eman ta zabal zazu I N FORMATI KA

FAKULTATEA
FACULTAD |
DE INFORMATICA

Universidad Euskal Herriko
del Pais Vasco Unibertsitatea

Master Thesis

Master’s degree in Computational Engineering and Intelligent
Systems

Towards bridging the sim to real gap for robotic
manipulation through the development of a
realistic simulation using Unity, MuJoCo and ROS2

Jon Ander Ruiz

Advisors
Ander Iriondo
Igor Rodriguez
Elena Lazkano

September 12, 2023

Acknowledgement
Agradecimientos

Before digging into the project, I would like to take a moment to thank the involvement of
all the people that, in one way or another, helped in the materialisation of this master’s
project.

First, I would like to thank the help provided by my supervisors Ander, Elena and
Igor, for your feedback, assistance and patience, and for guiding me through the project.
Moreover, I would like to thank the unit of Tekniker for the aid in technical questions, and
for the opportunity to carry out the project with them.

Following, I would like to thank to all the people that helped me outside the academic
and professional field. To my parents, Imanol and Laura, and to my partner Noelia, for all
the support and motivation, and to all my family and friends who, in different ways, have
shown interest for the project.

Many thanks to all of you.

Antes de proceder con el trabajo, me gustaria agradecer la participacion de toda la
gente que ha ayudado de una manera o de otra en la realizacién de este proyecto de fin de
master.

Primero, me gustaria agradecer la colaboracién de mis tutores, Ander, Elena e Igor.
Gracias por vuestro feedback, ideas y paciencia durante el trabajo y por haberme guiado
durante el mismo. Asimismo, gracias a la unidad de robdtica de Tekniker por la ayuda en
cuestiones técnicas y por la oportunidad de realizar el trabajo alli.

Por otra parte, fuera del ambito académico y profesional, me gustaria agradecer por
el apoyo y la motivacion constantes a mis padres Imanol y Laura, y a mi pareja Noelia, y,
en general, a toda la familia y amigos que, de una u otra manera, se han interesado por el
trabajo.

Muchas gracias a todos.

Abstract

The dissimilar behaviour that occurs in a simulation and in the real world with seemingly
the same controllers and physical features is a very real problem that current researchers
are trying to minimise. This problem is known as the "Reality Gap" problem. Since the
first use of simulations the problem has been present, as it must be remembered that there
is currently not such thing as a perfect representation of the world. There are numerous
factors that must be taken into account and be modelled in order to have the perfect
simulation, and multiple that cannot be. Many current approaches focus on reducing this
gap either by modifying the parameters of the simulation to fit as good as possible to the
real world, or by generating more robust controllers that can adapt to some amount of
discrepancies. Either way, even the quantification of the gap can be complex, and it should
be adapted or limited to the task in hand.

In this master thesis, the MuJoCo physics engine has been used to develop a simulation in
Unity. In order to achieve the integration in the ROS2 (Robot Operating System) ecosystem,
most precisely with Movelt2, the proper software has been developed and implemented as
well. Then, in order to quantify the fitness of the simulation, the interactions of a robotic
arm and gripper with an aluminium piece in a manipulation task has been studied, both in
simulation and in reality. These analyses have been portrayed in a metric, which has the
objective of comparing the behaviour of said piece in simulation and reality and quantify
the dissimilarities.

The simulation parameters provided in this work show promising results, accurately
representing a very close behaviour in simulation compared to reality. The metric also pro-
vides a distance-like coeflicient as a result, thus opening the gates to parameter optimisation
techniques in order to further reduce the Reality Gap.

KEYWORDS: Unity, MuJoCo, ROS2, manipulation, simulation, reality gap.

1ii

Contents

Contents

List of Figures

List of Tables

1 Introduction

1.1
1.2
1.3

Setup
Proposal
Goals

2 State of The Art

3 Manipulation Basics

vii

N S AR

13

4 Developing a Simulated Environment for Realistic Manipulation Operations 17

4.1
4.2
4.3
4.4

4.5

4.6

Measuring the Reality Gap with ArUco markers
The Unity environment
MuJoCoinUnity o e
Modelling therobot L
441 UR10inROS2
442 UR10inMuJoCo e
443 Modelling the grasping object
444 Modelling the physical aspects of the environment
Integration within ROS2 L oo
451 ROS2 Message publishing in Unity
45.2 Message SubscriptioninROS2. L.
453 Unity ROS2 Control
Architecture

5 Empirical Assessment

5.1
5.2

Experiment Design and Procedure Development
5.2.1 Procedure insimulation L.

5.2.2 Procedureinrealworld,
6 Results
6.1 Experiment#1

17

35
35
37
38
39

41
41

vi CONTENTS

6.2 Experiment#2 42
6.3 Experiment#3 42
6.4 Experiment#4 42
6.5 Experiment#5 43
7 Conclusions and Further Work 47
7.1 Further Work 48

Bibliography 49

1.1

1.2

2.1

3.1

3.2

4.1

4.2

4.3

4.4

4.5

List of Figures

Universal Robots” UR10 collaborative robot arm and setup. In the figure, on
the tracks the arm can be seen. Moreover, in the table, the aluminium piece,
from now on grasping object, and the Realsense D435 camera can be seen. The
objective is to model this setup in Unity.
Figure showcasing the Robotiq 2{-85. 85 stands for the millimetres between
the two pads. This is the gripper used in the project.

Example of UR5 arm with Robotiq 2F85 gripper attached in MuJoCo. In this
figure, it can be appreciated the visual quality of OpenGL. The resolution is
good enough, but the textures can be improved.

Inverse and Forward Kinematics. Knowing the position of the End Effector we
can calculate the angles of all the other joints, also known as joint state, and
knowing the joint state we can obtain the pose of the end effector. Image taken
from MathWorks.
Architecture of ROS2 Control connected with Movelt2. Here, we can clearly
visualise the modular design ROS2 offers. Image obtained from the official
ros-controlpage.

The environment in Unity seen from one of the cameras’ perspective. The arm,
table, grasping object with the ArUco markers and the buttons in the top left
cornercanbe seen.
The figure shows a white point marking an approximation of the point used
to plan trajectories. The red ellipses mark the articulations that enable the
adaptation of the fingers to an uneven surface.
In this figure, the UR10 robot can be seen in rest pose, and in front of it marked
in blue the objective point. L L
User interface of the simulation. On the scene, the working table. In the middle,
the robot mounted on a track is observed. Recall that this track is non-functional
in the scope of this project. In front, the grasping object with the ArUco markers
can be found. Furthermore, the floating white piece represents the Realsense
camera, and all the visual information of the simulation is collected from that
point of view. In the top left corner, the utility buttons are found. The "Quit"
button ends the simulation, and the "Run Demo" starts the pick operative. . . .
Coordinate systems, both in Unity and in ROS. Unity has the Z axis pointing
forward, X pointing right and Y pointing upwards, whereas in ROS, X is forward,
-Y is right and Z is upwards. Adding to this, the rotation in Unity is clockwise

27

and in ROS it is counter-clockwise. Image taken from Siemens’ ROS-Sharp wiki. 28

vii

https://www.mathworks.com/discovery/inverse-kinematics.html
https://control.ros.org/master/doc/resources/resources.html
https://github.com/siemens/ros-sharp/wiki/Dev_ROSUnityCoordinateSystemConversion

viil LIST OF FIGURES

4.6 Image in greyscale. This RGBA image is generated by the shader. This shader
generates the gray scale on this last channel. A script in Unity then publishes
the whole image and a subscriber node reads it, dividing it into colour and gray
scale. .o 29
4.7 Visualisation of the images obtained from simulation. On the left we can see
the depth image. In that image, it is also visible how the centre of the ArUco
markers have been colourised in order to visualise that they are being correctly
detected. On the right, it can be seen the colourised image. 30
4.8 Architecture of the simulation and used messages. The communication in the
architecture is divided in Unity and ROS2 Nodes outside Unity. The Unity part
consists of the simulation environment, the robot control interface and the pub-
lishers. These are connected via TCP or messages with the other ROS2 nodes.
This consists of several nodes that receive the information, subscribing to the
topics, treat and process this information, and create movement commands or
store the information, depending on the node. The ROS2 nodes are highlighted
inblue. e 32

5.1 The coordinate system of the grasping object, shown in Unity. The X axis is
represented by the red arrow, the green represents the Y axis and the blue the

5.2 Point of view of the camera. The right side shows the RGB image, with the
markers identified by the green perimeter and the top left identified by the
red square. On the left, the distance image can be seen. On that, the marker’s
centres are marked in whiteandred.. 000000 39

6.1 Tridimensional representation of the ArUco marker’s trajectories in camera
coordinates. This has been taken from the first iteration of the fifth experiment,
both in simulation and inthereal. o 000 45
6.2 Trajectory of the markers in experiment 5, iteration 5 in the real world. Note
that, compared to the trajectories seen in Figure 6.1, the trajectory is closer to
Figure 6.1a than to Figure 6.1b. 45

4.1
4.2
4.3

4.4

5.1

6.1

6.2

6.3

6.4

6.5

List of Tables

Collection of modified parameters for the UR10 robot arm. 23
Collection of modified parameters of the gripper’spads. 24
Collection of modified parameters for the grasping object. The values have
been defined both following the intuition seen in the MuJoCo documentation
and experimentally trying different combinations. 25
Collection of the global parameters. The values have been defined both follow-
ing the intuition seen in the MuJoCo documentation and experimentally trying
different combinations. 26

Metric for the experiments. The metric compares the results in simulation
and in reality, and it assigns a score based on the difference of both. The final
score is the mean of all the scores. In any case, if the grasping object drops in
simulation and not in reality and vice versa, the final score will be zero. 36

Metric filled with the data obtained from the iterations of experiment number
one. The data consists of the mean of the iterations, both in simulation and
reality. 41
Metric filled with the data obtained from the iterations of experiment number
two. The data consists of the mean of the iterations, both in simulation and
reality. 42
Metric filled with the data obtained from the iterations of experiment number
three. The data consists of the mean of the iterations, both in simulation and
reality. 43
Metric filled with the data obtained from the iterations of experiment number
four. The data consists of the mean of the iterations, both in simulation and
reality. 43
Metric filled with the data obtained from the iterations of experiment number
five. The data consists of the mean of the iterations, both in simulation and
reality. L 44

ix

CHAPTER

Introduction

Simulators are extensively used in the fields of industrial robotics and robotics research in
general. Their usefulness is indeed indisputable; they can be used to conduct experiments
without the economical cost nor the hazards or even the time cost of turning up a real
robot. In simulations, we can replicate nearly every physical aspect of the real world.
This includes; modelling forces such as gravity acting on the robot, and objects in the
environment, defining material properties like friction, and even creating new forces to
simulate wind. We can also manipulate the environment or create new scenes without
the need of buying new equipment in an easy way, adding new objects and new robots.
Another very important aspect of the simulations is that time can also be modelled. Time
modelling is particularly valuable when training artificial intelligence (AI) behaviours,
for instance using reinforcement learning, we could speed up time in order to train them
faster. In addition, with a simulated system, which is a simulated robot in an environment,
we can modify the robot’s sensors to match specific problem constraints and experiment
with various configurations to determine the optimal sensor setup. Later, when the sensor
configuration fulfils the problems’ constraints, the configuration can be set in the real robot.

Robotic simulation has two main aspects:

1. The simulation environment is the visual tool where we can see the scene and the
robot being tested. It should provide an easy-to-use user interface (UI) to add new
objects or, overall, modify the scene as well as offer a realistic rendering to see in
detail the models of the objects in the scene. Furthermore, simulation environments
may offer specific additional features. For instance, CoppeliaSim integrates path
planning capabilities, while MuJoCo focuses on adding support for inverse kinematics

(1].

2. The physics engine is probably the most important part of a simulation. Its main
objective is to replicate as reliable as possible the physical attributes of the real world.
It can go from the physics of collisions to even the density of a fluid the robot must
work with. Certainly, the very nature of the problem or the environment will mark
which attributes are important and which not, and thus which simulator fits better
to the problem.

1. INTRODUCTION

One of the most common problems in current simulators is the inability to realistically
simulate object contacts, which is crucial in scenarios involving robot manipulations.
Examples of bad contact simulation go from not being able to simulate correctly the grasp
of a piece (compared to the real world) due to excessive slipperiness, to not being able to
pick the object due to excessive trembling of the piece on contact.

In this work, a simulator using Unity and MuJoCo, integrated within the ROS2 ecosys-
tem, is presented. This combination of state-of-the-art technologies allows for precise
contact simulation with MuJoCo and the utilisation of existing algorithms and controllers
through Unity and ROS2, most precisely, Movelt2.

Additionally, a metric is also presented to measure the fidelity of the simulation com-
pared to the real world. Using different tools and techniques, this metric evaluates how an
object behaves when picked up in both simulation and the real world, enabling a compari-
son to identify discrepancies. These discrepancies, often referred to as the "reality gap”,
will be thoroughly examined to understand their underlying causes. Where feasible, efforts
will be made to minimise these differences.

The reality gap phenomenon is an inherent challenge in simulations, representing the
divergence between the simulated environment and the actual physical world. It can occur
because of a variety of reasons, ranging from inexactness in the definition of the model’s
physical characteristics to a bad configuration of the environment’s material characteristics,
like friction.

The document is organised as follows: In chapter 2 the state of the art is reviewed,
where we explore the criteria that other researchers have taken into account in order to
select a simulator, outline our criteria, examine other State-of-The-Art applications and the
simulators they employ, introduce the simulator we have chosen, explore relevant works
in the field of reality gap, and we discuss the metrics researchers have used in their works
concerning grasping stability. In chapter 3 a bit of theory about the robotic manipulation,
kinematics, both forward and inverse kinematics, path planning, controllers and Movelt2,
the software used to plan trajectories and control the arm, is reviewed. Following, in chapter
4, we explain how we developed the simulation where the experiments are conducted,
detailing both the components of the real world and their simulated counterparts. In chapter
5 the metrics of evaluation are explained, and the experiments are described in detail. In
chapter 6 the results obtained in the experiments are reviewed, and finally in chapter 7 we
will discuss the conclusions and future work.

