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Abstract

This document presents the research carried out by the student Imanol Miranda during his
master’s thesis.

The emergence of Transformer architectures, pretrained models and multimodal data
problems have generated new challenges to solve. One of the most popular in recent years
is the visual-linguistic task Visual Question Answering (VQA). Several variants of this
task have emerged, one of them being the Outside Knowledge Visual Question Answering
(OK-VQA) task, on which our research will focus. This task adds the complexity that the
answer to the question does not appear explicitly in the image, and an external source
of knowledge is needed to answer the question. Once the different proposals have been
analyzed, the Caption Based Model (CBM) that will serve as the basis for the development
is presented.

After the problem has been introduced, the proposals are presented, divided into two
groups. On the one hand, a multilabel leveraging technique that can be used in multilabel
tasks that have optimal and suboptimal solutions, improvingmodel learning. This technique
introduces the concept of balance between exploration and exploitation by means of a
frequency distribution based on the proportion in which the solutions appear in the ground
truth.

On the other hand, different image verbalization approaches are analyzed and compared.
First, using an object detector, the objects and attributes that appear in an image are obtained.
Thus, in addition to providing the CBMmodel with the image caption (where general image
information is represented), we also provide object and attribute information (representing
image details). In this way, the balance between general and detailed information is
improved. Secondly, due to memory limitations, several reranking systems based on
Sentence Similarity and Object bounding box area are presented. These systems seek to
improve the quality of the information we pass to the model with respect to the question.

After several experiments, we conclude that the new multilabel leverage technique
improves model learning by maintaining the number of optimal solutions and increasing
the number of suboptimal solutions generated. Also, providing more information to the
model improves the results, both by adding attributes to the objects, and by increasing the
number of objects. The reranking system based on Object bounding box area gets the best
results, reinforcing the idea that the questions focus on objects clearly represented in the
image.

Keywords: Transformers, multimodal, OK-VQA, CBM, multilabel leverage technique,
object detection, reranking system.
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Laburpena

Dokumentu honetan Imanol Miranda ikasleak master amaierako lanean egindako ikerketa
aurkezten da.

Transformer arkitekturak, aurrez entrenatutako ereduak eta datumultimodalak dituzten
arazoen sorrerak erronka berriak sortu ditu konpontzeko. Azken urteotako ezagunene-
tako bat Visual Question Answering (VQA) ataza da. Bertan, irudi bat eta galdera bat
emanda, erantzun egokia bilatu behar da. Ataza honen hainbat aldaera sortu dira, horietako
bat Outside Knowledge Visual Question Answering (OK-VQA) izanik, non gure ikerketa
oinarrituko den. Ataza honek konplexutasuna areagotzen du galderaren erantzuna irudian
esplizituki ez baita agertzen, eta galderari erantzun ahal izateko kanpoko ezagutza iturri
bat behar baita. Ataza ebazteko proposamen ezberdinak aztertu ondoren, gure garapenaren
oinarri izango den Caption Based Model-a (CBM) aurkezten da.

Behin arazoa azalduta, bi taldetan banatuta aurkezten dira lan honetan egindako ekarpe-
nak. Alde batetik, etiketa anitzeko aprobetxamendu teknika, soluzio optimoak eta azpi-
optimoak dituzten etiketa anitzeko atazetan erabil daitekeena, ereduen ikaskuntza hobetuz.
Teknika honek esplorazioaren eta esplotazioaren arteko orekaren kontzeptua erabiltzen du
maiztasun-banaketa baten bidez, soluzioak agertzen diren proportzioan oinarrituta.

Bestalde, irudiak berbalizatzeko planteamendu desberdinak aztertu eta alderatzen dira.
Lehenik eta behin, objektu detektore bat erabiliz, irudi batean agertzen diren objektuak eta
atributuak lortzen dira. Horrela, CBM ereduari irudiaren goiburukoa emateaz gain (non
irudiaren informazio orokorra errepresentatzen den), objektu eta atributuen informazioa
ere ematen diogu (irudiaren xehetasunak errepresentatuz). Modu horretara informazio
orokorraren eta zehatzaren arteko oreka hobetzen da. Bigarrenik, memoria murriztapenak
direla eta, esaldiaren antzekotasunean eta objektuen kutxa mugatzaileen azaleran oinar-
ritutako hainbat sailkapen-sistema aurkezten dira. Sistema hauek ereduari pasatzen diogun
informazioaren kalitatea hobetzea dute helburu.

Hainbat esperimenturen ondoren, etiketa anitzeko aprobetxamendu teknika berriak
ereduaren ikaskuntza hobetzen duela ondorioztatzen dugu, soluzio optimoen kopurua
mantenduz eta sortutako soluzio azpi-optimoen kopurua handituz. Era berean, ereduari
informazio gehiago emateak emaitzak hobetzen ditu, bai objektuei atributuak gehituz,
baita objektu kopurua handituz ere. Objektuen kutxa mugatzaileen azaleran oinarritu-
tako sailkapen-sistemak emaitza onenak lortzen ditu, galderak irudian argi irudikatutako
objektuetan oinarritzen direlako ideia indartuz.

Hitz gakoak: Transformer, multimodala, OK-VQA, CBM, etiketa anitzeko aprobetxam-
endu teknika, objektu detektagailua, sailkapen-sistema.
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CHAPTER 1
Introduction

The globalization of the Internet, the evolution of deep learning architectures and pretrained
models have created new challenges for Artificial Intelligence. One of them is Multimodal
Learning, a vibrant multidisciplinary field of growing importance and extraordinary poten-
tial [1]. These are problems with different types of input [1, 2, 3] such as text and images.
This is where tasks like image captioning, text2image and Visual Question Answering
(VQA) [4] are born.

We will focus on the VQA task, as it is the root of our research task. VQA task uses as
input an image and a question in natural language to obtain an answer. Multiple variants
arise from this task, such as Outside Knowledge Visual Question Answering (OK-VQA)
[5], with the extra challenge of needing an external source of information to answer the
question.

The OK-VQA task provides a dataset made up of questions and images to use as a
benchmark. The main approaches are based on multimodal transformers [6, 7]. There are
two main categories, single-stream and dual-stream [8]. Single-streams use object detectors
to obtain the image features and then concatenate the visual and textual representations
and provide them to the language transformer to generate a prediction, such as VisualBERT
and OSCAR. On the other hand, in the dual-stream, two blocks of independent transformers
are used, one for the visual part and the other for the linguistic part, such as ViLBERT and
LXMERT. For both transformers to communicate, cross-attention is used.

The research on the Caption-Based Model (CBM) [9], observes that a text-only model,
using the image caption and the knowledge gained by the language model during pretrain-
ing, equals the state-of-the-art. In our research, the model proposed in the CBM will be
used as a basis. The contributions of this work can be divided into two parts: (i) a technique
to leverage multilabel annotations, and (ii) a comparison of different image verbalization
approaches. As the first contribution, a multilabel leverage technique is proposed. This
technique seeks to improve the learning of models in multilabel problems where optimal
and suboptimal solutions are available. To do this, a frequency distribution is used to
introduce the concept of balance between exploration and exploitation when choosing an
answer during training.
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1. Introduction

As the second contribution, two proposals related to image verbalization are analyzed.
The first proposal continues with the philosophy proposed in CBM, seeking to complete
the information provided to the model by adding an object detection system. This object
detection system will return to the model the objects and attributes present in the image.
The idea of adding an object detection system comes from two concepts: image captioning
systems generate a general description of the image, without too much detail, and object
detection instead, provides details of the image but without taking into account the rela-
tionship between them. The combination of both provides a better balance between general
and detailed information. In the second proposal, since we had limited memory during the
experiments that prevented us from passing all the information to the model, a reranking
system is proposed. Two methods are presented, one based on sentence similarity between
the question and image object-attributes, using FastText [10, 11] embeddings and cosine
similarity [12, 13], and the second selecting the objects based on the bounding box area of
the object from largest to smallest. The second proposal is based on the hypothesis that
questions will refer to bigger objects that are clearly represented in the image.

