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Abstract: Robotic inspection is advancing in performance capabilities and is now being considered
for industrial applications beyond laboratory experiments. As industries increasingly rely on complex
machinery, pipelines, and structures, the need for precise and reliable inspection methods becomes
paramount to ensure operational integrity and mitigate risks. AI-assisted autonomous mobile robots
offer the potential to automate inspection processes, reduce human error, and provide real-time
insights into asset conditions. A primary concern is the necessity to validate the performance of
these systems under real-world conditions. While laboratory tests and simulations can provide
valuable insights, the true efficacy of AI algorithms and robotic platforms can only be determined
through rigorous field testing and validation. This paper aligns with this need by evaluating the
performance of one-stage models for object detection in tasks that support and enhance the perception
capabilities of autonomous mobile robots. The evaluation addresses both the execution of assigned
tasks and the robot’s own navigation. Our benchmark of classification models for robotic inspection
considers three real-world transportation and logistics use cases, as well as several generations of the
well-known YOLO architecture. The performance results from field tests using real robotic devices
equipped with such object detection capabilities are promising, and expose the enormous potential
and actionability of autonomous robotic systems for fully automated inspection and maintenance in
open-world settings.

Keywords: autonomous mobile robot; autonomous guided vehicles; artificial intelligence; object
detection

1. Introduction

Autonomous mobile robots (AMRs) and autonomous guided vehicles (AGVs) are
becoming increasingly important in the industrial sector, emerging as relevant parts of
the robotic devices that support modern production and inspection processes within the
Industry 5.0 paradigm. A few years ago, it was common to see factory personnel manually
moving parts between assembly lines for robotic manipulators. Nowadays, it is more
typical to find conveyor belts or mobile robots transporting these parts between different
factory areas. The latter option offers significantly more flexibility in managing loading and
unloading zones and allows for the dynamic configuration of various industrial scenarios
on demand.

Both systems can be considered mobile robots and can self-navigate without human
oversight. The main difference between them lies in their ability to navigate without
external guidance. AMRs are intended to make decisions and change the navigation path
if needed. Conversely, AGVs are normally confined to tracks or predefined paths. Both
robotic platforms are usually equipped with numerous sensors and must have the ability
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to stop their operation in emergencies, either due to dangerous circumstances or risks to
human personnel. With the wide array of advanced sensors installed on these robotic
platforms, AMRs and AGVs can be more efficient and faster than humans in emergency-
stopping tasks, as humans are susceptible to distractions and have slower reaction times.
Indeed, these superior sensing and perception capabilities make AMR particularly suitable
for automated mobility and asset inspection, far beyond just moving loads in warehouses
as discussed previously.

However, there are certain actions and decisions of mobile robots, especially in un-
known and unstructured environments, where conventional sensors that measure physical
quantities face significant limitations in identifying objects within a scene. Traditional
sensors are highly efficient at measuring distances, speeds, accelerations, temperatures, and
frequencies. Along with signal processing and filtering algorithms, they provide a reliable
and comprehensive perceptual representation of the environment. Unfortunately, this
combination of sensors and conventional signal processing usually proves very ineffective
in complex situations, such as those arising from the inspection of critical assets under
environmentally complex circumstances. In such situations, a cognitive understanding
of those magnitudes, measured by the sensors installed in the AMR, is required. Signal
processing and filtering easily find obstacles based on the signals captured by the sensors.
Unfortunately, they lack the perceptual capabilities to detect and classify between different
objects. There are situations in which it is necessary to discriminate objects from each other,
locating them in a specific space, even when they are partially occluded. This is an obvious
and relatively simple task for the human eye and is crucial for decision-making in complex
environments. Among them, in this work, we focus on the inspection of critical assets,
where the detection, identification, and characterization of objects on the asset at hand is of
utmost importance to ensure its safe operation.

With the progressive maturity of artificial intelligence (particularly machine learning,
ML), the aforementioned limitations of AMRs in environmental perception are starting to
dissolve, opening up new perspectives that surpass the capabilities of traditional vision
sensors and signal processing alone. At their current level of maturity, ML models are
gradually being incorporated into industrial products, typically consumer goods where
AI adds value to the detection, discrimination, localization, and classification capabilities
of certain devices. However, this technology does not determine actionable decisions that
entail dangerous operations or risks in the task.

In this work, we explore the potential of ML to assist AMRs in fully automated
inspection and maintenance tasks. Our overarching goal is to assess the performance
of established models for object detection across three different real-world use cases for
automated inspection, each with its unique characteristics. Given their mobility and
navigation capabilities, the robotic platforms presented in this research serve both as AGVs
and AMRs, depending on the target situation and the characteristics of the terrains where
they operate:

• On the one hand, the first use case involves a fully robotized AMR platform developed
for the rail sector, with the ability to freely navigate between railway tracks without
stopping rail traffic. The AMR platform is designed for the automated inspection
and detection of weed coverage, providing an alternative to the use of glyphosate by
potentially allowing for their elimination by the robot.

• On the other hand, the other two use cases involve AGVs from two different forklift
platforms, each with varying load capacities. These vehicles, originally operated by
human drivers, have been fully robotized by removing the driver from the driving task.
They are equipped to navigate a sensorized and predefined path within a warehouse
while transporting a payload. They are also able to navigate freely, for example, in a
port environment or within a truck without the help of infrastructure sensors. The
two use cases focused on in our study are the automated inspection of maritime
twenty-foot equivalent unit (TEU) containers and the automated loading of goods
directly into a truck using the mobile robot.
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Our experimental results consider the three novel robotic AMR- and AGV-based
applications mentioned above, which perform inspection and loading tasks in complex
environments. Using real data collected from these Use Cases By the robotic platforms, we
conduct a performance benchmark of one-stage ML models for object detection, employing
established evaluation protocols and performance scores. To perform the assigned tasks,
the three robots must possess extraordinary detection and discrimination capabilities
to perceive the environment and manipulate objects, which cannot be achieved with
conventional computer vision and require the inclusion of AI. Based on the results, we
conclude that the synergy between AMR/AGV and object detection is promising, paving
the way for new use cases that leverage the autonomy and intelligence embodied by this
technological crossroads.

Contribution: The contribution to the state of the art made by our research herein lies
in providing an in-depth analysis of the real benefits of artificial intelligence on industrial
robotic platforms. Inspection robots work in complex, unpredictable, and very unstructured
environments, so for the sake of meeting their objectives, our research aims to provide
metrics on the performance achieved with AI inclusion that cannot be achieved otherwise.
We also develop and provide the frameworks that enable the inclusion of these models
effectively in the proposed rail, port, and logistics sectors. These sectors are known for being
very conservative regarding the adoption of new and emerging technologies. However, the
results of our field tests in real environments for each Use Case Demonstrate that adopting
AI for robotic inspection is an actionable and practical approach for fully automating this
task, and it outlines a promising future for applications leveraging AI-assisted robotics.

The rest of the manuscript is structured as follows: we first briefly review the state
of the art in visual perception in AGV/AMR (Section 2), followed by a description of the
robotic design of these platforms within the three use cases under consideration (Section 3).
We then describe the experimental setup in Section 4, followed by a discussion on the
obtained results and the insights drawn from the field tests conducted for the three use
cases (Section 5). Finally, Section 6 concludes the paper with a summary of the main
conclusions drawn from this research, together with a glimpse at future research.

2. Related Work

Before proceeding with the description of the AMR and AGV robotic platforms used
in our research, we first provide some background on these robotic technologies themselves
(Sections 2.1 and 2.2), followed by visual perception in AMR platforms (Section 2.3).

2.1. Mobile Robotic Inspection: Architectures and Usages

Robots for inspection, both in industry and research, feature a wide range of architec-
tures, traction, and navigation [1]. The differences stem from the specific tasks for which
they are designed. There are multiple architectures for inspection robots depending on the
inspection site, and these can be categorized based on their architecture. Here are several
examples of industrial inspection robots based on their architecture:

1. Mobile robots with fully rotational wheels, which are commonly found in both indus-
try and research. These wheels can turn a full 360 degrees, allowing the robot to rotate
on its axis, which is highly valuable for inspections in areas with very limited space
for turning.

2. Robots on rail tracks, such as those used for rail inspection, similar to the one examined
in this research, and in other configurations where operations occur while trains
are stopped.

3. Robots on caterpillar tracks.
4. Four-legged robots, emulating animals.
5. Omni-wheel-based robots, where the wheel can move in any direction.
6. Submarine robots.
7. Flying drone robots.
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8. Tethered and snake robots for pipe inspections.

Despite the large structural differences, the perception and handling systems of test
instruments can be very similar in all types of robots, taking into account the different load
capacities of each of them.

The tasks to be performed by robots in complex, unstructured environments, (e.g., out-
side controlled environments within a cell in a production warehouse), require advanced
visual skills and dexterity through specialization, which—until recently—only humans
could perform. To succeed in these tasks, it is necessary to have the ability to differentiate
between nominal events and anomalous situations and to have the capacity to resolve each
of these situations in a satisfactory manner without putting the product, people, or the
work environment itself, at risk [2].