1.1 Setup

The setup used in this research work is based on the workspace of the UR10 robot in
Tekniker, as seen in Figure 1.1. The UR10 is a collaborative robotic arm, or "cobot". With
its 1300mm of reach, 10kg of payload and 6 degrees of freedom, it carries out pick and
place tasks with remarkable flexibility. This robot is coupled with a Robotiq 2f 85 gripper,
a parallel finger gripper with a 85mm wide stroke. Its innovative design enables parallel
gripping as well as encompassing grip mode. The gripper can be spotted in Figure 1.2. It
also offers force and torque sensors, for monitoring stable grasps and securing objects to
prevent slipping.

The URDF (Unified Robotics Description Format) of the UR10 has been obtained from

1.1. Setup

Il
g
un\“‘l‘l‘l‘l‘\uugﬁlﬂlﬂﬂlilﬂl\ l%l\

i
s

Figure 1.1: Universal Robots’ UR10 collaborative robot arm and setup. In the figure, on the tracks
the arm can be seen. Moreover, in the table, the aluminium piece, from now on grasping object, and
the Realsense D435 camera can be seen. The objective is to model this setup in Unity.

dlLLogoY S
/o

-

Figure 1.2: Figure showcasing the Robotiq 2f-85. 85 stands for the millimetres between the two
pads. This is the gripper used in the project.

1. INTRODUCTION

the Universal_Robots_ROS2_Description !, and the corresponding model of the Robotiq
gripper from robotiq_2finger_grippers *

As additional equipment, a Realsense D435 camera has been used for ArUco markers
detection. These markers are later introduced in section 4.1.

Regarding the system, ROS2 Humble has been used, built from source. ROS2 is a collec-
tion of packages, functionalities and interfaces that ease the procedure of programming and
commanding robots. Due to its modular structure, many capabilities can be implemented
seamlessly in the ROS2 ecosystem. Such is the case of Movelt2 [2] [3], a package that
includes the latest developments in manipulation and motion planning.

Furthermore, Unity and MuJoCo 2.3.2 have been used for simulation development. The
simulation is be developed in Ubuntu 20.04, and the tests using the real robot will be carried
out in Ubuntu 22.04. The specifications of the computer are an Intel Core 17 10700 2.9GHz
x 16 processor and 16 Gb of RAM.

1.2 Proposal

Past experiences showed us that neither Gazebo [4], the default ROS simulator, nor Unity
with its default physics engine, PhysX, have shown as great potential in contact rich
scenarios as MuJoCo, where high precision is also required.

Thus, our idea is to create a simulation based on the MuJoCo engine, within the Unity
environment integrating ROS2, ideally being able to plan trajectories in Movelt2 and seeing
the results in the simulation, where the arm can interact with its environment. Having
done that, we can then measure the fitness of the simulation using different techniques to
evaluate the quality of a grasp.

1.3 Goals

Two are the goals of the project. The first goal is, to develop a realistic simulated envi-
ronment for grasping integrated in the ROS ecosystem. To that end, the MuJoCo physics
engine and the Unity engine are used. In order to complete this goal, the real world work
environment must be modelled with high fidelity, together with the arm and the gripper.
In the matter of modelling the arm, default robot’s URDF has been used and adapted to
fit the MuJoCo engine with modules from its own. These modules try to define as best as
possible the physical characteristics of the object in question, such as, friction, mass, force...
Then, the MuJoCo engine in Unity is integrated using its Plug-in and finally control the
robot in Unity using ROS2 through Movelt2.

The second goal, is to study the gap between reality and simulation, most precisely the
differences on the behaviour of the different objects when they have been picked by a two-
finger gripper. The differences will come to light when we attempt the same experiment
both in the real world and the simulation. Hence, it is essential to have a good ground truth
and metrics specifically fit for the experiments. These metrics will attempt to measure as
best as possible all the appreciable differences between the real system and the simulated
one. As mentioned, examples of this have been reviewed in the State of The Art [5, 6, 7].

!Link to the UR description repository - Humble branch.
’Link to the robotiq gripper description repository.

https://github.com/UniversalRobots/Universal_Robots_ROS2_Description/tree/humble
https://github.com/Danfoa/robotiq_2finger_grippers

1.3. Goals

Cameras and computer vision techniques can be used to recognise displacements or
imperfections during the grasping process, calculating for instance the inclination of the
grasped object. This could be done in both the simulated environment and the real system
and measuring the differences.

Noteworthily, other sensors like tactile or visuo-tactile sensors can also be used. Placed
on the tips of the gripper’s fingers, these sensors can provide force information, enabling
the identification of the minimum force required to securely grasp an object and prevent
slippage. These sensors also offer the ability to measure displacement by analysing the
images from the pads.

CHAPTER

State of The Art

State-of-the-art studies have shown different metrics in order to choose the software that
best fits the problem or its characteristics [1, 8, 9, 10, 11]. Most precisely, in the work of
de Melo et al. [8], they reference the attributes or quality components that Jakob Nielsen
defined in his book "Usability engineering” [12]. This quality attributes are staples in
usability engineering, and they refer to the basic or essential components a system should
have [13]:

1. Learnability: Meaning that the system should be easy to learn in order to start doing
work as soon as possible.

2. Efficiency: Once the user has learned how the system works, it should achieve a high
level of productivity

3. Memorability: How easy a user can re-establish productivity after a period of not
using the system.

4. Low error rate: Referring to the errors the users make, their number, their severity
and the easiness to fix them.

5. Satisfaction: The subjective opinion of the user about the system.

Letting usability engineering aside, Collins et al. review the different characteristics
of most popular simulators, such as MuJoCo, NVIDIA Isaac and Gazebo [1]. They put
their attention on calculation features like the capability for path planning, availability of
inverse kinematics or the option to simulate suction. They conclude that realistic physical
simulation is a very important aspect in the field of intelligent robotics. It is also mentioned
that in the future, the principal lines of investigation of simulation will lie in increasing the
stability, speed and improving visual fidelity. In [9], researchers focused on the machine
learning (ML) capabilities of simulators. They took into account the following criteria:
Whether the simulator can run in headless mode (without a user interface), its support
for machine learning, its compatibility with ROS2, and its open-source status. MuJoCo,
which is of special interest in the context of this project, has full headless support and it

2. STATE oF THE ART

is open source. However, it lacks ROS2 support, and the machine learning support is not
integrated. After carrying out experiments to assess the quality of the simulators (though
they did not experiment in MuJoCo), they declare that current robot simulation is not as
precise as required to develop a digital twin. The research discussed in [10] aimed to assess
the behaviour of various physics engines, including MuJoCo (utilising both the RK and
Euler solvers), Bullet, DART and ODE. They conducted experiments of predictable nature
and compared to the ground truth, acquired from an analytical solution obtained from
applying classical mechanics. These experiments consisted of rolling a cube downhill and
on a flat ground in different directions. More precisely, they modelled each simulator’s
parameters to match the analytical results, and then observed the simulator outcomes.
They emphasise the importance of good parameter modelling and conclude that, in the case
of the first experiment, MuJoCo using the Euler solver obtained a good balance between
matches in the number of rolls and least rotation axis deviation. Conversely, in the second
experiment, DART and ODE showed more regular and repeating patterns. Erez et al. [11],
the creators of MuJoCo [14], compared their engine to others, specifically PhysX [15], Bullet
[16], Havok [17] and ODE [18]. In their comparison, they concluded that each engine is
good for the task it was designed for. While those other engines were designed for gaming,
and thus performed well in those environments, MuJoCo was the best simulator in regard
to accuracy and speed on constrained systems in the field of robotics among the compared
simulators.

We aim to measure the fidelity of a simulated manipulation scenario. Thus, the appro-
priate simulation tool must fulfil some metric criteria.

1. It should provide precise and realistic simulations of contacts and grasping.
2. The visuals or renders of the simulator should be realistic.

3. It should be compatible with ROS2.

4. There should have already defined controllers for the arm and the gripper.
5. The simulator should allow the user to load URDF files.

6. We assess positively the ability to simulate suction.

This review also aims to understand researchers’ experiments and the criteria they
consider when selecting a simulator.

In [19], the popular Unity engine is used in the context of Human Robot Interaction
(HRI). Unity has animation tools that allow non experts to visually program robots. The
authors presented The Robot Engine (TRE), a new way of animating robots and to control
how robots interact with humans in a very easy way. Unity has NVIDIA PhysX integrated
underneath [20, 21].

Simulators are also used to train Al agents, especially when the cost of doing it in
reality is too high. In this case, a sim-to-real approach is usually followed, so a simulation
that reflects the reality accurately is needed. For instance, Rajeswaran et al. explored the
options of training dexterous multi-fingered hands with Deep Reinforcement Learning
(DRL) [22]. In order to do such training, and with contact accuracy in mind, MuJoCo was
used, arguing that the contact stability it provides, makes it apt for this task. Similarly,

Lowrey et al. studied the use and benefits of RL using MuJoCo in simulations. They came
to the conclusion that, when compared to the real hardware (HW), the simulation was,
generally, accurate enough [23]. Though in some cases, the simulated sensor readings differ
slightly from the real sensor readings. Andrychowicz et al. also used RL to learn dexterous
vision-based in-hand manipulation for the Shadow Dexterous Hand [24]. They utilised
MuJoCo as the simulator for training these policies and Unity for rendering the environment
due to Unity’s excellent visual capabilities. This choice was driven by the need for high
realism to properly train the visual pose estimator. Following with the use researchers
are giving to these simulators, Lou et al. developed a novel Collision-Aware Reachability
Predictor (CARP) for systems with 6 degrees of freedom, in order to achieve better grasping
positions in challenging or difficult environments [25]. For this task, the simulator they
used is CoppeliaSim with the Bullet physics engine. They experimented both in simulated
and real systems, achieving a promising average grasping rate of 78.78% in simulation and
an 80.65% in real experiments. Also, most notably, the results obtained in the real system
and in simulation are quite similar. Further applications of CoppeliaSim include the work
of Bogaerts et al., in which a platform of robotic system verification in Virtual Reality is
created [26]. This work isn’t very related to our scope, but it’s interesting to know what
other uses are developers giving to the simulators. Finally, Chen et al. investigated a not
so well explored side of bin picking: picking objects from a deep basket or container, also
known as deep bin picking [27]. For the purpose of investigating this task, they developed
a custom simulation using the PyBullet engine. Among the conclusions they make, it is
noteworthy their argue about the improvement of the speed of the simulation. They show
that the speed of the simulations can be improved ten-fold approximately by selecting
simulation parameters, among other things.

It can be seen in the analysed applications that simulators have walked a long way
since their first versions. They have become accurate enough and are being used to train
learning based algorithms, as well as conduct experiments to study the viability of different
perception algorithms. These statements are backed by the fact that there are emerging a
good number of RL toolkits and environments. In the same manner as with the applications,
a variety of those toolkits have been taken into account. Urakami et al. developed a door
opening focused environment called DoorGym [28]. Their objective was to train robot
arms to open doors using RL and domain randomisation (DR), a popular RL technique that
can also be used to reduce the sim-to-real gap [29]. DoorGym is implemented in MuJoCo,
due to the API’s capability to create elaborated physical simulations. Following with RL
and MuJoCo, we can find JORLDY [30], an open source and customisable RL framework,
whose main characteristic is that it supports plenty of RL algorithms and environments.
Gym-Gazebo? [31] offers an enhanced version of gym-gazebo RL toolkit that complies with
OpenAlI Gym. As its name suggest, it uses Gazebo and ROS2.

Taking all of that into account, and considering that no simulation is perfect and that
none is strictly better than others, a combination of Unity ! and MuJoCo ? has been chosen
for this work. To model the physical aspect of the simulation MuJoCo is used, being referred
to simulate very precisely the contact dynamics in the current literature [1, 14, 32], and it
meets the most important criteria regarding the physical simulation aspects:

"Unity Engine: Link to the page
*MuJoCo Physics Engine: Link to the page

https://unity.com/
https://mujoco.org/

2. STATE oF THE ART

Figure 2.1: Example of UR5 arm with Robotiq 2F85 gripper attached in MuJoCo. In this figure, it
can be appreciated the visual quality of OpenGL. The resolution is good enough, but the textures
can be improved.

« Mainly focused on computational speed and contact stability.
« Capable of loading URDFs.

« Support the modelling of "suction" or something more approximate to a magnetic
force.

Regarding the other aspects, MuJoCo can use OpenGL by its own, as it can be seen
in the example scene in Figure 2.1. Yet, OpenGL does not offer the same visual quality as
Unity. Moreover, it is also worth noting that we could use the fact that the integration of
MuJoCo in Unity is achieved thanks to the plug-in* provided by DeepMind.

In terms of controllers, there are libraries namely ZeroSim [33] that allow the execution
of trajectories using Movelt!” [2]. Furthermore, as a bonus characteristic, Kumar and
Todorov developed MuJoCo HAPTIX [32], a VR system that allows the control of a simulated
hand using a CyberGlove [34] that can interact with the simulated environment.

Concerning our subjective opinion of the MuJoCo engine, we have tested a few "toy
experiments" and the first impressions were good. The modelling in their native robot
description file, known as MJCEF, is intuitive if you have a little experience with URDFs
and the modification of basic physical constraints of objects such as friction is easy. More
complex scripts can be coded in Python with their native Python bindings® supported since
version 2.1.2.

