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1. Introduction

The study of cell death has been tradition-
ally underpinned by the development of 
imaging and monitoring technologies. The 
strides made over the past decades have 
revealed the multiple roles of cell death, 
which are not only associated with various 
pathophysiological processes but are also 
essential for the homeostatic regulation 
of the whole organism.[1] In this regard, 
extensive variability in cell death modali-
ties has been reported. Despite such differ-
ences among mechanisms, it is now widely 
accepted that the processes orchestrating 
cell death can be classified into two gen-
eral subgroups: regulated cell death (RCD) 
and accidental cell death (ACD).[2] Whereas 
programmed cell death pathways are pre-
cisely executed in RCD, generating a time-
dependent response to stress (as occurring 
e.g. in caspase-mediated apoptosis), ACD 
is dominated by an instantaneous cell  

During the response to different stress conditions, damaged cells react in mul-
tiple ways, including the release of a diverse cocktail of metabolites. Moreover, 
secretomes from dying cells can contribute to the effectiveness of anticancer thera-
pies and can be exploited as predictive biomarkers. The nature of the stress and 
the resulting intracellular responses are key determinants of the secretome compo-
sition, but monitoring such processes remains technically arduous. Hence, there 
is growing interest in developing tools for noninvasive secretome screening. In this 
regard, it has been previously shown that the relative concentrations of relevant 
metabolites can be traced by surface-enhanced Raman scattering (SERS), thereby 
allowing label-free biofluid interrogation. However, conventional SERS approaches 
are insufficient to tackle the requirements imposed by high-throughput modali-
ties, namely fast data acquisition and automatized analysis. Therefore, machine 
learning methods were implemented to identify cell secretome variations while 
extracting standard features for cell death classification. To this end, ad hoc 
microfluidic chips were devised, to readily conduct SERS measurements through a 
prototype relying on capillary pumps made of filter paper, which eventually would 
function as the SERS substrates. The developed strategy may pave the way toward 
a faster implementation of SERS into cell secretome classification, which can be 
extended even to laboratories lacking highly specialized facilities.
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collapse due to unfavorable conditions (necrosis by temperature, 
pH variations, or severe oxidative damage).[3–5]

Recent studies have supported the notion that different sol-
uble metabolites are released to the extracellular milieu upon 
the activation of cell death by a combination of regulated pro-
cesses and passive diffusion through impaired membranes. 
This subset of molecules, termed secretome, varies among dif-
ferent types of cell death and can function as paracrine extracel-
lular messages.[6] Hence, released metabolites transmit either 
danger signals –alerting the organism about a potential threat– 
or messages to promote cell proliferation and suppress inflam-
mation within the tissue.[7,8] Noteworthily, the secretome of 
cancer cells plays a pivotal role in the fate of malignant tumors 
during treatment, transforming immunologically “cold” envi-
ronments –those that limit immune activity– into “hot” envi-
ronments, capable of stimulating antitumoral responses.[9] In 
turn, the accurate classification of cell secretomes could lead 
to better cancer treatments, which has stimulated the develop-
ment of sophisticated analytical tools to readily identify such 
secreted signatures.[10–12]

Conventional methods for the characterization of cell death 
secretomes involve time-consuming and invasive analysis tech-
niques (e.g., mass spectrometry).[13] Therefore, new strategies 
are needed that entail a fast, reliable, and straightforward deter-
mination of the different cell death types and their associated 
metabolic profiles. Surface-enhanced Raman scattering (SERS) 
has the potential to overcome current drawbacks in extracellular 
metabolomics, owing to its high sensitivity and fast data acqui-
sition, which enables screening of the characteristic molecular 
fingerprint of complex media.[14,15] Indeed, we have recently 
demonstrated that multiplex SERS monitoring of metabolites 
in the extracellular milieu is feasible,[16] even observing spe-
cific profiles that could be correlated with dying cells. Notwith-
standing, this approach only focused on specific intensity fluc-
tuations at sharply defined peaks (particularly at 727 cm−1, asso-
ciated with Hypoxanthine), so additional variations in the SERS 
spectra were not sufficiently investigated. Previous studies have 
otherwise used SERS to track intracellular changes during cell 
death, identifying peaks associated with protein denaturation, 
amino acid residues, changes in the protein conformation, or 
lipid degradation.[17,18] However, the initial uptake of nanopar-
ticles (NPs) by the cells (required for intracellular monitoring) 
may affect their behavior, while ignoring the information con-
tained in the extracellular milieu.[19,20] Overall, although SERS 
promises to speed up and simplify the task of metabolic pro-
filing, the development of efficient protocols in synergy with 
advanced data processing is still required for robust cell death 
monitoring.[21,22]

Herein, we employ label-free SERS monitoring of cell super-
natants to demonstrate that the secretome in dying cells is 
influenced by the underlying stresses. In contrast to previous 
studies, an exhaustive analysis of the recorded spectra allowed 
us to capture the diversity of the cell death secretome, while 
extracting common features among similar conditions by 
machine learning (ML) techniques. Furthermore, with the aim 
of performing high-throughput cytotoxic studies, we devised a 
strategy that allows us to accelerate the collection of cell super-
natants and acquire their respective SERS spectra, thereby 
minimizing external operation. This customized strategy was 

subsequently utilized as a proof of concept to monitor multiple 
stress conditions on cell cultures. The obtained results foster 
our methodology as a powerful tool for fast and accurate clas-
sification of the secreted signatures.