With the experiments carried out, several conclusions have been reached. The first
is that the proposed multilabel leverage technique is a simple method that improves the
results of all the base models we have implemented. This improvement comes from better
performance in answer generation, maintaining the number of optimal answers generated
but increasing the suboptimal ones. The second conclusion shows that completing the
information of the image caption through objects and attributes improves the basemodel too.
This demonstrates the importance of a balance between general and detailed information.
Finally, through the reranking system it is observed that the more information is better,
both adding attributes to the objects, and when increasing the number of selected objects
(k). Also, in this specific case, the reranking based on the area of the bounding box is the
criterion that works best.
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CHAPTER 2
Background

In this chapter, we will present the background needed to understand this work. To do
so, we will start from the most general concepts, introducing Multimodal Learning and
Typical multimodal tasks. In the latter, we will expose several examples, deepening with
special emphasis on the Visual Question Answering task, introducing different variants of
this task as is the case of OK-VQA. Finally, we will analyze the multimodal systems used
for these tasks.

2.1 Multimodal Learning

Human beings are surrounded by inputs in different modalities, which are linked to our
senses. Such as sight when observing the environment, smells, tastes, sounds we hear or
touch with a surface. It is important to understand that these modalities are also linked to
the way we communicate and understand our environment, for example natural language,
signs or human contact [1].

Traditionally, Artificial Intelligence (AI) projects have been based on a single type of
input, such as image classification or named entity recognition. For AI to progress in
understanding the world around us, like humans, it must be able to interpret and reason
about multimodal data. Increasingly there are problems where more than one type is
needed [1, 2, 3], such as video (audio and images) [3, 14] (Figure 2.1), text and images, etc.
The idea behind multimodal learning is to build models and techniques that can process
and relate information from those different modalities.

Although multimodal learning has been studied over the past few decades, advances in
Deep Learning (DL) in recent years have enabled breakthroughs in Multimodal Learning
(MML). In particular, Transformer [7] architectures achieve very high performance in MML,
which creates new opportunities and challenges, as well as large scale pretrained models
[15]. In addition, the globalization of the Internet has generated new needs and challenges
with multimodal data, making it a vibrant multidisciplinary field of growing importance
and extraordinary potential [1]. This has generated the need to develop multimodal datasets
such as Conceptual Captions [16] and VQA [4] with images and text, TIMIT [17] with
audio and text, NYU Depth Dataset V2 [18] with images and depth, and so on. This last

3



2. Background

dataset shows a new multimodality, different from the previously proposed idea of human
senses. In this case, we have an image modality and a depth modality, but the idea is the
same, through multimodality to better understand the environment.

Figure 2.1: Example of a multimodal model with video and audio. It first obtains the representation
of each input modality and then fuses both representations to obtain a final prediction [3].

Once we have introduced the concept of MML, we will focus on typical multimodal
tasks.

2.2 Typical multimodal tasks

Multimodal tasks are those that use information from multiple modalities, as discussed
above. Although there are numerous multimodal tasks, in this section we will focus on
three related to the project developed: Image captioning, Text2Image and Visual Question
Answering (VQA).

2.2.1 Image Captioning

Image captioning consists of generating a descriptive textual caption that accurately repre-
sents the visual content of an image [19, 20]. This task requires understanding both visual
and textual information, since the system has to accurately describe the objects, actions,
and relationships represented in the image using natural language.

.
Figure 2.2: Example of images and corresponding caption generated by a multimodal RNN [19].

Typically, these models generate a general description of the image without going into
details (Figure 2.2).

4



2.2. Typical multimodal tasks

2.2.2 Text2Image

Text2Image, also known as image synthesis, consists of generating images based on textual
descriptions [21, 22, 23]. That is, something similar to the opposite of image captioning.
Like the previous task, it requires a deep understanding of semantic and visual aspects to
create meaningful and coherent visual representations.

.
Figure 2.3: Example of images generated from descriptions by the GigaGAN model [23].

In this type of task, the prompt we pass to the model is very important (Figure 2.3). For
example, it can happen that a word is ambiguous (Figure 2.4), generating an image that
does not make much sense.

.
Figure 2.4: Ambiguity example of a street and a zebra (left) and a zebra on a gravel road (right)
[24].

5



2. Background

2.2.3 Visual Question Answering (VQA)

Visual Question Answering (VQA) [4] is a multimodal task that uses as input an image and
a natural language question (Figure 2.5), and returns a natural language answer. In addition
to being a multimodal task, it is a multidisciplinary task, as it mixes Computer Vision (CV),
Natural Language Processing (NLP) and Knowledge Representation and Reasoning (KR).

Figure 2.5: Example of input image and various questions from the VQA dataset. As can be seen,
all the answers can be answered only analyzing the image [4].

The most popular VQA dataset is the VQA V2 [25], which we will describe in detail in
the next section.

2.2.3.1 VQA V2 datatset

VQA V2 [25] is an evolution of the original VQA dataset, currently being used as a bench-
mark for the VQA task. The dataset has 265,016 COCO images, where each image is
associated with multiple candidate questions with at least 3 (5.4 questions on average)
per image. These questions (1,105,904 questions in total) cover a wide range of topics
and complexities, including questions that require reasoning, understanding relationships,
counting, etc. Each of the questions has 10 ground truth answers.

Table 2.1: VQA V2 number of questions and images per split and total [25].

Split Train Val Test Total
Questions Images Questions Images Questions Images Questions Images

Number 443,757 82,783 214,354 40,504 447,793 81,434 1,105,904 265,016

As can be seen in Table 2.1, VQA V2 is formed by three different splits, train, validation,
and test.
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2.2. Typical multimodal tasks

2.2.3.2 VQA Score

The VQA [4] task proposes a standard metric called VQA Score (Equation 2.1). The idea
behind this score, is to create a metric that is consistent with human variability in answer
formulation, given that for the same question there may be discrepancies about the “correct”
answer. Therefore, to be consistent with “human accuracies”, the model answers are
averaged over all 10 choose 9 sets of human annotators. That is, to calculate the VQA score,
each annotation is compared with the other 9 annotations to calculate the metric and then
the average of all the results is calculated as the final result.

This metric chooses the minimum between x
3 and 1, where x is the number of times

our answer appears in the 9 annotations. Considering that, the answer of a model is fully
correct when the answer (x) appears at least three times in the answers provided by
the annotators.

acc = min(
x

3
, 1) (2.1)

For example: If our model generates an answer "dog" and the 10 ground truth answers
are: dog, dog, cat, cat, cat, cat, cat, platypus, platypus, penguin. We compare it to the
10 possible subsets of 9 annotators:

• _, dog, cat, cat, cat, cat, cat, platypus, platypus, penguin→ 1
3

• dog, _, cat, cat, cat, cat, cat, platypus, platypus, penguin→ 1
3

• dog, dog, _, cat, cat, cat, cat, platypus, platypus, penguin→ 2
3

• dog, dog, cat, _, cat, cat, cat, platypus, platypus, penguin→ 2
3

• dog, dog, cat, cat, _, cat, cat, platypus, platypus, penguin→ 2
3

• dog, dog, cat, cat, cat, _, cat, platypus, platypus, penguin→ 2
3

• dog, dog, cat, cat, cat, cat, _, platypus, platypus, penguin→ 2
3

• dog, dog, cat, cat, cat, cat, cat, _, platypus, penguin→ 2
3

• dog, dog, cat, cat, cat, cat, cat, platypus, _, penguin→ 2
3

• dog, dog, cat, cat, cat, cat, cat, platypus, platypus, _→ 2
3

Averaging all the results, we obtain the VQA score:

VQA Score = (2·( 1
3
)+8·( 2

3
))

10 = 0.6

2.2.3.3 VQA leaderboard

The most successful approaches for VQA V2 [26] are shown in Table 2.2. All of them are
based on multimodal transformers (explained in Section 2.3) such as PaLI-X and PaLI
[27], a combination of a vision and multilingual transformers, BeiT-3 [28], multiway
transformer, mPlug [29], Vision-Language Learning by Cross-modal Skip-connections,
CoCa [30], image-text encoder-decoder model, and Git2 [31], single image encoder and a
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text decoder. We can see that the best VQA Score is 86.06 obtained by the PaLI-X approach
(Table 2.2), followed by a few approaches that obtain around 84.

Model VQA Score
PaLI-X [27] 86.06
PaLI [27] 84.34
BeiT-3 [28] 84.18
mPlug [29] 84.08
CoCa [30] 82.33
Git2 [31] 81.92

Table 2.2: Overall results of top models of VQA task [26].