The most relevant and current literature regarding the reality gap has been reviewed.
Studies have pointed out [35, 36, 37] that, in the current literature there are mainly 2 ways
of reducing this gap, either build more accurate and precise simulations or build/train
controllers resistant to noise [38]. Hwangbo et al. also added that normally both approaches

*The developers of MuJoCo considered the petition of adding the "suction" feature and added it.
*https://mujoco.readthedocs.io/en/latest/unity.html

Toan A. Sucan and Sachin Chitta, "Movelt", [Online] Available at moveit.ros.org.

SLink to their Python binding page

10

https://github.com/deepmind/mujoco/issues/229
https://mujoco.readthedocs.io/en/latest/unity.html
https://moveit.ros.org/
https://mujoco.readthedocs.io/en/stable/python.html

are carried out simultaneously [35]. Even so, in the current literature a good number
of examples try to improve the simulation by optimising the parameters. A noteworthy
instance of this can be seen in [6], where they optimised the parameters of the simulations
using differential evolution (DE). They concluded that the optimisation of the algorithms
helped greatly in the bridging of the reality gap. Another illustrative case can be read in
[39]. In that work, they converted a biomechanical model from OpenSim to MuJoCo as they
searched for higher efficiency in the simulation. They also optimised some parameters using
a python implementation of CMA-ES (Covariance Matrix Adaptation Evolution Strategy)
[40], a numerical optimisation technique used in continuous search spaces. In [37] they
argue that a way to narrow the reality gap is to improve the fidelity of the model in the
simulation. They do this by creating an accurate URDF, by disassembling their real robot
and measuring all its physical characteristics, in addition to developing a more realistic
actuator model.

A very good and contemporary example of the learning of more robust controllers
against noise in simulation can be found in the domains of RL or DL, using techniques like
domain randomisation [41]. Several simulation systems already support this capability,
namely the aforementioned DoorGym [28] and Robosuite [42]. Morevover, James et al.
established a novel way of reducing the reality gap with Randomized-to-Canonical Adapta-
tion Networks (RCAN) [43]. Their approach only takes randomised simulation data and
then translates that data to get their non-randomised version. This produces better results
than only using domain randomisation. Regarding their tests, they trained a vision-based
closed-loop grasping agent with RL and their results show that, after some joint fine-tuning
in the real robot with 5000 real grasps, they achieved a 91% of success rate. As it can be
seen, domain randomisation is of critical importance for learning based algorithms, but for
our case, as we do not use Al, this technique is let out of the scope of the project.

In respect of the evaluation of the simulators, several studies have measured the quality
by direct comparison with some kind of ground truth. For example, in [5] Collins et al.
compared directly the performance of simulators with recorded, accurate real data and
measured the error. The error measured was the Euclidean distance between the joint state
in the simulation and in reality, and also the difference in distance between a displaced cube
and the pitch of the cube. In [6], they used a collection of tasks, available at [44], and this
time their metrics consisted of the measure of Euclidean distance error, the inner product
of unit quaternion error (measure of the cumulative rotational error for the arm), pose
error, velocity measures (mean, max and error), acceleration measures (mean, max and
error), motor torque measures (mean, max and error), contact force and contact moment
analysis (max and error), moving time and finally translational and rotational distribution
comparison. In the same manner, the tool Live Tests for Robotics (LT4R) developed by
Fabry et al. allows creating a state-based model of expected behaviour to measure the
discrepancies and to write unit tests, a test that ensures the simulation is working as it

should be [45].

With respect to our current goal, we will need to measure and quantify the differences
between the simulation of the object grasping behaviour and its real counterpart. We found
several references related to the simulation of object picking in the literature. Kolamuri et
al. developed an algorithm that tracks the motion of a grasped object in order to detect
rotations and potential failures in the grasping using gel pads, vision based tactile sensors
[7]. Similarly, in [46] they detect and measure incipient slip with gel tactile sensors. In

11

2. STATE oF THE ART

[47], the authors describe that the use of tactile sensors can increase the grasping quality
by translating and understanding the information these sensors provide. In their work,
they analyse if a system can find the features to determine if a grasp will be successful or
not. By seeing this works, it is conspicuous that the use of this tactile sensors provide great
data [48], they can be used to see the movement of the object inside the grasp, assess the
quality of the grasp or even collect geometric data to reconstruct the geometry form of an
object [49]. It is important to have in mind that tactile sensors are not the only available
resource to assess the grasping of an object. Camera based techniques are normally used to
locate the object and grasp it [50, 51, 52], but note that they also can be used to evaluate the
quality of the grasp or the object’s stability after it has been picked. Another alternative to
OR codes are the always popular ArUco markers [53]. These common markers are widely
used to develop augmented reality (AR) applications or locate robots. Since their creation
in 2014, their use has grown notably within the robotics community. We can find several
uses in flying robots and drones [54, 55]. Most notably, the ArUco markers can also be used
to measure rotation and position of an object between the grasp of a gripper, as seen in the
aforementioned work of Kolamuri et al., and set the ground truth with the readings of the
real world [7].

Finally, we are also interested in a full integration of Unity and ROS2, most notably
the use of arm controllers available in ROS2 to control the robot in simulation. As for
this matter, there are several ways to establish communications between ROS2 and Unity,
based on messages and services. One notable solution has been developed by the Unity
Technologies team [56], facilitating the exchange of messages and services using ROS TCP
connection. However, it has been considered that this may not provide the level of precision
required for arm control. In the case of Gazebo, a staple in robotic simulations and directly
integrated within the ROS ecosystem, the so called Gazebo-Ros-Control can be found. This
plug-in enables the use of the controllers in the Gazebo simulated world.

12

CHAPTER

Manipulation Basics

Robots have been designed and engineered, chiefly, to complete dangerous, monotonous
and non-rewarding tasks. Manipulators are no exception. Even if the attention put on this
project may drift towards a more investigation-oriented overview, the reality is far beyond
that. As time goes by, more and more industrial brands are adopting the use of these robots
for pick and place tasks in applications ranging from assembly lines to packing zones.

This document will not go as far as to explain industrial systems nor applications
but, even so, a theoretical base on manipulation and robotics is recommended, mostly
to understand certain topics or technicalities. This chapter aims to provide some basics
insights of manipulation to achieve a better understanding about the report.

Pick and place tasks consist of picking an object at a certain point in space and trans-
porting that object to another location in space, normally placing it there. Although it
sounds easy, the robot must carry out countless calculations. Let’s put an easy example. We
have a generic robotic arm with 6 Degrees of Freedom (referred to as DoF in the literature).
To its right we have a table with a known item, and to its left an empty box where the
object has to be placed.

For this task 5 steps can be identified:

1. Obtain the position of the grasping point.
2. Plan a valid trajectory to the object.

3. Pick the object.

4. Plan a trajectory to the bin.

5. Place the item inside the bin.

In industry, some robots may offer the capability of planning this kind of complex task.
Though, in this particular case, using the UR10 robot, the ROS2 [57] infrastructure will be
exploited.

In the first step, the robot must calculate the grasping point. Usually, a grasping point
is known as a point of the object where the robot should pick the object from. To achieve

13

3. MANIPULATION BAsics

End Effector

Forward Kinematics (FK]
Joint Angles — End Effector Pose
1, 92, 93,94 = x,y,0

Inverse Kinematics (IK)

Figure 3.1: Inverse and Forward Kinematics. Knowing the position of the End Effector we can
calculate the angles of all the other joints, also known as joint state, and knowing the joint state we
can obtain the pose of the end effector. Image taken from MathWorks.

this, either the robot knows already the position and orientation of the object, i.e. that the
object is in an already defined pose, or it identifies the position and orientation at runtime.
For this last case, the robots need to perceive the environment, let’s say, with a camera and
computer vision techniques. Once the object is identified, and the grasping point obtained,
the robot should plan a trajectory from the current state to the destination point. Here lies,
perhaps, the most complex task. This is where inverse kinematics is calculated. On the one
hand, Inverse kinematics (IK), is the calculation of joint states to move the End Effector!,
EE, to the desired point. On the other, Forward Kinematics (FK) calculate the position and
speed of the End Effector once the joint states and velocities are known. This is the reverse
process of the IK. A quite clarifying image, can be observed in Figure 3.1.

With the objective of reducing the complexity of IK, and making this calculation as
easy and accessible as possible, Movelt2 has been solidly established within the ROS2
community. This framework offers the state-of-the-art planners and IK solvers to lighten
the manipulation tasks. Given this advantages, Movelt2 has been a go-to tool in this project.

Once the trajectory has been successfully planned and executed, the object must be
picked. For this part, Movelt2 can also be used, as it offers the capability of managing
multiple interfaces (one for the arm and another one for the gripper, for example). After
the object has been secured, a new trajectory must be planned to the bin. This is done in
the same fashion as before.

Finally, the task of placing the object inside the bin remains. The example of putting the
object inside the bin was no coincidence, as in order to put the object inside the bin, a path
within a constrained environment must be planned. Movelt2 also supports this capability,
if the constraints are defined correctly, of course.

Focusing on the path planning step, an arm controller is required to perform this task.
A controller, as its name suggest, governs the actuators or motors. In essence, when a user
specifies a command for velocity, force, or position, the controller instructs the actuators
to exert the required force on the joints to achieve the desired outcome. Movelt2 also

'In some cases, the point used to plan a trajectory is set between the pads of the gripper.

14

https://www.mathworks.com/discovery/inverse-kinematics.html
https://www.mathworks.com/discovery/inverse-kinematics.html

3rd party ros2_control & friends

> Movelt2

Y

NAV2

Controller Management | ! Resource Management |

: Simulation
~PHW Interface)

A Position

@ Velocity

W Acceleration
@ 10s

YA Status

@ <cool_itf>

arm_controller

i |status_broadcaster LA—
base_controller
™~ tool controller

<your_cool_app> Base
HW Interface| '

<cool_controller>

Tool
HW Interface|

Maximize resources spent on] [Leverage existing controllers

- Leverage simulation backend
actual client application - Implement custom ones, extend existing

- Real robot backend - extend existing ones or create your own

CC-BY: Denis Stogl, Bence Magyar (ros2_control)

Figure 3.2: Architecture of ROS2 Control connected with Movelt2. Here, we can clearly visualise
the modular design ROS2 offers. Image obtained from the official ros-control page.

supports the capability of executing trajectories with ROS2 controllers. The infrastructure
ROS2 Control, which is the architecture that implements the control functionalities, can be
observed in Figure 3.2.

For this report, the design of a controller was out of the scope, and it should be recalled
that, following the main idea of the project, the integration of the simulation within the
ROS2 ecosystem would facilitate all the controllers already available.

15

https://control.ros.org/master/doc/resources/resources.html

CHAPTER

Developing a Simulated
Environment for Realistic
Manipulation Operations

Saying that the simulation is one of the most important part of development and validation
of systems, controllers, environments and designs is not an overstatement. Simulations
offer the highest possible control in all kind of variables that may affect the environment.
From the time itself to any kind of forces exerted by the different elements in the system,
all can be controlled and modelled in simulation. However, it must be admitted that as for
today, there is no so called "the perfect simulation". There are always little miscalculations
that affect the simulation ranging from little errors in the model of the robot to greater
errors in the calculations of forces, or, generally, simulating something that can not happen
in reality. Finally, not every interaction of physical robots with the environment are known
or can be modelled. Neither the uncertainties intrinsic to physical sensors.

This chapter aims to illustrate the process followed to create the realistic simulation for
grasping. Here the reader will found the different steps followed and proposed to develop
the simulation; the Unity environment, the integration of MuJoCo in Unity, the integration
of the simulation within ROS2 and offered functionalities, and finally, some executions of
the main pipeline.

4.1 Measuring the Reality Gap with ArUco markers

In order to measure the reality gap, two poses of the grasping object are taken, using a
camera to monitor the piece. The first pose is taken at the beginning of the monitoring
process, while the second pose is taken at the end of the process. Then, the difference
between the two poses is calculated, taking the displacement and rotation data from that
operation. This process is done both in simulation and reality, and the difference in the
results between them are calculated, thus quantifying the reality gap.

To estimate the grasping object’s position in the coordinates of the camera, ArUco
markers are used, one on each side of the grasping object. ArUco markers are square

17

4. DEVELOPING A SIMULATED ENVIRONMENT FOR REALISTIC MANIPULATION OPERATIONS

(oo oo]

Figure 4.1: The environment in Unity seen from one of the cameras’ perspective. The arm, table,
grasping object with the ArUco markers and the buttons in the top left corner can be seen.

markers with black border and a predefined white pattern that are most commonly used
for pose estimation in computer vision. The cv2 library, used in this project, offers the
capability of creating and detecting these markers.

4.2 The Unity environment

The environment of the robot features two tables, a track where the robot stands (which is
not functional, because that was out of the scope of the project) the UR robot itself (explained
later in section 4.4), a housing, the aluminium grasping object (explored in section 4.4.3)
and an array of cameras monitoring the setup. For all these elements, custom materials
that somewhat resemble the visual aspects of the real setup have been developed, but most
importantly, the dimensions and location of each element has been carefully measured and
modelled accordingly. Given that in the current simulation there are no complex computer
vision algorithms that benefit from the visual fidelity of the environment, the resources
and effort have been directed into developing a realistic setup regarding dimension and
location, as the comparison between the real behaviour and physical phenomena with the
same conditions, both in the real system and in the simulated one is desired.

The Realsense D435 camera has been modelled as close to reality as possible, in terms
of specifications such as camera intrinsics and functionalities, as well as providing distance
to each pixel in the images recorded by this simulated camera.

Finally, a simple User Interface with buttons have been developed. These buttons access
the functionalities (run the demo and quit) at runtime. Figure 4.1 shows the final version of
the environment, seen from one of the cameras’ view.