This differentiation is becoming essential in a highly automated and digitized indus-
trial environment. However, the ability of robots to distinguish themselves increasingly
relies on the continuous layering of ever more accurate, smaller, faster, and more economi-
cally viable sensor systems and automation for mainstream adoption. The suitability of
using mobile robots seems optimal in situations where the automation, vision, inspection,
or manipulation system must be directed toward the specific task, either because the object
itself cannot be moved to where the robots are located (as in the case of manufacturing
factories), or because of the human or economic cost that moving would entail. In work by
Dudek et al. [3], the suitability of mobile robots is described following the characteristics of
the environment where they are intended to operate:

1. An inhospitable environment, so deploying a human being is either very costly or
very dangerous.

2. A remote environment, so that sending a human operator is too difficult or takes
too long.

3. Extreme instances are domains that are completely inaccessible to humans, such as
microscopic environments.

4. A task with a very demanding duty cycle or a very high fatigue factor.
5. A task that is highly disagreeable to a human.

The three first items (1–3) refer to environments where the allocation of human work-
force is normally not possible, or not well suited, like the planetary exploration in the
space sector, the deep maritime environment, extremely dangerous and inaccessible mining
caves, or extremely dangerous operations for humans due to radioactivity or explosive
danger. The two following items (4–5) refer to any industrial, sanitary, or rescuing opera-
tion, where the automated mobility of a robot can help reduce human injuries or severe
accidents, improve productivity, and enable safe human remote intervention. In recent
times, applications of AMR have also steered toward other challenging scenarios such as
surveillance, disaster response, and consumer applications [4,5].

2.2. Autonomous Mobile Robots (AMRs) and Automated Guided Vehicles (AGVs)

Advances in AGV and AMR technology and their industrial applications have recently
experienced an unprecedented boom, driven by the emergence of demand for this type of
system in new scenarios previously limited to human labor. These mobile robots have been
integrated into warehousing and logistics activities, using track-guided magnetic systems,
optical sensors, and color bars as guidance technologies [6]. Zhang et al. [7] thoroughly
reviewed the use of AGVs and AMRs for recognition and tracking in civil engineering,
along with an analysis of the challenges and prospects in detection, construction, and
disease repair. More recently, Patruno et al. [8] proposed an architectural taxonomy of
several AMRs and AGVs is presented. Loganathan et al. [9] provided an exhaustive and
systematic analysis of the strengths and shortcomings of navigation and path planning
techniques for AMRs.

Depending on the environment where the robot will operate, a different motion drive
system must be selected. Robots with drive systems that allow them to move in any
direction, independent of their orientation, are called omnidirectional or holonomic robots.
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Omnidirectional robots are considerably easier to control than robots based on simple
wheels because their motion is independent of their pose [3]; they use special types of
wheels such as omnidirectional, mecanum, or fully 360º turnable wheels. However, they
are usually intended for operation on flat floors. The demands of rough terrain, where our
robots will operate in two of the three use cases, preclude the use of these types of wheels
due to their motion characteristics and fragility, which would cause the robots to become
stuck. Siegwart et al. [10] provided an excellent review of these techniques for wheeled
robots in their book Introduction to Autonomous Mobile Robots.

Mobile robots, like the ones equipped with differential motion, can also turn on their
axis, as is the case with the AMR designed for the rail use case (as detailed later). Other
mobile robots with Ackermann [11] or simple wheels require more space for turns, as the
turning maneuver always involves motion on their x-axis. This is, for example, the case
with vehicles that use Ackermann steering. Selecting the right motion strategy is crucial, as
it defines the navigation and path planning constraints that the control of the AMR will
face [12].

In order to obtain a robust and reliable navigation system for mobile robots, it is
essential to use the ROS/ROS2 [13] framework. All three robots presented here operate on
the ROS2 framework running on a high-level processing computer based on the NVIDIA
Jetson Orin architecture. They interact with other low-level industrial programmable
logic controllers (PLCs), responsible for controlling all the input–output interfaces to
the mechatronics and information buses, e.g., the controller area network (CAN), inter-
integrated circuit (I2C), and serial peripheral interface (SPI) of the embedded electronics.

ROS, an open-source robotic operating system, supports most modern robotics re-
search and commercial products. Its success stems from its focused design and enhanced
capabilities tailored for product-grade robotic systems. ROS not only supports the gener-
ation of trajectories (global and local path planners) but also facilitates the integration of
image processing libraries for environmental visual perception. This combination provides
a robust programming framework for determining the optimal actions of the robot at
all times.

2.3. Visual Perception in Autonomous Mobile Robots

The space sector is one of the most important pioneering sectors in the use of naviga-
tion and perception in mobile robots [14]. Research aimed at designing rovers for planetary
exploration has excelled in providing autonomous robots for environments inaccessible
to humans. It has allowed us to gain experience and learn from the perception systems
required for route planning and navigation before such sensors were available to the gen-
eral public. In the 1990s, sensor fusion techniques were primarily used for navigation
and obstacle avoidance. These techniques enabled mobile robots to navigate safely in
non-mapped and dynamic environments by perceiving their environment while deciding
on actions based on those perceptions. Typical perception systems included sonar-based
obstacle avoidance combined with vision-based pose determination [15] for detecting arti-
ficial or natural landmarks. The sensor data were integrated with two common obstacle
avoidance methods: vector field histogram (VFH) and navigational templates (NaTs). The
VFH obstacle avoidance algorithm utilizes a two-dimensional Cartesian grid, known as the
histogram grid, to represent data from ultrasonic range sensors. Each cell in the histogram
grid holds a certainty value that indicates the algorithm’s confidence in the presence of an
obstacle at that location. Navigational templates (NaTs) combine high-level, qualitative
guidance with low-level, quantitative control and are designed to address issues from VFH
and other obstacle avoidance methods by influencing high-level decisions on which side of
an obstacle the robot should pass [16,17].

Such systems and algorithms are still valid to date. However, a lot has changed since
their inception. New sensors, algorithmic techniques, and powerful processing units for
autonomous robotics have been developed in recent decades. Current AI-based processing
systems can be considered successors to those early algorithms, now relying on smaller,
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more robust sets of sensors with enhanced accuracy for environmental perception. These
include radar, 2D and 3D LiDAR, high-resolution stereoscopic and time-of-flight cameras,
and inertial measurement units (IMUs). Also, new processing algorithms and libraries have
entered the scene. Following the late 1990s, OpenCV (Open Source Computer Vision Library)
became a key player in computer vision. It was initially created as part of an Intel Research
initiative to advance CPU-intensive applications but has become a powerful open-source
computer vision tool, provided and maintained by researchers and programmers for the
community. The library is continuously evolving and now offers today more than 2500
optimized computer vision algorithms [18].

The use of software libraries like OpenCV [18], Sci-kit Image [19], PyTorch [20], and
TensorFlow [21], together with other proprietary software packages from Google, Azure,
Amazon, and Microsoft have enabled and simplified the processing of data from new
sensors. They are not only software pieces used for processing data from pictures, videos,
and vision cameras, they also provide processing algorithms for the new sensors mentioned
before, by delivering tools such as image filtering, camera calibration, structure-from-
stereo/structure-from-motion algorithms, visual odometry, feature detectors for cameras
(Hough, Harris, FAST, SURF, and SIFT), and processing of laser point clouds. Some of
the algorithms used within this research are worth mentioning due to their importance in
object detection and classification tasks, namely the SIFT (scale-invariant feature transform)
and SURF (speeded-up robust features) algorithms. SIFT detects distinctive key points or
features in an image, keeping it resilient to variations in object size, orientation, rotation,
or affine transformations. SURF is another algorithm for key-point detection and image
feature description that offers increased computational speed, which is useful for real-time
applications. Both are computer vision algorithms included in the OpenCV package for
detecting and describing key features in images. They are of key importance since they
lay the foundation for the detection and extraction of intrinsic features in images, which
can subsequently be put on top of the layers for more complex AI-based detection and
classification stages. Based on these well-known computer-vision algorithms, the key
elements of this research focus on the added value of combining conventional algorithms
with new AI-based ones. Sharma et al. [22] provide an extensive comparison of diverse
feature detectors and descriptors. The most recent versions of OpenCV include packages
for Markov and Kalman filter localization, simultaneous localization and mapping (SLAM)
in its extended Kalman filter, graph-based SLAM, or particle-filter versions, and the latest
monocular visual SLAM. Moreover, the OpenCV package supports the use of graph-search
algorithms for path planning, such as breadth-first, depth-firs, Dijkstra, A*, D*, and rapidly
exploring random trees, which are useful for navigation purposes [10].

