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Abstract
1.	 Dam removal is increasingly considered as a river restoration tool for impound-

ments that harm the environment or have exceeded their lifespan. However, few 
studies report the ecological consequences of large dam removal.

2.	 We performed a multiple before-after/control-impact (mBACI) study to investi-
gate the consequences of the decommissioning of a large dam (42 m high) on in-
stream habitat and invertebrate communities in a temperate, forested catchment 
of northern Spain.

3.	 Before decommissioning, lack of fine sediments and high concentrations of man-
ganese and iron occurred below the dam but decreased downstream. Invertebrate 
taxa richness and diversity were reduced, and pollution-sensitive taxa were miss-
ing just below the dam.

4.	 The drawdown of the reservoir, the first step towards its decommissioning, mo-
bilized stored sediments causing frequent turbidity peaks downstream, which 
nevertheless, caused no detrimental effects on macroinvertebrate communities. 
One year after drawdown, the communities downstream from the dam, as well as 
those in the newly formed stream in the area formerly impounded by the reser-
voir, became very similar to those in control reaches, showing a successful resto-
ration project.

5.	 Synthesis and applications. Dam decommissioning helps restore instream habi-
tats and facilitates the recovery of invertebrate communities in a very short time 
frame if there are nearby sources of potential colonizers. Slow drawdown reduces 
the transport of the sediments accumulated in the reservoir and their potential 
downstream impacts, even more if prior to drawdown the reservoir is kept full for 
years to promote the deposition of sediments in marginal areas that will later be 
readily colonized by trees.
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1  |  INTRODUC TION

Concerns about environmental degradation and the loss of eco-
system services have stimulated major ecosystem restoration ef-
forts (Bernhardt et al., 2007; Moreno-Mateos et al., 2017; Stoffers 
et  al.,  2024). However, depending on the type of the ecosystem 
(Jones & Schmitz, 2009) and the nature of the disturbance (Abella 
et al., 2018), complete ecosystem recovery may take a very long pe-
riod (Moreno-Mateos et al., 2017). Aquatic systems tend to recover 
faster than forest ecosystems (Jones & Schmitz, 2009). Because of 
their highly dynamic nature, streams and rivers could recover espe-
cially fast as long as there is a nearby source of potential colonists 
(Sundermann et al., 2011).

Streams and rivers are among the most threatened ecosystems 
on Earth, and flow regulation and river fragmentation are two of 
their main stressors (Dudgeon,  2019). Thus, major restoration ef-
forts include the recovery of longitudinal connectivity (Wohl, 2017). 
Dam decommissioning [i.e. partial or total removal of dams (Perera 
et al., 2021)] has gained momentum over the last 50 years, spurred in 
part by the safety concerns and maintenance costs of obsolete dams 
(Bellmore et al., 2019). So far, thousands of dams were removed in 
the United States and Europe (Habel et al., 2020), although the en-
vironmental consequences have seldom been assessed (Vahedifard 
et al., 2021). Therefore, we lack key information on how to optimize 
dam removal strategies. This is especially the case of large dams and 
reservoirs (i.e. higher than 15 m or 5–15 m in height and impounding 
more than 3 hm3) (ICOLD, 2020), which have been removed in much 
lower numbers (Habel et al., 2020) and which could cause strongest 
impacts during dam removal. Besides, most of the studies pub-
lished only assessed physical changes or fish communities (Bellmore 
et al., 2017). Monitoring the effects of dam removal on other ecosys-
tem components and processes is necessary to assess the recovery 
of ecological integrity (Palmer et al., 2005; Wohl et al., 2005).

Macroinvertebrates can be severely affected by dams (Wang 
et al., 2020) and their decommissioning (Carlson et al., 2018), thus af-
fecting the energy transfer to higher trophic levels (Mor et al., 2018; 
Morley et al., 2020). Dams affect downstream invertebrate commu-
nity composition (Morley et  al.,  2008), reducing density (Dolédec 
et al., 2021; Martínez et al., 2013), diversity (Holt et al., 2015), taxa 
richness (Ellis & Jones, 2016; Wang et al., 2020) and biotic indices 
(Mellado-Díaz et al., 2019), and changing life histories and dispersal 
processes (Tonkin et al., 2009). Usually, these impacts decrease with 
downstream distance from the dam (Holt et al., 2015; Mellado-Díaz 
et al., 2019), and depend, among others, on dam characteristics (Ellis 
& Jones, 2013).

