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Abstract

User acceptance of artificial intelligence agents might depend on their ability to
explain their reasoning, which requires adding an interpretability layer that fa-
cilitates users to understand their behavior. This paper focuses on adding an in-
terpretable layer on top of Semantic Textual Similarity (STS), which measures
the degree of semantic equivalence between two sentences. The interpretability
layer is formalized as the alignment between pairs of segments across the two
sentences, where the relation between the segments is labeled with a relation type
and a similarity score. We present a publicly available dataset of sentence pairs
annotated following the formalization. We then develop a system trained on this
dataset which, given a sentence pair, explains what is similar and different, in the
form of graded and typed segment alignments. When evaluated on the dataset, the
system performs better than an informed baseline, showing that the dataset and
task are well-defined and feasible. Most importantly, two user studies show how
the system output can be used to automatically produce explanations in natural
language. Users performed better when having access to the explanations, pro-
viding preliminary evidence that our dataset and method to automatically produce
explanations is useful in real applications.
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1. Introduction

Since the early days of expert systems, it is acknowledged that one key factor
for users and domain experts to accept expert systems in real-world domains is
the ability of the expert systems to explain their reasoning (Buchanan et al., 1984;
Lacave and Dı́ez, 2002; Korb and Nicholson, 2010, p. 336). We also think that
user acceptance of artificial intelligence agents will depend on their ability to ex-
plain their reasoning, which requires adding an interpretability layer to facilitate
users to understand their behavior.

Our work explores interpretability in the context of Semantic Textual Similar-
ity (STS) (Agirre et al., 2012). STS measures semantic equivalence between two
text snippets using graded similarity, capturing the notion that some sentences are
more similar than others, ranging from complete unrelatedness up to semantic
equivalence. Systems attaining high correlations with gold truth scores have been
routinely reported (Agirre et al., 2015a). As an example of the STS task, given the
following two sentences drawn from a corpus of News headlines, the annotators
judged its similarity as “roughly equivalent, but some minor information differs”:

12 killed in bus accident in Pakistan
10 killed in road accident in NW Pakistan

Our final goal is to build systems that are able to explain which are the dif-
ferences and commonalities between any two sentences. The output for the two
sample sentences would be something like the following:

The two sentences talk about accidents with casualties in Pakistan,
but they differ in the number of people killed (12 vs. 10) and level of
detail: the first one specifies that it is a bus accident, and the second
one specifies that the location is NW Pakistan.

While giving such explanations comes naturally to people, constructing algo-
rithms and computational models that mimic human level performance represents
a difficult natural language understanding problem. In this article we define a
first step of such an ambitious goal. We build and evaluate a system that, given
two sentences, returns a textual explanation of the commonalities and differences
between the two sentences. The system is based on a formalization of the inter-
pretability layer as an explicit alignment of segments in the two sentences, where
alignments are annotated with a relation type and a similarity score. The core part
of the system is trained and evaluated on a dataset of sentence pairs which has
been annotated with the alignments. The trained system is thus able to return the
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Figure 1: Graphical representation of the interpretability layer. The two sentences were split in
four segments each, which were aligned as follows: “12’ is similar to “10” with a similarity score
of 4 (SIMI 4), “killed” is equivalent to “killed” with score 5 (EQUI 5), “in bus accident” is more
specific than “in road accident” with score 4 (SPE1 4), and “in Pakistan” is more general than
“in NW Pakistan” with score 4 (SPE2 4). See Section 3.1 for more details on the annotation
procedure.

reasons for the similarity between the two sentences in the form of typed segment
alignments. The evaluation on the annotated dataset shows that the system per-
forms better than an informed baseline, showing that the task is well-defined and
feasible.

Figure 1 shows the formalization of the interpretability layer for the two sam-
ple sentences, including segments, alignments, types and scores of the alignments.
Types include relations like equivalence, opposition, specialization, similarity or
relatedness. The similarity scores for aligned segments range from 0 (no relation)
to 5 (equivalence).

In addition to the dataset and core system, we also build a verbalization sys-
tem, that is, a system which takes as input the alignments and produces a human-
readable explanation based on templates. This system returns the following text
for the alignment in Figure 1:

The two sentences are very similar. Note that ’in bus accident’ is a
bit more specific than ’in road accident’ in this context. Note also
that ’12’ and ’10’ are very similar in this context. Note also that ’in
Pakistan’ is a bit more general than ’in NW Pakistan’ in this context.

In order to measure the quality and usefulness of the explanations, direct com-
parison to human-elicited text (e.g. the explanation above) is problematic, and
would not tell us about the usefulness. Instead, we measure whether the auto-
matically produced explanations are useful in two user studies. In the first study,
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English native speakers scored the similarity of sentence pairs, with and without
automatically produced explanations. In the second study, we simulated a tutor-
ing scenario where students were graded with respect to a reference sentence. The
users, simulating to be students, had to state whether they agreed with the grade,
with and without access to the automatically produced explanations. Both stud-
ies show that users that read the explanations agreed with the system scores more
often than users which did not have access to explanations.

We summarize the contributions of this article as follows:

• It formalizes the interpretability layer in the context of STS as a graded and
typed alignment between segments in the two sentences.

• It describes a publicly available dataset of sentence pairs (coming from news
headlines and image captions) annotated with the interpretability layer fol-
lowing the above formalization.

• It describes a system that, given two sentence pairs, is able to return align-
ments between the segments in the two sentences annotated with relation
type and a graded similarity score. The system is trained and evaluated in
the annotated dataset, with good results, well above an informed baseline
and in the state-of-the-art.

