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Abstract

As the demand for deploying machine learning models on resource-constrained devices
grows, neural network compression has become an important area of research. Tensor
decomposition is a promising technique for compressing neural networks, as it enables the
representation of the network weights in a lower-dimensional format, while maintaining
their accuracy and performance. In this work, we explore the application of tensor decompo-
sition techniques, including Canonical Polyadic decomposition, Tucker decomposition, and
Tensor Train decomposition, for neural network compression. We provide an exhaustive
overview of the various tensor decomposition methods and compare their performance
in terms of compression rates and accuracy. We implement and evaluate the different
compression methods on the benchmark dataset CIFAR-10, using popular models such
as ResNet and VGG. Our results show that tensor decomposition can significantly reduce
the number of parameters of neural networks, while reducing minimally their accuracy.
Finally, we discuss the challenges and opportunities of using tensor decomposition for
neural network compression and highlight some open research questions in this field.
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CHAPTER 1
Introduction

In recent years, Deep Neural Networks (DNNs) have become a powerful and valuable tool in
many industrial and commercial applications. In this manner, DNNs have been successfully
used in various domains such as computer vision, audio processing, speech recognition, etc.
In computer vision, Convolutional Neural Networks (CNNs) have achieved the state-of-the-
art on several tasks like image classification [2], object detection [3], semantic segmentation
[4], and human pose estimation [5].

One of the key feature behind these methods is over-parametrization, for which there
is evidence that helps to find a local minima [6]. However, over-parametrization leads to
issues like redundancy, or making generalization harder, because it excessively increases
the number of parameters. Also, increasing the number of parameters have also and impact
in terms of storage and computational requirements. Because of that, the deployment of
these overparametrized models on devices with limited computational resources, such as
mobile devices and edge computing, is sometimes unfeasible.

In this way, neural network compression is the process of reducing the size and com-
plexity of a neural network, while maintaining its accuracy and improving its performance.
Compressed neural networks have a smaller memory footprint, require less computational
resources for training and inference, and can be deployed more efficiently on low-power de-
vices such as mobile phones or embedded systems. Several approaches have been proposed
to reduce the redundancy and improve the efficiency of the models such as quantization,
network pruning, weight sharing, knowledge distillation and low-rank factorization. For
the interested reader, in [7] a general survey about neural network compression methods
is provided.

Tensor methods are mathematical techniques for representing high-dimensional data
using lower-dimensional structures which can significantly reduce the storage and compu-
tational requirements. Tensors are multidimensional arrays and a core mathematical object
in multilinear algebra that arise naturally in a wide range of applications such as quantum
physics simulations [8], signal processing [9], numerical linear algebra [10], neuroscience
[11], graph analysis [10], data mining [12], and more. In this way, tensor methods have been
used in recent years for compressing neural networks, taking advantage of the inherent
multidimensional structure of neural networks to achieve compression by decomposing
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1. Introduction

the weight tensors of the neural network into low-dimensional core tensor and a set of
matrices, or into a collection of lower dimensional tensors. Indeed, tensor decompositions
can be applied to the weights of neural network layers to compress them, and in some
cases, speed them up [13].

The Tucker decomposition (or Higher-order singular value decomposition) [14] is
one of the earliest methods used for compressing neural networks, where we decompose
the high-dimensional tensor into a core tensor multiplied by a matrix along each mode.
However, other popular methods such as Tensor Train (TT) decomposition [15], where we
decompose a high-dimensional tensor into a series of lower-dimensional tensors along each
mode, or Canonical Polyadic (CP) decomposition [16], where we factorize a tensor into a
sum of outer products of vectors are also used to reduce the number of parameters in the
neural networks while preserving its performance. Other tensor decomposition algorithms
have been used in the recent literature for neural network compression, such as Tensor
Ring (TR) [17], Hierarchical Tucker (HT) [18], and Block-Term decomposition [19].

In this work, we explore the tensorization of different models based on CNNs such as
ResNet [20] and VGG [21]. We have focused our work on tensorizing the convolutional
layers of these models using tensor decompositions, including Tucker, Canonical Polyadic,
and Tensor-Train decompositions. We also explore the strategy used for the tensorization,
following two main strategies, the first, where we tensorize pre-trained network layers
weights and then we make a fine-tuning to recover the performance that may have been
lost due to tensorization, and the second, where we tensorize the network layers before we
train them from scratch. Finally, we compare different approaches to select the rank of the
tensorization, and we compare both tensorization strategies in terms of compression rate
and accuracy trade-off.

The rest of the work is organized as follows. In Chapter 2, we revise some of the most
popular methods proposed for neural network compression, and we review the recent
developments in tensor methods applied to neural network compression. In Chapter 3,
we introduce our work proposal and the aims of the project. In Chapter 4, we introduce
the theoretical background necessary to follow the work. In Chapter 5, we provide a
general introduction to tensor methods, and we facilitate a comprehensive overview of the
most important tensor decomposition algorithms. In Chapter 6, we explain how tensor
decompositions are used for neural network compression, including important aspects
such as the complexity analysis, or the rank selection. In Chapter 7, we experimentally
measure the performance of the proposed method to support the theoretical framework.
Finally, in Chapter 8 and Chapter 9, we end the work by discussing some conclusions and
highlighting potential opportunities for this research line.
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CHAPTER 2
Related work

In this chapter, we provide a brief review of the different techniques used for compressing
neural networks.

Neural network compression has been an active research area in recent years due
to the growing demand for deploying machine learning models on resource-constrained
devices. Various techniques have been proposed to compress neural networks, including
quantization, pruning, knowledge distillation, and tensor decomposition.

Quantization is concerned with quantizing the weights and/or the features of a neural
network [22], in this straightforward way, we can speed up neural network computations
and minimize memory requirements. Network pruning is an approach to reduce a heavy
network to obtain a light-weight form by removing redundancy in the heavy network,
different types of pruning have been proposed, e.g., structured pruning [23], unstructured
pruning [24], and many others. Knowledge distillation [25], is the process of transferring
knowledge from a large model to a smaller one, the key idea behind this approach is that
while large models have higher knowledge capacity than small models, this capacity might
not be fully utilized.

Tensor decomposition [10], in particular, has received increasing attention as an effec-
tive method for compressing neural networks. Tensor decomposition techniques aim to
represent the weights of a neural network in a lower-dimensional format, by decomposing
the weight tensor into a set of factor matrices along each mode. This approach can signifi-
cantly reduce the storage and computational requirements of the network, which is crucial
for deployment on edge devices and embedded systems.

Several tensor decomposition techniques have been proposed in the literature, includ-
ing CP decomposition [16], Tucker decomposition [14], HT decomposition [18], and TT
decomposition [15]. Where each of these techniques has its strengths and weaknesses,
and the choice of the decomposition method depends on the specific use case. CP decom-
position represents a tensor as a sum of rank-one tensors and is particularly useful for
compressing convolutional layers. Tucker decomposition decomposes a tensor into a small
core tensor and factor matrices and is suitable for compressing fully connected layers.
Hierarchical Tucker decomposition is an extension of Tucker decomposition that allows
for a more flexible decomposition of tensors with high modes. Tensor-Train decomposition
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2. Related work

decomposes a tensor into a set of TT cores and is particularly useful for compressing very
high-dimensional tensors.

The use of tensor decompositions for neural network compression was first investigated
in [26], where CP decomposition was proposed to compress a 4-dimensional convolution
kernel. Additionally, low-rank matrix factorization was used to speed up the inference
time of the CNNs. In a similar vein, [13] treated weight matrices as multi-dimensional
tensors and applied the TT decomposition algorithm to compress feed-forward layers.
The authors achieved high compression ratios without significant loss of accuracy, and
provided theoretical support for the proposed method. Following this approach, in [27], the
authors propose a TT decomposition based tensorization, both for the feed-forward and
the convolutional layers of different CNN models. More recently, this approach of using
TT decomposition based tensorization have been studied from a physics perspective in
[28], and extended to compress 3D convolutional neural networks for video classification
in [29].

Inspired in [26], other works have tried to compress CNNs using CP decomposition. For
example, in [30], the authors improve the CP decomposition algorithm and they propose
a Tensor Convolutional Neuro-Network (TCNN) for anomaly detection. In [31], they
compress 3DCNNs using CP decomposition with an application to spatio-temporal facial
emotion analysis. In [32], after tensorizing the convolutional layers via CP decompostion,
they analyze the value of the decomposed kernels to guide feature selection. Also, in
works such as [33], the authors use Tucker decomposition with nonlinear response to
compress the convolutional layers, [34] propose a hybrid tensor decomposition scheme,
where they combine TT decomposition for feed-forward layers and hierarchical tucker for
the convolutional layers. In [35] the authors propose T-Net, a fully parametrized CNN with
a single high-order low-rank tensor using TT and Tucker decompositions, this allows them
to regularize the whole network thanks to the low-rank structure imposed on the weight
tensor and drastically reduce the number of parameters.

Recent works have develop more sophisticated algorithms, for example, in [36], the
authors dynamically and adaptively adjust the model size and decomposition structure
without retraining, i.e., using a data-driven adaptive tensor decomposition approach. In
[37], the authors propose an iterative approach, which alternates low-rank factorization,
rank selection and fine-tuning. Also, novel tensor decompositions have been proposed, for
example, in [34], the authors use sequences of Kronecker products to generalize widely used
methods CP, TT, Tucker, etc. In [38], they propose a novel global compression framework
that automatically analyzes each layer to identify the optimal per-layer compression ratio,
while simultaneously achieving the desired overall compression. Other approaches have
studied the combination of different neural network compression methods, e.g., [33] com-
bines quantization and tensorization to compress deep neural networks. Additionally, in
[39], the authors have introduced a novel weight initialization paradigm, which generalizes
Xavier and Kaiming methods, making it widely applicable to any tensor-based CNNs.

Tensor decompositions have been also used for compressing other types of neural
networks such as Recurrent Neural Networks (RNNs) [40], Long Short-Term Memory
(LSTM) [41], and Transformers architecture [42, 43, 44, 45]. For example, in [44], they
propose a hardware-aware tensor decomposition for Transformers architecture, i.e., given
the exponential space of possible decompositions, they automate the choice of tensorization
shape and decomposition rank with hardware-aware co-optimization. Another works like

4



[46], also have tried to compress transformers architecture, but in this case, the authors
propose a novel compressed self-attention mechanism called multi-linear attention using
block-term tensor decomposition.

The use of tensor methods in deep learning has not been limited to the use of tensor
decompositions for neural network compression. Tensor methods have been successfully
used for a wide range of tasks such as deep neural networks interpretability [47, 48],
multi-dimensional data analysis [49], information fusion [50], and many others. In [51],
they introduce a novel Tensor Contraction Layer (TCL) that reduces the dimensionality
while maintaining the multi-linear structure of the data, being parsimonious in terms of
number of parameters. In this manner, [52] generalized the Linear Regression concept to
higher order, and [53] introduced Tensor Dropout, a randomization in the tensor rank for
robustness. However, all these applications are out of the scope of this work, but for the
interested reader, a recent comprehensive survey can found in [54].
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CHAPTER 3
The aims of the project

The project’s primary goal of this work is to investigate the use of tensor decompositions
for neural network compression. By evaluating the effectiveness of various tensor decom-
position techniques for compressing CNNs, we aim to identify the most effective methods
for achieving high compression rates while maintaining accuracy and performance. To
accomplish this task, we need to investigate and understand the concept of neural net-
work compression. Furthermore, we aim to provide a comprehensive understanding of
neural network compression techniques and their importance in reducing model size and
computational requirements.