Although dam decommissioning could eliminate these impacts 
in the long term (Hansen & Hayes, 2012), the downstream mobili-
zation of nutrients and sediments (Ahearn & Dahlgren,  2005) can 
also impair invertebrate communities in the short term (Matthaei 
et al., 2010), resulting in an initial decline in sensitive taxa (Carlson 
et al., 2018; Mahan et al., 2021). Invertebrate communities can re-
cover rapidly from dam decommissioning (Chiu et al., 2013; Mahan 
et  al.,  2021), but sometimes the recovery may take over 3 years 

(Hansen & Hayes, 2012; Renöfält et al., 2013), depending on factors 
such as the size of the dam and the quality of the sediments stored 
(Foley et al., 2017). Clearly, more information is needed on this topic 
to optimize dam removal strategies.

The present study analysed the response of stream invertebrates 
to reservoir drawdown in one of the largest dams decommissioned 
in Europe to date (Habel et al., 2020). We predicted that (1) before 
drawdown, reduced water quality and streambed coarsening would 
reduce invertebrate density and diversity below the dam, these ef-
fects decreasing downstream; (2) during drawdown, the mobilization 
of the sediment stored in the reservoir would further reduce inver-
tebrate density and diversity; and (3) after drawdown, invertebrate 
communities in the reservoir and downstream sites would resemble 
the communities found in nearby undammed tributaries.

2  |  MATERIAL S AND METHODS

2.1  |  Study site

The study was conducted in Artikutza, a headwater basin on schist, 
sandstone and granite located in the north of the Iberian Peninsula 
with an extraordinary conservation status (Figure 1). In 1947, water 
managers built the 42-m tall Enobieta Dam to supply drinking water 
to San Sebastian. Nevertheless, geotechnical issues and recurrent 
problems with high metal concentrations led local authorities to 
build, in 1976, the Añarbe Dam (79-m tall and 43.8 hm3 capacity) 
further downstream in the catchment. Thereafter, the Enobieta 
Dam fell progressively into disuse and became a safety issue. For 
decades, the dam was not actively managed, the reservoir being 
permanently full of water, until in 2016 the municipality decided to 
decommission it.

The first stage in the Enobieta Dam decommissioning was the 
drawdown of the reservoir. To allow the stabilization of the emerg-
ing sediment by the colonizing vegetation and minimize the sedi-
ment export, the reservoir was slowly emptied during 2018 using 
some old siphons and water-serving pipes that mainly released 
surface water. We called it the before period. When the water 
level in the reservoir was approximately 4-m deep (December 
2018), the bottom gate was repaired and opened, marking the 
start of the drawdown period. In October 2019, an older 3.5 m-tall 
weir, located 200 m upstream from the large dam, was demolished. 
In the rainy November 2019, the Enobieta Stream carved a new 
channel through the sediment retained by the weir, resulting in 
a last period of high turbidity. This marked the completion of the 
drawdown process and the initiation of the recovery period, re-
ferred to as the after period. Currently, the reservoir is empty, the 
bottom gate is open and authorities are deliberating whether to 
completely remove the dam or create a 7 m-wide notch to elimi-
nate the barrier effect (Atristain et al., 2023). This field study had 
the permission granted by the municipality of San Sebastian and 
by the Government of Navarre. The study did not require ethical 
approval.
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2.2  |  Experimental design

Our study followed a multiple before-after/control-impact (mBACI) 
design (Underwood, 1994). We defined four control sites, one (C1) 
upstream from the dam and three (C2–C4) in free-flowing tributar-
ies, as well as four impact sites (I1–I4) at increasing distances down-
stream from the dam. All eight reaches were sampled before (before 
period), during (drawdown period) and after (after period) the draw-
down. Additionally, three sites located within the reservoir (R1–R3) 
were also sampled in the after period (Figure 1). These sites could 
not be sampled either in the before period, when the reservoir was 
full, or during drawdown, when safe wading in the newly carved 
stream channel was still impossible.

