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Abstract: Sunitinib has greatly improved the survival of clear cell renal cell carcinoma (ccRCC)
patients in recent years. However, 20–30% of treated patients do not respond. To identify miRNAs
and genes associated with a response, comparisons were made between biopsies from responder and
non-responder ccRCC patients. Using integrated transcriptomic analyses, we identified 37 miRNAs
and 60 respective target genes, which were significantly associated with the NF-kappa B, PI3K-Akt
and MAPK pathways. We validated expression of the miRNAs (miR-223, miR-155, miR-200b, miR-
130b) and target genes (FLT1, PRDM1 and SAV1) in 35 ccRCC patients. High levels of miR-223
and low levels of FLT1, SAV1 and PRDM1 were associated with worse overall survival (OS), and
combined miR-223 + SAV1 levels distinguished responders from non-responders (AUC = 0.92). Using
immunohistochemical staining of 170 ccRCC patients, VEGFR1 (FLT1) expression was associated with
treatment response, histological grade and RECIST (Response Evaluation Criteria in Solid Tumors)
score, whereas SAV1 and BLIMP1 (PRDM1) were associated with metachronous metastatic disease.
Using in situ hybridisation (ISH) to detect miR-155 we observed higher tumoural cell expression in
non-responders, and non-tumoural cell expression with increased histological grade. In summary,
our preliminary analysis using integrated miRNA-target gene analyses identified several novel
biomarkers in ccRCC patients that surely warrant further investigation.
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1. Introduction

Renal tumours are amongst the most common neoplasms in the Western world,
accounting for about 2–3% of all adult cancers, and cases have been increasing during the
last 10 years [1–4]. Clear cell renal cell carcinoma (ccRCC), which represents 70–80% of
renal carcinomas, is an aggressive tumour often associated with a poor prognostic outcome
as nearly a third of patients present with locally advanced and/or metastatic disease [5,6].
Consequently, there has been great interest in targeted therapies for ccRCC, including
therapeutics targeting the vascular endothelial growth factor (VEGF) [7], mammalian
target of rapamycin (mTOR) pathways, and more recently, the PD-1/PD-L1 axis (e.g.,
nivolumab) [8–10]. Sunitinib (Sutent®), a small molecule inhibitor of multiple receptor
tyrosine kinases (RTKs), including VEGF receptors (VEFGR), platelet-derived growth
factor receptors (PDGFR), fms-related tyrosine kinase 3 (FLT3), and stem cell growth factor
receptors KIT and RET [11,12], has greatly improved the outcome for metastatic ccRCC
patients. Sunitinib continues to be a first-line treatment for many patients due to its more
tolerable adverse/toxicity profile than other drugs [13–15]. The median survival of ccRCC
patients treated with sunitinib, however, remains poor (8 to 30 months) [16,17], as nearly a
third of patients do not initially respond to treatment, and those that do acquire resistance
after ~12 months [18]. Therefore, there is a clear need to better understand the molecular
mechanisms of resistance to sunitinib treatment in ccRCC and to target these mechanisms
accordingly.

Several mechanisms have been shown to be involved in resistance to sunitinib, in-
cluding up-regulation of proangiogenic pathways, alterations to the tumour microenviron-
ment (TME), the endoplasmic reticulum stress response, single nucleotide polymorphisms
(e.g., ABCB1 and ABCG2 genes), changes in the methylation status of PON1, as well as
the involvement of non-coding RNAs (ncRNAs) such as microRNAs (miRNAs) (reviewed
by Jin et al. [13]). The potential role of miRNAs in sunitinib resistance in particular have
generated great interest; however, to date, very few of these studies have considered us-
ing an integrated omic approach to better understand the functional role of aberrantly
expressed miRNAs on target genes and their associated pathways [19–23]. Therefore, we
used microarray analysis to identify differentially expressed miRNAs and genes and used
an integrated omic network analysis to identify miRNAs and their respective target genes
and associated pathways (as outlined in Figure 1).
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were classified as either responders (R; n = 74) (time to progression (TTP) > 24 months 
post-treatment) or non-responders (NR; n = 41) (TTP < 4 months post-treatment) as previ-
ously described [24]. These were defined as the NR/R cohort. Cases that had an interme-
diate response (i.e., TTP 4–24 months; n = 59) were not considered in the analysis of re-
sponse but were used for the correlation analyses for factors other than the sunitinib re-
sponse. Individual patients’ data, including ISUP (International Society of Urological Pa-
thology) histological grade and RECIST (Response Evaluation Criteria in Solid Tumors) 
scores from the whole cohort (174 cases) can be found in Supplementary Table S1. Tumour 
material from 170 of these cases (four had no biopsy material) was used to create a multi-
ple tissue array (TMA).  

