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A B S T R A C T   

The synchronization between the speech envelope and neural activity in auditory regions, referred to as cortical 
tracking of speech (CTS), plays a key role in speech processing. The method selected for extracting the envelope 
is a crucial step in CTS measurement, and the absence of a consensus on best practices among the various 
methods can influence analysis outcomes and interpretation. Here, we systematically compare five standard 
envelope extraction methods the absolute value of Hilbert transform (absHilbert), gammatone filterbanks, heu-
ristic approach, Bark scale, and vocalic energy), analyzing their impact on the CTS. We present performance 
metrics for each method based on the recording of brain activity from participants listening to speech in clear and 
noisy conditions, utilizing intracranial EEG, MEG and EEG data. As expected, we observed significant CTS in 
temporal brain regions below 10 Hz across all datasets, regardless of the extraction methods. In general, the 
gammatone filterbanks approach consistently demonstrated superior performance compared to other methods. 
Results from our study can guide scientists in the field to make informed decisions about the optimal analysis to 
extract the CTS, contributing to advancing the understanding of the neuronal mechanisms implicated in CTS.   

1. Introduction 

In recent years, there has been a growing interest in exploring the 
cortical tracking of speech (CTS) as a potential metric for evaluating 
acoustic, linguistic, and cognitive speech processing (Kösem and van 
Wassenhove, 2017; Obleser and Kayser, 2019; Meyer, 2018, 2020; 
Molinaro et al., 2021). CTS has been suggested to reflect the capacity of 
neural oscillations to synchronize, or phase-lock, with quasi-rhythmic 
information contained in slow amplitude modulations of speech 
(speech envelope). CTS is commonly observed in temporal brain regions 
and within the delta (<4 Hz) and theta (4 – 8 Hz) frequency bands, 
aligning with the prosodic and syllabic rhythms in the speech envelope, 
respectively (Gross et al., 2013; Peelle, Gross, and Davis, 2013; Doelling 
et al., 2014; Molinaro and Lizarazu, 2018; Destoky et al., 2019; Bour-
guignon et al., 2020; Ershaid et al., 2024). It has been suggested that CTS 
is an important part of speech processing because it helps separate and 
decode continuous speech signals into linguistic units at different 
timescales (Ahissar et al., 2001; Giraud and Poeppel, 2012; Peelle and 
Davis, 2012; Peelle et al., 2013; Zoefel and VanRullen, 2015; Ding et al., 
2016; Keitel, Gross, and Kayser, 2018; Kosem et al., 2018; Meyer and 
Gumbert, 2018; Lizarazu, Carreiras and Molinaro, 2023). CTS can be 

observed throughout the lifespan (Bertels et al., 2023), from newborns 
(Menn et al., 2022; Ortiz-Barajas, Guevara and Gervain, 2023) to older 
adults (Henry et al., 2017). Furthermore, atypical CTS has been asso-
ciated with language impairments, as evidenced by studies on hearing 
loss (Decruy et al., 2020; Gillis et al., 2022; Kurthen et al., 2021), 
stroke-related or dementia-related aphasias (Dial et al., 2021; Kries 
et al., 2023; Quique et al., 2023), dyslexia (Lizarazu et al., 2015, 2021a, 
Lizarazu et al., 2021b; Molinaro et al., 2016; Lallier et al., 2017, 2018; 
Rios-López et al., 2017; Schwarz et al., 2024) and specific language 
impairments (Kaganovich et al., 2014). 

CTS can be measured using time-sensitive imaging methods in 
neuroscience, such as invasive and non-invasive EEG or MEG, and can be 
observed at the single-trial level (Horton et al., 2014; O’sullivan et al., 
2015). Because of the unique rhythmic patterns in the speech signal, CTS 
is commonly evaluated using undirected connectivity measures in the 
frequency domain. The connectivity methods used to estimate the CTS 
vary significantly (Bastos and Schoffelen, 2016), and some of them have 
already been compared in previous studies (David, Cosmelli and Friston, 
2004; Kreuz et al., 2007; Quiroga et al., 2002; Gross et al., 2021). For 
example, in Gross et al., 2021, various connectivity methods (such as 
phase-locking value, Gaussian-Copula mutual information, Rayleigh 
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test, weighted pairwise phase consistency, magnitude squared coher-
ence, and entropy) were contrasted for their impact on CTS estimation in 
participants engaged in speech perception during a MEG recording. The 
findings from Gross et al. (2021) highlighted that the weighted pairwise 
phase consistency (WPPC) and Gaussian-Copula mutual information 
(GCMI) consistently exhibited superior performance over the other 
metrics for assessing CTS, suggesting a substantial impact of the chosen 
method on CTS sensitivity. Yet, another crucial step in computing CTS is 
the method used for extracting the speech envelope. Among the 
frequently employed methods in CTS research, we can find the absolute 
value of Hilbert transform (absHilbert) (Hilbert, 1912), the gammatone 
filterbanks (Biesmans et al. 2017), the heuristic approach (Jarne, 2018), 
the Bark scale (Zwicker et al., 1979; Zwicker and Terhardt, 1980; Oga-
nian and Chang, 2019), and the vocalic energy (Tilsen and Arvaniti, 
2013). These methods utilize distinct mathematical and physical ap-
proaches to extract the speech envelope, therefore stressing different 
aspects of the speech signal. This decision is key in CTS studies as it 
involves aligning the speech envelope with the neural signals. 