2.3  |  Habitat characteristics

We characterized benthic substrate composition following 
Wolman (1954), with 100 substrate particles collected per site and 
period while zigzagging along 100 m-long reaches. For each site and 
period, we estimated median grain size (D50), and the relative abun-
dance of very fine gravel (2–4 mm) or sand-silt (<2 mm).

We also measured water temperature (T, °C), dissolved oxygen 
(DO) saturation (%), electrical conductivity (EC, μS cm−1) and pH with 
a handheld multiparametric probe (Multi 3630 IDS, WTW, Germany) 
and took water samples to determine the concentration of iron (Fe, 
mg L−1), manganese (Mn, mg L−1) and nutrients [soluble reactive 
phosphorus (SRP, μg P L−1) and ammonium (NH4

+, μg N L−1)] (Atristain 
et al., 2023).

2.4  |  Benthic invertebrates

Invertebrates were sampled in November 2017 (before), October 
2019 (drawdown) and November 2020 (after), 1 year after the end of 

the drawdown. On each occasion and site, we took five random sam-
ples with a Surber net (0.09 m2, 500 μm-mesh) and preserved them 
in 70% ethanol. Invertebrates were sorted in the laboratory, counted 
and identified under a binocular microscope (Tachet et  al.,  2010). 
Most invertebrates were identified to genus level (74.6% of the taxa), 
but some Amphipoda, Coleoptera, Ephemeroptera, Trichoptera, 
Mollusca and Diptera were only identified to family level (13.6%). 
Acari and Oligochaeta were left at these taxonomic levels (see 
Table S4).

We estimated taxa richness (S), Shannon–Wiener diversity 
index (H´) and total density (TD, individuals m−2) for each sample. 
We also estimated the Iberian Average Score Per Taxon (IASPT) 
index, which is widely used in Spanish biomonitoring programs 
to represent average sensitivity to pollution of the taxa found 
(Guareschi et al., 2017). IASPT is calculated as the IBMWP value 
(Alba-Tercedor,  2002) divided by the number of scoring families 
present.

2.5  |  Statistical analyses

To assess the impact of the dam and its decommissioning, we con-
ducted linear mixed-effects (LME) models using restricted maximum 
likelihood (Pinheiro & Bates,  2006). We included period (before/
drawdown/after) and reach (control/impact) as fixed factors, with 
sampling site as a random factor. We used the ‘lmer’ function from 
the ‘lme4’ package in R (Bates et al., 2015). The overall effect of the 
drawdown was shown by the interaction between period and reach 
(BDA:CI). To further analyse the impact of reservoir drawdown and 
subsequent restoration efforts, we examined the output from each 
LME model with the ‘summary’ function in R. We focused on three 
key aspects: (1) the comparison between control and impact sites 
before drawdown (BCI), to assess any pre-existing effects on the 
impact sites; (2) the before-drawdown/control-impact (BD:CI) in-
teraction to evaluate the impact of the drawdown on the affected 

F I G U R E  1  Study area showing the 
location of the 11 study sites [four control 
sites (C1, C2, C3 and C4), four impact 
sites (I1, I2, I3 and I4) and three sites in 
the former reservoir (R1, R2 and R3)] in 
the Artikutza Valley (northern Iberian 
Peninsula). The dashed line indicates the 
area drowned by the Enobieta Reservoir. 
Dark arrows indicate flow direction.
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areas; and (3) the before-after/control-impact (BA:CI) interaction 
to determine whether the impacted areas had recovered from the 
effects of the drawdown. The baseline for the fixed factors was 
set at the control sites during the before period. Additionally, we 
carried out LME models with REML to compare control sites with 
newly emerged reservoir sites during the after period. In these 
models, reach (control/reservoir) was used as a fixed factor and site 
as random factor. In all cases, we assessed residuals to confirm that 
the models did not depart from normality and homoscedasticity. 
When required, variables were log transformed. To test whether 
the effects of the dam decreased downstream, we calculated effect 
sizes for all variables and periods by determining the natural loga-
rithm (Ln-ratio) between the value at each impact site and the mean 
among all control values. Negative values of the ratio indicated a 
decrease below the dam, while positive values indicated increases.