2.2.3.4 VQA variants

VQA task has been one of the most popular benchmarks in the CV and NLP community in
recent years. In addition to having challenged research, it has opened up a new horizon.
Since it has been seen that it is not only a task of visual recognition, but also of understanding
the environment and incorporating knowledge about it. From this, new variants of this
task are born, seeking to investigate different aspects.

These variations highlight different challenges and requirements, such as complex
reasoning, text comprehension, external knowledge, and factual knowledge acquisition.
They broaden the scope of VQA research and drive advances in areas such as visual
comprehension, linguistic reasoning, and external knowledge. We list a few of these:

1. GQA (Visual GenomeQuestion Answering): GQA [32] is a variant that focuses on
more complex visual reasoning and understanding. It builds upon the Visual Genome
dataset and contains questions that require detailed scene understanding, spatial
relationships, object properties, and logical reasoning (Figure 2.6). GQA pushes the
boundaries of VQA by emphasizing deep comprehension and reasoning abilities.

Figure 2.6: Example of images and questions in the GQA datasets [32]. As can be seen, the questions
require understanding objects, relationships between objects, attributes, etc.
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2. TextVQA (Text-based VQA): TextVQA [33] is a variant of VQA that requires an-
swering questions based on text present in the image, such as signs, labels, or captions.
Models must read and comprehend the textual information in the image to generate
accurate answers (Figure 2.7).

Figure 2.7: Example of images and questions in the Textvqa datasets [33].

3. FVQA (Fact-based VQA): FVQA [34] focuses on answering fact-based questions
that require knowledge beyond what is visually depicted in the image. Models need
to incorporate common sense reasoning to answer questions correctly (Figure 2.8).

Figure 2.8: Example of an image, question and common sense in the FVQA datasets [34].
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4. OK-VQA (Outside Knowledge VQA): OK-VQA [5] inserts into the VQA task the
challenge of reasoning about visual content, understanding the question, and applying
external knowledge to answer questions about images where the answer is not
explicitly stated (Figure 2.9).

Figure 2.9: Example of images and questions that need external knowledge to be answered from
the OK-VQA datasets [5].

2.3 Multimodal systems

Multimodal systems refer to computer systems designed to perform multimodal tasks.
There are different architectures used for multimodal problems: from more traditional
ones such as multimodal RNNs [19], through Generative Adversarial Networks (GANs)
[21, 23, 35], to Diffusion models [22], to multimodal transformers [1, 2, 3, 8, 36] and so on.
Multimodal transformers have stood out for their ability to efficiently model and merge
information from different modalities. These systems extend the transformer architecture
[7], based on attention mechanisms, initially developed for translation.

Figure 2.10: Transformer architecture consists of two parts: Encoder on the left and decoder on
the right [7].
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Transformer architecture consists of two parts: Encoder (left side of the Figure 2.10),
receives an input and constructs a representation of its characteristics. Decoder (right side
of the Figure 2.10), it uses the encoder representation with other inputs to generate a target
sequence. Depending on the task, the parts can be used independently or in combination.
In multimodal problems, there are two main approaches: many adopt the encoder-only
architecture, with the intermodal representations being fed directly into an output layer.
On the other hand, other models adopt an encoder-decoder architecture, in which the
intermodal representations are first fed into a decoder and finally into an output layer [8].

Figure 2.11: Illustration of the two multimodal transformers categories. (a) Single-stream and (b)
Dual-stream [8].

Multimodal transformers can be categorized in single-stream and dual-stream (Fig-
ure 2.11) [2, 8, 36]. Single stream transformers need a model to extract the visual features of
the image (usually a pretrained object detector which extracts object-region features). Once
the visual and linguistic features of an image and text pair are obtained, they are concate-
nated and fed as input to the transformer (Figure 2.11 (a)). The best known single-stream
multimodal transformers are based on the BERT architecture [37], such as VisualBERT
[38], which uses Faster R-CNN [39] as its object detection model. Other examples are
OSCAR [40], which is similar but uses different pretraining strategies, and OSCAR+ [41],
an enhanced version of OSCAR that uses an improved object detector called VinVL.

Dual-stream transformers use a dedicated transformer for each modality, i.e., visual and
textual features are not concatenated and are sent independently to each transformer. It is
important to understand that these two transformers do not share parameters. Depending
on whether we are looking for performance or efficiency, we will proceed differently: To
achieve higher performance, cross-attention is used to allow cross-modal interaction (Figure
2.11 (b)). On the other hand, to achieve higher efficiency, there can be no cross-attention
between the transformers. Example of this category are ViLBERT [42], LXMERT [43], and
ERNIE-VIL [44].
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2.4 Object Detection

As object detectors have been widely used for multimodal transformers and as we also use
object detectors for image verbalization in this research, it is very important to understand
how they work. Object detection is a fundamental technique for extracting information
about the presence, location, and classification of objects within an image. It involves
identifying and localizing specific objects within an image by drawing bounding boxes
around them (Figure 2.12). Object detection algorithms employ various approaches, region-
based methods like Faster R-CNN [39] or single-shot methods like YOLO [45].

.
Figure 2.12: Example of objects and attributes obtained by VinVL where we can see the bounding
boxes of each one of them [41].

Currently, VinVL [41] model obtains state-of-the-art results. This object detection
model is based in a ResNeXt-152 C4 (X152-C) architecture. It is larger, better designed for
vision-language tasks, and has been pretrained with much larger training corpora than the
predecessor models. Therefore, it can generate representations of a richer collection of
visual objects, 1848 object categories and 524 attribute categories. The output can include
the labels of detected objects, attributes, their locations, image dimensions and number of
bounding boxes.

We can observe in Figure 2.13 output, that the objects “class” are ordered according to
the confidence value "conf". The attributes of the objects “attributes” are also ordered by
the confidence value “attr_scores”. The key “rect” refers to the [x1, y1, x2, y2] coordinates
of the object’s bounding box. In the last row, we have the image dimensions, image height
“image_h” and image width “image_w”, and the number of bounding boxes “num_boxes”.
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.
Figure 2.13: Example of objects and attributes obtained from an image of the COCO [46] dataset
with VinVL and obtained output representation.
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CHAPTER 3
Preliminaries

In this chapter, we will present the preliminary information necessary for the develop-
ment of our research. We will present the task that is the focus of our research, Outside-
Knowledge Visual Question Answering (OK-VQA), and the Caption Based Model (CBM)
that we have used as a base model.

3.1 Outside-Knowledge Visual Question Answering

In this section, we will present the task that is the focus of our research, Outside-Knowledge
Visual Question Answering (OK-VQA). We will name the differences with respect to the
initial task VQA, and we will expose the different approaches and results in the state-of-
the-art. We will then present and elaborate on the dataset used as a benchmark, called
OK-VQA.

Figure 3.1: Example of an instance that requires external knowledge to be answered from OK-VQA
[5]
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3.1.1 Task description

OK-VQA inserts to the VQA task the challenge to understand the environment and apply
external knowledge in order to answer the questions (Figure 3.1) [5].

To generate the response in the outside knowledge scenario, the model will need an
external knowledge source. The knowledge source is typically categorized into two types
[47]: Symbolic Knowledge and Implicit Knowledge.

Figure 3.2: Example of concepts related to car in ConceptNet [48, 49]

Symbolic Knowledge is exemplified by ConceptNet [48], which connects natural
language using labeled edges and gathers information from multiple sources, including
expert input, purposeful games, and crowdsourcing (Figure 3.2). Its primary aim is to
represent comprehensive implicit knowledge. On the other hand, implicit knowledge
refers to the information embedded in the parameters of a model. This knowledge is derived
from model training and is usually based on sources such as Wikipedia, Google Search,
Google Images, concepts, captions, and so on. These sources provide the model with a wide
range of implicit knowledge. This allows answering questions that refer to elements of the
image, but in which the answer is not explicitly present (Figure 3.3).

Figure 3.3: Difference between VQA V2 and OK-VQA data [9].

