction across various scenarios
and signal characteristics.

Table 4 presents a comprehensive comparison between the IAE, mean IAE, RMSE,
and RRMSE metrics obtained from experiments conducted with both the ANN-based
IFTSMC and the PI controller. Across various reference signals, including triangular and
sinusoidal patterns, the ANN-based IFTSMC consistently outperformed the PI controller
in terms of error reduction and tracking accuracy. Specifically, the IAE values exhibit a
significant improvement with the ANN-based IFTSMC, indicating its superior ability to
minimize error throughout the trajectory. Additionally, the mean IAE values reflect a
substantial reduction, suggesting enhanced performance of the ANN-based IFTSMC in
minimizing error over the entire trajectory. The RMSE values further corroborate these
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findings: demonstrating notably lower error levels with the ANN-based IFTSMC compared
to the PI controller. Moreover, the RRMSE values highlight a considerable improvement
with the ANN-based IFTSMC, underscoring its effectiveness at reducing error relative to
the PI controller. Overall, the metrics affirm the superior performance of the ANN-based
IFTSMC in terms of tracking accuracy and error reduction.
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Figure 12. Error of the tracking of a 1 Hz sinusoidal signal for PI- and ANN-based IFTSMC.

Table 4. 1 Hz signal error performance indicators.

Reference Triangular Sinusoidal

IAE [µm]
ANN-based IFTSMC 0.0259 0.0313
PI 0.2934 0.2864
Difference ×11.3303 ×9.1593

IAE mean [µm]
ANN-based IFTSMC 2.5899 × 10−5 1.5637 × 10−5

PI 1.4672 × 10−4 1.4322 × 10−4

Difference ×5.6652 ×9.1593

RMSE [µm]
ANN-based IFTSMC 0.0256 0.0197
PI 0.1578 0.1603
Difference ×6.1684 ×8.1464

RRMSE [%]
ANN-based IFTSMC 0.4066 0.4414
PI 3.5474 3.5961
Difference ×8.7234 ×8.1463

3.2.2. 10 Hz Reference Signals

To further evaluate the controllers’ capabilities at higher frequencies, a second ex-
periment was conducted at 10 Hz. Lower-frequency tests, such as at 1 Hz, might not
fully reveal the limitations of a control system, whereas higher-frequency tests can expose
issues like lag and instability. Demonstrating that the IFTSMC maintains its performance at
10 Hz, whereas the PI controller’s performance degrades, highlights the robustness and
reliability of the IFTSMC under varying conditions. This is particularly relevant for real-
world systems, such as those with vibrating components or electronic circuits, that often
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operate at higher frequencies. Thus, the 10 Hz experiment underscores the comparative
advantage of the IFTSMC, making it more attractive for applications where consistent
performance across different frequencies is critical. Figure 13 shows the tracking perfor-
mance of the controllers at 10 Hz for a triangular signal. It is evident that the IFTSMC
controller effectively keeps track of the triangular signal, while the PI controller lags behind
the reference, introducing significant error. Although the IFTSMC controller exhibits some
degradation in performance at the extremes compared to the 1 Hz experiment, overall it
still does a commendable job at maintaining accurate signal tracking. This demonstrates
the superior capability of the IFTSMC for handling higher-frequency signals, despite the
slight performance dip at the signal’s extremes.
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Figure 13. Tracking of a 5 Hz triangular signal for PI- and ANN-based IFTSMC.

Figure 14 shows the error during the experiment. The PI controller exhibited sharp
fluctuations, especially around the edges of the experiment, where error measurements
spike. Despite these fluctuations, the PI’s method consistently maintains an error above
1 µm throughout the trials, indicating a struggle to achieve lower error values. On the other
hand, the IFTSMC method also shows smaller changes around the edges, and it corrects
them quickly and converges towards zero error. This highlights the adaptive nature of the
IFTSMC method, which efficiently corrects errors and converges towards higher precision;
this is especially evident at the experiment’s challenging edges.

In Figure 15, the graph depicts the error measurements of sinusoidal signals at 10 Hz
using the IFTSMC and PI methods. The IFTSMC method demonstrates consistent and low
error values and maintains them within a narrow range of around 0.05 µm throughout
the experiment. This stability is attributed to the absence of sudden changes in the signal,
which enables the IFTSMC method to perform well. Conversely, the line representing the
PI method shows a delay in response, leading to degraded performance compared to the
IFTSMC method. Although the error is slightly smaller than with triangular signals, it
remains higher than the IFTSMC’s error due to the PI controller’s delay.
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Figure 14. Error of the tracking of a 5 Hz triangular signal for PI- and ANN-based IFTSMC.
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Figure 15. Tracking of a 5 Hz sinusoidal signal for PI- and ANN-based IFTSMC.

Figure 16 illustrates the error measurements of sinusoidal signals at 10 Hz using the
same IFTSMC and PI methods. Compared to the 1 Hz scenario, both methods exhibit worse
performance due to the increased frequency of the signal. However, the IFTSMC method
still manages to maintain relatively low error values, although they are slightly higher than
in the 1 Hz case. The lack of sudden changes in the signal contributes to this performance
stability. Conversely, the PI method continues to demonstrate a delay in response, resulting
in a degradation of performance compared to the IFTSMC method. Despite this, the PI’s
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error remains slightly smaller than for the triangular signals; this is mainly due to the
absence of sudden changes in the signal’s edges.
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Figure 16. Error of the tracking of a 5 Hz sinusoidal signal for PI- and ANN-based IFTSMC.