18

https://mecaruco2.readthedocs.io/en/latest/notebooks_rst/Aruco/aruco_basics.html

4.3. MuJoCo in Unity

4.3 MuJoCo in Unity

MuJoCo, standing for Multi-Joint dynamics with Contact, is an advanced physics simulator
that has the objective of easing the simulation of complex and contact rich scenarios. The
interest on this physics engine by the robotics community lies in that manipulation tasks
are usually contact rich scenarios. Initially developed by Roboti LLC, it was acquired and
made open source by DeepMind in October 2021.

From a more technical perspective, MuJoCo is a C/C++ library with a runtime simulation
module operating on low level data structures, pre-allocated by the built-in XML parser
and compiler, to optimise performance.

As mentioned, MuJoCo offers an easy to install Unity plug-in. This plug-in allows the
Unity editor and runtime to use MuJoCo physics. The way that MuJoCo integrates its
physics in Unity is by creating an instance of the scene and storing all the information
of the MuJoCo objects. These objects are typical Unity "Game Objects" but with special
MuJoCo components that make them interact with one another and with the scene in a
special way. Then, several global parameters and flags can be changed in a special script.

It must be noted that the MuJoCo plug-in offers a vast amount of possibilities, too many
to name them all, to model scenes. Some aspects of the simulation are not even explicitly
set, and it is let to MuJoCo to set them with the default options.

4.4 Modelling the robot

The modelling of the robot is a critical point. In order to have a realistic simulation, not
only the environment but the robot per se must be faithfully modelled; from the dimensions
of each piece to the actuators and motors, all must relate as accurately as possible to the
real system.

In order to simulate the UR10 robot arm, two models are required. On the one hand, a
set of files, including the URDF is necessary to interact with the ROS2 ecosystem, mainly
with Movelt2. However, MuJoCo is not integrated in ROS and thus, it reads its MJCF version
of the URDF model.

As a way of familiarising with the intuition and the logic behind the modelling, two
main resources have been consulted: the collection of robot models in the Menagerie
[58] and the official documentation, most precisely the modelling and the XML reference
sections.

4.4.1 UR10 in ROS2

The main URDF description model has been taken from the public GitHub repository of
Universal Robots. Nonetheless, some modifications have been made in order to make the
model as close as possible to the real robot in the lab, to modify the behaviour when it is
used alongside Movelt, and to enable the use of the Unity ROS2 control interface. This
interface enables the control of the arm with Movelt2, in ROS2. More information about this
is presented in section 4.5.3. Here the main changes introduced to the robot are enumerated:

1. Adding a virtual point in the gripper for object picking: The changes in the
description of the robot involve creating a new, point, called virtual link. This virtual

19

https://mujoco.readthedocs.io/en/latest/modeling.html
https://mujoco.readthedocs.io/en/latest/XMLreference.html

4. DEVELOPING A SIMULATED ENVIRONMENT FOR REALISTIC MANIPULATION OPERATIONS

link is positioned between the pads of the Robotiq gripper to improve trajectory
accuracy during object manipulation. The offset for this virtual link is determined by
measuring the distance between the midpoint of the gripper’s pads and the gripper’s
base, taking into account the gripper’s unique design with additional articulations
(see Figure 4.2). This virtual link must be defined as the tip of the robot arm (last link
in the kinematic chain) SRDF!

2. Limiting arm’s joint movement: The joint movement has been limited by modify-
ing the corresponding YAML? file. This is done in order to avoid strange or not so
efficient trajectories. For example, let’s assume that we have our UR10 in rest pose
and the objective point just in front of the robot, slightly to the left (see Figure 4.3).
The logical approach would be to move the base to the left a bit, and then to approach
the pose without moving the base. If the joints are not limited in the respective YAML
file, the planner might get a path that makes the base move to the right, make a 350°
turn and then arrive to the point, instead of a more efficient trajectory. Usually, in
pick and place scenarios, the time is a factor to take into account, and losing time
having the robot make big rotations is not a good thing.

3. Adding the robot tag: To control the robot using the simulation and ROS2, the
corresponding robot tag on the URDF has also required to be modified.

4. Add gripper to arm and define controller for the gripper: Add another virtual
joint to attach or associate the last link of the arm and the gripper as end effector. This
last modification entrails the integration of a new controller in the corresponding
ROS2 controllers file. Otherwise, the gripper won’t move.

4.4.2 UR10in MuJoCo

On the other hand, the MuJoCo robot model is obtained through the MuJoCo compiler,
that has the capability to parse the UR10’s URDF file into MJCF file®. This tool is offered
by MuJoCo, and its use is as simple as loading the URDF file into the simulation. MuJoCo
internally will create the MJCF version of this model, and then, the XML can be saved by
clicking in the Save XML option inside the simulation.

Though useful, the parser does not convert all the characteristics from URDF to MJCF,
and consequently the robot description has to be completed by hand. All the physical
parameters of the joints (such as damping) as well as the actuators had to be modelled. The
main changes introduced are:

1. Modelling the arm: It must be noted that the arm must be defined in MuJoCo in
the same way it is defined in ROS2. Otherwise, control accuracy can be lost when
using ROS2 controllers. Discrepancies for instance in the definition of a target part
can lead to inadequate results when the trajectory is executed, most notably when
the execution involves constrained space.

'The SRDF (Semantic Robot Description Format), is the format used in Movelt to read along the URDF
and that extends the information provided by the latter.

*The joint_limits.yaml stores the information about the limits of each joint. Modifying that information
will limit the joints when creating a trajectory.

*Robot description format based on XML and with .XML extension

20

4.4. Modelling the robot

Figure 4.2: The figure shows a white point marking an approximation of the point used to plan
trajectories. The red ellipses mark the articulations that enable the adaptation of the fingers to an
uneven surface.

Figure 4.3: In this figure, the UR10 robot can be seen in rest pose, and in front of it marked in blue
the objective point.

21

4. DEVELOPING A SIMULATED ENVIRONMENT FOR REALISTIC MANIPULATION OPERATIONS

2. Adding the end effector: After modelling the arm and ensuring it was correctly
defined, the end effector was added, in this case, the Robotiq 2f85 gripper. The
MuJoCo model for this gripper can be found in the often aforementioned model
menagerie. The menagerie’s gripper is derived from the public URDF* and thus, no
significant physical differences are to be expected from the gripper defined in the
URDF. Therefore, a model that has the UR10 derived from the URDF and the gripper
from the menagerie was developed.

3. Modelling the MuJoCo parameters: MuJoCo offers a vast amount of modifiable
parameters, leading to model a lot of physical aspects with great accuracy. However,
the modelling can be overwhelming. For this case, the parameters have been set
following the parameters found in other robots of the menagerie, searching the
documentation of the UR10, and also experimentally.

Regarding the UR10 arm parameters, they have been set collecting the required
information from its URDF file and from the UR5 model®. Table 4.1 summarises the
collection of the parameters modified.

It is also of special interest the definition of the gripper’s pads’ parameters, as the
pads will collide with the grasping object. Table 4.2 collects the parameters and values
for the pads. The parameters were already defined in the menagerie’s model, and
only a few modifications were made. It also can be seen that there are two different
friction values. This is because the pads have been divided into two parts, in order to
create more contact points, and they have different friction values.

4. MuJoCo scene: After the arm has been modelled, the MuJoCo scene has been loaded
into Unity, simplifying the mesh files and converting them to STL format, as there
was an already known problem when trying to load them directly into Unity. When
the robot was successfully loaded into Unity, we ensured the robot was oriented in
the same manner as the real robot is.

After several tests, a little discrepancy was observed; the robot was not behaving
correctly when executing Movelt trajectories. Specifically, it was seen that the fourth
joint, the "wrist 2" joint, was shaking whenever it moved, in some cases even making the
grasped object fall of the gripper. After some research it was found that, MuJoCo by default
represents the environment in its ideal conditions, and thus does not consider noise by
default. It was detected® that the firmware of the real arm may have a short delay compared
to the simulated one, and therefore making the arm tremble. After adding a little delay
with a specific MuJoCo parameter, it was observed that the performance improved.

4.4.3 Modelling the grasping object

The grasping object has been defined as an aluminium block of 22.5cm long, 5cm tall and 2cm
wide. In order to model it, several MuJoCo parameters have been modified experimentally.
The collection of parameters, as well as a brief explanation of them, is presented in Table
4.3. Finally, the ArUco markers were added in Unity.

*https://github.com/ros-industrial/robotiq/tree/kinetic-devel/robotiq_2f 85_gripper_visualization
>The UR5 uses parameters defined here
SLink to the issue where we found an answer

22

https://github.com/ros-industrial/robotiq/tree/kinetic-devel/robotiq_2f_85_gripper_visualization
https://www.universal-robots.com/articles/ur/robot-care-maintenance/max-joint-torques-cb3-and-e-series/
https://github.com/deepmind/mujoco/issues/800

4.4. Modelling the robot

Parameter Description
KP It refers to the position feedback gain.
Damping Joint specific parameter. It defines the damping applied to
all degrees of freedom created by the joint.
Armature Joint specific parameter. It defines the armature inertia to
all degrees of freedom created by the joint.
forcerange Actuator specific parameter. Defines the range of force
applied by the actuator.
ctrlrange Actuator specific parameter. Defines the range of move-
ment of the actuator.
Range Joint specific parameter. Defines the range of movement
of the joint.
Solimplimit Joint specific parameter. Sets the constraint on the solver
for simulating joint limits.
Solreflimit Joint specific parameter. Sets the constraint on the solver
for simulating dry friction.
Solimp Geometry specific parameter. 4.2.
Solref Geometry specific parameter. See table 4.2.

Contype and conaffinity | Geometry specific parameters. Used to filter collisions.
Two geometries collide if the contype of one of them is
compatible with the conaffinity of the other.

Table 4.1: Collection of modified parameters for the UR10 robot arm.

It is worth highlighting the importance of establishing a good parameter baseline in
the whole simulation, since this will make scaling the simulation easier when adding more
objects and materials.

4.4.4 Modelling the physical aspects of the environment

In MuJoCo, there exists a set of global parameters that modify the overall behaviour of the
environment. These parameters can be employed for various purposes, such as specifying
environmental viscosity, adjusting gravity, introducing new magnetic forces, and controlling
the direction of wind. Furthermore, these parameters also define the computational solvers,
such as Newton or PGS, to be used in the simulation, integrators such as Euler and RK4,
the contact cones and more. They also feature several flags that allow to override other
parameters that have been set individually. Additionally, these parameters can enable or
disable the use of the "Noslip" solver, which is used to prevent the grasped object from
falling.

In MuJoCo, all these options and parameters can be set and modified in the MJCF
file. However, in Unity, it is a good praxis to create a new GameObject and set inside this
the Global settings script, then filling and modifying all the parameters the user deem
necessary.

Table 4.4 summarises the collection of global parameters which have been selected by
researching and by experimental tests.

23

4. DEVELOPING A SIMULATED ENVIRONMENT FOR REALISTIC MANIPULATION OPERATIONS

24

Parameter

Value

Description

Density

1000

Determines the density of the piece and is
used to calculate the mass taking into account
the dimensions of the object.

Priority

Defines the priority on which the properties
of the colliding geometries are going to be
combined

Con Dim

Determines the dimension of the contact. A
value of 3 indicates regular frictional contact

Sol Mix

Defines the weight of the parameters when-
ever averaging is required. It interacts with
the priority attribute

Sol Ref

(0.004, 1)

Constraint solver parameter. On contact be-
tween two geometries, the one from the ge-
ometry with higher priority is used. If they
have the same, the weighted average is used.
This parameter has two forms, depending on
the sign of the coefficients. If both coeffi-
cients have the minus (-) sign, then the param-
eter adopts the (-stiffness, -damping) form. If
not, it adopts the (timeconst, dampratio) form.
The first form is especially useful for defining
bouncy geometries, like a rubber ball.

Sol Imp

(0.999, 0.999, 0.001,
0.5, 2)

Constraint solver parameter. On contact be-
tween two geometries, the one from the ge-
ometry with higher priority is used. If they
have the same, the weighted average is used.
The five coeflicients are used to parameterise
the impedance function.

Contype

Used to determine with which geometries
does this geometry collide. Interacts with
Conaffinity.

Conaffinity

Used to determine with which geometries
does this geometry collide. Interacts with
Contype.

Friction

(0.6, 0.005, 0.0001)
and (0.7, 0.005,
0.0001)

There are five friction coefficients: two tan-
gential, one torsional and two rolling. In
Mu]JoCo, for dynamically generated contacts,
three are used: tangential, torsional and
rolling.

Shape type

Box. The dimen-
sions have been
modified to model
the pad’s form.

Defines the shape of the geometry.

Table 4.2: Collection of modified parameters of the gripper’s pads.

4.4. Modelling the robot

Parameter

Value

Description

Density

2710

Determines the density of the grasping ob-
ject, and it is used to calculate the mass tak-
ing into account the dimensions of the ob-
ject.

Priority

Defines the priority on which the properties
of the colliding geometries are going to be
combined

Con Dim

Determines the dimension of the contact. A
value of 3 indicates regular frictional contact

Sol Mix

Defines the weight of the parameters when-
ever averaging is required. It interacts with
the priority attribute

Sol Ref

(0.02, 1)

Constraint solver parameter. On contact
between two geometries, the one from the
geometry with higher priority is used. If
they have the same, the weighted average
is used. This parameter has two forms, de-
pending on the sign of the coefficients. If
both coefficients have the minus (-) sign,
then the parameter adopts the (-stiffness, -
damping) form. If not, it adopts the (time-
const, dampratio) form. The first form is es-
pecially useful for defining bouncy geome-
tries, like a rubber ball.

Sol Imp

(0.999, 0.999, 0.001,
0.5, 2)

Constraint solver parameter. On contact
between two geometries, the one from the
geometry with higher priority is used. If
they have the same, the weighted average
is used. The five coeflicients are used to
parameterise the impedance function.