In general, AGV and AMR recognition and tracking technology involve self-positioning,
environmental perception, map construction, and path planning among the required abili-
ties of the robots [7]. Apart from the ability to capture and process intrinsic characteristics of
environmental images based on chromatic and morphological features as can be obtained
with the described algorithms, the robots in our study require complex discrimination,
detection, and classification of objects. Similar to how Blubaugh et al. [23] analyze the need
for a mobile robot or rover to extract information from images, and recognize objects by
their patterns and features to navigate the environment while avoiding obstacles, our robots
require precise information about the environment and the scenarios in which they operate.
One strict requirement is that they avoid collisions, as the objects in the infrastructure are
customer-owned and sometimes operationally critical, and must be kept intact at all times.

Today, a new paradigm is opening up in the field of perception for mobile robotics
through the use of artificial intelligence and deep learning techniques for visual detection.
In their review, Cebollada et al. [24] showed how a variety of computer vision, AI, and
deep learning tools are currently employed in mobile robotics. The use of deep learning
techniques for inspection activities in industrial environments stems from the need for a
computer vision technique that provides better and more accurate information about the
target object to be inspected. In warehouses or manufacturing plants, the target objects to be
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inspected usually come in fixed positions, e.g., in roller belts with minimal degrees of free-
dom for variable positions, with controlled illumination sources, and in delimited spaces.
The environment where objects are inspected is highly structured and well-equipped with
sensors throughout the infrastructure.

The rise of inspection activities outside of these environments has led to the adoption
of new vision and detection techniques that enable the understanding of the scenarios
to be inspected in unstructured environments (but in a more sophisticated manner). In
these unstructured scenarios, one cannot predict many of the objects that will appear in
the scene during the inspection. This has led to the introduction of object detection using
convolutional neural networks. AI-based object detection is useful for understanding what
objects appear in an image, describing what is in it (with a better understanding of the
scene, classifying the objects individually and discriminating one from another), and where
those objects are located in the image.

3. Proposed AI-Assisted AMR and AGV for Inspection Tasks

In our research, we focus on three use cases, each addressed by designing three
different AMRs/AGVs (as shown in Figure 1a–c). One is a caterpillar track-based robot,
and the others are two back-steering robots based on differently-sized robotized forklifts.
The first one steers with one back wheel and the second one possesses a back Ackermann-
wheel-based motion. This means that the steering is done from the back of the robot while
the traction wheels on the front cannot steer but are in charge of moving forward and
backward. After the full robotizing of the motion capabilities of the robot, they are provided
with state-of-the-art kinematics, perception, robot localization, planning, and navigation
capabilities. The most noticeable differences in the motion and navigational characteristics
of the robots used in this research are that the rail robot can navigate on uneven, stoned
terrain and can turn on its own axis. It is perfectly adapted for the rough terrain of the
railway track’s environment where it has to navigate on uneven ballast and tracks.

(a) (b) (c)

Figure 1. Robot motion types and use cases considered in our research: (a) caterpillar-based motion for
rail inspection; (b) back-steering (wheel) for TEU container inspection; (c) back-steering, Ackermann,
for the automated load of goods into trucks. Source: ZeniaLabs AI.

These robotic platforms and the use cases themselves are described in Sections 3.1–3.3.

3.1. Use Case A: Rail Inspection and Maintenance

The first use case presented in this paper addresses the maintenance tasks for weed
removal within the railway sector, which are crucial for the safe and proper operation
of trains. Currently, most operators use the glyphosate herbicide for this task, spreading
it around from maintenance wagons. This operation is performed at least twice a year
throughout the entire worldwide railway network.

In order to find a solution that overrides the use of chemicals, a robotic AMR is de-
signed. The combination of mobile robotics technology (in terms of mechatronics and
conventional perception systems) with the introduction of AI object detection and classifi-
cation algorithms, as a powerful and innovative high-precision sensor, offers an innovative
combination for a new inspection task. It is considered the only alternative for detecting
the number of infrastructure elements that must remain intact, as opposed to the grow-
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ing vegetation and weeds between the railway rails that need to be detected, located,
and eliminated.

Figure 2 illustrates the robot’s concept design, co-existing with rail traffic. The system
is designed to accurately discriminate between weeds and, for example, cables, screws, or
rail sleepers. Blue laser equipment is used for the elimination of the weeds once they have
been precisely detected and located. In addition, the robot must operate without interfering
with or stopping rail traffic. Therefore, it is flat enough to function under trains without
colliding with the mechanical elements underneath. It also needs to withstand the suction
forces from trains passing overhead. For this purpose, the robot was developed with lateral
restraint arms that enable it to attach itself to the tracks when a train is passing.

Figure 2. General concept design of the AMR designed to address Use Case A, including its flat
design, to ensure co-existence with rail traffic; a general view of the robot’s restraint arms, enabling its
attachment to the tracks when a train passes overhead; and weed detection and potential elimination
from the robot. Source: ZeniaLabs AI.

3.2. Use Case B: Inspection of Maritime TEU Containers

The use case for maritime TEU container inspection was conceived to address safety
issues in the inspection of TEU containers at ports. The inspection activities for these con-
tainers are crucial to ensure that once they leave the port to transport goods to customers,
they are in optimal conditions for the cargo to be transported (watertight, clean, etc.). More-
over, it must be ensured that they are in perfect structural condition since any structural
defects could lead to a fatal accident. For this purpose, inspections and, if required, repairs
of the containers are performed worldwide each time a container reaches or leaves the
port. In areas without an inspection gate, inspections are carried out by an operator who
examines the asset and climbs to its top to visually detect and report any defects, holes,
traces of corrosion, or any other structural damage he/she may find.

The inspection time directly affects the time the ship spends in port, so it should be
kept as short as possible. This creates a situation where the inspection personnel suffer
from timing pressure, leading to inefficiencies and inaccuracies in the inspection process,
and eventually, human risks and potential injuries. The high-risk circumstances in which
the inspection is performed are exacerbated when considering that such inspection work is
done at height, with personnel climbing up ladders under strong winds (often in ports that
are open to the sea).

The solution proposed in Use Case B consists of an automated inspection process
supported by mobile robotics with integrated computer vision and AI algorithms that
enable the smart inspection of maritime containers without the need to climb to the top of
the container for a visual inspection.

The rationale for addressing Use Case B with AI-assisted robotics hinges on four
potential scenarios, which are depicted in Figure 3:
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Figure 3. Automated inspection concepts for automatically detecting damages in TEU containers
in maritime ports: (a) inspection gate; (b) forklift-based robotic solution; (c) sensorized inspection
drone; and (d) proposed AMR approach. Source: ZeniaLabs AI.

• Scenario (a) in this figure is based on an inspection gate, which is the most simple
and obvious way of inspecting defects without human intervention. It is a useful
tool yet unfeasible for supporting inspection procedures outside specific inspection
sites and areas where the gates are located. Usually, for on-site inspections, inspection
personnel move to the port terminal, near the ships, to enhance agility and reduce
time, thereby shortening the duration that containers remain in the terminal.

• Scenario (b) is instead based on a forklift-based robotic solution that allows the robot
to move around the container while analyzing potential damages and the general
structural health of the container being monitored. The main advantage of this solution
is that the robot can move to the location of the container, e.g., near the ships.

• Scenario (c) is a sensorized flying drone that flies above the top of the containers,
equipped with the necessary vision sensors and hardware to capture images of the
monitored asset.

• Scenario (d) is the one focused on in this research; it comprises the fact that containers
are sometimes placed next to each other, with little or no space between the container
sides. The inspection should be performed in a very agile and safe manner. Using
small inspection robots deployed by the robotized forklift system, several containers
can be inspected concurrently, while the robotized forklift inspects the sides of the
containers with its onboard cameras.

In all four scenarios, the methodology involves acquiring pictures and videos to be
processed by high-speed electronics and generating a report in real time on the structural
health of the inspected containers. The report needs to be available as quickly as possible
on, for example, a handheld device. The main contribution of this research to this use case
is focused on enhancing the robot’s perception with AI techniques for fully automated
inspection of the containers.

Only scenario (d) has been developed, deployed, and tested for our research, justified
by the fact that the containers to be inspected were located in an area where it was not
feasible to install inspection arches or to operate drones. The drone scenario was discarded
due to environmental restrictions at the test location (port of Bilbao, Bizkaia, Spain), which
prohibited flying a drone without the appropriate permits from the airport authorities.
The airport is too close to the test environment and poses a risk of interfering with air
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traffic. Despite these limitations, scenarios (b) and (d) are quite similar, with (d) being the
evolution of the former and providing better insights on top of the container through the
concurrent deployment of several small inspection robots. Moreover, we envision that
scenarios (a) and (c) could be relevant for future research.