• It presents an extension of the system which returns a textual explanation of
the reasons for the similarity judgment.

• It shows two user-studies where the automatically produced explanations
help users to better attain their tasks, providing preliminary evidence that
our formalization and specific system are useful in real applications.

This paper is organized as follows. We first introduce related work. Section
3 deals with the creation of the dataset, followed by Section 4, which presents a
comparison to a related dataset. Section 5 explains the system, and Section 6 its
evaluation. Section 7 presents the user study, and, finally, Section 8 draws the
conclusions.

2. Related work

Early work on adding explanations in the context of bayesian networks in-
cludes both visualizations and verbal explanations about the model itself or the
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conclusions drawn about the domain (Cooper, 1984; Suermondt, 1992). For in-
stance, Elvira (Consortium, 2002) is a Bayesian Network package that offers both
verbal explanations (about nodes and arcs) as well as graphical explanations.

Explanations are important in the teaching domain, where Intelligent Tutoring
Systems (ITS) strive to provide feedback beyond correct/incorrect judgments. In
most cases the systems rely on costly domain-dependent and question-dependent
knowledge (Aleven et al., 2001; Jordan et al., 2006), but some scalable alterna-
tives based on generic Natural Language Processing (NLP) techniques are also
available (Nielsen et al., 2009). Our approach is related in spirit with this last
paper, but we formalize the interpretability layer differently, as we will see below.

In the area of NLP, the interpretability of representation models learned from
raw data is also a widespread concern. Ritter et al. (2010) show that they are able
to infer classes which are easily interpretable by humans, and Fyshe et al. (2015)
argue that the dimensions of their word representations correspond to easily inter-
pretable concepts. To our knowledge this article is the first research work in the
area of NLP addressing explicit human-readable explanations.

Our work is situated in the area of Natural Language Understanding, where
two related enabling tasks have been extensively used to evaluate the quality of
the semantic representations, Semantic Textual Similarity (STS) and textual en-
tailment. Semantic Textual Similarity has been the focus of several SemEval tasks
staring in 2012 (Agirre et al., 2012) and ongoing at the time of writing this paper1.
Given a pair of sentences, s1 and s2, STS systems compute how similar s1 and s2
are and return a similarity score bounded by the grade being used. STS is related
to both paraphrasing and textual entailment, but instead of being binary it reflects
a graded notion. It also differs from textual entailment in that it is not directional.
STS is an enabling technology with application in Machine Translation evalua-
tion, Information Extraction, Question Answering and Text Summarization. Our
work reuses existing STS datasets, and adds an interpretable layer, in the form of
typed alignments between sentence segments.

Our formalization of the interpretable layers proposes the explicit alignment
of segments, where each alignment is labeled with a relation type and a sim-
ilarity score. Previous work on alignment between text segments in the same
language2 have usually focused on the word level, with some exceptions. For
instance, Brockett (2007) released the 2006 PASCAL corpora composed of sen-
tence pairs, where semantically equivalent words and phrases in the Text (T) and

1http://ixa2.si.ehu.eus/stswiki
2As opposed to alignment of parallel corpora in machine translation settings.
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Hypothesis (H) sentences were aligned. Each word of H was either linked to one
or more words of T or it was left unlinked, and the links were marked as either
sure or possible depending on the degree of confidence in the alignment. Anno-
tators of the dataset viewed the sentence pairs of the corpora as pairs of parallel
strings of words with lines of association between them, with limited coverage
of some phrases like multiword expressions. In our work we go one step fur-
ther and focus on text segments beyond words, as well as adding alignment types
and similarity scores. In a similar effort, Rus et al. (2012) aligned tokens from
a STS dataset, although some short phrases were also aligned, such as chunks
which were semantically equivalent but non-compositional. In our case our for-
malization covers all kind of segments, including non-equivalent and equivalent
segments, compositional or not.

In recent work, which has been performed in parallel to ours, Pavlick et al.
(2015) annotated an automatically derived database of paraphrases for short phrases
(Ganitkevitch et al., 2013) with entailment relations from Natural Logic (Mac-
Cartney and Manning, 2008). They used crowdsourcing to annotate by hand
around 14 thousand phrase pairs in the database. Section 4 includes a head-to-
head comparison of the annotation schemes, showing that this work is comple-
mentary to formalization and annotation.

In a different strand of work coming from the educational domain and close to
textual entailment, Nielsen et al. (2009) defined so-called facets, where each facet
was a pair of words and a non-explicit semantic relation between both words. Each
facet in the hypothesis text, usually a sentence, is annotated with information of
whether it is entailed by the reference text. In the context of tutoring systems,
their dataset comprises student responses and reference answers. Each reference
answer was decomposed by hand into its constituent facets. The student answers
are annotated with a label for entailed facets of the corresponding reference an-
swer, but, contrary to our proposal, there is no explicit alignment between facets,
and the facets do not necessarily correspond with text segments, but rather repre-
sent pairs of words having an unknown semantic relation in the text. Our initial
motivation for interpretable STS was similar to that of Nielsen et al. (2009), as we
think interpretability is especially useful in the field of tutoring systems, but we
depart from that work in explicitly aligning segments in both sentences, as well as
providing labels for the relation and similarity scores.

The idea of facets was later followed by Levy et al. (2013), which call it partial
textual entailment. This approach is complementary to ours, in that they could also
try to align facets and characterize the semantic relations as well as the alignment
relations. From another perspective, the same way they enrich textual entailment
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datasets with partial entailment annotations, we also enrich STS datasets with
explicit alignments, where our types are related to entailment relations. We will
get back to this relation in Section 4, after we present our formalization in full.