Contype

Determines with which geometries does
this geometry collide.
Conaflinity

Interacts with

Conaffinity

Determines with which geometries does
this geometry collide. Interacts with Con-

type

Friction

(0.61, 0.005, 0.0001)

There are five friction coefficients: two tan-
gential, one torsional and two rolling. In
MuJoCo, for dynamically generated con-
tacts, three are used: tangential, torsional
and rolling.

Shape type

The dimen-
sions have been
modified to model
the
grasping object’s
form.

Box.

aluminium

Defines the shape of the geometry.

Table 4.3: Collection of modified parameters for the grasping object. The values have been defin2d
both following the intuition seen in the MuJoCo documentation and experimentally trying different
combinations.

4. DEVELOPING A SIMULATED ENVIRONMENT FOR REALISTIC MANIPULATION OPERATIONS

Parameter Value Description

Imp Ratio 100000 Determines how hard it is for a geometry to
start moving whenever it has collided with
another one. In other words, how hard is
to break the idle state and start moving or
sliping.

Integrator Euler Determines the numerical integrator used
for the calculations of the collision. It can
be either Euler, RK4, implicit or implicitfast.
Cone Elliptic Determines the collision cone. It can be el-
liptic or pyramidal. Pyramidal tend to be
faster, but elliptic gets better and more real-
istic results.

Solver Newton Selects the algorithm for the constraint
solver. The available algorithms are PGS,
CG and Newton.
Iterations 100 Maximum number of iterations for the con-
straint solver.
Tolerance 1e-08 This parameter sets the threshold for setting
the early stop of the constraint solver.
No Slip Iterations | MAX Defines the iterations of the No Slip Solver,
a solver that prevents slipping.
No Slip tolerance | 1le-06 Threshold for stopping the No Slip algo-

rithm before it reaches its maximum num-
ber of iterations.

Mpr Iterations 50 Number of maximum iterations for the MPR
algorithm, which is used for the calculation
of convex mesh collisions.

Mpr Tolerance le-06 Tolerance for early stopping of the MPR
algorithm.

Table 4.4: Collection of the global parameters. The values have been defined both following the
intuition seen in the MuJoCo documentation and experimentally trying different combinations.

4.5 Integration within ROS2

As stated many times before, the integration of the simulation within the ROS ecosystem is
paramount. For that purpose, a new control interface for Unity has been developed, namely,
Unity ROS2 Control.

Before we dig further into this matter, a quick note must be made. Throughout this
section, a differentiation is made between "The Unity part" and "The ROS part". This
choice of words is used to differentiate in an intuitive manner Unity and ROS2, but it
must be recalled that in order to communicate with ROS2, Unity also creates ROS2 nodes.
Summarising, Unity and ROS are differentiated, but not forgetting that to establish a
communication between both, Unity also uses ROS nodes that send information via TCP to
the simulation.

26

4.5. Integration within ROS2

Simulated
camera

Figure 4.4: User interface of the simulation. On the scene, the working table. In the middle, the
robot mounted on a track is observed. Recall that this track is non-functional in the scope of this
project. In front, the grasping object with the ArUco markers can be found. Furthermore, the floating
white piece represents the Realsense camera, and all the visual information of the simulation is
collected from that point of view. In the top left corner, the utility buttons are found. The "Quit"
button ends the simulation, and the "Run Demo" starts the pick operative.

4.5.1 ROS2 Message publishing in Unity

In order to publish to topics of the ROS2 infrastructure, Unity Robotics Hub has been used.
This package, offers an entry point to the ROS architecture by providing a ROS2 node that
communicates with Unity via TCP connection.

In the context of this project, the message and service communication capability is used
for two main tasks:

1. Sending the object’s position to Movelt2.

2. Feeding ROS2 with images to simulate a video stream, and to detect the ArUco
markers on those images.

For the first task, geometry msgs/Pose.msg message type from the ROS2 geometry
messages group has been used. The structure is formed by the tridimensional coordinates,
represented in ROS2 by the Point message type, and the orientation, in Quaternion form.

In order to get the pose of the object, the coordinates have been obtained in Unity by
consulting the Transform attribute of the object (since vision-based object and grasping
detection is out of scope on this project). Though, this pose had to be adapted, as the
coordinate system in Unity differs to the one in ROS. In Figure 4.5 both coordinate systems
can be seen. The orientation of the object is also taken, partially, from Unity. The Y axis
of the object is consulted in Unity, but it is modified to always be picked perpendicularly.
Nonetheless, the simulation in this project has been modelled to pick the object that way,
but in future versions of the simulation, it should also support the capability of picking
the object from other orientations. The grasping pose greatly depends on the object’s
morphology, and thus picking it up from above it is not always the optimal solution.

27

4. DEVELOPING A SIMULATED ENVIRONMENT FOR REALISTIC MANIPULATION OPERATIONS

XYz Up

Unity
= === ROS

Forward

Left

Figure 4.5: Coordinate systems, both in Unity and in ROS. Unity has the Z axis pointing forward, X
pointing right and Y pointing upwards, whereas in ROS, X is forward, -Y is right and Z is upwards.
Adding to this, the rotation in Unity is clockwise and in ROS it is counter-clockwise. Image taken
from Siemens’ ROS-Sharp wiki.

Note that this message is published by a message publisher node whenever the "Run
demo" Unity button of the simulation Ul is clicked (see Figure 4.4), and it publishes the
point of the object but with an offset of 10cm in the object’s Y axis. This was a deliberate
decision in order to approach the object perpendicularly. Pushing this button will start the
whole pick operative.

The second task requires images to simulate a video stream. Those images are published
at 3-4Hz by a node in the Unity part constantly. The message frequency limit was established
manually, because a greater frequency would put the computer under heavy load and affect
the whole simulation without providing notable benefits.

In this case, sensor_msgs/Image.msg message type is used, from the sensor messages
group. The message is formed by a Header, the height and width of the image, the
encoding, a flag that determines if it is bigendian, the step and finally, the data of the
image. The image is sent in greyscale from the Unity part, generally with an empty header,
except by the last image the simulation sends. More information about this topic will be
discussed in section 4.6.

To publish this gray image, a Unity shader was used, found in this GitHub repository.
The shader transforms distance into greyscale. This way, knowing the gray colour and
the scale, the distance to certain pixel can be easily calculated (see Figure 4.6). The scale
is 256 at a maximum distance of 4 meters. This means that any object at 4 meters would
have a gray value of 256, while an object further from this point will not be rendered into
the image. It is known that large distances are measured with higher uncertainty. Thus,
limiting the maximum distance to 4 meters allows a better discretisation within the gray
scale.

Note that, when the end simulation button is pressed, Unity will publish one last image
with a modified header. This header will notify the node in the "ROS Part" that no more

28

https://github.com/siemens/ros-sharp/wiki/Dev_ROSUnityCoordinateSystemConversion
https://github.com/samarth-robo/unity_rgbd_rendering/tree/main

4.5. Integration within ROS2

Figure 4.6: Image in greyscale. This RGBA image is generated by the shader. This shader generates
the gray scale on this last channel. A script in Unity then publishes the whole image and a subscriber
node reads it, dividing it into colour and gray scale.

images are going to be sent.

4.5.2 Message Subscription in ROS2

With respect to the "ROS Part", it consists of two nodes that subscribe to messages (a pose
message and image messages) sent from the "Unity part"; one processes the position while
the other processes the image.

Concerning the pose message part, two main applications that can deal with this type of
information have been developed in the context of this project. One simply lifts the object,
namely unity_mover and the other one lifts and shakes the object, called unity shaker. The
initial behaviour of both of them is the same. When the position is published, the respective
ROS2 node, already subscribed to the topic, reads the content and obtains the pose. In the
callback of the node, first, it creates all the environmental constraints that represent the
work environment. It sets a ceiling and a table in order to avoid planning a path that would
collide with them. After setting the constraints, it stores the pose (remember that the pose
already has an offset of 10cm) in a variable. Then, it plans and executes the trajectory to that
point. The script is able to execute the trajectory in Unity thanks to the Unity-ROS2-Control
node. More information about that will be explained in subsection 4.5.3. After reaching
that "pre-grasp" position, the script creates a point 10cm below the current point, which
is the grasping point without the offset. When the "grasp" position is achieved, the script
makes the robot close the gripper, grasping the object. Once the object is grasped, it is
lifted 15cm. Here unity mover ends. In the case of unity_shaker, after lifting, it shakes the
object, tilting it 30 degrees to two opposing sides. It is worth noting that, the lift and the
whole pick operative are done at 10% of the maximum speed of the arm and the shake part
is done at maximum speed. This is done in order to give maximum stability while lifting
and maximising any possible movement of the grasping object while shaking it.

29

4. DEVELOPING A SIMULATED ENVIRONMENT FOR REALISTIC MANIPULATION OPERATIONS

"RealSense”

Figure 4.7: Visualisation of the images obtained from simulation. On the left we can see the depth
image. In that image, it is also visible how the centre of the ArUco markers have been colourised in
order to visualise that they are being correctly detected. On the right, it can be seen the colourised
image.

On the other hand, the image acquisition node, is in charge of processing the greyscale
images from the Unity image node; it checks for two conditions: it waits a small time step
to avoid any possible error in the very first readings, and then it checks that both ArUco
markers are being detected. When the two conditions are met, and while both markers
are in the camera’s view, it starts storing the information in Pandas’ dataframes. The
information obtained from the camera is as follows:

« The pixel coordinates of each marker (X, Y) are collected.

+ The coordinates of each marker in camera coordinates. The markers’ 3D coordinates
are obtained by converting the selected pixels into point clouds, using the camera
intrinsic parameters.

+ The rotation in all axes with respect to the horizontal plane. This information can be
obtained from the pose of each marker in camera coordinates.

« Translation in all axes. This can be calculated knowing the position of the markers
in camera coordinates.

As stated previously, the last image is sent with a special header that lets this node know
that no more images are going to be published. When this image is read, the dataframes
are then saved as CSV files, and a set of figures that visualise the collected data are created.
At the end, a table is generated that shows the difference between the first and the last
captured readings. This is specially useful for a sequential comparison of the grasping
object’s behaviour in both simulation and in reality. More information about this will be
explained in section 5.1.

In Figure 4.7 it can be noticed how the images have been represented, mimicking the
display shown in the real camera.

’Pandas is a flexible data analysis library available for Python.

30

https://pandas.pydata.org/

4.5. Integration within ROS2

4.5.3 Unity ROS2 Control

This plugin is an updated version of the already existing Unity-ROS-Control for ROS1,
which, at the same time, is an adaptation of Gazebo-ROS-Control. This previous version
was created for ROS1, and it was not designed to be used in conjunction with MuJoCo.
The adaptation, made in the context of this project, not only updates the driver to be used
with ROS2, but it also enables the control of robot arms with MuJoCo elements. It must be
mentioned that, this plugin is also based on Gazebo-ROS2-Control.

The plugin is divided into three parts for the sake of clarity:

« The Unity interface.
+ The ROS?2 interface.

+ The plugin.

The two interfaces are connected via TCP connection, sharing a model structure that
reflects the state of the robot in Unity and is used to be commanded by the ROS controllers.
The model is built when the plugin is started, representing the same structure as the robot
in the simulation. For this, both the robot in the simulation and the URDF should be the
same, as the commands given in ROS2 should translate to commands on Unity.

The Unity Interface, represents the current state of each joint of the robot and parses
the commands given by the controllers to the MuJoCo actuators, which are elements in
the Unity simulation. It is divided into two parts: "read simulation” and "write simulation".
In the read part, the plugin reads the state of each joint in the simulation and fills the
mentioned robot model structure. This information is then passed via socket to the ROS2
interface. Finally, in the write part, the commands given by the controllers are read and
parsed in order to use them with the actuators of each joint.

The ROS2 Interface is divided into two parts as well: read and write. The read part
obtains the information sent by Unity and updates the status of the structures, while the
write part sends this information to Unity. This read and write form a loop in the server,
reading and writing on the simulation constantly. This interface is initialised as a ROS2 node.
When the node is started, it creates an instance of unity ros2_control which is implemented
as a library, enabling the access to the functions that load the model structure and update
the status. The instance of unity ros2_control, at the same time, also creates an instance
of the controller manager® in form of a node, in order to manage the load and unload of
different controllers, such as joint_trajectory_controller.

Finally, when the information from Unity is read, the read part also calls the update
function of the plugin furthermore calling the update function of the controller, thus
updating the status of the controllers.

The plugin. The plugin is accessed by calling the update function, which will also call
the read, update and write functions of the controller manager. The controller manager
offers control over the lifecycle of the controllers and manages access to the previously
mentioned ROS2 interface. The plugin instantiates a ros2_control controller architecture

#More information about the controller manager can be acquired in the ROS2 control documentation page.

31

https://control.ros.org/master/doc/ros2_control/controller_manager/doc/userdoc.html

4. DEVELOPING A SIMULATED ENVIRONMENT FOR REALISTIC MANIPULATION OPERATIONS

vee
."2 ROS2PC
eee

Unity Mover
creation and

Unity
£ Publishers »| Unity
i
Robot Pose msg execution

control Ao
interface Position
Publisher
Controller
MuJoCo Movement commands .
actuator via TCP

Trajectory

5 ;
\ commands Unity ROS2 —
Control

Simulated UR10 - "

{-Publish object position—

Run Demo Quit
Publish

special

image - 1
—
[5
When started publish images- I ’“a?if}ev |—store data—s-| Information

J Sitse database

Image Publisher Execute trajectories

Joint state

{ geometry_msgs/msg/Pose.msg sensor_msgs/msgl/image.msg

std_msgs/msg/Header header
uint32 height

geometry_msgs/msg/Point position uint32 width

geometry_msgs/msg/Quaternion orientation stpglencediny
uint8 is_bigandian

uint32 step

uint8[] data

Figure 4.8: Architecture of the simulation and used messages. The communication in the architec-
ture is divided in Unity and ROS2 Nodes outside Unity. The Unity part consists of the simulation
environment, the robot control interface and the publishers. These are connected via TCP or
messages with the other ROS2 nodes. This consists of several nodes that receive the information,
subscribing to the topics, treat and process this information, and create movement commands or
store the information, depending on the node. The ROS2 nodes are highlighted in blue.

