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Abstract: Currently, artificial intelligence (AI) is emerging as a dominant force in various technologies,
owing to its unparalleled efficiency. Among the plethora of AI techniques available, neural networks
(NNs) have garnered significant attention due to their adeptness in addressing diverse challenges,
particularly for prediction tasks. This study offers a comprehensive review of predominant AI-based
approaches to photovoltaic (PV) energy forecasting, with a particular emphasis on artificial neural
networks (ANNs). We introduce a revolutionary methodology that amalgamates the predictive
capabilities of ANN with the precision control afforded by the minimum-risk problem and slid-
ing mode control (MRP-SMC), thereby revolutionizing the PV panel performance enhancement.
Building upon this methodology, our hybrid approach utilizes the ANN as a proficient weather
forecaster, accurately predicting the temperature and solar radiation levels impacting the panels.
These forecasts serve as guiding principles for the MRP-SMC algorithm, enabling the proactive
determination of the Maximum Power Point (MPP). Unlike conventional methods that grapple with
weather unpredictability, the MRP-SMC algorithm transforms stochastic optimization challenges
into controllable deterministic risk problems. Our method regulates the boost converter’s work cycle
dynamically. This dynamic adaptation, guided by environmental predictions from ANNs, unlocks
the full potential of PV panels, maximizing energy recovery efficiency. To train the model, we utilized
a large dataset comprising 60,538 temperature and solar radiation readings from the Department
of Systems Engineering and Automation at the Faculty of Engineering in Vitoria (University of the
Basque Country). Our approach demonstrates a high regression coefficient (R = 0.99) and low mean
square error (MSE = 0.0044), underscoring its exceptional ability to predict real energy values. In
essence, this study proposes a potent fusion of artificial intelligence and control mechanisms that
unleash the untapped potential of photovoltaic panels. By utilizing forecasts to guide the converter,
we are paving the way for a future where solar energy shines brighter than ever.

Keywords: minimal risk problem; forecasting; ANN; SMC; MPPT; boost

1. Introduction

Renewable energies, with solar power at the forefront, are essential to meeting the
challenge of a sustainable energy supply [1,2]. However, the unpredictable nature of
sunlight prevents the full potential of solar energy from being exploited [3,4]. To overcome
this problem, Maximum Power Point Tracking (MPPT) technology and reliable weather
forecasts optimize the PV system efficiency and energy production [5,6]. MPPT ensures
that solar panels operate at maximum power under varying sunlight conditions [7,8].
Accurate weather forecasts allow proactive adjustments to MPPT algorithms and system
operations [9,10]. The integration of MPPT technology and reliable weather forecasts
significantly improves the energy yield and efficiency of solar installations [11,12]. These
advances pave the way for a sustainable solar-powered energy future [13,14].
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Conventional MPPT algorithms, such as Perturb and Observe (P&O), Hill Climbing
(HC), and Incremental Conductance (IC), often struggle to efficiently track the Maximum
Power Point (MPP) under stochastic conditions [15,16]. These limitations can lead to
significant energy losses and reduced system efficiency [17,18].

Advanced MPPTs such as particle swarm optimization (PSO) and JAYA outperform
but are not well-suited to addressing large and complex optimization challenges and are
prone to triggering at local optima [19,20]. PSO can converge prematurely to sub-optimal
solutions [21], while JAYA’s sensitivity to initial conditions and limited exploration of the
search space can hamper its effectiveness [22]. The large search space inherent in the genetic
algorithm (GA) parameter optimization process can significantly hamper the system speed
and increase the complexity [23].

These limitations can lead to significant energy losses in solar energy systems, particu-
larly in dynamic environments with fluctuating irradiance and partial shading [24].

This research addresses the challenge of optimizing operational processes under uncer-
tainty by applying a methodology described in [25]. Stochastic optimization problems are
addressed by transforming them into equivalent deterministic formulations, in particular,
in scenarios with fully admissible solutions. The approach introduces a deterministic opti-
mization problem presented as a minimum-risk problem (MRP), solved efficiently using
non-linear mathematical programming methods. This methodology is then applied to de-
rive optimal decision frameworks for simplified industrial applications, with a specific case
study demonstrating the practical application in the optimization of solar energy systems.