Figure 1. Schematic diagram of the workflow used in this study.

2. Results
2.1. Patient Selection

After a re-review of clinical notes, we identified 174 ccRCC patients that had undergone
treatment with sunitinib that attended either University Hospital Donostia ((HUD) San
Sebastián, Spain) or University Hospital Cruces ((HUC), Bilbao, Spain). These cases were
classified as either responders (R; n = 74) (time to progression (TTP) > 24 months post-
treatment) or non-responders (NR; n = 41) (TTP < 4 months post-treatment) as previously
described [24]. These were defined as the NR/R cohort. Cases that had an intermediate
response (i.e., TTP 4–24 months; n = 59) were not considered in the analysis of response
but were used for the correlation analyses for factors other than the sunitinib response.
Individual patients’ data, including ISUP (International Society of Urological Pathology)
histological grade and RECIST (Response Evaluation Criteria in Solid Tumors) scores from
the whole cohort (174 cases) can be found in Supplementary Table S1. Tumour material
from 170 of these cases (four had no biopsy material) was used to create a multiple tissue
array (TMA).

The median age of the patients in the NR/R cohort was 59 (58 for males and 60 for
females; R = 59 years old and NR = 60 years old) and the median follow-up time was
47 months (Table 1). From this cohort we selected 35 cases, 20 R patients (3 female, 17 male)
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and 15 NR patients (4 female, 11 male), for which there was sufficient clinical material and
full clinical data (including follow-up) available for the molecular analyses. Kaplan–Meier
analysis confirmed that the NR patients within this cohort had inferior overall survival
(OS) when compared with R patients (p value < 0.0001; Supplementary Figure S1) with an
OS of 28 months for NR patients compared to 134 months for R patients.

Table 1. Summary of clinical characteristics of ccRCC cases used in this study.

Patients’ Characteristics Treatment Response

Responders Non-Responders Not Known/
Unclassified

Number 74 41 59

Sex
Female 20 13 13
Male 54 28 31 (15 NK)

Median age: 59 59 60 58
Median female age: 60 60.5 62 63
Median male age: 58 58.5 57 51

Median follow-up
(months) 47 13 -

2.2. Non-Coding RNA and Gene Expression in Sunitinib Response

We extracted RNA from the 35 cases for which there was sufficient tumour material;
however, only 14 (R = 5, NR = 9) of these cases had sufficiently good quality RNA (i.e., RIN
value > 8) in order to carry out microarray analyses. A further 15 cases were identified and
extracted but again had only low-quality RNA. We believe this is likely caused by excess
time elapsed between the nephrectomy and placing the tissue in formalin as has previously
been reported [25]. Unsupervised cluster analysis of the expression of the mature miRNA
(Figure 2A), pre-miRNA (Figure 2B), small nucleolar RNAs (snoRNAs) (Figure 2C) and long
non-coding RNAs (lncRNAs) (Figure 2D), as well as that of the coding genes (Figure 2E),
largely clustered the NR cases distinctly from the R cases.

Using ANOVA analysis, we identified 220 differentially expressed miRNAs (DEmiR-
NAs) between NR and R cases, of which 141 were upregulated and 79 downregulated in
NR patients (Table S2). Additionally, we identified 52 differentially expressed pre-miRNAs,
42 of which were upregulated and 10 were downregulated (Table S3). Twenty-four (46%) of
the 52 pre-miRNAs were also dysregulated as mature miRNAs, including up-regulation of
multiple members of the miR-200 family (i.e., miR-200a, miR-200b, miR-200c and miR-429),
the miR-17~92 cluster (i.e., miR-17, miR-18a and miR-19a), and twenty members of the
chromosome 14 cluster. There were 511 differentially expressed lncRNAs between the
NR and R cases, 189 of which were upregulated and 322 downregulated (Table S4), and
49 differentially expressed snoRNAs, only four of which were downregulated (Table S5).
From the gene expression analysis, we identified 1026 differentially expressed encoding
genes (DEgenes), of which 234 were upregulated and 792 downregulated in the NR cases
(Table S6).
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Figure 2. Heatmap of unsupervised cluster analyses depicting expression of (A) mature miRNAs, (B) pre-miRNAs, (C) snoRNAs and scaRNAs, (D) lncRNA and
(E) coding genes in ccRCC cases. The dendrogram at the side shows the distribution of the RNAs, and at the top the relationship between patient samples (blue
responder and red non-responder) is shown.
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2.3. Interaction Network Analysis

In order to identify genes regulated by miRNAs associated with the response to
sunitinib, we created an interaction network by mapping the DEmiRNAs and DEgenes
that were reciprocally expressed (i.e., down-regulated miRNAs and up-regulated genes
and vice versa) to a database of experimentally validated miRNA–gene target interactions
(n = 10,754). In this way, we identified 60 genes (all down-regulated) and 37 miRNAs (all
up-regulated) (Figure 3, Table 2).

