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Abstract

Neurodegenerative diseases are characterized by slowly progressing neuronal cell death. Conventional drug treatment strategies
often fail because of poor solubility, low bioavailability, and the inability of the drugs to effectively cross the blood-brain barrier.
Therefore, the development of new neurodegenerative disease drugs (NDDs) requires immediate attention. Nanoparticle (NP)
systems are of increasing interest for transporting NDDs to the central nervous system. However, discovering effective nanoparti-
cle neuronal disease drug delivery systems (N2D3Ss) is challenging because of the vast number of combinations of NP and NDD
compounds, as well as the various assays involved. Artificial intelligence/machine learning (AI/ML) algorithms have the potential
to accelerate this process by predicting the most promising NDD and NP candidates for assaying. Nevertheless, the relatively
limited amount of reported data on N2D3S activity compared to assayed NDDs makes AI/ML analysis challenging. In this work,
the IFPTML technique, which combines information fusion (IF), perturbation theory (PT), and machine learning (ML), was em-
ployed to address this challenge. Initially, we conducted the fusion into a unified dataset comprising 4403 NDD assays from
ChEMBL and 260 NP cytotoxicity assays from journal articles. Through a resampling process, three new working datasets were
generated, each containing 500,000 cases. We utilized linear discriminant analysis (LDA) along with artificial neural network
(ANN) algorithms, such as multilayer perceptron (MLP) and deep learning networks (DLN), to construct linear and non-linear
IFPTML models. The IFPTML-LDA models exhibited sensitivity (Sn) and specificity (Sp) values in the range of 70% to 73%
(>375,000 training cases) and 70% to 80% (>125,000 validation cases), respectively. In contrast, the [FPTML-MLP and IFPTML-
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DLN achieved Sn and Sp values in the range of 85% to 86% for both training and validation series. Additionally, IFPTML-ANN

models showed an area under the receiver operating curve (AUROC) of approximately 0.93 to 0.95. These results indicate that the

IFPTML models could serve as valuable tools in the design of drug delivery systems for neurosciences.

Introduction

Over time, there has been a significant shift in global dietary
habits and lifestyle standards. Poor dietary choices, irregular
eating patterns, extended working hours, and sedentary behav-
iors have contributed to a trend towards an unhealthy lifestyle
[1]. This shift has resulted in a rise in chronic degenerative
diseases among the elderly population. These diseases encom-
pass a diverse range of conditions characterized by the gradual
deterioration of bodily structures and functions [2,3]. Although
the exact causes leading to these diseases remain unidentified,
there is evidence that oxidative damage plays a crucial role in
the progressive neuronal cell death, particularly through the
generation of reactive oxygen and nitrogen species [4,5]. In this
regard, Alzheimer’s and Parkinson’s diseases are the most
severe and untreatable conditions. Conventional drug treatment
methods, such as acetylcholinesterase inhibitor drugs, often en-
counter obstacles due to their inadequate solubility, limited
bioavailability, and inability to effectively penetrate the
blood—brain barrier (BBB) [6]. Therefore, there is an urgent
need to focus on the advancement of novel neurodegenerative
disease drugs (NDDs) [7,8]. The major obstacle encountered by
NDDs is the selectivity of the BBB, which limits the number of
therapeutic substances able to reach the brain in order to induce
a positive effect. Recently, many efforts have been made to
develop systems that facilitate the passage of NDDs through the
BBB.

Interestingly, nanoparticle (NP) systems are gaining increasing
interest among the possible nanomedicine strategies for NDD
transport to the central nervous system (CNS) [9,10]. For
simplicity, we are going to call them nanoparticle neuronal
diseases drug delivery systems (N2D3Ss). N2D3Ss have the
ability to protect NDDs from chemical and enzymatic degrada-
tion, direct the active compound towards the target site with a
substantial reduction of toxicity for the adjacent tissues, and
help the NDDs to pass physiological barriers, increasing
bioavailability without resorting to high dosages [5,11]. There-
fore, researchers are studying and developing new treatment ap-
proaches that use N2D3Ss for diagnosis and treatment [12-15].

Also, over the last few years, artificial intelligence/machine
learning (AI/ML) models have been applied successfully to
solve problems in different disciplines, especially in the inter-
face of chemistry and ND research [16-19]. In this regard, we
consider AI/ML to be helpful in the development of N2D3Ss to

select the most efficient combination of NP and drug, taking

into account properties regarding chemical absorption, distribu-
tion, metabolism, excretion, and toxicity (ADMET), and the bi-
ological activity regarding NDs [20]. Nevertheless, there is rela-
tively limited experimental data on NPs reported in the scien-
tific literature in comparison to drugs, which increases the diffi-
culty of designing systems based on AI/ML techniques.

An additional essential downside of developing N2D3Ss with
AI/ML techniques is the great complexity of the data to be
explored. As a result, N2D3S development by the additive ap-
proach requires an AI/ML technique to achieve multioutput and
multilabel classification [21-24]. In addition, the AI/ML tech-
nique includes a pre-processing step to perform information
fusion (IF) of the preclinical NDD assay and NP cytotoxicity
datasets. Nevertheless, most of the AI/ML methods reported to
date only consider the structural/molecular descriptors of the
NDDs or NPs as input. Therefore, these methods exclude com-
pletely non-structural parameters, specifically experimental
conditions of the assays, in order to list NDD or NP labels.
Consequently, the resulting model cannot predict multioutput
properties and/or labels such as different organisms or cell lines
[25-37]. Sizochenko et al. reported a new methodology for NP
safety estimation in different organisms [38]. Predicting NP
safety instead of biological activity has been the objective of
other studies as well [37,39].

As a new strategy to tackle this problem, Gonzalez-Diaz et al.
have developed IFPTML, a multioutput, and input-coded multi-
label ML method, which stands for information fusion (IF) +
perturbation theory (PT) + machine learning (ML) algorithm
[40]. In recent investigations, the IFPTML model has shown to
be a powerful tool in molecular sciences and NDD research for
the analysis of big datasets that include both structural and non-
structural parameters. Application examples are drug screening,
protein targeting, the prediction of coated-NP drug release
systems [41-49], multitarget networks of neuroprotective com-
pounds for a theoretical study of new asymmetric 1,2-rasagiline
carbamates [50], a TOPS-MODE model of multiplexing neuro-
protective effects of drugs, an experimental/theoretical study of
new 1,3-rasagiline derivatives potentially useful in neurodegen-
erative diseases [51], as well as QSAR and complex networks
in pharmaceutical design, microbiology, parasitology, toxi-
cology, cancer, and neurosciences [52]. Furthermore, this new
model also has been used for very similar systems to this

research work such as NP systems, taking into account NP
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structure and coating agents, synthesis conditions of NPs and
loaded drugs, cancer co-therapy drugs, or assay conditions [53-
57]. Here we developed IFPTML models for the proposal of
N2D3Ss containing NDD and NP components.
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Results and Discussion

In order to build the IFPTML models we carried out the steps
shown in Figure 1, which shows the general workflow of all
computational procedures in this study. For a better under-
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Figure 1: Detailed information processing workflow of the IFPTML models. Steps 2.1 and 2.2: data collection (ChEMBL dataset of NDDs and NP
cytotoxicity dataset); step 2.3: data pre-processing and information fusion (NP and NDD assays); step 2.4: definition of objective and reference

functions; step 2.5: calculation of the perturbation theory operator (PTO).
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standing of all steps, we enumerated them with 2.1, 2.2., and so
on.