As in the VQA task, themain results (Table 3.1) [6] are based on transformers asProphet
[50], Prompting Large LanguageModels with Answer Heuristics, PromptCap [51], Prompt-
Guided Task-Aware Image Captioning, REVIVE [52], Regional Visual Representation
method, KAT [53], Knowledge Augmented Transformer, PICa [54], Prompts GPT-3 via the
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use of Image Captions, CBM [9], Caption Based (text only) Model,MCAN [55], Modular
Co-Attention Networks, UnifER [56], Unified End-to-End Retriever-Reader Framework,
MAVEx [57], Multi-modal Answer Validation using External knowledge, KRISP [47],
Knowledge Reasoning with Implicit and Symbolic rePresentations and ConceptBert [58],
BERT based in elements of the image and a Knowledge Graph.

Model Overall accuracy
Prophet [50] 61.11
PromptCap [51] 60.4
REVIVE [52] 58.0
KAT [53] 54.41
PICa [54] 48.0
CBM [9] 47.9
MCAN [55] 44.65
UnifER [56] 42.13
MAVEx [57] 41.37
KRISP [47] 38.90
ConceptBert [58] 33.66

Table 3.1: Overall results of top models for OK-VQA task [6].

In terms of performance, we can see that the best VQA Score is 61.11 obtained by the
Prophet approach (Table 3.1), we can see that there is still room to improve compared
to the VQA task (Table 2.2). Our starting point, the CBM model, is ranked sixth, tied with
the fifth position. In Section 3.2, we will take a closer look at the CBM model.

3.1.2 Dataset description

To conduct the experiments, we will use the OK-VQA dataset [5] as benchmark with images,
questions, and answers. These data are diverse, difficult and, require knowledge, proposing
questions from multiple categories that require external knowledge to be answered (Figure
3.4).

Figure 3.4: Example questions and corresponding images and answers for each of the knowledge
categories from the OK-VQA dataset [5].
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The images belong to the COCO [46] dataset, having finally selected 14031 images. In
total, the dataset has 9009 training questions and 5046 test questions, for a total of 14055
questions (Table 3.2).

Table 3.2: Number of questions and images per split and total.

Split Train Test Total
Questions Images Questions Images Questions Images

Number 9009 8998 5046 5033 14055 14031

Each of the questions has a list of 10 answers, but there are actually 5 ground truth
answers per question (5 annotators). This is important to understand as the VQA score will
be used as the reference metric and was originally proposed in the VQA task which had
10 ground truth answers. Therefore, we will use each answer twice, thus obtaining the 10
answers mentioned at the beginning (Figure 3.5).

Figure 3.5: Explanation of the list of 10 answers of 5 ground truths.

It is important to understand this, given that when it comes to evaluating the results,
everything will be peer-reviewed. That is, an answer can appear 0, 2, 4, 6, 8 or 10 times in
the final list of answers.

3.2 Caption Based Model

In this section, we will present the Caption Based Model (CBM) that we have used as the
basis for our research. To do so, we will explain its structure, operation, models used and
results obtained.

We have reviewed the main approaches using transformer models for the OK-VQA task
(Table 3.1). Due to our limited computational resources, specifically a small GPU, our goal
was to find a model that could fit our constraints and would be a good basis for our research.
During our analysis, we discovered that the authors of the CBM model had conducted a
comparison study involving models of different sizes. Therefore, we have decided to adopt
the CBM model as our starting point, due to its compatibility with smaller GPUs, aligning
perfectly with our computing resources. This allows us to directly compare our results with
those obtained from the CBM. Consequently, our proposal will build upon the approach
and conclusions derived from the CBM research.
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3.2.1 Description of CBM

CBM [9] showed that a text-only model, using the automatically generated image caption
and the knowledge gained by the language model during pretraining, equals the previous
state-of-the-art results. The model consists of two parts (Figure 3.6), a caption generation
system that generates a description of an image and a language transformer model that
takes as input the caption and the question, and generates an answer.

Figure 3.6: Structure of CBM with an example of image and question input and answer generation
[9]. The model is composed of an Image Captioning System and a Language Model.

3.2.1.1 Caption generation system

The image captioning system is based on OSCAR [40], a pretrained multimodal transformer
that produces state-of-the-art results in several multimodal tasks. Its goal is to generate
descriptive textual captions that accurately represent the visual content of an image (Figure
3.7). For that, the model takes an input image and uses a pretrained object detector called
Faster R-CNN [39] to obtain the region features of the images and their respective labels.
This captures the visual features and representations of objects in the image. Additionally,
the model incorporates textual information by encoding the caption using a language
transformer. Then both representations are fused together using attention mechanisms
to generate a joint representation. This joint representation is used to predict the next
word in the caption sequence. During training, the Oscar captioning model is trained on a
large dataset of images paired with their corresponding captions. It learns to associate the
visual content of the image with the textual descriptions and generates captions that are
semantically aligned with the image content.
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Figure 3.7: Example of a caption obtained from an image from COCO dataset with OSCAR
multimodal transformer. As can be seen, it is a general description of an image without much detail.

3.2.1.2 Language Model

Once the caption is obtained from the image, the question, and caption are passed to a
language model. To facilitate learning the model, the prefixes ’question:’ and ’caption:’ are
added. Here, we show an example input for the language model:

Input→ question: Can you guess the place where the man is playing? caption: a man
riding a snowboard down a snow covered slope.

For the language model, two pretrained Large Language Models (LLM) are compared
(Table 3.3): Bert [37], a Deep Bidirectional Transformer, and T5 [59], a Text-To-Text Trans-
former.

Model Score Parameters
CBMBert 36.0 112M
CBMT5−11B 47.9 11B

Table 3.3: Comparison between the Bert and T5 models implemented by the authors and the
number of parameters of each one [9].

As can be seen, T5 obtains better results (Table 3.3), 11.9 points more, but the number
of parameters is considerably higher also. Based on the T5 model, they test different sizes,
and it is observed that the larger models obtain better results (Table 3.4). But larger models
also need more computing power, and as mentioned above, we are limited to using a single
GPU. So from now on we will use the T5Base model as a reference and compare it with our
proposal.
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Model Score Parameters
CBMT5−Small 29.2 ±0.2 60M
CBMT5−Base 36.1 ±0.5 220M
CBMT5−Large 40.8 ±0.4 770M
CBMT5−3B 44.0 ±0.7 3B
CBMT5−11B 47.9 ±0.2 11B

Table 3.4: CBMT5 performance of model range sizes and number of parameters [9].

3.2.2 T5 model

The T5 (Text-to-Text Transformer) [59, 60] model is a large pretrained language model that
aims to overcome the limits of transfer learning in the field of natural language processing
(NLP). It is a generative encoder-decoder transformer that obtains state-of-the-art results
on text-only question answering tasks. As we have seen in the CBM comparison (Table
3.3), the model is available in different sizes, ranging from 60M parameters to 11B.

The model is trained using the teacher forcing technique, i.e., the model is provided
with the correct target sequence (ground truth labels) at each training step. This helps the
model learn the correct dependencies between input and output tokens and improve its
ability to generate accurate output sequences. It can help the model converge more quickly
during training and generate more accurate results.

It is important to keep in mind that, although the task we are going to face is multilabel,
during training the model only receives one label for each question in each epoch.
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CHAPTER 4
Leveraging Multilabel Annotations

In this chapter, we present our first contributions, called multilabel leverage. This is a new
technique proposed to improve the learning process of a model in multilabel problems.
Once the technique has been introduced, we will present the experiments performed and
the results obtained.

4.1 Description of the approach

Our first contribution is a simple technique that takes advantage of multilabel annotations
with optimal and suboptimal solutions or answers to improve model learning. It is based on
the introduction of the concept of balance between exploration and exploitation by using
a frequency distribution. In this particular case, the OK-VQA dataset contains a list of 10
answers for each question provided by 5 annotators, and an answer counts as fully correct
(optimal) if at least 2 annotators (at least 4 answers out of 10) have given that answer. In
the case of having only 1 annotator (2 answers out of 10) the answer is considered partially
correct (suboptimal), and counts as 0.6.