4.6 Architecture

In order to better understand the global picture of the simulation, the structure of the
architecture is shown in Figure 4.8. As it can be seen, there is a clear division between the
Unity and the ROS2 parts. The Unity ecosystem is formed by:

1. The simulation. This would be the "game" in terms of Unity. It encloses the robot
and environment models, and the UI buttons used to publish the robot’s position or
end the simulation.

2. The robot control interface. This interface is the script corresponding to the
Unity part of Unity-ROS2-Control. It serves to communicate the robot state of the
robot to ROS2 and to parse the Movelt commands into actuator commands. The
communication of this script with ROS2 is made using the TCP communication
protocol.

3. Publishers. These publishers are Unity scripts that create ROS2 publishers, using
the functionalities provided by Unity robotics hub, and send the pose and image
messages in their respective topics. The structure of the messages can also be seen
in 4.8.

32

4.6. Architecture

On the other hand, the ROS2 part is composed by:

1. Unity Mover and Unity Shaker. These are mutually exclusive, and they are the
scripts that once they read the pose of the grasping object, they plan and execute
trajectories in conjunction with Movelt2. This execution is performed in the robot
model of the simulation.

2. Movelt2. It obtains the robot state as well as the objective point passed by the unity
mover and unity shaker scripts to later plan and execute a trajectory between the
robot’s current state and the objective point.

3. Unity ROS2 Control. It receives and publishes the information about the robot’s
current state. This node also implements the initialisation of the controller manager,
thus enabling and disabling the use of the controllers. Finally, it also sends motion
commands to Unity.

4. Image Subscriber. This node obtains the images sent by Unity and searches for the
ArUco markers on them. Then, it stores the marker’s information, as well as some
image files, into the PC. Note that, Unity will publish images from the start of the
simulation, but the images will be only processed when this node is subscribed to
the image topic.

33

CHAPTER

Empirical Assessment

The main scope of this project has been the simulation of manipulation operations. In
order to achieve flexible and realistic results, several state-of-the-art technologies have been
integrated, such as the MuJoCo physics engine, ROS2 and Unity. To measure the quality
of the developed simulation environment, the assessed level of realism must be somehow
quantified. Le. the fidelity between the simulated system and the real one, namely the
reality-gap, must be measured.

Due to the nature of the task, the grasped object is chosen as the reference to calculate
the dissimilarities between the simulation and the real system.

The chapter has been divided into three parts, the first one being designing a metric
that would measure the distance between the simulation and the reality. This is explained
in section 5.1. The development of the experiments to fill this metric is covered in section
5.2, divided in two parts: the procedure in simulation, described in section 5.2.1 and the
procedure in the real robot, reviewed in 5.2.2.

5.1 Metric

In order to establish a quality control and thoroughly validate the simulation, a metric
that comprises the displacement and rotation in all of the grasping object’s axes has been
defined. This metric aims to set a score based comparison between the real behaviour and
the simulated behaviour of the robot (see Table 5.1). The axes have been defined following
the consensus of Unity, Le. the left-hand Cartesian coordinate system (see Figure 5.1).

Both the displacement and the rotation of the grasping object in each of the three axis
are calculated by measuring the differences between its initial state and the state after
the monitoring ends. Then the error is depicted as the differences among the simulation
values and the ones obtained with the real robot. This allows to assign a score to each
experiment by following the score guide. This guide takes into account the error between the
simulation and reality. Regarding rotation values, it has been considered that a difference
of 90° in the X axis and any difference above 1° in the other axes are the worst case
scenario. The displacement values follow the dimensions of the grasping object, i.e. the
value of displacement in the Z axis has been set to a maximum of 225mm as this is the

35

5. EMPIRICAL ASSESSMENT

Metric Score Guide
0 if angle >= 90
1ifangle <=1
0 if angle > 1
lif angle <=1
0 if angle > 1
1if angle <=1

Rotation in X (Degree)

Rotation in Y (Degree)

Rotation in Z (Degree)

0 if displacement > 1

Displacement in X (mm) 1 if displacement = 0

0 if displacement >= 50

Displacement in Y (mm) 1 if displacement <= 1

0 if displacement >= 225

Displacement in Z (mm) 1 if displacement <= 1

Table 5.1: Metric for the experiments. The metric compares the results in simulation and in reality,
and it assigns a score based on the difference of both. The final score is the mean of all the scores.
In any case, if the grasping object drops in simulation and not in reality and vice versa, the final
score will be zero.

Figure 5.1: The coordinate system of the grasping object, shown in Unity. The X axis is represented
by the red arrow, the green represents the Y axis and the blue the Z axis.

dimension of the grasping object in the X axis. This amount of displacement depicts the
worst case scenario. We set minimum values to 1° in rotation and 1mm in displacement as
we considered that said differences are acceptable.

The maximum rotation value in the axis X (90°) follows the logic that, if the object is
horizontal while grasped, in case of the simulation does not model the friction correctly,
the maximum amount of rotation the grasping object could do is 90°, getting vertical. The
maximum rotation allowed in the other two axes is 1. This value has been set arguing that
the grasping object should not rotate on those axes while is grasped. The minimum value
for the rotation in all axes is 1, as it was thought that an error between 0 and 1 could be
attributed to errors in the readings of the markers. In the case of displacement, the values in
the X axis, which are 0Omm at minimum at 1mm at maximum, follow the intuition that the
grasping object should not move in that axis. Regarding the Y and Z axes, the displacement
values are set following the dimensions of the grasping object; i.e. if the object would be
picked from the very bottom, the maximum displacement this could make is its height.

36

5.2. Experiment Design and Procedure Development

It is also notable that the metric allows to calculate a weighted score, as seen in equation
5.1.

W1*Sm;—i-WQ*Sry+W3*STZ+W4*SC[$+W5*de+W6>deZ
6

(5.1)

Stotal =

Where:

e Siotar: is the final score.

+ Sy is the partial score of rotation in axis X.

+ Spy: is the partial score of rotation in axis Y.

+ S, is the partial score of rotation in axis Z.

« Sg,: is the partial score of displacement or movement in axis X.
» Sgy: is the partial score of displacement or movement in axis Y.
« Sg,: is the partial score of displacement or movement in axis Z.

« Wj_g: are the weights assigned to each partial score. By default, they equal 1.0. The
sum of all the weights must be 6.

This weighted score approach could result extremely useful if, depending on the object’s
characteristics, the precision in rotation or movement in certain axis is more important than
in others. For example, if a water filled glass is being picked, the rotation in the object’s X
axis should have more weight than the rotation in the glass’ Y axis, as the object rotation
in the X axis would mean that the liquid inside is spilled.

5.2 Experiment Design and Procedure Development

Five experiments have been designed in order to measure the reality gap through the
aforementioned score metric:

1. Experiment #1: Pick the grasping object by the centre and lift it 25 cm. This experi-
ment aims to evaluate the fitness of the simulation in the simplest form, checking if
the grasping object slips from the grasp, and in that case, how much.

2. Experiments #2-3: Pick the grasping object from a lateral, with 4.5 cm offset
from the centre, and lift it 25 cm. This test aims to pick the object from a not-so
"comfortable" pose, from where the grasping object could be rotated by gravity alone.
This experiment is done for both left and right sides.

3. Experiment #4: Pick the grasping object from the centre and shake the object. The
shakes should make the slip of the object more probable than in the first experiment.

4. Experiment #5: Pick the grasping object and make the object collide with an obstacle,
set 20cm above the object and 9.9 cm from the centre to the side. The distance to the
side is set to 9.9cm, as this is the distance where the real obstacle has been set.

37

5. EMPIRICAL ASSESSMENT

Those experiments have been conducted both in reality and simulation. For each
experiment, 10 iterations have been made in order to obtain a good amount of variability
in the possible results. In total, information of 100 iterations has been collected, 50 in
simulation and 50 in reality.

5.2.1 Procedure in simulation

In order to validate and test several aspects of the simulation, a validation process has been
conducted. The pipeline consist of the following procedure:

1. Initialise simulation and controllers.
2. Make the arm pick the grasping object - conduct the experiment.

3. Obtain the readings of the grasping object from ArUco markers.

To initialise the simulation and controllers, a group of ROS2 nodes must be ini-
tialised. These nodes are: the TCP endpoint connector from Unity robotics hub, used to
establish a connection between the ROS2 and the Unity endpoint; the Unity-ROS2-Control
main node, that starts the aforementioned ROS2 plugin to access the ROS2 Control architec-
ture and creates the model structure; the controller spawner nodes, used to load the desired
controllers; the unity_mover or unity_shaker nodes; and finally, the image subscriber node.
It must be noted that this last node is not always initialised at the beginning. It could be
initialised later on, depending on the operative; either if we want to test the behaviour
when the grasping object collides with an object.

Secondly, the picking process is executed in order to make the arm pick an object.
The simulation offers a button that when pressed publishes the position and orientation
of the object that is to be picked. When the simulation, thanks to the endpoint connector,
publishes the position and orientation of the robot, the unity mover or unity_shaker takes
action, depending on the node that has been initialised between the two of them. These
nodes, first build the environmental constraints, and then plan and execute a pick operative.
First the system plans a trajectory to the object’s position plus an offset of 10cm in the Z
axis, as explained before, this is done in order to approach the object directly from above.
When the arm reaches such position, it lowers the gripper to pick the object at the desired
orientation. The moment it is at reach, it picks the object, closing the gripper, and lifts the
object 25cm above the table. When this happens, and as mentioned before, in the case of
unity_shaker it shakes the object 30 degrees front and back.

Finally, we obtain the readings of the grasping object from ArUco markers. To
do so, the image subscriber node must be initialised. As previously stated in section 4.5.2,
the initialisation of this node varies depending on the experiment. If the experiment is
the collision experiment (experiment #5), the node is started from the very beginning. For
the rest of the experiments, the image subscriber node is started later, when the grasping
object has been lifted. Either way, the image acquisition node receives images with 3-
4Hz frequency. When both markers are being detected in the image, this node stores the
information of the markers.

38

5.2. Experiment Design and Procedure Development

RealSense B &

s

Figure 5.2: Point of view of the camera. The right side shows the RGB image, with the markers
identified by the green perimeter and the top left identified by the red square. On the left, the
distance image can be seen. On that, the marker’s centres are marked in white and red.

5.2.2 Procedure in real world

The procedure followed in reality is the same as the procedure followed in simulation.
Furthermore, the scripts of the simulation have been taken out as starting points, with little
modifications, to carry out the experiments. There are two main differences between the
scripts of the simulation and the scripts used with the real robot:

« For the experiments in the real setup, a Realsense D435 was available, and thus the
official Realsense library for Python, pyrealsense2, could be used. An example of the
point of view of the camera can be seen in Figure 5.2.

+ The control of the gripper differs between simulation and the real environment. In
simulation, the gripper is managed through Movelt2, while in the real environment,
a straightforward Python interface based on ROS2 services has been developed and
employed. To use the interface in the scripts, the opening and closing Movelt2 com-
mands in the Unity scripts were replaced by service calls. Whenever an open/close
service call is received, the commands are then passed to the gripper via MODBUS
connection, ased on the information provided both in the manual and in this blog.

It is also noteworthy that in this case, the object’s position is sent with the offset defined
in the script instead of in the published object point like in simulation. This is only an
implementation difference and does not affect these experiments

39

https://intelrealsense.github.io/librealsense/python_docs/_generated/pyrealsense2.html
https://blog.robotiq.com/controlling\protect \discretionary {\char \hyphenchar \font }{}{}the\protect \discretionary {\char \hyphenchar \font }{}{}robotiq\protect \discretionary {\char \hyphenchar \font }{}{}2f\protect \discretionary {\char \hyphenchar \font }{}{}gripper\protect \discretionary {\char \hyphenchar \font }{}{}with\protect \discretionary {\char \hyphenchar \font }{}{}modbus\protect \discretionary {\char \hyphenchar \font }{}{}commands\protect \discretionary {\char \hyphenchar \font }{}{}in\protect \discretionary {\char \hyphenchar \font }{}{}python

CHAPTER

Results

6.1 Experiment #1

Metric Simulation Reality Error Score
Rotation x 0.000406 0.003880 3.474395e-03 1.0
(Degree)

Rotation y 0.0 0.103902 1.039020e-01 1.0
(Degree)

Rotation z 0.0 0.437708 4.377088e-01 1.0
(Degree)

Movement 0.0 0.000249 2.499967e-04 | 0.999750
X (mm)

Movement 0.0 9.293854e-06 | 9.293854e-06 1.0
y (mm)

Movement | 5.459082e-05 0.000198 1.434325e-04 1.0
z (mm)

Table 6.1: Metric filled with the data obtained from the iterations of experiment number one. The
data consists of the mean of the iterations, both in simulation and reality.

Table 6.1 shows the results obtained from the first experiment, which consisted of
picking the object and holding it for fifteen seconds more or less.

As it can be observed, the results are quite good. The final score (Sitq;), calculated as
the mean of the results, achieves 0.999958 out of 1, indicating a very good result.

This experiment was the simplest one, meaning that it picks the object right in the
centre and does not move nor shake the object, thus no movement was expected.

One interesting aspect of the results obtained in reality, that also remain in all the
experiments, is that there is no zero reading even though the grasping object did not move.
These phenomena is attributed to the noise of the Realsense. The simulated camera, on the
other hand, does indeed show zero readings. Though, sometimes it also shows non-zero
readings that could be attributed to both movement, and errors in the readings of ArUco
markers.