Figure 2 shows the connections regarding methodology and
used databases to our previous publications. For each PTML
model development, data download/compilation, data curation,
and so on were carried out separately by researchers. First, the
database of antineurodegenerative drugs (ADs) was down-
loaded from ChEMBL by Alonso and coworkers. These
researchers employed this database to create advanced predic-
tive models known as multitarget or multiplexing QSAR. These
models are designed to forecast both the potential neurotoxicity
and neuroprotective effects of drugs across various experimen-
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tal setups, including multiple assays, drug targets, and model
organisms [41]. Later, Romero Durén et al. enriched the AD
database and constructed multitarget networks of neuroprotec-
tive compounds to study new asymmetric 1,2-rasagiline carba-
mates. These authors developed a TOPS-MODE model to
analyze the multiple neuroprotective effects of drugs and to
conduct experimental/theoretical studies on new 1,3-rasagiline
derivatives potentially useful in neurodegenerative diseases
[50]. Additionally, Romero Duran et al. expanded the AD data-
base to develop artificial neural network (ANN) algorithms.
These models were designed to forecast how ADs interact with
targets within the CNS interactome [58]. Speck-Planche et al.
compiled manually a database of NPs from the literature. They
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Figure 2: Connection of the current IFPTML model to other PTML models developed by our research group.
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constructed a QSAR model to investigate multiple antibacterial
profiles of NPs under diverse experimental conditions. Further-
more, Ortega-Tenezaca et al. enriched the NP dataset and de-
veloped a PTML model for the discovery of antibacterial NPs
[59]. Diéguez et al. expanded the NP database and developed a
PTML model in order to design antibacterial drug and NP
systems [10].

In this study, we utilized the IFPTML model to investigate
N2D3Ss, encompassing assays of ADs and preclinical assays
for NPs. To achieve this, we conducted the IF of AD and NP
databases, curated the data, combined the objective and refer-
ence functions, and calculated the PTO.

NDDs ChEMBL dataset

First, we collected the data of preclinical assays for NDDs from
the ChEMBL dataset (see step 2.1. in Figure 1) [60-62]. This
dataset contained 4403 preclinical assays for 2566 NDDs
(unique drugs), that is, approximately 1.71 assays for each drug.
The information downloaded from ChEMBL included discrete
variables cg; used to specify the conditions/labels of each assay.
These variables are cqq, the biological activity parameter, cqi,
the target protein involved in NDs, cqy, the cell line for NDD
assays, and cq3, the model organism. Each one of these assays
included one out of n(cqg) = 46 possible biological activity pa-
rameters (e.g., ECsg or Kj (nM)). They also involved some of
the n(cq) = 21 target proteins, n(cqp) = 7 cell lines (SH-SY5Y,
CHO-K1, HEK293, PC-12, CHO, HEK-293T, and HuT78), and
n(cq3) = 7 model organisms (Homo sapiens, Rattus norvegicus,
Mus musculus, Cavia porcellus, Canis lupus familiaris, Maca-
cafas cicularis, and Caenorhabditis elegans). The information
downloaded from ChEMBL also included another set of
discrete variables used to codify the nature/quality of data.
These variables are cq4, the type of target, cqs, the type of assay,
c46, the data curation, c47, the confidence score, and cg4g, the
target mapping. Specifically, the target types are n(cqq) = 6
(single protein, organism, tissue, non-molecular target, and
ADMET), and the assay types are n(cqs) = 3 (binding, func-
tional, and ADMET). In addition, data curation has n(cg4g) = 3
different values (auto-curation, expert, and intermediate), the
confidence scores are n(cq7) = 4 (9: direct single protein target
assigned, 1: target assigned is non-molecular, 0: default value,
that is, target assignment has yet to be curated, and 8: homolo-
gous single protein target assigned) and the target mapping is
n(cqg) = 3 (protein, non-molecular target, and homologous pro-
tein). Furthermore, this database included the molecular
descriptor Dgx = [Dq1, D42, Dg3] in order to define the chemi-
cal structure of the NDD compound. Specifically, we used two
types of molecular descriptor for the i-th compound, namely
Dy = logarithm of the n-octanol/water partition coefficient
(LOGP;) and Dy, = topological polar surface area (PSA;). The
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detailed information of this dataset is given in Supporting Infor-
mation File 1 (datasheet “ChEMBL”).

NP cytotoxicity dataset

Simultaneously, we downloaded the data of preclinical assays
for the cytotoxicity of NPs from different sources (see step 2.2.
in Figure 1). We selected 62 papers from the scientific litera-
ture databases Pubmed and SciFinder [63-65]. This dataset
included 260 preclinical assays for 31 unique NPs. Therefore,
the number of assays for each NP is about 8.39. Moreover, the
data covered a huge range of properties of NPs such as mor-
phology, physicochemical properties, coating agents, length,
and time of assay. These properties were defined as discrete
variables cp; applied to identify the conditions/labels of each
assay. Then, we enumerated all particular conditions of each
assay as a general vector ¢yj = [Cp1, €p2s Cn3s-- -5 Cymax]- These
variables are ¢, the biological activity parameter, ¢y, the cell
line, c¢yp, the NP shape, cj3, the measurement conditions, and
cn4, the coating agent. Each of these assays involved at last one
out of n(cyp) = 5 possible biological activity parameters (CCsy,
EC50, IC50, LC5, and TC5). They also include n(c,;) = 53 cell
lines (e.g., A549 (H), RAW 264.7, and Neuro-2A (M)) and
n(cp2) = 10 NP shapes (spherical, irregular, slice-shaped,
needles, rods, elliptical, pseudo-spherical, polyhedral, pyra-
midal, and strips). In addition, they contain n(c,3) = 8 NP mea-
surement conditions (dry, HoO, DMEM, RPMI, 1% Trion
X-100/H,0, H,O/TMAOH, egg/H,0, and HyO/HMT) and
n(cpg) = 16 coating agents (UC, PEG-Si(OMe)s, PVA, sodium
citrate, 11-mercaptoundecanoic acid, PVP, propylamonium
fragment, undecylazide fragment, CTAB, N,N,N-trimethyl-3(1-
propene) ammonium fragment, potato starch, N-acetylcysteine,
CMC-90, 2,3-dimercaptopropanesulfonate, 3-mercaptopropane-
sulfonate, and thioglycolic acid). The full information of this
dataset is shown in Supporting Information File 1 (datasheet
“NP”).