2. Results and Discussion

2.1. Secretome Monitoring by SERS

To induce the release of a distinct subset of metabolites, we 
challenged HeLa cells with a panel of different cell death-
inducing conditions. We initially selected ultraviolet radiation 
(UV), heating at 55 °C, and hypotonic media, owing to their 
well-known properties as strong stressors.[23,24] Specifically, UV 
exposure leads to the formation of DNA lesions that activate 
death pathways; heating and hypotonic stress, by contrast, may 
cause a direct disruption of other cellular structures, such as 
the cell membrane or protein denaturation. In addition, other 
cell assays were maintained without disturbances as the control 
group.

To determine the metabolic fingerprint in the extracellular 
environment, we collected the supernatant of HeLa cells after 
4 h of treatment, which ensured that the stress response would 
be triggered, and spiked the SERS substrate prior to the meas-
urements (Figure S1a, Supporting Information). We opted for a 
plasmonic substrate created by drop-casting Ag colloidal nano-
particles (NPs) (Figure S1b, Supporting Information) on alu-
minum film supports, on account of their simple preparation 
and homogeneity (Figure S1c, Supporting Information). For 
each experiment, we collected 400 spectra at different locations 
of the same SERS substrate and carried out three independent 
biological replications per condition. The average of the regis-
tered spectra is displayed in Figure 1a, showing distinct vibra-
tional fingerprints for each condition. The corresponding 
stacks of SERS spectra are plotted in Figure  1b, so that the 
distribution of samples is shown in detail. The acquired SERS 
profiles exhibit inevitable variability among biological rep-
etitions, as well as stochastic noise within the same label. To 
better visualize and analyze this variability, a linear principal 
component analysis (PCA) was conducted, which examines 
the full spectrum for each condition. The results of this anal-
ysis are presented in Figure 1c. We can observe the formation 
of defined clusters for each class, which was particularly clear 
for the spectra acquired as control. Still, we noticed that some 
conditions present minor overlap. This is a consequence of the 
non-linearity consistently present in complex SERS spectra; for 
example, we must consider that one metabolite might exhibit 
multiple peak shifts, according to its orientation toward the 
plasmonic surface.[25]

Apart from the variability among conditions, we examined 
whether SERS could monitor the changes in secreted metabo-
lites over time, i.e., the evolution of the system upon stress. In 
previous experiments, all measurements were recorded from 
supernatants after 4 h. However, the frequency of death-spe-
cific molecules is highly dependent on the selected time point. 
As shown in Figure  1d, we carried out a multivariate spectral 
analysis by means of other unsupervised methods typically 
used to promote clustering (in this case, nonlinear t-distributed  
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stochastic neighbor embedding, or t-SNE, which better pre-
serves the internal structure of the data than PCA).[25] As 
expected, at initial stages the spectra were very similar among 
groups, albeit samples from the hypotonic class could be 
quickly distinguished from the others. The hypotonic solu-
tion presents a lower concentration of salts and metabolites 
compared with standard media, which resulted – not sur-
prisingly- in a distinct SERS profile. It should also be noted 
that the plotted spectra offer meaningful information on the 
timing of cell death events. For example, a clear separation 
was observed after 1 h of heating – high temperatures cause 
immediate damage to exposed cells (ACD). In contrast, UV 
illumination activates mechanisms that trigger slower dying 
processes (RCD), so the registered spectra barely differed from 
the control group at the initial stages (see Figure  1d,h). The 
data retrieved after 24 h resulted in 4 well-separated clusters, 
supporting the notion of specific SERS signatures for each 
condition.

2.2. Classification of SERS-Recorded Secretomes by Supported 
Vector Machine Analysis

Following recent developments in machine-learning (ML) 
techniques for SERS monitoring, we investigated whether our 
SERS platform could classify different cell death mechanisms 
according to the recorded secretomes. As depicted in Figure 2a, 
we initially deployed a supported vector machine (SVM) archi-
tecture to identify unique patterns in the secretome of dying 
cells. In general, the main idea of the supervised SVM method 
is to disclose the linear decision surface that better separates 
the different classes of spectra.[26] Thereby, we sought to pre-
dict the cytotoxic impact (live/dead) of different conditions by 
SERS. To create a robust and stable SVM model capable of 
dealing with complex SERS spectra, we utilized the data col-
lected in the previous section (5500 spectra from 4 different 
conditions, acquired at 4 different time points). Importantly, in 
such a supervised analysis, we had to initially add informative 
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Figure 1. a) Average SERS spectra recorded from supernatants of HeLa cells challenged under different stress conditions, named as Control, UV, 
Heating, and Hypotonic (see main text for description). b) Heatmaps displaying 1200 spectra (N = 3, n = 400) collected for each of the 4 monitored 
conditions. The color map indicates SERS intensity, normalized from 0 to 1. c) Principal component analysis (PCA) score plot of the first two principal 
components (PC1 – 80.5%, PC2 – 19.4%), showing the relative secretome separation after 4 h of stress stimulus. d) t-distributed stochastic neighbor 
embedding (t-SNE) analysis of the spectra acquired at successive times: pre-treatment (0 h), 1 h, 4 h, and 24 h of experiment, as labeled. Cluster 
formation can be visualized over time.
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labels to the raw data so that our ML model could learn there-
from. For this specific approach, data labeling was a function of 
the outcomes in the Lactate dehydrogenase (LDH) assay, meas-
uring the percentage of induced cell death at each condition. 
Considering the readouts in Figure  2b (and Figure S2, Sup-
porting Information), we labeled as viable (live) those condi-
tions that showed LDH values <25% while noting as cytotoxic 
(dead) those above the same threshold (see the Experimental 
section for details on threshold determination). In this manner, 
SERS spectra from conditions retrieving an LDH value >25%, 
e.g., UV illumination after 4 h, were labeled as dead.

