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Abstract

Understanding how the human brain maps different dimensions of social conceptualizations remains a key unresolved issue. We per-
formed a functional magnetic resonance imaging (MRI) study in which participants were exposed to audio definitions of personality 
traits and asked to simulate experiences associated with the concepts. Half of the concepts were affective (e.g. empathetic), and the 
other half were non-affective (e.g. intelligent). Orthogonally, half of the concepts were highly likable (e.g. sincere) and half were socially 
undesirable (e.g. liar). Behaviourally, we observed that the dimension of social desirability reflected the participant’s subjective ratings 
better than affect. FMRI decoding results showed that both social desirability and affect could be decoded in local patterns of activ-
ity through distributed brain regions including the superior temporal, inferior frontal, precuneus and key nodes of the default mode 
network in posterior/anterior cingulate and ventromedial prefrontal cortex. Decoding accuracy was better for social desirability than 
affect. A representational similarity analysis further demonstrated that a deep language model significantly predicted brain activity 
associated with the concepts in bilateral regions of superior and anterior temporal lobes. The results demonstrate a brain-wide repre-
sentation of social knowledge, involving default model network systems that support the multimodal simulation of social experience, 
with a further reliance on language-related preprocessing.
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Introduction
The past two decades have witnessed a flourishing interest in 
understanding how the human brain represents semantic knowl-
edge (Martin, 2007; Bauer and Just, 2019). Early functional MRI 
studies (Haxby et al., 2021; Mitchell et al., 2003) showed that brain 
activity patterns in a set of brain regions, usually referred to as the 
semantic network, carry information about the concept that the 
observer is experiencing (e.g. animals vs tools). The semantic net-
work comprises areas in the superior and inferior temporal lobes 
and parietal, inferior frontal and medial prefrontal cortex (Binder 
et al., 2009). These findings have sparked a lively discussion on the 
nature of semantic representations. Originally, theoretical models 
suggested that the brain represents concepts as amodal symbols 
(Fodor, 1975). A more recent approach argues that conceptual rep-
resentations are grounded in the sensorimotor processes associ-
ated with them (Barsalou, 1999; Prinz, 2004) re-enacted via mental 
simulation (Soto et al., 2020). This grounded cognition framework 
was initially conceived for the study of concrete concepts. Only 
recently, there has been a similar attempt at studying the repre-
sentations of abstract concepts. Unlike concrete concepts, these 
are not perceptually bound to a physical object as referent. Hence, 
abstract concepts are likely grounded beyond pure sensorimotor 
systems (Shea, 2018), including more complex representations of 

events or situations that can only rely on perceptual and action 
systems to a limited extent (Wilson-Mendenhall et al., 2011). This 
view is congruent with a recent two-systems proposal of seman-
tic representation by Borghi et al. (2019). These authors argue 
that, although a sensorimotor feature-based system would be 

common for the representation of both concrete and abstract con-

cepts, the latter would need the assistance of an additional system 

that incorporates more complex linguistic and social information 

(Borghi et al., 2019; Fini et al., 2021; Fini et al., 2022).
Prior studies using mass-univariate functional magnetic reso-

nance imaging (fMRI) approaches showed brain areas with over-
lapping activation during the presentation of abstract and con-
crete concepts, including key areas of the semantic network 
(Binder et al., 2005). However, more recent attempts to study 
the neural representations of abstract concepts using multivari-
ate pattern analyses have shown that higher-order regions in the 

frontal cortex are involved in the representation of abstract rela-
tive to concrete concepts. For instance, Ghio et al. (2016) showed 

that abstract vs. concrete concepts (e.g. emotional or mathe-

matical vs. action concepts) can be decoded from brain activity 

patterns in the inferior frontal gyrus and the insula. This study 
further highlighted that fine-grained representations of concep-
tual categories appear to co-exist along the concrete-to-abstract 
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continuum (e.g. number, emotion, moral, aesthetic or social 
concepts).

Despite this promising research, current understanding of how 
the human brain represents social knowledge is still at an early 
stage of development. Psychological research suggests that peo-
ple represent information about others across several dimensions 
(i.e. social vs. nonsocial states, emotion and agency). Perhaps one 
of the more robust findings is the involvement of the anterior 
temporal lobe. Mass-univariate studies (Zahn et al., 2007; Pobric 
et al., 2016; Binney et al., 2016; Lin et al., 2018) have found activ-
ity increases in this brain region when participants are presented 
with different sources of information regarding other individuals, 
and a recent fMRI study combining both uni- and multivariate 
approaches observed that information related to people can be 
decoded from the anterior temporal lobe (Wang et al., 2017). The 
medial prefrontal cortex has also been implicated in the repre-
sentation of psychological traits. In an fMRI study, Ma et al. (2014) 
asked participants to infer the psychological traits of other indi-
viduals from a series of descriptions. First, a sentence with an 
implicit psychological trait was presented. Then, a second target 
sentence appeared and participants had to infer the individual’s 
trait, which could be either congruent or not with the first sen-
tence. They found that activity patterns within the ventral medial 
prefrontal cortex showed a neural adaptation effect indicative 
of the representation of trait knowledge: when the target psy-
chological trait was congruent with the prior implicit sentence, 
neural activation decreased faster than during incongruent psy-
chological trait descriptions (Ma et al., 2014). Hassabis et al. (2014) 
used multivariate pattern analysis to show that mental imagery 
contents regarding personality traits such as agreeableness and 
extraversion can be decoded from the medial prefrontal cortex. 
In addition, moral reasoning based on narratives regarding inten-
tional vs. accidental harm (Koster-Hale et al., 2013) and also 
emotional states conveyed through verbal descriptions (Skerry 
and Saxe, 2015) or facial information (Skerry and Saxe, 2014) can 
be decoded from core regions of the mentalizing network (Car-
rington and Bailey, 2009) including the temporoparietal junction 
and dorsomedial prefrontal cortex.