Table 5 presents error performance indicators for the ANN-based IFTSMC and PI
control methods applied to 10 Hz triangular and sinusoidal reference signals. Across all
metrics, including IAE, RMSE, and RRMSE, the ANN-based IFTSMC method consistently
outperforms the PI method. Notably, for sinusoidal signals, the difference in performance
between the two methods is more pronounced, with the ANN-based IFTSMC method
demonstrating significantly lower error values. These findings underscore the superior
tracking capabilities of the ANN-based IFTSMC method, particularly in scenarios involving
sinusoidal reference signals, and highlight its potential for providing more accurate and
precise control in such applications. Compared to the metrics from Table 4, the IFTSMC
method shows a small increase in all metrics, as expected. Moreover, the increase due to
sinusoidal reference tracking is very low, indicating good performance for these type of
signals, even with higher frequencies. The PI performance metric shows a large increase
in its values. These metrics confirm the poor performance of the PI controller at higher
frequencies. In conclusion, although there was a slight deterioration in the performance
of the IFTSMC, as expected, the results show that the ANN-based IFTSMC still achieves
satisfactory results at higher frequencies. However, the performance of the PI significantly
worsened, showing that the proposed controller is more robust and performs better at
different frequencies.
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Table 5. 10 Hz signal error performance indicators.

Reference Triangular Sinusoidal

IAE [µm]
ANN-based IFTSMC 0.0591 0.0187
PI 0.5623 0.5720
Difference ×9.5135 ×30.5458

RMSE [µm]
ANN-based IFTSMC 0.2376 0.0238
PI 1.4708 0.6406
Difference ×6.1893 ×26.9595

RRMSE [%]
ANN-based IFTSMC 5.2137 0.5214
PI 32.2692 14.0568
Difference ×6.1893 ×26.9595

4. Conclusions

The integration of micro-actuators into industrial environments has revolutionized
high-precision positioning, expanding its applications beyond academic domains. Piezo-
electric actuators (PEAs) have emerged as indispensable components in various fields and
facilitate precise control and manipulation of mechanical systems. Despite their advantages,
PEAs also present challenges, such as the necessity to create mathematical models for their
non-linear behavior due to hysteresis, creep, and temperature sensitivity. Addressing
these challenges is crucial for enhancing the accuracy and reliability of PEA-based systems.
In this context, robust controllers offer stability and performance amidst uncertainties and
disturbances. This paper proposes an ANN-based IFTSMC controller for PEA positioning,
addressing the need for accurate modeling of PEA dynamics.

The recurrent artificial neural network (RNN) has demonstrated remarkable effective-
ness in accurately modeling hysteresis behavior. By leveraging its feedback connections,
the RNN captures the inherent temporal dynamics in the hysteresis phenomena, achieving
precise modeling of the complex non-linear relationships between input variables and
output responses. This combination enables the controller to effectively mitigate uncer-
tainties and disturbances, ensuring robust system behavior even in challenging operating
conditions. Overall, the utilization of a recurrent ANN in conjunction with robust con-
trollers represents a significant advancement in control system design and offers enhanced
accuracy, stability, and resilience in real-world applications.

A Lyapunov stability proof was presented to unveil the theoretical underpinnings of
the ANN-based IFTSMC controller. This analysis showed that the controller yields a stable
response, contingent upon the IFTSMC satisfying specific conditions dictated by its gains.
Subsequently, the experimental phase ensued, wherein the proposed control architectures
were implemented and tested. The gains of each framework were tuned by leveraging a cri-
terion based on minimizing the integral of absolute error (minIAE). During the experiments,
considerable attention was given to ensuring stability. The objective was successfully met,
as no unstable responses were observed. Regarding the controller performance in reference
tracking, the ANN-based IFTSMC showed remarkable performance compared to the PI con-
troller. Both controllers achieved better results when tracking sinusoidal references rather
than triangular ones. The smooth transitions of the sinusoidal signal facilitate controller
operation. Nevertheless, the ANN-based IFTSMC achieved 8- to 9-fold better performance
than the PI controller. At slope changes within triangular reference signals, the disparities
between the controllers become particularly pronounced. However, during the intervals
of straight sections between these slopes, the discrepancies between the two controllers
diminish significantly. This observation suggests that, while the controllers may diverge
in their responses during rapid changes in the slope, they converge in their performance
during relatively steady-state conditions. The performance metrics show 5.6- to 11-fold
better performance for the ANN-based IFTSMC on triangular references.

Future research endeavors will explore several options to enhance the performance of
the ANN-based IFTSMC. One approach involves employing a more sophisticated ANN
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architecture, as the current design is relatively shallow. Adopting a deep learning approach
could potentially yield improvements, although this would necessitate careful consider-
ation of real-time implementation feasibility due to potentially increased computational
demands during training. Additionally, enhancements to the IFTSMC itself are under
consideration. While the current gains were optimized through parameter minimiza-
tion and stability conditions, there is potential for further refinement by implementing
adaptive algorithms, such as fuzzy-logic- or neural-network-based approaches. These
adaptive algorithms could offer improved adaptability and responsiveness to dynamic
system conditions [50,51].
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