We randomly split the 5500 spectra into the training and 
testing (70% – 30%) data subsets (see Figure S3, Supporting 
Information, for information on datasets). The resulting 70% 

subset was fed into the model during the so-called training 
phase, to learn and connect the specific SERS signatures with 
their defined output variables (live and dead, see the sketch in 
Figure 2c). The created machine learning-based model was next 
tested with the remaining 30% of the data – inspection dataset, 
not previously used in the training phase, and displaying the 
retrieved predictions in the confusion matrix of Figure  2d. 
This type of table is routinely used to visualize and summa-
rize the performance of classification models. Specifically, the 
rows present the actual classes (measured by LDH), whereas 
the columns dictate the predictions by the model (outputs of 
the SVM). The number of correctly classified spectra is given 
in the diagonal boxes (colored boxes), and thus the off-diagonal 
elements are those that resulted mislabeled (all the data in this 

Small 2023, 19, 2207658

Figure 2. a) Scheme depicting the workflow of our machine learning (SVM) classification method strategy. Different cell conditions are initially labeled 
by different viability assays, as live or dead. Besides, among dying cells, we differentiate between necrosis/apoptosis cell death. b) LDH assay results 
for representative cell conditions. On the basis of LDH readouts for control cells, the threshold that determines data labeling was established at 25%, 
with confidence of p = 0.99 (Hyp: Hypotonic). c) The SVM is trained with 70% of the data, previously analyzed in Figure 1 (n = 5550), and then vali-
dated with the remaining 30% to inspect the model. Finally, the generalization of the model was assessed with data from additional stress conditions.  
d) Confusion matrix for the live/dead classification based on the data that were not used in the training step (model inspection dataset, n = 1650). 
The figures in each box are normalized by the number of elements in each class. e) Confusion matrix showing the generalization of the trained network 
to spectra collected from different biological assays (N = 20).
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matrix were normalized by the number of elements per class). 
Overall, the network could recognize the SERS spectra satisfac-
torily from either living or dying cells, with a sensitivity of 97%, 
a specificity of 95%, and a total validation accuracy of 96%.

It should be noted that, the model must also establish 
connections between spectra and labels, to the extent that 
it enables a generalization to other stress conditions –not 
seen during the training step. The created model was thus 
evaluated with unused spectra from cells exposed to alterna-
tive biological assays, as depicted in Figure S3, Supporting 
Information. At this generalization step, we challenged HeLa 
cells with different stresses and drugs, including Rapamycin  
(N = 3), Staurosporine (N = 5), and H2O2 (N = 5). In addition, 
we measured SERS spectra at an additional time point, 16 h, 
for a further control (N  = 2), which along with control repli-
cates at 4 h (N = 5), raised the total number in the biological 
assay dataset to 20 independent experiments. Besides, some 
of the spectra were also recorded on different SERS substrates 
–so-called plasmonic superlattices (details in the Experimental 
Section and Figure S4a, Supporting Information), to thor-
oughly assess the general application of the method. Upon 
collecting the corresponding SERS measurements, we fed the 
model with one averaged spectrum per experiment (represent-
ative average spectra shown in Figure S4b, Supporting Infor-
mation). From the resulting confusion matrix in Figure 2e, we 
could confirm that the model also achieves a high accuracy 
in classifying new conditions, i.e., regardless of the imposed 
stress the model could differentiate secretomes from living 
and dead cells. It should be specially noted that, for the experi-
ments with Rapamycin, a drug affecting proliferation but 
not viability (Figure S4c,d, Supporting Information, viability 
studies and labeling of new conditions), the model correctly 
classified their secretome as still pertaining to living cells, 
meaning that it can distinguish the effects of cell death from 
cell growth inhibition.