In addition, the growing need to predict future trends in various fields has fuelled a
strong demand for forecasting techniques. In this context, ANNs have emerged as power-
ful tools. ANNs have been successfully applied in various fields, including tourism (e.g.,
forecasting tourist numbers or hotel stays [26]), financial trading [27], and the energy sector
(e.g., forecasting renewable energy production and energy consumption [28–30]). Numer-
ous studies consistently demonstrate the superior performance of ANNs, particularly when
dealing with high-frequency data, compared to traditional forecasting methods.

In [31], the performance of the ANN model was evaluated against various models
documented in the literature, including Quadratic Support Vector Machine (QSVM), De-
cision Tree [32], Convolution Neural Network–Bi-Direction Long Short-Term Memory
(CNN-BILSTM) [33], Deep Learning (DL) [34], Adaptive Neuron Fuzzy Inference System
(ANFIS) [35], Group Method of Data Handling (GMDH) [36], and ANFIS-PSO [37], to
predict different types of solar radiation. The evaluation used the Mean Squared Error
(MSE) and regression(R) criteria to ensure a complete and accurate comparison. The results
of this comparative analysis unequivocally demonstrated the superior accuracy of the ANN
model compared with the aforementioned models. In particular, the study highlighted
the challenges associated with determining hyper-parameters and specific parameters
in the other models, a concern mitigated by the relative ease of implementation of the
ANN model.

In many studies, researchers have frequently used the proportional integration (PI)
controller to regulate the controller duty cycle. Specifically, in research [38], the Fuzzy-PI
method was used for control and, in another study [39], a combination of ANN and PI was
implemented. Despite the effectiveness of the PI controller, it faces challenges related to its
inherent linearity, which complicates its applicability to non-linear systems, as well as the
tuning complexities associated with selecting optimal parameters. Alternatively, sliding
mode control (SMC) is emerging as a robust and versatile control method recognized for its
ability to handle uncertainties and disturbances in dynamic systems.

Many approaches have been explored by researchers to improve the efficiency of
photovoltaic systems. In [40], the authors presented a PV-TE hybrid system, combining
photovoltaic (PV) and thermal (TE) cells, as a solution to the energy efficiency problems of
PV technology. In parallel, ref. [41] used a fuzzy method to find the Maximum Power Point
(MPP), while [42] used mathematical models for gradient optimization specifically adapted
to photovoltaic panels. Despite their effectiveness, these methods do not address stochastic
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challenges due to the dynamic nature of the environment. Various prediction techniques,
including physical methods, have been proposed, but they have some limitations. For ex-
ample, as reported in [43], physical and indirect forecasting methods struggle to accurately
predict future weather conditions. However, in [41], artificial intelligence emerged as a
promising avenue for forecasting.

This paper presents significant advances in the applications of control systems for
renewable energy sources. A key aspect of this work is taking advantage of artificial neural
networks (ANNs) for temperature and solar radiation forecasting. The adoption of artificial
neural networks is justified by their versatility and proven effectiveness in various domains,
highlighting their suitability for this particular field. In addition, the paper proposes a new
approach using the MRP-SMC method to control DC–DC converters, aligning with the
essential principle of Maximum Power Point Tracking (MPPT). This innovative method-
ology improves converter performance, thus optimizing energy extraction in renewable
energy systems.

This paper introduces two pivotal contributions to the field. First, it harnesses the
power of artificial neural networks (ANNs) to accurately predict temperature and solar
radiation levels, taking advantage of their well-established effectiveness in a multitude of
domains. Secondly, it adopts an innovative MRP-SMC-based approach to control DC–DC
converters according to the principles of Maximum Power Point Tracking (MPPT). The
MRP method skillfully addresses the stochastic challenges arising from unpredictable
weather conditions, while sliding mode control (SMC) excels in its ability to managing the
uncertainties and disturbances inherent in dynamic systems. By seamlessly integrating
these two methodologies, the paper improves the ability to explore the point of maxi-
mum power and precisely regulate the flow of energy within renewable energy systems.
This holistic approach not only improves efficiency but also enhances the reliability of
these systems, paving the way for sustainable energy solutions in the face of changing
environmental dynamics.