Secondly, we need to explore tensor decompositions for neural network compression,
studying different tensor decomposition methods and their applicability to compressing
neural networks. This includes understanding the mathematical foundations, advantages,
and limitations of various tensor decomposition techniques.

The third step is to evaluate the impact of tensor decompositions on model compression.
That is, analyze the trade-off between compression ratios and model performance, i.e., the
impact of compression of factors such as model size reduction, computational efficiency,
memory footprint, and inference speed. Additionally, we will investigate the usage of
different rank selection strategies that have been proposed in the literature.

Finally, to evaluate the potential of using tensor decompositions for neural network
compression, we will need to include a comparative analysis between tensor decomposition-
based compressed models and raw models, where the tensorization of both pretrained and
trained from scratch models is considered. This analysis should take into account metrics
such as accuracy, generalization, and training convergence to assess the trade-offs between
compression and performance.

All in all, the main objectives of the work can be summarised as follows:

• Investigate and understand the concept of neural network compression, and methods
proposed.

• Study the mathematical foundations required to understand tensor methods, and
explore tensor decompositions such as CP, Tucker and TT decompositions.

7



3. The aims of the project

• Study the applicability of tensor decompositions to neural network compression
and analyze their impact in terms of compression ratios, computational efficiency,
memory footprint, etc.

• Provide a comparative analysis between tensor decomposition-based compressed
models and raw models performance measured by metrics such as accuracy, general-
ization, on standard datasets like CIFAR-10.

• Identify the open research questions and challenges in the field of neural network
compression using tensor decompositions.
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CHAPTER 4
Notation and preliminaries

To make the work self-contained and give the reader an understanding of the mathematical
tools employed in tensor methods, we first introduce the notation conventions used in this
work and then review some of the fundamental concepts of linear and multilinear algebra.

4.1 Notation

Tensors [55], also known as multi-way arrays, can be seen as higher-order extensions of
vectors (1st-order tensors), or matrices (2nd-order tensors). In the same way as rows and
columns in a matrix, anN th-order tensorX ∈ RI1×I2 ···×IN hasN modes (i.e., orders, ways,
or indices) whose dimensions (i.e., lengths) are represented by I1, . . . , IN . An element
(i1, i2, . . . , iN ) of tensor X ∈ RI1×I2 ···×IN is accessed as: Xi1,i2,...,iN or X (i1, i2, . . . , iN ).
Also, given a set of N matrices (or vectors) that correspond to each mode of X , the nth

matrix (or vector) is denoted as U(n) (or u(n)). Furthermore, fibers are the higher-order
generalization of the concept of rows and columns of matrices to tensors, obtained by
fixing all indices but one, where to represent all the elements of a mode, we use a colon.
For instance, if X is a third order tensor, then its mode-1 (column) fibers can be denoted as
X:,j,k (see Fig. 4.2). Slices are two-dimensional sections of a tensor, defined by fixing all but
two indices. As shown in Fig. 4.1, the horizontal, lateral and frontal slices of a third-order
tensor X are denoted by Xi1::,X:i2:, and X::i3 , respectively.

(a) Horizontal slices: (b) Lateral slices: (c) Frontal slices: 

Figure 4.1: Slices of a third order tensor of size 3× 4× 2.
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4. Notation and preliminaries

(a) mode-1 (column) fibers: (b) mode-2 (row) fibers: (c) mode-3 (tube) fibers: 

Figure 4.2: Fibers of a third order tensor.

As shown in Table 4.1, lowercase letters denote scalars, e.g., n, boldface lowercase
letters denote vectors, e.g., v, boldface capital letters denote matrices, e.g.,M, and boldface
Euler script letters denote tensors of order 3 or greater, e.g., X .

Notation Definition

n scalar
v vector
M matrix
X tensor
A dimensionality

Table 4.1: Tensor notations.

4.2 Mathematical background

4.2.1 Transforming tensors intro matrices or vectors

Definition 4.1 (Tensor unfolding). Given a tensorX ∈ RI1×I2···×IN , its mode-n unfolding is
a matrixX[n] ∈ RIN×IM , withM =

∏N
k=1
k ̸=n

Ik , and is defined by the mapping from the tensor

element (i1, i2, . . . , iN ) to matrix element (in, j), where j = 1+
∑N

k=1
k ̸=n

(ik−1)+
∏N

m=k+1
m ̸=n

Im.

Tensor unfolding, also known asmatricization or flattening, is the process of reordering
the fibers of a tensor as the columns of a matrix. See Fig. 4.3 for a illustrative example
of a mode-1 unfolding of the tensor X ∈ RI1×I2×I3 . Notice that the mode-n unfolding
introduced here is an special case of a more general matricization; see [56] for further
details.

Definition 4.2 (Tensor vectorization). Given a tensorX ∈ RI1×I2···×IN , we can transform it
into a vector vec(X ) of size I1 ·I2 ·· · ··IN , with a mapping from tensor element (i1, i2, . . . , iN )
to vec(X ) element j, where j = 1 +

∑N
k=1(ik − 1)×

∏N
m=k+1 Im.

10



4.2. Mathematical background

Figure 4.3: Mode-1 unfolding of a third order tensor.

4.2.2 Tensor and matrix products

Definition 4.3 (n-mode product). Given a tensor X ∈ RI1×I2···×IN and a matrix M ∈
RR×In , the n-mode (matrix) product of a tensor is denoted as X ×n M, where the resulting
tensor is of size I1 × · · · × In−1 × R × In+1 × · · · × IN . The n-mode product of a tensor
with a matrix can be seen as change of basis when a tensor defines a multilinear operator [10].
Also, the operation can also be defined using the tensor unfolding of X , and the dot product as

X ×n M = MX[n] ∈ RI1×···×In−1×R×In+1×···×IN . (4.1)

Similarly, the n-mode vector product of a tensor X ∈ RI1×I2···×IN with a vector v ∈ RIn is
denoted as X×̄nv ∈ RI1×I2×···×In−1×In+1×···×IN , where the order of the resulting tensor is
N − 1. This can be defined elementwise as

(X×̄nv)i1...in−1in+1...iN =

In∑
in=1

xi1i2...iN vin . (4.2)

The idea here is to compute the inner product of each mode-n fiber with vector v.

Definition 4.4 (Tensor contraction). Let X ∈ RI1×I2···×INandY ∈ RI1×···×IM be the N -
andM -ord3er tensors, respectively. The mode-

(
m
n

)
contraction of X and Y with In = Im is

defined by Z = X ×m
n Y [10], where its entries are defined elementwise as

Zi1,...,in−1,in+1,...,iN ,j1,...,jm−1,jm+1,...,jM =

=

In∑
in=1

Xi1,...,in−1,in,in+1,...,iNYj1,...,jm−1,in,jm+1,...,jM . (4.3)

11



4. Notation and preliminaries

Notice that if we consider two matrices A ∈ RI×J and B ∈ RJ×K , their matrix
multiplication can be also described as a tensor contraction denoted by

A×1
2 B. (4.4)

Definition 4.5 (Matrix Kronecker product). Given two matricesA ∈ RI×J andB ∈ RK×L,
their Kronecker product is denoted as

A⊗B =


a11B · · · a1JB
a21B · · · a2JB
...

. . .
...

aI1B · · · aIJB

 ∈ RI·K×J ·L. (4.5)

Definition 4.6 (Khatri-Rao product). Given two matricesA ∈ RI×K and B ∈ RJ×K , with
the same number of columns, their Khatri-Rao (or matching Kronecker columnwise) product
is denoted as

A⊙B =
[
A:,1 ⊗B:,1, A:,2 ⊗B:,2, . . . , A:,K ⊗B:,K

]
∈ RI·J×K . (4.6)

If a andb are vectors, then Khatri-Rao and Kronecker products are the same, i.e., a⊗b = a⊙b.

Definition 4.7 (Hadamard product). Given matrices A and B, both of size I × J , their
Hadamard product is the elementwise product defined as

A ∗B = Ai,jBi,j =


a11b11 · · · a1Jb1J
a12b21 · · · a2Jb2J

...
. . .

...
aI1bI1 · · · aIJbIJ

 ∈ RI×J . (4.7)

Definition 4.8 (Outer product). Given a set of N vectors {x(n)}Nn=1, their outer product is
denoted by

X = x(1) ◦ x(2) ◦ · · · ◦ x(N) ∈ RI1×I2×···×IN , (4.8)

which defines a rank-one N th-order tensor.

Definition 4.9 (Inner product). The inner product of two same-sized tensors X ,Y ∈
RI1×I2×···×IN , is the sum of products of their entries defined as

⟨X ,Y⟩ =
I1∑

i1=1

I2∑
i2=1

· · ·
IN∑

in=1

xi1i2...inyi1i2...in , (4.9)

where ⟨X ,X⟩ = ||X ||2.

4.2.3 Matrix and tensor rank

Definition 4.10 (Matrix rank). Given a matrix of real numbersX ∈ RI×J , the rank ofX,
also denoted as rank(X), is defined as

• The number of linearly independent columns ofX.
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4.3. Neural networks

• The number of linearly independent rows ofX.

This definition implies that rank(X) ≤ min(I, J), and if rank(X) = min(I, J), X is
full-rank.

Notice that the rank of a matrix can be defined equivalently in several ways [57], here
we use one of the simplest definitions available.

Definition 4.11 (Tensor rank). The rank of a tensor X , denoted by rank(X ), is defined as
the smallest number of rank-one tensors that generates X as their sum [58].

The definition of tensor rank is analogous to that of matrix rank, but the properties of
matrix and tensor ranks differ significantly. One notable distinction is that the rank of a
real-valued tensor may vary over R and C, as shown in [10]. Another significant difference
between matrix and tensor ranks is that, except in special cases, there is no straightforward
algorithm for determining the rank of a given tensor, and in fact, the problem is NP-hard
[59].

4.3 Neural networks

As this work aims to be self-contained, here we briefly recap fully-connected and con-
volutional layers, which are then compressed through tensorization and used to discuss
DNNs.

4.3.1 Fully-connected layer

We start from a fully-connected layer, which is commonly defined as a linear layer f(·) fol-
lowed by an activation function σ(·). Given an input matrixX = {X1, . . . ,Xm} ∈ Rn2×m,
obtained by stacking the data points as columns, and the bias matrixB = {b1, . . . ,bm} ∈
Rc×m, we can define the fully-connected layer as

Ŷ = σ(f(X;W,B)) = σ(WX+B), (4.10)

where Ŷ ∈ Rc×m is the output of the fully-connected layer, which maps each data point
from the input space Rn2 to the output space, Rc.

4.3.2 Fully-connected neural networks

If we stack several fully-connected layers introduced in Section 4.3.1, we can form the so
called fully-connecte neural networks. This multilayered model consists of the input layer,
the output layer, and the internal layers in between, commonly called the hidden units
because their intermediate results do not show up in the final result. Fig. 4.4 shows an
example of a fully-connected neural network with three layers (ignoring the input layer).