Once the general discrimination between live/dead condi-
tions was probed, we addressed the classification of different 
cell death types, particularly necrosis and apoptosis. To do so, 
we relabeled the data according to the outcomes of flow cytom-
etry (Figure 3a). As also observed in Figure S5, Supporting 
Information, necrotic cell death exhibited a high percentage 
of Propidium Iodide positive cells (PI+), whereas apoptotic 
cells could be identified by labeling external phosphatidyl 
serine (PS) with Annexin V. On this account, the percentage 
of cells only marked with Annexin V (PI-/+Annexin V) was 
used to establish the cell death mechanism for each condi-
tion (threshold definition explained in the Experimental sec-
tion).[27] The model was further trained with 70% of the dataset 
and their newly registered labels (apoptosis/necrosis). Such 
a training run enabled the identification of the most obvious 
parameters for each class until the model reached a level of 
accuracy of 95%, as detailed in Figure  3b. We then plotted 
the coefficient scores in Figure  3c, which indicated the most 
important variables (wavenumbers) for the separation between 
heating (necrosis) and UV (apoptosis) classes in the cre-
ated SVM model, and therefore it was expected to offer valu-
able information on the secretome variability among them. It 
should be noticed that the principal vibrations of the adenosine 
triphosphate (ATP) metabolite, unlike other common metabo-

lites in cell secretomes (Figure 3d), closely matched the wave-
numbers with the highest scores for heating in Figure 3c – 730 
cm−1 and 1334 cm−1. Hence, ATP molecules and related metab-
olites are key components of the resulting secretome upon 
heating, in contrast with other measured conditions.[28] Fur-
thermore, the commercial bioluminescent assay of Figure  3e 
revealed a peak release of ATP in the Heating class, even after 
only 15 min, whereas its concentration in the Control and UV 
groups remained stable over time.

Following the identification of potential distinctive metabo-
lites in secretomes from apoptosis and necrosis, we tested the 
model with the same dataset of Figure 2c, labeling H2O2 (N = 
5) as necrosis and Staurosporine (N = 5) as apoptosis. Although 
we see one misclassification event, the created model unveiled 
the state of evaluated cell conditions (confusion matrix in 
Figure  3f), thereby confirming the automatic recognition of 
cytotoxic mechanisms from SERS spectra.

2.3. Design of SERS Detection on Paper Microfluidic Biosensors

A major shortcoming in the implemented protocol was the 
time consumed prior to SERS measurements, which impaired 
high-throughput assays: on one hand, preparing the SERS sub-
strates by drop casting takes time (>1 h); on the other hand, 
the supernatants to be spiked onto the SERS substrates had 
to be collected by hand. Additional time was again required 
for cell media to evaporate, prior to acquisition of the spectra. 
Even though this protocol was relatively straightforward, it 
still required several hours and was greatly limited by the fab-
rication of SERS substrates in advance (see Figure S6, Sup-
porting Information). Considering all of the above, we aimed 
at refining the technology for rapid SERS analysis compat-
ible with high throughput operation. We thus developed an 
approach based on polydimethylsiloxane (PDMS) microfluidic 
devices (for small-volume control) powered by capillary paper 
pumps, thereby achieving a significant reduction in waiting 
times (from hours to minutes). In the configuration illustrated 
in Figure 4a, growing cells are attached at the bottom of one 
microfluidic inlet, filling the flowing circuit with the media 
required for cell growth. At the selected measurement time, the 
NPs required for SERS interrogation are incorporated from a 
second inlet. These devices require the use of a paper pump,[29] 
which plays a dual role: i) it drives the flow of components in 
both chambers by capillarity, working as a wick that starts the 
flow and facilitates the mixing of components along the cen-
tral channel (purposely designed for mixing, see Figure S6b, 
Supporting Information); ii) the filter paper is eventually lev-
eraged to function (upon NP accumulation) as the plasmonic 
substrate from which SERS signals are recorded. Hence, such 
paper-based substrates, whose utility and simplicity have been 
described in previous studies,[29–31] were generated by the pro-
gressive accumulation of flowing NPs on the paper fibers (see 
Figure S7 and Movie S1, Supporting Information). It should be 
stressed that, striking differences in the arrangement of nan-
oparticles and resulting signal enhancement were observed 
between substrates generated by the above method and those 
created by conventional direct micropipetting, as illustrated in 
Figure S8, Supporting Information.

Small 2023, 19, 2207658
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In addition, we found that the selection of paper type 
entails a critical step to grant homogeneous substrate forma-
tion toward reliable SERS data acquisition. A detailed study of 
substrate formation with different types of commercial papers 
and NPs is summarized in Figure 4b. We selected paper types 
on the basis of their chemical composition and pore size dif-
ferences, which in combination determined the capillary dif-
fusion rate. The employed NPs varied in size and composi-
tion (Au or Ag NPs) to identify the most convenient features. 
Three different patterns could be distinguished, which are 
marked with frames of different colors, namely “dispersed” 
(orange), “optimally filled” (violet), and “overpacked” (red). 
These parameters of capillary flow strongly shaped the sub-
strate general appearance, which also affects resulting localized 
surface plasmon resonance (LSPR). For instance, a flow rate 

of 0.34 mm s−1 rendered spots with a diameter of 0.1 cm that 
was optimally filled with nanoparticles and matched the area of 
the microfluidic outlet in contact with the paper, as shown in 
Figure 4c. We additionally noted that the use of bigger NP sizes 
(60 nm diameter) resulted in more homogenous substrates for 
both AuNPs and AgNPs, except for the lowest flow rates, in 
which a state of over-agglomeration was reached (red frames). 
Therefore, we selected the combination of 60 nm Ag nanopar-
ticles and a capillary speed of 0.34 mm s−1 as the optimized 
conditions to fabricate our SERS-on-paper sensors. Malachite 
Green (MG) was used as a standard probe molecule to evaluate 
the performance of these substrates in a sensing application. 
As expected, the SERS spectra in Figure 4c exhibit a clear cor-
respondence between acquired average intensity and type of 
substrate.