To examine similarities and changes in community composi-
tion, we performed non-metric multidimensional scaling (NMDS; 
Clarke, 1993) and permutational multivariate analysis of variance 
(PERMANOVA; Anderson, 2001). These analyses were based on 
a Bray–Curtis dissimilarity matrix of Hellinger-transformed data, 
using the ‘vegan’ package (Oksanen et  al.,  2020). The quality of 
the NMDS projections was evaluated using a stress value, which 
represents the deviation from the relationship between the dis-
tances among samples in the original Bray–Curtis dissimilarity ma-
trix and their distances in the ordination plot. The PERMANOVA 
considered the interaction between period (before/drawdown/
after) and reach (control/impact) as fixed factors. All statistical 
analyses were conducted using R software (version 4.0.3, R Core 
Team, 2020; Austria).

3  |  RESULTS

3.1  |  Habitat characteristics

Before drawdown, riverbed was coarser below the dam (I1) than 
in the rest of the sites but coarsening decreased downstream and 
was not noticeable at sites I3 and I4 (Table 1). Grain size decreased 
substantially following the drawdown of the reservoir with a 50% 

reduction of D50 in I1 and a 30% reduction in I2, I3 and I4 (Table 1). 
The percentage of particles smaller than 4 mm remained relatively 
constant across all downstream sites during drawdown and did not 
change with respect to the before period (Table 1). During the after 
period, grain size reduction was still noticeable in I1 (D50 = 45 mm), 
and fine gravel percentage increased by 12%. The median bed par-
ticle size in the newly emerged reservoir sites approached those 
found in nearby undisturbed sites, except R3, where D50 was 50% 
lower than in control sites. All three reservoir sites showed no sand 
or fine gravel in the after period.

Data revealed weak evidence of reservoir drawdown affect-
ing SRP and NH4

+ concentrations, EC, DO saturation or T (see 
Table S2). In contrast, there was a strong evidence of effects on 
total Fe and Mn (BDA:CIFe, p < 0.001; BDA:CIMn, p < 0.001; see 
Table S2). Fe and Mn were initially higher in impact reaches, par-
ticularly at sites I1 and I2 (see Tables S1 and S3). These differences 
were maintained during the drawdown period (BD:CIFe, p = 0.96; 
BD:CIMn, p = 0.31; see Table  S3), but Fe and Mn decreased in 
the impact sites during the after period to levels comparable to 
undammed reaches (BA:CIFe, p < 0.01; BA:CIMn, p < 0.0001; see 
Tables S1 and S3).

In the after period, water physicochemical characteristics were 
similar in control, impact and reservoir sites (see Table S1), with some 
exceptions. Water temperature and DO saturation peaked in R2 and 
R3 (see Table S1), likely due to the open canopy since riparian veg-
etation was still scarce. Nevertheless, the effect size for these vari-
ables was small (see Table S1). Similarly, EC and metal concentrations 
increased from R1 to R3, although values did not depart much from 
those in control sites.

3.2  |  Benthic invertebrates

In the 135 benthic samples, we found 21,188 invertebrates com-
prising 78 taxa (see Table  S4). Most abundant were the amphipod 
Echinogammarus (21.3%); the caddisfly Hydropsyche (12.1%); and the 
mayflies Baetis (9.9%), Habroleptoides (9.1%) and Heptageniidae (4.8%).

Before drawdown, invertebrate density was 48% lower in 
the impact than in control reaches (TDC = 1973.9 ± 236.3 and 

TA B L E  1  Median bed particle size (D50, mm) and percentage of particles smaller than 4 mm in control (C1, C2, C3 and C4), impact (I1, I2, 
I3 and I4) and reservoir sites (R1, R2 and R3) during periods before, drawdown and after.

Variable Period

Reach

C1 C2 C3 C4 I1 I2 I3 I4 R1 R2 R3

D50 (mm) Before 90 90 90 90 180 128 90 90 — — —

Drawdown 64 128 64 90 90 90 64 64 — — —

After 45 90 64 64 45 90 64 64 64 45 22.6

<4 mm particles (%) Before 3 4 2 3 0 1 1 2 — — —

Drawdown 3 5 2 3 0 1 2 1 — — —

After 4 3 0 0 12 3 0 1 0 0 0

Note: R sites were sampled only during the after period.
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TDI = 1030.6 ± 184.6). The effect was highest just below the dam (ef-
fect sizeI1 = −1.94) and decreased downstream (Figure 2). There was 
very weak evidence that drawdown affected invertebrate density 
of impact reaches (BDA:CITD, p = 0.08; see Table S5) that increased 
especially in sites I1 and I2 (Figure  2). During drawdown, differ-
ences in density between control and impact reaches disappeared, 
mainly due to the increase of the density in the impact reaches 
(TDC = 1985.6 ± 250.6 and TDI = 1978.9 ± 266.6) (BD:CITD, p < 0.05; 
see Table S6). In the after period, invertebrate densities were sim-
ilar in control and impact reaches as densities in the impact reaches 