DNDS pair resampling

IF processing of biological parameters

First, we described and acquired the objective value in order to
design the IFPTML model for N2D3S. We defined the target
function by applying the vectors of descriptors for all cases Dy
to use as the input variable in the ML model. The target func-
tion is commonly achieved by a mathematical conversion of the
original theoretical or observed feature of the scheme under
analysis [66-68]. In this IFPTML model, it includes two groups
of observed values, specifically vji(cqo) and vy;(cpo). In addition,
it contains two types of input vectors, Dgy; and Dy, for the
preclinical NDD and NP assays, respectively. Moreover, in this
dataset was a large number of different biological parameters
cqo and c¢po. For example, there are properties such as half the

maximum inhibitory concentration (ICsq (nM)), half the
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maximum effective concentration (ECsy (nM)), or the lethal
concentration of a substance for an organism (LCsqg (nM)).
Another difficulty is that the majority of vij(cqp) and vy;(cyo)
values collected are numbers with decimals. Furthermore, in
order to acquire the optimum N2D3S, we prioritize some prop-
erties and deprioritize others. In this context, we introduced a
“desirability” parameter to tackle this problem

The desirability value was established as d(cqp) = 1 or d(cyg) =
1 when the value of vj;(cqp) or vyj(cpo) needs to be maximized,
otherwise d(cqp) = —1 or d(cyo) = —1. The different NDD and
NP properties/characteristics possess a large number of designa-
tions or labels cqg and ¢y, respectively, and increase the unre-
ability of the data, making it more laborious to build a regres-
sion model. For example, in context of a specific case, biologi-
cal activity parameters cqg With d(cqg) = 1 are Bmax (fmol/mg),
the total number of receptors expressed in the same units, activ-
ity (%), and Cp (nM). Whereas parameters with d(cqg) = —1 are,
for example, EC5q (nM), ICsy (nM), and Imax (%). To address
this problem, we used a cutoff value to divide AD and NP
assays into favorable and non-favorable assays. It is worth men-
tioning that using a cutoff is a common practice in drug
discovery processes. As a result, acquiring the final target func-
tion, the pre-processing of all observed vjj(cqo) and vy;(cpo)
values is crucial in order to remove or reduce imprecisions.
Eventually, IF processing of the parameters vij(cqo) and vyi(cno)

enabled us to obtain a target function of the N2D3Ss.

We also used a cutoff to rescale the parameters of vjj(cqo)
and vyj(cpp) to obtain the Boolean (dummy) functions
Sfvij(cao))obs and f(vyj(cnp))obs- These values were obtained as
Sfij(cqo))obs = 1 if vij(cqp) > cutoff and d(cqp) = 1, or vii(cqp) <
cutoff and desirability d(cqg) = —1; otherwise f(vjj(cqp)) = 0.
Similarly, f(vyj(cno)obs = 1 if vyj(cnp) > cutoff and d(cyp) = 1, or
vpj(cno) < cutoff and d(cyp) = —1; else f(vij(cqo), Vnj(cno)) = 0.
The values f{vii(cqo))obs = 1 and f(vpi(cnp))obs = 1 mean to have
a positive desired effect of both NDDs and NPs. As a result, the
target function was described as f(vij(cdo), Vnj(cno))obs =
Sij(ca0)obs f(Vnj(€no))obs- Therefore, the outcome of the IF
scaling f(vij(cd0), Vnj(cno))obs is determined by the i-th NDD
compound and the n-th NP measurement conditions. The
remaining cases, f(vij(cdo), Vnj(cno))obs = 0, indicate that at least
one of the abovementioned conditions fail.

Definition of objective and reference
functions

IF phase for combining the references

After we obtained the target function, the next step is to
describe the input variables of the IFPTML model. Input vari-
able for this model is the reference function f(vij(cq4o),

Vnj(€no)ref- The function f(vij(cqo). Vnj(cno)ref plays an impor-
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tant role because this function characterizes the expected proba-
bility f(vij(cdo), Vnj(cnoDrer = P(fVij(€do)s Vnj(cno)rer = 1) for
achieving the required level of activity for a specific property
acquired from well-known systems. IFPTML uses values from
well-known systems or subset systems as reference. Afterwards,
this model includes the effect of different deviations (perturba-
tions) of the query function from the reference function. Ac-
cordingly, f(vij(cd0), Vnj(cno))ref can be considered a function
related to observed (not predicted) outcomes. In the above
section, we mentioned the step of IF scaling to transform the
original vj(cqg) and vyj(cyp) values into f(vij(cdo))obs and
S(vyj(eno))obs functions. When we acquire f(vij(cqo))obs and
S(vnj(cno))obs for all cases in our dataset, the next step is to quan-
tify each of the positive outcomes n(f(vij(cdo))obs = 1) and
n(f(vyj(cno))obs = 1). Subsequently, in order to obtain the refer-
ence or expected functions (Figure 3), we divide the previous
values by the entire number of cases for the NDD and NP
systems separately. We describe these functions as f(vij(cdo))ref
= p(f(vij(can)obs = 1) = n(f(vij(cgo))obs = 1)/n(cqo); and
f(an(Cn()))ref :p(f(vnj(cno))obs =D= n(f(an(cnO))obs = 1)/n(cn0)j-
In this context, we can calculate the reference function directly
to recognize the probability products for both subsystems
f(Vij(ch)s an(CnO))ref = P(f(vij(cdo)’ an("nO))obs =1 =
P(fvij(can)obs = D p(fvyj(cno))obs = 1). It is worth mentioning
that the usage of the reference function at this point is
another representation of the IF (combination) of NDD and NP

datasets.

PTO calculation

IFPTML N2D3S data analysis

As we mentioned in the previous section, we acquired the
results of many cytotoxicity preclinical assays of different NPs
[69,70]. Complementarily, we obtained the data of preclinical
assays for NDDs from the ChEMBL database [60,71,72]. It
included the calculation of the vectors Dy and Dy, of structural
descriptors for all NPs and NDDs. In addition, we constructed
the vectors ¢;; and ¢y; in order to list each label and assay condi-
tion for all preclinical assays of NPs and NDDs. Subsequently,
we obtained the values ADg(cgj) and AD y(¢y;) of the respec-
tive moving average deviation PTOs.

The NDD vector lists each element Dy = [Dgqy, Dgp]. Precisely,
these elements are the NDD structural descriptors, which have
enabled the development of various strategies to characterize
and classify the structure of potential bioactive molecules [73].
These structural descriptors are Dy = logarithm of the
n-octanol/water partition coefficient (LOGP;) and Dy, = topo-
logical polar surface area (PSA;). In contrast, the cytotoxicity
NP vector lists the elements as Dy, = [Dy1, D2, Dn3, Dna, Dis,
Dy6, Dy, D, Dno, Dni10s Dni1> Dni2> Dni3s D14, Dais, Daies
Dq17, Datg, Dnt9, Dnool. Specifically, they are D,;; = NMUn
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Figure 3: Reference function calculation workflow.

(number of monomer units), D, = Lnp (NP length), D;3 = Vnu
(NP volume), Dy4 = Enu (NP electronegativity), D5 = Pnu (NP
polarizability), D¢ = Uccoat (unsaturation count), D7 = Uicoat
(unsaturation index), D,g = Hycoat (hydrophilic factor), D9 =
AMR coat (Ghose—Crippen molar refractivity), Do =
TPSA(NO)coat (topological polar surface area using N,O polar
contributions), D11 = TPSA(Tot)coat (topological polar sur-
face area using N,O,S,P polar contributions), D1, = ALOGP-
coat (Ghose—Crippen octanol/water partition coefficient),
D13 = ALOGP2coat (squared Ghose—Crippen octanol/water
partition coefficient (logP*2)), D,14 = SAtotcoat (total surface
area from P_VSA-like descriptors), D15 = SAacccoat (surface
area of acceptor atoms from P_VSA-like descriptors), D16 =
SAdoncoat (surface area of donor atoms from P_VSA-like
descriptors), D17 = Vxcoat (McGowan volume), D,g =
VvdwMGcoat (van der Waals volume from McGowan volume),
Dy19 = VvdwZAZcoat (van der Waals volume from the
Zhao—Abraham-Zissimos equation), and D5y = PDIcoat
(packing density index).