We denote the input layer as layer 0, the layer that follows it as layer 1, and so on.
The weights and biases of each layer are denoted by Wj and Bj , where j is the layer
number. Each of the two hidden layers computes a linear mapping followed by a nonlinear
activation function. We denote the result before the activation function is applied as Zj and
the layer’s output as Aj . Therefore, given a training dataset X ∈ Rn2×m, we calculate the

13



4. Notation and preliminaries

Figure 4.4: Illustration of a fully-connected neural network with three layers. Where x1, . . . , x4

and o1, . . . , o4 are the input and output units, respectively, hm
n are the hidden units, where m

represents the layer number and n the unit number.

output of the neural network by passing the data through the hidden units hj sequentially,
i.e., from left to right. The computation done in an N -layer network is denoted as

Zj = WjAj−1 +Bj , (4.11)

whereAj = σ(Zj) and j ∈ [N ]. Should be noted that for the input layer, A0 is simply the
training dataX.

4.3.3 Convolutional layer

The convolutional layer conducts the convolution operation between the inputs and the
weights. The weights of the convolutional layer are commonly referred to as the kernel
tensor, or the filters. Typically, the kernel tensor K is composed of T square-shaped filters,
each having a size of d× d, and T is the number of output channels. This convolutional
layer takes in an input tensor U ∈ RX×Y×C , where X,Y are the spatial dimensions and
C is the number of input channels. The output of the convolutional layer is a tensor
V ∈ RX′×Y ′×T , where X ′ = X−d+2∗P

S+1 and Y ′ = Y−d+2∗P
S+1 . Padding P and stride S are

two quantities that control how far the kernel moves after each dot product and how much
it is allowed go out of the edge. The mathematical definition of the convolution operation
is provided later in Eq. (6.3).

4.3.4 Convolutional neural networks

CNNs have architectures very similar to those of ordinary fully-connected neural networks:
they have a sequential layout of layers followed by activation functions and the same
input/output behaviour. The only difference is that the convolutional layers in CNNs are
often placed before the fully connected layers.
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4.3. Neural networks

Figure 4.5: LeNet (or LeNet-5) architecture (image sourced from [1]).

One example of this type of neural networks is LeNet [60], which takes 2D grayscale
images as inputs. Two convolutional layers and two pooling layers extract the input images
features, followed by two fully connected layers that classify the inputs. The network
outputs a vector ŷ ∈ R10, with each dimension corresponding to a class to predict. An
illustrative visualization of this network is shown in Fig. 4.5.
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CHAPTER 5
Tensor methods

Tensor Networks (TNs) [61], are a class of techniques that deal with very large tensors
by representing them as collections of small interconnected tensors, also called “blocks”,
“cores”, “factor”, or “components”. The primary goal of TNs is to approximate the large
tensors in a compressed and distributed manner, overcoming the curse of dimensionality
associated with these tensors [62].

5.1 Tensor diagrams

The intricate structures of advanced TNs are difficult to comprehend using only mathe-
matical notation. To aid in the comprehension of the interconnections between tensors
within TNs, Roger Penrose introduced TN diagrams in the early 1970s [63]. These diagrams
represent tensors as nodes with edges, providing a simple graphical representation of
complex tensors [8]. Therefore, TN diagrams are a practical tool for visually presenting and
conveniently representing complex tensors. Furthermore, the potential of tensor diagrams
as a versatile tool for network analysis in the field of deep learning is noteworthy [47].

As illustrated in Fig. 5.1, a tensor is denoted as a node with edges. The number of edges
denotes the modes of a tensor, and the value of the edge represents the dimension of the
corresponding mode. For example, a node with one edge represents a vector v ∈ RI , a node
with two edges represents a matrix M ∈ RI×J , and a node with three edges represents
a third-order tensor X ∈ RI1×I2×I3 , where in general a node with N edges represents a
N th-order tensor A ∈ RI1×I2×I3 ···×IN .

Vector Matrix Third-order tensor Nth-order tensor 

Figure 5.1: Basic symbols for TN diagrams.
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5. Tensor methods

As illustrated earlier, tensors are linked by tensor contractions, which involve combin-
ing two tensors into one by pairing their corresponding indices. As a consequence, the
connected edges vanish, while the dangling edges remain. See Fig. 5.2, where the diagram
of the matrix multiplication operation described by equation Eq. (4.4) is shown. It is worth
mentioning that matrix multiplication is the most common form of tensor contraction. In
general, tensor contraction can be formulated as a tensor product, see Eq. (4.3). To compute
tensor contractions among multiple tensors, such as in complex TNs, it is necessary to
perform contractions sequentially between each pair of tensors. However, determining the
order of these contractions is crucial to achieve better calculation efficiency. [64] highlights
the importance of this step in achieving better performance in tensor computations.

=

Figure 5.2: Diagram of the most common tensor contraction form, i.e., matrix multiplication.

5.2 Tensor decompositions

In this work, we adopt a unified approach to the terminology of “tensor decomposition”
(TD) and “tensor network” as they are equivalent. TD models, such as CP [16] and Tucker
decomposition [14], are considered basic types of TNs. It should be noted that different
terminologies have been used for the same model, as TNs and TDs originated from different
research fields. For instance, the Matrix Product State (MPS) decomposition [65] is also
referred to as TT decomposition [15]. Here, we briefly introduce some of themost significant
TDs, while in Fig. 5.3, we illustrate each TD by employing TN diagrams.

5.2.1 CANDECOMP/PARAFAC Decomposition

CP factorization factorizes a higher-order tensor X into a sum of several rank-1 tensor
components. The rank of the tensor X is the minimum number of rank-1 tensors that sum
to X , also known as the CP rank. This generalizes the notion of matrix rank to higher-order
tensors. For instance, given an Nth-order tensor X ∈ RI1×I2 ···×IN , each of its elements in
the CP format can be expressed as

Xi1,i2,...,iN ≈
R∑

r=1

Gr

N∏
n=1

A(n)
in,r

, (5.1)

where R denotes the CP rank, G represents the diagonal core tensor (consisting of R
non-zero elements on the superdiagonal), and A(n) ∈ RIn×R represents a series of factor
matrices. See (a) in Fig. 5.3 for the TN diagram that describes this decomposition.

One of the issues with this method is that computing the tensor rank, i.e., the number
of rank-1 tensor components, is a NP-hard problem [10]. Therefore, a predefined CP rank
R should be known in advance, this can be seen as fixing hyperparameters and using them
to fit different CP-based models [26]. Other possible ways of computing the rank, such
as estimating the rank from the data, e.g., using Bayesian approaches [66], or using deep
neural networks [67] are also possible. An illustrative example can be found in Fig. 5.4,
where CP decomposition is applied to a third-order tensor X .
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5.2. Tensor decompositions

(a) CP decomposition (b) Tucker decomposition

(c) Block-Term Tucker decomposition (d) TT decomposition

(f) Hierarchical Tucker decomposition(e) TR decomposition

Figure 5.3: TN diagrams of different tensor decompositions.

Figure 5.4: CP decomposition of a third-order tensor X into a sum of rank-1 tensors.

5.2.2 Tucker Decomposition

The Tucker decomposition [14] factorizes a higher-order tensor non-uniquely into a core
tensor multiplied by a corresponding factor matrix along each mode. More precisely, given
an Nth-order tensor X ∈ RI1×I2 ···×IN , the Tucker decomposition can be formulated for
each element as

Xi1,i2,...,iN ≈
R1,...,RN∑
r1,...,rN=1

Gr1,r2,...,rN

N∏
n=1

A(n)
in,rn

, (5.2)

where R = {R1, R2, . . . , RN} denotes the Tucker ranks, G ∈ RR1×R2 ···×RN denotes
the core tensor, and A(n) ∈ RIn×Rn denotes a factor matrix. The core tensor captures
interactions between the columns of factor matrices, and ifRn ≪ In, ∀n, the core tensor can
be viewed as a compressed version ofX . It should be noted that in this case,R1, R2, . . . , RN
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5. Tensor methods

can take different values, which leads to the non-uniqueness of its decomposition results;
see Fig. 5.5 for an illustrative example, and (b) in Fig. 5.3 to visualize the TN diagram of
this decomposition. Finally, its worth be noting that by imposing the factor matrices to
be orthonormal, the Tucker decomposition is known as the higher-order singular value
decomposition (HOSVD) [10].

Figure 5.5: Tucker decomposition of a third-order tensor X .

5.2.3 Block-Term Tucker Decomposition

Block-Term Tucker (BTT) decomposition is a more generalized factorization proposed to
make a tradeoff between CP and Tucker decompositions [19]. Notice that both CP and
Tucker methods decompose a tensor into a core tensor multiplied by a matrix along each
mode, where CP also imposes an additional superdiagonal constraint on the core tensor,
i.e., it tries to simplify the structural information on the core tensor. BTT imposes a block
diagonal constraint on Tucker’s core tensor, more specifically, BTT aims to decompose a
tensor X into a sum of several Tucker decompositions with low Tucker ranks. For example,
given a fourth-order tensor X ∈ RI1×I2×I3×I4 , the BTT decomposition for each element
can be formulated as

Xi1,i2,i3,i4 ≈
RC∑

rC=1

RT ,RT ,RT ,RT∑
r1,r2,r3,r4=1

GrC ,r1,r2,r3,r4A
(1)
rC ,i1,r1

A(2)
rC ,i2,r2

A(3)
rC ,i3,r3

A(4)
rC ,i4,r4

, (5.3)

where G ∈ RRC×RT×RT×RT×RT denotes the RC core tensors of Tucker decompositions,
each A(n) ∈ RRC×In×RT denotes the RC corresponding factor matrices of the Tucker
decompositions, RT denotes the Tucker rank (RT , RT , RT , RT ), and RC denotes the CP
rank. This decomposition combines the benefits of both CP and Tucker methods, where
we also have the flexibility to degenerate the BTT decomposition to get CP decomposition
when Tucker rank is equal to 1, and Tucker decomposition when CP rank is equal to 1. See
(c) of Fig. 5.3 for the TN diagram that defines this decomposition.
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5.2. Tensor decompositions

5.2.4 Tensor Train Decomposition

The Tensor-Train decomposition [15], also known as MPS decomposition in quantum
physics [65], factorizes a higher-order tensor X into a linear multiplication of a series of
third-order tensors. For example, given an Nth-order tensor X ∈ RI1×I2 ···×IN , the TT
decomposition can be formulated elementwise as

Xi1,i2,...,iN ≈
R1,R2,...,RN−1∑
r1,r2,...,rN−1=1

G(1)
1,i1,r1

G(2)
r1,i2,r2

G(3)
r2,i3,r3

. . .G(N)
rN−1,iN ,1, (5.4)

where R = {R1, R2, . . . , RN−1} denotes the TT ranks, G(n) ∈ RRn−1×In×Rn denotes a
third-order tensor and R0 = RN = 1, which means that G(1) and G(N) are actually two
matrices, i.e., the boundary conditions (open boundary conditions) of the TT decomposition;
see (d) in Fig. 5.3 for the TN diagram of this decomposition, and Fig. 5.6 for a visual example.
It should be noted that the TT decomposition can be computed easily by applying SVD
recursively.

Figure 5.6: Tensor Train decomposition of a third-order tensor X into a series of third-order cores,
where the boundary condition restricts R1 = RN+1 = 1.