Other related work includes a SemEval task related to tutoring systems that
automatically score student answers, the Joint Student Response Analysis and 8th
Recognizing Textual Entailment Challenge (Dzikovska et al., 2013). This task
is the first large-scale and non-commercial automatic short answer grading com-
petition (Burrows et al., 2015). The goal of the mentioned task was to assess
student responses to questions in the science domain, focusing on the correctness
and completeness of the response content. In a typical scenario, they expected
that a correct student answer would entail the reference answer. The goal of the
mentioned task was to label the student answers according to different categories
(i.e. correct, partially correct or incomplete, contradictory, irrelevant and out-of-
domain). The task includes a pilot subtask where participants had to annotate
facets. In our opinion, effective feedback needs to identify the specific text seg-
ments of the student answers that differ from the reference answer, which we do
via alignments.

The dataset presented here has been previously used in a subtask of the STS
task in SemEval 2015 (Agirre et al., 2015a).3 And, the system described in this
article is an improvement of a system which participated in the task, as described
in Agirre et al. (2015b).

3. Dataset description

This section presents the Interpretable STS dataset. We first introduce the
annotation procedure, followed by the source of the sentence pairs, the evaluation
method, and inter-tagger annotation data.

3.1. Annotation procedure
This section introduces the annotation (further details can be consulted in the

annotation guidelines). 4 Given a pair of sentences, this is the procedure to be
followed by annotators:

1. First of all, the annotator identifies the segments in each sentence separately,
regardless of the corresponding sentence in the pair.

3http://alt.qcri.org/semeval2015/task2/index.php?id=proba
4http://alt.qcri.org/semeval2015/task2/data/uploads/

annotation_guidelines_semeval-2015_task2_interpretablests.pdf
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Noun phrases: [The girl] / [Bradley Cooper and JJ Abrams]
Verb chains: [is arriving] / [does not like]
Prepositional phrases: [at a time] / [with the telescope] / [the house] [of that
man]

Adverbial phrases: [of course]
Other expressions: [once upon a time] / [by the way]

Figure 2: Examples of chunks.

2. Secondly, the annotator aligns the chunks in order, from the clearest and
strongest correspondences to the most unclear or weakest ones.

3. Third, for each alignment, the annotator provides a similarity score.

4. Finally, the annotator chooses the label or tag for each alignment.

Text segments. Segments are annotated according to the definition of chunks (Ab-
ney, 1991): “a non-recursive core of an intra-clausal constituent, extending from
its beginning to its head. A typical chunk consists of a content word surrounded
by a constellation of function words, matching a fixed template”. When marking
the chunks of each sentence, the annotator follows the CONLL 2000 task guide-
lines5, which were adapted slightly for our purpose: The main clause is split in
smaller chunks consisting on noun phrases, verb chains, prepositional phrases,
adverbs and other expressions. Figure 2 shows some examples of chunks.

In order to help the annotators, we run the sentences through a publicly avail-
able open-source chunker6 trained on CONLL 2000 corpora (Agerri et al., 2014).

Alignment. The alignment is marked using an interface7. When aligning, the
meaning of the chunks in context are taken into account. Annotators must try
to align as many chunks as possible. Given some limitations in the interface, we
decided to focus on one-to-one alignments, that is, one chunk can be aligned with
at most one chunk. For this reason, when having two options to align, only the
strongest corresponding chunk will be aligned. The other chunk(s) will be left
unaligned, and labeled with ALIC. Chunks can be also left unaligned if no corre-
sponding chunk is found (NOALI label). Punctuation marks are ignored, and left
unaligned.

5http://www.clips.ua.ac.be/conll2000/chunking/
6https://github.com/ixa-ehu/ixa-pipe-chunk
7We modified a tool developed by LDC to align words https://www.ldc.upenn.edu/

language-resources/tools/ldc-word-aligner. We reused their XML-based anno-
tation format as well.
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Label Chunk1 Chunk2 Score
EQUI abduct kidnapped 5
OPPO soar slump 4
SPE1 two mountain goats two animals 1
SPE2 in Pakistan in NW Pakistan 4
SIMI Russia South Korea 3
REL on the porch on a couch 2

Table 1: Examples of aligned chunks, with label and score.

Score. Once chunks are aligned, the annotator provides a similarity score for each
alignment, where the score ranges from 5 (maximum similarity, equivalence) to 0
(no relation at all). Note that an aligned pair would never score 0, as that would
mean that the two chunks should not be aligned. See below for further restrictions
concerning possible score values for specific labels.

Label. When assigning labels to aligned chunks, the interpretation of the whole
sentence, including common sense inference, has to be taken into account. The
possible labels are the following:

EQUI, both chunks are semantically equivalent;

OPPO, the meanings of the chunks are in opposition to each other;

SPE1 or SPE2, chunk in sentence 1 is more specific than chunk in sentence 2 (or
vice versa);

SIMI, the meaning of the chunks are similar, and the chunks are not EQUI,
OPPO, SPE1, or SPE2;

REL, the meaning of the chunks are related, but they are not SIMI, EQUI, OPPO,
SPE1, or SPE2;

These six labels are exclusive, and each alignment should have one and only
one such label. Some examples are provided in Table 1. In addition, the following
optional labels can be used in any alignment:

FACT, the factuality, i.e. whether the statement is or is not a fact or a speculation
is different in the aligned chunks.