The paper is structured as follows: Section 2 delves into the methodology, discussing
the theoretical framework of the PV model and boost converter, as well as the predictive
system and controllers utilized for MPPT. Section 3 outlines the neural-network-based
predictive models employed, while Section 4 presents an analysis of the PV characteristics
and controller performance. In Section 5, a comparative study is conducted between
the proposed forecasting method and methods relying on the time series, alongside a
comparison of the proposed MPPT method with the JAYA technique to evaluate the
efficiency of the combined strategy. Finally, Section 6 concludes with a summary of the
research’s main achievements.

2. Methodology

Figure 1 illustrates the configuration of the examined system.
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2.1. PV Panel Modeling

The study employs the single-diode model due to its balance of accuracy and sim-
plicity [44]. This model represents the photovoltaic (PV) system as a DC source within
an electrical circuit, producing a current (Iph) from solar irradiation. It incorporates two
types of resistances: Rsh, associated with the diode leakage current at the p-n junction [45],
and Rs, which represents the resistance at the PV terminals [46]. Rs negatively affect the
system’s maximum power output [47]. Figure 2 illustrates the overall model.
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Figure 2. PV panel model.

The mathematical model (1) is derived from the equivalent circuit, representing a
photovoltaic (PV) panel with N cells connected in series. While parallel connection of cells
is possible, it is rarely seen in real-world scenarios.

I = Iph − I0

(
e

q(V+IRs)
akTNs − 1

)
− V + IRs

Rsh
(1)

The initial expression represents the photocurrent, and is shown by Equation (2).

Iph = G
Isc + Ki(T − TSTC)

GSTC
(2)

GSTC and TSTC indicate radiation and temperature when tested under normal condi-
tions. ISC is the current in a short circuit, and Ki is the temperature coefficient.

I0 =
Isc + Ki(T − TSTC)

e
q(VOC+Kv(T−TSTC))

aKTNs − 1
(3)

The equations provided define some important terms: q is the constant representing
electronic charge, Voc is the open-circuit voltage, KV is the temperature coefficient for
open-circuit voltage, a is the solar ideal factor, K is Boltzmann’s constant, and NS is the
number of series cells. Equation (2) shows that photocurrent is mainly affected by weather
conditions like irradiation and temperature. Studies show that irradiation has a bigger
effect on Iph than temperature, which ultimately influences the total current produced.

2.2. Hybrid MPPT Control
2.2.1. Boost Converter Model

This study used a boost converter to transfer energy from a solar panel to a resistive
load. The boost converter increased the voltage from the solar panel to meet the needs of
the load. A special boost topology was used for this purpose. Figure 3 shows how the
boost converter was connected electrically.
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The duty cycle (α) determines the relationship between the input and output of
the boost converter. This relationship appears in Equation (4). Controlled by a PWM
signal generated by a MOSFET, it must be between 0.1 and 0.9 to maintain continuous
conduction mode.

Vout =
1

1 − α
Vin (4)

The state space representation of the boost converter uses two state variables: x1 for
the input current and x2 for the output voltage.

•
X =

[
0 α−1

L
1−α

C
−1
RC

][
x1
x2

]
+

[ 1
L
0

]
Vin

Y =
[

0 1
] [

x1
x2

] (5)

2.2.2. MRP-SMC Hybrid MPPT Control

1. The MPPT approach

Studying a PV panel trait, denoted as P = f(V), reveals how electrical power relies
on the voltage it generates. The solar irradiance, symbolized by Irr, underscores the
changing nature of these energy sources. The subsequent expression illustrates a typical
representation of a stochastic optimization problem (SOP):

max
{

P(V) = CT(Irr)f(V)
}

a.c. :
{

A(Irr)V ≤ b(Irr)
V ≥ 0

(6)

The main challenge of this SOP is dealing with uncertainty. We have three variable
factors (A, b, and C) for each possible outcome in the events’ space Ω. To find the optimal
decision (V*), we need to transform the problem into a defined format with acceptable
solutions. This allows V* to account for all possible variations of A and b, ensuring that it
is the best choice despite the randomness involved.