were higher compared to the before period (TDC = 1644.4 ± 258.4 
and TDI = 1617.2 ± 234.0) (BA:CITD, p = 0.05; see Table S6) (Figure 2).

Evidence associated the drawdown of the reservoir with 
changes in taxonomic richness (BDA:CIS, p < 0.01; see Table  S5) 
and diversity (BDA:CIH´, p < 0.05; see Table S5). Before drawdown, 
taxonomic richness and diversity were lower in the impact reaches 
(SC = 21.9 ± 1.3 and SI = 13.2 ± 1.7; H'C = 2.3 ± 0.1 and H'I = 1.7 ± 0.1) 
(BCIS, p < 0.01; BCIH´, p < 0.05; see Table S6), the effect being high-
est in site I1 (Figures 3 and 4). Although richness and diversity in-
creased in impact reaches during drawdown (BD:CIS, p < 0.01; 

F I G U R E  2  Total invertebrate density (ind. m−2) in control (C), impact (I) and newly created sites (R) before, during and after the drawdown 
of the reservoir. The box plots show the median, the interquartile range and the tails of the distribution, and dots represent outliers. C 
represents results for each control site (C1 to C4 from left to right). I1 to I4 represent results for each impact site. The grey scale of I sites 
reflects distance downstream from the dam (darker = closer). Effect sizes on top represent the Ln-transformed ratio of the average for each 
impact site divided by the overall average of the control sites for each period. Continuous line and the light grey area represent the dam and 
the full reservoir, respectively, and intermittent lines represent the emptied reservoir. Note that R reaches were sampled only during the 
after period.

F I G U R E  3  Taxa richness in control (C), impact (I) and newly created sites (R) before, during and after the drawdown of the reservoir. The 
design of the figure follows that of Figure 2.
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1486  |    ATRISTAIN et al.

BD:CIH´, p < 0.05; see Table S6), values in I1 were still below those 
in control sites (Figures 3 and 4). During the after period, all impact 
sites increased their values (BA:CIS, p < 0.001; BA:CIH´, p < 0.01; see 
Table S6) and reached values similar to those of control sites. The 
IASPT biomonitoring index followed a similar pattern. During the be-
fore period, it was 13% lower in impact reaches (IASPTC = 6.6 ± 0.1 
and IASPTI = 5.8 ± 0.2) (BCIIASPT, p < 0.05; see Table  S6), especially 
in I1 (effect sizeI1 = −0.40) (Figure  5). There was strong evidence 
that the drawdown promoted pollution-sensitive taxa in the im-
pact sites (BDA:CIIASPT, p < 0.001; see Table  S5), as shown by the 
near-zero effect sizes and the significant BD:CI and BA:CI interac-
tions (BD:CIIASPT, p < 0.05 and BA:CIIASPT, p < 0.0001; see Table S6) 
(Figure 5).

Before drawdown, communities in sites I1 and I2 occupied a re-
gion of the NMDS biplot well separated from those in control sites, 
but differences decreased during the drawdown and after periods 
(Figure 6). Thus, the drawdown of the reservoir made the compo-
sition of the invertebrate communities downstream from the dam 
similar to those of control sites (PERMANOVA BDA:CI, p < 0.01).

3.3  |  Reservoir colonization

The stream channel newly formed as the reservoir level receded 
during drawdown was initially devoid of invertebrates, but after 
drawdown invertebrate community measures were similar in the 

F I G U R E  4  Shannon diversity index in control (C), impact (I) and newly created sites (R) before, during and after the drawdown of the 
reservoir. The design of the figure follows that of Figure 2.