PT data preprocessing

Apart from the vectors Dy, and Dy, the IFPTML study takes
into account all vectors cg; and ¢,; as parts of the non-numerical
experimental conditions and labels for both NDD and NP
preclinical assays. We calculated the PTOs of the NDD and NP
preclinical assays including this additional information. We
used Equation 1 and Equation 2 in order to obtain the moving
average (MA) PTOs of NDDs and NPs. The PT model begins

with the expected value of a well-known activity and adds the
effect of different perturbations/variations to the system. Conse-
quently, the model includes two different input variables,
namely the reference or expected-value function f(v;j)ef and the
PT operators ADy(c;). Specifically, they are applied for account-
ing structural and assay information on NDDs and NPs. In addi-
tion, the PTOs AD(Dg;) and AD(Dy) label structural and/or
physicochemical characteristics of NDDs and NPs on the vari-
ables AD(Dyy) and AD(Dyy), respectively. Furthermore, the
PTOs AD(Dgy) and AD(Dyy) classify biological assay data of
NDDs and NPs with the variables (D(Dgy)cqj) and (D(Dpp)enj)»
respectively. (D(Dgy)) and {D(Dy)) are the representations of
the average operator for counting all cases with the equivalent
subset of methodology conditions ¢g; and ¢y;, respectively. Ac-
cordingly, they ought to provide exact values for a particular
assay with minimum one altered element in methodology condi-
tions of the vectors cg; or ¢,;. In this regard, they can specify
which assay we are referring to [53-57]. Another kind of PTOs
involved in this model is the NDD-NP coating agent moving
average balance (MAB) PTO AAD(D¢,1, Dcaz, Dar)
(Equation 3). The MAB PTO takes into consideration the like-
nesses between the information on NDDs and the NP coating
agent. Furthermore, PTOs centered straightly on MA and/or
linear and non-linear conversions of MA have been applied for
NDD and NP development in previous research work
[49,55,56]. The MAS is another way of expressing the combi-
nation of IF and PT cumulative procedures of NDD and NP
datasets.
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AD(de):D(de)‘<D(de)cdj> (1)
A0(Dy)=D(0)~(P(0w), ) @

AAD(Dgy 1, Degar Dgg) = AD (Dgy) = [AD (D) + AD (Do) | (3)

IF phase and proposal of training and validation
series subsets

To develop the ML models, each of the sample cases are
assigned to either the training (subset t) or validation (subset v)
series. The process of assignment ought to be random, illustra-
tive, and stratified [74]. Because of the nature of this combina-
tory system, our sampling also has to take into account the IF
scaling procedure. Initially, we obtained the NDD activity
dataset from the open database ChEMBL, which has been
compiled from primary published literature. The preclinical NP
cytotoxicity assays were acquired from journal articles. After-
wards, we prepared each case as the following labels cqg, cqy,
Cd2> €d3 Cdd» €d5> Cd6> €d7> €8s €n0> Cnl» Cn2s Cn3» and cpq. These
cases were organized by ranking the labels alphabetically from
A to Z (as we mentioned before, they are non-numeric vari-
ables in nature). The preference order of the labels on the proce-
dure of ranking was cgg — Cp9 = €41 — Cnl — €42 — Cn2— Cd3
— cp3. In other words, we organized the cases first by cqq, then
by cp, and so forth. This preference order considers the IF step
by interchanging labels from AD and NP datasets. Afterwards,
we assigned three quarters of the cases to subset t and the
remaining quarter to subset v. This random assignment im-
proves the likelihood that nearly all categories of individual
labels are denoted by subsets t and v (stratified or proportional
random sampling). In addition, this boosts the possibility that
practically all cases for each label are in a distribution of 3/4 in
subset t and 1/4 subset v, known as representative sampling. It
is worth mentioning that the 75% and 25% proportion between
training and validation is the most used one in big data analysis
[74].

IFPTML-LDA model

The IFPTML N2D3S model utilizes as input variables the PTOs
specified in the previous section to codify information of the
putative N2D3Ss with their corresponding subsystems NDD
and NPs. Combining objective function f{vij, vpj)obs and refer-
ence function f(vjj, vpj)rer and adding the IF PTOs AAD(D.y,
D¢3, Dgy), we obtained the output function f(vjj, vyj)calc- This
function carries out dataset crosscut classification of NDD and
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NP information. The generic equation for the IFPTML linear
model is the following (Equation 4):

f(vl/vvn/ )calc =4a + a 'f(Vijaan )ref
k=kimax »J=/max
+ Y @ ;-AD(Dy)
k=1,j=1
k=kmax>J=/max “)
+ Y ;-AD(Dy)
k=1,j=1

Cdi

Cnj
k:kmax ,J=Jmax
+ > ak’j-AAD(D,a-,D,m)

Cdi>Cni
k=1,/=1 4

Generalities for IFPTML model training and
validation series

In many big data systems, the linear discriminant analysis
(LDA) model is the most commonly used tool to seek the pre-
liminary model because of the simplicity of this technique. In
this regard, within this model we applied a forward stepwise
(FSW) [75] process that can select automatically the most
essential input variables for N2D3Ss. We obtained all results by
using the software STATISTICA 6.0 [74]. Afterwards, we
applied the expert-guided selection (EGS) heuristic [76] in
order to retrain the LDA method using the most crucial parame-
ters selected by the FSW process along with other missing
aspects. All IFPTML models were obtained by calculating dif-
ferent statistical parameters, specifically sensitivity (Sn), speci-
ficity (Sp), accuracy (Ac), chi-square (%), and the p-level
[77,78].

IFPTML-LDA vs cross linear model

In the Introduction section, we indicated the use of ML ap-
proaches as a promising strategy in order to tackle practical
problems of nanotechnology, such as reducing the number of
experiments [79-84]. In this paper the IFPTML method was
used to combine preclinical assays of NDDs and NPs. Speck-
Planche et al. described multiple IFPTML approaches regarding
toxicity and drug delivery of NPs with a large number of
species under a wide variety of experimental conditions. How-
ever, this study did not take into account the NDDs [54,69,85].
In contrast, Nocedo-Mena et al. reviewed an IFPTML method
to explore the activity of NDDs against numerous species and
under different assay conditions; but this research they did not
consider NPs as part of the system [86]. Accordingly, these
models could not take into consideration both components
(NDD and NPs) of the N2D3Ss. In our group, Dieguéz-Santana
et al. for the first time applied successfully the IFPTML tech-
nique to study the combination of multiple antibacterial drugs

and preclinical assays on the cytotoxicity of NPs [10]. In this
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paper, we used this new approach to develop complex N2D3Ss
containing NDDs and NPs, taking into account, among other
things, NDD assays, NP types including coating agents, and NP
morphologies. To complete the IF scaling process, we calcu-
lated the objective function f(vij, Vyi)obs = f(Vi)obs(Vnj)obs- The
main purpose of this function is to increase the effect of
certainty and maintain the homogeneity of scales. Once the
PTOs were obtained, we applied ML methods so as to fit
Sijs vnjdobs and to achieve the IFPTML models. As indicated in
the previous section, we classified the preclinical NDD assays,
¢gj, onto two different partitions (subsets) of variables ¢y and cyy.
The partition ¢y defines the biological characteristics; it
contains, among other things, cqg = biological activity parame-
ters of NDDs (e.g., ICs, K;, potency, and time) and c4; = type
of proteins involved in the NDs. The partition ¢y defines the
data quality; it contains, among other things, cqq = type of target
and cgs = type of assay. For the preclinical NP cytotoxicity
assays, ¢;; forms only one partition ¢y, which describes its
nature and involves ¢,y = biological activity parameters of the
NPs (e.g., CCsqp, IC59, LC5, and ECsq), ¢, = cell lines, cpp =
NP morphology, and c,;3 = NP synthesis conditions. In addition,
we acquired two types of IFPTML-LDA model for designing
the N2D3Ss. On the one hand, we obtained the IFPTML-LDA
by calculating the PTOs ADy(c;) as the difference between the
average value (Dy(c;)) and the partition ¢, within of their own
set. As result, the best IFPTML-LDA model found is as follows
(Equation 5):