The Hilbert transform is a mathematical operation that, when 
applied to the speech signal, produces a complex analytic signal that 
contains information about both amplitude (or envelope) and phase. 
The simplicity of the Hilbert transform makes it the most used method in 
CTS studies when extracting the speech envelope (e.g., O’Sullivan et al., 
2015; Assaneoet al., 2019; Braiman et al., 2018; Molinaro and Lizarazu, 
2018). Gammatone filterbanks decompose the speech signal into spectral 
channels by using spaced filters within the human auditory range. The 
output signals from each gammatone filter are subsequently combined 
to derive the speech envelope (Biesmans et al. 2017). While the funda-
mental methodology of the gammatone filterbanks remains consistent, 
there is a notable degree of freedom in the chosen parameters across 
studies (e.g., number of filters, order, and weighting assigned to each 
filter) (Darling, 1991). Gammatone filterbanks provide a more biologi-
cally inspired method and demonstrate robustness to noise, but it in-
volves a more complex computation compared to the absHilbert. The 
heuristic approach method, introduced by Jarne in 2018, relies on peak 
detection algorithms and also offers a faster and simpler alternative to 
gammatone filterbanks for extracting the speech envelope. It involves two 
steps: first, taking the absolute value of the speech signal; second, 
dividing the absolute signal into non-overlapping slots with a predefined 
window length and performing peak detection. This approach resembles 
simple signal rectification methods and is proposed to avoid attenuation 
typically observed when the absHilbert is applied to natural sounds like 
speech or music (Caetano and Rodet, 2011; Jarne, 2018). The Bark scale 
method implies filtering the signal according to the Bark scale, a fre-
quency scale that mirrors the human ear’s response (Zwicker and Ter-
hardt, 1980) and subsequently averaging across all bands (Oganian and 
Chang, 2019). This methodology resembles the gammatone filterbanks 
approach, with the distinction that the Bark scale method directly em-
ploys filters based on perceptual frequency spacing, while gammatone 
filterbanks utilize filters inspired by the physiological structure of the 
cochlea. Ultimately, the method developed by Tilsen and Arvaniti in 
2013, referred to as the vocalic energy, extracts the speech envelope by 
assigning greater importance to the presence of vocalic energy 
compared to consonantal energy. To achieve this, the speech signal 
undergoes bandpass filtering within the frequency range of 500 Hz to 
4000 Hz. The lower cut-off frequency (500 Hz) significantly attenuates 
the impact of the fundamental frequency, making voiced and voiceless 
consonants more alike while distinguishing them from vowels, as vowel 
formant energy is retained within this frequency range. Simultaneously, 
the higher cut-off frequency (4000 Hz) reduces the contribution of 
high-frequency bands related to fricatives and bursts, preventing their 
representation as prominent peaks in the envelope. For all these 
methods, typically, the final step in calculating the speech envelope 
involves applying a low-pass filter with a cut-off frequency between 10 
and 15 Hz. 

Importantly, the method used for speech envelope extraction affects 

CTS itself, potentially influencing the study’s conclusions and dimin-
ishing the comparability of results across different studies. Biesmans 
et al. (2017) conducted a comparative analysis of envelope extraction 
techniques within the context of auditory attention decoding. Their 
study revealed that classification performance increases with "auditor-
y-inspired modifications," such as gammatone filterbanks, in contrast to 
more straightforward methods like half-wave rectification (e.g., Dellwo 
et al., 2015; Kolly and Dellwo, 2014) or the absHilbert for analytic signal 
extraction (e.g., Gervain and Geffen, 2019). The implications of Bies-
mans et al.’s (2017) findings suggest that not all speech envelope 
extraction procedures are equally sensitive in the investigation of the 
CTS. 

The present study tackles the lack of consensus in speech envelope 
extraction methods, posing challenges for CTS research interpretation, 
replicability, and cross-study comparisons. Through a systematic 
investigation of diverse methods, this study aims to enhance CTS 
robustness and establish a standardized methodological foundation for 
future studies in the field. In our study, we conducted a comprehensive 
analysis of intracranial EEG (iEEG), MEG, and EEG data, which were 
recorded during continuous speech presentations. This extensive ex-
amination included EEG recordings with clear speech and varied back-
ground noise levels, encompassing a range of stimulus lengths, types, 
and languages. This approach allowed us to robustly test the method 
across diverse auditory environments and to evaluate the effects of 
different experimental conditions on CTS. We systematically assess five 
standard envelope extraction methods: absolute value of Hilbert trans-
form (absHilbert), gammatone filterbanks, heuristic approach, Bark scale, 
and vocalic energy, analyzing their influence on CTS at both the group 
and individual levels. For transparency and reproducibility, our analysis 
scripts and data are publicly available on the Open Science Framework 
(https://osf.io/gtsa5/). 

2. Methods 

For our clear speech analysis, we utilized three datasets: intracranial 
electroencephalography (iEEG), accessible here: https://openneuro. 
org/datasets/ds004703/versions/1.1.0 (Mai et al., 2024), magnetoen-
cephalography (MEG) from Destoky et al., 2019, and an EEG dataset 
detailed by Molinaro et al., 2021. For speech in noise, we used an EEG 
dataset available at https://osf.io/b9wdp/ (Mohammadi et al., 2023). 

Participants 
Clear speech 
iEEG: Ten adult participants, including 4 women, were involved in 

the experiment, with an average age of 32 ± 11 years (mean ± SD). All 
participants from UC San Diego Health underwent intracranial stereo 
EEG and subdural electrode implantation as part of their treatment for 
refractory epilepsy or related conditions. All participants were native 
English speakers, reporting normal hearing (self-reported) and scored 
within the normal range on a series of neuropsychological language 
tests. The research protocol received approval from the UC San Diego 
Institutional Review Board, and all subjects provided written informed 
consent before surgery. 

MEG: Ten healthy adult participants, including 5 women, were 
involved in the experiment, with an average age of 25 ± 4 years (mean 
± SD). All participants were native French speakers and had no history 
of developmental, neurological, or psychiatric disorders. Normal hear-
ing was confirmed through pure tone audiometry. The study received 
approval from the Ethics Committee of CUB Hôpital Erasme (Brussels, 
Belgium), and participants provided written informed consent. 

EEG: The experiment involved twenty-five participants, among 
whom thirteen were females, with an average age of 41 ± 5 years. All 
participants were native Spanish speakers and had no documented his-
tory of developmental, neurological, or psychiatric disorders, and 
exhibited normal hearing abilities. The Ethical Committee of the Basque 
Center on Cognition Brain and Language (BCBL) granted approval for 
the experiment, adhering to the principles outlined in the Declaration of 
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Helsinki, and all participants provided written informed consent. 
Speech in noise 
EEG: Thirty-one healthy native Danish speakers, including 13 

women, with an average range of 24 ± 3 were recruited, all with normal 
hearing and no history of neurological, psychiatric illness, or use of 
psychotropic medication. Written informed consent was obtained from 
all participants, who were also financially compensated for their 
involvement. The study adhered to the principles of the Declaration of 
Helsinki and received approval from the ethics committee of Northern 
Jutland, Denmark. 