F I G U R E  5  Iberian Average Score Per Taxon (IASPT) index in control (C), impact (I) and newly created sites (R) before, during and after the 
drawdown of the reservoir. The design of the figure follows that of Figure 2.
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    |  1487ATRISTAIN et al.

reservoir and control reaches (CRTD, p = 0.47; CRS, p = 0.28; CRIASPT, 
p = 0.45; see Table  S7). Diversity was an exception, being slightly 
higher in the reservoir (H'C = 2.3 ± 0.1 and H'R = 2.5 ± 0.1) (CRH´, 
p < 0.05; see Table S7) (Figure 4). By the end of the study, samples in 

the reservoir sites occupied a region of the NMDS biplot close to the 
control sites, although community composition did not totally re-
semble that in control sites (PERMANOVA CR, p < 0.0001) (Figure 6).

4  |  DISCUSSION

Benthic invertebrate communities are useful indicators of the eco-
logical responses to stream and river restoration projects (Jähnig 
et  al.,  2011; Miller et  al.,  2010). Nevertheless, many restoration 
projects lack proper monitoring of ecological outcomes (Bernhardt 
et  al.,  2005) and often fail to improve invertebrate communi-
ties (Griffith & McManus,  2020; Palmer et  al.,  2010). This lack of 
response has been attributed to other limiting factors (Palmer 
et  al.,  2010) or to the absence of potential colonizers in nearby 
sites (Sundermann et  al.,  2011). Additionally, the response of in-
vertebrates can differ among seasons, habitats or reaches (Flores 
et al., 2017; Sullivan & Manning, 2017), making it complex to assess 
(Griffith & McManus, 2020). In our case, the drawdown of Enobieta 
Reservoir, the first step towards its decommissioning, caused no 
detrimental effects to the downstream invertebrate communities, 
and 1 year afterwards, the communities below the dam, even those 
in the newly formed river channels in the reservoir area, were very 
similar to those in undammed streams in the valley. These results 
may be conditioned by the excellent ecological status and high diver-
sity of nearby stream reaches (Elosegi et al., 2019), as well as by the 
torrential characteristics of the local streams that reduced legacy 
effects and promoted the colonization of impact reaches. Dam re-
moval can cause impacts, for instance, caused by the remobilization 
of toxic sediments (Ashley et al., 2006) or by promoting the spread 
of invasive species (Foley et al., 2017). Besides, in streams and rivers 
subjected to multiple pressures, the response to dam removal can be 
limited (Palmer et al., 2010).

Contrary to other sites (Dolédec et  al.,  2021; Martínez 
et al., 2013), the main downstream impact of the Enobieta Reservoir 
seemed to be caused by effects on water quality, not on hydrology. 
This reservoir had been out of use for decades, the bottom gate 
closed and the reservoir full of water, and thus, the discharge re-
leased from the spillway roughly resembled the discharge it received 
from the basin. In Enobieta, low IASPT values downstream suggest 
impaired water quality, very probably linked to high iron and manga-
nese concentrations (Atristain et al., 2023), which can be detrimental 
for the biota directly when dissolved (Cadmus et al., 2018) or indi-
rectly when precipitated (Kotalik et al., 2019). Atristain et al. (2023) 
observed black manganese precipitations as far as reach I4. Metal 
oxide deposits in streams can affect invertebrates by a variety 
of mechanisms (Wilson et  al.,  2019): they can clog the interstitial 
space among rocks or smother benthic organisms thus reducing 
the abundance and richness of biofilm and invertebrates (Cadmus 
et al., 2016; Kotalik et al., 2019). Sediment starvation could also af-
fect invertebrate communities downstream from the dam, limiting 
the abundance of sand- or gravel-dwelling invertebrates, as has been 
reported elsewhere (Mellado-Díaz et al., 2019).