In the original CBM implementation [9], a random answer is passed to the model during
each training epoch, but this answer is randomly chosen only among those that are fully
correct (Figures 4.1 and 4.2), i.e., answers that appear at least 4 times. This considerably
reduces the number of possible answers that we can pass to the model during training,
since at most we can have 2 possible answers that meet the condition of getting a score
equal to 1. As can be seen (Figure 4.1), if we analyze the number of possible answers for the
answers that score 1, 7611 of the instances (85.55%) have only one possible answer, and the
rest, 1286 have 2 possible answers. On the other hand, if we analyze the distribution of All
answers, we can observe that in 3425 instances (38.5%) we have 4 possible answers, in 2497
instances (28.07%) 3 possible answers, in 1931 instances (21.7%) 2 possible answers and
finally 1044 instances (11.73%) have only one possible answer. The percentages of Answers
with score = 1 are also important for our implementation, as they indicate that 85.55%
of the instances have a single optimal answer, while 14.45% have two optimal answers.
The technique proposed will take advantage of all these possible answers to improve the
learning of the model.
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Figure 4.1: Comparison of the number of possible answers during training for the original imple-
mentation (Answers with score = 1) and multilabel leverage technique (All answers).

In our approach, we propose to use all possible answers (Figure 4.1), but we use a
frequency distribution based on the proportion of the annotations (Figure 4.2). This
is important, since the probability with which suboptimal answers are selected should
be controlled and not too high, since it would then impair learning. Thus, we give more
probability of being chosen to the answers that are fully correct, but also, the partially
correct answers have a probability of being chosen. In this way we introduce the concept of
balance between exploration and exploitation, in most cases we provide the optimal
answer (exploitation) and with a small probability we provide suboptimal answers that
enhance learning (exploration).

Figure 4.2: Comparison between CBM, with only one possible answer, and our proposedmultilabel
leverage technique, with all possible answers, their percentage of choice being equal to the
proportion of times they appear in the list.
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The hypothesis behind this idea is that this approach will maintain the correct answers
given by CBM, but will also increase the number of partially correct answers. Exploration
introduces a small variability into the model that enhances learning and increases the
network of possible answers. This variability gives more “points of view” to the model than
simply using fixed answers. This allows the model to maintain the number of fully correct
answers, but substantially improves the accuracy of partially correct answers. Since with
the previous implementation, the model was “limited” to a problem with a single solution
for most training instances (Figure 4.1), but, instead, with several possible answers in the
validation.

4.2 Experimental set up

In this section, we will present the main points of the implementation. To do so, we will
expose the evaluation metric, the implementation details, such as the loss function, the
optimizer, etc., and finally, we will present the main software and hardware used.

4.2.1 Evaluation metric

As evaluation metric, we will use the VQA Score (Equation 4.1) proposed in the VQA task
[4] and presented in Section 2.2.3.2.

acc = min(
x

3
, 1) (4.1)

In the OK-VQA case, as we have 5 duplicated ground truth answers, the answer needs
to appear at least 4 times (4 of 10) in the answer list to be fully correct, obtaining a
score of 1. If the answer appears twice, the answer is considered as partially correct,
obtaining a score of 0.6, and if it does not appear it is incorrect, obtaining a score of 0.

4.2.2 Implementation details

In this section we will present the loss function, the optimizer and the hyperparameters used
during the experiments. For direct comparison with CBM, unless otherwise indicated,
the hyperparameters used will be the same as those shown in this section and
those proposed by the authors in CBM [9].

4.2.2.1 Loss function

We will use the Cross Entropy Loss (Equation 4.2) for training the model. It is the default
loss function of the T5 model [59].

LCE = −
M∑
c=1

yo,c log(po,c) (4.2)

Where yo,c is the ground truth answer and po,c is the Softmax probability of the cth
class.
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4.2.2.2 Optimizer

We used the AdamW [61] optimizer proposed by the authors of CBM.

4.2.3 Hyperparameters

1. Learning rate: Constant 5 · 10−5

2. Batch size: The batch size for training and validation is 56.

3. Source and target maximum length: The maximum length is 512.

4. Training steps: The number of training steps is 20k.

4.2.4 Implementation resources

In this section, we will present the software and hardware used during implementation.

4.2.4.1 Software

We will use Python as base language and Pytorch [62], Hugging Face Transformers and
Datasets [63] as main libraries.

Pytorch: PyTorch is an open source machine learning framework used to develop and
train artificial intelligence models, especially in the field of deep learning. It is one of the
most popular libraries with an active and rich community.

It was developed by Facebook Artificial Intelligence Research (FAIR) group and has
become very popular for its flexibility and ease of use. It provides a wide range of tools
and functionalities to facilitate the development of machine learning models. In our case,
it has made it easy for us to use the AdamW optimizer and the CrossEntropyLoss loss
function, being called directly from the library. In the implementation, it has facilitated
the manipulation of instances when loading and processing data to the model through the
dataloader among others.

Hugging Face Transformers: Hugging Face Transformers is an open source library
developed by the company Hugging Face. It provides a wide range of tools and state-of-
the-art pretrained models for different tasks.

This library has provided us with the T5 model that is the basis of our proposal. These
pretrained models can be used directly to perform tasks, or they can be adapted and tuned
to specific datasets or tasks through the process of fine-tuning, as we have done. In addition,
it provides us with all the tools related to the model, such as the Tokenizer or other tools
like the DataCollater used together with the Pytorch dataloader to pass batch data to the
model. This library is designed to integrate seamlessly with Pytorch and Tensorflow.

Hugging Face Datasets: The Hugging Face Datasets library, like the Transformers
library, has been created by the Hugging Face company. It provides tools for loading and
processing custom datasets, such as predefined datasets covering a wide variety of tasks.
It allows reading data from different formats and facilitates data preparation. In our case,
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it has been especially useful for converting Dataframes into Datasets, thus facilitating
subsequent preprocessing and the use of tools such as the aforementioned Dataloader.
Like the Transformers library, it is designed to integrate seamlessly with Pytorch and
Tensorflow.

4.2.4.2 Hardware

To perform the experiments, we used the Graphics Processing Units (GPUs) of the IXA
group, a research group of the Faculty of Informatics of the University of the Basque
Country. For the implementation and the experiments of the T5Base we have used a single
GPU with 12 GB of memory,Nvidia Titan XP orNvidia Titan V depending on availability.

These GPUs have been useful for our experiments, but due to their memory size they
have determined the development of the experiments.

4.3 Experiments and results

To perform the experiments with the new multilabel leverage technique, the first thing
we did was to implement the CBM model to ensure that we were starting from a good
base. We followed the same methodology defined in the paper [9], performing 3 runs with
each model and calculating the mean VQA score and standard deviation, the results of
each run can be found in Appendix A. As in the CBM implementation, we have removed
the 112 instances that do not have a fully correct answer. We have done this to make
the comparison as fair as possible, although our implementation can actually use these
instances too. Once similar results to the original implementation were obtained (Table 4.1),
we modified the same model by introducing the multilabel leverage technique, adding the
concept of balance between exploration and exploitation, based in a frequency distribution
when choosing the labels at each step.

Table 4.1: Mean VQA score and standard deviation results for three runs of the CBMT5Base and
our multilabel leverage implementation (All answers). The results of each run can be found in the
Appendix A.

Model Labels Mean VQA score
CBMT5Base Answers with score = 1 36.1 ±0.5

Our CBMT5Base Answers with score = 1 36.09 ±0.426

Our CBMT5Base All answers 37.01 ±0.329

As can be seen in Table 4.1, this simple technique improves the VQA Score obtained by
the original model by almost one point (0.92) on average. Our hypothesis in proposing
this technique was that it would maintain the number of fully correct answers of the
original CBM implementation, but improve the number of partially correct answers. So we
analyzed the answers generated by both models (Figure 4.3), we calculate the VQA score of
each answer and analyze the number of each.

Our implementation slightly improves the number of fully correct answers (+6), but
significantly increases the number of partially correct answers by 39 (Figure 4.3).
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Figure 4.3: Comparison of the number of incorrect (0.0), partially correct (0.6) and fully correct (1.0)
answers of the CBM and our implementation. Ours slightly improves the number of fully correct
answers (+6), but increases by 39 partially correct answers.

The answers used for comparison come from runs that obtain a VQA score of 36.56 in
the case of CBM and 37.14 in our implementation. We have a difference of 0.58 in favor of
our implementation, with 0.46 coming from the increase in the number of partially correct
answers versus 0.12 increase coming from the fully correct answers. This confirms the
hypothesis that our multilabel leverage technique improves model learning by maintaining
the number of fully correct answers and increasing partially correct answers. It should be
noted that the average difference between models is greater than 0.58 (Table 4.1), assuming
that on average the increase in partially correct answers is slightly higher.