41

6. REsuLTS

During the experiment, no fall was produced, neither in simulation nor in the real
world. The grasping object was picked correctly, and no movement was seen.

The video! showcasing the experiment in simulation and in reality is presented here.

6.2 Experiment #2

Metric Simulation Reality Error Score
Rotation x 0.0 0.005185 5.185108e-03 1.0
(Degree)

Rotation y 0.0 0.143813 1.438135e-01 1.0
(Degree)

Rotation z 0.0 0.612239 6.122395e-01 1.0
(Degree)

Movement 0.0 0.000349 3.499984e-04 | 0.999650
X (mm)

Movement 0.0 1.402422e-05 | 1.402422¢-05 1.0
y (mm)

Movement 0.0 0.000239 2.395638e-04 1.0
z (mm)

Table 6.2: Metric filled with the data obtained from the iterations of experiment number two. The
data consists of the mean of the iterations, both in simulation and reality.

Table 6.2 shows the results of the second experiment, which consisted of picking the
grasping object by the left side and lifting it, for fifteen seconds.

The main fear in this experiment was that the grasping object would roll or rotate in
simulation, while with the real robot it would not rotate. However, no rotation occurred,
neither in simulation nor in reality.

Finally, the averaged result is 0.999941 out of 1, indicating again a great result.

The video of this experiment is available here.

6.3 Experiment #3

Table 6.3 shows the results of the third experiment, which has been essentially the same as
the second experiment, but this time on the right side of the grasping object. In the same
manner as before, the grasping object did not rotate, neither in simulation nor in reality.

The final score is 0.999916 out of 1.

The video of this experiment can be seen here.

6.4 Experiment #4

Table 6.4 shows the results of the fourth experiment, which consisted of picking the object
and then shaking it, thus improving the probabilities of slipping or rotation. Compared

'If there is any problem regarding the videos, contact jaruiz.res@gmail.com

42

https://drive.google.com/file/d/13KNyTOjNp8Z7jjUSdX3r95Fpg0tH6Uwi/view?usp=sharing
https://drive.google.com/file/d/1p1hht_YN8FevZPOHIqJn4LYp4xo8eRNv/view?usp=sharing
https://drive.google.com/file/d/16bz6ZUEjhq9DQKB6asw2Pbg_q1yb0Qon/view?usp=sharing

6.5. Experiment #5

Metric Simulation | Reality Error Score
Rotation x 0.072503 0.048808 | 2.369534e-02 1.0
(Degree)

Rotation y 0.0 0.083244 | 8.324434e-02 1.0
(Degree)

Rotation z 0.0 0.433778 | 4.337781e-01 1.0
(Degree)

Movement 0.0 0.000499 | 4.999995e-04 | 0.999500
X (mm)

Movement 0.000163 0.000121 | -4.209360e-05 1.0
y (mm)

Movement 0.0 0.000129 | 1.297380e-04 1.0
z (mm)

Table 6.3: Metric filled with the data obtained from the iterations of experiment number three. The
data consists of the mean of the iterations, both in simulation and reality.

Metric Simulation Reality Error Score
Rotation x 0.025693 0.027583 1.889492e-03 1.0
(Degree)

Rotation y 0.0 0.124534 1.245341e-01 1.0
(Degree)

Rotation z 0.0 0.527753 5.277538e-01 1.0
(Degree)

Movement 0.0 0.000399 3.999948e-04 | 0.999600
x (mm)

Movement 0.001146 7.045771-05 | -1.075949e-03 1.0
y (mm)

Movement 0.000709 0.000175 -5.341685e-04 1.0
z (mm)

Table 6.4: Metric filled with the data obtained from the iterations of experiment number four. The
data consists of the mean of the iterations, both in simulation and reality.

to other tests, it is visible that the results show more variation specially in simulation,
meaning that there are more non-zero values. This could be attributed to the fact that it
may have moved a little in the shaking and that it sometimes the markers may have not
been identified correctly.

The final score for the fourth experiment is 0.999933 out of 1.

The video showing this experiment both in simulation and reality can be seen here.

6.5 Experiment #5

Table 6.5 shows the results of the fifth experiment. Recall that this experiment consisted
of making the grasping object collide with an obstacle. This experiment was the most
interesting and the one with more uncertainty, as it involves interaction with another
object.

43

https://drive.google.com/file/d/11gDrBU5S3GWfcb1CePzVpRJ-jlukfv72/view?usp=sharing

6. REsuLTS

Metric Simulation | Reality Error Score
Rotation x 30.451138 33.619538 | 3.168399 | 0.975635
(Degree)

Rotation y 0.0 1.105891 | 1.105891 0.0
(Degree)

Rotation z 0.0 0.710522 | 0.710522 1.0
(Degree)

Movement 0.0 0.005900 | 0.005900 | 0.994100
X (mm)

Movement 0.175236 0.191545 | 0.016308 1.0

y (mm)

Movement 0.022764 0.040893 | 0.018129 1.0

z (mm)

Table 6.5: Metric filled with the data obtained from the iterations of experiment number five. The
data consists of the mean of the iterations, both in simulation and reality.

The results are very interesting. The grasping object did not fall in any iteration, nor
in reality nor in simulation. Interestingly enough, the grasping object did rotate more in
reality than in simulation, which may result counter-intuitive, as at the very first moments
of the project, without any type of parameter modelling, the contacts were slippery.

The scores obtained are very good, and show that the behaviour can be modelled in a
quite precise way, even when colliding or interacting with other objects in the environment.

The final score of the fifth experiment is 0.828289 out of 1, which is not bad, even
though it is the lowest obtained in all the experiments. This fact was expected, as it was
the only one that interacted with other elements of the environment. The score may view
itself lowered because of the 0.0 scored in the Rotation y metric. If we lowed the value of
that metric using the weighted approach, giving a weight of 1.5 to the Rotation in X and
reducing to 0.5 the Rotation in y, the final score would be better; 0.909592.

The video regarding this experiment can be seen here.

As mentioned, in addition to the metric, the information processing script also outputs
figures portraying the trajectory of the markers in camera coordinates. Figure 6.1 shows
an example of this, captured in the first iteration of the fifth experiment in simulation. In
the figure, it can also be observed a little discrepancy in the trajectory. Even if the end
point is nearly the same, the trajectory seems to differ a little. This could be because of
a combination of various factors, such as the obstacle in the real world trembling a little
when the contact was made, the camera noise, and different frequency in image acquisition.
It is also noteworthy that in further iterations of the same experiments in the real world,
such as seen in Figure 6.2, the trajectory seems to be closer to the one in simulation.

44

https://drive.google.com/file/d/1q9eoYcKh1TCf2kXoLJuKBFLEb-9xfCzx/view?usp=sharing

6.5. Experiment #5

X 0.3 X 0.3
n2 n2

0.1 — left marker trajectory 0.0
—— right marker trajectory)

-0.3 —=0.3

-0.3 —=0.3

-0.2 -0.2

-0.1 ! -0.1

Y 0.0 ¥ o0 |

0.1 k 0.1 L.
0.2 0.2
0.3

0.3

(a) Simulated trajectories of first iteration in

(b) Real trajectories of first iteration in ex-
experiment five.

periment five.

Figure 6.1: Tridimensional representation of the ArUco marker’s trajectories in camera coordinates.

This has been taken from the first iteration of the fifth experiment, both in simulation and in the
real.

left marker trajectory
—— right marker trajectory

—0.3
—-0.2
-0.1

Y 0.0

0.1
0.2
0.3

Figure 6.2: Trajectory of the markers in experiment 5, iteration 5 in the real world. Note that,

compared to the trajectories seen in Figure 6.1, the trajectory is closer to Figure 6.1a than to Figure
6.1b.

45

0.1 —— left marker trajectory
—— right marker trajectory

CHAPTER

Conclusions and Further Work

Throughout this work it has been demonstrated the viability of developing a realistic
simulation environment for manipulation, integrated within the ROS2 environment thanks
to the development of Unity ROS2 Control and the node creation system of Unity Robotics
Hub. This last technology shows great potential in terms of the implementation of custom
messages and services. Unity ROS2 Control has shown great results when controlling the
robot in simulation using Movelt2, which is a great way to send control commands to the
arm.

MuJoCo, thanks to its depth regarding the options and parameters available for mod-
elling elements and the collisions between them, has shown great results. It must be noted
that the modelling of parameters is indispensable in order to achieve a realistic simulation.
Even though it has not been shown in this work, the default set of parameters of MuJoCo
did not offer great results, even not being able to pick the grasping object at first instance.
It has been demonstrated empirically that the modelling of several key parameters has
been critical in order to achieve this level of realism. The set of parameters that have been
identified as important in order to avoid slippages are the same as the ones presented in the
documentation, which consist of using the Newton solver with elliptic friction cones and
large value of impratio. In addition, further research and tests have proven that in order to
model a bouncy object correctly, a good combination of the two coefficients in the solref
parameter must be set, using the (-stiffness, -dampratio) mode.

The ArUco markers have proven to be a cheap, fast and easy to implement and in
general terms a great technology to measure the reality gap. The Realsense Python library
has also facilitated the tridimensional reconstruction of the marker’s positions in camera
coordinates.

The employed metric has shown great potential, most notably in the fifth experiment,
the collision related one. The score system has shown its potential to intuitively measure
the reality gap and portray them in a numerical scale.

It can be concluded that the development of a realistic simulation has been correctly
achieved. The results are promising, with very high accuracy in the experiments, and most
importantly, without any critical failures, such as pronounced vibration of the grasping
object or a failed grasp (the grasping object falling). An initial set of parameters has been

47

https://mujoco.readthedocs.io/en/latest/overview.html#softness-and-slip

7. CoNCLUSIONS AND FURTHER WORK

modelled to work with the current configuration in a reliable way.

7.1 Further Work

Although we obtained promising results, some steps are needed in order to achieve a more
general pick and place realistic simulation tool.

Regarding the metric, only the position of the grasped object has been considered for
measuring the gap. We consider this approach a good initial hint. However, the differences
in the arm trajectories or the trajectory of the object itself would give a wider perspective
about the fidelity of the simulation. In addition, further experiments where collisions are
produced between objects should be carried out, as it has been shown that it could be a
very interesting approach to measure the reality gap.

With respect to the scale of the simulation, different grasping objects should be consid-
ered. This is not a so straightforward step, since the integration of uneven or non-convex
pieces would require the use of software that decomposes the geometry into convex sub-
geometries that satisfies the shape of the piece. This can be seen in the obj2mjcf conversor,
that takes an OB]J file and transforms to MJCF, but most importantly, when V-HACD is
installed, it uses the package’s utilities to obtain the decomposition of the geometry in
convex geometries. The package should also be used in order to decompose the arm’s
collision geometries, with the objective of improving the accuracy.

Adding to that, the definition of the physical aspects of new grasping objects and
materials, i.e. friction and solver parameters (solref and solimp) of the new grasping objects
is not direct either, and would require further testing.

The simulation environment could also benefit from a supply of different grippers and
arms. This would be notably harder to implement, as it would require changes within the
arm’s control interface in Unity. It should also be mentioned that the implementation of
new grippers, for example a three finger gripper could result in new unexpected behaviours,
as on this project only a two finger gripper has been tested.

Nevertheless, the next immediate step should be optimising the set of parameters, by
taking profit of Al algorithms, namely genetic algorithms such as PyGAD. This action
surely will help to reduce the sim to real gap.

48

https://github.com/kevinzakka/obj2mjcf
https://github.com/kmammou/v-hacd
https://pygad.readthedocs.io/en/latest/

(10]

(11]

(12]
(13]

Bibliography

Jack Collins, Shelvin Chand, Anthony Vanderkop, and David Howard. A review of physics
simulators for robotic applications. IEEE Access, 9:51416-51431, 2021. See pages 1, 7, and 9.

David Coleman, Ioan Sucan, Sachin Chitta, and Nikolaus Correll. Reducing the Barrier to
Entry of Complex Robotic Software: a Movelt! Case Study. Journal of Software Engineering
for Robotics, 5(1):3-16, May 2014. See pages 4, 10.

Michael Gorner, Robert Haschke, Helge Ritter, and Jianwei Zhang. Moveit! task constructor
for task-level motion planning. In 2019 International Conference on Robotics and Automation
(ICRA), pages 190-196, 2019. See page 4.

Gazebo simulator. https://gazebosim.org/home. See page 4.

Jack Collins, David Howard, and Jurgen Leitner. Quantifying the reality gap in robotic
manipulation tasks. In 2019 International Conference on Robotics and Automation (ICRA), pages
6706-6712, 2019. See pages 4, 11.

Jack Collins, Ross Brown, Jurgen Leitner, and David Howard. Traversing the reality gap via
simulator tuning. arXiv preprint arXiv:2003.01369, 2020. See pages 4, 11.

Raj Kolamuri, Zilin Si, Yufan Zhang, Arpit Agarwal, and Wenzhen Yuan. Improving grasp
stability with rotation measurement from tactile sensing. In 2021 IEEE/RST International
Conference on Intelligent Robots and Systems (IROS), pages 6809-6816, 2021. See pages 4, 11,
and 12.

Mirella Santos Pessoa De Melo, José Gomes da Silva Neto, Pedro Jorge Lima Da Silva, Jodo
Marcelo Xavier Natario Teixeira, and Veronica Teichrieb. Analysis and comparison of robotics
3d simulators. In 2019 21st Symposium on Virtual and Augmented Reality (SVR), pages 242-251.
IEEE, 2019. See page 7.