In order to gain more insight into the biological function of the miRNA targeted genes
we carried out functional pathway enrichment analysis using the Cluego and Cluepedia
algorithms [26,27] (Figure 4; Supplementary Figure S2; Table 3). From this analysis we
found a significant enrichment for NF-kappa B, IL-18, VEGFR, PI3K-Akt and MAPK
signalling pathways, amongst others (Table 3).

Table 2. List of DEmiRNAs and their respective predicted DEgene targets identified by network
analysis.

miRNA Target Gene(s)

hsa-miR-138-5p RMND5A, ROCK2
hsa-miR-141-3p ZEB1, MAPK9, HIPK2, PHLPP1
hsa-miR-146-5p TRAF6
hsa-miR-151-3p NTRK3
hsa-miR-155-5p RAB11FIP2, WBP1L, MXI1, PICALM, FLT1
hsa-miR-17-3p TXRND2

hsa-miR-182-5p TSC22D3, LRP6, ZEB1
hsa-miR-18a-3p ATM, CBX7
hsa-miR-183-5p LRP6
hsa-miR-19a-3p CUL5, MTUS1, PHLPP1

hsa-miR-200b-3p ZEB1, RNF2, FLT1

hsa-miR-200c-3p ZEB1, FLT1, RNF2, CFL2, DUSP1, KLF9, CRKL,
ROCK2

hsa-miR-204-3p PPM1K
hsa-miR-205-5p PTPRM, LRRK2, ERBB3, CENPF, ZEB1
hsa-miR-21-5p RPBMS
hsa-miR-21-3p EGLN1, LRP6, TRL3, DOCK4, SMN1, PCBP1

hsa-miR-223-3p PTBP2, CYB5A, ATM, CHUCK, PRDM1, ZEB1
hsa-miR-224-5p PHLPP1, PEBP1
hsa-miR-31-5p RDX

hsa-miR-381-3p NFKB1A
hsa-miR-409-3p RDX, STAG2, ZEB1, CTNND1

hsa-miR-421 ATM, CBX7
hsa-miR-424-3p LGALS3
hsa-miR-485-3p SLC40A1, NTRK3
hsa-miR-493-3p FZD4, MXI1
hsa-miR-501-5p LAMTOR5
hsa-miR-574-5p FOXN3

hsa-miR-608 BCL2L1
hsa-miR-629-5p TRIM33
hsa-miR-652-3p ZEB1

hsa-miR-760 CSNK2A1
hsa-miR-765 NTRK3

hsa-miR-93-3p DAB2
hsa-miR-99a-5p HOXA1
hsa-miR-127-3p PRDM1
hsa-miR-130b-3p ZEB1, SAV1, CSF1, CCDC6
hsa-miR-133a-3p BCL2L1, PNP, ZEB1, UBA2
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Table 3. Functional enrichment of the identified DEG results using Cluego, showing the associated
genes with the pathways and the percentage of mapped genes from the total number of genes from
the term.

Pathway Corrected p Value % Genes N Genes Associated Genes

HIV1 infection 1.6 × 10−5 4.25 9 ATM, BCL2L1, CFL2, CHUK, CRKL, CUL5,
MAPK9, NFKBIA, TRAF6

Pathways in cancer 1.55 × 10−4 2.26 12
BCL2L1, CCDC6, CHUK, CRKL, EGLN1, FZD4,

LRP6, MAPK9, NFKBIA,
ROCK2, TRAF6, TXNRD2

NF-kappa B signalling pathway 1.9 × 10−4 5.77 6 ATM, BCL2L1, CHUK, CSNK2A1, NFKBIA,
TRAF6

Shigellosis 4.09 × 10−4 3.24 8 ATM, BCL2L1, CHUK, CRKL, MAPK9, NFKBIA,
ROCK2, TRAF6

Measles virus infection 7.56 × 10−4 4.35 6 BCL2L1, CHUK, CSNK2A1, MAPK9, NFKBIA,
TRAF6

Yersinia infection 7.86 × 10−4 4.38 6 CHUK, CRKL, MAPK9, NFKBIA, ROCK2,
TRAF6

Brain-derived neurotrophic factor
(BDNF) signalling pathway 7.98 × 10−4 4.17 6 CHUK, CSNK2A1, MAPK9, NFKBIA, NTRK3,

TRAF6

MAPK signalling pathway 9.02 × 10−4 2.72 8 CHUK, CRKL, CSF1, DUSP1, ERBB3, FLT1,
MAPK9, TRAF6

Lipid and atherosclerosis 5.58 × 10−3 2.79 6 [BCL2L1, CHUK, MAPK9, NFKBIA, ROCK2,
TRAF6]