3.3. Use Case C: Automated Loading of Goods into Trucks

This third use case is related to the loading of goods into trucks, responding to the
need to provide cargo workers with a system that allows them to delegate the final task of
depositing the cargo onto the truck. Such a stacking process is not very ergonomic and is
highly tedious, so our third use case involves palletizing the load outside the dock and then
automatically transporting and depositing it inside the truck. At first glance, the challenge
responds to a classic task where traditional computer vision could have been chosen. The
infrastructure can be sensorized, and the robot can map it into a structured point cloud.
Issues arise when entering the truck. Each truck is different inside, and may also differ
from each other when parked at the loading dock. The main difference in the parking
task is the angle and offset at which the truck driver parks the trailer. This is the point
where Use Case C takes advantage of AI models to infer the exact position at which the
truck has been positioned, the inner load status of the truck, and what space is available
for proper deployment of the remaining goods. The interior space between the palletized
goods and the truck walls may be less than 5 cm on each side, escalating the risk for the
human operator and making the task of loading goods for an automated mobile robot even
more challenging.

Unfortunately, no images from the warehouses’ field tests can be presented due to
confidentiality clauses. Nevertheless, LiDAR images captured by our designed robot are
depicted in Figure 4 to exemplify the information processed by the AI models in Use Case C.
The overview of the LiDAR point cloud is processed by object detection models deployed
on the robot to obtain the relevant details required for decision-making. To this end, the
AGV robot is equipped with the appropriate perception systems to maneuver from the
point of pallet collection to the trailer of the truck and back again. However, it also requires
accurate information about the location of the loading dock, whether the appropriate trailer
is there, and its pose (angle, lateral deviation). Once it enters the trailer, it maneuvers inside
without colliding with the trailer sides.

Figure 4. Examples of the detections from the LiDAR system used to address Use Case C: (a) LiDAR
scans; (b) detection by the object detection model.
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4. Experimental Setup

Figure 5 presents an overview of the experimental setup for the rail and port ap-
plications. In Figure 5(a1), the rail robot in the operation of weed removal is presented.
Figure 5(a2) presents a bottom view of the robot setup. In Figure 5(a3), the rail testing
environment for AI benchmarking is displayed. In Figure 5(b1), the laboratory setup of the
side cameras and small robot for inspection of the top of TEUs is depicted. Figure 5(b2)
illustrates the field test setup in the port environment. Finally, Figure 5(b3) shows a TEU as
the inspection environment for the AI benchmark presented in this study.

Figure 5. (a1,a2) Rail robot. (a3) Rail testing environment. (b1) Laboratory setup of the top inspection
robot and side cameras. (b2) Field test setup in the port. (b3) TEU container for inspection activities.

In order to analyze the benefits of using YOLO-based detection and classification algo-
rithms for improving the robot’s performance, the necessary image acquisition hardware
was mounted on prototype robots for the execution of experiments in laboratory and field
test scenarios.

Figure 6 illustrates the main location of the image and lidar acquisition systems of
the three proposed robotic solutions. The rail inspection robot holds two MIPI cameras
(Figure 6a), one pointing at the front for obstacle detection and navigation, and another one
pointing to the ballasted floor to detect and locate the weeds to be eliminated. The robot
solution for TEU inspection is equipped with two stereo cameras: one on the robotized
forklift to inspect the container sides and another on the small robotic rover deployed by
the forklift on top of the container. The forklift moves around the container, and the rover
navigates on the roof of the container, both acquiring images for AI processing (Figure 6b).
Figure 6c presents the experimental prototype setup for the robotized forklift for loading
goods into trucks. The location of a 3D LiDAR from RoboSense is highlighted, featuring
16 laser layers that generate a point cloud of the warehouse and inside the truck. The image
processing first creates a zenithal bird-view of the scene to determine the pose of the truck
in the docking bay. The AI processing system then decides whether the position is suitable
for the maneuver of autonomously entering the trailer of the truck for unloading. The
system calculates the angle and displacement of the trailer relative to the AGV coordinates
to establish the correct entry and navigation trajectory and to plan the appropriate path.
If at any point the pose is detected to be incorrect, the AGV initiates an emergency stop.
Additionally, the AGV is equipped with a camera on the bottom to inspect the site for
potential obstacles (such as fallen material or goods) in its path.
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Figure 6. Overview of the sensors in the experimental setup of the three use cases, highlighting the
cameras and LiDAR (laboratory environment) sensors for AI processing.

4.1. General Design for AI integration

In our approach, the main goal in designing the object detector for the robots is to
ensure it can respond within a reasonable time frame that matches the inspection needs.
Therefore, we focus not only on the quantitative and qualitative capabilities of the model
but also on the inference time to provide an answer. The model must successfully and
accurately provide a positive response for detection within a limited time from the moment
the robot navigates to or stops in front of the target.

In our design, we first analyzed the advantages and disadvantages of single-stage
and two-stage detectors. On one hand, two-stage object detectors are very powerful and
extremely accurate, achieving very high values of mAP. They are well-suited for domains
where classification accuracy is more critical than speed. Examples of two-stage object
detectors include the R-CNN family [25] or SPP-Net [26]. Two-stage detectors separate the
tasks of object localization and classification for each bounding box. In contrast, one-stage
detectors make predictions for object localization and classification simultaneously, which
favors inference speed in real-time detections. Single-stage object detectors provide direct
output of classification and bounding box coordinates from the input images. The images
are processed through a feature extractor using a CNN, and the extracted features are then
used directly for classification and regression of the bounding box coordinates. Therefore,
single-stage object detectors are very fast and suitable for real-time object detection, though
their performance may be compromised and can yield results that are inferior to those of
their two-stage counterparts. The most representative one-stage object detection models
are YOLO (you only look once) [27–29], SSD (single-shot multi-box detector) [30], and
RetinaNet [31]. More recently, Transformers have also been used for object detection, with
the so-called detection Transformer (DETR) architecture being the most renowned model
relying on attention layers [32].

4.2. AI Modules from the YOLO Series under Consideration

Although the detection accuracy of one-stage detectors may lag behind that of two-
stage detectors, they are better suited for the use cases under consideration, since they
require real-time detection capabilities. The YOLO series has been the most popular
detection framework in industrial applications, due to its excellent balance between speed
and accuracy [33]. The intrinsic characteristics of the YOLO detector series, only requiring
a single pass over each image, make them a suitable approach for the experiments.

We review the YOLO models’ architecture to better understand the advantages, disad-
vantages, and main differences between versions. We start with the YOLOv4 version of the
YOLO family. It is not the first of the YOLO algorithms; however, it has been improved
over its predecessors YOLO, YOLO9000, and YOLOv3, which laid the foundation for the
‘You Only Look Once’ detector family. The benefit of YOLOv4 is that its design focuses
on prioritizing real-time detection. This is a key performance indicator for the robot and
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a critical factor for our research. We initiate a YOLO performance benchmark on object
detection for the proposed use case with this module.

A crucial point in our detection requirements for real-time detection of the robot is
conditioned by its AI processing capabilities. Without real-time processing power, the only
chance to detect and classify any target objects is to record video frames for a subsequent
offline analysis. However, this possibility is not considered because it clashes with the
operational needs of the robot in the field tests and would only be useful in laboratory tests.

With the development of the YOLOv4 detector, Bochkovskiy et al. [34] aimed to
improve the accuracy of real-time object detectors, enabling their use not only for hint-
generating recommendation systems but also for stand-alone process management and
reducing human input. Previous neural networks did not generally operate in real time
and required a large number of GPUs for training, with a large mini-batch size. The
architecture of YOLOv4 uses a CSPDarknet53 [35] backbone comprised of 53 convolutional
layers. Within the neck part of the model, it uses PANet (Path Aggregation Network) [36]
for feature aggregation of the network. Additionally, YOLOv4 adds a spatial pyramid
pooling (SPP) block after CSPDarknet53 to increase the receptive field and separate the most
significant features from the backbone. YOLOv4 employs a Bag of Freebies mostly focused
on data augmentation, so termed because they improve the performance of the network
without adding any inference time penalty in production. For data augmentation, the
strategy uniquely incorporates self-adversarial training (SAT), aiming to find the portion
of the image that the network relies on during training. Within the so-termed Bag of
Specials, the authors used a type of non-maximum suppression (NMS) where Distance-IoU
is used instead of regular IoU [37], cross mini-batch normalization (CmBN), and DropBlock
regularization to significantly increase performance without adding a noticeable inference
time penalty.

The next AI modules within our benchmark are YOLOv5 and YOLOv6. YOLOv5 was
released only a month after its predecessor, YOLOv4 [38]. A significant modification that
YOLOv5 included over YOLOv4 was the integration of an anchor box selection process
into the model. Later, a target detection framework YOLOv6 was designed in [33] for
industrial applications, featuring a strong focus on detection accuracy and reasoning
efficiency. The resulting model, coined as Meituan-YOLOv6 (MT-YOLOv6), is not a part of
the official YOLO series. Nevertheless, it has been referred to as YOLOv6 as it was inspired
by one-stage YOLO algorithms. YOLOv6 improves over its predecessors by adopting
an anchor-free paradigm that significantly enhances speed compared to anchor-based
detectors. It also introduces a novel label assignment strategy to dynamically allocate
positive samples, further improving detection accuracy, and includes an SIoU (SCYLLA-
IoU) [39] bounding box regression loss to supervise the learning process of the network.
SIoU is a variant of IoU that incorporates new cost functions. In terms of architecture,
YOLOv6 utilizes an EfficientRep Backbone instead of the CSP-Backbone used by YOLOv5.
YOLOv6 also replaces the common convolution layer with the RepConv layer and CSPBlock
with RepBlock. These changes allow the object detection model to efficiently utilize the
computing power of GPU hardware while maintaining strong characterization ability.
Small enhancements in its architecture lead to considerable improvements in small target
detection [40]. Regarding its internal architecture, the neck design of the YOLOv6 model
features a Rep-PAN Neck to make hardware utilization more efficient and to achieve a
better balance between accuracy and speed. It also offers a more effective feature fusion
network based on a hardware-suited neural network design, along with a decoupled head
that considers the balance between the representation ability of the relevant operators and
the computing overhead on the hardware.