I (Vag g )Calc = —4.46387+16.30655  (Vgy vy )
+0.00003- ADPSA (cy )

ref

1y

+0.00675- ADVnpu (e ®)

nj

+0.00431- ADVxcoat ey )

1y

—0.00537 - ADVvdwMGcoat ( ey )nj

Nipain = 375000; xz =24273.63; p-level <0.05

On the other hand, we tested the possibility to improve the
results of statistical parameters for the IFPTML-LDA algo-
rithm. To this end, we calculated the PTOs ADy(c;) by per-
forming all possible combinations among the average values
(Di(¢))) of both vectors Dy and Dy with each partition. As a
result, we obtained three different combinations of crossing
PTOs for each sample, one for NDDs (AD g (cqyp)) and two for
NPs (ADy(¢ep) and 4D (cyy)). For simplicity, they are named
“IFPTML-LDA with cross” (see more details in Figure 1). The
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best IFPTML-LDA found with the cross model is the following
(Equation 6):

f(vdij,vnij )CalC = —4.44505+14.28457 - f(vd,.j,vm.j)
+0.00216- ADPSA (¢;)

ref
onj

+0.00241- ADt (¢eyyy )

Cl‘lj

CIlj

+0.16549 - ADVnpu (e )

an

—0.02389- ADVxcoat (¢ )

Cl’lj

+0.04902 - ADVvdwMGcoat ¢y )

an
+2.040821- ADEnpu (¢ )Cd
n

+0.03229- ADAMRcoat (¢jp )

Cdn

Nygin =375000; 2 =43587.01; p-level < 0.05

rain

The output function f(vg;j, Vnjj)calc Provides a real numeric value
that will probably be applied to counting N2D3Ss. This func-
tion was acquired by calculating the objective function
Svij(cq0)s vnj(cno))obs With the ML method making use of the
PTOs. The characteristic of the IFPTML models was defined by
the statistical parameters sensibility (Sn), specificity (Sp), accu-
racy (Ac), chi-square test ()(2), and p-level [74]. The results
summary collected in Table 1 contains the statistical parame-
ters for the best models found (Equation 2) for each sample
(standard IFPTML-LDA and IFPTML-LDA with cross) are
collected in Table 1. The statistical parameters obtained for both
methods were in the accuracy range described for the classifica-
tion model of ML algorithms [77,78]. The standard IFPTML-
LDA contains all indispensable variables for defining the NDD
structures and the most significant parameters for NPs, such as
morphology, size, and assay conditions, among other things. In
the IFPTML-LDA with cross system, we included not only all
essential variables but also two crossing PTOs. These new
PTOs were chosen by the FSW method, which can select the
most influential variable in the system under study.

The IFPTML-LDA model in this paper had Sn and Sp values of
70%—73% in both training and validation series. The IFPTML-
LDA with cross model showed significantly higher Sn and Sp
values of 70%-80% in both series. By only adding two PTOs to
the standard model, the IFPTML-LDA Sp value was improved
by almost 7% in the training/validation series. However, the Sp
and Sn values of the “with cross” model are slightly unbal-
anced in comparison with the standard model; yet, the Sp and
Sn values remain approximately constant within the same

training and validation series.
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Table 1: IFPTML-LDA N2D3S model results summary.

Data Stat. Param.
Sample  Set Subset Param. (%)
1 t 0 Sp 73
1 Sn 71
v 0 Sp 73.3
1 Sn 70.3
2 t 0 Sp 70
1 Sn 62.1
v 0 Sp 70
1 Sn 63.1
3 t 0 Sp 70.6
1 Sn 62.3
v 0 Sp 70.7
1 Sn 62.7
Avg. t 0 Sp 71.2
1 Sn 65.1
v 0 Sp 71.3
1 Sn 65.4

Linear vs non-linear IFPTML models

In order to obtain the artificial neural network (ANN) model,
we used the same PTO variables as in the LDA model. As an al-
ternative to the non-linear models, we created the ANN by
using the same software STATISTICA. The ANN can also be
used as a new strategy to confirm and validate the linear
hypothesis. Both are comparable because the linear neural
network (LNN) techniques are analogous to LDA models and
they are linear equations. Accordingly, the IFPTML-LNN
model is a useful tool to assess the degree of strength of the
linear relationship between PTOs and the N2D3S objective
function. The IFPTML-LNN models in this work showed lower
Sn and Sp values of 64%—-65% in the training and validation
series, compared with the IFPTML-LDA models, see details in
Table 2.

Analogous to the IFPTML-LDA model, the values of the statis-
tical parameters Sp and Sn are considerably balanced and stay
steady when comparing training and validation series. Also, we
obtained two types of non-linear models, the multilayer percep-
tron (MLP) and the depth learning network (DLN). The MLP is
made up by seven PTOs as input layer, a hidden layer with
eleven neurons, and an output layer. The most notable differ-
ence is that the DLN involves two hidden layers, each one with
ten neurons. Both MLP and DLN showed high Sp and Sn
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Without cross Param. With cross
Subset predicted Subset predicted
0 1 (%) 0 1
255190 94292 72.2 252534 97042
7398 18120 74.4 6517 18907
85369 31125 72.3 84183 32315
2522 5984 73.9 2218 6284
244548 105076 79.5 277907 71717
9528 15848 70.1 7584 17792
81640 35009 79.7 92929 23720
3081 5270 70.7 2451 5900
246551 102809 79.6 277921 71439
11616 15974 70.1 7668 17972
82370 34174 79.6 92726 23818
3828 5300 70.4 2500 5956
248763 100726 771 269454 80066
9514 16647 71.5 7256 18224
83126 33436 77.2 89946 26618
3144 5518 71.7 2390 6047

values of 85%—-86% in the training and validation series. If we
compare the linear IFPTML-ANN model with non-linear
models based on the results of statistical parameters, we can
confirm that N2D3S is a non-linear system. Another result ob-
tained in the development of the ANN is the area under receiver
operating characteristic (AUROC) (Figure 4) [74]. The AUROC
curve values are 0.93-0.94 for both MLP and DLN models in
the training and validation series. The AUROC values of the
non-linear models are remarkably different from the random
(RND) curve with AUROC = 0.5 [74].

Robustness analysis of IFPTML models

The design of the N2D3Ss involve the combination of a large
amount of data on preclinical assays of NDDs and NPs.
Because of the nature of this big data system, we divided the
information fusion dataset into three samples. In the previous
section, we discussed the best model obtained for IFPTML-
LDA, IFPTML-LDA with cross and IFPTML-ANN. In this
section, a robustness analysis for the three samples is given (see
Table 3). In general, the number of cases (n) used in training
and validation series for all models presented the lowest stan-
dard deviation (SDV), which indicated that most of the data in a
sample tend to be clustered near its mean [87]. In contrast, the
high value of SDV for the DLN model indicates that the data

was distributed over a wide range of values. In addition, all

544



Beilstein J. Nanotechnol. 2024, 15, 535-555.