Small 2023, 19, 2207658

Figure 3. a) Flow cytometry results, showing the percentage of Annexin V-positive populations, for representative cell conditions. The presence of 
cells displaying Annexin V-positive (Annexin V +) and PI-negative cells (PI -) staining was employed for the identification of cell death mechanisms as 
apoptotic or necrotic profiles (Stau – Staurosporine, Hyp – Hypotonic). b) Confusion matrix for the live/necrosis/apoptosis SVM classification with 
30% of the dataset, normalized to the number of elements per class. c) Coefficients of the 10 most important features (wavenumbers, cm−1) for each 
class (UV and Heating) in the deployed SVM model. d) SERS spectra corresponding to metabolites with potential roles in cell death. e) Quantifica-
tion of extracellular ATP by luminescence over time (N = 3). f) Confusion matrix for the multiplexing classification with the testing dataset (N = 20).
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2.4. High-Throughput SERS Screening Assays

We finally interrogated our SVM models with spectra obtained 
from cells cultured in these microfluidic chips. We started by 
culturing HeLa cells in microfluidic devices with dimensions 
specified in Figure 5a, and we subsequently exposed such 

cells to either control or cytotoxic conditions (detergent-based 
lysis buffer, L-chip). The results of LDH viability tests for cells 
growing in the customized chips (C_Chip) were found to be in 
the same range as those for cells cultured in conventional 96 
well-plates (C), as can be seen in Figure  5b. In the next step  
(4 h later), Ag NPs were flown into the chips, so as to create 

Small 2023, 19, 2207658

Figure 4. a) Scheme of the custom-made device with one inlet for cell culture and another for addition of NPs. The double role of the paper sheet (as 
the pump and support for nanoparticles), speeds up sample collection and SERS substrate preparation, thus reducing waiting time down to ca. 1 min. 
b) Influence of paper capillary action and NP diameter on SERS substrate formation. In general, three different substrate qualities can be distinguished. 
Higher speed yielded disparate substrates (orange boxes), whereas lower velocities led to more homogenous SERS substrates, created around the 
area in contact with the microfluidic outlet (violet boxes). Nanoparticles with larger sizes present restricted diffusion through the paper, resulting in 
a dense accumulation of NPs over heterogeneous small areas (red boxes). c) Representative SEM images of substrates with different nanoparticle 
distributions and their corresponding SERS spectra averaged over the indicated squared area, upon incubation with 10 nM Malachite Green (MG). 
Higher magnification images show general features of paper with (1) or without (2) NP accumulation.
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SERS substrates on the filter paper wetted by the solution drawn 
from the microfluidic circuits –containing a mixture of AgNPs 
and metabolites from the cell supernatant. The spectra col-
lected under 633 nm laser illumination (Figure 5c) were even-
tually introduced in our previously trained SVM model, which 
could predict the cell state from the examined secretomes. As 
illustrated in Figure 5d, the developed strategy yielded similar 
accuracies to those obtained in the above sections, i.e., it was 
able to identify dead and living cells, while helping streamline 
the data acquisition process.

In addition, thanks to the implementation of a microfabrica-
tion protocol that integrates 3D stereolithography (SLA) printing 
and PDMS soft lithography (see Experimental Section),[32]  
we could generate a wide variety of microfluidic chips, tailored 
to our specific requirements of cell culture and SERS substrate 
formation. A high-throughput device was devised (Figure  5e) 
with 10 circular wells that enabled cell seeding and adequate 
flow, induced by external capillary pumps (see Figure S9, Sup-
porting Information, for the 3D printed mold). It should be 
noted otherwise that, in this approach, AgNPs are directly 

injected into the same well where the cells are growing (cen-
tral chamber, 1 cm diameter). Although this design may lead 
to a higher variability of the SERS signal, considering that the 
mixing of both components (AgNPs and supernatants) is less 
controlled than in the two inlets strategy of Figure  5a, it was 
also less prone to form bubbles along the channels, thereby 
facilitating a successful implementation for multiassay experi-
ments. To exploit the applicability of such multiwell devices in 
high-throughput screening assays, we evaluated different stress 
conditions and their impact on cell viability after 4 h (Figure 5f). 
Hence, we challenged the cells growing on each well with two 
different apoptotic triggers: UV illumination (varying exposition 
times) and Staurosporine 2.5 µM. Once the secretomes were 
measured on the paper-based substrates, the recorded SERS 
spectra were analyzed by our SVM framework, and proved 
to accurately predict cell viability; the retrieved outputs along 
with the corresponding input spectra are shown in Figure  5f. 
We could observe how the combination of both treatments 
elicited higher cytotoxicity, to an extent that the spectra from 
multimodal treatments of UV illumination for 5 and 10 min, 