5.2.5 Tensor Ring Decomposition

As introduced in Section 5.2.4, TT decomposition suffers from its two endpoints, which
hinder the representation ability and flexibility of the TT-based model. To alleviate this
issue, the researchers have released the full power of the linear structure by connecting
(linking via tensor contraction) the two endpoints, forming the Tensor Ring decomposition.
The formulation of the TR decomposition of the tensor X can be expressed elementwise as

Xi1,i2,...,iN ≈
R0,R1,...,RN−1∑
r0,r1,...,rN−1

G(1)
r0,i1,r1

G(2)
r1,i2,r2

G(3)
r2,i3,r3

. . .G(N)
rN−1,iN ,r0

, (5.5)

where R = {R0, R1, . . . , RN} denotes the TR ranks, each G(n) ∈ RRn−1×In×Rn is a third-
order tensor, and R0 = RN . Notice that in this case it is not necessary to follow a strict
order when multiplying its nodes G(n). See (e) in Fig. 5.3 for the TN diagram that represents
this decomposition.

5.2.6 Hierarchical Tucker Decomposition

Hierarchical Tucker decomposition is an special case of tensor decomposition, where a
tree-like structure is used, i.e., hierarchical levels with respect to the order of the tensor.
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Recursive decomposition of HT involves breaking it down into intermediate components,
which are referred to as frames. This process follows a top-to-bottom binary tree structure,
where every frame corresponds to a distinct node, and each node possesses its own set
of associated dimensions. More specifically, for a tensor X ∈ RI1×I2···×IN , we can build
a binary tree with a root node associated with Sset = {1, I2, . . . , N} and USset as a root
frame. The index sets associated with left child node USset1 and right child node USset2 are
denoted as Sset1, Sset2 ⊆ Sset, respectively. Notice that these child nodes are decomposed
in a similar manner, e.g., the left child node USset1 ∈ RR1×Imin(Sset1)

×···×Imax(Sset1) can also
be recursively decomposed into its left child node UDset1 and right child node UDset2 . The
first three steps of the explained recursion can be defined as

USset ≈ Gs ×2
1 USset1 ×2

1 USset2 , (5.6)

USset1 ≈ Gs1 ×2
1 UDset1 ×2

1 UDset2 , (5.7)

USset2 ≈ Gs2 ×2
1 UDset3 ×2

1 UDset4 (5.8)

where Gs ∈ RR1×R2 , Gs1 ∈ RR1×R3×R4 , Gs2 ∈ RR2×R5×R6 are the transfer tensors, and
R = {R1, . . . , R6} are the hierarchical ranks. An illustrative example can be found in (f)
of Fig. 5.3.
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CHAPTER 6
Network compression using TDs

In this chapter, we will explore the application of tensor decomposition techniques to com-
press feed-forward (or fully-connected) and convolutional layers in deep neural networks.
More precisely, we will explain how some of the TDs introduced in Section 5.2 such as CP,
Tucker and TT decompositions, can be used to compress neural networks effectively.

6.1 Tensorization of fully-connected layers

To introduce the compression of fully-connected layers with tensor decompositions, we first
provide an illustrative example using the popular (truncated) Singular Value Decomposition
(SVD) method [68], and then extend this technique to higher-order decomposition. Since
fully-connected layer weights are stored in matrices instead of tensors, it is natural to apply
the (truncated) SVD algorithm to approximate these weight matrices.

Given a weight matrixW ∈ RS×T , we can decomposeW ≈ USVT using (truncated)
SVD algorithm, where U ∈ RS×R,S ∈ RR×R,V ∈ RT×R, and R ∈ Z+. Therefore, we
can describe the original jth-fully connected layers operation using the approximated form
as

Aj = σ(UjSj(Vj)TAj +Bj), (6.1)

whereAj−1 is the output of the previous layer (or the input matrixX, if j− 1 = 0). Notice
that if the choice of the rank R if significantly smaller than S and T , this approximated
form allows us to reduce the number of parameters in the weight matrix. While the SVD
algorithm is simple and easy to implement, it is not well-suited for compressing large-
scale weight matrices. Modern neural networks commonly employ weight matrices with
a substantial number of parameters, ranging from tens to hundreds of thousands. This
necessitates a higher compression rate than what the SVD algorithm can provide.

The utilization of tensor decompositions in neural networks through the tensorization
of fully-connected layers was initially proposed in [13], where the term Tensor Neural
Networks (TNNs) was coined. As said before, the weights of fully-connected layers are rep-
resented by matrices, direct application of tensor decompositions is not feasible. Therefore,
the weight matrices need to be reshaped in order to obtain a higher-order tensor. Specifically,
given an input matrixW ∈ RI×J , with dimensions expressed as I = I1 × I2 × · · · × IN
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and J = J1×J2×· · ·×JN ,W is first tensorized by reshaping it into a higher-order tensor
of size I1 × I2 × · · · × IN × J1 × J2 × · · · × JN . Then, by permuting the dimensions and
reshaping it once more, anN th-order tensor of size I1J1 × I2J2 × · · · × INJN is obtained.
This tensor is subsequently compressed using the corresponding tensor decomposition for-
mat, such as the TT format. Finally, during the forward pass, there are two main strategies
to consider:

• Reconstructed: Reconstruct the complete (approximated) weights and perform a
regular linear layer forward pass.

• Factorized: Contract the input tensor with the factors of the decomposition. This
can be faster for very small ranks, i.e., when the factorization factors are very small.

6.2 Tensorization of convolutional layers

Unlike in fully-connected layers, the weights of convolutional layers are naturally repre-
sented as tensors. For example, a 2D convolution is directly represented by a 4th-order
tensor. Therefore, we can directly apply tensor decompositions to compress convolutional
layers.

While the utilization of tensor decomposition in CNNs is a recent and currently relevant
development, the concept of representing linear operators through separable representa-
tions using tensor decomposition is not new (refer to [62] for more details). In this way,
the motivation behind depthwise separable convolutions is to improve the efficiency and
effectiveness of CNNs.

6.2.1 Depthwise separable convolutions

Traditional convolutional layers in CNNs apply a single filter to all input channels, resulting
in a large number of computations. Depthwise separable convolutions aim to reduce this
computational cost by decomposing the convolution operation into two separate steps:
depthwise convolution and pointwise convolution.

Depthwise convolution applies a separate filter to each input channel independently,
capturing channel-wise spatial correlations. This step significantly reduces the number of
parameters and computations compared to traditional convolutions.

Pointwise convolution, also known as 1×1 convolution, which can be viewed as a tensor
contraction, is a fundamental example of convolution. It is commonly employed in deep
neural networks to introduce data bottlenecks where the channel-wise information obtained
from the depthwise convolution is combined, as seen in architectures like MobileNet [69]
and Inception [70]. Let’s consider a 1× 1 convolution operator denoted as Φ. It is defined
by a kernel tensorW ∈ RT×C×1×1 and is applied to an activation tensor X ∈ RC×H×W .
The squeezed version of the kernel along the first mode is represented as W ∈ RT×C .
Thus, we can express this as follows:

Φ(X )t,y,x = X ⋆W =
C∑

k=1

Xt,k,y,xWk,y,x = X ×1 W, (6.2)

where x = y = 1 as we are considering a 1× 1 convolution.
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6.2. Tensorization of convolutional layers

The depthwise separable convolution operation can be viewed as a form of tensor
decomposition, where the original kernel tensor is decomposed into a set of smaller tensors.

6.2.2 Kruskal convolutions

CP decomposition allows separating modes of a convolutional kernel, resulting in a Kruskal
form. This was proposed in [26], where the authors start from a pretrained convolutional
kernel and apply CP decomposition to it in order to obtain a separable convolution. In
this case, the CP decomposition was achieved by minimizing the reconstruction error
between the pretrained weights and the corresponding CP approximation. The authors
demonstrated both space savings and computational speedups. Using a CP decomposition

Figure 6.1: Standard convolution operation.

to factorize the kernel offers a notable benefit: the resulting factors can serve as parameters
for a set of efficient depthwise separable convolutions, effectively replacing the original
convolution operation [26]. Let’s consider a standard convolution illustrated in Fig. 6.1 and
denoted as:

Ft,y,x =
C∑

k=1

H∑
j=1

W∑
i=1

W(t, k, j, i)X (k, j + y, i+ x) (6.3)

It’s Kruskal convolution is obtained by expanding the kernelW in the CP form as

Ft,y,x =

R∑
r=1

U
(T )
t,r


W∑
i=1

U
(W )
i,r


H∑
j=1

U
(H)
j,r


C∑

k=1

U
(C)
k,r X (k, j + y, i+ x)︸ ︷︷ ︸
1×1 convolution


︸ ︷︷ ︸

depthwise convolution




︸ ︷︷ ︸

depthwise convolution︸ ︷︷ ︸
1×1 convolution

, (6.4)

This expression is explained as follows: an initial 1 × 1 convolution reduces input channels
to the rank (blue). Two depthwise convolutions are then applied to the height and width
of the activation tensor (red and green). Lastly, a second 1 × 1 convolution restores the
number of channels from the rank of the CP decomposition to the desired output channel
count (black) (see Fig. 6.2).
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Figure 6.2: Convolution operation with a CP-decomposed kernel, i.e., Kruskal form.

6.2.3 Tucker convolutions

As previously, we consider the convolution F = X ⋆W described in Eq. (6.3). However,
in this case we consider using Tucker decomposition to compress convolutional layers as
proposed in [71].

First, instead of a Kruskal structure, the convolution kernel is assumed to admit Tucker
format described as follows:

W(t, s, j, i) =

R1∑
r1=0

R2∑
r2=0

R3∑
r3=0

R4∑
r4=0

Gr1,r2,r3,r4U
(T )
t,r1

U(C)
s,r2U

(H)
j,r3

U
(W )
i,r4

, (6.5)

whereU(n), with n = {T,C,H,W}, are the four factor matrices, and G ∈ RR1×R2×R3×R4

is the core tensor that represents the interactions between the modes.
Using the decomposed kernel tensor, we can create an efficient reformulation [71]:

initially, the factors along the spatial dimensions are incorporated into the core tensor
by expressing H = G ×3 U

(H)
j,r3

×4 U
(W )
i,r4

. Rearranging the terms, we observe that a
Tucker convolution is equivalent to sequentially handling the channel count transformation,
performing a small convolution, and then restoring the channel dimension from the rank
to the desired number of channels:

Ft,y,x =

R1∑
r1=1

U
(T )
t,r1


H∑
j=1

W∑
i=1

R2∑
r2=1

Hr1,r2,j,i,


C∑

k=1

U
(C)
k,r2

X (k, j + y, i+ x)︸ ︷︷ ︸
1×1 convolution


︸ ︷︷ ︸

H×W convolution


︸ ︷︷ ︸

1×1 convolution

. (6.6)

This expression can be described more precisely as follows: after decomposing the full
kernel, the factors corresponding to input and output channels are utilized to parameterize
1 x 1 convolutions, applied to the initial (blue) and final (green) stages, respectively. The
remaining two factors are integrated into the core tensor and employed to parameterize a
(small) regular 2D convolution (red) (see Fig. 6.3).

6.2.4 TT-based convolutions

A direct (and straightforward) approach to represent convolutional kernels in TT-format is
by applying the TT decomposition directly to the kernel tensorW and dividing the forward
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6.2. Tensorization of convolutional layers

Figure 6.3: Convolution operation with a Tucker-decomposed kernel.