Table 2: The best result of IFPTML-ANN N2D3Ss models found.

Sample IFPTML-ANN Models? Subset Stat.  Val. f(vj(cqo), vnj(cno)) Observed AUROC
(%) Pred. 1 0
01 LDA 7:7-1:1 t Sp 0 73.0 94272 255178 —
Sn 1 71.0 18057 7367
v Sp 0 73.3 31125 85319 —
Sn 1 70.3 5980 2522
FSTW + EGS
MLP 7:7-11-1:1 t Sp 0 86.1 300836 48740 0.943
Sn 1 85.8 3610 2181
v Sp 0 86.1 100278 16220 0.934
Sn 1 86.2 1173 7329
BP96b
DLN 7:7-10-10-1:1 t Sp 0 85.8 299942 49634 0.945
Sn 1 85.8 3621 21803
v Sp 0 85.9 100103 16395 0.933
Sn 1 86.3 1168 7334
BP100,CG20b
LNN 7:7-1:1 t Sp 0 65.0 227184 122392 0.744
Sn 1 64.7 8971 16453
v Sp 0 65.1 75788 40710 0.733
Sn 1 64.1 3055 5447
Pl

models presented similar SDV values in the same training and ~ SDV for Sn (>4) in the training and validation series. However,
validation series. Interestingly, the LDA model showed signifi- the SDV values for the LDA cross model were contrary to those

cantly lower values of SDV for Sp (>1), compared with the of LDA, with lower SDV values for Sn and higher values for
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ROC Curve, f(vijd,vijnp)obs (1-5)
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Figure 4: AUROC exploration of IFPTML-MLP and IFPTML-LNN models.

Sp. It is worth mentioning that both MLP 1 and LNN models
yielded statistical parameters close to its mean, in other words
these models are robust. Furthermore, using the IFPTML-ANN
model, we also obtained AUROC values as results. After doing
the robustness analysis, we can confirm that all AUROC values
for all ANN models are robust. In addition, the AUROC graphic
(Figure 4) gives evidence to this because of the similarity of the
curve shapes.

The results reveal the strength of the linear hypothesis. Never-
theless, the statistical parameters of the obtained linear model
are not satisfactorily at all. As a result, in the IFPTML-LDA
with cross model, we enlarged the number of input variables
from seven to nine. Thus, we did not obtain substantial change.
Therefore, we tested more complex non-linear models so as to
improve the Sp and Sn values. The IFPTML-MLP 7:7-11-1:1
model, containing seven input variables in the input layer and
eleven neurons in the hidden layer, yielded the best statistical
parameters of Sn and Sp values (Table 3). The IFPTML-DLN
model, which involves two hidden layers, yielded similar result
as IFPTML-MLP 7:7-11-1:1.

Taking into account all the aforementioned results, we can
consider both IFPTML-MLP and IFPTML-DLN as the best
models with remarkably higher values of Sp and Sn of
85%—-86% and AUROC values of 0.93-0.94. However, the
DLN model is more complex and yields only a non-significant
improvement of statistical parameters in comparison with the
MLP model. Thus, we can confirm that N2D3Ss require the

MLP model. This selection is supported by the principle of
parsimony, prioritizing the simplest explanations among all
possible ones [88]. In Table 4, an input variable sensitivity anal-
ysis concerning NDDs, NPs, and the corresponding subsystems
are shown for the IFPTML-ANN model. The IFPMTL-LNN
model involves almost all significant parameters according to
the EGS criteria. The majority of parameters provide a substan-
tial influence on the sensitivity = 1 [74]. In many cases, the
value of sensitivity analysis is slightly higher with a sensitivity
of 1.00-1.08. Nevertheless, the EGS perspective fails in the
selection of ADPSA(cy) and ADt(cyyp) variables. In this regard,
the IFPTML-ANN model suggests that those variables do not
affect any model. In contrast, the IFPTML-LNN yielded the
lowest value of sensitivity of 1.00—1.13, which would underline
the need for a complex model in N2D3Ss. The DLN model
involves the essential variables in accordance with the EGS
criteria; however, they have remarkably higher sensitivity
values of 0.96-2.03. The MLP yielded the highest values of
sensitivity between 1.13 and 2.57.

IFPTML-LDA for N2D3S simulation

In this section, we employed the IFPTML-LDA technique to
calculate the probability values for some selected cases of
N2D3Ss. The linear model was chosen for its simplicity and the
slight improvement of the non-linear model. The value of prob-
ability p(N2D3Sj;)cgj.cnj Was obtained for N2D3Ss, created by
the combination of the i-th AD; and the n-th NP,,, which are
likely to have a desired level of biological activity under both

assay conditions ¢q; and ¢,;. This simulation experiment
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Table 3: Result summary of N2D3Ss alongside average of three samples and standard deviations.

Model t
Sp Sn n
AVG LDA 71.2 65.1 375000
LDA cross 771 71.5 375000
MPL 1 85.1 85.0 375000
DNL 79.2 79.0 375000
LNN 65.0 64.9 375000
Model t
Sp Sn n
SDV LDA 1.587 5.082 0
LDA cross 4.244 2.483 0
MLP 1 1.266 1.217 0
DLN 8.489 8.568 0
LNN 0.100 0.153 0

Table 4: IFPTML-ANN model input variable sensitivity analysis for different subsystems with their corresponding variables.

LNN MLP
Sub-systems Variables
t \Y t
NDDs&NP f(CdOanO)ref 1.02 1.02 1.32
NDDs ADPSA(c)) 0 0 0
ADt(cy) 0 0 0
ADLpp(cyy) 1.00 1.00 1.14
NP ADVnpU(Cm) 1.00 1.00 2.22
ADVycoat(Ch) 1.00 1.00 1.96
ADV\gwMGgoat(Cii) 1.13 1.13 2,57

involved in total Nnop3s = 88 systems vs a total of Nypps =
123 drugs. Many of these drugs are NDDs with known anti-
neurodegenerative activity, generally for Alzheimer and
Parkinson diseases. Some of these NDDs are approved by the
Food and Drug Administration, while others have been shown
to be active in several assays. In addition, the simulation also
contained cytotoxicity assays against multiple cell lines, the
type of NPs, their coating, and the time of each assay. In this
context, we calculated a total of Ny = NNpps-Nnp = 22-218 =
4796 values of probability, which were able to predict success-
fully putative N2D3Ss.