F I G U R E  6  Non-metric multidimensional scaling (NMDS) analysis 
of invertebrate community composition in control (C), impact (I) 
and newly created sites (R) before, during and after the drawdown. 
Blue dots represent control sites. Red dots represent impact sites: 
the darkest dots represent I1 site and the lightest ones I4 site. 
Green dots represent sites in the newly created channel within the 
former reservoir area: the darkest dots represent the area that first 
emerged during the drawdown and the lightest ones represent the 
site closest to the dam. Note that R reaches were sampled only 
during the after period.
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One main goal of dam decommissioning projects is to recon-
nect sediment fluxes (Wohl et al., 2015), which shape channel com-
plexity (Bellmore et al., 2019) and control water quality (Atristain 
et al., 2023), indirectly affecting invertebrate communities (García 
et  al.,  2017). In agreement with previous studies (Magilligan 
et  al.,  2016; Tullos et  al.,  2014), the drawdown of Enobieta 
Reservoir reduced the median bed grain size and improved water 
quality (Atristain et al., 2023). Streams in the Artikutza valley have 
very low concentrations of suspended sediments because the 
extensive forest cover prevents soil erosion (Elosegi et al., 2019). 
Despite drawdown caused high turbidity peaks, these rarely sur-
passed 300 NTU (Atristain et  al.,  2023), a common value during 
floods in other rivers in the area (Zabaleta & Antigüedad, 2012), 
and seemed not to affect invertebrate communities. Furthermore, 
although suspended sediment can cause anoxia in rivers, contin-
uous records during the opening of the bottom gate showed that 
DO saturation was constantly over 90% (M. Atristain, unpublished 
data). Higher metal concentrations were also transported along 
with suspended sediment (Atristain et al., 2023), but they did not 
affect any of the invertebrate community metrics. Hence, contrary 
to expected, neither suspended solid nor higher metal concentra-
tions impaired invertebrate communities during drawdown. This 
might be a consequence of metals being transported in dissolved 
form, as we did not notice metal deposition during drawdown, as 
well as enhanced streambed complexity counteracting the effect 
of high metal concentrations. Invertebrate communities can re-
cover from the negative effects of dam decommissioning in less 
than 2 years (Carlson et  al.,  2018), although recovery time may 
vary among taxa (Renöfält et al., 2013), site-specific conditions or 
habitat type (Hansen & Hayes,  2012). In our case, at the end of 
the study period, that is, barely a year after the main mobilization 
of sediments, the impact sites reached the same density, richness, 
diversity and community composition as in the sites free from the 
effect of the reservoir.

Remarkably, as reported by others (Dézerald et  al.,  2023; 
Mahan et al., 2021), the invertebrate communities in the area for-
merly drowned by the Enobieta Reservoir were by the end of the 
experiment very similar to the communities found in the rest of 
the sites. This result indicates not only a very high re-colonization 
capacity but also that the physical habitat had recovered enough 
for these organisms to live there. Surprisingly, taxa richness and 
Shannon diversity were even higher in the reservoir than in the 
rest of the sites, as a consequence of a few taxa (e.g. the hemiptera 
Aphelocheirus) typically found in stagnant water, which was quite 
abundant in the flattest areas of the emerged sediments. Whatever 
the case, a fully mature invertebrate community can only be ex-
pected after the stream has recovered its natural physical habitat, 
including deposits of large wood, which will obviously require a 
longer time to develop.

Finally, we must remark that so far, we have only shown the ef-
fects of drawdown, not of the final demolition of the dam. Indeed, the 
dam is still in place, while the Spanish Ministry of the Environment 
decides whether it is better for biodiversity to remove it totally or 

to open a 7 m-wide trench across it. Although total removal of the 
dam would obviously result in a more natural setting, the demolition 
works, and especially the transport of all concrete remains out of 
the valley would take much longer (over 1 year of work, compared 
to 6 months for the trench, Elosegi et al., 2022), thus making the im-
pacts longer for biodiversity. In addition, the inner galleries of the 
dam host several colonies of endangered bat species, which would 
obviously disappear if the dam was taken out. Consequently, the par-
tial removal of the dam seems to be the best option to complete the 
decommissioning of the Enobieta Reservoir. The maximum volume 
of sediment mobilized during dam removal has been estimated at 
3795 m3, less than half of the amount eroded during the drawdown 
and, thus, their impact is expected to be minor at most. More im-
portantly, the dam would not be an obstacle for invertebrates, thus 
allowing mixing of previously isolated populations. Nevertheless, it 
is advisable to make a close follow-up of the biodiversity in the zone 
during the demolition works to minimize unwanted effects.

In summary, our results show that the drawdown of a large reser-
voir, a first step towards its decommissioning, can cause little impact 
if it is conducted slowly, thus minimizing the volume of sediments 
exported and their impact downstream. Furthermore, our results 
show that the invertebrate communities can recover to values simi-
lar to control reaches in a short period of time provided that there is 
a nearby source of potential colonists.
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