POL, the polarity, i.e. the expressed opinion (positive, negative or neutral) is
different in the aligned chunks.
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Figure 3: Graphical representation of the interpretability layer. The two sentences were split in
four segments each, which were aligned as follows: “A red moped” is more general than “The
red scooter” with a similarity score of 4 (SPE2 4), “parked” is similar to “is sitting” with score
4 (SPE2 4), “on a sidewalk” is more specific than “on the street” with score 4 (SPE1 4), and “in
front of graffiti” is related to “in front of the building” with score 3 (REL 3). See Section 3.1 for
more details on the annotation procedure.

Note that ALIC and NOALI can also be FACT or POL, even not aligned, mean-
ing that the respective chunk adds a factuality or polarity nuance to the sentence.

Labels and scores are not independent. After annotating scores and labels, the
annotator should see that the following constraints are enforced:

• NOALI and ALIC should not have scores but the 0 value.

• EQUI should have a 5 score.

• The rest of the labels should have a score larger than 0 but lower than 5.

3.2. Source of the dataset
The dataset comprises pairs of sentences from news headlines (Headlines) and

image descriptions (Images). We already mentioned a sample pair from Headlines
(cf. Figure 1), and Figure 3 shows a sample pair from Images, together with
their alignment. The Headlines corpus is composed of naturally occurring news
headlines gathered by the Europe Media Monitor engine from several different
news sources (from April 2nd, 2013 to July 28th, 2014) as described by Best
et al. (2005). The Images dataset is a subset of the PASCALVOC-2008 dataset,
as described by Rashtchian et al. (2010), which consists of 1000 images with
around 10 descriptions each. The dataset comprised 756 and 750 sentence pairs
from Headlines and Images, respectively, which were split evenly in training and
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testing subsets. The dataset is freely available8. Table 2 describes the statistics for
the Headlines and Images datasets.

In addition, table 2 shows some statistics for each of the datasets. Headlines
contain slightly less chunks and less tokens per chunk than image captions. More
than half of the aligned pairs in both datasets have a score of 5 (which corresponds
to EQUI pairs) with a decreasing number of aligned pairs for each score range.
Regarding the labels, EQUI is the most used label, followed by SIMI, SPE1 and
SPE2, REL and OPPO. The breakdown in scores and types is very similar in both
datasets. ALIC is used a few times, more often in the Headlines dataset. There is a
large number of unaligned chunks, specially in the Images dataset. Finally, FACT
and POL are seldom used in the news dataset, and never in the Images dataset.

3.3. Annotation Effort
The annotation of the 1501 pairs took 70 hours, 2.8 minutes per pair. The

annotation was faster towards the end of the project, at around 2.3 minutes per
pair. We used an in-house adaptation of an interface designed for cross-lingual
word alignment9, which helped to enter the annotations faster.

3.4. Evaluation measures
In order to evaluate systems which perform Interpretable STS, we decided to

adopt word alignment evaluation methods from the Machine Translation commu-
nity. In particular, the evaluation method is based on that of Melamed (1998),
which uses the F1 of precision and recall of token alignments. Note that Fraser
and Marcu (2007) argued that F1 is a better measure than Alignment Error Rate.
The idea is that segment alignment is mapped into token alignment, where all to-
ken pairs in the aligned pairs are aligned with some weight. The weight of each
token-token alignment is the inverse of the number of alignments of each token,
the so-called fan out factor (Melamed, 1998). Precision is measured as the ratio of
token-token alignments that exist in both system and gold standard files, divided
by the number of alignments in the system. Recall is measured similarly, as the
ratio of token-token alignments that exist in both system and gold-standard, di-
vided by the number of alignments in the gold standard. Precision and recall are
evaluated for all alignments of all pairs in one go.

8http://alt.qcri.org/semeval2015/task2/data/uploads/
sts2015-interpretability-train.v3.tgz and http://alt.qcri.org/
semeval2015/task2/data/uploads/test_evaluation_task2c.tgz

9https://www.ldc.upenn.edu/language-resources/tools/
ldc-word-aligner
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Headlines Images
Train Test All % Train Test All %

Sentence pairs 378 378 756 375 375 750
Chunks/sentence 4.2 4.2 4.2 4.5 4.5 4.5
Tokens/chunk 1.9 1.9 1.9 2.2 2.3 2.25
Aligned pairs 1064 1102 2166 969 942 1911

Score ∈ [5] 652 665 1317 60.8% 529 499 1028 53.8%
Score ∈ [4,5) 189 225 414 19.1% 247 268 515 26.9%
Score ∈ [3,4) 133 126 259 12% 101 107 208 10.9%
Score ∈ [2,3) 80 70 150 6.9% 75 55 130 6.8%
Score ∈ [1,2) 10 16 26 1.2% 17 13 30 1.6%
EQUI 652 665 1317 60.8% 529 499 1028 53.8%
SPE1 98 99 197 9.1% 108 126 234 12.3%
SPE2 86 108 194 8.9% 129 109 238 12.4%
SIMI 171 154 325 15.0% 174 170 344 18%
REL 48 66 114 5.3% 29 35 64 3.3%
OPPO 9 10 19 0.9% 0 3 3 0.2%

ALIC 92 99 191 53 39 92
NOALI 949 841 1790 1406 1468 2874
FACT 10 20 30 0 0 0
POL 3 0 3 0 0 0

Table 2: Headlines and Images dataset statistics across splits. The first three rows report, respec-
tively, the number of sentence pairs, chunks per sentence and tokens per chunk. The rows below
report the number of aligned chunk pairs, with a break-down according to the similarity score,
followed by a breakdown according to the label of aligned pairs. The last four rows report the
number of unaligned chunks (ALIC, NOALI), and how many times the additional FACT and POL
labels are used.