The initial formulation of the stochastic problem (6) can be replaced by an intermediate
problem as shown in Equation (7) to address this complex problem by transforming it into a
deterministic risk problem. This approach eliminates uncertainty by examining all possible
scenarios and identifying the best decision for every situation. It simplifies technical terms,
focusing on managing uncertainty and finding optimal solutions in complex scenarios.

min{α}

a.c.

{
P
(

CTf(V) < I0

)
= α

V ∈ Dadm

(7)
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This problem aim to identify the option (V) that minimizes the risk of failing to achieve
a target performance level (V0). This target might be, for instance, the average value of a
function (P(V)). Rather than directly minimizing the risk of failure, we focus on minimizing
the probability associated with this risk. When a particular assumption about the random
factor (c) is valid, we can transform this “minimal risk” problem into a more straightforward
fixed problem. The solution to this simplified problem is given by the following equation:{

mi = E(ci)
ui,j = E

[
(ci − mi)

(
cj − mj

)
, U = (ui,j)

] (8)

A non-linear average optimization problem is considered:

max
{

Pmax = mTf(V)
}

(9)

The problem described in Equation (9) is deterministic, where the vector m represents
the mean values mi, resulting in the solution P*max The function Pmax(V) achieves its maxi-
mum value at Pmax* = mTf(Vmax*), and we select P0 < Pmax*. The probability distribution
of the random vector is approximated by a parabolic function with parameters c0, c1, and
c2, where Pmax(V*) = c0V2 + c1V + c2. Consequently, the outcomes are as follows:

α = Pro

(
CTf(V) < P0

)
= Pro

(
CTf(V)− mTf(V)√

VTUV
<

P0 − mTf(V)√
VTUV

)
= Φ

(
P0 − mTf(V)√

VTUV

)
(10)

In this context, α represents the minimum risk, Φ denotes the Laplace function, and
Pro stands for probability. In the earlier equation, U is the auto-covariance matrix of the
ui,j values from Equation (8). Because the Laplace function is monotonically increasing
and the matrix U is positively definite, problem (10) simplifies into a straightforward
optimization problem.

min
V∈Dadm

(
P0 − mTf(V)√

VTUV

)
(11)

These problems can be addressed using conventional gradient methods in non-linear
programming. This process includes choosing V* as the optimal solution for Equation (6).
Additionally, Equation (11) matches Equation (12) in the context of maximization.

max
(

mTf(V)− P0√
VT·U·V

)
=

c0.V2 + c1.V + c2 − P0√√√√√[V2 V 1
]
U

 V2

V
1


(12)

The solution to the problem, which corresponds to the voltage and current linked to
the optimal operating point, was calculated using Rosen’s Gradient.

2. Sliding Mode Controller

To determine the boost converter’s duty cycle, we used SMC, a robust control algo-
rithm that switches between states over time. This method effectively controls the input
current without relying on specific system parameters and handles disturbances well. The
selected sliding surface is as follows:

S = Iref − Iin (13)

The statement presents Iref as the optimal current for MPPT control and Iin as the
boost converter input current. It focuses on the application of a control law to guide the
system on a sliding mode surface in finite time, by describing a specific structure for the
control input.

U = Ueq − Un (14)
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In the system, Ueq, representing the equivalent control input, governs the behavior
on the sliding surface, while Un, the non-linear switching input, directs and maintains
the state on the sliding surface despite uncertainty. To obtain Ueq the initial condition is

determined by ensuring
.
S = 0 [48].

.
S =

.
Iref −

.
Iin = 0 (15)

where
.
Iin is obtained from Equation (5), the boost converter state space

.
Iref − 1

L ((Ueq − 1)Vout + Vin) = 0
⇒ Ueq = 1 − Vin

Vout

(16)

By respecting and applying the Lyapunov criterion (
.

V < 0), Un was obtained, with:

V =
1
2

S2 (17)

.
V = S.