Affect is a fundamental feature underlying many psychosocial 
phenomena (Barrett and Bliss-Moreau, 2009). However, a large 
tradition of psychological research has emphasized the extent 
to which human judgements of one’s own and others’ experi-
ences are deeply influenced by their likableness or social desir-
ability (Anderson, 1968; Fisher et al., 1985), indicating that this 
may be a key underlying feature of the representation of social 
concepts. Nevertheless, it is not yet clear how the brain repre-
sents these different aspects of social information. This is the 
main goal of the present study. On the one hand, we assessed 
how the brain represents the affective content of social con-
cepts by contrasting concepts related to the affective traits of 
other people, such as cruel or caring and concepts that refer to 
non-affective traits, such as selfish or intelligent. On the other 
hand, we assessed the representation of social desirability by 
comparing highly likable concepts, such as empathetic or under-
standing, to socially undesirable concepts, such as phony or 
insensitive. Finally, we used a computational approach in which 
the representations of a language model (GPT2) fed with our 
concept definitions was used to perform a representational simi-
larity analysis (RSA) (Kriegeskorte et al., 2008) within an encoding 
framework (Konkle and Alvarez, 2022), to map the brain repre-
sentation of social concepts. RSA and encoding models have been 
previously used to explain brain responses to concrete concepts 
(Devereux et al., 2013; Anderson et al., 2015; Martin et al., 2018;

Mitchell et al., 2008), and recent research has shown similarities 
in the representations of deep language transformer models and 
the brain responses during speech (Caucheteux and King, 2022). 
Here, we used a similar approach to understand the brain repre-
sentation of abstract social concepts and test the contribution of 
language-related representations.

Methods
Participants
We scanned 30 participants (mean age 24.07 ± 3.67 years; 18 
females). The sample size was selected based on related fMRI 
studies of social cognition [Koster-Hale et al. (2013), N = 23; Tamir 
et al. (2016), N = 20] and abstract concepts [Ghio et al. (2016), 
N = 36; Skerry and Saxe (2014), N = 22]. Participants had nor-
mal or corrected-to-normal vision, gave written informed consent 
prior to the experiment and were financially compensated with 
20 euros for their participation. The experiment lasted for about 
an hour and a half and was approved by the BCBL Ethics Review 
Board in compliance with the Declaration of Helsinki.

MRI acquisition
The present fMRI study was performed on a SIEMENS’s Magne-
tom Prisma-fit scanner with a 3T magnet and a 64-channel head 
coil. We collected one high-resolution T1-weighted image and 
eight functional runs for each participant. Each functional run 
consisted of a multiband gradient echo-planar imaging sequence 
with an acceleration factor of 6, a resolution of 2.4 x 2.4 x 2.4 mm3, 
a repetition time of 850 ms, a echo time of 35 ms and a bandwidth 
of 2582 Hz/Px, which was used to obtain 537 3D volumes of the 
whole brain (66 slices; field of view (FOV = 210 mm).

The auditory stimuli for the experimental task (i.e. the concept 
definitions) were presented through earphones (S14, Sensimetrics, 
Malden, MA). Presentation volume was adjusted to a comfortable 
level for each participant. The visual elements of the experimen-
tal setup (e.g. fixation cross) were projected on an MRI-compatible, 
out-of-bore screen using a projector in the adjacent room. 

Experimental procedure
We selected 36 social concepts from the list of 555 personality 
trait words used in the study of Anderson (1968) to assess and 
rank the words based on the likability ratings in college students. 
We developed short audio definitions referring to the 36 social 
concepts controlling for sentence length. We also analyzed the 
average frequency of the items within each definition using Espal 
(Duchon et al., 2013), and this was similar across the different pairs 
of affective and social desirability conditions (lowest P value =
0.432; Desirable/High Affect: M = 9410.73, STD = 3890.79; Desir-
able/Low Affect: Mean (M) = 8075.72, Standard deviation (STD) 
= 3684.09; Undesirable/High Affect: M = 8075.72, STD = 3684.09; 
Undesirable/Low Affect: M = 8485.76, STD = 2795.76). We cate-
gorized all social concepts following a 2×2 factorial design using 
the concept dimensions of affect and social desirability. First, half 
of the concepts were affective, making an explicit mention to the 
emotions of oneself or others (see the left panel in Table 1), while 
the other half involved non-affective, referring to interpersonal 
behavior that does not explicitly involve any emotional content 
or state (see the right panel in Table 1). Second, half of the con-
cepts involved socially desirable interpersonal behavior (see the 
upper half in Table 1), whereas the other half described social 
undesirable behavior (see the bottom half in Table 1). We kept the 
number of concepts in each category equivalent, with nine social 
concepts in each of the four subcategories (e.g. high affect and 
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Table 1. Definitions of social concepts

Affective-state 
concepts

Mental-state 
concepts

Concept Definition Likableness Concept Definition

Empathetic ‘She puts herself on someone else’s 
shoes and feels in her own flesh 
how they feel’

High Sincere ‘She says what she really thinks, 
without lying or pretending’.