Figure 6.4: Convolution operation with a TT-decomposed kernel, where the leftmost tensor
represents the input tensor X , the next two matrices are U and K, respectively, and the last tensor
represents the output tensor V .

pass into sequential steps. However, in [27], the authors demonstrated the inadequate
performance of this approach and introduced a novel method inspired by the notion that a
convolutional layer can be expressed as a matrix-by-matrix multiplication [27].

As shown in Fig. 5.6, the 2D convolution between a third-order input tensor X ∈
RX×Y×C , and a fourth-order kernel tensorW ∈ Rd×d×C×T , is equivalent to the matrix-
by-matrix multiplication [27]. More precisely, we introduce two matrices, U,K to hold
the same data in matrix format:

X (x+ i− 1, y + j − 1, c) = U(x+X ′(y − 1), i+ d(j − 1) + d2(c− 1)), (6.7)
W(i, j, c, t) = K(i+ d(j − 1) + d2(t− 1), c), (6.8)

where we assume that X ′ = X − d + 1 and Y ′ = Y − d + 1. Then, we use U and K
matrices to compute the intermediate output matrixV as

V = UK. (6.9)

Finally, by reshaping the matrixV back into tensor format, we recover the output tensor
V ∈ RX′×Y ′×T as

V(x, y, t) = V(x,X ′(y − 1), t). (6.10)

Once the input and kernel tensors are matricized, we proceed by reshaping the kernel
tensor into a high-dimensional tensor denoted as W ′ ∈ Rd2×c1t1×c2t2×···×cdtd , where
C =

∏d
i=1Ci and T =

∏d
i=1 Ti. This factorization assumes the existence of such a

decomposition. To ensure that the factorization is always feasible, we introduce empty
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6. Network compression using TDs

channels as needed. In summary, the kernel matrix K is transformed into a (d − 1)-
dimensional tensor, where the first dimension has a size of d2, and the remaining dimensions
have sizes of CiTi for i ranging from 1 to d. This tensorization process is mathematically
defined as
K(x+ d(y − 1) + d2(c′ − 1), c) = K′((x+ d(y − 1), 1, (c1, t1), . . . , (cd, td)))

≈ G0(x+ d(y − 1), 1)G1(c1, t1) . . .Gd(cd, td),
(6.11)

It should be noted that the tuple (ck, tk) represents the compound index for the k-th dimen-
sion, where ck is utilized as the row index and tk serves as the column index. See Fig. 6.5
for an more illustrative example of the matricization, tensorization and decomposition
process Finally, we can re-formulate the forward pass using the compound index defined

Figure 6.5: Matricization, tensorization and decomposition process.

in Eq. (6.11). That is, we reshape the data matrix U into a tensor U ′ ∈ RX×Y×C1×...Cd and
compute the output tensor V ′ ∈ RX′×Y ′×T1×···×Td as follows

V ′ =

d∑
i,j

∑
c1,...,cd

U ′(i+ x− 1, j + y − 1, c1, . . . , cd)×

G0(x+ d(y − 1), 1)G1(c1, t1) . . .Gd(cd, td).

(6.12)

Then, we reshape the intermediate output tensor V ′ into the final output tensor V ∈
RX′×Y ′×T . Should be noted that the tensor cores G’s are trained as the layer’s parameters,
and the optimization process can be carried out utilizing any autograd package [72].

6.3 Complexity analysis

Let’s consider the input tensor U ∈ RX×Y×C , where X,Y are the spatial dimensions
and C is the number of input channels. If we assume that there is no bias term, an
ordinary convolution has TCHW parameters, where in most of the cases H = W . Thus,
if d = H = W , we can rewrite the number of parameters as TCd2, and the number of
multiplication-addition operations are defined by TCd2(X − d+ 1)(Y − d+ 1).

By applying CP decomposition, the parameter count reduces to R(C + 2d+ T ), and
the number of multiplication-addition operations decreases to R(C + 2d+ T )(X − d+
1)(Y − d+ 1). Hence, if we assume that the chosen rank R is significantly smaller than C
and T , with R ≈ CT

C+T , the compression scheme exhibits a complexity improvement on
the order of d2. The compression ratio of the CP decomposition is defined as

Ccp =
TCHW

R(C + 2d+ T )
, (6.13)
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6.4. Rank selection

where the speed-up ratio can be defined in the same way as

Scp =
TCd2(X − d+ 1)(Y − d+ 1)

R(C + 2d+ T )(X − d+ 1)(Y − d+ 1)
. (6.14)

According to [73], with Tucker decomposition reduces the number of parameters to
CR3+TR4+R3R4d

2, and the number of multiplication-addition operations toCR3XY +
(R3d

2 + T )R4(X − d+1)(Y − d+1). We can define the compression ratio of the Tucker
decomposition as

Ctucker =
TCHW

CR3 + TR4 +R3R4d2
, (6.15)

and the speed-up ratio as

Stucker =
TCd2(X − d+ 1)(Y − d+ 1)

CR3XY + (R3d2 + T )R4(X − d+ 1)(Y − d+ 1)
, (6.16)

where both of them are bounded by TC
R3R4

.
Following the calculations in [74], TT decomposition reduces the number of parameters

toCR3+dR3R+dR4R+R4T , while also reducing the number of multiplication-addition
operations toCR3XY +dR3RXY +dR4RX ′Y ′+R4TX

′Y ′, whereX ′ = (X−d+1) and
Y ′ = (Y −d+1). Therefore, we can define the compression ratio for the TT decomposition
as

CTT =
TCHW

CR3 + dR3R+ dR4R+R4T
, (6.17)

and the speed-up ratio is calculated as

STT =
TCd2(X − d+ 1)(Y − d+ 1)

CR3XY + dR3RXY + dR4RX ′Y ′ +R4TX ′Y
. (6.18)

Furthermore, a summary of the complexities for each tensor decomposition can be found
in Table 6.1.

Method Space complexity Computational complexity

Standard convolution TCHW TCd2(X − d+ 1)(Y − d+ 1)
CP convolution R(C + 2d+ T ) R(C + 2d+ T )(X − d+ 1)(Y − d+ 1)
Tucker convolution CR3 + TR4 +R3R4d

2 CR3XY + (R3d
2 + T )R4(X − d+ 1)(Y − d+ 1)

TT convolution CR3 + dR3R+ dR4R+R4T CR3XY + dR3RXY + dR4RX ′Y ′ +R4TX
′Y ′

Table 6.1: Comparison of complexities.

6.4 Rank selection

In this work, many tensor methods discussed rely on knowledge or estimation of the decom-
position’s rank. However, determining the rank of a tensor is generally a computationally
difficult problem (NP-hard) [59, 75], and practical applications often resort to heuristic
approaches. While the precise rank selection is less critical within a deep framework, since
all parameters are jointly trained end-to-end, the task of rank selection remains a significant
challenge.
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6. Network compression using TDs

Moreover, the chosen rank for the decomposition strongly impacts performance and
compression ratio, effectively controlling the trade-off between these twometrics. It directly
influences the expressiveness and complexity of the decomposition model. Unfortunately,
the process of selecting optimal rank values through trial and error is highly inefficient
and time-consuming. Additionally, it is worth noting that rank selection also affects the
computational performance achieved. By considering hardware characteristics or restric-
tions, selecting appropriate ranks can bridge the gap between theoretical advancements
and practical implementations [44].

Given the importance of rank selection (or estimation), various approaches have been
proposed. For instance, in practical scenarios, one may initially select a rank that preserves
around 80% of the parameters and gradually decrease it using multi-stage compression
techniques [37]. When working with pretrained networks, it is also possible to approximate
the rank by employing Bayesian matrix factorization [76] on the unfolding of the weight
tensor, thereby obtaining an estimate of the rank [71, 37]. Other approaches such as [67]
have used neural networks and reinforcement learning to estimate the rank. Alternatively,
one can incorporate a Lasso-type penalty into the loss function to automatically force
certain components to zero, aiding in rank determination [77].
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CHAPTER 7
Results

This chapter presents a comprehensive benchmarking analysis aimed at evaluating the
performance of tensor decompositions for compressing neural networks. Specifically, we
assess the effectiveness of these methods using two distinct tensorization strategies. The
first strategy involves training tensorized models from the ground up, while the second
strategy involves applying tensorization to pretrained models.

7.1 Experimental setup

All the models were built with Pytorch [78] and trained with the help of Pytorch Lightning
[79] primitives. As a experimental platform, we use several hardware accelerators, more
precisely, we use some Nvidia RTX 3090 and Nvidia A5000 GPUs equipped with 24GB of
VRAM.

For the tensorization, there exist many libraries prepared for working with tensors
easily such as Tensorly [80], TensorNetwork [81], or cuTensor [82], furthermore, there
are some other libraries specifically designed for working with tensor decompositions
for neural networks compression. In our case, we decided to use tensorly-torch [80], a
wrapper of Tensorly and Pytorch that facilitates the tensorization of neural networks
through several tensor decompositions, using a unified interface and providing several
backends, e.g., Pytorch, Numpy, JAX, CuPy, and so on. However, notice that other libraries
such as Tednet [83], which is a solid alternative that provide similar functionalities.

7.1.1 Dataset

The CIFAR-10 dataset is composed of 60,000 images, with each color image (RGB) having a
resolution of 32x32 pixels. These images are evenly distributed across ten object classes,
with each class containing 6,000 images. The ten classes are as follows: airplane, automobile,
bird, cat, deer, dog, frog, horse, ship, and truck.

The CIFAR-10 dataset [84] is divided into two subsets: a training set and a test set. The
training set consists of 50,000 images, with each class having 5,000 samples, where we
randomly select 5000 examples for the validation set. Note that these splits are made using
the same random seed to maintain the reproducibility of the experiments. The remaining
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10,000 images form the test set, serving as an independent benchmark to evaluate the
generalization and performance of the trained models.

7.1.2 Training and evaluation framework

In order to ensure fairness during the training process of all the models presented in
Section 7.2.1, several measures were taken. Specifically, all models were trained for 50
epochs, utilizing a batch size of 128 and a consistent learning rate of 1e−3. The widely
recognized Adam optimizer [85] was employed, with default hyperparameters set to β1 =
0.9 and β2 = 0.999.

In order to assess the performance of the models, we employ identical evaluationmetrics
for models tensorized using both tensorization strategies, i.e., tensorized from scratch in
Section 7.2.1 and tensorized from pretrained models in Section 7.2.2. Firstly, considering the
nature of our task as a balanced multi-class classification problem, we utilize the accuracy
metric, which is defined as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
, (7.1)

where TP are true positives, TN true negatives, FP false positives, and FN false negatives.
Additionally, as we are interested in measuring the trade-off between accuracy and pa-
rameter reduction, we need to define a metric to measure this reduction. Therefore, we
define the compression ratio metric, which measures the size reduction achieved dividing
the number of parameters in the uncompressed model by the number of parameters in the
compressed model. This is defined mathematically as

Compression ratio =
#params uncompressed
#params compressed . (7.2)

We also measure the model size, where if we assume that the floating point precision used
is 32, we can calculate the model size in Megabytes (MB) as

Model size = #params ∗ (32/8) ∗ 1e−6. (7.3)

7.2 Analysis of the results

To test the performance of each decomposition scheme, we apply each of the methods
to the convolutional layers of two different architectures like ResNet [86], and VGG [21].
More precisely, we use several size configurations of these two architectures, i.e., ResNet18,
ResNet50, VGG11, and VGG19 networks.