The evaluation is done at four difference levels: segment alignment alone (ig-
noring labels and scores), segment alignment where we require that labels agree
(i.e. pairs of segments with different labels are ignored), segment alignment where
differences in score are penalized, and finally, segment alignment score where
both labels and scores are taken into account. The evaluation script is freely avail-
able together with the dataset.

3.5. Quality of annotation
To measure the viability and quality of the annotation and to calculate the

inter-tagger agreement (ITA), two annotators annotated, individually, a random
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Headlines Images
Alignment 0.9139 1.0000
Type 0.7708 0.8095
Score 0.8473 0.9524
Type + Score 0.7375 0.7714

Table 3: Inter-tagger agreement on the Headlines and Images dataset.

iSTS NL
EQUI ≡
OPPO ¬
SPE1 <

SPE2 =

SIMI ∼
REL ∼

Table 4: Relation between our alignment types and the Natural Logic entailment relations used by
Pavlick et al. (2015)

subset of 20 sentence pairs, 10 from each dataset. Both annotators previously read
the guidelines and agreed on mutual uncertainties. The agreement was computed
using the evaluation script, where one tagger was taken as the system and the other
one as the gold standard. Overall results for the agreement are shown in table 3.
Notice that the metrics used to compute the ITA are the same as the metrics used
to evaluate system performance on the task.

The segment alignment is done with very high agreement, both for Headlines
and Images dataset. The agreement on the type is also high, in the 80s, as well
as the agreement on scores (over 80). When considering the agreement on both
type and score, the scores are also over 70, with the highest score for the simpler
Images dataset. The high results show that the annotation task is well-defined and
replicable, with high agreement scores.

4. Relation to other annotation schemes

Our labels are closely related to those used in Natural Logic (MacCartney
and Manning, 2008), and later adapted for the purpose of annotating a database
of paraphrases (Pavlick et al., 2015). We compare our annotations to the latter,
as it is closer to this work. They use a set of six mutually exclusive entailment
relations:
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• Equivalence (couch ≡ sofa)

• Opposites (old ¬ young)

• Forward/backward entailment (crow < bird)

• Related by something other than entailment (boy ∼ little)

• Unrelated (professor # cucumber)

Our labels have been created independently from theirs, but the overlap be-
tween both annotation schemes is remarkable. Table 4 shows the mapping be-
tween the respective labels, which is a one-to-one mapping with exception of their
∼, where we distinguish between similar (SIMI) and related (REL). Several re-
searchers have argued about the convenience to separate these phenomena (Agirre
et al., 2009; Hill et al., 2015), where similarity refers to conceptually similar con-
cepts (e.g. Russia - Korea) and relatedness refers to concepts which are closely
related (e.g. Russia - Putin). Note that relatedness also encompasses similarity, as
similar concepts also tend to be related. Hill et al. (2015) present a recent review
of these two phenomena, and a review of word relatedness and word similarity
datasets.

Our annotated resource is thus complementary to that of Pavlick et al. (2015),
who have annotated via crowdsourcing a subset of the 14K phrase pairs of an au-
tomatically derived paraphrase database (Ganitkevitch et al., 2013). In our case,
we annotate 4K pairs10 of manually identified chunks in text pairs. Note that the
source of pairs is different: while they label pairs of phrases which have been
automatically induced as being paraphrastic, we label pairs of chunks which oc-
cur in pairs of naturally occurring sentences from different similarity ranges. In
addition, we distinguish between similar and related pairs, and label explicitly
factuality and polarity phenomena.

5. System construction

A system for Interpretable STS needs to perform chunking, align the chunks,
label and score the alignments. We first describe a baseline system which performs
each of the steps in turn, and then present improvements.

10Note that, contrary to the other work, the 4K exclude pairs with no relation. One could easily
derive non-related chunk pairs pairing all combinations of non-aligned chunks.
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5.1. Baseline construction
The baseline performs each of the steps following some publicly available

algorithms. It first runs the ixa-pipes chunker11 (Agerri et al., 2014). We then
lower-case all tokens and align identical tokens. Chunks are aligned based on the
number of aligned tokens in a greedy manner, starting with the pair of chunks with
the highest relative12 number of aligned tokens. Chunks with no aligned tokens
are left unaligned. Finally, the baseline uses a rule-based algorithm to directly
assign labels and scores, as follows: aligned chunk pairs are assigned the EQUI
label, and the rest are either assigned ALIC (if they contain aligned tokens), or
NOALI (if they do not contain aligned tokens). The procedure to assign scores
follows the alignment guidelines: EQUI pairs are scored with the maximum score
and the rest are scored with 0.

5.1.1. Chunking
Given that the chunker is not perfect, we analyzed the output of the chun-

ker with respect to the gold chunks available in the training data, and used some
regular expressions to improve the chunks. The rules concern conjunctions, punc-
tuation and prepositions, where the rules are used to join adjacent chunks. The
rules mainly join preposition and noun phrase into a single chunk, as well as noun
phrases separated by punctuation or conjunctions, or a combination of those. In
addition to the chunker, we run the Stanford NLP parser (Klein and Manning,
2003), producing part of speech, lemma and dependency analysis.

5.1.2. Alignment
We use a freely available state-of-the-art monolingual word aligner (Sultan

et al., 2014) for producing token alignments. In order to produce the chunk
alignment, each possible chunk alignment is weighted according to the number
of aligned tokens in the chunks. The Hungarian-Munkres algorithm (Munkres,
1957) is then used to find the chunk alignments which optimize the overall align-
ment weight.