Small 2023, 19, 2207658

Figure 5. a) Scheme of the two-inlet device, depicting its dimensions. b) LDH results of viability assays for cells growing on chips, termed C_Chip, 
in comparison with cells cultured on 96 well plates, C, and with an injection of a commercial Lysis buffer into the Chips, L_Chip. c) Representative 
average SERS spectra registered upon 633 nm illumination on paper sensors. d) Confusion matrix displaying the predictions of the SVM model when 
spectra collected from C_chips and L-chips were loaded in the ML network. e) Multiwell device and corresponding dimensions. The larger inlet in red 
is leveraged for cell culture and AgNP administration, whereas the violet outlet served to draw the mixture of metabolites and AgNPs, due to the action 
of capillary paper pumps. f) Matrix representation of the SERS spectra acquired for different stress conditions (UV + Staurosporine) and the prediction 
provided for each case by the trained ML model (SVM Pred.).
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and Staurosporine, were classified as dying cells, in contrast to 
the separate therapies (see Figure S10, Supporting Information, 
for retrieved full spectra). We additionally explored the general 
application of this ML-assisted high-throughput method to 
analyze cell death in other cancer cell lines with diverse tissue 
origin. For this screening trial, we challenged prostate cancer 
(PC3) and human fibrosarcoma (HT-1080) cell lines with UV 
(20 min, 40 min) and compared the retrieved spectra with those 
obtained under control conditions (Figure S11a, Supporting 
Information). The results provided in the matrix of Figure S11b, 
Supporting Information, clearly confirmed the capability of the 
trained SVM model to predict the state of different cell types, 
not being restricted to standard HeLa cells, thereby promising 
a broad generalization of the method. Overall, despite repre-
senting a simple embodiment of potential high-throughput 
assays, our results demonstrate that the combination of paper-
based sensors (created through microfluidic volume control) 
and ML automatized analysis considerably improves the acces-
sibility and readability of SERS screening assays.

3. Conclusions

In connection with the need for approaches that can trace infor-
mation contained in extracellular secretomes while avoiding 
time-consuming protocols, we have introduced the combina-
tion of label-free SERS monitoring and microfluidics together 
with ML analysis, to unveil specific biochemical signatures 
in tumor secretomes, even deciphering time-dependent vari-
ations. A key feature of our observations was that a trained 
machine learning network (SVM) was able to recognize shared 
signatures among different conditions, so that accurate classifi-
cation could be performed according to similar cell states, e.g., 
identifying living and dying cells. It should be stressed that the 
high accuracy achieved in the model (96%) demonstrates the 
efficacy of SERS for assessing changes at the extracellular meta-
bolic level. Moreover, we purposely devised PDMS microfluid 
chips, based on 3D SLA printing and PDMS soft lithography, 
to accelerate the collection of cell supernatants and subsequent 
acquisition of SERS spectra. The integration of filter paper that 
drives liquid flow along microfluidic channels, while sustaining 
the accumulation of NPs, resulted in a cornerstone to simplify 
protocols, on the way toward high-throughput implementation.

4. Experimental Section
Materials: Aluminum foil (ALUGRAM RP-18W), HAuCl4·3 H2O 

(≥99.9%, trace metal basis) was purchased from Alfa Aesar. Glassware 
from Menzel-Gläser 24×24 #1. Trisodium citrate and silver nitrate 
(AgNO3) were purchased by Sigma–Aldrich. Nitrocellulose membranes 
working as paper pumps were purchased from Sartorius (NC180; NC95, 
capillary flow 0.22 and 0.34 m s−1 respectively), whereas PES membrane 
discs were obtained from PALL (capillary flow; 4.3 m s−1). Dead Cell 
Apoptosis Kits with Annexin V for Flow Cytometry of Thermo Fisher 
and LDH Cytotoxicity Assay Kit were from Thermo Scientific. Standard 
Photopolymer resin by Elegoo, SYLGARD 184 Silicone Elastomer Kit of 
Dow, and enamel acrylic spray was purchased from Pintyplus Evolution. 
Hydrogen peroxide (H2O2, 28%), Staurosporine, and Rapamycin were 
purchased from Sigma-Aldrich. All solutions, except HAuCl4 and AgNO3, 
were prepared immediately before use. Purified Milli-Q water was 

used in all experiments (Millipore, 18.2 MΩ cm). Glassware was from 
Menzel-Gläser. Commercial metabolites and probe molecules: Malachite 
Green chloride (MG). Staurosporine (Stau), Rapamycin, Adenosine 
Triphosphate (ATP), Hypoxanthine, Guanosine, Xanthine, and Uric acid 
were purchased from Sigma-Aldrich

Synthesis of Citrate-Stabilized Nanoparticles: AuNPs with varying sizes 
(18 nm, 43 nm, 51 nm) were synthesized according to a previously 
reported seeded growth method.[33] Representative transmission electron 
microscopy (TEM) images and UV-Vis spectra can be found in Figure S7,  
Supporting Information. AgNPs were synthesized following the well-
established Lee-Meisel method,[34] comprising the reduction of AgNO3 
with sodium citrate in an aqueous solution. Again, representative TEM 
images and UV-Vis spectra are included in the supplementary information.