VGG11 and VGG19 networks are built sequentially stacking 8 and 16 convolutional
layers, respectively, followed by 3 fully-connected layers. In the same way, ResNet18
is built stacking 17 convolutional layers, followed by a single fully-connected layer. On
the other hand, ResNet50, which is composed by 49 convolutional layers followed by a
fully-connected layer, divides the convolutional layers into several blocks, with each block
containing a series of convolutions, i.e., 1× 1 convolution, 3× 3 convolution and 1× 1
convolution, known as data bottlenecks [86].

To tensorize the networks, we replace all the convolutional layers but the first one of the
different architectures by the TD-based convolutions, i.e., CP-decomposed (Section 6.2.2),
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Tucker-decomposed (Section 6.2.3) and TT-decomposed (Section 6.2.4) convolutions. A
summary of the different configurations is shown in Table 7.1.

We also tested two additional intermediate configurations, more precisely, ResNet34
and VGG16, but as the results are very similar to those of the other configurations, we have
not included them in this analysis, and they can be found in Appendix A.

Network Baseline configuration Tensorized configuration

VGG11 8 convolutional layers
3 fully-connected layers

1 convolutional layer
7 TD-convolutional layers
3 fully-connected layers

VGG19 16 convolutional layers
3 fully-connected layers

1 convolutional layer
15 TD-convolutional layers
3 fully-connected layers

ResNet18 17 convolutional layers
1 fully-connected layer

1 convolutional layer
16 TD-convolutional layers
1 fully-connected layer

ResNet50 49 convolutional layers
1 fully-connected layer

1 convolutional layer
48 TD-convolutional layers
1 fully-connected layer

Table 7.1: Networks configuration summary.

7.2.1 Tensorization from scratch

In this tensorization strategy, we begin by selecting a baseline network, such as an untrained
ResNet18 model, as our starting point. Subsequently, we apply tensorization techniques to
the baseline model at various compression ratios, and proceed to train these tensorized
models from the beginning. The objective of this experiment is to assess whether the
tensorized networks can preserve the representational capacity exhibited by the original
networks using fewer parameters.

7.2.1.1 Results on ResNet

The results presented in Table 7.2 demonstrate the effective compression of the ResNet18
network using both CP and Tucker decompositions. In comparison to the uncompressed
baseline, the CP-based model achieves a compression ratio of 1.965x by halving the number
of parameters while only reducing the accuracy by 0.0052. Furthermore, retaining only
10% of the parameters and reducing the model size from 44.695MB to 5.153MB, the model
experiences a minor accuracy reduction of 0.0243. Similarly, the Tucker decomposition
exhibits similar behavior, with medium-high parameter retention such as 50% and 80%
outperforming CP decomposition and maintaining the baseline accuracy. On the other
hand, we observe that TT decomposition achieves similar compression ratios as CP or
Tucker, but is not able to maintain accuracy, dropping around 10% for all the compression
ratios.

Moving on to ResNet50, although CP decomposition is typically discouraged due to
unstable optimization [87], Table 7.3 reveals that it performs slightly better than Tucker de-
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Method % Parameters #Parameters Model size (MB) Compression ratio Accuracy

Uncompressed 1.0 11173962 44.695 1x 0.9043

CP 0.1 1288468 5.153 8.672x 0.88
CP 0.2 2389079 9.556 4.677x 0.8888
CP 0.5 5687499 22.749 1.965x 0.8991
CP 0.8 8987725 35.951 1.243x 0.8997

Tucker 0.1 1288513 5.154 8.672x 0.8875
Tucker 0.2 2387722 9.551 4.68x 0.8871
Tucker 0.5 5690166 22.761 1.964x 0.9007
Tucker 0.8 8983194 35.932 1.244x 0.9036

TT 0.1 1288398 5.153 8.673x 0.7907
TT 0.2 2384384 9.556 4.686x 0.8067
TT 0.5 5691839 22.767 1.963x 0.7906
TT 0.8 8965400 35.861 1.246x 0.7968

Table 7.2: Results compressing the convolutional layers of a ResNet18 model, and training the
tensorized model from scratch.

composition. For instance, with a parameter retention of 10%, the CP-based model achieves
a model size of 37.946MB compared to the uncompressed model’s size of 94.080MB, re-
sulting in an accuracy reduction of only 0.0092. On the other hand, the best performance
for the Tucker-based models is observed at a parameter retention of 80%, yielding an
accuracy of 0.9018. In this case, we see that TT decomposition is able to achieve a higher
compression ratio than CP and Tucker, i.e., 10.186x, with a model size of 9.235MB, while
reducing the accuracy by 0.0254.

Method % Parameters #Parameters Model size (MB) Compression ratio Accuracy

Uncompressed 1.0 23520842 94.080 1x 0.9106

CP 0.1 9486467 37.946 2.479x 0.9014
CP 0.2 11050056 44.200 2.129x 0.8936
CP 0.5 15732335 62.929 1.495x 0.9029
CP 0.8 20409706 81.639 1.152x 0.9038

Tucker 0.1 9488912 37.956 2.479x 0.8953
Tucker 0.2 11046237 44.185 2.129x 0.8867
Tucker 0.5 15737527 62.950 1.495x 0.8859
Tucker 0.8 20410051 81.640 1.152x 0.9018

TT 0.1 2308938 9.235 10.186x 0.8852
TT 0.2 11040926 44.163 2.13x 0.9001
TT 0.5 15735579 62.942 1.495x 0.8956
TT 0.8 20391852 81.567 1.153x 0.8921

Table 7.3: Results compressing the convolutional layers of a ResNet50 model, and training the
tensorized model from scratch.

Overall, considering that the ResNet architecture already employs more efficient convo-
lutional layers, such as bottlenecks [86], we observe that TD-based compression significantly
reduces the size of the models while minimally impacting the accuracy of the uncompressed
baselines.
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7.2.1.2 Results on VGG

In both Table 7.4 and Table 7.5, we can observe that the VGG architecture, which solely
employs standard convolutional layers, achieves higher compression ratios compared to
the ResNet models. This observation is particularly evident when analyzing the CP-based
models.

In the case of VGG11, the CP-based model reduces the size from 36.924MB to 3.75MB,
resulting in a significant model reduction. However, this reduction in size comes at the
cost of a decrease in accuracy by 0.0379. Similarly, the CP-based VGG19 model demon-
strates even higher model reduction, reducing the size from 80.162MB to 8.108MB, with a
compression ratio of 9.887x. However, this also leads to a reduction in accuracy by 0.0311.

Method % Parameters #Parameters Model size (MB) Compression ratio Accuracy

Uncompressed 1.0 9231114 36.924 1x 0.8803

CP 0.1 937456 3.750 9.847x 0.8424
CP 0.2 1860182 7.441 4.962x 0.8565
CP 0.5 4627272 18.509 1.995x 0.8777
CP 0.8 7394881 29.580 1.248x 0.8747

Tucker 0.1 938922 3.756 9.832x 0.8437
Tucker 0.2 1858301 7.433 4.968x 0.8556
Tucker 0.5 4631515 18.526 1.993x 0.8691
Tucker 0.8 7395593 29.582 1.248x 0.8671

TT 0.1 938326 3.753 9.838x 0.5102
TT 0.2 1856280 7.425 4.973x 0.6694
TT 0.5 4630781 18.523 1.993x 0.6916
TT 0.8 7376404 29.50 1.251x 0.6757

Table 7.4: Results compressing the convolutional layers of a VGG11 model, and training the
tensorized model from scratch.

Method % Parameters #Parameters Model size (MB) Compression ratio Accuracy

Uncompressed 1.0 20040522 80.162 1x 0.8937

CP 0.1 2026948 8.108 9.887x 0.8626
CP 0.2 4031038 16.124 4.972x 0.8687
CP 0.5 10040663 40.163 1.996x 0.8812
CP 0.8 16051973 64.208 1.248x 0.892

Tucker 0.1 2029861 8.119 9.873x 0.8625
Tucker 0.2 4028238 16.113 4.975x 0.8594
Tucker 0.5 10052199 40.209 1.994x 0.8834
Tucker 0.8 16056695 64.227 1.248x 0.8784

TT 0.1 2029550 8.118 9.874x 0.5542
TT 0.2 4022440 16.089 4.982x 0.3919
TT 0.5 10052593 40.210 1.994x 0.5006
TT 0.8 16015504 64.062 1.251x 0.5781

Table 7.5: Results compressing the convolutional layers of a VGG19 model, and training the
tensorized model from scratch.

It is worth noting that compared to the ResNet models, VGG models experience a more
considerable decrease in accuracy when using a small parameter retention setting. This
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suggests that the impact on accuracy is more pronounced in VGG models when employing
aggressive compression techniques.

On the other hand, Tucker decomposition generally achieves worse results overall
compared to the CP-based models. It fails to reach the accuracy obtained by the CP-based
models, even when considering different parameter retention settings. This gets even worse
for the case of TT decomposition, which obtains a severe reduction in the accuracy, and
making the TT-based models unusable in practice.

In summary, the VGG architecture demonstrates higher compression ratios at the same
accuracy, especially with CP-based models. However, the reduction in accuracy is more
substantial in VGG models when using lower parameter retention settings. Additionally,
Tucker decomposition does not achieve the same accuracy levels as the CP-based models
across all parameter retention settings. Finally, we see that TT-based models are affected
by a drastic reduction in the accuracy for all the compression ratios.

7.2.2 Tensorization from pretrained

In this tensorization strategy applied to pretrained models, we commence by choosing a
trained baseline network, such as a pretrained ResNet18 model, as our initial framework.
Afterward, we apply tensorization techniques to the baseline model at different compression
ratios and proceed to fine-tune these tensorized models to recover the accuracy lose due
to the compression. The purpose of this experiment is to evaluate whether the tensorized
networks can approximate accurately the original trained networks with fewer parameters.

7.2.2.1 Results on ResNet

The results presented in Table 7.6 demonstrate that tensorization of a pretrained ResNet18
model yields satisfactory outcomes when utilizing CP and Tucker decompositions, par-
ticularly when the parameter retention exceeds 50%. However, as the compression ratio
increases and the parameter retention decreases, there is a significant decline in accuracy.
The optimal trade-off between compression and accuracy is achieved with the CP decompo-
sition and a parameter retention of 50%, which reduces the model size from 44.695 MB to
22.749 MB, with a marginal accuracy drop of 0.0026. In contrast, the Tucker decomposition,
at the same parameter retention, achieves an accuracy of 0.8915, which is 0.0128 lower than
the original. Notably, the TT decomposition fails to accurately approximate the original
pretrained model for any compression ratio.