Stimuli and task 
Clear speech 
iEEG: Participants were instructed to attentively listen to succinct 

excerpts of conversational American English speech obtained from the 
Buckeye Corpus (Fosler-Lussier et al., 2007). To assess task engagement, 
participants orally responded to a two-alternative question concerning 
the content of each passage immediately after listening to it. The pas-
sages, from 27 native speakers (12 women, 15 men), lasted 25–76 s 
(mean 38 s). Monophonic recordings were captured using a 
head-mounted microphone (Crown CM-311A) and directed to a DAT 
recorder (Tascam DA-30 MKII) at a 48 kHz sampling rate via an 
amplifier (Yamaha MV 802). Subsequent to each excerpt, participants 
were presented with a two-alternative choice question regarding the 
heard passage, prompting an oral response to confirm attentiveness. The 
questions were recorded using a Blue Yeti USB microphone, sampling at 
a rate of 48 kHz, by a native American English speaker. Experimental 
instructions and stimuli were presented to participants in their hospital 
rooms using PsychoPy for Python 2.7 (Peirce, 2009) on a Windows 10 
desktop PC (Dell XPS 8910). All stimuli were presented at − 20 dB (dB) 
full scale. The task comprised six blocks, each containing eight English 
trials, with each trial featuring a short spoken passage, a content ques-
tion, and an oral response. 

MEG: The speech stimuli comprised six 5-minute French stories, read 
aloud by different speakers (3 males and 3 females). Stimuli were pre-
sented at approximately 60 dB through a MEG-compatible 60 × 60 cm2 

high-quality flat panel loudspeaker (Panphonics SSH sound shower, 
Panphonics), located around 2.7 m away and facing the subjects. 
Following the story, participants were asked 16 questions about the 
story they attended. 

EEG: We obtained a 14-minute recording of a text being read by a 
Spanish native male speaker, which was digitized at a sampling rate of 
44.1 kHz using a digital recorder (Marantz PMD670). The audio files (*. 
wav) were segmented using Praat (Boersma, 2007). The reader was 
unaware of the experiment’s purpose. Participants were directed to as-
sume a comfortable seated position facing the computer screen and were 
instructed to minimize movements during recording. They were 
instructed to focus their gaze on a fixation cross while attentively 
listening to the stimuli, without the need to engage in any additional 
tasks. Stimuli were delivered via loudspeakers at a sound pressure level 
of 80 dB Sound Pressure Level using Psychopy (Peirce, 2009). 

Speech in noise 
EEG: The stimuli were a series of disconnected sentences. The speech 

stimuli utilized in this study were sourced from the Dantale II database 
(Wagener et al., 2003), which comprises 150 sentences. Each sentence 
was generated by a random combination of the alternatives of a base list. 
The base list consisted of ten sentences, each structured with a subject, 
verb, numeral, adjective, and object, ensuring syntactical consistency 
while introducing semantic unpredictability (e.g., "Ulla owns five red 
jackets" in English). All sentences were audibly recorded by a female 
native Danish speaker at a sampling rate of 44.1 kHz. Their durations 
ranged from 1.85 s to 2.52 s, with an average of 2.22 s ± 0.12 s. 

The experiment comprised four blocks, each assigned a randomly 
determined Signal-to-Noise Ratio (SNR) level (− 9 dB, − 6 dB, − 3 dB, 
0 dB). This was achieved by adjusting the intensity of the speech while 
maintaining a constant background noise level. The speech-shaped noise 
was tailored to mimic the long-term power spectrum of speech. SNR was 

computed as the ratio of the power of the speech signal to the power of 
the background noise. Intensity adjustments for the speech at different 
SNRs were performed using MATLAB, which also served as the platform 
for audio presentation. The volume levels were calibrated based on the 
comfort assessments of a small group of normal-hearing individuals. 
Notably, none of the participants reported discomfort with the volume 
levels. Within each block, 25 trials were conducted. Each trial 
commenced with a 3-second background noise segment, followed by a 
random interval of 0–1 second, during which participants focused on a 
fixation cross displayed on a screen in front of them. Subsequently, a 
stimulus was presented wherein speech was delivered amidst back-
ground noise. Following the speech presentation, the fixation cross 
remained on screen while background noise persisted for approximately 
3 s. Subsequently, a response interval ensued, during which all items 
from the base list appeared on the screen in a 10 × 5 grid (word ×
category). Participants utilized a mouse to select the words in the order 
they were heard. After each block of 25 trials, participants rated their 
level of listening effort on a scale of 1 to 10 using the NASA Task Load 
Index (Hart and Staveland, 1988), followed by a 3-minute rest period. 
The experiment was programmed using custom code in MATLAB 
(R2021b, MathWorks Inc.). Sound playback was facilitated through a 
soundcard (Scarlett 2i2 2nd Gen), and presentation was controlled using 
the Psychophysics Toolbox (PTB-3). The audio signal was delivered 
diotically via insert-earphones (a-JAYS Three). Prior to commencing the 
main experiment, participants were exposed to sample speech in each 
condition and were familiarized with all procedures. 

Data acquisition and preprocessing 
Clear speech 
iEEG: Intracranial EEG during speech listening was amplified utiliz-

ing a multi-channel amplifier system (Natus Quantum) and recorded 
through Natus NeuroWorks software. For all patients, a scalp electrode 
was used for referencing and ground. Depth electrodes were manufac-
tured by Ad-Tech and were Spencer Probe depth electrodes. Each elec-
trode has 10 leads evenly spaced 3–7 mm apart. Simultaneous recording 
of auditory stimuli and oral responses was achieved by incorporating the 
output of a Zoom H2n microphone as an additional input channel to the 
Natus Quantum amplifier. 

Pre-operative T1-weighted magnetic resonance (MR) sequences 
were co-registered with post-operative axial non-contrast CT scans slices 
using Statistical Parametric Mapping (SPM) 12.2 (Friston, 2003). Macro- 
and microelectrodes were automatically localized on the fused image 
and manually adjusted using LeGUI software (Davis et al., 2021). Elec-
trode positions were warped into Montreal Neurological Institute (MNI) 
152 space for assignment of electrodes to the nearest region of interest in 
the Automated Anatomical Labeling (AAL) atlas. We used the BrainView 
software (Xia, Wand and He, 2013) for the spatial visualization of 
electrodes in the MNI space. 

After recording, neural data were exported from the clinical Neuro-
Works system in .edf (European Data Format) format. Pre-processing 
was conducted using the Python package MNE Python (Gramfort 
et al., 2013). A total of 45 channels displaying excessive artifacts or line 
noise were removed. The remaining channels were common average 
referenced, notch filtered at 60 Hz and its harmonics and bandpass 
filtered in the range of 0.1–170 Hz. 