Fabrication of Plasmonic SERS Substrates: Drop-casting: To produce 
substrates with a random distribution of AgNPs, a 1.4 mM dispersion 
was employed. Subsequently, 5 µL of the Ag concentrated colloid 
(centrifugation −1520g, 10 min) was spiked onto aluminum sheets. Once 
dried under room temperature (≈1 h), 2 µL of selected supernatants 
were deposited onto freshly made SERS substrates, and let dried until 
complete evaporation of the solvent, prior to SERS measurements.

Plasmonic superlattices: we followed the protocol established by 
Matricardi et  al.[35] Briefly, a 2 µL droplet of nanoparticle dispersion 
(PEG-AuNPs)[36] was placed on a nanostructured PDMS stamp. After 
40 s, a glass slide was laid down on top of the droplet. After 2 h, the 
glass slide was carefully removed from the PDMS template, transferring 
the plasmonic superlattice onto the glass substrate with the inverse 
structure of the PDMS mold.

Sensors on paper: As a first step, metal nanoparticles (AgNPs 
or AuNPs, 1.4 mM) were added at the desired moment into the 
microfluidics inlets, specifically devised for that role. Afterward, 
nitrocellulose paper pumps (NC95 baked type) were placed over 
the chip, controlling carefully the contact of the paper with the outlet 
channel of the chip. As a result, the paper pumps drawn the liquid 
contained in the circuit by capillary action, carrying nanoparticles and 
metabolites along the zigzag mixing channel. In turn, the accumulation 
of nanoparticles occurred on the surface of the paper pumps. Once the 
paper is completely wet, and therefore the flow inside the chip stops, the 
paper is lifted from the device and transported to the SERS instrument 
for collection of the spectra (see Movie S1, Supporting Information).

Cell Culture and Stress Conditions: HeLa (Cervical cancer), PC3 
(Prostate cancer), HT-1080 (Fibrosarcoma) cells were routinely cultured 
in Dulbecco’s modified Eagle medium (DMEM) supplemented with 
10% fetal Bovine serum (FBS); the cells were detached for passages 
or experiments upon reaching 80% confluence. In most experiments, 
HeLa cells were harvested either in 12-well plates at 6 ×104 cell mL−1 
in 1 mL DMEM (without FBS), or in our custom-made PDMS chips at  
6 × 105 cell mL−1 in 0.1 mL. Of note, the cells were exposed to different 
stresses after 24 h of initial cell seeding, challenging HeLa cells as 
follows: Staurosporine and Rapamycin were administrated at a final 
concentration of 10 µM and 20 nM, respectively, whereas H2O2 was 
administrated to reach 50 µM in the cell solution. For the hypotonic 
stress, the cells were exposed to a 1:5 dilution of Hank’s balanced Salt 
solution (HBSS) in milli-Q Water. Heating damage was provoked by 
placing the cell device on a heating plate at 55 °C for 5 min. Illumination 
with UV light (365 nm) for 15 min was utilized to induce UV-stress.

Flow Cytometry: For flow cytometry studies, HeLa cells were detached 
from the well plates upon treatment, using 1X Trypsin. Those cells were 
concentrated afterward by centrifugation (5 min, 1500 rpm), leaving 
a final volume of 100 ml that contains Annexin buffer (1:5, in PBS) + 
2% FBS. Annexin V-FITC (Annexin V) and Propidium Iodide (PI) were 
added at the concentrations detailed in the commercial kit. After 15 min 
incubation, the cells were resuspended again in diluted Annexin Buffer 
(1:5, PBS), reaching a final volume of 400 µL. Finally, stained cells with 
PI and Annexin V were measured by flow cytometry. A minimum of 5000 
cells were analyzed in every experiment collecting emission for Annexin 
V-FITC at 530 nm and for PI-PE at 585 nm using the blue laser (488 nm 
excitation) in a FACSCantoII Cytometer. Data were finally analyzed by the 
BD FACSDiva software.
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Lactate Dehydrogenase (LDH) Cytotoxic Assay: LDH Cytotoxicity assay 
was selected to assess the cell viability. The enzyme LDH, present in all cell 
types, is typically added into the cell culture medium upon damage of the 
plasma membrane. These assays were performed following the commercial 
protocol, therefore 50 µL of cell media from evaluated conditions were 
plated in a 96-well plate. Next, the absorbance of such solutions was 
measured at 490 and 680 nm in a Thermo Scientific Varioskan Flash plate 
reader. The percentage of cell viability was calculated as follows:

[ ]
[ ] [ ]
[ ]( ) −

−
Cytotoxicity % :

490 Experiment 490 Low Control

490 High Control 490 Low Control

A A

A A
 (1)

Screening of Extracellular ATP Release: To measure the ATP that has been 
released into the cultured cell environment as a result of cell death, the 
RealTime-Glo Extracellular ATP assay was employed. This assay generated 
a nearly simultaneous luminescence response proportional to current 
extracellular ATP levels in cell culture. Consequently, a 4X ATP assay reagent 
was mixed with the culture medium and dispensed on the growing cells. 
Then, upon stress, the resulting luminescence was recorded over time (15 
min, 30 min, 1 h, 2 h, 4 h, and 24 h) by an Orion II Microplate Luminometer. 
Mean ± standard deviation (SD) values of luminescence were calculated 
from the three independent cell assays over indicated times.