In the case of the pretrained ResNet50model, the results shown in Table 7.7 reveal that all
decompositions struggle to achieve the original accuracy when using a parameter retention
of 10%. The CP decomposition achieves an accuracy of 0.4648, the Tucker decomposition
reaches 0.2015, and the TT decomposition falls to 0.1285. With a parameter retention of 20%
and a reduction in model size from 94.080 MB to 44.200 MB, only the CP decomposition
successfully approximates the original network, achieving an accuracy of 0.8627. The
Tucker decomposition begins to perform reasonably well with parameter retentions higher
than 50%, but it does not match the performance of the CP decomposition for the same level
of compression. Similar to ResNet18, the TT decomposition fails to effectively compress
the pretrained network and experiences a significant drop in accuracy.
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Method % Parameters #Parameters Model size (MB) Compression ratio Accuracy

Uncompressed 1.0 11173962 44.695 1x 0.9043

CP 0.1 1288468 5.153 8.672x 0.8066
CP 0.2 2389079 9.556 4.677x 0.8807
CP 0.5 5687499 22.749 1.965x 0.9017
CP 0.8 8987725 35.951 1.243x 0.904

Tucker 0.1 1288513 5.154 8.672x 0.7742
Tucker 0.2 2387722 9.551 4.68x 0.8436
Tucker 0.5 5690166 22.761 1.964x 0.8915
Tucker 0.8 8983194 35.932 1.244x 0.8992

TT 0.1 723529 2.894 15.444x 0.1002
TT 0.2 1252568 5.010 8.921x 0.1776
TT 0.5 1592209 6.369 7.018x 0.1565
TT 0.8 1728997 6.916 6.463x 0.2874

Table 7.6: Results tensorizing the convolutional layers of a ResNet18 model from a pretrained
model and without fine-tuning.

Method % Parameters #Parameters Model size (MB) Compression ratio Accuracy

Uncompressed 1.0 23520842 94.080 1x 0.9106

CP 0.1 9486467 37.946 2.479x 0.4648
CP 0.2 11050056 44.200 2.129x 0.8627
CP 0.5 15732335 62.929 1.495x 0.9055
CP 0.8 20409706 81.639 1.152x 0.9094

Tucker 0.1 9488912 37.956 2.479x 0.2015
Tucker 0.2 11046237 44.185 2.129x 0.2853
Tucker 0.5 15737527 62.950 1.495x 0.8586
Tucker 0.8 20410051 81.640 1.152x 0.8972

TT 0.1 8699744 34.799 2.704x 0.1285
TT 0.2 9453069 37.812 2.488x 0.1208
TT 0.5 10627659 42.511 2.213x 0.1018
TT 0.8 11643420 46.574 2.020x 0.1009

Table 7.7: Results tensorizing the convolutional layers of a ResNet50 model from a pretrained
model and without fine-tuning.

7.2.2.2 Results on VGG

The results presented in Table 7.8 indicate that for the pretrained VGG11 network, both CP
and Tucker decompositions result in a drop in accuracy of approximately 0.10-0.15 when
using a parameter retention of 10%. However, these decompositions successfully compress
the original pretrained network when using a parameter retention higher than 20%, and
in some cases, even surpass the original accuracy. For instance, the CP decomposition
improves the accuracy slightly from 0.8803 to 0.8829 while achieving a compression ratio
of 1.995x and reducing the model size from 36.924 MB to 18.509 MB. Tucker decomposition
also matches the original accuracy but requires a parameter retention of 80%. Similar
to the previous findings, the TT decomposition fails to accurately compress the original
pretrained network.

A similar behavior is observed for the pretrained VGG19 network, as shown in Table 7.9.
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Method % Parameters #Parameters Model size (MB) Compression ratio Accuracy

Uncompressed 1.0 9231114 36.924 1x 0.8803

CP 0.1 937456 3.750 9.847x 0.7367
CP 0.2 1860182 7.441 4.962x 0.8562
CP 0.5 4627272 18.509 1.995x 0.8829
CP 0.8 7394881 29.580 1.248x 0.8855

Tucker 0.1 938922 3.756 9.832x 0.704
Tucker 0.2 1858301 7.433 4.968x 0.8419
Tucker 0.5 4631515 18.526 1.993x 0.8778
Tucker 0.8 7395593 29.582 1.248x 0.8822

TT 0.1 452943 1.812 20.380x 0.1
TT 0.2 883615 3.534 10.447x 0.1
TT 0.5 1137418 4.550 8.116x 0.1123
TT 0.8 1231198 4.925 7.498x 0.23

Table 7.8: Results tensorizing the convolutional layers of a VGG11 model from a pretrained model
and without fine-tuning.

Similar to the case of ResNet50, due to their larger size, all decompositions suffer when
using smaller parameter retentions such as 10%. Tucker decomposition performs well
with parameter retentions above 50%, reaching an accuracy of 0.8906 with a parameter
retention of 80% and a compression ratio of 1.248×. CP decomposition slightly exceeds
the original accuracy, achieving an accuracy of 0.8942 with a compression ratio of 1.248×
and reducing the model size from 80.162 MB to 64.208 MB. The same behavior is observed
for TT decomposition, as it does not achieve a good trade-off between compression and
accuracy.

Method % Parameters #Parameters Model size (MB) Compression ratio Accuracy

Uncompressed 1.0 20040522 80.162 1x 0.8937

CP 0.1 2026948 8.108 9.887x 0.3189
CP 0.2 4031038 16.124 4.972x 0.8617
CP 0.5 10040663 40.163 1.996x 0.8912
CP 0.8 16051973 64.208 1.248x 0.8942

Tucker 0.1 2029861 8.119 9.873x 0.6849
Tucker 0.2 4028238 16.113 4.975x 0.7666
Tucker 0.5 10052199 40.209 1.994x 0.8774
Tucker 0.8 16056695 64.227 1.248x 0.8906

TT 0.1 1027433 4.110 19.505x 0.1
TT 0.2 2013630 8.055 9.952x 0.1
TT 0.5 2564808 10.259 7.814x 0.207
TT 0.8 2767236 11.069 7.242x 0.3525

Table 7.9: Results tensorizing the convolutional layers of a VGG19 model from a pretrained model
and without fine-tuning.

7.2.3 Fine-tune tensorized pretrained models

Seeing that some of the results obtained from tensorizing pretrained models are not as good
as expected, we have tried to recover the accuracy drop with a fine-tuning process. This
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7.2. Analysis of the results

process is done trying to make it as fair as possible, setting a shared fine-tune framework for
all the models. More precisely, we set a fixed learning rate of 1e−5, and we use a training
technique called early stopping, where we monitor the validation loss metric, and we stop
the fine-tuning process once this metric stop improving. The number of checks with no
improvement after which training will be stopped is set to 3, and the maximum number of
epochs is set to 50.

7.2.3.1 Results on ResNet

After fine-tuning, we observe significant improvements in the initial results for ResNet18
(Table 7.6). Starting from a parameter retention of 10% and a model size of 5.153MB,
the accuracy has been increased from 0.8066 to 0.897, which is very close to the original
accuracy of 0.9043. With higher parameter retentions, both Tucker and CP decompositions
are capable of surpassing the original accuracy while utilizing fewer parameters. In the
case of TT decomposition, higher compression ratios can be achieved, but it results in a
notable drop in accuracy.

Method % Parameters #Parameters Model size (MB) Compression ratio Accuracy

Uncompressed 1.0 11173962 44.695 1x 0.9043

CP 0.1 1288468 5.153 8.672x 0.897
CP 0.2 2389079 9.556 4.677x 0.9203
CP 0.5 5687499 22.749 1.965x 0.9189
CP 0.8 8987725 35.951 1.243x 0.9148

Tucker 0.1 1288513 5.154 8.672x 0.894
Tucker 0.2 2387722 9.551 4.68x 0.9138
Tucker 0.5 5690166 22.761 1.964x 0.9237
Tucker 0.8 8983194 35.932 1.244x 0.9283

TT 0.1 723529 2.894 15.444x 0.5416
TT 0.2 1252568 5.010 8.921x 0.7227
TT 0.5 1592209 6.369 7.018x 0.8328
TT 0.8 1728997 6.916 6.463x 0.8675

Table 7.10: Results after fine-tuning a tensorized pretrained ResNet18 model.

For the case of ResNet50, as shown in Table 7.11, we observe a similar behavior to
ResNet18, where we can recover the original accuracy and even slightly surpass it. Specif-
ically, with parameter retentions higher than 20%, both CP and Tucker decompositions
achieve the same or better performance than the original pretrained network while utilizing
fewer parameters. For example, CP decomposition is able to obtain an accuracy of 0.9237,
which is 0.0194 higher than the orignal, while reducing the model size from 94.080 MB to
62.929 MB. On the other hand, although TT decomposition achieves higher compression
ratios, it does not yield to as good results as CP or Tucker decompositions.

7.2.3.2 Results on VGG

The initial results of tensorizing a pretrained VGG11 network are quite promising. However,
when using small parameter retentions, tensor decompositions struggle to recover the orig-
inal accuracy of 0.8803. After fine-tuning the tensorized network, significant improvements
are observed. This is demonstrated in Table 7.12, where it can be seen that both Tucker
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Method % Parameters #Parameters Model size (MB) Compression ratio Accuracy

Uncompressed 1.0 23520842 94.080 1x 0.9106

CP 0.1 9486467 37.946 2.479x 0.901
CP 0.2 11050056 44.200 2.129x 0.9176
CP 0.5 15732335 62.929 1.495x 0.9237
CP 0.8 20409706 81.639 1.152x 0.9241

Tucker 0.1 9488912 37.956 2.479x 0.8788
Tucker 0.2 11046237 44.185 2.129x 0.9
Tucker 0.5 15737527 62.950 1.495x 0.915
Tucker 0.8 20410051 81.640 1.152x 0.9226

TT 0.1 8699744 34.799 2.704x 0.8453
TT 0.2 9453069 37.812 2.488x 0.8537
TT 0.5 10627659 42.511 2.213x 0.8525
TT 0.8 11643420 46.574 2.020x 0.8657

Table 7.11: Results after fine-tuning a tensorized pretrained ResNet50 model.

and CP decompositions either match or even surpass the original accuracy. For instance,
Tucker decomposition achieves an accuracy of 0.8971 while reducing the model size by half
from 36.924 MB to 18.509 MB. On the other hand, although TT decomposition achieves
higher compression ratios, it is unable to achieve the same level of performance as CP and
Tucker decompositions.

Method % Parameters #Parameters Model size (MB) Compression ratio Accuracy

Uncompressed 1.0 9231114 36.924 1x 0.8803

CP 0.1 937456 3.750 9.847x 0.865
CP 0.2 1860182 7.441 4.962x 0.8816
CP 0.5 4627272 18.509 1.995x 0.8925
CP 0.8 7394881 29.580 1.248x 0.8919

Tucker 0.1 938922 3.756 9.832x 0.8587
Tucker 0.2 1858301 7.433 4.968x 0.8851
Tucker 0.5 4631515 18.526 1.993x 0.8971
Tucker 0.8 7395593 29.582 1.248x 0.8969

TT 0.1 452943 1.812 20.380x 0.3675
TT 0.2 883615 3.534 10.447x 0.5445
TT 0.5 1137418 4.550 8.116x 0.7679
TT 0.8 1231198 4.925 7.498x 0.8032

Table 7.12: Results after fine-tuning a tensorized pretrained VGG11 model.