Malignant pleural mesothelioma 9.83 × 10−3 1.79 8 ATM, CSF1, CSNK2A1, FLT1, LRP6, MAPK9,
RNF2, SAV1

Alzheimer disease 1.22 × 10−2 1.56 6 CHUK, CSF1, CSNK2A1, FZD4, LRP6, MAPK9

IL-18 signalling pathway 1.32 × 10−2 2.15 6 BCL2L1, CHUK, FOXN3, MAPK9, NFKBIA,
TRAF6

Pathways of neurodegeneration 1.88 × 10−2 1.47 7 BCL2L1, CSF1, CSNK2A1, FZD4, LRP6, LRRK2,
MAPK9

VEGFA-VEGFR2 signalling pathway 2.45 × 10−2 1.59 7 BCL2L1, CTNND1, FLT1, MAPK9, NFKBIA,
PNP, ROCK2

PI3K-Akt signalling pathway 2.52 × 10−2 1.69 6 BCL2L1, CHUK, CSF1, ERBB3, FLT1, PHLPP1
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2.4. Validation of Identified miRNAs and Genes

On the basis of the above findings and previously published associations with renal
cancer, nine miRNAs and nine genes were selected for further validation. As can be seen
from Figure 5, although the levels of all of the tested miRNAs were higher in NR patients
than R patients (consistent with the microarray results), only the levels of miR-223, miR-155,
miR-130b-3p and miR-200b-3p were significantly so. Also consistent with the microarray
results we observed that all of the genes were down-regulated (Figure 6), although only the
downregulation of FLT1, PRDM1, and SAV1 was significant in this cohort.
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 Figure 5. Box and whisker plots of levels of differentially expressed miRNAs measured by qRT-PCR
in NR and R ccRCC cases. (A) miR-17-3p; (B) miR-99a-5p; (C) miR-223-3p; (D) miR-155; (E) miR-484;
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are denoted by asterisks (*).
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2.5. Association of the Expression of Identified Potential Molecular Markers and Clinical Outcomes

As the response to sunitinib treatment was clearly associated with overall survival (OS)
in this cohort of ccRCC patients (Supplementary Figure S1), we investigated whether levels
of the validated miRNAs and genes were also associated with survival. We observed that
high levels of miR-223 (although it did not reach statistical significance) and low levels of
PRDM1, SAV1 and FLT1 were indeed associated with shorter OS of 49, 28, 15 and 54 months,
respectively, compared to medians of 134, 110, 110 and 183 months, respectively, for patients
with low expression of miR-223 and high expression of‘ PRDM1, SAV1 and FLT1 (Figure 7).
The expression levels of miR-155, miR-130b and miR-200b were not significantly associated
with OS in this cohort.
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(B) PRDM1, (C) FLT1 and (D) SAV1 as a function of overall survival (OS) in months.

To evaluate the ability of the identified genes and miRNAs to differentiate between
ccRCC cases that responded to sunitinib from those that did not, we carried out ROC
analysis. Levels of miR-223-3p, PRDM1, FLT1 and SAV1 alone had area under the curve
(AUC) values ≥ 0.7 (0.73, 0.77, 0.83 and 0.83, respectively), as did a combination of all
miRNAs, combinations of three miRNAs (miR-223 + miR-155 + miR-200b and miR-223
+ miR-155 + miR-130) and of two miRNAs (miR-223 + miR-155 and miR-223 + miR-200b)
(Supplementary Table S7. A combination of all three genes (i.e., PRDM1 + FLT1 + SAV1)
gave an AUC value of 0.9 and other gene combinations had values >0.8. The highest AUC
values resulted from a combination of SAV1 and miR-223 (AUC = 0.92).
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2.6. Protein Expression of miRNA Target Genes Is Associated with Sunitinib Response

In order to explore further the correlation between sunitinib response and protein
expression of the validated genes, we carried out immunohistochemical staining of VEGFR1
(FLT1), SAV1 and BLIMP1 (PRDM1) on 170 ccRCC cases uniformly treated with sunitinib.
We also carried out PD-L1 staining on these cases as we previously reported the involve-
ment of this molecule in an in vitro model of sunitinib resistance [28]. Of these cases,
56% (84/151) were positive for SAV1 expression, 39% (55/142) for VEGFR1 expression,
13% (20/152) for BLIMP1 expression and 58% (96/164) for PD-L1 expression. Correlation
analysis of the protein expression with clinical parameters (i.e., M (metastasis), histological
ISUP grade, RECIST score and response) found significant correlations between VEGFR1
expression and decreasing histological ISUP grade (p = 0.003), RECIST score (p = 0.021) and
sunitinib responsiveness (p = 0.020) (Table 4). There were also correlations between SAV1
and BLIMP1 expression and the presence of metachronous metastatic disease (p = 0.013
and 0.006, respectively), and BLIMP1 expression was found to be associated with male pa-
tients (p = 0.048) (Table 4). We also carried out correlation analysis with tumour stage (pT),
presence of nodes (N), and the ECOG (Eastern Cooperative Oncology Group) performance
status scale and IMDC (International Metastatic Renal-Cell Carcinoma Database Consor-
tium) indicators but found no significant correlation with any of the biomarkers tested