The next model in the performance benchmark across Use Cases A, B, and C is
YOLOv7 [41], which is notable for its efficient E-ELAN layer aggregation. This aggregation
is an extended version of the ELAN computational block designed to control the shortest
longest gradient path. It relates to the amount of memory required to keep layers in memory
and the distance it takes for a gradient to back-propagate through the layers. Furthermore,
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the network depth and width are scaled up while concatenating layers together, optimizing
the model architecture for different sizes. YOLOv7 also utilizes gradient flow propagation
paths to determine which modules in the network should use re-parametrization strategies.

Different from the previous YOLO generations, YOLOv8 [42] uses mosaic data aug-
mentation that mixes four images to provide the model with better contextual information.
The change in YOLOv8 compared to previous versions is that the augmentation stops in the
last ten training epochs to enhance performance. Also, the model switches to anchor-free
detection to improve generalization, directly predicting an object’s midpoint and reducing
the number of bounding box predictions. This speeds up NMS to discard incorrect predic-
tions. To accelerate the training process and enhance gradient flow, the model’s backbone
includes a C2f module, where the model concatenates the output of all bottleneck modules,
unlike the C3 module in previous YOLO models, which utilized the output of the last
bottleneck module. A decoupled head performs classification and regression separately.

Finally, the benchmark is completed with YOLOv9, the latest in the series of YOLO
object detectors to date. In their recent presentation to the community [43], Wang et al.
proposed a new concept called programmable gradient information (PGI). PGI addresses the
information bottleneck problem without data loss in the feed-forward process. The model
generates reliable gradients via an auxiliary reversible branch. Deep features still execute
the target task and the auxiliary branch avoids the semantic loss due to multi-path features.
The reversible architecture of PGI is built on the auxiliary branch, so there is no additional
computational burden. YOLOv9 has shown strong competitiveness, reducing the number
of parameters and the number of calculations when compared to the state-of-the-art.

Table 1 depicts the number of layers and internal parameters for the different versions
of the YOLO models considered in our benchmark.

Table 1. Variants of each YOLO model considered in the benchmark, alongside their trainable
parameters, layers, and floating-point operations (FLOPS).

Model Variant # Layers # Parameters FLOPS

YOLOv4 YOLOv4-l 334 64,363,101 142.8 G
YOLOv5 YOLOv5-m 290 21,172,173 49 G
YOLOv6 YOLOv6-m 156 34,900,000 85.8 G
YOLOv7 YOLOv7-l 314 36,492,560 104.7 G
YOLOv8 YOLOv8-m 365 43,632,153 165.2 G
YOLOv9 YOLOv9-c 621 25,439,385 102.8 G

4.3. Evaluation Protocol and Hyperparameters

All YOLO models described in the previous subsection have been used to address
the use cases under consideration. This benchmark allows for comparing their perfor-
mance in detecting objects across different inspection scenarios. We will now describe the
datasets collected in every use case for training and evaluating the performance of the
object detectors:

Use Case A

The use case for rail maintenance and weed removal is trained on three classes for
detection: (1) the weeds that need to be detected, classified, and located for elimination
within the rail tracks; (2) the cables within the rail tracks, which are part of the rail
infrastructure and must not be damaged under any circumstances; and (3) other objects
to be found on the tracks, like bottles, plastic bags, or cardboard pieces. Such objects (and
others alike) can be essentially ignored for inspection purposes. However, it is positive to
detect them and inform them about their presence and location to the railway operators.
This is especially true when dealing with paper and cardboard, which can be dangerous
when weeds are removed via laser if the beam hits them too long, creating the risk of
starting a fire.

The training dataset collected for this first use case is composed of 3736 images
containing objects of the three classes (9216 weed objects, 5742 cable objects, and 733 other
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objects). The most prevalent objects are weeds, followed by cables and certain sporadic
appearances of foreign objects. The dataset has been preprocessed and augmented via
different transformations to increase its diversity and potentially yield a more generalizable
object detector. We also created a version of the dataset with only weed annotations to
evaluate whether the object detector, when focused solely on the most relevant label for the
inspection task, achieves better performance figures. The preprocessing transformations of
the images include auto-orienting and stretching each image to 640 × 640 pixels, a static
crop between 25% and 75% in both horizontal and vertical ranges, a gray-scaling operation
to make the models faster and insensitive to subject color, adaptive equalization to improve
normalization and line detection in varying lighting conditions, and splitting the images
into tiles to enhance accuracy on small objects, which is beneficial for cable detection due
to the small and confined space of the cables within the rail.

The data augmentation strategy in this first use case includes flipping the images
horizontally and vertically, as well as ±15 degree random rotations to make the model
more insensitive to object orientation. Added image modifications include 2.5-px random
Gaussian blurring to enhance resilience to camera focus issues, saturation adjustments
(±25%), over- and under-exposure (±10%), and brightness adjustments (increasing the
picture or darkening it by 15%). Moreover, noising the new images by 0.1% aims to make
the model more resilient to camera artifacts. These steps have resulted in a dataset totaling
35,896 images. It has been split into 88% (31,428 images) for the training dataset, 8%
(2960 images) for the validation dataset, and 4% (1508 images) for the test dataset.

Use Case B

A similar preprocessing and data augmentation procedure has been performed for Use
Cases A and C. Use Case B comprises a dataset of 1035 images, split into a train–val–test
proportion of 70%–20%–10% (992 images for training, 35 images for validation, and 18
for test purposes). The defects that the AI models discover are bowed panels, holes, and
oxide. The defects may come together in the same scene in some cases. As a result, three
different classes are annotated in the images: oxide (232 objects), hole (73 objects), and bow
(41 objects). Preprocessing and augmentation are applied to the training set to minimize
the spurious effects of light, contrast, visual noise, and other camera-related effects. After
augmentation, the training set of images increases to 6200 images.

Use Case C

This third use case handles the images differently. The input data come from LiDAR
point clouds and are converted into grayscale images for analysis. The goal is to find
the correct or anomalous pose of the truck in the bay according to the synthetic images
received from the LiDAR sensor. Therefore, the two classes trained within the model
are (a) correct, standing for the correct pose of the truck, and (b) anomalous, denoting
incorrect poses, where the AGV triggers an emergency stop. After converting all point
clouds to images, the dataset consists of 10,667 images with 9082 correct pose objects and
534 anomalous pose objects. This dataset is split into a 70%–20%–10% stratified proportion,
yielding 6754 images for training, 1919 images for validation, and 943 for testing. Neither
preprocessing nor augmentation is required for this dataset since they are LiDAR point
cloud grayscale images with few camera-dependent features. Consequently, the original
dataset suffices for training an object detection model with good generalization capabilities,
as later shown by our reported results.

Training Hyperparameters

Models were trained on a Colab Jupyter Notebook using an NVIDIA T4 GPU. The
training parameters were set to T = 100 epochs and a batch size of B = 16. Values of the
rest of the hyperparameters are listed in Table 2.
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Table 2. Hyperparameter values used in the experiments.

Notation Value Definition

lr 0.01 Learning rate of the stochastic gradient
training solver

β 0.94 Momentum for the stochastic gradient
training solver

η 5 × 10−4 Weight decay parameter (L2 penalty)

(β0, lr0, T0) (0.8, 0.1, 3) Initial β and lr values that ramp to the default
values over T0 epochs

(G□, Gcls, GBCE, GDFL) (7.5, 0.5, 1.0, 1.5) Box, classification, BCL, and DFL loss
gain (YOLOV8)

W+
BCE 1.0 BCE loss positive weight

IoUmin 0.2 IoU training threshold
γam 5 Anchor-multiple threshold (YOLOV5)

For the most recent YOLO models (from V5 onward), internal data augmentation is
performed. For our experiments, such augmentation includes HSV (hue, saturation, value)
with fractional parameters hsv-h = 0.015, hsv-s = 0.7 and hsv-v = 0.4; image translation
with fractional parameter translate = 0.1; and scaling with parameter scale = 0.9. Neither
shearing nor perspective-changing was set. Flipping left–right (horizontally) augmentation
was configured with parameter f liplr = 0.5, image mosaic generation had a probability of
1.0, image mixup augmentation had a probability of 0.15, and CutMix augmentation was
configured with parameter copy-paste = 0.3.