SERS Measurements: Cell supernatant derived from different 
biological assays was sampled and 2 µL of the liquid was deposited 
on a plasmonic substrate, measuring the SERS signal after solvent 
evaporation (in substrates fabricated by drop casting or plasmonic 
superlattices). Importantly, all conditions were performed in at least 
three independent cell assays, and spiked on three different plasmonic 
substrates. Finally, SERS spectra were collected by an InVia Reflex 
Raman microscope (Renishaw plc). Renishaw equipment comprises 
an optical microscope (Leica) with a XYZ scanning stage coupled to a 
high-throughput Raman spectrometer equipped with a 1024×512 front-
illuminated CCD detector and a grating of 1200 grooves mm−1 for 
785 and 1800 grooves mm−1 for 633 nm. A line-shaped 785 nm laser 
excitation source (maximum 190 mW) was used, recording in static 
mode at standard confocality through a 50× objective in long distance 
(numerical aperture NA = 0.5) with an integration time of 1s at 15.15 mW 
(10% of the maximum power). In contrast, the signals from paper-based 
substrates were recorded under a 633 nm laser line (maximum 18 mW), 
again with the L50x objective and an integration time of 1s. In this case, 
to avoid burning of the nitrocellulose membrane, the power of the laser 
was 0.54 mW (5% of the maximum power). To calculate the averaged 
spectrum to be finally sent to the SVM network, 10 points from different 
substrate areas were measured in every experiment.

Microfluidic Chip Fabrication: 3D Stereolithography (SLA) printing was 
used to develop 3D patterns with the desired geometry on light-curable 
resin, presenting a µm-sized resolution. Here, we combined conventional 
PDMS soft lithography with SLA 3D printed molds, mimicking the 
procedure used for micropatterned silicon masters. Initially, 3D designs 
of the microfluidic chips were created using the Tinkercad online tool. 
Such 3D models were then printed by the Anycubic Photon Mono printer 
via a Standard Photopolymer resin. Subsequently, 3D printed resin-
based masters were cleaned using 2-propanol and cured by a 365 nm  
UV light. After that, the resin was covered with a thin layer of enamel 
to improve PDMS curation process, as reported in Hagemann et al.[32] 
Polydimethylsiloxane was mixed at a 10:1 weight ratio of base to curing 
agent. The mixed solution was poured into the resin master and then 
degassed to remove air bubbles. Once the solution was cured at 70 °C, 
the replica-molded layer was trimmed, perforated, and cleaned with 
ethanol 70%. In the final step, the PDMS device were plasma-bonded on 
glass coverslips with varying dimensions.

SERS Data Analysis, Statistical and Machine Learning Methods: The 
obtained SERS spectra were initially processed to remove cosmic rays 
by using the Renishaw software. For the following steps, we employed 
different libraries for machine learning in Python Colab. First, a baseline 
correction data pre-processing step based on BaselineRemoval library 
was applied, in particular, Modpoly fitting (following a polynomial curve 
of 7 order), to remove interferences from the background arising from 

the substrate and biological fluorescence. The spectra were subsequently 
normalized to the most intense signal between 0 and 1.

The processed data sets (5500 spectra) were then analyzed with 
principal component analysis (PCA) and t-Distributed Stochastic 
Neighboring Entities (t-SNE, perplexity = 40, number of iterations = 3000) 
and supported vector machines (SVM, kernel = linear) using  standard 
algorithms of Scikit Learn library. Both t-SNE and PCA, are unsupervised 
algorithms for exploring the data without previous training and require 
a preliminary step of data standardization (mean = 0, variance = 1). For 
data labeling in the supervised SVM classification, threshold estimations 
were made according to the results obtained in control conditions (for 
the LDH and flow cytometry). Upper value of the 99% confidential 
interval was calculated, considering normal distribution, by this formula:

σ= + ×Confidence interval x z
n

 (2)

The general framework of the SVM presented an input layer –a 
SERS spectrum with 1×939 dimensions– and a hidden layer devoted to 
extracting its principal vibrational features. Once the model was trained 
and tested with the model inspection dataset (n  = 5500, divided in 
70/30 training-testing respectively), classification of different biological 
assays was done based on the averaged spectra of 10 points localized 
at random spots of the SERS substrate (N  = 20 biological assays, see 
scheme in Figure S3, Supporting Information). In the experiments 
with the 633 nm, the retrieved spectra displayed lower numbers of 
pixels: 918 wavenumber points at 633 nm versus 939 wavenumber 
points in 785 nm. Therefore, we calculated the missing data points in 
the spectra by linear interpolation with the neighboring wavenumber 
before passing the spectra through the SVM model. Both the code 
and the data are available in GitHub. https://github.com/JaviPlou/
Machine-learning-high-throughput-SERS-classification-of-cell-secretomes

Supporting Information
Supporting Information is available from the Wiley Online Library or 
from the author.
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