Good-natured ‘Her way of being shows sympathy, 
simplicity and kindness’.

High Understanding ‘She understands the reason behind 
others’ behavior and is tolerant’.

Kind ‘She naturally tends to behave well 
and do good to others’.

High Loyal ‘She always acts with respect and 
fidelity to her commitments or to 
others’.

Cheerful ‘She conveys her cheerful and 
pleasant character’.

High Intelligent ‘She can reason, solve problems 
and understand complex ideas’.

Warm-hearted ‘She treats others with affection 
and desires to be in company’.

High Unselfish ‘She is inclined to give and share 
with others beyond her own 
interest’.

Enthusiastic ‘She tends to get very excited easily 
almost all the time’.

High Clever ‘She has the ability to invent things 
by combining intelligence and 
skill’.

Grateful ‘She values very much and is very 
happy when someone does her a 
favor’.

High Helpful ‘She enjoys doing things and 
combining efforts with others’.

Sensible ‘She gets excited at displays 
of feelings such as love or 
compassion’.

High Forgiving ‘She tends to forgive offenses and 
doesn’t judge others harshly’.

Sympathetic ‘She is saddened when she sees 
someone suffering and tries to 
ease their suffering’.

High Conscientious ‘She puts a lot of attention and care 
into everything she does’.

Cruel ‘She does not feel compassion for 
or take pleasure in the suffering of 
others’.

Low Phony ‘She’s pretending to be someone 
she’s not to fool others’.

Insensitive ‘She neither thrills nor perceives 
the feelings of others’.

Low Greedy ‘She always tries to accumulate 
more and Greedy more stuff, and 
never shares with anyone else’.

Snobbish ‘When she speaks, she makes 
others feel despised’.

Low Rude ‘She has no manners and speaks 
without respect for others’.

Unforgiving ‘She forgives no one and shows no 
compassion’.

Low Selfish ‘She is not interested in the inter-
ests of others, only in her own 
convenience’.

Gloomy ‘She always despairs because she 
can onlv see the negative side of 
things’.

Low Hostile ‘She has a provocative and abusive 
attitude towards others’.

Resentful ‘She behaves as if life is treating her 
badly all the time’.

Low Boring ‘She annoys others with her lack of 
fun or interest in things’.

Neurotic ‘She is very unstable and reacts 
to things in an emotional and 
exaggerated way’.

Low Prejudiced ‘She judges others based on 
negative preconceptions’.

Hot-tempered ‘She loses her temper easily and 
reacts aggressively to others’.

Low Irresponsible ‘She is unaware of her obligations 
and acts without foresight’.

Envious ‘She feels sad or angry when she 
doesn’t have what other people 
have’.

Low Lazy ‘She never carries out the tasks she 
should’.

All concepts used in the experiment followed a 2×2 factorial design. Half of the concepts made an explicit mention to the emotions, while the other half referred 
to interpersonal behavior that does not explicitly involve any emotional content or state. Second, half of the concepts involved socially desirable behavior, 
whereas the other half were socially undesirable.

low social desirability). Each trial began with a fixation period of 
250 ms followed by a blank screen for 500 ms (Figure 1B). Then, 
participants listened to the definition of a social concept for 3500 
ms (e.g. ‘She gets sad when seeing someone suffering and tries to 
ease their pain’; see Table 1 for the complete list of social concept 
definitions), followed by another period of 2000 ms in which they 
were instructed to mentally simulate a person of their own choice 
(e.g. a relative, acquaintance or famous character) behaving as 
described in the definition. The above were only examples given 

to participants in order to encourage them to think about the
concepts.

All 36 social concepts were presented in each functional run, 
with concept order randomized between runs. A run lasted 
approximately six and a half minutes. To facilitate the estimation 
of the peak of the hemodynamic response function (HRF) across 
the different trials, we included an additional jitter so that the 
time between the offset of the current stimulus and the onset 
of the next audio definition varied between 6 and 8 s. The jitter 
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Fig. 1. Illustration of the experiment workflow with sub-figures labelled from A to C, (A) A total of 36 social concept definitions matched one of our 
four subcategories reflecting a combination of the affect and social desirability of the social knowledge. (B) Participants listened to the definition of a 
social concept and were asked to mentally simulate a person behaving the way described in the definition. (C) We acquired one anatomical and eight 
functional sequences in a single scanning session.

followed a pseudo-exponential distribution resulting in 50% of tri-
als with an intertrial interval of 6 s, 25% of 6.5 s, 12.5% of 7 s and so 
on. All experimental procedures for stimulus delivery during the 
mental simulation task were programmed and presented using 
PsychoPy v.1.83.0.4 (Peirce, 2007).