Table 4. Chi-square (χ2) analysis of protein expression and miR-155 expression vs. clinical parameters
and gender. NK; not known. Significant values are shaded in grey.

M (Metastasis) Histological ISUP
Grade RECIST Score Response Gender

χ2 p-Value χ2 p-Value χ2 p-Value χ2 p-Value χ2 p-Value

PD-L1 4.615 0.329 10.863 0.210 9.287 0.319 0.187 0.911 1.912 0.752
VEGFR1 0.110 0.946 16.253 0.003 11.609 0.021 9.536 0.020 0.610 0.737

SAV1 12.711 0.013 4.267 0.832 9.626 0.292 0.055 0.973 2.722 0.605
BLIMP1 14.507 0.006 5.313 0.724 10.742 0.233 0.130 0.937 9.580 0.048

miR-155 TC NK NK 6.878 0.737 NK NK 10.789 0.029 12.880 0.378
miR-155 NTC NK NK 45.521 0.007 NK NK 5.519 0.854 26.067 0.350

2.7. In Situ Expression of miR-155 in Tumour Cells but Not Non-Tumour Cells Is Associated with
Sunitinib Response

As the levels of VEGFR-1 were associated with sunitinib response in this cohort, we
explored the expression of the targeting miRNA, miR-155, using miRNA in situ hybridisa-
tion (miRNA ISH) (Figure 8). The expression levels were then scored according to whether
the expression was associated with tumour cells or non-tumour cells. Tumour cells in 8.8%
of the ccRCC cases (14/159 countable cases) were positive for miR-155 expression whereas
non-tumoural cells were positive in 74.8% of cases (110/147 countable cases). Correlation
analysis revealed that cases with miR-155 tumour cell expression were associated with
non-responder cases (χ2 = 10.79; p = 0.029) (Table 4). In contrast, there was no correlation
between miR-155 expression in non-tumoural cells and response, but there was a correlation
between expression and increased histological ISUP grade (χ2 = 45.52; p = 0.007).
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3. Discussion

Sunitinib remains the first line treatment of choice for many metastatic ccRCC patients
due to its low toxicity profile and durability of response [29,30]. However, despite the
great improvements made to the overall survival of many treated patients, a significant
proportion do not respond to treatment and of those that do, many will develop resistance
within 12 months and undergo disease progression. Therefore, there has been a great deal
of interest in understanding the molecular mechanisms of sunitinib resistance. Previous
research studies, including ours, have shown the involvement of miRNAs in sunitinib
resistance [19,20,28,31–36]. However, the majority of the studies that investigated patient
responsiveness to treatment are limited to the identification of differentially expressed miR-
NAs, meaning that many of the identified miRNAs could result from indirect associations
without having a functional role in response. Indeed, although the unsupervised cluster
analysis of both differentially expressed ncRNAs (miRNAs, pre-miRNAs, snoRNAs and
lncRNAs) and genes were generally distinct between patients that responded to treatment
from those that did not (Figure 2), those cases that did not cluster distinctly in the differ-
ent classes of RNA were inconsistent, suggesting that this approach was not sufficient to
identify ncRNAs and genes truly associated with sunitinib response. To overcome this
limitation, a more focused approach is necessary.

We focused on only those miRNAs associated with response that had target genes
reciprocally differentially expressed. This integrated omic approach resulted in 17% of
miRNAs (37/220) and 6% (60/1026) of genes being selected. Using pathway analysis to
examine potential common functional roles for the genes, we established that amongst the
most enriched pathways was NF-kappa B signalling (p = 1.9 × 10−4; 6/60 genes), consistent
with the findings of Aimudula et al. [37] and Makhov et al. [38]. In addition, MAPK, IL-18
and PI3K-Akt pathways were significantly enriched as well as VEGFA-VEGFR2 signalling
pathways. All of these pathways have previously been associated with sunitinib resistance,
demonstrating the robustness of this integrated omic approach [39–43]. It should be
noted, however, that the miRNA:target gene interactions identified in this study are based
upon published binding studies, and nearly all of these studies were conducted under
physiological conditions and therefore may not accurately reflect the complexity that occurs
in cancer patients.