MEG: During the presentation of the story, participants’ brain ac-
tivity was recorded using MEG at the CUB Hôpital Erasme. The MEG 
system used was a whole-scalp-covering system called Triux, manufac-
tured by Elekta. The MEG sensor array consisted of 306 sensors arranged 
in 102 triplets, with each triplet comprising one magnetometer and two 
orthogonal planar gradiometers. The recordings took place in a light-
weight magnetically shielded room known as Maxshield, also manu-
factured by Elekta. MEG signals were band-pass filtered within the 
frequency range of 0.1 – 330 Hz and sampled at a rate of 1000 Hz. EEG 
signals, on the other hand, underwent a low-pass filtering at 450 Hz and 
were also sampled at 1000 Hz. The participants’ head position 
throughout the experiment was monitored using four head-position 
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indicator coils. Before the MEG session, an electromagnetic tracker 
(Fastrack, Polhemus) was employed to digitize the location of these coils 
and a minimum of 300 points on the head’s surface (including the scalp, 
nose, and face) concerning anatomical fiducials. The MEG data under-
went initial offline preprocessing using the temporal signal space sepa-
ration method within the MaxFilter software (MaxFilter, Neuromag, 
Elekta; correlation limit 0.9, segment length 20 s) to eliminate external 
interferences and rectify head movements (Taulu and Simola, 2006). To 
mitigate physiological artifacts in MEG data, 30 independent compo-
nents underwent evaluation from data band-pass filtered within the 0.1 
– 25 Hz range and reduced to a rank of 30 using principal component 
analysis. We successfully identified and isolated the components asso-
ciated with electrocardiogram (ECG) and electrooculogram (EOG) arti-
facts. The corresponding MEG signals were reconstructed by subtracting 
them from the complete-rank data through the mixing matrix. Across 
subjects and conditions, an average of 2.3 ± 1.0 components (mean ±
SD) were rejected. Sections of data within a 1-second timing around 
remaining artifacts were marked as bad. Data were flagged as contam-
inated by artifacts when MEG amplitude reached at least 5 pT in a 
magnetometer or 1 pT/cm in a gradiometer. 

EEG: EEG data were collected using a BrainAmp amplifier and 
BrainVision Recorder software (Brain Products, Germany). EEG signals 
were recorded from 32 electrodes positioned according to the interna-
tional 10–20 system. To maintain high-quality EEG recordings, scalp- 
electrode impedance was kept below 5 kΩ for scalp electrodes and 
under 10 kOhm for reference and EOG electrodes.The experiment was 
conducted in a room equipped with electromagnetic shielding. Data 
were sampled at a rate of 1000 Hz and band-pass filtered online from 0.1 
to 1000 Hz. The recording reference was electrode FCz, and offline re- 
referencing was performed to the average of the left and right mas-
toids. Electrode AFz served as the ground. Additionally, two electrodes 
placed at the outer canthi of the eyes recorded horizontal eye move-
ments, while two electrodes positioned above and below the left eye 
monitored vertical eye movements. 

ECG and EOG artifacts were identified using Independent Compo-
nent Analysis (ICA) and subsequently subtracted from the recordings in 
a linear fashion. The ICA decomposition was conducted utilizing the 
Infomax algorithm as implemented in the Fieldtrip toolbox (Oostenveld 
et al., 2011). The number of removed components associated with 
heartbeat and ocular artifacts varied among participants, ranging from 1 
to 2 for heartbeat components and 1 to 3 for ocular components. 
Additionally, visual inspection of the recordings was performed to detect 
bad channels, which were substituted with interpolated values 
computed as the average of the neighboring electrodes obtained through 
the triangulation method implemented in Fieldtrip. 

Speech in noise 
EEG: The EEG data were collected using a g.HIamp biosignal 

amplifier (g.tec medical engineering GmbH, Austria), equipped with 64 
channels. Electrodes were positioned on a cap following the 10–20 in-
ternational system. Sampling of EEG signals occurred at a rate of 1200 
Hz, with the left earlobe (A1) serving as the reference point. Throughout 
the recording process, electrode impedances were maintained below 5 
kOhm. The experiment took place within an electromagnetically shiel-
ded room. 

ECG and EOG artifacts were detected using ICA and then subtracted 
from the recordings linearly. ICA decomposition was conducted using 
the Infomax algorithm within the Fieldtrip toolbox. The number of 
heartbeat and ocular components removed varied across participants, 
ranging from 1 to 4 and 1 to 3 components, respectively. Trials were 
visually inspected to remove residual artifacts and faulty channels were 
substituted with interpolated values derived from neighboring elec-
trodes using the triangulation method in Fieldtrip. Following the in-
spection of EEG data, six participants were removed from the analysis 
due to poor data quality, leaving 25. 

Speech envelope extraction method 
In this study, we utilized five methods for extracting the speech 

envelope, chosen for their common use in disciplines like linguistics, 
neuroscience, and other speech sciences. The following is a concise 
description of each method:  

1- Absolute value of Hilbert transform (absHilbert): The speech envelope 
was obtained by applying the hilbert transform to the broadband 
speech signal. The amplitude envelope, which represents the 
instantaneous amplitude, is then obtained by taking the absolute 
value of the analytic signal. (e.g., O’Sullivan et al., 2015; 
Assaneoet al., 2019; Braiman et al., 2018; Molinaro and Lizarazu, 
2018). 

2- Gammatone filterbanks: Speech envelopes were derived using gam-
matone filterbanks, followed by a power-law operation that emulated 
the compressive response of the inner ear (Biesmans et al., 2027). 
The filter bank comprised 15 perceptually uniform gammatone fil-
ters, each having an equivalent rectangular bandwidth of 1.5, and 
center frequencies spanning from 150 Hz to 4 kHz. The output from 
each filter was subjected to full-wave rectification and power-law 
compression (i.e., taking the absolute value and raising it to the 
power of 0.6). The resulting sub-band envelopes were then averaged, 
yielding a consolidated single envelope.  

3- Heuristic approach: The initial step involved computing the absolute 
value of the signal, which was segmented into non-overlapping in-
tervals using a 250 ms moving window. Peak detection was then 
executed by replacing all values within each signal interval with the 
maximum value found within that specific interval (Jarne, 2018).  

4- Bark scale: The process involves square-rectifying the signal within 
specific filter banks, defined according to the Bark scale (Zwicker 
et al., 1979; Zwicker and Terhardt, 1980). Subsequently, the 
computation of the averaged signal across these bands follows 
(Oganian and Chang, 2019).  