Rating task
Before and after the MRI scanning session, we asked participants 
to rate the affect and social desirability of each concept definition 
on a scale from 0 to 100. We used these measurements to analyze 
the test–retest reliability of self-ratings of the concept definitions.

MRI data preprocessing
We first converted all MRI data from DICOM to NIfTI format using 
MRIConvert (http://lcni.uoregon.edu/downloads/mriconvert). We 
then preprocessed the MRI data using FEAT 6 (fMRI Expert Anal-
ysis Tool) from the FMRIB Software Library (FSL suite; v5.0.9). We 
removed the first 10 volumes of each functional run to ensure 
steady-state magnetization. We used FSL’s brain extraction tool 
2.1 to remove non-brain tissue (Smith, 2002) and Automatic 
Removal of Motion Artifacts to identify and remove motion-
related artifacts (Pruim et al., 2015). We applied spatial smoothing 
to the data using a Gaussian kernel of 3 mm full width half min-
imum and a high-pass filter with a cutoff of 90 s. All functional 
images were coaligned to a reference volume from the first run 
for each participant.

Data preparation
After preprocessing the MRI data, we used the output gener-
ated from PsychoPy during the experimental task to label the 
relevant scans with an attribute for each class (i.e. high vs.
low affect; high vs. low social desirability). We then removed 
invariant features (i.e. voxels whose BOLD activity did not vary 
throughout the length of a functional run) and stacked the 

data from all eight functional runs after z-score normaliza-
tion and linear detrending (Figure 1D). Finally, we generated 
examples for the multivoxel pattern analysis (MVPA) analy-
sis by averaging BOLD signals between 5.5 and 10.5 s after 
stimulus onset. Given that the audio definitions lasted for 
about 3.5 s, this timeframe was selected to ensure that our 
BOLD examples for classification contained information from the 
peak of the HRF associated with processing the content of the
definition.

Whole-brain searchlight multivariate pattern 
analysis
We conducted a whole-brain searchlight multivariate pattern 
analysis [whole-brain searchlight MVPA, Haxby et al. (2021); 
Kriegeskorte et al. (2006)], implemented in the Python libraries 
scikit-learn (Pedregosa et al., 2011) and nilearn (Estève, 2015). The 
searchlight algorithm used a sphere with a 4-mm radius. The 
voxel values of each sphere were vectorized and used as features 
to predict the affect (high vs. low affect) or social desirability (high 
vs. low social desirability) of the concepts. This was achieved by 
cross-validating a linear support vector machine classifier [(SVC) 
(Suthaharan, 2016)]. The SVC was implemented by scikit-learn 
(Pedregosa et al., 2011) using the default hyperparameters. The 
SVC was nested with a calibration stage to provide probabilistic 
predictions of the classifications (Niculescu-Mizil and Caruana, 
2005; Wilks, 1990). Prior to feeding the features to the SVC, we 
first standardized the features by mean-centering and reducing 
the variance to 1. This standardization was performed in the train-
ing set and then applied to the test set. Within each searchlight 
sphere, we first split the data, which contained a matrix of fea-
tures (n_examples × n_voxels) and a vector of labels (n_examples, 
being either high vs. low affect or high vs. low social desirabil-
ity), into training and testing sets by a 80–20% ratio. This stratified 
cross-validation scheme did not take into account the run. A fur-
ther analysis using a leave-one-run out cross-validation scheme 
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was conducted to mitigate the possibility of any carry-over effects 
across trials influencing the decoding scores. We further per-
formed a leave-two-concepts out crossvalidation approach to 
further test the generalizability of the representations; any cross-
trial data leakage is expected to be negligible here since only one 
trial of each class in each run was used for testing.

We measured the classification accuracy of the SVC on the 
test set using the area under the receiver operating characteris-
tic curve (ROC AUC). This was repeated 100 times to estimate the 
variance of the cross-validation performance. The average perfor-
mance of the cross-validation was assigned to the center of the 
searchlight sphere. The searchlight was performed for each sub-
ject in native space and separately for affect and social desirability 
dimensions. We conducted a similar decoding experiment but 
replaced the SVC by a dummy classifier,1 which ignored the fea-
tures/voxels and randomly predicted the labels. The dummy clas-
sifier was also nested within the standardization step as described 
earlier. The ROC AUC scores of the dummy classifier were used for 
estimating the chance level decoding scores. We then subtracted 
the chance level decoding scores from the corresponding decod-
ing scores. The brain maps were then normalized to the standard 
space using FSL tools and fed to the FSL randomize algorithm 
(Jenkinson et al., 2012) with the threshold-free cluster enhance-
ment (Smith and Nichols, 2009) clustering enhancement to find 
clusters in which decoding was greater than zero, which indi-
cated that the decoding scores were greater than the chance level 
scores. The number of permutations was 10 000.