5.1.3. Labeling
Alignments are labeled using a multiclass supervised classification algorithm,

trained with positive alignments in the training data13. We use twenty one features

11https://github.com/ixa-ehu/ixa-pipe-chunk
12The mean number of tokens is used for normalization.
13We extracted all aligned pairs with EQUI, OPPO, SPE1, SPE2, SIMI and REL labels.
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# Feature description
1 Jaccard overlap
2 Jaccard overlap of non stopwords
3 Jaccard overlap of stopwords
4 Difference in length betweeen chunks 1 and 2
5 Difference in length betweeen chunks 2 and 1
6 Max WordNet path similarity among sense pairs (Pedersen et al., 2004)
7 Max WordNet LCH similarity among sense pairs (Leacock and Chodorow, 1998)
8 Max WordNet JCN similarity among sense pairs (Jiang and Conrath, 1997)
9 Same as 6 but simulating root with the maximum common subsumer
10 Same as 7 but simulating root with the maximum common subsumer
11 Same as 8 but simulating root with the maximum common subsumer
12 Whether chunk 1 senses are more specific than chunk 2 senses

in the WordNet hierarchy (Miller, 1995)
13 Whether chunk 2 senses are more specific than chunk 1 senses

in the WordNet hierarchy
14 Difference in WordNet depth of segment head
15 Minimum value of pairwise difference of WordNet depth
16 Maximum value of pairwise difference of WordNet depth
17 Lemmatized lowercased tokens of chunk 1
18 Lemmatized lowercased tokens of chunk 2
19 Maximum similarity value using first resource in Section 5.1.4
20 Maximum similarity value using second resource in Section 5.1.4
21 Maximum similarity value using third resource in Section 5.1.4

Table 5: Features used by the supervised classifier to assign labels to aligned chunk pairs.

including token overlap, chunk length, WordNet similarity between chunk heads
and WordNet depth. The features are listed in table 5.

We used Support Vector Machines (Chang and Lin, 2011). As training data
is reduced we indistinctly joined the available datasets and performed grid search
to optimize the cost and gamma parameters using randomly shuffled 5-fold cross
validation. In these development experiments we found that the classifier was
failing to detect FACT and POL, so we removed these labels from the training in
the final system.

The development experiments also showed that the performance of the clas-
sifier was sensitive to the quality of the chunker. The classifier was first trained
and tested using cross-validation on data which contained gold chunks and gold
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alignments, but when we run the classifier on test folds which contained system
chunking, the performance suffered. We tried several variations of gold and au-
tomated versions of the train data, and obtained the best cross-validation results
using the following versions in the training folds: a concatenation of the gold ver-
sion and a version mixing automatic chunking and gold-standard alignments and
labels. We thus trained the final classifiers on this semi-automatically produced
version.

5.1.4. Scoring module
The scoring module uses a variety of word similarity resources, as follows:

1. Euclidean distance between Collobert and Weston Word Vector (Collobert
and Weston, 2008). The distances d were converted to similarity s in the
[0..1] range using the following formula 1 − d/max(D) where D contains
all distances observed in the dataset.

2. Euclidean distance between Mikolov Word Vectors (Mikolov et al., 2013).
The distance was converted into similarity as above.

3. PPDB Paraphrase database values (Ganitkevitch et al., 2013). We used
the XXXL version. This resource yields conditional probabilities. As our
scores are undirected, in case the database contains values for both direc-
tions, we average.

Given a pair of aligned chunks (C1 and C2), we compute the similarity for any
word pair sim(w, v) in the chunks, where w ∈ C1 and v ∈ C2, as the maximum
of the similarities according to the three resources above. We then compute the
similarity between the chunks as the mean of two similarities, the addition of
similarities for each word in the first chunk and the addition of similarities for
each word in the second chunk, as follows:

sim(C1, C2) =
1

2

(∑
w∈C1

(maxv∈C2sim(w, v) ∗ idf(w))∑
w∈C1

idf(w)

+

∑
w∈C2

(maxv∈C1sim(w, v) ∗ idf(w))∑
w∈C2

idf(w)

)
In the equation above idf is the inverse document frequency, as estimated in

using Wikipedia as a corpus.
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Headlines Images
ALI TYPE SCORE T+S ALI TYPE SCORE T+S

BASE 0.6701 0.4571 0.6066 0.4571 0.7060 0.3696 0.6092 0.3693
BASE+ 0.7709 0.5019 0.6892 0.5019 0.8388 0.4450 0.7280 0.4447
FULL 0.7709 0.5343 0.7007 0.5220 0.8388 0.6091 0.7612 0.5884
FULLGChunks 0.8991 0.6402 0.8211 0.6185 0.8846 0.6557 0.8085 0.6159

Table 6: Results (F1) of our three systems on each of the datasets. Columns show the results on
each evaluation criteria, where T+S stands for “Type and Score”. Best results in bold. The last row
shows the results for the FULL system when using gold standard chunks instead of automatically
produced chunks.

5.2. Three systems
We developed three systems: the baseline (BASE, cf. Section 5.1), an im-

proved baseline (BASE+) with better chunking and alignment models (cf. Sec-
tions 5.1.1 5.1.2) but baseline labeling and scoring modules, and the full system
(FULL) with supervised labeling and similarity-based scoring (Sections 5.1.3 and
5.1.4). The systems were developed using the training subset of the dataset alone
(cf. Section 3), with no access to the test.

6. Evaluation

This section explains the results of the three systems we have developed and
an error analysis of them. Then, a comparison with respect to the state-of-the-art
is presented.