5- Vocalic energy: To derive the speech envelope, we filtered the speech 
signal with a fourth-order bandpass Butterworth filter set at [400, 
4000] Hz, corresponding to the estimated locus of vocalic energy 
(Tilsen and Arvaniti, 2013). 

In each method, the obtained speech envelopes underwent smooth-
ing through zero-phase low-pass filters with a 10 Hz cutoff frequency 
and were subsequently rescaled to a standardized range for ease of 
comparison. In our study, we adopted a shared code from MacIntyre 
et al. (2022), available at the following link: (https://github. 
com/alexisdmacintyre/AcousticLandmarks). 

Cortical tracking of speech analysis 
Cortical Tracking of Speech (CTS) between neural activity from 

iEEG, MEG and EEG data and the output of different envelope extraction 
methods followed a standardized procedure (Gross et al., 2021). 
Numerous neuroimaging studies demonstrate that CTS is a neuronal 
mechanism primarily present in auditory regions (Gross et al., 2013; 
Molinaro et al., 2016; Lizarazu et al., 2021c). Therefore, in the present 
study, we computed CTS from artifact-free data obtained from sensors 
located in temporal brain regions for each technique (Supplementary 
Fig. 1 illustrates the layout of the sensors). 

For iEEG, within the MNI space, we selected electrodes located in the 
superior temporal and mid-temporal gyrus. One patient was excluded 
from the subsequent analyses due to the absence of electrodes implanted 
in temporal brain regions. The analysis of CTS involved a total of 272 
electrodes across the 9 patients, with an average of 27.9 ± 12.1 (mean ±
SD) electrodes. In MEG, the analysis centered on temporal sensors 
located in both the left (0131, 0221, 0141, 1511, 0231, 1541, 1621, 
1521, 1531, and 1641) and right (1311, 1441, 1431, 1341, 2611, 2411, 
2621, 2641, 2431 and 2631) hemispheres. 

Similarly, in both the EEG experiments for clear speech and noisy 
speech, we focused on temporal sensors located in the left hemisphere 
(FT7, FC5, C3, C5, T7, TP7, CP5, and CP3) and right hemisphere (FT8, 
FC6, C4, C6, T8, TP8, CP6, and CP4). 

Subsequently, the weighted pairwise phase consistency (WPPC, 
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Vinck et al., 2010) was employed to assess raw CTS. WPPC was calcu-
lated as the mean of the circular correlation between the phase of neural 
activity in temporal regions and the phase of the corresponding speech 
envelope for each method. Evaluation of WPPC spanned the 0.5 – 10 Hz 
frequency range with 0.5 Hz frequency resolution (following Bourgui-
gnon et al. 2013; Molinaro and Lizarazu 2018; Gross et al., 2021). The 
time-frequency representation of the data (iEEG/MEG/EEG + envelope) 
and the phase angles for WPPC computation were obtained using Fast 
Fourier Transform (FFT). To accomplish this, the multi-taper discrete 
prolate spheroidal sequences (DPSS) with ±2 Hz smoothing were 
employed in time windows of 2 s with 50 % overlap. We chose this 
combination of spectral estimation method and connectivity measure, as 
it enables the optimization of CTS calculation (Gross et al., 2021). 
Following this systematic procedure, WPPC values were obtained for 
each (i) participant, (ii) technique, (iii) hemisphere, and (iv) frequency 
bin below 10 Hz. 

For each technique and envelope extraction method, surrogate CTS 
values were generated by randomly shifting the spectral estimates of the 
envelope signals relative to the M/EEG data, employing circular wrap-
ping around the edges of the time series. Temporal shifting of data was a 
well-established technique for surrogate data generation, as it eradi-
cated any inherent synchronization in the data (Andrzejak et al., 2003; 
Gross et al., 2021) while preserving the autocorrelation structure of the 
signals. The shifting procedure was iterated 200 times, and for each 
iteration, CTS was calculated using the WPPC in the same manner as it 
was employed for calculating the raw CTS. Subsequently, the raw CTS 
values were normalized (z-scored) by subtracting the mean and dividing 
by the standard deviation of the surrogate distribution corresponding to 
each frequency (Lancaster et al., 2018; Schreiber and Schmitz, 2000). 
This beneficial normalization ensured comparability among CTS values 
associated with different speech envelopes. Finally, we computed the 
mean of normalized CTS values within the delta (< 4 Hz) and theta (4 – 8 
Hz) frequency bands, as we expected that CTS would be maximal in 
these bands (Gross et al., 2013; Molinaro and Lizarazu, 2018; Destoky 
et al., 2019; Lizarazu et al., 2021c). 

Statistical analysis 
Clear speech 
We conducted repeated measures ANOVA on the CTS values to 

explore differences between speech envelope methods. The within- 
subject factors included speech Envelope method (absHilbert, gamma-
tone filterbanks, heuristic approach, Bark scale, and vocalic energy), 
while the between-subject factor was Neuroimaging technique (iEEG, 
MEG, and EEG). 

Speech in noise 

Separate repeated measures ANOVAS were performed on the intel-
ligibility and listening effort scores, with SNE level (− 9 dB, − 6 dB, − 3 
dB, 0 dB) as the within-subject factor. Additionally, we computed 
repeated measures ANOVA on the CTS values, with speech Envelope 
method (absHilbert, gammatone filterbanks, heuristic approach, Bark 
scale, and vocalic energy) and SNR level (− 9 dB, − 6 dB, − 3 dB, 0 dB) as 
the within-subject factors. Finally, correlations between the behavioral 
scores and CTS values were computed for each SNR condition separately 
and in combination, using Pearson correlation coefficients. For both 
clear speech and speech in noise conditions, post-hoc analyses were 
conducted employing two-tailed t-tests. To account for multiple com-
parisons, the p-values were adjusted using the Bonferroni correction 
method. 

3. Results 

The first line of Fig. 1 depicts the time evolution of a speech signal (a 
4.5 s phrase); the next lines represent its corresponding speech envelope 
calculated using different methods (i.e., absHilbert, gammatone filter-
banks, heuristic approach, Bark scale, vocalic energy). Significant correla-
tions were observed across all combinations of methods (all rs > 0.69, all 
ps < 0.01). The highest correlation was identified between the gamma-
tone filterbanks and the heuristic approach (r = 0.95), while the lowest 
correlation occurred between envelopes obtained with the heuristic 
approach and vocalic energy (r = 0.69). See Supplementary Fig. 2 for all 
the other combinations and the correlation matrix among speech en-
velopes derived from various methods. 