Decoding social dimensions from GPT2 model 
representations
We used the GPT2 natural language processing (NLP) transformer 
model (Radford et al., 2019) to extract features from the sentences 
used in the experiment. GPT2 is one of the state-of-the-art large 
NLP models trained using very large corpus datasets. GPT2 pro-
vides excellent transfer learning performance in translation, text 
generalization and summarization.

Each of the 36 sentences was tokenized and fed to the Spanish 
GPT2 model2 provided by HuggingFace [Wolf et al. (2019)3]. The 
representations were extracted from the eighth layer activation 
of the GPT2 model. According to Caucheteux et al. (2022), sixth 
to ninth layers of GPT-2 best predict brain activity, and the study 
showed that eighth was the best among the layers. The maximum 
token size was 21. The middle layer representation dimension 
for each token was 768. Thus, the flattened feature representa-
tion of each sentence had 16 128 elements.4 In other words, each 
sentence was represented by 16 128 length vectors. We then con-
ducted a decoding analysis on the GPT2 model (Radford et al., 
2019) representations of the stimulus sentences separately for 
affect and likableness. The analysis aimed to decode whether the 
sentences were associated with low or high affect/likableness.

Decoding analysis was quantified by a leave-a-pair-of-words-
out cross-validation procedure. For instance, in affect condition, 
one low-affect word and one high-affect word were left out as the 
testing data, while the rest were used for training a linear SVC (i.e. 
low vs. high affect). Then, the statistical significance was mea-
sured by means of a permutation test. During the permutation 

1 https://scikit-learn.org/stable/modules/generated/sklearn.dummy.
DummyClassifier.html

2 The pretrained Spanish GPT2 model https://huggingface.co/DeepESP/
gpt2-spanish

3 Using the Huggingface interface (https://github.com/huggingface/
transformers)

4 Details of feature extraction is described in https://tinyurl.com/ye2av23y

test, the correspondence between the features and the labels were 
shuffled, and the same cross-validation was performed, so that 
the average decoding score was used as an estimate of the empir-
ical chance level. The permutation procedure was repeated 1000 
times to estimate the distribution of the empirical chance level. 
The significance was measured by the probability of the empiri-
cal chance level being greater than the average of actual decoding 
scores. The cross-validation5 and permutation test6 were con-
ducted using Scikit-learn (Pedregosa et al., 2011; Abraham et al., 
2014).

Standard RSA
After the representations of the 36 sentences were extracted from 
the GPT2 model (Radford et al., 2019; Wolf et al., 2019), the rep-
resentational dissimilarity matrix (RDM) of the features of the 
sentences was computed using 1 – Pearson correlation imple-
mented by Scipy [Virtanen et al. (2020)7]. The RDM was then used 
for further model-based RSA analyses of the fMRI data. The fMRI 
data were averaged for each sentence. The resulting data matrix 
per participant had a shape of 36 by n_voxels). We then extracted 
voxels using a moving sphere with radius of 4 mm. The RDM of the 
averaged voxel data was computed using 1 – Pearson correlation 
implemented by Scipy (Virtanen et al., 2020). We then correlated 
the GPT2 model RDM and the fMRI RDM using Spearman correla-
tion using a searchlight approach. The correlation coefficient was 
assigned to the center of the sphere. This resulted in a whole-
brain map of RSA correlation coefficients for each subject. These 
were normalized by using the Fisher inverse hyperbolic tangent 
transform. In order to estimate the significant clusters of the RSA 
maps across subjects, we conducted the same RSA procedure but 
with shuffled fMRI data. This allowed us to estimate the empir-
ical chance level of the RSA maps. The difference between the 
whole-brain RSA maps and the chance level RSA maps was then 
computed. RSA was conducted in native space. The RSA maps 
were then transformed to standard space and fed to the FSL ran-
domise algorithm (Jenkinson et al., 2012) to perform statistical 
inference at the group level. Threshold-free cluster enhancement 
(Smith and Nichols, 2009) was used to find spatial clusters of RSA 
maps significantly greater than zero. The number of permutations 
was 10 000.

Encoding-based RSA
Konkle and Alvarez (2022) proposed an encoding-based RSA 
pipeline, adding encoding models on top of the standard RSA 
pipeline. This procedure helps to contextualize better the infor-
mation patterns from the GPT2 model space into the brain space. 
Because of the large number of features per sentence (i.e. 16 
128) in the GPT2 model, it is important to increase the number 
of examples to overcome any overfitting problem in the encod-
ing model. Hence, the data were split into train and test sets by 
leaving one of the participants out. Encoding-based RSA anal-
ysis was performed in standard space. A L2-regularized linear 
regression model (Ridge regression) implemented in Scikit-learn 
(Hilt and Seegrist, 1977; Pedregosa et al., 2011) was applied to the 
training set and then used to predict the voxel values using the 
GPT2 middle layer representation of the sentences. Ridge regres-
sion was nested in a grid search algorithm to cross-validate the 
best L2-regularization term by leaving-one-subject-out within the 
training set. The trained ridge regression model predicted the 