Evaluation Metrics

We consider standardized metrics for this particular modeling task [44], specifically the
Precision and Recall values, the mean average precision at a specific Intersection over Union
(IoU) threshold of 0.5 (denoted as mAP@.5), and averaged over IoU thresholds from 0.5 to
0.95 in steps of 0.05 (mAP@.5:.95), and the F1 score. The Precision score informs about the
quality of a positive prediction made by the model by counting the number of true positives
divided by the total number of positive predictions. The Recall metric denotes the fraction
of correctly classified positive cases. With the Recall metric, we capture the positive cases
that are misclassified by the model as negatives. It is an important metric in our use cases for
the criticality of certain cases in each application, where a false negative can have damaging
consequences. This is especially true for Use Case A if the robot incorrectly shoots at
cardboard with the weed-removing laser, and for Use Case C, where an incorrect detection
of the truck’s pose could result in a collision with the AGV. The mean average precision
metric mAP measures the average precision of detection across all classes in the model. It is
evaluated at two different detection thresholds. Firstly, it measures precision at a threshold
where the positive detection aligns with the ground truth within the selected intersection
range, called the intersection over union (IoU) of 50% (mAP@IoU = mAP@.5). The second
metric, mAP@.5:.95, is much more restrictive and gives the values of the positive detections
within an intersection range between 50% and 95% of the detected object according to the
ground truth. Finally, the F1 score measures the performance of the model by combining its
precision and recall scores as 2 · Precision · Recall/(Precision + Recall).

5. Results and Discussion

Using the experimental setup and evaluation protocol described previously, we now
present and discuss the results obtained for each of the use cases, namely, A (rail inspection,
Section 5.1), B (TEU container inspection, Section 5.2), and C (truck pose estimation for
automated loading, Section 5.3). We end the discussion with a qualitative analysis of the
produced detections for all use cases in Section 5.4.
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5.1. Results for Use Case A

The results obtained for this first use case are summarized in Table 3 (one object class)
and Tables 4 and 5 (three object classes). We report the performance metrics scored by the
YOLOv4 to YOLOv9 models over the test dataset collected for the use case.

Table 3. YOLO performance comparison in Use Case A when detecting object instances of only one
class (weed). The best score values are shaded in gray.

YOLO Version Precision Recall mAP@.5 mAP@.5:.95 F1 Score

YOLOv4 0.912 0.978 0.974 0.491 0.944
YOLOv5 0.929 0.957 0.956 0.513 0.943
YOLOv6 0.964 0.634 0.964 0.529 0.765
YOLOv7 0.823 0.753 0.787 0.320 0.786
YOLOv8 0.968 0.983 0.976 0.612 0.975
YOLOv9 0.966 0.978 0.966 0.594 0.972

Table 4. YOLO performance comparison in Use Case A when detecting object instances of 3 classes
(weed, cable and other).

YOLO Version Precision Recall mAP@.5 mAP@.5:.95 F1 Score

YOLOv4 0.515 0.562 0.483 0.303 0.537
YOLOv5 0.663 0.546 0.540 0.334 0.599
YOLOv6 0.528 0.472 0.405 0.279 0.498
YOLOv7 0.658 0.531 0.491 0.344 0.588
YOLOv8 0.709 0.556 0.590 0.420 0.623
YOLOv9 0.728 0.564 0.608 0.448 0.636

Table 5. Performance of YOLOv9 per every object class measured over the 2960 validation images of
Use Case A.

Class # instances Precision Recall mAP@.5 mAP@.5:.95 F1 Score

weed 1862 0.746 0.934 0.936 0.754 0.829
cable 1108 0.463 0.464 0.444 0.207 0.463
other 116 0.974 0.293 0.444 0.383 0.450

We begin by discussing the results of the binary detection model. The model was
trained to only find weeds on the rail tracks, without detecting any other object class. The
model specializes in weed detection, yielding very good detection metrics for all YOLO
versions considered in the benchmark. The field tests demonstrate high performance, as
evidenced by the metrics in Table 3, reporting values as high as 0.96 for mAP@.5 and an F1
score of 0.972 for YOLOv9. Due to the specialization of the trained model to the weed class,
its application is strictly limited to the Use Case and its environment. Consequently, it has
no further utility outside the scope of the rail environment.

We follow by considering the alternative experiment in which the model is trained
to detect weeds, cables, and other objects (e.g., bags, cardboard) within the rail tracks.
We first focus on evaluating the performance of the model across all three classes and
compare it to the performance of the model specialized in weed detection. As shown
in Table 4, detecting and classifying more than one class with a single object detector
involves a substantial overall decrease in the performance metrics for all models. We
further inspect the detection results by analyzing what affects the overall performance
and how such performance degradation spreads over the object classes considered in this
second experiment. This is the purpose of Table 5, which breaks down the performance
figures for the three classes and the best-performing YOLOv9 model. The main objective of
the model is to detect weeds. The relatively higher presence of annotated weed objects in
the collected dataset makes this class well-represented. However, the high visual variability
of weeds and the model having to detect the other two classes give rise to lower detection



Sensors 2024, 24, 3721 18 of 28

scores for this class. Nevertheless, precision and recall are well balanced, as opposed to the
scores associated with the other class. In this second class, the recall degrades significantly,
meaning that many objects belonging to the other class are not detected by the model.
The third cable class, however, undergoes severe degradation of both precision and recall.
Cables laid all over the train route are well-detected by the model. However, the model
not only fails to detect individual cables (low recall) but also produces false positives
(low precision) due to the inherent difficulty of detecting filament shapes in real-world
image data.

5.2. Results for Use Case B

Results of the performance evaluation of the YOLO models for detecting defects in
TEU containers are summarized in Table 6. Despite the a priori difficulty of identifying
such defects in practical settings, the model scores particularly high compared to the
other two use cases, considering that it accounts for three defect classes. Intuitively, the
variability and number of possible defects on a large flat panel surface with shadows and
sometimes poor illumination pose a significant challenge for AI-based object detectors.
The reason for the positive results in our setup lies in the high contrast of the specific
defect classes targeted in TEU containers against other parts of the images. For example,
oxide spots located on the container surface are well-matched by the model, as they are
clearly distinguishable given the container’s color. Holes in the containers can also be
well-detected thanks to their contrasting black color and mostly round shape, which stands
out against the metal panel background. Containers are mostly white, blue, or red, and no
tests on black containers were performed. Oxide defects are better detected on white and
blue containers for obvious reasons.

Table 6. YOLO performance comparison in detecting defects on TEU containers (Use Case B).

YOLO Version Precision Recall mAP@.5 mAP@.5:.95 F1 Score
YOLOv4 0.622 0.882 0.717 0.428 0.730
YOLOv5 0.701 0.835 0.868 0.495 0.762
YOLOv6 0.776 0.657 0.776 0.462 0.712
YOLOv7 0.653 0.865 0.767 0.448 0.744
YOLOv8 0.706 0.731 0.727 0.496 0.718
YOLOv9 0.785 0.782 0.798 0.497 0.783

5.3. Results for Use Case C

In the use case for warehouse pose detection (Use Case C), we first acquire a full
view of the LiDAR beams captured by the robot (exemplified in Figure 4). There, we can
recognize the shapes and structures of the docking bay where the robot has to navigate
to. It is of high importance that the robot correctly points to the truck in the bay with the
correct pose, so it can autonomously enter with the load. Therefore, our pipeline trims
the relevant segments from the whole LiDAR image to extract and process the pose of our
robot. Through AI processing, the system decides whether the pose is correct or if the robot
is in an anomalous position, yielding the detection scores shown in (Table 7).

Table 7. YOLO performance comparison in detecting the correct or anomalous pose of AGV for
automated loading in a warehouse (Use Case C).

YOLO Version Precision Recall mAP@.5 mAP@.5:.95 F1 Score

YOLOv4 0.482 0.672 0.573 0.288 0.752
YOLOv5 0.743 0.784 0.813 0.558 0.850
YOLOv6 0.706 0.652 0.706 0.434 0.808
YOLOv7 0.732 0.779 0.823 0.614 0.794
YOLOv8 0.864 0.918 0.961 0.871 0.866
YOLOv9 0.866 0.863 0.922 0.838 0.849
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Due to the simplicity of the grayscale images resulting from LiDAR preprocessing,
training YOLO algorithms on these images yields exceptionally good object detection
models, achieving performances of mAP up to 84% at an IoU of 50%:95% (with YOLOv9).
This is the highest score obtained in our experimentation and exposes the practical relevance
of signal preprocessing in achieving actionable levels of performance without requiring
convoluted modeling choices.