.
S < 0 ⇔ S.(− 1

L
((U − 1)Vout + Vin)) < 0 (18)

S.(− 1
L
((Ueq − Un − 1)Vout + Vin)) < 0 ⇒ S(

−1
L

Un) < 0 (19)

S.Un > 0 where Un = k.sign(S) (20)

The positive gain K is crucial: if too small, the controller loses robustness; if too large,
it causes oscillations that can lead to chattering, or damage the control unit. Chattering
can be reduced by replacing the “sign” function with a hyperbolic tangent function (tanh).
Equation (21) presents the new control law.

Equation (21) describes the structure of the command law.

U =
1
2
(1 + tan h(S)) (21)

3. Neural-Network-Based Predictive Models

Artificial intelligence, especially NNs, is becoming more popular for forecasting be-
cause they are good at it. NNs work similarly to the brain, with interconnected parts that
help them process information. They are being used in many industries, including forecast-
ing, and they are showing great promise in making accurate predictions. The structure of
the NN is represented in Figure 4.
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The ANNs process information through a multi-layer architecture. The input layer
receives the raw data, which are then transformed, and features are extracted in hidden
layers using activation functions. The output layer produces the final prediction. The
number of hidden layers, biases, and pooling layers are adjusted based on the complexity
of the problem to improve performance. Customizing the network layers and neurons is
crucial for each specific problem and dataset. This process is represented by Equation (22).

Y = σ(Wi,j
T ∗ Xj − β) =

1

1 + e−(Wi,j
T∗Xj−β)

(22)

W =


w1,1 · · · w1,j

.

.
. . . .

.
wi,1 · · · wi,j

 (23)

where

Y: the output layer;
σ: The activation function;
Wi,j represents the weight linking the ith neuron in the preceding layer to the jth neuron in
the current layer;
Xj: The output of the ith neuron in the previous layer;
β: Biases.

To predict temperature and solar irradiance, we use an NN with the sigmoid activation
function, which introduces non-linearity and ensures output values stay between 0 and 1,
making it suitable for these continuous variables.

The process begins with data collection from the Department of Systems Engineering
and Automation at Vitoria College of Engineering using a specialized sensor. The data are
pre-processed, transformed, and standardized for input to the neural network. A statistical
analysis informs the network design, which includes specific input, hidden, and output
layers. The network is then trained using the efficient Scaled Conjugate Gradient (SCG)
algorithm with adaptive learning rates and second-order optimization. Key metrics such
as MSE and R monitor the training progress until the validation error stabilizes. Once
trained, the network predicts the temperature and solar radiation (T and G) of new data.
Rigorous validation and testing ensure accuracy and reliability, including partitioning
data into training, validation, and test sets to adjust weights, prevent over-fitting, and
objectively evaluate the performance. This approach ensures accurate forecasts. The
following Figures 5 and 6 show the NN performance.
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Figure 5. Mean square error.
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Figure 6. Regression.

During training, errors started repeating after 600 epochs, so the test was stopped
at 677 epochs when the gradient was 0.0098. This repetition showed that the data were
becoming more important. Epoch 200 was chosen as the baseline, and its weights were
used as the final weights. Validation was carried out from Epoch 6 to 677, with errors
repeating six times before stopping (see Figure 7).
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Figure 7. NN training.

From Figure 7, the red points represent the neural network’s performance on the
validation dataset at each epoch, while the blue line indicates its performance on the
training dataset over the epochs.

Figure 8 illustrates the temperature and irradiance prediction outcomes, showcasing
the efficacy of the proposed neural-network-based prediction methodology. Rigorously
evaluated using real-world data, the technique undergoes a meticulous comparison be-
tween the experimental and predicted temperature, as well as irradiance values. The
primary goal is to minimize the disparity between the anticipated outcomes and observed
data. Encouragingly, a discernible alignment emerges between the predicted values and
actual observations, signifying a robust agreement between the predictions and real results.
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An analysis of Figure 8 reveals a good agreement between the predicted values and
observed results for temperature, with a minimum error of about 0.16 for solar radiation.
The results confirm the reliability and robustness of the forecasting process, and confirm its
effectiveness in capturing complex dynamics with a high degree of accuracy.