5 sklearn.model_selection.cross_validate: https://tinyurl.com/5ezx234w
6 sklearn.model_selection.permutation_test_score: https://tinyurl.com/

bddz7s4t
7 Scipy.spatial.distance.pdist: https://tinyurl.com/yz75v5f9
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Fig. 2. Distributions of ratings of social concepts. Participants read each concept definition and rated the extent to which the described behavior 
involved the emotions of oneself or others (affect; red) as well as whether such behavior was socially desirable (social desirability; gray) on a scale from 
0 (very non-affective; very unlikable) to 100 (very affective; very likable).

voxel values in the test set. The one-dimensional GPT2 feature 
vector was mapped to the flattened fMRI voxel values. The regres-
sion coefficient matrix was too big for our computer RAM. Thus, 
the fMRI voxel values were divided into 20 sets. This means that 
20 independent ridge regression models were trained and they 
were used to predict each small set of the voxel values in the 
test set. The predicted voxel value matrices were averaged for 
each sentence and concatenated for further analysis. The brain 
RDM of the predicted voxels from the encoding model correlated 
with the brain RDM of the fMRI activity of the left-out subject. 
This was performed by using Spearman correlation within each 
sphere of a searchlight moving across the brain. A map of corre-
lation coefficients was generated for each subject left as the test 
set. We conducted the same RSA procedures but with the shuf-
fled fMRI data to estimate the chance level encoding RSA maps. 
The randomize procedure was applied to the difference between 
the encoding-based RSA maps and the chance level RSA maps, as 
described earlier.

Noise ceiling analysis
We also computed the noise ceiling (Nili et al., 2014) regarding 
the RSA. The fMRI data were converted to standard space. Within 
each searchlight sphere, each subject’s data were averaged across 
the different trials of each social concept. A representational dis-
similarity matrix (36 by 36) was computed within each subject. 
On each iteration of the analysis, we compared each subject’s 
distance matrix relative to the mean of the remaining subjects, 
which produced lower noise ceiling estimates of all the subjects. 
The average of these estimates represented the lower noise ceil-
ing. Additionally, we also compared each subject’s distance matrix 

relative to the average of all subjects, including the left-out sub-
ject, in order to determine the upper noise ceiling estimates
(Nili et al., 2014). The lower noise ceilings and the upper noise 
ceilings were then assigned to the center of each searchlight 
sphere. The process is repeated through the whole brain in order 
to provide a noise ceiling map.

Visualization
Brain map visualizations were made in the cortical surface by 
using the Freesurfer surface mesh geometry.8 The reference sur-
face mesh geometry was the Freesurfer fsaverage surface (Fischl 
et al., 1999),9 and the transformation was linearly interpolated by 
a spatial window of 3 mm. For the correlation maps, any values 
smaller than 1𝑒−3 were not shown.

Results
Behavioral results
Subjective ratings of the concept definitions showed that partic-
ipants categorized social concepts in terms of their affect and 
social desirability as expected based on their normative defini-
tions (Anderson (1968); Figure 2). A paired t-test confirmed that 
ratings of affect among the affective concepts (M = 68.514, stan-
tard deviation (SD) = 12.614) were significantly higher than the 
non-affective (M = 45.813, SD = 13.442; t(29) = 8.026, P < 0.001, d
= 1.465, logBF10 = 14.35). Similarly, ratings of social desirability 
among the concepts defined as socially desirable (M = 84.472, SD 
= 6.580) were significantly higher than those selected as highly 

8 nilearn.surface.vol_to_surf: https://tinyurl.com/ykmprdtz
9 nilearn.datasets.fetch_surf_fsaverage:https://tinyurl.com/4xuau39r

D
ow

nloaded from
 https://academ

ic.oup.com
/scan/article/19/1/nsae032/7683727 by Basque C

enter on C
ognition Brain and Language user on 25 June 2024

https://tinyurl.com/ykmprdtz
https://tinyurl.com/4xuau39r


D. Alcalá-López et al.  7

Fig. 3. NeuAverage whole-brain searchlight classification scores of the affect dimension (affective vs non-affective) of the social concepts. The 
heatmap levels represent the clusters where the ROC-AUC scores were statistically significant.

unlikable (M = 15.413, SD = 8.285; t(29) = 30.382, P < 0.001, d =
5.547, logBF10 = 46.69).

Such a difference between ratings of high vs low affect (M =
22.701, SD = 15.493) was smaller than the difference between rat-
ings of high vs low social desirability (M = 69.060, SD = 12.450; 
t(539) = -13.925, P < 0.001, d = –2.542, logBF10 = 26.42). Note that a 
logBF10 greater than 2.2 is considered an overwhelming support 
in favor of the alternative hypothesis (Kass and Raftery, 1995). This 
suggests that the social desirability of others’ behavior is more 
salient for the representation of social knowledge than affect. This 
is congruent with the results from the test–retest repeatability 
analysis. The intraclass correlation coefficient (ICC) showed that 
the reliability of the ratings before and after the scanning session 
was fair for affect [ICC = 0.47; 95% confidence interval (0.36–0.60)] 
and excellent for social desirability [ICC = 0.93; 95% confidence 
interval (0.89–0.96)].