6.1. Developed systems
We evaluated the three systems (BASE, BASE+ and FULL) according to the

evaluation measures set in Section 3.4. Table 6 shows the results on the Headlines
and Images datasets. The better chunking and alignment (BASE+ and FULL) im-
proves the alignment F1 score more than 10 points in both datasets with respect
to BASE. The poor performance in alignment causes the baseline system to also
attain low F1 scores in type and score, as well as the overall F1 score (T+S). The
comparison between BASE+ and FULL shows that the classifier is able to bet-
ter assign types, specially for Images. The method to produce the score is also
stronger in FULL, and thus produces the best overall F1 (T+S). Note that the per-
formance for the four available metrics decreases, as all metrics are bounded by
ALI, and T+S is bounded by both TYPE and SCORE.

All in all, the alignment results are strong, but the decrease of performance
when taking into account the type shows that this is the most difficult task right
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now, with score being an easier task. In fact, had the labeling been perfect, the
TYPE F1 score would be the same as ALI F1 score, but a drop around 23 absolute
points is observed in both datasets. Regarding the two datasets, Headlines are
more challenging, with lower scores across the four evaluations.

6.2. Error analysis
We performed an analysis of the errors performed by the FULL system at each

level of processing, starting with chunking. The last row in Table 6 reports the
results of the FULL system when running on gold standard chunks. The results
improve for both datasets, with very high alignment results, and show that chunk-
ing quality is key for good performance. The results when using gold chunks
are comparable for the two datasets, which indicates that the difference in per-
formance for Headlines and Images when running the system on raw data (first
three rows in Table 6) is caused by the automatic chunker. We can thus conclude
that Headlines is more difficult to chunk than Images, which causes worse perfor-
mance on this dataset. Some of the errors in chunking seem to be related to verbs,
as shown in an example below, and could be caused by the particular syntactic
structures used in news headlines, which are different from those expected by the
automatic chunker.
* [ Three ] [ feared ] [ dead ] [ after helicopter crashes ] [ into pub ]

[ Three feared dead ] [ after helicopter ] [ crashes ] [ into pub ]

Regarding the quality of the alignments, we found that the aligner tended to
miss some alignments because it did not have access to semantic relations between
words (e.g. cows and horse below) or numbers (500 and 580 below). The follow-
ing pairs include in bold chunks which should have been aligned by the system:

Two cows graze in a field .
A brown horse in a green field .

Bangladesh building disaster death toll passes 500
Bangladesh building collapse : death toll climbs to 580

In order to check type-labeling errors, we built a confusion matrix between
the FULL system and the gold standard for the Headlines dataset (see Figure 4).
The confusion matrix was built keeping correct alignments, as incorrectly aligned
tokens cannot be analyzed for type errors. Most errors of the system are caused by
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Figure 4: Label and score confusion matrices as heatmaps (darker means higher counts in the cell)
between the FULL system and the gold standard scores and labels for the Headlines dataset. Gold
standard labels and scores in rows, system labels and scores in columns.

the system being biased to return EQUI, which we think is caused by the imbal-
ance of the classes in train (cf. Table 2). For example, in the next pair of sentences
the aligned chunks (in bold) should have been labeled as SPE2 instead of EQUI.

A bus driving in a street .
Red double decker bus driving down street .

In some cases, the system is not able to label equivalent chunks due to mis-
takes when recognizing identical entities or synonyms. In the next examples, the
chunks of the sentence 2 (in bold) have been labeled as more specific than the
chunks of sentence 1 (in bold). However, in both sentence pairs the alignments
should have been labeled as EQUI instead of SPE2.

Matt Smith to leave Doctor Who after 4 years
Matt Smith quits BBC ’s Doctor Who
De Blasio sworn in as New York mayor , succeeding Bloomberg
Bill De Blasio sworn in as New York mayor , succeeding Michael Bloomberg
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Headlines Images
ALI TYPE SCORE T+S ALI TYPE SCORE T+S

ExBThemis a 0.7032 0.4331 0.6224 0.4290 0.6966 0.3970 0.6068 0.3806
ExBThemis m 0.7032 0.4331 0.6200 0.4288 0.6966 0.3970 0.6106 0.3870
ExBThemis r 0.7032 0.4331 0.6209 0.4284 0.6966 0.3970 0.6092 0.3867
RTM-DCU 0.4914 0.3712 0.4550 0.3712 0.3540 0.2283 0.3187 0.2282
SimCompass c 0.6467 0.4333 0.5636 0.3870 0.5433 0.2854 0.4545 0.2421
SimCompass p 0.6310 0.4284 0.5526 0.3872 - - - -
SimCompass w 0.6461 0.4334 0.5619 0.3878 0.5428 0.2831 0.4561 0.2427
UMDuluth 1 0.7820 0.5058 0.6968 0.5004 0.8336 0.5529 0.7498 0.5431
UMDuluth 2 0.7820 0.5109 0.6986 0.5049 0.8336 0.5759 0.7511 0.5634
UMDuluth 3 0.7820 0.5154 0.7024 0.5098 0.8336 0.5605 0.7456 0.5473
FULL 0.7709 0.5343 0.7007 0.5220 0.8388 0.6091 0.7612 0.5884

Table 7: Comparison to the state-of-the-art. Results (F1) on each of the datasets. Columns show
the results on each evaluation criteria, where T+S stands for “Type and Score”. Best results in
each column in bold.

Regarding the errors in scores, Fig. 4 shows the confusion matrix, where
scores have been rounded to the nearest integer. Most errors are between con-
tiguous scores, with some exceptions like the system returning 4 instead of 2, or
3 instead of 5. This shows a bias of our system towards high scores, which we
would like to fix in the future.