5.4. Qualitative Analysis

We finish our discussion of the results by examining some examples of the images
captured in each of the use cases under consideration. To this end, we will complement
this qualitative analysis with the F1 confidence curves associated with each of the classes
annotated in each use case. This curve is a graphical representation used in binary clas-
sification to evaluate the performance of a model across different confidence thresholds,
which determines the cutoff point for classifying instances as positive or negative. The
confidence (x-axis) is computed as a combination of the conditional probability of the class
given that an object has been detected, and the probability of a bounding box containing an
object. This measure of confidence balances between how certain the model is that a box
contains an object and how certain it is about which class the object belongs to. The y-axis
represents the F1 score achieved by the model at each confidence threshold. By varying
the confidence threshold, the F1 confidence curve illustrates how the trade-off between
precision and recall changes. A higher threshold typically results in higher precision but
lower recall, while a lower threshold leads to higher recall but lower precision.

We begin the qualitative inspection of the results with Use Case A, in which models
have been shown to encounter difficulties in detecting certain objects (classes). Figure 7
depicts snapshots of the detected objects by YOLOv9 (left), and the F1 confidence curve for
each label (right). Cables within the rails are more likely to be detected with less confidence
by the weed detector model at higher intersection-over-union (IoU) thresholds. The reason
lies in their shape. Higher IoU values impose more restrictive requirements for location,
and the long, narrow, and sometimes curved shape of the cables within the tracks poses a
significant challenge for AI models to accurately locate the correct position of the boxes
according to the ground truth. However, it must be stated that the cables can be correctly
detected as true positives when they appear in the images, with an acceptable mean average
precision at lower IoU levels (mAP@.5). This detection threshold is good enough to know
that there is a cable in the scene and the model offers approximately good precision in its
position so that the robot can avoid damaging the area close to it.

Cable

Other   All 

Weed   (max F1: 0.56)

Figure 7. (left) Examples of detected objects by YOLOv9 over Use Case A, and (right) F1 confidence
curve for weeds, cables, and other objects.
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We proceed now with the results corresponding to Use Case B and Use Case C. In the
four pictures on the left of Figure 8, we depict the detection of YOLOv9 for different types
of defects, including bumped and holed containers with oxide parts on them. The right
plot depicts the F1 confidence curve corresponding to each class, together with the one
corresponding to all objects. It can be observed that all objects seem to be well-detected by
the YOLOv9 model since the metallic surface of the TEU containers is chromatically less
heterogeneous than the scene in Use Case A. Finally, the qualitative results of Use Case C
are illustrated through examples with several correct and anomalous detected poses in
Figure 9 (left), together with the F1 confidence curve of both classes (right). In this case,
the examples on the right highlight the practical utility of preprocessing the LiDAR point
cloud data (as shown in Figure 4) to remove contextual variability, allowing the model to
receive only information that is predictive of its commanded task (the borders of the truck).

Bowed

Hole   All 

Oxide   (max F1: 0.73)

Figure 8. (left) Examples of defects detected by YOLOv9 over Use Case B, including holes, bowed
panels, and oxide on top of the monitored asset; (right) F1 confidence curve of each class.

Anomalous     All 

  Correct      (max F1: 0.76)

CORRECT

CORRECT

CORRECT

Figure 9. (left) Exemplifying instances of Use Case C where YOLOv9 detects correct or anomalous
truck poses; (right) F1 confidence curve for each class.

5.5. AMR Deployment, Achieved Operational Gains, and Practical Limitations

The preceding subsections analyzed the performance of the object detection models
deployed on the AMR solutions developed for the three use cases under study. However, in
practical real-world scenarios, the utility of an object detection model deployed on an AMR
is not solely restricted to achieving actionable levels of predictive accuracy in benchmarks.
By quantitatively measuring metrics such as processing speed and resource consumption,
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stakeholders can gain a comprehensive understanding of the model’s effectiveness, ro-
bustness in diverse conditions, and ease of deployment. Such an analysis is essential for
identifying potential improvements, ensuring the safety of the design, and optimizing the
robot’s performance in the targeted inspection tasks. To this end, this subsection describes
the results of field test trials conducted with robots equipped with vision sensors and object
detector models in real-world settings, under the framework of the European ESMERA
project funded by the European Commission (ref. 780265), stressing key practical aspects
that were validated on-site during the trials.

Use Case A

We begin with Use Case A, where we recall that the main objective of the AMR solution
is to avoid the indiscriminate use of glyphosate. Currently, glyphosate is used at least twice
a year, sprayed from maintenance trains traveling at 50 km/h. Such maintenance duties
negatively impact the regular schedule of railway traffic. The novelty resides in using a
non-chemical, non-polluting method (especially since there are efforts to ban glyphosate by
regulatory institutions), which could be mechanical or, as proposed in this work, by laser
irradiation. Undoubtedly, the robotic method is slower than the current one, but it aligns
better with the search for clean methods.

Once the robot was deployed and run on the field tests designed in the aforementioned
project (refer to the subplots in Figure 10 for a visual summary of the process), several key
performance indicators were registered. From the mechanical point of view, the deployed
AMR achieved a speed of 5 km/h, with an average power consumption of less than
2 kW (including laser, sensing, navigation, and processing systems). From the observed
maneuvers, an average estimation of 3–5 s per plant was needed for eliminating a single
detected weed, yielding a daily weed removal rate of the robot in the range of 17,000 and
120,960 plants/day. This estimation was made by taking into account the area radiated by
one laser head, and the possibility of implementing an array of laser diodes or laser heads,
with seven heads operating simultaneously on the rail track. These statistics depend on
the railway’s status and the spatial distribution of weeds along the rail. Nevertheless, they
serve as a good estimation of the practical benefits when compared to manual removal.

Further gains were observed during the trials. The laser procedure prevents weeds
from growing up again at least in the next 4 months after the intervention. From the
mechanical side, the AMR system safely engages to the tracks and delivers feedback in
less than 1 min, ensuring its fast deployment. It also surpasses infrastructure items on the
tracks lower than 30 cm in height. Infrastructure items on tracks that the train can pass over
can be surpassed by the robot in its normal operation. Finally, the AMR carries a variable
number of batteries (i.e., in attachable wagons to increase the navigational autonomy), so
that it can work during a complete working shift (8 h) without recharging or changing the
battery packs.

Apart from radically changing the weed removal method (from manual to automated),
the use of YOLO algorithms was proven to be differential in detecting vegetation precisely.
With conventional vision algorithms (SIFT/SURF/Harris/Hough for reference point ex-
traction, and chromatic masking to discriminate among colors, all implemented by using
the OpenCV software library), the false positive rate was at least 20% higher, posing a
high risk of irradiating glass, cardboard, or plastic with the laser. The OpenCV algorithm
overly relied on the plant’s chromatic (green) component and was excessively permissive
to the morphology of the vegetation (overgeneralized). In other words, it did not effectively
suppress false positives. YOLO handles much better cases in doubt, reducing the number
of false positives in their detected objects by at least 20%.
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(a) (b) (c)

(d) (e)

(h)(g)(f)
Figure 10. Images summarizing the field trials completed for Use Case A: (a–g) AMR solution set on
the railway, showing that it mechanically adapts to the width of the railway; (h) detection and weed
removal performed by the robot’s head.

Use Case B

The usual procedure for the inspection of the containers first requires that the AGV
navigates to the container. Once there, the AGV circles around the container (Figure 11c)
in the first inspection, with the cameras installed in the liftable receptacle (black box)
(Figure 11b,f). At a specific point, the elevator stops, opens the deployment ramp, and lets
the surface inspection robots exit to the top of the container (Figure 11c). It first releases a
robot from the first floor of the receptacle, then raises the elevator again to let the second
robot go out. As it elevates, the side cameras of the receptacle acquire lateral images
(Figure 11e). The robots concurrently inspect the top of the container (Figures 11a,c,g),
while the AGV continues to circle the container, concurrently inspecting the sides, while the
robots on top inspect the surface of the container. Finally, the AGV raises the lift pod again
to pick up the robots. It opens the access ramp, and the first robot enters the receptacle. It
then lowers the receptacle slightly, deploys the second ramp, and the second robot enters it
(Figure 11e).

In the second use case, the field trials showed unexpected limitations of the devised
solution: the AMR was unable to inspect the sides of containers that were adjacent to each
other, even with conventional (visual) manual inspection. In this case, the following steps
were taken:

• The container targeted for inspection was separated from the others to allow access
to its sides. In the port terminal, containers were in constant motion as they were
loaded and unloaded from ships. Therefore, while this container movement slowed
down the inspection and was more inconvenient, it was not a critical maneuver for
the port operations.
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• If the container was empty, it was inspected from the inside for light leaks (Figure 11h), in-
dicating the presence of a hole. This workaround only allowed identifying hole defects.

(a)

(b) (c)

(f)

(e)(d)

(g) (h)

Figure 11. Summary of the field tests conducted for Use Case B: (a) implemented AMR device;
(b) vision sensor on board; (c–g) different pictures of the robotic attachment process; (h) image
showing that the devised solution can be used to inspect containers from the inside.