Whole-brain searchlight classification analyses
First, we conducted whole-brain searchlight classification anal-
yses to decode (i) the affect and (ii) the social desirability of the 
auditory definitions presented to participants. Figure 3 and 4 show 
significant clusters in a distributed network of bilateral regions 
in which both social desirability and affect were decoded. Social 
desirability could be decoded in superior, middle and anterior 
temporal cortex; anterior and posterior cingulate and precuneus; 
and also in dorsolateral, ventrolateral and dorsomedial anterior 
prefrontal areas. Affect was also decoded from multivoxel pat-
terns in similar areas. Then, we compared the decoding scores 
between the two searchlights. and observed that decoding of 
social desirability was better compared to affect Figure 5. There 
were no significant clusters in which decoding was better for 
affect compared to social desirability.

Similar searchlight classification maps were found with dif-
ferent cross-validation procedures (i) using a leave-one-run out 
(Supplementary Figures 1, 2 and 3) and (ii) in a procedure in 
which a pair of words were left out for testing the classifier 
(Supplementary Figures 4, 5 and 6). 

Representation similarity analysis
We conducted the standard RSA (Kriegeskorte et al., 2008) and also 
encoding-based RSA (Konkle and Alvarez, 2022) (see the Methods 
section) to understand how a language model (i.e. GPT2) of the 
sentences for the different social concepts explained the brain 
responses.

First, we report the results of a decoding analysis in which the 
hidden layer of the language model was used to predict the social 
desirability and the affect dimensions of the concepts (see the 
Methods section). Decoding accuracy indexed by the ROC-AUC 
was significantly above chance (i.e. decoding affect: ROC AUC =
0.7369 ± 0.1699, 𝜇 ± 𝜎, p < 0.05; decoding social desirability: ROC 
AUC = 0.6238 ± 0.1846, 𝜇 ± 𝜎, P < 0.05), indicating that the model 
representations contain information that is predictive of these 
social dimensions. These results are depicted in Supplementary 
Figures 7 and 8.

The standard RSA results revealed significant associations 
between the language model and the brain responses, notably, 
around the Heshchl gyrus, planun temporale and superior tempo-
ral areas bilaterally further extending into the anterior temporal 
lobe (Figure 6). 

We furthermore performed a noise ceiling analysis regarding 
the RSA (Nili et al., 2014). Noise ceiling maps were computed 
across the whole brain using a searchlight approach (see the 
Methods section). The noise ceiling represents the maximum sim-
ilarity score that could be achieved given the noise level inherent 
in the data. Taking the noise ceiling into account, the clusters 
found in the temporal lobe in the standard RSA fell below the 
lower bound of the noise ceiling, while the clusters found in the 
encoding-based RSA were greater than the lower bound of the 
noise ceiling, but lower than the upper bound (Supplementary 
Figure 9).

Discussion
The present fMRI study investigated how social knowledge related 
to mental state concepts associated with personality traits is 
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Fig. 4. Neuroimaging results. Average whole-brain searchlight classification scores of social desirability. The heatmap levels represent the clusters 
where the ROC-AUC scores were statistically significant.

Fig. 5. Neuroimaging results. Average difference in the whole-brain searchlight ROC-AUC scores where decoding social desirability was better than 
decoding affect. The heatmap levels represent clusters that were statistically significant.

represented in the human brain. Searchlight decoding analyses 
showed that affective and social desirability dimensions of the 
concepts can be decoded from a brain wide distributed network of 
regions including both anterior and posterior cingulate and pre-
cuneus, middle, superior and anterior temporal cortex; posterior 
parietal cortex; temporoparietal junction; and ventromedial and 
lateral prefrontal cortex. Notably, decoding of social desirability in 
many of these regions was higher relative to affect. This result is 
consonant with the participants’ self-reports. Subjective ratings 
of social desirability associated with the auditory definitions of 
the concepts were more concentrated in the extreme values of 
the distribution for corresponding high and low normative val-
ues of social desirability according to a previous study (Anderson, 
1968). Moreover, these subjective ratings of social desirability were 

consistent with recent replication studies (Dumas et al., 2002; 
Chandler, 2018).

Model-based representational similarity analyses showed that 
brain activity patterns in language related areas in temporal 
cortices bilaterally encoded the representation of the concepts 
extracted from a language model (GPT2). Recent research has 
shown that the representations of large language models such as 
GPT2 map linearly onto the brain responses of participants lis-
tening to stories (Caucheteux and King, 2022; Caucheteux et al., 
2023). Deep language models such as GPT2 are trained to pre-
dict words from their context in the sentences, and, in principle, 
the representations of these models seem unlikely to capture the 
social meaning of the sentences. However, our decoding analy-
sis based on the hidden representation of the language models 
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Fig. 6. Neuroimaging results. Average correlation coefficient maps and the corresponding corrected P value maps of the standard RSA and 
encoding-based RSA. (A) The correlation coefficients of the standard RSA that were greater than the empirical chance level. The average correlation 
maps were masked by the randomized P value cluster map that thresholded voxels with a significance level of 0.05. (B) The clusters where the average 
correlation coefficients of the encoding-based RSA were greater than the empirical chance level.