Florent P Audonnet, Andrew Hamilton, and Gerardo Aragon-Camarasa. A systematic com-
parison of simulation software for robotic arm manipulation using ROS2. 22nd International
Conference on Control, Automation and Systems (ICCAS 2022), BEXCO, Busan, Korea, pp. 755-762.
ISBN 9788993215243 (doi: 10.23919/ICCAS55662.2022.10003832), 27 Nov-1 Dec 2022. See page 7.

Se-Joon Chung and Nancy Pollard. Predictable behavior during contact simulation: a compar-
ison of selected physics engines. Computer Animation and Virtual Worlds, 27(3-4):262-270,
2016. See pages 7, 8.

Tom FErez, Yuval Tassa, and Emanuel Todorov. Simulation tools for model-based robotics:
Comparison of bullet, Havok, MuJoCo, ODE and Physx. In 2015 IEEE International Conference
on Robotics and Automation (ICRA), pages 4397-4404, 2015. See pages 7, 8.

Jakob Nielsen. Usability engineering. Morgan Kaufmann, 1994. See page 7.

Usability 101: Introduction to usability. https://www.nngroup.com/articles/
usability-1@1-introduction-to-usability/. Accessed: 2023-01-24. See page 7.

Emanuel Todorov, Tom Erez, and Yuval Tassa. MuJoCo: A physics engine for model-based
control. In 2012 IEEE/RS7 International Conference on Intelligent Robots and Systems, pages
5026-5033, 2012. See pages 8, 9.

49

https://gazebosim.org/home
https://www.nngroup.com/articles/usability-101-introduction-to-usability/
https://www.nngroup.com/articles/usability-101-introduction-to-usability/

BIBLIOGRAPHY

[15]
[16]

(23]

[24]

(25]

[26]

(27]

[29]

(30]

(31]

50

Physx simulator. https://developer.nvidia.com/physx-sdk. See page 8.

Bullet real-time physics simulation. https://pybullet.org/wordpress/. Accessed: 2023-
01-23. See page 8.

Havok physics engine. "https://www.havok.com/". See page 8.
Ode physics engine. "https://www.ode.org/". See page 8.

Christoph Bartneck, Marius Soucy, Kevin Fleuret, and Eduardo B Sandoval. The robot en-
gine—making the unity 3d game engine work for hri. In 2015 24th IEEE International Symposium
on Robot and Human Interactive Communication (RO-MAN), pages 431-437, 2015. See page 8.

Unity documentation - physics. https://docs.unity3d.com/Manual/PhysicsSection.
html. Accessed: 2023-01-27. See page 8.

Nvidia physx. https://www.nvidia.com/en-us/drivers/physx/
physx-9-19-0218-driver/. Accessed: 2023-01-27. See page 8.

Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman, Emanuel
Todorov, and Sergey Levine. Learning Complex Dexterous Manipulation with Deep Rein-
forcement Learning and Demonstrations. In Proceedings of Robotics: Science and Systems (RSS),
2018. See page 8.

Kendall Lowrey, Svetoslav Kolev, Jeremy Dao, Aravind Rajeswaran, and Emanuel Todorov.
Reinforcement learning for non-prehensile manipulation: Transfer from simulation to physical
system. In 2018 IEEE International Conference on Simulation, Modeling, and Programming for
Autonomous Robots (SIMPAR), pages 35-42, 2018. See page 9.

OpenAl: Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Jozefowicz, Bob McGrew,
Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell, Alex Ray, et al. Learning
dexterous in-hand manipulation. The International Journal of Robotics Research, 39(1):3-20,
2020. See page 9.

Xibai Lou, Yang Yang, and Changhyun Choi. Collision-aware target-driven object grasping in
constrained environments. In 2021 IEEE International Conference on Robotics and Automation
(ICRA), pages 6364-6370, 2021. See page 9.

Boris Bogaerts, Seppe Sels, Steve Vanlanduit, and Rudi Penne. Connecting the coppeliasim
robotics simulator to virtual reality. SoftwareX, 11:100426, 2020. See page 9.

Jeff Chen, Tori Fujinami, and Ethan Li. Deep bin picking with reinforcement learning. In
Proceedings of the 35th International Conference on Machine Learning, Stockholm, Sweden, PMLR,
volume 80, pages 1-8, 2018. See page 9.

Yusuke Urakami, Alec Hodgkinson, Casey Carlin, Randall Leu, Luca Rigazio, and Pieter
Abbeel. Doorgym: A scalable door opening environment and baseline agent. arXiv preprint
arXiv:1908.01887, 2019. See pages 9, 11.

Naijun Liu, Yinghao Cai, Tao Lu, Rui Wang, and Shuo Wang. Real-sim-real transfer for
real-world robot control policy learning with deep reinforcement learning. Applied Sciences,
10(5):1555, 2020. See page 9.

Kyushik Min, Hyunho Lee, Kwansu Shin, Taehak Lee, Hojoon Lee, Jinwon Choi, and Sungho
Son. Jorldy: a fully customizable open source framework for reinforcement learning. arXiv
preprint arXiv:2204.04892, 2022. See page 9.

Nestor Gonzalez Lopez, Yue Leire Erro Nuin, Elias Barba Moral, Lander Usategui San Juan,
Alejandro Solano Rueda, Victor Mayoral Vilches, and Risto Kojcev. gym-gazebo2, a toolkit
for reinforcement learning using ros 2 and gazebo. arXiv preprint arXiv:1903.06278, 2019. See

page 9.
Vikash Kumar and Emanuel Todorov. Mujoco haptix: A virtual reality system for hand

manipulation. In 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids),
pages 657-663. IEEE, 2015. See pages 9, 10.

https://developer.nvidia.com/physx-sdk
https://pybullet.org/wordpress/
"https://www.havok.com/"
"https://www.ode.org/"
https://docs.unity3d.com/Manual/PhysicsSection.html
https://docs.unity3d.com/Manual/PhysicsSection.html
https://www.nvidia.com/en-us/drivers/physx/physx-9-19-0218-driver/
https://www.nvidia.com/en-us/drivers/physx/physx-9-19-0218-driver/

Bibliography

(38]

(39]

(40]

(41]

Zerosim. https://github.com/fsstudio-team/ZeroSimROSUnity. Accessed: 2023-01-27.
See page 10.

Cyberglove. http://www.cyberglovesystems.com/. Accessed: 2023-01-31. See page 10.

Jemin Hwangbo, Joonho Lee, Alexey Dosovitskiy, Dario Bellicoso, Vassilios Tsounis, Vladlen
Koltun, and Marco Hutter. Learning agile and dynamic motor skills for legged robots. Science
Robotics, 4(26):eaau5872, 2019. See pages 10, 11.

Sylvain Koos, Jean-Baptiste Mouret, and Stéphane Doncieux. The transferability approach:
Crossing the reality gap in evolutionary robotics. IEEE Transactions on Evolutionary Computa-
tion, 17(1):122-145, 2012. See page 10.

Jie Tan, Tingnan Zhang, Erwin Coumans, Atil Iscen, Yunfei Bai, Danijar Hafner, Steven Bohez,
and Vincent Vanhoucke. Sim-to-Real: Learning Agile Locomotion For Quadruped Robots.
Robotics: Science and Systems (RSS), 2018. See pages 10, 11.

Nick Jakobi, Phil Husbands, and Inman Harvey. Noise and the reality gap: The use of simulation
in evolutionary robotics. In Advances in Artificial Life: Third European Conference on Artificial
Life Granada, Spain, June 4-6, 1995 Proceedings 3, pages 704-720. Springer, 1995. See page 10.

Aleksi Ikkala and Perttu Haméldinen. Converting biomechanical models from opensim to
mujoco. In Converging Clinical and Engineering Research on Neurorehabilitation IV: Proceedings
of the 5th International Conference on Neurorehabilitation (ICNR2020), October 13—16, 2020,
pages 277-281. Springer, 2022. See page 11.

Nikolaus Hansen, Sibylle D Miiller, and Petros Koumoutsakos. Reducing the time complexity of
the derandomized evolution strategy with covariance matrix adaptation (cma-es). Evolutionary
Computation, 11(1):1-18, 2003. See page 11.

Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel.
Domain randomization for transferring deep neural networks from simulation to the real
world. In 2017 IEEE/RSYF International Conference on Intelligent Robots and Systems (IROS),
pages 23-30, 2017. See page 11.

Yuke Zhu, Josiah Wong, Ajay Mandlekar, Roberto Martin-Martin, Abhishek Joshi, Soroush
Nasiriany, and Yifeng Zhu. robosuite: A modular simulation framework and benchmark for
robot learning. In arXiv preprint arXiv:2009.12293, 2020. See page 11.

Stephen James, Paul Wohlhart, Mrinal Kalakrishnan, Dmitry Kalashnikov, Alex Irpan, Julian
Ibarz, Sergey Levine, Raia Hadsell, and Konstantinos Bousmalis. Sim-to-real via sim-to-
sim: Data-efficient robotic grasping via randomized-to-canonical adaptation networks. In
Proceedings of the Conference on Computer Vision and Pattern Recognition, pages 12627-12637,
2019. See page 11.

Jack Collins, Jessie McVicar, David Wedlock, Ross Brown, David Howard, and Jiirgen Leitner.
Benchmarking simulated robotic manipulation through a real world dataset. IEEE Robotics
and Automation Letters, 5(1):250-257, 2019. See page 11.

Johan Fabry and Stephen Sinclair. Interactive visualizations for testing physics engines in
robotics. In 2016 IEEE Working Conference on Software Visualization (VISSOFT), pages 106-110,
2016. See page 11.

Wenzhen Yuan, Rui Li, Mandayam A Srinivasan, and Edward H Adelson. Measurement of
shear and slip with a gelsight tactile sensor. In 2015 International Conference on Robotics and
Automation (ICRA), pages 304-311. IEEE, 2015. See page 11.

Deen Cockbum, Jean-Philippe Roberge, Alexis Maslyczyk, Vincent Duchaine, et al. Grasp
stability assessment through unsupervised feature learning of tactile images. In 2017 Interna-
tional Conference on Robotics and Automation (ICRA), pages 2238-2244. IEEE, 2017. See page
12.

51

https://github.com/fsstudio-team/ZeroSimROSUnity
http://www.cyberglovesystems.com/

BIBLIOGRAPHY

(48]

[49]

[50]

(53]

[54]

[55]

52

Rocco A Romeo and Loredana Zollo. Methods and sensors for slip detection in robotics: A
survey. leee Access, 8:73027-73050, 2020. See page 12.

Siyuan Dong, Wenzhen Yuan, and Edward H Adelson. Improved gelsight tactile sensor for
measuring geometry and slip. In 2017 IEEE/RSY International Conference on Intelligent Robots
and Systems (IROS), pages 137-144, 2017. See page 12.

Deirdre Quillen, Eric Jang, Ofir Nachum, Chelsea Finn, Julian Ibarz, and Sergey Levine. Deep
reinforcement learning for vision-based robotic grasping: A simulated comparative evaluation
of off-policy methods. In 2018 IEEE International Conference on Robotics and Automation (ICRA),
pages 6284-6291, 2018. See page 12.

Gert Kootstra, Mila Popovi¢, Jimmy Alison Jergensen, Danica Kragic, Henrik Gordon Petersen,
and Norbert Kriiger. Visgrab: A benchmark for vision-based grasping. Paladyn, 3:54-62, 2012.
See page 12.

Guoguang Du, Kai Wang, Shiguo Lian, and Kaiyong Zhao. Vision-based robotic grasping
from object localization, object pose estimation to grasp estimation for parallel grippers: a
review. Artificial Intelligence Review, 54(3):1677-1734, 2021. See page 12.

Sergio Garrido-Jurado, Rafael Mufioz-Salinas, Francisco José Madrid-Cuevas, and Manuel Jests
Marin-Jiménez. Automatic generation and detection of highly reliable fiducial markers under
occlusion. Pattern Recognition, 47(6):2280-2292, 2014. See page 12.

Mohammad Fattahi Sani and Ghader Karimian. Automatic navigation and landing of an
indoor ar. drone quadrotor using aruco marker and inertial sensors. In 2017 International
Conference on Computer and Drone Applications (IConDA), pages 102—-107, 2017. See page 12.

Jan Bacik, Frantisek Durovsky, Pavol Fedor, and Daniela Perdukova. Autonomous flying with
quadrocopter using fuzzy control and aruco markers. Intelligent Service Robotics, 10:185-194,
2017. See page 12.

Unity Robotics. Unity robotics hub. https://github.com/Unity-Technologies/
Unity-Robotics-Hub, 2022. See page 12.

Steven Macenski, Tully Foote, Brian Gerkey, Chris Lalancette, and William Woodall. Robot
operating system 2: Design, architecture, and uses in the wild. Science Robotics, 7(66):eabm6074,
2022. See page 13.

MuJoCo Menagerie Contributors. MuJoCo Menagerie: A collection of high-quality simulation
models for MuJoCo, September 2022. See page 19.

https://github.com/Unity-Technologies/Unity-Robotics-Hub
https://github.com/Unity-Technologies/Unity-Robotics-Hub

	Contents
	List of Figures
	List of Tables
	Introduction
	Setup
	Proposal
	Goals

	State of The Art
	Manipulation Basics
	Developing a Simulated Environment for Realistic Manipulation Operations
	Measuring the Reality Gap with ArUco markers
	The Unity environment
	MuJoCo in Unity
	Modelling the robot
	UR10 in ROS2
	UR10 in MuJoCo
	Modelling the grasping object
	Modelling the physical aspects of the environment

	Integration within ROS2
	ROS2 Message publishing in Unity
	Message Subscription in ROS2
	Unity ROS2 Control

	Architecture

	Empirical Assessment
	Metric
	Experiment Design and Procedure Development
	Procedure in simulation
	Procedure in real world

	Results
	Experiment #1
	Experiment #2
	Experiment #3
	Experiment #4
	Experiment #5

	Conclusions and Further Work
	Further Work

	Bibliography