The efficacy of neural networks heavily relies on hyper-parameters. Previous studies,
referenced as [48,49], have explored various techniques such as the Bayesian Gaussian
substitution process, boosted gradient regression trees, random forest, and heuristic algo-
rithms to identify optimal hyper-parameter configurations. In this current investigation,
diverse neural network architectures underwent training and cross-validation. This process
involved weight optimization using the back-propagation algorithm, while considering the
impact of the number of epochs and hidden-layer NNs’ performance.

Through experimentation, the most efficient configuration was determined to be a two-
layer feedback network with 15 hidden-layer neurons, trained for 1000 epochs using the
SCG algorithm. The dataset comprised 60,538 temperatures and solar radiation values, with
70% allocated to training and 30% to validation and testing sets. The network demonstrated
its suitability for regression tasks, evidenced by an MSE of 0.0044 and R of 0.99, as depicted
in Figures 5 and 6, respectively. These results indicate a strong correlation between the
network’s outcomes and the desired objectives, with minimal error.

4. Results

Appendices B and C detail the specifications of the SG340P PV panel and the boost
converter, with a resistor used as the load. The initial step was to assess the SG340P panel’s
performance under various temperature and radiation levels. Figure 9 presents the IV and
PV characteristics recorded under these different conditions.

The PPV curve shows the power generated by the PV panel without tracking, while
the PMPP represents the maximum power achieved with the proposed tracking technique.
Figure 11 demonstrates that the PV power curve does not reach its maximum potential.
However, the strength of the MPP detection algorithm lies in its precise identification of
the Maximum Power Point (MPP), even during sudden fluctuations, a challenge for other
methods. This highlights its exceptional ability to adapt to dynamic conditions.
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To accurately evaluate the performance of the Minimum-Risk Problem (MRP) al-
gorithm under different conditions, we conducted a series of tests at different levels of
temperature and solar radiation. Figure 10 provides details of the test parameters.
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Figure 11. Optimization algorithm performance testing for PV.

Figure 12 illustrates the overall design. The effectiveness of the new neural-network-
based prediction technique is evaluated by comparing the actual and predicted temperature
and irradiation values, aiming to minimize the difference between the target and the
predicted values.
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We used the predicted temperature and radiation (Tf and Gf) from Figure 13 to
simulate the model and forecast the system’s behavior under these conditions.
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Figure 13. Irradiation and temperature profile.

Figure 14 shows the control signal and the error between the reference current (Impp)
and the boost input current. The duty cycle changes along with the MPPT variations. This
demonstrates the controller’s ability to adjust to changing system conditions.
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The small error shows that the SMC is accurate and effective in controlling the process.
Figures 15–17 display, respectively, the voltage, current, and power results for our model,
using a load with a resistance of 30 Ω.
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Figure 16. Temporal evolution of the electrical current.
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Figure 17. Temporal evolution of the power.

The previous figures demonstrate the optimization method’s success in reaching the
maximum point. The method adapts well to predicted changes, as seen in Figure 13. The
SMC effectively tracks changes from both the optimizer and the PV panel, showing a strong
performance during dynamic system transitions.
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5. Comparative Study
5.1. Forecasting Method Comparison

To analyze the proposed forecasting solution, a comparative study was performed,
and developed with specific time-series methodologies such as Autoregressive Moving
Average (ARMA) and Autoregressive Integrated Moving Average (ARIMA). The results
are shown in Figure 18 for the predictive temperatures and radiation values generated by
each method.
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Figure 18. Comparative study of temperature and irradiation forecasting.

To evaluate the forecasting prowess of the ANN model, four metrics are employed, as
illustrated in the equation below: R, Mean Absolute Error (MAE), Root Mean Square Error
(RMSE), and MSE.

MAE =
1
n∑n

i=1

∣∣∣ymeasured − ypredicted

∣∣∣ (24)

MSE =
1
n∑n

i=1

(
ymeasured − ypredicted

)2
(25)

RMSE =
√

MSE (26)

R2 = 1 −
∑ (ymeasured − ypredicted)

2

∑ (ymeasured − y)2 (27)

where y is the mean value of ymeasured
Table 1 presents analyses comparing our approach against recent studies in forecasting.