Clear speech 
The CTS was obtained for each neuroimaging technique (iEEG, MEG 

and EEG) and envelope extraction method across all participants (NiEEG 
= 9; NMEG = 10; N EEG = 25) (left side in Fig. 2) within the frequency 
range 0 - 10 Hz. As expected, the CTS spectrum shows two peaks in the 
delta (<4 Hz) and theta (4 - 8 Hz) frequency bands, regardless of the 
neuroimaging technique and the envelope extraction method. Overall, 
the analysis revealed that the best performance (i.e., the highest CTS 
value) was achieved with gammatone filterbanks, followed by the heuristic 
approach, the absHilbert, the Bark scale, and finally, vocalic energy. For 
the following analyses, we computed the mean CTS values within tem-
poral regions and across delta and theta bands for each neuroimaging 
technique (right side in Fig. 2 and Supplementary Table 1). 

The ANOVA (Envelope method x Neuroimage technique) of the 
mean CTS values showed a main effect of the Envelope method (F 
(4164)=37.39, p < 0.001, η2=0.09). Post hoc tests showed that the 
gammatone filterbanks method exhibited significantly stronger CTS 

Fig. 1. Speech envelope extraction methods. As an example, we use a 4.5-second sentence. Speech signal (black) and envelopes (i.e., absHilbert - green line; gam-
matone filterbanks - red line; heuristic approach - yellow line; bark scale - blue line; vocalic energy - violet line) obtained through the various methods. 
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Fig. 2. CTS values for clear speech. On the left side of Figure A, B and C, we present the spectrogram (1 to 10 Hz frequency range) of the cortical tracking of speech 
(CTS) values (z-scored) for each technique (iEEG, MEG and EEG) and envelope extraction methods (i.e., absHilbert - green line; gammatone filterbanks - red line; 
heuristic approach - yellow line; Bark scale - blue line; vocalic energy - violet line) at sensors covering temporal brain regions. The spatial distribution of the sensors of 
interest is depicted for each technique. On the right side of Figure A, B, and C, boxplots were used to show the average of the CTS values (z-scored) in temporal 
regions within delta and theta bands. Boxplots are overlaid with individual data points. Each dot represents data from one participant. Boxes cover the 25 th to 75 th 
percentile (inter-quartile range; IQR). The middle of the box represents the median. Whiskers extend from the 25 th percentile and 75 th percentile to cover all data 
points lying within 1.5 times the IQR from the 25 th and 75 th percentile respectively. 
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compared to the absHilbert (t = 5.61, pbonf<0.001, Coheńs d = 0.54), 
heuristic approach (t = 3.39, pbonf<0.001, d = 0.33), Bark scale (t = 5.27, 
pbonf<0.001, d = 1.15), and vocalic energy methods (t = 11.86, 
pbonf<0.001, d = 0.51). Likewise, the absHilbert (t = 6.24, 
pbonf<0.001, d = 0.61), the heuristic approach (t = 8.46, pbonf<0.001, 
d = 0.82) and the Bark scale (t = 6.59, pbonf<0.001, d = 0.64) 
demonstrated significantly stronger CTS compared to vocalic energy. We 
also observed a main effect of Neuroimaging technique (F(2,41)=4.14, p 
< 0.02, η2=0.13). Post hoc tests showed that CTS values were higher for 
the iEEG compared to the EEG technique (t = 2.86, pbonf=0.02, d =
1.03). 

The results also reveal a significant interaction between the Envelope 
method and the Neuroimaging technique (F(8164)=4.18, p < 0.001, 
η2=0.02). Fig. 3 shows the statistical results (t-values) comparing CTS 
values for all possible pairs of methods within each neuroimaging 
technique. In iEEG, the gammatone filterbanks method showed notably 
stronger CTS compared to the absHilbert (t = 4.43, pbonf<0.001, d =
0.86), Bark scale (t = 4.14, pbonf<0.001, d = 0.80), and vocalic energy (t 
= 7.28, pbonf<0.001, d = 1.41). Additionally, the heuristic approach 
displayed higher CTS than the vocal energy (t = 4.12, pbonf<0.001, d =
0.80). Noteworthy differences were observed in EEG, with the gamma-
tone filterbanks method showing significantly stronger CTS compared to 
the absHilbert (t = 4.46, pbonf<0.001, d = 0.52), Bark scale (t = 3.68, 
pbonf=0.03, d = 0.43), and vocalic energy (t = 13.22, pbonf<0.001, d =
1.53) methods. Similarly, the absHilbert (t = 8.75, pbonf<0.001, d =
1.02), heuristic approach (t = 10.60, pbonf<0.001, d = 1.23), and Bark 
scale (t = 9.54, pbonf<0.001, d = 1.11) demonstrated stronger CTS 
compared to vocalic energy. In MEG, no significant differences were 
detected in CTS values among different envelope extraction methods (all 
t́s < 2.76, pbonf>0.47, d < 0.48). 

Speech in noise 
The mean intelligibility and mean listening effort scores are shown in 

Fig. 4. A one-way repeated measure ANOVA was conducted to analyze 
potential differences across SNRs in the scores for speech intelligibility 
and listening effort. The findings revealed a significant main effect of 
SNR on both intelligibility (F(3,72)=193.07, p < 0.001, η2=0.89) and 
listening effort (F(3,72)=94.54, p < 0.001, η2=0.80) scores. For the 
intelligibility scores, with the exception of the comparison between 0 dB 
and 3 dB (t = 1.21, pbonf = 1, d = 0.30), all other comparisons revealed 
significant differences (all t́s > 5.33, all pbonf́s < 0.01, all d́s < 1.31), 
indicating higher intelligibility scores for higher SNR levels. For the 
listening effort scores, all comparisons showed statistically significant 
differences (all t́s < 4.98, all pbonf́s < 0.01, all d́s<− 0.99), indicating 
lower listening effort scores for higher SNR levels. 

The CTS was obtained for each SNR level and envelope extraction 
method across all participants (NEEG = 25) within the frequency range 
0 - 10 Hz (left side in Fig. 5). Similar to clear speech, the CTS spectrum 
reveals two prominent peaks within the delta and theta frequency bands, 
irrespective of the SNR level or the method of envelope extraction. 

Subsequently, mean CTS values were computed within temporal sensors 
and across delta and theta bands for each SNR level for further analysis 
(right side in Fig. 5 and Supplementary Table 2). 