Expression levels of miR-223, miR-155, miR-130b and miR-200b were found to be
upregulated in cases non-responsive to sunitinib treatment when compared to responsive
patients. Both miR-130b and miR-200b have previously been identified by our group as
being differentially expressed in a previous in vitro model of sunitinib resistance [28].
MiR-223 was identified by Butz et al. as being differentially expressed in a xenotransplant
model of sunitinib resistance [44]. Merhautova et al. also observed a decrease in miR-155
levels in sunitinib responsive patients [22] and miR-130b was previously related to sunitinib
resistance in renal cancer. Levels of this miRNA were found to be higher in sunitinib
resistant cells when compared with parental ones [45]. In agreement with our results, the
work of Zhou et al., using the TCGA database, showed that high expression levels of miR-
130b in renal tumour samples were related to worse survival [46]. We also demonstrated
that down-regulation of FLT1, PRDM1 and SAV1 were significantly associated with non-
responsive ccRCC patients. Expression of FLT1 has been linked to sunitinib response in an
in vitro model of glioblastoma [47]. As far as we are aware, the expression of PRDM1 and
SAV1 has not been identified before as being involved in sunitinib response.

There was an association between high expression of miR-223 and low expression of
PRDM1, SAV1 and FLT1 with a poor prognostic outcome in this cohort of ccRCC cases, as
shown in the survival analysis. Kowalik et al. also demonstrated that high expression levels
of miR-223 were related to higher tumour stages and grades [48], and other studies have
shown that ccRCC patients with high expression of miR-223 had a shorter OS [49,50]. It has
previously been shown that FLT1 expression was higher in ccRCC cases that responded
well to sunitinib [51,52] and was associated with the prognostic outcome [52].
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Individual levels of miR-223 and the genes PRDM1, SAV1 and FLT1 all had good
biomarker ability to discriminate ccRCC patients that were responders from non-responders
(AUC > 0.7). However, the best results were obtained with a combination of miR-223 and
SAV1 (AUC = 0.92), although SAV1 alone (AUC = 0.83) or in combination with any of the
miRNAs (i.e., miR-155, miR-130b or miR-200b) gave high scores (AUC ≥ 0.89). Although
these results clearly need to be repeated in larger cohorts, the AUC values obtained are
very promising and much better than those obtained with other published biomarkers of
sunitinib response in ccRCC [24]. The inclusion of an miRNA in particular is promising as
a useful biomarker, especially if it could be detected in blood or urine as we have carried
out previously [53,54]. This is an area we are actively investigating.

To further explore the identified target genes, we carried out immunohistochemical
staining on 170 cases of sunitinib treated ccRCC cases to investigate protein expression of
SAV1, VEGFR1 (FLT1 gene) and BLIMP1 (PRDM1 gene), as well as PD-L1, which we had
previously identified in our cell model of sunitinib resistance but was not identified in the
current analyses [28]. We observed a positive correlation between VEGFR1 expression and
those patients that responded to sunitinib as well as a negative correlation with increasing
RECIST score and histological ISUP grade. These findings concur with previous studies that
demonstrated an association between VEGFR1 expression and better patient outcomes at
both the protein [55] and mRNA levels [52], and is consistent with the RECIST score, which
is a measure of treatment response [56]. A negative correlation between VEGFR1 expression
and (Fuhrman) histological grade has also previously been demonstrated by Lkhagvadorj
et al. [57]. We observed that the expression of both BLIMP1 and SAV1 were associated
with patients that had metachronous rather than synchronous metastases. Patients with
synchronous metastases have been demonstrated to have poorer OS than those with
metachronous metastases in a series of 48 ccRCC patients [58], thirteen of whom were
treated with sunitinib. Consistent with those findings, we found a significant correlation
between metachronous metastases and sunitinib response in our cohort (p < 0.001).

SAV1 expression has been linked to progression in gastric cancer [59], hepatic carci-
noma [60] and pancreatic cancer [61]. Our results were consistent with others who found
an association between SAV1 expression and high grade ccRCC [62,63]. Interestingly,
miR-130b, which we demonstrated was overexpressed in sunitinib non-responders, targets
SAV1 [64].

BLIMP1 has been identified as a key driver of metastasis in pancreatic cancer [65]
and lung cancer [66], although we are not aware of a previously characterised role of this
molecule in renal cancer tumour cells. It has been reported, however, that BLIMP1 is
expressed in resident CD8+ T cells of ccRCC cases [67], which are more frequently found
in metastatic ccRCC and are associated with a poor prognostic outcome [68]. Intriguingly,
expression of BLIMP1 was also associated with male gender in our cohort. The reason for
this correlation remains unclear although it has been described that BLIMP1 expression has
a gender bias in dendritic cells (DCs) [69] and that DCs are highly enriched in the ccRCC
microenvironment [70]. We found no significant correlations between PD-L1 expression
and clinical parameters in this study.