We assess various aspects such as the system type and prediction model. This underscores
the competitiveness of our methodology.

Table 1. Performance metric for prediction.

Model R2 MSE RMSE MAE Neural N◦ Training Data (%)

ANN 0.98 0.0044 0.066 0.033 15 70
ARIMA 0.99 0.29 0.47 0.088 - 70
ARMA 0.99 0.22 0.47 0.081 - 70

Based on Figure 18 and Table 1, it is clear that the artificial neural network stands out
as the best performer among the models evaluated in terms of predictive accuracy. With an
impressive R2 score of 0.98, the proposed ANN model demonstrates a strong relationship
between the predicted and actual values. The significantly low MSE of 0.0044, RMSE of
0.066, and MAE of 0.033 also confirm its accuracy and minimal forecast discrepancies. In
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contrast, while the ARIMA and ARMA models show a strong correlation (R2: 0.99), they
show higher errors compared to ANN. Hence, the proposed ANN model outperforms the
time-series-based approach in terms of accuracy and predictive ability.

ANNs outperform the ARIMA and ARMA models due to their ability to capture
complex, non-linear patterns without strict assumptions about data distribution. They
automatically learn relevant features from raw data, eliminating the need for manual
feature engineering. This adaptability allows ANNs to effectively model time-series data
with intricate dependencies and irregularities, making them versatile and powerful tools
for forecasting. Additionally, ANNs generalize well to unseen data and can perform a wide
range of tasks, enhancing their superiority over traditional statistical methods like ARIMA
and ARMA.

5.2. MPPT Approach Comparison

To control the input current of the boost converter, we used the SMC, and, to verify
the effectiveness of the proposed controller, we will compare it with one of the most
famous classical controllers, which is the PI. Through experiments, we have determined the
parameters of the PI controller, and the following Figures 19 and 20 show the comparison
results of the controllers.
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feature engineering. This adaptability allows ANNs to effectively model time-series data 

with intricate dependencies and irregularities, making them versatile and powerful tools 

for forecasting. Additionally, ANNs generalize well to unseen data and can perform a 

wide range of tasks, enhancing their superiority over traditional statistical methods like 

ARIMA and ARMA. 

5.2. MPPT Approach Comparison 

To control the input current of the boost converter, we used the SMC, and, to verify 

the effectiveness of the proposed controller, we will compare it with one of the most 

famous classical controllers, which is the PI. Through experiments, we have determined 

the parameters of the PI controller, and the following Figures 19 and 20 show the 

comparison results of the controllers. 

  

(a) (b) 

Figure 19. Controller’s response: (a) controller signal; and (b)current error. 

 

Figure 20. Comparison of the time evolution of PV current.

These figures show that the PI controller has some disadvantages compared to the
SMC, especially when sudden changes occur. From Figure 19b, the SMC appears more
stable and robust in handling the current error.

To enhance the evaluation of the proposed approach, a comprehensive comparative
analysis was performed using the JAYA method. A brief overview of the JAYA algorithm is
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provided in Appendix D for reference. In order to create a robust framework for evaluating
performance, the following three figures illustrate the response of a PV system and serve as
a basis for comparison. The Figure 21 shows the comparison between this two methods.
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Figure 21. Comparison of SMC response: (a) controller signal; and (b) current error.

From these two curves, we concluded that the SMC method performs better when used
with the MRP method compared to the Jaya method. This is because MRP is faster in the
MPP search, making SMC more stable, even with changes in error correction. Figures 22–24
show the time evolution comparison of the output voltage, current, and power, respectively.
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The last three figures show that the MRP_SMC method outperforms JAYA_SMC by
effectively tracking maximum points. Utilizing real-time temperature and radiation data in
simulations, the MRP_SMC method exhibits superior adaptability to random variations,
enabling it to identify maximum points more efficiently than JAYA_SMC. Conversely, JAYA
struggles with rapid climate shifts, resulting in output fluctuations that can compromise
the system’s performance and accuracy, limiting its real-time applicability. In contrast, the
MRP approach offers numerous advantages, including resilience to uncertainty, flexibil-
ity, support for risk-informed decision-making, integration with control strategies, and
applicability across various domains. Additionally, the MRP method facilitates the quan-
tification of uncertainty and provides enhanced decision support, making it invaluable for
addressing optimization challenges in complex and uncertain environments.