The ANOVA analysis (Envelope method x SNR level) of the mean CTS 
values revealed a significant main effect of Envelope method (F(4,96)=
37.34, p < 0.001, η2=0.33). Post hoc comparisons demonstrated that 
the gammatone filterbanks method exhibited notably higher CTS scores 
compared to the absHilbert (t = 3.08, pbonf=0.03, d = 0.35), heuristic 
approach (t = 4.56, pbonf<0.001, d = 0.52), Bark scale (t = 9.44, 
pbonf<0.001, d = 1.08), and vocalic energy methods (t = 10.21, 
pbonf<0.001, d = 1.17). Additionally, the absHilbert method showed 
significantly greater CTS scores compared to both the Bark scale (t =
6.37, pbonf<0.001, d = 0.73) and the vocalic energy (t = 7.13, 
pbonf<0.001, d = 0.82) methods. Similarly, the heuristic approach also 
yielded significantly higher CTS scores compared to both the Bark scale 
(t = 4.88, pbonf<0.001, d = 0.56) and the vocalic energy(t = 5.64, 
pbonf<0.001, d = 0.65) methods. No other main effects or interactions 
were observed on the CTS values. Furthermore, no significant correla-
tions were found between the behavioral scores (i.e., intelligibility and 
listening effort scores) are the CTS values for each SNR level individu-
ally, nor when combining all SNR conditions (all ŕs < 0.2, all ṕs > 0.32) 
(Fig. 6). 

4. Discussion 

Our study investigates the relationship between speech envelope 
extraction methods and their impact on the cortical tracking of speech 
(CTS). We employed iEEG, MEG, and EEG to systematically evaluate five 
standard envelope extraction methods (absHilbert, gammatone filter-
banks, heuristic approach, Bark scale and vocalic energy) on the CTS, 
calculated by the weighted pairwise phase consistency (WPPC, Vinck 
et al., 2010). Overall, we observed a strong correlation in the temporal 
characteristics of the speech envelopes across methods (all rs > 0.69, all 
ps < 0.01). Interestingly, results from different experiments reveal that 
the selection of the envelope extraction method significantly affects the 
CTS, unveiling a notable preference for the gammatone filterbanks, fol-
lowed by the heuristic approach, the absHilbert, the Bark scale, and finally, 
vocalic energy. 

In the analysis of clear speech, the superior performance of the 
gammatone filterbanks method is evident in both iEEG and EEG datasets. 
In both techniques, the gammatone filterbanks method exhibited signifi-
cantly higher CTS values compared to the absHilbert, Bark scale, and 
vocalic energy methods. Conversely, in the MEG dataset, while a similar 
trend was observed, no statistically significant differences in CTS values 
were detected among the methods. This discrepancy in outcomes be-
tween MEG and other neuroimaging techniques may be attributed to the 
smaller sample size (N = 10) in the MEG dataset compared to EEG (N =
25), as well as the inherently lower signal-to-noise ratio in MEG re-
cordings compared to iEEG. For the speech in noise experiment, CTS 

Fig. 3. Statistical comparison of CTS for clear speech. For each neuroimaging technique (iEEG, EEG and MEG), CTS values were compared between amplitude 
extraction methods (absH, absolute of Hilbert transform; GF, gammatone filterbanks; HA, heuristic approach; BS, Bark scale; VE, vocalica energy) using T-tests.For each 
comparison, the T-values and significant (“**” indicates p-value of <0.001, Bonferroni corrected) differences are indicated using an asterisk. 
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values consistently favored the gammatone filterbanks method over other 
envelope extraction methods, regardless of SNR level (e.g., 0, − 3, − 6 
and − 9 dB). Furthermore, another noteworthy point is that we did not 
observe a relationship between the levels of intelligibility and listening 
effort associated with different SNR conditions and the corresponding 
CTS values. The relationship between CTS strength and intelligibility 
remains a subject of debate. Some studies have indicated higher CTS for 
intelligible speech compared to unintelligible speech, while others have 
found no relationship or even an opposite effect (Kösem and Van Was-
senhove, 2017). Further research is needed to shed light on this matter, 
and we believe that our findings will contribute to better characterizing 
this relationship. 

Our findings align with those of Biesmans et al., 2017, who con-
ducted a comparative analysis of envelope extraction methods in the 
context of auditory attention decoding using EEG. Their study revealed 
that the utilization of "auditory-inspired modifications," such as gam-
matone filterbanks, led to an improvement in classification performance 
when compared to more straightforward methods like half-wave recti-
fication (e.g., Dellwo, Leemann and Kolly, 2015; Kolly and Dellwo, 
2014) or the absHilbert (e.g., Gervain and Geffen, 2019). The utilization 
of the gammatone filterbanks in speech envelope extraction offers several 
notable benefits grounded in a biological-based approach. Inspired by 
cochlear mechanics, this filterbank demonstrates efficacy in capturing 
the intricate details of speech signals, mirroring the frequency selectivity 
observed in the auditory system (Irino and Patterson, 1997; Lyon, 2017). 
Its physiological relevance enhances the representation of speech en-
velope information in the brain, providing a more realistic account of 
auditory processing (Huang and Avendano, 2002). The heuristic 
approach (Caetano and Rodet, 2011; Jarne, 2018) is the method that 
most closely resembles the performance achieved with gammatone fil-
terbanks, although, in general, the values of CTS remain smaller. The 
temporal characteristics of the envelope obtained through the heuristic 
approach and the gammatone filterbanks exhibit a substantial overlap, as 
evidenced by a strong correlation (r = 0.95) between these two methods. 
While it is true that computing the envelope through the gammatone 
filterbanks method is more complex compared to the heuristic approach, 
this is justifiable considering the improvement in CTS. The absHilbert 
method for speech envelope extraction is probably the most widely 
employed approach in CTS studies (e.g., O’Sullivan et al., 2015; 
Assaneoet al., 2019; Braiman et al., 2018; Molinaro and Lizarazu, 2018), 
performed more inconsistently compared to the gammatone filterbanks. 
The utilization of the absHilbert for speech envelope extraction presents 
certain challenges and limitations. One notable issue is its sensitivity to 
noise, which can lead to inaccuracies in the extracted envelope 
(Schimmel, 1992). Additionally, the absHilbert may struggle with 