In Appendix B we present more experiments where our technique is compared with the
basic one, improving the results in all implementations. Thus confirming the improvement
obtained in the CBM, and giving robustness to our proposal.
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CHAPTER 5
Comparing Image Verbalization

Approaches

In this chapter, we analyze and compare different image verbalization approaches. First,
we use an object detector to obtain more detailed information from the image, such as
objects and attributes. This new information is added to the input of the language model,
complementing the information previously used by CBM, which was just an image caption.
Second, since we have memory limitations and thus we cannot include all the objects and
attributes extracted by the object detector in the input of the LM, a reranking system based
on different approaches is presented to improve the quality of the information provided to
the model. Once the techniques have been introduced, we will present the experiments
carried out and the results obtained from each one.

5.1 Adding objects and attributes as input

As an addition to the caption, we propose to use an object detector to obtain the objects and
attributes of the images. To do so, we select VinVL [41], a state-of-the-art object detector.
As we have seen in figures 2.13 and 3.7, the object detection provides more details and the
caption provides a good general description of the image. By combining both sources of
information together, we seek a balance between general image information and details to
provide the model with more complete information.

We have analyzed two approaches: (i) only objects and (ii) objects and attributes.
Here, we provide two examples of how the input varies for each approach:

• Input only objects→ question: Can you guess the place where the man is playing?
caption: a man riding a snowboard down a snow covered slope. objects: shadow
sun cloud backpack sky ski. . .

• Input objects and attributes with template → question: Can you guess the place
where the man is playing? caption: a man riding a snowboard down a snow covered
slope. object shadow has attributes dark black cast long object sun has attributes
bright shining object cloud has attributes white fluffy object backpack has attributes
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5. Comparing Image Verbalization Approaches

black large gray object sky has attributes blue cloudy white object ski has attributes
black blue. . .

And we have also compared template entries (as in the previous example) and simple
entries for objects and attributes. The idea of implementing a template is to make it easier
for the model to understand and identify the information coming from the objects and
the relationship with their attributes. But since we have limited memory, this limits the
amount of information we can pass to the model, so we will implement a plain input and
compare it with the template one.

• Input objects and attributes plain→ question: Can you guess the place where
the man is playing? caption: a man riding a snowboard down a snow covered slope.
objects: shadow dark black cast long sun bright shining cloudwhite fluffy backpack
black large gray sky blue cloudy white ski black blue...

5.1.1 Experiments and results

First, we use the VinVL [41] object detector to obtain the objects and attributes of all the
images in the COCO [46] dataset. Once we have the objects, we match them with the
questions using the image ID.

As noted in Chapter 4, the proposed multilabel leverage is beneficial to the model. From
now on, it will be used in all experiments. Starting from the previous model as a basis, we
have added the objects and attributes obtained with the VinVL model to the model inputs.

As mentioned above, we have made one implementation only with objects in list
format, objects: A B C D, and another, with the objects and attributes using a template,
object A has attributes B C D. Since we have limited memory capacity, we have reduced
the training batch size to 24 and the maximum source and target length to 192. This
is not optimal, but we have tried to maintain a balance between execution time and model
input length that allows us to experiment and get good results. Since we want to keep as
much information as possible, reducing the input length further does not make sense, and
increasing it to 256 for example forces us to reduce the batch size below 12 instances by
increasing the runtime.

As in the previous experiments, we have performed 3 runs with each of the models and
calculated the mean VQA score and standard deviation (Table 5.1), the results of each run
can be found in the Appendix B.

Table 5.1: Mean VQA score and standard deviation results for three runs of our CBMT5Base and
the implementations with object and object and attributes. The results of each run can be found in
the Appendix B.

Model Mean VQA score
Our CBMT5Base 37.01 ±0.329

Caption + obj-attr 39.09 ±0.264

Caption + obj 38.09 ±0.278

We can see in Table 5.1 that adding more information improves the original model,
especially in the case of objects and attributes, where it increases the average score by
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5.1. Adding objects and attributes as input

more than 2 points (2,08). In the case of objects, the improvement is slightly lower,
1.08. This confirms the idea that more information improves the model’s ability to generate
correct answers.

Once we see that adding objects and attributes improves the model performance consid-
erably, we analyze whether the use of templates to form the input is beneficial. To do this,
we analyze the length of the input and how much information is left out after truncation.
First, we plot the distribution and quartiles of the training data set with the template.

Figure 5.1: Violin plot of question and caption plus objects and attributes with template input
length. Shows distribution and quartiles.

We can see in Figure 5.1, that with a truncation of 192 and using a template for objects
and attributes we are receiving the complete information in less than 25% of the cases. We
are going to make the same plot but without using the template, i.e., plain input.

Figure 5.2: Violin plot of question and caption plus objects and attributes plain input length. Shows
distribution and quartiles.
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We can see that in the case of plain input (Figure 5.2), we are using complete information
in almost 50% of the instances. This is a considerable increase in information compared to
the previous model, ensuring that almost 50 percent of the instances receive all available
information.

If we obtain the statistics of both models (Table 5.2), template and plain, we can observe
that the average length of the template is 50% greater than that of the plain.

Table 5.2: Input length statistics of template and plain models.

Model Mean Standard Deviation Minimum 25% 50% 75% Maximum
Template 317.37 111.74 86.00 234.00 309.00 390.00 923.00
Plain 206.51 70.08 56.00 154.00 201.00 252.00 625.00

We have implemented the above model but replacing the template with a plain object
and a list of attributes. As before, we performed 3 runs and calculated the mean VQA score
and standard deviation, the results of each run can be found in Appendix C.

Table 5.3: Mean VQA score and standard deviation results for three runs of the Object attributes
implementations. The results of each run can be found in the Appendix C.

Model Mean VQA score
Caption + obj-attr with template 39.09 ±0.264

Caption + obj-attr plain 39.23 ±0.354

We can see in Table 5.3 that the plain information slightly improves the model with
template, but the improvement is not significant. With those results, we reach several
conclusions: first, that in case of limited memory, the template does not improve the
learning of the model, and second, that increasing the information slightly improves the
results.

In Section 5.2, we will try to improve the results by increasing the quality of the selected
objects and attributes through a reranking system, and we will analyze the influence on
the results of the number of selected objects.

5.2 Object reranking system

Since we have memory limitations and cannot pass all objects and attributes, our third
proposal is to maximize the “quality” of the objects and attributes we pass to the model.
The idea is to sort and filter the objects and attributes with a reranking system.

5.2.1 Proposed methods

To improve results in cases of limitedmemorywhere we cannot use all objects and attributes,
we propose two different methods: (i) Sentence similarity and (ii) Object bounding
box area. The first one is based on FastText embeddings and cosine similarity to measure
sentence similarity between questions and objects. The second system is based on selecting
the objects whose bounding box has the largest area.
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5.2. Object reranking system

5.2.1.1 Sentence similarity

Our first reranking approach consists of analyzing the similarity between sentences. We
propose to use FastText embeddings [10, 11], originally developed by the Facebook Ar-
tificial Intelligence Research (FAIR) team as a text classification and representation tool,
together with cosine similarity [12, 13] to measure and analyze sentence similarity. Using
this technique, we can obtain information about the semantic and contextual similarities
between the question and each of the objects and attributes detected in the image.

First, we have removed punctuation marks, such as question marks, and we utilize
FastText’s embeddings to convert each word of a sentence into a 300-dimensional vector
representation. The idea of these embeddings is to capture the meaning and context of
individual words. Then we calculate the average of the word embeddings of all the words
in the sentence, obtaining a vector representation that represents the overall semantic
information of the sentence.

Once we have the embeddings of the question and each of the objects and attributes
related to the image referenced by the question, we calculate the cosine similarity of each
of the pairs, i.e., question with first object and attributes, question with second object and
attributes and so on. The cosine similarity measures the cosine of the angle between two
vectors, returning a value in the range of -1 and 1.

SC(A,B) = cosine(θ) =
A ·B

||A|| · ||B||
(5.1)

As we can see in Equation 5.1, to calculate the cosine similarity, we first calculate the
dot product of the average embeddings of the sentences and divide it by the product of their
magnitudes. If we get a value of 1, it means that the sentences are identical, and -1 that are
dissimilar. What we obtain as output is a list of objects with each object and attributes and
each cosine similarity value.