Figure 5 depicts the results in a three-color scale according
to the value of probability: the green section indicates high
probability (0.61-0.98), yellow low-to-middle probability
(0.17-0.60), and red very low probability (<0.17). Assays that

v AUROC
(tv)
Sp Sn n
71.3 65.4 125000 —
77.2 7.7 125000 —
85.1 85.1 125000 0.937/0.925
79.2 79.3 125000 0.893/0.879
65.1 64.9 125000 0.748/0.737
v AUROC
(tv)
Sp Sn n
1.739 4.277 0 —
4.244 1.940 0 —
1.940 1.102 0 0.010/0.010
8.584 8.727 0 0.069/0.071
0.153 0 0 0.005/0.003
DLN
v t v t v t v
1.33 1.46 1.45 1.25 1.24 1.38 1.40
0 0 0 0 0 0 0
0 0 0 0 0 0 0
1.13 1.08 1.08 1.08 1.08 1.60 1.59
222 092 092 1.06 1.05 1.24 1.25
1.98 1.45 1.47 1.45 1.48 199 2.03
2.54 1.44 1.43 1.24 1.24 1.91 1.90

have not been reported before, are represented in the original
dataset to a very low extent, or whose combination of NDDs
and NPs are meaningless were illustrated in white color to avoid
an overestimation of results. The results of the [IFPTML-LDA
model pointed out some N2D3Ss as promising combinations
for future additional assays. The resulting N2D3Ss shown in
Figure 5 involve twenty different NDDs. The first ten are
1 = clozapine, 2 = galantamine, 3 = levodopa, 4 = apomorphine,
5 = fiduxosin, 6 = beagacestat, 7 = memoquin, 8 = mesodihy-
droguairetic acid, 9 = tarenflubil, and 10 = huperzine A. The
other ten NDDs are 11 = guanidinonaltrindole, 12 = semagace-
stat, 13 = huprine X, 14= carproctamide, 15= tacrine, 16 =
tramiprosate, 17 = preladenant, 18 = piracetam, 19 = istrade-
fylline, and 20 = rivastigmine. These systems include the
following coating agents: PEG = polyethylene glycol, PVP =

polyvinylpyrrolidone, PPF = propylammonium fragment, and

547



Beilstein J. Nanotechnol. 2024, 15, 535-555.

PEG-Si(OMo);
PEG-Si(OMe), NCIH441 (H)

PEG-Si(OMe);  BMSC (M)
58 Si0, PEG-Si(OMe) HEK293(H) 72
50 Si0, PEG-Si(OMe) RAW 2647 (M) 72
60 S0, PEGSi(OMe) BMSC(H) 72
61 S0, PEGSi(OMe) HepG2(H) 72
62 Si0, PEG-Si(OMe)  AS49 (H)

63 Si0, uc

64 S0, uc

65 Si0, uc BMSC(M) 72
66 Si0, UC  RAW2647(M) 72
67 Si0, uc HaCaT (H) 4
68 Si0, uc BMSC(H) 72
6 Si0, uc NCIH441 (H) 72
70 - Sio, uc HepG2 (H) 72
71 Sio, uc A549 (H) 7
72 Si0, uc A549 (H) 72
73 Sio, uc A549 (H) 48
74 Si0, uc HaCaT (H) 24
75 Si0 uc 313 (M) 7
76 __Si0, uc A549 (H) 24
77 "0, UC Neuro2A (M) 48
78TO, uc AS49 (H) 24
79 Y305 UC HEK293 (1) 24
80 ZnFe,0;  UC WISH(H) 72
81 ZnFe,0;  UC WISH (H) 48
82 ZnFe,0;  UC WISH (H) 24
83~ Zn0 uC A549 (H) 2%
84 Zn0O uc HeLa (H) 2
85 Zn0 uc HepG2 (H) 24
86 _ Zn0 uc HUVECs 24

Figure 5: IFPTML-LDA N2D3Ss experiment simulation.

UAF = undecylazide fragment. The symbol UC = uncoated
represents non-coated N2D3Ss. Interestingly, a high value of
prediction involves PEG-Si(OMe); as NP coating with
P(N2D3Sip)edj.enj = 0.80-0.99 for the majority of NDDs.
Another important factor that may affect the value of probabili-
ty is the type of NP. It appears that metal oxide compounds
such as SiO, and TiO; along with PEG-Si(OMe);NP coating
for almost all NDDs are likely to be promising for further

assays. Double metal oxide compounds such as CoFe,O4
and ZnFe,O,4 obtained intermediate probability values

P(N2D3Sip) e en = 0-17-0.70 against TK6 (H) and WISH (H).

In general, the least advantageous combinations are metal
NPs with all NDDs, which give low values of probability
(p(N2D3Sip)cdj.cnj = 0.02-0.35). It is worth mentioning that all
predictions carried out by this method should be used with
caution and require experimental corroboration. The potential
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utility of the IFPTML method is to speed up experimental
studies and to provide inexpensive preliminary results for a
large database of N2D3Ss. This approach offers an efficient and
powerful tool to direct experimental research as an alternative to
tedious trial-and-error tests.

In addition, the determination of the probability value distribu-
tion in a generic sense for the unique pairs of NP cytotoxicity
assays and NDDs was carried out. For this, we depict the sur-
face scatterplot of probability values against histograms of NP
length along with NDD hydrophobicity (Figure 6). Generally, a
third of the probability values remains in the dark green zone,
which represents promising N2D3Ss for further assay. It is
worth mentioning that most of the cases (white dots) are hydro-
phobic drugs (on the left of the graph). This feature is one of the
most important physicochemical properties for drugs in order to
cross the BBB [89]. High lipophilicity can contribute to exces-
sive distribution volumes, increased metabolic liability, and
lower unbound drug concentration in the plasma and/or brain; it
may also negatively affect pharmaceutical properties, in particu-
lar solubility [90]. Most NDDs of this database are in the PSA;
range of 60-120 A2. Stephen et al. suggested that CNS drugs
should have a PSA value below 90 A2 for a decent BBB perme-
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ability, among other physicochemical characteristics such as
number of hydrogen bond donors, molecular size, and shape,
with smaller contributions from hydrogen bond acceptors [89].
Although this type of graphic is clearly a simplification of the
whole database, it offers simple guidelines for researchers
concerned with designing NDD compounds or libraries with
improved probability of BBB penetration. The size of the vast
majority of NPs for NDD delivery in this database is in the
range of 70-115 nm. Recently, Chithrani et al. [91] have
demonstrated that size, coating, and surface charge of nanopar-
ticles have a crucial impact on the intracellular uptake process.
Similarly, Shilo et al. have investigated the influence of NP size
on the probability to cross the BBB by using the endothelial
brain cell method. The results indicated that the intracellular
uptake of NPs strongly depends on the NP size. This character-
istic has a direct impact on biomedical applications. When NPs
serve as carriers for drug delivery through encapsulation, a
larger NP size (70 nm) is needed. However, when NPs serve as
carriers by binding drug molecules to their surface, a larger free
surface area is required; therefore, the optimal size would be
20 nm [92]. This principle suggests that a high number of the
NPs in our database are proper drug delivery carriers by drug

encapsulation.
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Figure 6: Probability surface scatter plot representing the deviation of NP length considering the partition ¢y, which describes the NP nature and
includes cno = NP biological activity parameters (e.g., CCsg, ICs0, LCs0, and ECsq), ch1 = cell lines, ch2 = NP morphology, and c,3 = NP synthesis
conditions. (AL (cyyj)y;) along with the deviation of NDD hydrophobicity (APSA(c))q)) taking into account the partition ¢}, which includes the biological
characteristics, for example cqo = NDD biological activity parameters (e.g., ICs, Ki, potency, and time) and c4¢ = the type of protein involved in NDs.

549



Thus, the design of new N2D3Ss based on multiple preclinical
assays of NP cytotoxicity and NDDs has been carried out suc-
cessfully. This database involves a high structural and biologi-

cal diversity, which may help to distinguish active from non-

Table 5: IFPTML analysis of experimentally tested N2D3S compounds.

Drug?® NP Cqo = activity ~ ADPSA(c))
Metal/n.a.