non-stationary signals, impacting its performance in scenarios where the 
speech characteristics vary over time (Rangayyan, 2001). Another 
concern is the potential introduction of phase distortions, especially in 
the presence of abrupt changes in the signal (Boashash, 1992). The Bark 
scale, a widely utilized tool in auditory signal processing, is subject to 
criticism when applied to speech envelope extraction. A notable limi-
tation of the Bark scale is its potential oversimplification of critical 
bandwidths, raising concerns about its ability to accurately represent the 
frequency content in speech signals (Moore and Glasberg, 1983; Zwicker 
and Terhardt, 1980). The Bark scale’s design, which is based on psy-
choacoustic principles, may not provide the necessary granularity to 
accurately capture the intricate frequency characteristics present in 
speech (Greenwood, 1961). This limitation becomes particularly 
apparent in scenarios involving complex acoustic stimuli, such as 
speech, where precise frequency resolution is crucial for comprehensive 
analysis. Finally, we observe that the vocalic energy method yields the 
lowest CTS values. When comparing these values, for instance, with 
those obtained using the gammatone filterbanks method, they decrease by 
half. In fact, the temporal correlation between the envelope obtained 
with the vocalic energy method and the gammatone filterbank (r = 0.72) 
or the heuristic approach (r = 0.69) is the lowest. 

While the application of the absHilbert, the heuristic approach, and the 
vocalic energy is straightforward, gammatone filterbanks and the Bark 
scale are more complex and depend on numerous parameters (e.g., 
number of filters, spacing, order, weighting assigned to each filter), 
which can potentially influence a study. In this case, we strictly followed 
the methodology employed by Biesman et al. for the design of the 
gammatone filterbanks and by Oganian and Chang, 2019, for the Bark 
scale filters. Investigating whether alternative filter parameters modify 
the classification of methods based on performance in CTS evaluation 
would be highly interesting. 

Our analysis revealed that the CTS is significantly affected by the 
speech envelope extraction method. Among all the methods investi-
gated, gammatone filterbanks consistently exhibit superior performance 
in CTS estimation. The choice of a specific method becomes particularly 
significant when dealing with noisy neurophysiological data, as is often 
the case in studies involving children and the elderly, or when the data 
length for CTS calculation is limited. 

Our study strategically employed varying stimuli lengths, types, and 
languages across different recording methods (iEEG versus MEG/EEG) 
to robustly test the method. This diversity in experimental conditions is 
a deliberate design choice that highlights the strength of our research. It 
allows us to consistently demonstrate that the effects on cortical tracking 
are stable across various auditory contexts and diverse subject groups, 
underscoring the reliability and wide applicability of our findings. 

Fig. 4. Behavioral responses for speech in noise. (A) The intelligibility of scores increases with increasing SNR. (B) The listening effort score decreases with 
increasing SNR. Boxplots are overlaid with individual data points. Each dot represents data from one participant. Boxes cover the 25 th to 75 th percentile (inter- 
quartile range; IQR). The middle of the box represents the median. Whiskers extend from the 25 th percentile and 75 th percentile to cover all data points lying within 
1.5 times the IQR from the 25 th and 75 th percentile respectively. 
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Furthermore, our analysis incorporated a comprehensive range of 
datasets, including EEG, MEG, and intracranial EEG, as well as datasets 
with clear speech and EEG data at different background noise levels. 
These varied datasets reinforce the generalizability of our conclusions, 
showcasing the robustness of our approach in diverse experimental 
settings. 

Among the notable limitations of our study, the constrained number 
of participants, particularly in the iEEG and MEG techniques, stands out 
prominently,and the lack of audiometric data for iEEG subjects. Future 
studies could benefit from recruiting a larger, more diverse group and 
including audiometric testing for all participants. Expanding the sample 
size holds promise for enhancing alignment among the results derived 
from the various techniques employed. Another significant consider-
ation is the choice of measure utilized to evaluate Cortical Tracking of 
Speech (CTS); we selected weighted pairwise phase consistency (WPPC) 
due to its optimization of CTS, as demonstrated by Gross et al. (2013). 
Each connectivity method exhibits sensitivity to distinct properties of 
EEG and speech signals, thus warranting investigation into whether a 
consistent hierarchy in envelope extraction methods persists across 
alternative approaches, such as phase-locking value, Gaussian-Copula 
mutual information, Rayleigh test, magnitude squared coherence, and 
entropy. Furthermore, our study primarily concentrated on analyzing 
CTS within temporal regions, a focus supported by previous research (e. 
g., Gross et al., 2013; Lizarazu et al., 2021c). However, evidence sug-
gests CTS extends to frontal regions like the inferior frontal gyrus 
(Molinaro et al., 2016), raising questions about generalizability to other 
brain regions. Lastly, exploring if the observed effects extend to other 
linguistic stimuli or languages would be intriguing. While our investi-
gation centered on CTS in continuous speech (with or without noise), it 
remains uncertain if these effects replicate across stimuli such as words, 
syllables, or phonemes. Additionally, although our study encompassed 
Spanish, Danish, English, and French, examining the generalizability of 
effects to other languages would be advantageous. 

To ensure transparency and reproducibility, our analysis scripts and 
the iEEG, MEG, and EEG data are openly accessible on the Open Science 
Framework (https://osf.io/gtsa5/). This availability enables the testing 

of novel envelope extraction methods or modifications to those pre-
sented here, allowing for an in-depth exploration of their performance in 
CTS analysis. 
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Fig. 5. CTS values for speech in noise. On the left side, we present the spectrogram of the CTS values for each SNL level (0 dB, − 3 dB, − 6 dB and − 9 dB) and envelope 
extraction methods. The spatial distribution of the sensors of interest is also included. On the right side, boxplots were used to show the average of the CTS values (z- 
scored) in temporal regions within delta and theta bands. Boxplots are overlaid with individual data points. Each dot represents data from one participant. Boxes 
cover the 25 th to 75 th percentile (inter-quartile range; IQR). The middle of the box represents the median. Whiskers extend from the 25 th percentile and 75 th 
percentile to cover all data points lying within 1.5 times the IQR from the 25 th and 75 th percentile respectively. 

Fig. 6. Statistical comparison for speech in noise. CTS values were compared 
between amplitude extraction methods (absHilbert, absolute of Hilbert transform; 
GF, gammatone filterbanks; HA, heuristic approach; BS, Bark scale; VE, vocalica 
energy) across all SNR conditions using T-tests. For each comparison, T-values 
are reported, and significant differences are indicated using an asterisk (“*” 
indicates p-value of <0.05, “**” indicates p-value of <0.001, Bonfer-
roni corrected). 
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