Objects → [(object1, similarity value), (object2, similarity value), . . . ]

5.2.1.2 Objects bounding box area

Our second reranking proposal is based on the hypothesis that, in most of the cases, the
questions will refer to the most prominent objects of the image. That is, objects with a
bounding box that occupy a considerable area, and not small objects that even humans
would have difficulty recognizing. Therefore, using the rectangle coordinates provided by
the VinVL [41] object detection model (Figure 2.13), we have calculated the area of each
object (Equation 5.2).

Area = (x2 − x1) · (y2 − y1) (5.2)

What we obtain as output is a list of objects with each object and attributes and each
bounding box area value.

Objects → [(object1, area), (object2, area), . . . ]
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5.2.2 Influence of the number of objects

Based on the idea of providing quality information to the model, we also want to analyze
the influence of the amount of information, i.e., the number of objects provided. Thus, we
analyze how the number of objects affects the performance of the model in generating
answers. We will analyze the input length and, consequently, we will define different values
of number of objects (k), being aware of the memory limitation and maximizing the amount
of information in as many instances as possible.

5.2.3 Experiments and results

For this purpose, we experiment with both systems and with a different number of objects
to analyze how the number of objects influences the results. As in the multilabel leverage
experiments, the training batch size is 24 and the maximum source and target length
are 192. First, we analyze the inputs to define a maximum number of objects. For that, we
have analyzed the length of question plus caption (Figure 5.3).

Figure 5.3: Violin plot of question plus caption input length. Shows distribution and quartiles.

We can see in Figure 5.3 that 75% of instances has a length under 30, and if we calculate
90% we obtain that the length is less than 33 tokens, so we can have around 160 tokens to
add objects and attributes. We have calculated the average number of words for each object
and its attributes, obtaining that the training instances have 4.23 tokens per object (object
included). We round that number to 5 tokens per object to have a margin. This tells us
that if we select 30 objects we will need about 150 tokens on average, plus 30 tokens of
question and caption, getting 180 tokens on average. This tells us that on average we
will fall below our truncation of 192 tokens. Thus, we will analyze the distribution of the
number of tokens once 30 objects have been selected (Figure 5.4).
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5.2. Object reranking system

Figure 5.4: Violin plot showing the input length after selecting 30 objects with their attributes.
Shows the distribution and quartiles.

We can see in Figure 5.4 that the length of the objects and attributes of the 75% of the
instances is less than 157 tokens, and if we calculate the percentage of instances that have
a length equal to or less than 192 tokens, we obtain that it is 98%. Therefore, we accept
that the maximum number of 30 objects is adequate. On this basis, we experimented with
different numbers of objects (k), from 5 to 30, and defined the previous model presented
in Section 5.1.1 of objects and attributes as a baseline. We implemented 4 models with
2 different reranking systems, three models based on the sentence similarity, objects,
objects and attributes and the mix of both, and a fourth model based on the bounding box
area of the object.

For the sentence similarity models, we compute the cosine similarity for both objects
and objects and attributes, using each of them respectively with its model. Then we prepare
the mixed model, choosing for each instance (question) between objects or objects and
attributes (Table 5.4), depending on which of the two has a higher cosine similarity value.
This model tries to find a model that takes advantage of the best of the two previous ones.
For the bounding box area model, we calculate the area for each of the objects based on the
coordinates provided by the object detector.

Table 5.4: Selected percentage of objects and objects and attributes for different number of items
(k) for Train and Test splits in the mixed model.

k
Train Test

Obj Obj-attr Obj Obj-attr
5 2,586 97.414 3,686 96.314
10 1,165 98.835 1,684 98.316
20 0,455 99.545 0,495 99.505
30 0,233 99.767 0,198 99.802

As can be seen in Table 5.4, the information containing objects and attributes is selected
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for most of the instances, above 96% in the worst case. It is interesting to note that the more
objects we select, the more the percentage of selection in favor of objects and attributes
increases, converging to 100%.

As before, we performed 3 runs with each model and calculated the mean VQA score
and the standard deviation. All the results can be found in Appendix D.

Figure 5.5: Plots showing, objects (top) and objects and attributes (below), the mean VQA score
obtained in three runs with each of the proposed reranking systems and the model used as reference
ordered according to the confidence value of the objects. The x-axis indicates the number of selected
objects (k). The model that obtains the best results is the model of objects and attributes with
reranking of bounding box area and k = 30, with a mean VQA score of 39.56. On the other hand,
the worst is the model of objects with FastText reranking and k = 10, obtaining a mean VQA score
of 37.02. The results of each run can be found in Appendix D.
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Several conclusions can be drawn from the results (Figure 5.5):

• Increasing the number of objects improves the results, except in the case of the
area object and attributes model with k = 10. For the future it would be interesting
to analyze what happens to the objects when we select 10 since in several cases it
does not improve.

• Related to the previous one, themodel that integrates objects and attributes obtains
the best results. A mean VQA score of 39.56.

• The FastText reranking system does not perform well compared to the other
proposals with a low number of objects; as the number of objects increases, the
different approaches converge to the same result.

• We can conclude that of the two reranking systems, sentence similarity and objects
bounding box area, the selection of objects with the largest area is the one that
works best. In the case of the objects model the FastText mixed model obtains a
better result, but it is misleading, since this model uses mostly object and attribute
information (Table 5.4).

Taking into account the results obtained (Figure 5.5), we present our final model (Figure
5.6): Based on the CBM enhanced by the multilabel leverage technique and extended by
the object detection and reranking systems.

Figure 5.6: Where Q indicates question, C caption, O object and attributes and A answer.
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As can be seen (Figure 5.6), our model is formed with 4 systems:

1. Caption system: Oscar model that performs the description of the input image.
This system is replicated from the CBM model.

2. Object detection system: VinVL object detector that extracts object-attributes from
the input image. It provides objects and attributes to the reranking system.

3. Reranking system: System that reranks the objects and attributes provided by the
object detection system from highest to lowest according to the area of the bounding
box and selects the largest 30 objects.

4. Language model: T5 model that receives as input the question, caption, and the
objects and attributes, and generates the answer. Having as a training novelty the
multilabel leverage technique that improves the learning.

Here we present the improvement obtained with respect to the original CBM of our final
model (Table 5.5), this improvement has been obtained by combining our three proposals.

Table 5.5: Mean VQA score and standard deviation results of the original CBMT5Base and our
final model.

Model Mean VQA score
CBMT5Base 36.1 ±0.5

Our final model 39.56 ±0.15

As can be seen (Table 5.5), our model improves the mean score of the initial
proposal by 3.46 points with a lower standard deviation, indicating greater consistency
and accuracy in each of the runs. We can conclude that the model not only performs better
on average, but also produces more consistent results across runs or evaluations. These
factors contribute to increased confidence in the efficacy and reliability of our contributions.
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CHAPTER 6
Conclusions and future work

In this document we have exposed the proposals, implementations and results obtained
in the OK-VQA [5] task. For that, we selected CBM [9] as our base model, a text-only
model, using the image caption and the implicit knowledge integrated in the parameters
of a T5 [59] generative language model. CBM has been tested for different sizes of the
language model, in our case using the results obtained with the T5Base as a reference for
our research. We divided the research into two parts: leveraging multilabel annotations
and comparing image verbalization approaches.

In the first part, Leveraging Multilabel Annotations, we conclude that our contribution
is a simple method that slightly improves the results in multilabel problems with optimal
and suboptimal solutions. The introduction of the concept of balance between exploration
and exploitation improves the learning of the model, maintaining the number of fully
correct answers and increasing the number of partially correct answers.

In the second part, we analyze and compare different image verbalization approaches.
We conclude that completing the image caption information through objects and attributes
improves the information provided to the model. As with the concept of balance between
exploration and exploitation, something similar occurs when passing information to the
model. It is important to strike a balance between generalized and detailed information:
since the information in the image referred to in the question will not be very obvious, but
neither will it be a detail that even humans find difficult to recognize. Related to this, it
is observed that adding a template with prefixes in the case of limited memory does not
improve the understanding of the model. This is because adding prefixes excludes a lot of
information when truncating, obtaining better results with plain information of objects
and attributes.