2234684 Ag Time (h) 0.57
2376472 Ag Time (h) 4.30
2234683 Ag Time (h) 0.57

Metal oxide/n.a.

3769671 TiOo Cp (nm) 0
Levodopa TiOp Time (h) -35
Sch-58261 TiOo Time (h) -1
2180030 TiO» ECo (nm) 0
Levodopa TiOp Time (h) -35
Sch-58261 TiO» Time (h) -1
2234689 TiO» Time (h) 0.3
Morin TiOo Time (h) 0

Metal/elliptical

Datiscetin Ag Time (h) 0.3
2234993 Ag Time (h) 0.4
1240582 Ag Time (h) -1.7
1241456 Ag Time (h) -2
Metal oxide/elliptical

2180030 Yb203 ECQO (nm) 0
Levodopa YboOg3 Time (h) -35
3769671 CeOs Cp (nm) 0
Metal oxide/needle

3747225 LaxO3 Time (h) 2.8
3769671 LaxO3 Cp (nm) 0
Meta/rod

3218426 Au Activity (%) -2.0
Congo red Au Inhibition (%) 3.6
3218189 Au Activity (%) -2.0
3580774 Au Activity (nm) 0
Metal oxide/pyramidal

PGAf TiO» Time (h) -18
Apomorphine  TiOz Time (h) -17
1801682 TiO2 Time (h) -20

Beilstein J. Nanotechnol. 2024, 15, 535-555.

active N2D3Ss. Experimentally, the IFPTML-LDA method pre-
dicted with high probability p(N2D3S;,)¢dj.cnj > 0-81 all exam-
ples reported in Table 5. The results support our initial premise

that the IFPTML additive approach is able to carry out an

Obs.P Pred.c pd L (nm)®
1 1 0.88 12.50
1 1 0.88 12.50
1 1 0.88 12.50
1 1 0.94 56

1 1 0.93 56

1 1 0.93 56

1 1 0.93 56

1 1 0.93 56

1 1 0.93 56

1 1 0.93 56

1 1 0.93 56

1 1 0.81 36.8
1 1 0.81 36.8
1 1 0.81 36.8
1 1 0.81 36.8
1 1 0.90 62.1

1 1 0.90 62.1

1 1 0.90 44.8
1 1 0.89 65.8
1 1 0.88 65.8
1 1 0.93 37.8
1 1 0.93 37.8
1 1 0.93 37.8
1 1 0.93 37.8
1 1 0.91 6.5

1 1 0.91 50

1 1 0.91 50
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Table 5: IFPTML analysis of experimentally tested N2D3S compounds. (continued)

Metal oxide/irregular

3350757 TiO2 Time (h) -53 1 1 0.93 21
3747225 TiOo Time (h) 2.8 1 1 0.93 21
1243007 TiOo Time (h) -0.7 1 1 0.92 21
3769671 TiO2 Cp (nm) 0 1 1 0.92 21
Levodopa TiOo Time (h) -35 1 1 0.92 21
Metal Oxide/pseudo-spherical

2376474 CeOo Time (h) 3.9 1 1 0.89 8
3747225 CeOo Time (h) 2.8 1 1 0.89 8
3769671 CeO» Cp (nm) 0 1 1 0.89 8
Levodopa CeOo Time (h) -35 1 1 0.89 8
Sch-58261 CeO» Time (h) -1.0 1 1 0.89 8
Metal/spherical

2151181 Au EDsg (mg/kg) -0.4 1 1 0.94 42.9
1222303 Au EDsg (mg/kg) -0.4 1 1 0.94 42.9
2181911 Au Activity (%) 1.6 1 1 0.90 42.9
3397881 Au Inhibition (%) -1.1 1 1 0.90 42.9
3785241 Au Inhibition (%) -1.5 1 1 0.90 42.9
3947919 Au Activity (%) 1.0 1 1 0.90 42.9
3817925 Au Inhibition (%) -0.7 1 1 0.90 42.9
3612821 Au Inhibition (%) 0.3 1 1 0.90 42.9
2159510 Au Activity (%) -0.8 1 1 0.90 42.9
2415095 Au Inhibition (%) 0.5 1 1 0.90 42.9
436483 Au Inhibition (%) 1.5 1 1 0.90 42.9
2159511 Au Activity (%) -1.2 1 1 0.90 42.9
2349470 Au Activity (%) -1.8 1 1 0.90 42.9
3127906 Au Activity (%) 0.6 1 1 0.90 42.9
Propidium Au Inhibition (%) 0.4 1 1 0.90 42.9
Metal oxide/spherical

3218188 SiOp Activity (%) 91 1 1 0.97 12.5
3087679 SiOp Inhibition (%) 69 1 1 0.97 60
3233831 SiOp Inhibition (%) 58 1 1 0.97 44
510384 SiO» Ki (nm) -30 1 1 0.97 47.5
81999 SiO» Ki (nm) -40 1 1 0.97 36.8
3218425 Sie Activity (%) 91 1 1 0.97 70
55401 SiO» Ki (nm) -31 1 1 0.97 37
3233829 SiO» Inhibition (%) 58 1 1 0.97 36.8
3087678 SiO» Inhibition (%) 69 1 1 0.97 3.4
3769671 SiO» Cp (nm) 0 1 1 0.99 5.5
2234689 SiO» Time (h) 37 1 1 0.99 36.8
2234690 SiO» Time (h) 37 1 1 0.99 16.4

aChEMBL ID or drug name; the name of the drug is depicted if it is available, otherwise the ChEMLID code of the drug is indicated, which can be
easily consulted by accessing the CheMBL website. °Class. Obs: f(vij, Vnj)obs- °Class. Pred: f(vij, viyj)pred- dp: probability calculated as
P(N2D3Sin/Cgj, Cr)pred = 1/(1 + exp[-f(vjj, Vnj)caicl- ®L (nm): NP length. fPGA: phloroglucin aldehyde.
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appropriate recognition of N2D3Ss involving additive and

synergic cases.

Conclusion

N2D3Ss are a promising and plausible tool to help conven-
tional NDDs cross the BBB. AI/ML algorithms can be instru-
mental in expediting the process of designing N2D3Ss. Howev-
er, scientific literature lacks a sufficient number of real N2D3S
experimental cases that characterize complex applications. In
this context, the IFPTML model, encompassing both NDDs and
NP models, could offer a practical solution. This approach has
successfully addressed the challenges posed by the vast number
of combinations of NP and NDD compounds and the wide
range of conditions to be tested in N2D3S discovery. The
results of the IFPTML-LDA and IFPTML-ANN techniques
showed satisfactory performance, achieving Sp values of
73.0%-86.1% and Sn values of 70.0%—-86.2% in the training
and validation series, comprising 375,000 and 125,000 cases,
respectively. Moreover, both models are easily accessible and
provide logical solutions for predicting putative N2D3Ss. The
most successful outcome was observed using non-linear
models, specifically, the IFPTML-MLP model, which displayed
Sn and Sp values of 85.8-86.2% and an AUROC value of 0.94
in the training and validation series. Furthermore, the analysis
of three N2D3Ss samples yielded low SDV values, confirming
the robustness of both IFPTML-LDA and IFPTML-ANN. In
summary, the [IFPTML models offer an initial solution for a
rapid and less arduous pre-screening of putative N2D3Ss. This
approach is widely utilized to minimize resource costs and save
experimental time that would otherwise be spent on testing all
possible combinations.
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