We identified miR-155 as being down-regulated in sunitinib responsive patients and
although we found that its expression was associated with the prognostic outcome in
this cohort, it was not significant. The role of miR-155 expression in renal cancer is well
documented [71,72] and is linked with survival in sunitinib treated patients [22,73]. As
VEGFR1 (FLT1) expression has been demonstrated to be regulated by miR-155 [74], we
investigated the expression of this miRNA further by carrying out miRNA ISH on the
170 cases contained on the TMA. miRNA ISH has been used previously to detect miR-21
and miR-382 in rat kidney tissue [75,76], and miR-126, miR-222 and miR-221 in ccRCC
(n = 37), papillary RCC (n = 28), chromophobe RCC (n = 20) and oncocytoma (n = 13)
cases [77]. MiRNA ISH has been used to detect miR-155 expression in lung cancer [78],
cutaneous T cell lymphoma [79] and pancreatic cancer [80], but as far as we are aware this
is the first description of miRNA ISH being used to examine miR-155 expression in kidney
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cancer. We found a correlation between the expression of miR-155 in tumour cells, but not
in non-tumour cells, with sunitinib responsiveness.

The up-regulation of miR-155 has been shown to increase proliferation and invasion
potential of ccRCC tumour cells in vitro and was found to be associated with clinical
aggressiveness through the targeting of E2F2 [81] and JADE-1 [82]. A potential role for
miR-155 targeting FLT1 in sunitinib resistance in ccRCC has not previously been postulated
and is an area that surely warrants further investigation. The observation that miR-155
expression was associated with histological ISUP grade in non-tumour cells but not in
tumour cells is intriguing as this parameter is a measure of the neoplastic cell morphological
differentiation state and does not take into account the tumour microenvironment (TME).
Our results suggest that the expression of TME-derived miR-155, rather than tumour-
derived miR-155, confers these morphological changes. It has been demonstrated that
exosome delivered miR-155 derived from tumour associated macrophages (TAMs) changes
the phenotype of ccRCC tumour cells in vitro and in vivo [83].

In summary (Figure 9), using an integrated omic approach for the identification of
miRNAs and their respective target genes associated with sunitinib resistance in ccRCC
patients, we have provided further insight into resistance mechanisms and identified
potential targets for future studies.
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4. Materials and Methods
4.1. Patient Selection and Patient Material

The 174 ccRCC patients were retrospectively selected from among patients uniformly
treated with sunitinib as frontline therapy that attended either Hospital Donostia (n = 67)
or Hospital Cruces (n = 107). All patients were treated with sunitinib as frontline therapy,
and biopsy samples (nephrectomy FFPE blocks) were taken at the time of diagnosis prior
to treatment. Cases were classified as responders when the time to progression (TTP) was
greater than 24 months or as non-responders when the TTP was less than 4 months as
previously described [24]. Both response and progression criteria for ccRCC cases were
assessed by clinicians in accordance with the RECIST guidelines [56].

The corresponding FFPE blocks from 170 ccRCC cases (4 were missing or had no biopsy
material remaining) were retrospectively retrieved from the pathology departments of the
respective hospital and the cases were re-reviewed by a uropathologist who selected an
area of high tumor load (>70%) in order to construct multiple tissue microarrays (TMA) for
immunohistochemical staining and in situ hybridisation (ISH). Written informed consent
was obtained from the patients for the inclusion of their samples in this study and the
samples were collected in accordance with the Declaration of Helsinki and approved by
local ethics committees (CEIm-Euskadi approval number PI2015059X).

4.2. RNA Extraction and Microarray Analysis

Total RNA used for molecular analysis (i.e., microarray and qRT-PCR) was extracted
from whole section FFPE biopsy material from 35 cases using the RecoverAll kit in ac-
cordance with the manufacturer’s instructions (Thermo Fisher Scientific Inc., Waltham,
MA, USA).

One µg and 200 ng of purified RNA was labelled and hybridised to Affymetrix
Genechip miRNA v.4.0 microarrays and Clariom D human microarrays, respectively, in
accordance with the manufacturer’s instructions (Thermo Fisher). The resultant intensity
data (i.e., cel files) from both microarray platforms were imported and analysed using the
Transcriptome Analysis Console (TAC) software version 4.0.2 (Thermo Fisher). Differen-
tially expressed miRNAs and genes were identified on the basis of >1.5-fold expression
changes and p < 0.05 between NR and R patients (Supplementary Table S3). All microarray
data were Minimum Information About a Microarray Experiment (MIAME) compliant
and the raw data have been Gene Expression Omnibus (GEO) database (pending acces-
sion number).