As a result of our field trials in Use Case B, defects could not be detected by the
AMR more effectively than by the port experts. The port premises house very experienced
operators who directly understand the potential causes of each defect. However, the
method did achieve one of the desired safety outcomes by preventing them from climbing
to the top of the containers, which was one of the desired outcomes in terms of safety.
Also, by automating the process, we enhanced the digitization of the entire process and
the data, because images sent and stored by the system are useful for the traceability of
the inspection process and the accountability of decisions made. In all cases, operators
decide whether to remove a container from circulation and set it for repair. However, the
developed AMR system provides an informational database that can be used to safely
validate such decisions.

From a mechanical perspective, one of the biggest limitations identified during the
trials emerged when the upper robots moved from one container to another from the
top. The initial idea was to let them move on their own in areas with many containers
placed close to one another, traversing across all the containers by navigating through
the small gaps and spaces between them. This did not work as expected. Although
containers were close enough together (causing the infeasibility of a lateral inspection, as
noted above), there was too much space for the top AMR to move from one container to the
next one by solely relying on their tracks without falling or becoming stuck between the
two containers. To amend this issue, the containers should have been placed less than three
or four centimeters apart, but many of them were slightly more separated than this critical
distance. The underlying trade-off between the maneuverability of container deployment
in the port premises and the autonomy of the AMR to navigate through contiguous assets
has captured the interest of the management of the port authority and is expected to drive
applied research studies in the future.
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When it comes to the object detection model itself, a common problem occurred with
containers damaged with large dents, i.e., those covering almost the entire side panel of
a container. Models trained to identify those defects effectively ended up detecting any
container structure as a defect, annotating any panel as such. The reason for this detection
failure is twofold: (1) the visual information varies significantly when the dent is viewed
from different angles, which can be challenging even for the human eye; and (2) there is
not as much chromatic information as when the dent is small, e.g., a scratch removing a
significant amount of paint from the container’s surface. We envision that for this particular
type of defect, the AMR should be equipped with additional sensors, increasing the cost of
the overall robotic approach.

Despite these unexpected eventualities in the test trials of Use Case B, they demon-
strated the improved safety of automating the entire operation rather than doing it manually.
The key for port operators to embrace this solution was the incorporation of AI-empowered
object detection models for the defects; otherwise, the performance differences compared
to visual inspection would have been too significant for the AMR-based approach to be of
any practical usefulness.

Use Case C

The cargo transport operation tackled in Use Case C involved a maneuver that none
of the operators wanted to perform. They had to drive the AGV so close to the walls of the
truck (where they could hardly see anything) that very few of them had managed to do it
without bumping into the sides of the cargo truck. Most operators typically struggle with
orientation; they start moving the forks inside, but often end up getting stuck inside the
truck, requiring many maneuvers to deposit the load. Only minimal correction maneuvers
are possible inside the truck, both laterally and angularly. The angle must be precisely
defined before entering, taking into account that the truck is not always positioned the same
way in the bay: there is always some lateral and angular displacement that complicates the
loading maneuver. The trucker parks it with some references to the bay, but there is always
some displacement. For manual loading, this displacement is irrelevant. However, for the
AGV to operate autonomously, it is crucial that the maneuver is planned in advance. In
this case, the AI-based object detector indicates whether the AGV is correctly aligned with
the trailer. Upon a positive response, we can then calculate the angle at which the truck
has been docked, in order to adjust the AGV’s pose to match the truck’s angle. The object
detector aids in identifying the shapes within the point cloud that are characteristic of the
bay entrance and the rear of the trailer, as well as indicating whether it is correctly oriented.

To verify the operational performance of the robotic solution devised to address this
use case, a metallic structure was constructed to simulate the load to be deployed by the
AGV inside the trailer (Figure 12a–d). Once inside the trailer, measurements were taken
with the lateral ultrasound and LiDAR sensors installed in the structure (Figure 12e,f). It
should be noted that in a fully real-world scenario, the same sensors are located in similar
positions on a palletizer rather than on the aluminum frame used in our experiments. In
addition, the robotic forklift is a pallet truck with a higher load capacity (Figure 1c) because
it must lift several tons.

In this case, once the robot has entered the truck perfectly aligned and with the correct
orientation, it adjusts 1 cm at a time inside the container, moving slowly but steadily until
it deposits the load. When exiting, it proceeds likewise in reverse. This is only possible if
perfect orientation and movement are ensured upon entering. In our field trials, the correct
or anomalous pose of the truck in the bay, detected by the AI-based approach from the
images generated from the point cloud data captured by the LiDAR sensor, was found to
be very valuable in safely completing the loading maneuver. However, in the field tests,
the machine also failed to autonomously correct minimal angular and lateral deviations
inside the truck. Despite the slow-motion dynamics imposed on the robotic solution (1 cm
per cycle), the correction was not successfully completed in several spatial configurations.
As a result, the AGV ended up hitting the lateral panels of the truck, causing catastrophic
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structural damages due to the high inertial force of its load. In such cases, the solution
was given by the detection of a collision by proximity based on the ultrasound sensors,
triggering a stop emergency in the AGV. The pose estimation method (based on YOLOv8,
which elicited the best detection performance for this use case) and the correction prior to
the entrance maneuver were found to be the only effective ways to perform a correct entry
maneuver of the AGV into the truck. This, combined with the lateral collision avoidance
system, comprised the overall AGV automated maneuver system that led to satisfactory
results in the conducted field tests.

(a) (b) (c)

(f)(e)(d)
Figure 12. Images illustrating the field tests performed for Use Case C, from (a) the concept to (b–f)
the experimental setup constructed for validation.

6. Conclusions and Future Research

In this work, we evaluated the potential of AI-based object detectors for supporting
inspection tasks performed by autonomous mobile robots and automated guided vehicles.
Specifically, we assessed the detection and classification performance of the YOLO series
for object detection in image data collected by AMR and AGV across three different real-
world setups. Inspection tasks performed by robots in such scenarios can only be achieved
through the introduction of an AI algorithm capable of selecting, detecting, and classifying
targets in the scene that are critical for the inspection to be conducted by the robots. We
have demonstrated that the YOLO detection family is well-suited for such tasks, given that
the models have been specifically created and trained to detect and identify objects from
images. Our discussion on the performance of such object detectors has been complemented
with a description of the field tests for the three targeted use cases, verifying the practical
usefulness of AMR devices equipped with such AI-based functionalities, and unveiling
unexpected limitations and challenges to be addressed in follow-up studies.

We note that the good performance of the models is the result of them being trained
for detection that is specific to the purpose and environmental context of the inspection
tasks. Models produced in our research validate that AI models for object detection can be
excellent tools for robotic perception. However, their generalization to other contextual
conditions beyond those in the use cases considered in this study may result in a degrada-
tion of performance. Furthermore, when considering more classes to be detected by the
learned models, we have found that the general performance, measured in terms of mean
average precision for a specific IoU threshold, degrades considerably.
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Our main conclusions drawn from our results can be summarized as follows:

• In Use Case A (railway inspection), the goal of the AMR is to detect weeds between
the railway tracks so that they can be eliminated by a laser beam. This mechanical
solution can be an alternative to the current method using glyphosate, which is spread
from maintenance wagons or trucks. An AMR supported by AI-based detection has
been shown to perform effectively in discriminating between weeds to be eliminated
and other critical rail infrastructure objects (e.g., beacons, cables, and debris), which
the robot must detect to avoid causing damage.

• In Use Case B, the complexity of detecting and classifying specific defects in TEU con-
tainers is currently achievable only by human workers. The challenges and dangerous
situations associated with such tasks are considerably well supported by AGVs and
camera-based AI object detection, where robots equipped with cameras are deployed
at the inspection site. The detection results in this second use case have also been
promising, mainly due to the better discriminability of defects on the metallic panels
of the TEU containers under inspection.

• Finally, when it comes to Use Case C (automated loading of goods in trucks), we have
proven that this risky task can be fully automated by a robotized AGV. In this case,
the support of AI models is required in addition to the robot’s perception system. This
support ensures that a docking maneuver is initiated from the correct position and
that the AGV does not start from an anomalous position, which could potentially
lead to an incorrect trajectory. The inclusion of AI in this task provides enhanced
capabilities beyond what traditional computer vision systems can achieve.

On an overarching note, our threefold benchmark of YOLO object detectors over real-
world data and the results of the field tests with robotic platforms equipping them have
proven the feasibility of these AI-based models as an additional, high-accuracy perception
sensor for robotic inspection tasks.

Several research directions can be pursued in the future based on the findings made
in this work, beyond overcoming the practical limitations noticed during the field tests.
Among them, we highlight the need to ensure proper generalization of the performance
of the learned model across similar inspection scenarios that are subject to different envi-
ronmental artifacts at their input (e.g., different characteristics of the asset) and/or their
output. Regarding the latter, an interesting line to follow is to explore the possibilities of
class-incremental learning [45] to make the model autonomously detect and characterize
new objects in the scene. To this end, we plan to investigate whether uncertainty estimation
techniques for object detection [46] can be exploited and used to detect unknown objects
that appear recurrently over time, so that the model can consolidate them as a new class to
be discriminated.
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