indicated that the representations of GPT2 were informative to 
some extent of the affective and likableness dimensions of the 
definitions presented to participants. Therefore, the model-based 
RSA results likely reflect a language-like or compositional rep-
resentation of the concepts that bears to some extent on the 
dimensions of likableness and affect, but that otherwise disre-
gards the personal, experiential, multimodal nature of mental 
simulations of social concepts which is supported by regions in 
the default-mode network. We also note that the superior tem-
poral cortex has also been implicated in social perception based 
on auditory (Belin et al., 2000; Kriegstein and Giraud, 2004) and 
visual cues (Zilbovicius et al., 2006; Allison et al., 2000) and also 
in theory of mind (Deen et al., 2015; Schultz et al., 2004; Gallagher 
et al., 2000; Heekeren et al., 2003). Therefore, the decoding- and 
encoding-based RSA results observed in this superior temporal 
cortical substrates likely reflect a combination of both language-
based representations and more specific representations of social 
dimensions related to likableness and affect.

Previous studies showed the involvement of the anterior cingu-
late cortex in the detection of positively valenced attributes dur-
ing social evaluation tasks, related both to the self (Sharot et al., 
2007) and also other people (Hughes and Beer, 2012). Additional 
studies indicated that anterior cingulate cortex is implicated in 
the detection of valence and the reporting of rewarding attributes 
during social evaluation (Rigney et al., 2017), thereby playing a role 
in processing salient cues related to the self (Perini et al., 2018). 
Our results suggest that the anterior cingulate cortex, as part of 
the salience network (Uddin, 2015), represents distinct aspects 
of social knowledge related to the social desirability and affect 
dimensions, with social desirability receiving a higher weight. 
Notably, this pattern of results was observed in a task context that 
did not require participants to perform overt responses to external 
stimuli in a social setting, but rather required mental simulation 

of social situations associated with the auditory definitions based 
on personal, idiosyncratic experiences.

Although the anterior temporal lobe has received much atten-
tion in recent years due to its involvement in the processing of 
abstract concepts (Binney et al., 2016; Hoffman et al., 2015; Wang 
et al., 2017), our results do not place this brain region in a privi-
leged position regarding the representation of the social concepts. 
While social desirability could be decoded in anterior temporal 
cortex, a brain wide distributed network of regions was impli-
cated, including putative areas of a social cognition system for 
theory of mind in the posterior cingulate and precuneus, the tem-
poroparietal junction and dorsal and ventral medial prefrontal 
cortex (Ma et al., 2014; Alcalá-López et al., 2018; Adolphs, 1999) 
as well as canonical language regions.

Tamir and colleagues used fMRI in conjunction with represen-
tational similarity analyses to delineate how the brain represents 
internal states of other individuals (Tamir et al., 2016). Participants 
had to consider up to 60 different internal states (e.g. drunkenness 
or satisfaction). Then, RSA was used to explain fMRI responses 
based on a theoretical model of how different social dimensions 
inter-relate when subjects perform a matching task based on 
two visual scenarios potentially associated with a given concept 
(e.g. ‘awe’). The results showed that three concept dimensions, 
namely, rationality, social impact and valence, explained a sig-
nificant amount of variance in brain responses associated with 
other people’s mental states (Tamir et al. (2016); see also Thorn-
ton and Tamir (2020); Thornton and Mitchell (2018)). The present 
results expand on this prior work to define the contribution of 
social desirability and affect dimensions of social knowledge, 
while also revealing the contribution from language represen-
tations. Concerning the differences in the number of concept 
dimensions between the present study and the study by Tamir 
et al. (2016), it is possible that the likableness or social desirability
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dimension identified here is related to the social impact dimen-
sion identified by Tamir and colleagues (2016), which also involved 
significant clusters of brain activity predicted by the model in sim-
ilar brain regions to those identified here by the decoding and 
encoding RSA results. However, the RSA results from the study 
by Tamir and colleagues (2016) showed that the valence dimen-
sion was represented in a left-lateralized set of regions including 
the dorsolateral and ventrolateral prefrontal cortex and the tem-
poroparietal junction. This result is in contrast to the present 
study in which affective valence was decoded from corresponding 
bilateral areas, also implicating additional temporal regions and 
posterior cingulate and precuneus cortex. Also, the RSA based on 
a language model explained brain activity patterns in a bilateral 
network.

In sum, the results from the current study underscore the 
brain wide, distributed nature of social knowledge representa-
tions which rely on the interplay between language systems and 
default-mode network systems that support the personal men-
tal simulations of social conceptualizations. This observation is in 
line with recent studies demonstrating the involvement of both 
domain-specific and heteromodal cortical regions in the repre-
sentation of concrete concepts (Tong et al., 2022). It should be 
noted that social concepts, like emotional concepts, represent 
subclusters of abstract conceptualizations (Villani et al., 2019). 
In addition to social concepts there are philosophical, spiritual, 
physical, spatiotemporal, and quantitative concepts. Future stud-
ies can further test the brain representation of abstract knowledge 
by assessing a wider range of abstract conceptualizations within 
the same experimental procedure.

Supplementary data
Supplementary data is available at SCAN online.
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Neuro upon acceptance for publication.
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