Once it is observed that adding objects and attributes improves the base model, a
reranking system is defined to improve the quality of these objects. In addition, the
influence of the number of objects on the results is analyzed. By means of the reranking
system, it is observed that the more information is better, both by adding attributes to the
objects and by increasing the number of selected objects (k). For this task, the reranking
system based on the bounding box area is the one that obtains the best results, confirming
the hypothesis that the questions are about objects that are clearly represented in the image.
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As future work, we could also divide it into two parts. On the one hand, it would
be interesting to implement the proposed multilabel leverage technique on other tasks
that meet the casuistry presented above. Performing experiments on other tasks could
consolidate the technique as a simple way to improve the previously obtained results
without major changes in the implementation or the need of any modification in the
model architecture. Another experiment that could be carried out is to modify the balance
between exploration and exploitation. Instead of using a frequency distribution based
on the percentage of occurrences of the answers, we could define fixed percentages. For
example, 90% of the time the optimal answers are chosen and the other 10% of the time
the suboptimal ones. It would be interesting to analyze the training of the model with the
proposed technique to see how it affects learning, since it is possible that it modifies the
behavior of the model. This could help us to optimize the training and improve the results.
In addition, it would be intriguing to see how this technique behaves with larger models,
since it improves learning, and the improvement could be more considerable in models
with a larger number of parameters.

On the other hand, it would be interesting to test our first two proposals in combination
using GPUs with larger memory. This way we could pass all the information to the model
and squeeze it to the maximum. With our experiments we have observed that more
information is better, but we could investigate if there exists a number of objects for which
more information does not bring extra performance, interfering with the learning of the
model.

In addition, other model enhancements related to the OK-VQA task have emerged that
could be interesting for the future. For example, generating conditional image captions to
the question [50, 51], thus generating a specific description of the image that directly relates
to the question. This would reduce the problem of balancing generalized and detailed
information, since it will be specific to each question. Another option could be to generate
multiple answers and implement a model that selects the best one based on the question
[50].
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Appendix

Appendix A Multilabel leveraging results

In this appendix, we present the results of each run and the mean VQA score and standard
deviation of the original CBM and our first implementations. Our first implementation
(Answers with score = 1) is our replication of the CBM, which will be the basis of our
subsequent implementations, and the second is the implementation with our proposed
multilabel leverage technique (All answers). As can be seen, our first implementation
obtains very similar results to the original CBM, and in the second one, the implementation
with our proposed technique improves by 0.92 the score.

A.1 VQA score of each run and the mean VQA score and standard deviation of the CBMT5Base and
our multilabel leverage technique implementation (All answers).

Model Labels Run VQA score Mean VQA score
1 -
2 -CBMT5Base Answers with score = 1
3 -

36.1 ±0.5

1 35.88
2 35.81Our CBMT5Base Answers with score = 1
3 36.58

36.09 ±0.426

1 37.15
2 36.63Our CBMT5Base All answers
3 37.24

37.01 ±0.329
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Appendix B Caption plus object and attributes results

In this appendix, we present the results of each run and the mean VQA score and standard
deviation of the previous implementations and the experiments developed with objects
and attributes. We compare the implementations with captions and with captions plus
objects and attributes, in addition to comparing each model with the original label selection
(Answers with score = 1) and with our proposed multilabel leverage technique (All answers).
We observe how the addition of objects and of objects and attributes improves the results,
especially in the case of objects and attributes. Moreover, in all cases the multilabel
leverage technique improves the original selection, confirming that it is a robust technique
and improves model learning. It is curious how in the case of the object model (mean
improvement 1.57), our technique improves considerably more than in the object and
attribute model (mean improvement 1.12). This may be something interesting to investigate
in the future. The average improvement of the combination of our two proposals over our
CBM replica for objects and attributes is 3 points, and for objects 2 points.

B.1 VQA score of each run and the mean VQA score and standard deviation of the previous
implementations and the implementations with caption plus object and attributos.

Model Labels Run VQA score Mean VQA score
1 -
2 -CBMT5Base Answers with score = 1
3 -

36.1 ±0.5

1 35.88
2 35.81Our CBMT5Base Answers with score = 1
3 36.58

36.09 ±0.426

1 37.15
2 36.63Our CBMT5Base All answers
3 37.24

37.01 ±0.329

1 37.84
2 38.01Caption + obj-attr Answers with score = 1
3 38.05

37.97 ±0.112

1 39.38
2 38.86Caption + obj-attr All answers
3 39.04

39.09 ±0.264

1 36.98
2 36.02Caption + obj Answers with score = 1
3 36.57

36.52 ±0.482

1 38.05
2 38.39Caption + obj All answers
3 37.84

38.09 ±0.278
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Appendix C Template vs. plain object and attributes

In this appendix, we present the results of each run and the mean VQA score and standard
deviation of the experiments with caption plus objects and attributes, comparing the
template and plain inputs presented in Section 5.1. The first implementation is the one
with the original label selection, the second is with a template and our multilabel leverage
technique, and the last is with a plain input and our multilabel leverage technique. We
can see how the implementation with a plain entry slightly improves the results (mean
improvement of 0.14), but nothing significant.

C.1 VQA score of each run and the mean VQA score and standard deviation of the caption plus
objects and attributes implementations, comparing template and plain inputs.

Model Labels Run VQA score Mean VQA score
1 37.84Caption + obj-attr 2 38.01template Answers with score = 1
3 38.05

37.97 ±0.112

1 39.38Caption + obj-attr 2 38.86template All answers
3 39.04

39.09 ±0.264

1 38.93Caption + obj-attr 2 39.14plain All answers
3 39.62

39.23 ±0.354
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Appendix D Reranking results

In this appendix, we present the results of the confidence based implementations used as
reference and the reranking systems, dividing the results into tables by system. In each
of the tables, we present the results of each run and the mean VQA score and standard
deviation for a different number of selected objects (k).

D.1 Confidence based implementation of objects model without reranking.

k Run VQA score Mean VQA score
1 37.27
2 37.875
3 37.81

37.65 ±0.33

1 37.90
2 37.7210
3 37.33

37.65 ±0.291

1 37.79
2 37.9220
3 37.91

37.87 ±0.072

1 37.77
2 38.4830
3 38.09

38.11 ±0.356

D.2 Confidence based implementation of objects and attributes model without reranking.

k Run VQA score Mean VQA score
1 38.18
2 38.165
3 38.03

38.12 ±0.081

1 38.32
2 38.3610
3 38.55

38.41 ±0.123

1 38.98
2 39.0820
3 39.14

39.06 ±0.08

1 39.37
2 38.6130
3 39.14

39.04 ±0.39
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D.3 Implementation of objects model with FastText cosine similarity reranking.

k Run VQA score Mean VQA score
1 37.20
2 36.855
3 37.19

37.08 ±0.199

1 37.33
2 36.7310
3 37.01

37.02 ±0.3

1 37.72
2 37.4020
3 37.01

37.38 ±0.356

1 38.22
2 37.5630
3 38.32

38.03 ±0.413

D.4 Implementation of objects and attributes model with FastText cosine similarity reranking.

k Run VQA score Mean VQA score
1 38.06
2 37.545
3 37.67

37.76 ±0.271

1 37.30
2 37.5710
3 38.44

37.77 ±0.596

1 38.45
2 38.4520
3 38.46

38.45 ±0.006

1 39.39
2 38.6430
3 38.69

38.91 ±0.419

D.5 Implementation of mixed model with FastText cosine similarity reranking.

k Run VQA score Mean VQA score
1 37.46
2 37.215
3 36.98

37.22 ±0.24

1 38.08
2 38.4110
3 38.04

38.18 ±0.203

1 38.72
2 38.1420
3 38.21

38.36 ±0.317

1 39.14
2 38.7330
3 38.65

38.84 ±0.263
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D.6 Implementation of objects model with descending area reranking.

k Run VQA score Mean VQA score
1 37.53
2 38.065
3 37.80

37.80 ±0.265

1 38.54
2 37.8510
3 37.84

38.08 ±0.401

1 38.65
2 38.9720
3 37.80

38.47 ±0.605

1 38.96
2 38.6530
3 38.31

38.64 ±0.325

D.7 Implementation of objects and attributes model with descending area reranking.

k Run VQA score Mean VQA score
1 38.0
2 38.965
3 38.72

38.56 ±0.5

1 37.81
2 38.2810
3 38.47

38.19 ±0.340

1 39.48
2 37.9820
3 38.95

38.80 ±0.761

1 39.48
2 39.4630
3 39.73

39.56 ±0.15
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