4.3. Interaction Network Analysis

Lists of differentially expressed genes (DEgenes) and miRNAs (DEmiRNAs) were
imported into Cytoscape (v 3.9.1) in order to construct miRNA–target gene interaction
networks as previously described [84]. In brief, we used the miRTarBase [85] dataset filtered
to include only experimentally validated miRNA–gene interactions (10,754 interactions) to
create a network based on differentially expressed genes that were inversely correlated with
differentially expressed miRNAs (i.e., genes up-regulated and miRNAs down-regulated
and vice versa).

Enriched gene ontology biological pathways were identified and visualised using Cy-
toscape plug-in ClueGO and Cluepedia v.5.9 [26,27]. Functional enrichment was performed
using ontologies: GO, Biological Process y Molecular Function, KEGG and Reactome.

4.4. miRNA and Gene Expression (qRT-PCR)

For miRNA expression measurement, 500 ng of RNA was reverse transcribed using
Taqman Megaplex™ miRNA pool A according to the manufacturers’ instructions (Thermo
Fisher). The resultant cDNA was amplified using Megaplex™ PreAmp Primers pool A and
Taqman PreAmp Master Mix following the manufacturers’ instructions (Thermo Fisher).
The resulting cDNA was diluted 1:40 before carrying out qPCR using individual Taqman
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probes in triplicate on a LightCycler® 96 System machine (Roche, Basel, Switzerland).
RNU48 levels were used as control.

For gene expression analysis, 500 ng of RNA was reverse transcribed using SuperScript
IV VILO Master Mix system (Thermo Fisher) and the cDNA amplified using Taqman
PreAmp Master Mix (Thermo Fisher) and a pooled set of Taqman Assays prepared by
combining the individual assays for the genes of interest in a final concentration of 0.2X.
Following a 1:5 dilution, the amplified cDNA was used for qRT-PCR using individual
Taqman probes in triplicate in a Bio-Rad Maestro CFX system. B2M was used as a control
gene. Samples with Ct values > 35 were removed from the analysis as being unreliable. The
mean Ct value of each triplicate was used for analysis with the ∆∆Ct method. Expression
levels were compared using the Mann-Whitney U-test (GraphPad Prism v.5.0, La Jolla,
CA, USA).

4.5. Statistical Analyses

Binary regression logistic models correlating the sunitinib response and the expression
of the miRNAs/genes were carried out followed by ROC analysis as implemented using
MedCalc® Statistical Software version 20.216 (MedCalc Software Ltd., Ostend, Belgium).
The output was graphically plotted using ROCplotter (https://rocplot.org/) [86].

Survival analyses were performed using the Kaplan–Meier method with a long-rank
test implemented in KMplot [87,88]. OS was defined as the time between the first diagnosis
and patient death due to disease. Patients who were alive at the time of the study or lost to
follow up were treated as censored events.

Correlation analysis between categorical variables for immunohistochemical and in
situ hybridisation were carried out using Chi-square (χ2) analysis implemented in SPSS®

29.0 software (IBM, New York, NY, USA).

4.6. Immunohistochemical Staining and miRNA In Situ Hybridisation

Immunohistochemistry was performed according to standard protocols using an
automated immunostainer (AutoStainer Link 48 Dako, Glostrup, Denmark). The EnVision
Flex visualization system was used as recommended by the manufacturer. In brief, after
deparaffination and rehydration of the slides, antigen retrieval was performed using Dako
PT link pre-treatment and citrate (pH 9) retrieval buffer before incubating the slides with
antibodies against VEGFR1 (Abcam (Cambridge, UK) [Y103] ab32152, 1:100 dilution), SAV1
(Merck (Darmstadt, Germany); Cat. No. MABS1708; 1:50 dilution) and BLIMP-1 (Merck,
clone ROS195G, Cat. No. MABE1814,1:50). HRP-conjugated secondary antibodies were
used at a 1:2000 dilution and staining was visualized using a DAB kit (Abcam) and then
the sections were counterstained with haematoxylin (Panreac Quimica, Barcelona, Spain)
according to the manufacturers’ instructions. PD-L1 staining was carried out with the
SP142 antibody on a Ventana machine according to the standard manufacturers’ procedure
(Roche Diagnostics).

Detection of miRNA by in situ hybridisation (ISH) was carried out using the miR-
NAscope™ HD (RED) Assay 324,510 (Advanced Cell Diagnostics (ACDBio), Newark,
NJ, USA) and miRNAscope™ Probe-SR-hsa-miR-155-5p-S1 MIMAT0000646 (727991-S1)
according to the manufacturers’ instructions. Scoring of miR-155 expression was carried
out by an expert uropathologist who scored the expression as absent or present in tumour
cells or non-tumour cells.

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/ijms25136881/s1.
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