The initial results of tensorizing a pretrained VGG19 network are not as satisfactory
(Table 7.9), as all tensor decompositions struggle to recover the original accuracy when
using low parameter retentions. However, as shown in Table 7.13, fine-tuning the ten-
sorized VGG19 network leads to significant improvements, particularly for CP and Tucker
decompositions, which are able to match or even surpass the original accuracy of 0.8937
with relatively small parameter retentions. For instance, CP decomposition achieves an
accuracy of 0.9007 while utilizing approximately 20% of the parameters and reducing the
model size from 80.162 MB to 16.124 MB. Despite some improvements, the results obtained
by TT decomposition are still far from those achieved by Tucker or CP decompositions.
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7.2. Analysis of the results

Method % Parameters #Parameters Model size (MB) Compression ratio Accuracy

Uncompressed 1.0 20040522 80.162 1x 0.8937

CP 0.1 2026948 8.108 9.887x 0.8627
CP 0.2 4031038 16.124 4.972x 0.9007
CP 0.5 10040663 40.163 1.996x 0.9062
CP 0.8 16051973 64.208 1.248x 0.8965

Tucker 0.1 2029861 8.119 9.873x 0.8642
Tucker 0.2 4028238 16.113 4.975x 0.8864
Tucker 0.5 10052199 40.209 1.994x 0.9097
Tucker 0.8 16056695 64.227 1.248x 0.9139

TT 0.1 2029550 8.118 9.874x 0.317
TT 0.2 4022440 16.089 4.982x 0.5517
TT 0.5 10052593 40.210 1.994x 0.7641
TT 0.8 16015504 64.062 1.251x 0.8175

Table 7.13: Results after fine-tuning a tensorized pretrained VGG19 model.
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CHAPTER 8
Conclusions

This study investigates the effectiveness of tensor decompositions (TDs) as a method for
compressing convolutional layers in VGG and ResNet architectures. The results demonstrate
that TDs offer a promising approach for neural network compression by significantly
reducing model size while having minimal impact on accuracy.

The research explores three widely used TD methods: CP, Tucker, and TT decomposi-
tions. By decomposing the weight tensors of convolutional layers into smaller rank tensors,
a substantial reduction in model size is achieved without sacrificing accuracy.

Experimental findings reveal that TDs can effectively capture important features and
patterns in convolutional layers, enabling compressed models to retain their discriminative
power. Despite the reduction in accuracy, the compressed models still achieve comparable
performance to their original counterparts.

The reduction in model size through TDs is particularly noteworthy, as it decreases
the number of parameters and memory footprint. This has significant implications for
resource-constrained environments like mobile devices or edge computing scenarios, where
storage and memory limitations often pose challenges.

TDs offer a compelling approach to neural network compression by achieving sub-
stantial reductions in model size while preserving accuracy. Compressed models not only
require less storage space, but also consume fewer computational resources during in-
ference. This leads to improved efficiency and faster execution times, which are highly
desirable in real-world applications.

In conclusion, this study demonstrates the effectiveness of CP, Tucker, and TT decom-
positions for compressing convolutional layers in VGG and ResNet architectures. These
findings contribute to the growing body of research on efficient and compact deep learning
models, facilitating practical and resource-efficient deployments of neural networks across
various domains.
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CHAPTER 9
Future work

In this chapter, we outline potential areas of future work that can advance the field of
tensor decompositions and their application to neural networks compression.

One area of focus is the development of customized and optimized kernels for tensor
decompositions. This research involves investigating and developing efficient algorithms
and computational techniques tailored to tensor decomposition, i.e., designing customized
kernels specific to the target hardware architecture. In this way, in [88], the authors pro-
posed a code generation framework that creates efficient kernels for inference. However,
this work only considers Tucker-based models, so its extension to other types of decompo-
sitions may be a good line of research. Additionally, parallel computing techniques could be
explored to accelerate the execution of tensor decomposition algorithms while considering
energy efficiency.

Another promising direction is the deployment of TD-based CNNs in energy-efficient
platforms with a focus on minimizing their carbon footprint. By integrating tensor decom-
positions with convolutional neural networks, we can reduce the number of parameters and
improve computational efficiency. This research could explore the feasibility of deploying
TD-based CNNs on platforms like RISC-V or FPGA, which offer energy-efficient computing
capabilities. An important aspect of this work should be measuring and analyzing the
energy consumption and carbon footprint of TD-based CNNs at inference time, comparing
their efficiency to traditional CNN architectures.

Furthermore, we propose investigating the combination of tensor decompositions with
quantization techniques. This research seeks to achieve further parameter reduction and
computational efficiency. Methods will be developed to integrate tensor decompositions
and quantization in a synergistic manner, maximizing the benefits of both approaches while
minimizing the overall carbon footprint.

Although this work primarily focuses on utilizing tensor decompositions to compress
convolutional layers in CNNs, it is worth noting that the application of tensor decomposi-
tions is not restricted to this specific type of neural network. The potential of employing
tensor decompositions in neural networks, such as transformers that predominantly con-
sist of fully-connected layers and encompass a significant number of parameters, can
be explored. Furthermore, it is important to recognize that even recurrent neural net-
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9. Future work

works or long short-term memory networks can be compressed effectively using tensor
decompositions.

Another promising avenue is to employ more sophisticated tensor decompositions,
such as advanced tensor networks like MERA or PEPS, which are extensively utilized in
quantum physics [89], for tensorizing various neural network architectures. These complex
tensor decompositions possess a greater capacity to capture intricate relationships within
the data. Hence, we can leverage this enhanced capacity to effectively compress neural
networks.

In conclusion, the future work outlined above presents exciting opportunities for ad-
vancing the field of tensor decompositions. By developing customized kernels, deploying
TD-based CNNs on energy-efficient platforms, and exploring the combination with quanti-
zation, researchers can contribute to the development of more efficient and resource-friendly
algorithms with reduced environmental impact.
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APPENDIX A
Appendix

Method % Parameters #Parameters Model size (MB) Compression ratio Accuracy

Uncompressed 1.0 21282122 85.128 1x 0.912

CP 0.1 2307890 9.232 9.221x 0.8869
CP 0.2 4421281 17.685 4.814x 0.8868
CP 0.5 10751273 43.005 1.979x 0.8994
CP 0.8 17088005 68.352 1.245x 0.9002

Tucker 0.1 2304279 9.217 9.236x 0.8899
Tucker 0.2 4423928 17.696 4.811x 0.8801
Tucker 0.5 10756892 43.028 1.978x 0.8946
Tucker 0.8 17068610 68.274 1.247x 0.8961

TT 0.1 1270025 5.08 16.757x 0.8321
TT 0.2 2329272 9.317 9.137x 0.8401
TT 0.5 3009193 12.037 7.072x 0.8273
TT 0.8 3293677 13.175 6.462x 0.8149

Table A.1: Results compressing the convolutional layers of a ResNet34 model, and training the
tensorized model from scratch.
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Method % Parameters #Parameters Model size (MB) Compression ratio Accuracy

Uncompressed 1.0 21282122 85.128 1x 0.912

CP 0.1 2307890 9.232 9.221x 0.5712
CP 0.2 4421281 17.685 4.814x 0.8951
CP 0.5 10751273 43.005 1.979x 0.9125
CP 0.8 17088005 68.352 1.245x 0.9107

Tucker 0.1 2304279 9.217 9.236x 0.633
Tucker 0.2 4423928 17.696 4.811x 0.8576
Tucker 0.5 10756892 43.028 1.978x 0.9026
Tucker 0.8 17068610 68.274 1.247x 0.9103

TT 0.1 1270025 5.08 16.757x 0.1
TT 0.2 2329272 9.317 9.137x 0.1
TT 0.5 3009193 12.037 7.072x 0.2295
TT 0.8 3293677 13.175 6.462x 0.4592

Table A.2: Results tensorizing the convolutional layers of a ResNet34 model from a pretrained
model and without fine-tuning.

Method % Parameters #Parameters Model size (MB) Compression ratio Accuracy

Uncompressed 1.0 21282122 85.128 1x 0.912

CP 0.1 2307890 9.232 9.221x 0.906
CP 0.2 4421281 17.685 4.814x 0.919
CP 0.5 10751273 43.005 1.979x 0.9233
CP 0.8 17088005 68.352 1.245x 0.9224

Tucker 0.1 2304279 9.217 9.236x 0.8968
Tucker 0.2 4423928 17.696 4.811x 0.9178
Tucker 0.5 10756892 43.028 1.978x 0.9243
Tucker 0.8 17068610 68.274 1.247x 0.9277

TT 0.1 1270025 5.08 16.757x 0.5721
TT 0.2 2329272 9.317 9.137x 0.7427
TT 0.5 3009193 12.037 7.072x 0.8349
TT 0.8 3293677 13.175 6.462x 0.8796

Table A.3: Results after fine-tuning a tensorized pretrained ResNet34 model.
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Method % Parameters #Parameters Model size (MB) Compression ratio Accuracy

Uncompressed 1.0 14728266 58.913 1x 0.9006

CP 0.1 1491744 5.967 9.873x 0.8528
CP 0.2 2964470 11.858 4.968x 0.8735
CP 0.5 7380522 29.522 1.996x 0.8923
CP 0.8 11797740 47.191 1.248x 0.8897

Tucker 0.1 1493972 5.976 9.858x 0.8593
Tucker 0.2 2962034 11.848 4.972x 0.8758
Tucker 0.5 7388040 29.552 1.994x 0.88
Tucker 0.8 11800251 47.201 1.248x 0.8798

TT 0.1 745616 2.982 19.753x 0.5243
TT 0.2 1459699 5.839 10.09x 0.5014
TT 0.5 1868502 7.474 7.882x 0.5992
TT 0.8 2019774 8.079 7.292x 0.5905

Table A.4: Results compressing the convolutional layers of a VGG16 model, and training the
tensorized model from scratch.

Method % Parameters #Parameters Model size (MB) Compression ratio Accuracy

Uncompressed 1.0 14728266 58.913 1x 0.9006

CP 0.1 1491744 5.967 9.873x 0.5928
CP 0.2 2964470 11.858 4.968x 0.8727
CP 0.5 7380522 29.522 1.996x 0.9017
CP 0.8 11797740 47.191 1.248x 0.9005

Tucker 0.1 1493972 5.976 9.858x 0.6584
Tucker 0.2 2962034 11.848 4.972x 0.7988
Tucker 0.5 7388040 29.552 1.994x 0.8796
Tucker 0.8 11800251 47.201 1.248x 0.8906

TT 0.1 745616 2.982 19.753x 0.1
TT 0.2 1459699 5.839 10.09x 0.1274
TT 0.5 1868502 7.474 7.882x 0.1185
TT 0.8 2019774 8.079 7.292x 0.3186

Table A.5: Results tensorizing the convolutional layers of a VGG16 model from a pretrained model
and without fine-tuning.
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Method % Parameters #Parameters Model size (MB) Compression ratio Accuracy

Uncompressed 1.0 14728266 58.913 1x 0.9006

CP 0.1 1491744 5.967 9.873x 0.8707
CP 0.2 2964470 11.858 4.968x 0.9029
CP 0.5 7380522 29.522 1.996x 0.9107
CP 0.8 11797740 47.191 1.248x 0.8937

Tucker 0.1 1493972 5.976 9.858x 0.8681
Tucker 0.2 2962034 11.848 4.972x 0.893
Tucker 0.5 7388040 29.552 1.994x 0.9102
Tucker 0.8 11800251 47.201 1.248x 0.9129

TT 0.1 745616 2.982 19.753x 0.3455
TT 0.2 1459699 5.839 10.09x 0.5315
TT 0.5 1868502 7.474 7.882x 0.7782
TT 0.8 2019774 8.079 7.292x 0.8338

Table A.6: Results after fine-tuning a tensorized pretrained VGG16 model.
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