6. Conclusions

In this study, we have introduced a new way to improve how we predict, control,
and optimize the power output from solar panels. We use artificial neurons and a method
called Minimal Risk Problem–Sliding Mode Control (MRP-SMC). Our method is efficient
because it uses hidden layers to make better predictions and be more accurate. Unlike
other methods, it can operate autonomously, even when errors occur or predictions are not
perfect. Our method has been tested and shows good results. It has a low mean squared
error (MSE) of 0.0044 and a high regression coefficient of 0.99, meaning it is very close to
the actual output; the RMSE and MAE values are also low, showing that it predicts with
minimal errors. We also use MRP-SMC to find and adjust the maximum power of the
solar panels. Our method performs better than other methods like the JAYA method. It
excels in adapting to weather-induced changes that impact solar panels. Our approach
does not need extra equipment like Open-Circuit Voltage (OCV) or Short-Circuit Current
(SCC) techniques. Instead, it controls the input current through the boost converter, using
the reference Imp provided by the MRP. Our results show that our predictive model, MPPT,
and SMC approaches are more effective than classical controllers. This is demonstrated by
the comparison results between SMC and PI.

This research suggests future directions for improving MPPT in solar systems. We
plan to develop a robust monitoring system and use intelligent systems to detect and rectify
errors in real time.
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Abbreviations
ANN Artificial Neural Network
AI Artificial Intelligence
NN Neural Network
R Regression
MSE Mean Squared Error
MPP Maximum Power Point
MPPT Maximum Power Point Tracking
PV Photovoltaic
P&O Perturb and Observe
Tanh Hyperbolic Tangent
OCV Open-Circuit Voltage
SCC Short-Circuit Current
SMC Sliding Mode Control
GA Genetic Algorithm
PSO Particle Swarm Optimization
PI Proportional Integral
DC Direct Current
IC Incremental Conductance
QSVM Quadratic Support Vector Machine
CNN-BILSTM Convolution Neural Network–Bi-Direction Long Short-Term Memory
ANFIS Adaptive Neuron Fuzzy Inference System
GMDH Group Method of Data Handling
ANFIS-PSO Adaptive Neuron Fuzzy Inference System–Particle Swarm Optimization
SCG Scaled Conjugate Gradient
SOP Stochastic Optimization Problem

Appendix A. Sensor Specifications

Properties Values

Voltage 12–28 V
Irradiance measurement range Up to 1500 W/m2

Temperature measurement range −40 to 90 ◦C

Appendix B. PV Panel Parameters

Maximum power (Pmax) 340 W

Voltage at Pmax (Vmp) 36.7 V
Current at Pmax (Imp) 9.28 A
Open-circuit voltage (Voc) 45.2 V
Short circuit current (Isc) 9.9 A
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Appendix C. The Boost Specifications

Properties Values

Switching frequency 20 kHz
Maximum input voltage 60 V
Maximum output voltage 250 V
Maximum input current 30 A
Maximum output current 30 A

Appendix D. JAYA Algorithm

Step 1: Define the population size and the maximum number of iterations as Npop and Nmax,
respectively.
Step 2: Identify the best and worst solutions as Xbest and Xworst.
Step 3: While the current generation is less than or equal to Nmax:

• For each individual in the population:

# Update the individual’s value using the equation
Xn(i, j) = X(i, j) + rand1i,j(Xbest(j)− |X(i, j)|)− rand2i,j(Xworst(j)− |X(i, j)|)

# Assess the updated value and replace the previous one if it’s more suitable.
# End the loop.

Step 4: Display the existing solutions X(i) and their corresponding values f(X(i)).
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