6.3. Comparison to the state-of-the-art
Table 7 shows the results of our best system (FULL) with respect to the state-

of-the-art, as set in the SemEval Task 2 competition (Agirre et al., 2015a; Karu-
muri et al., 2015; Hänig et al., 2015; Biçici, 2015), which included a subtask on
Interpretable STS based on our dataset14. Our system outperforms the best sys-
tem (UMDuluth 3) in both datasets, except in the ALI and SCORE results for
Headlines.

The UMDuluth 3 system improved the quality of the publicly available OpenNLP
chunker, with some post processing rules, which could explain the better perfor-
mance of ALI on Headlines. They use the same alignment software as our system.
The labeling module is a supervised system based on support vector machines,

14Participants could send up to three runs. Note that the task also included a track where the
gold chunks were made available to participants. For the sake of space, we focus on the most
natural track, where systems need to chunk sentences on their own.
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similar to ours. Our better results can be explained by a larger number of features,
which include similarity scores from the scoring module and more WordNet sim-
ilarity measures. Unlike ours, their scoring module is based on the labels.

The good results of participating system and the improvement over baselines
show that Interpretable STS is a feasible task in all steps: alignment, labeling of
relations and scoring similarity. It is also indirect evidence that the task is well
designed and the annotation consistent.

Note that we participated in the Semeval task with a previous version of our
system. The only difference is in the strategy to train the classifier for alignment
labels, which was based on gold standard chunks and now uses a mixture of gold
chunks and system-produced chunks (cf. Section 5.1.3).

7. Application of Interpretable STS

In order to judge whether the information returned by an Interpretable STS
system can be used to clarify and explain semantic judgments to humans, we
performed two user studies. We first devised a verbalization algorithm, which,
given two sentences, their similarity score and the typed and scored alignment
between chunks, returns English text verbalizing the differences / commonalities
between the two sentences. We then contrasted the activities of the users with and
without the Interpretable STS verbalizations, trying to show that the verbalizations
helped the users in the two case studies.

7.1. Verbalization
Given the output of the Interpretable STS system, we devised a simple template-

based algorithm to verbalize the alignment information into natural language. The
label of the alignment is used to select which template to use, and the score is used
to qualify the strength of the relation, as summarized in Table 8. An example of a
verbalization for a sentence pair is shown in the bottom of Figure 5.

We are aware that the verbalization algorithm could be improved, specially
to avoid repetitions, and make the text more fluent and easier to read. It cur-
rently produces one sentence per alignment, resulting in too much text. The infor-
mation from several alignments could be synthetized and summarized in shorter
messages. In any case, we will show that this simple verbalization algorithm is
effective enough in the two user case studies.

7.2. First user study: STS
In the first user study, the volunteers need to score the similarity of the two

sentences. Figure 5 shows the instructions for the volunteers, which mimic those
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Please, evaluate the two sentences with a score between 0 and 5, with the
following interpretation:

(5) The two sentences are completely equivalent, as they mean the same thing.
The bird is bathing in the sink.
Birdie is washing itself in the water basin.

(4) The two sentences are mostly equivalent, but some unimportant details differ.
In May 2010, the troops attempted to invade Kabul.
The US army invaded Kabul on May 7th last year, 2010.

(3) The two sentences are roughly equivalent, but some important information
differs/missing.

John said he is considered a witness but not a suspect.
"He is not a suspect anymore."

(2) The two sentences are not equivalent, but share some details.
They flew out of the nest in groups.
They flew into the nest together.

(1) The two sentences are not equivalent, but are on the same topic.
The woman is playing the violin.
The young lady enjoys listening to the guitar.

(0) The two sentences are completely dissimilar.
John went horse back riding at dawn with a whole group of friends.
Sunrise at dawn is a magnificent view to take in if you wake up early
enough for it.

Please, note that you have some explanations below the sentences. Read them
carefully and use them to assign your scores.

------------------------------------------------------------------------

Afghan legislators approve new election law
Afghan president approves new election law

They are very similar.
Note that ’Afghan legislators’ and ’Afghan president’ don’t mean the same but
are closely related in this context.

Note also that ’approve’ and ’approves’ mean the same in this context.
Note also that ’new election law’ and ’new election law’ are very similar in
this context.

[ Write answer ]

Figure 5: Instructions and task for users participating in the first user study. This example shows a
verbalization based on system’s alignments.
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Label Verbalization produced
EQUI X and Y mean the same
SPE1 X is [a bit more | more | much more ] specific than Y
SPE2 X is [a bit more | more | much more ] general than Y
SIMI X and Y are [very | ∅ | slightly | scarcely ] similar
REL X and Y don’t mean the same but are [closely | ∅ | somehow | distantly] related
OPPO X and Y mean the opposite

Table 8: Templates employed for producing verbalizations summarized by label. X and Y refer to
the aligned chunks from sentence 1 and 2, respectively. The score is used to select the qualifiers
in SPE1, SPE2, SIMI, and REL.

Professor Smith asked his students to write headlines after reading some texts.
Then he graded students using his own headlines as reference.
The grades used by professor Smith are the following ones: Insufficient (0-4.9),
good (5-6.9), above good (7-8.9), excellent (9-10).

Your task is to evaluate the grading done by professor Smith from 0 to 10, being
0 complete disagreement and 10 complete agreement.

The first headline is the reference headline of professor Smith, the second one
the headline of the student.

Afghan legislators approve new election law
Afghan president approves new election law
Grade: good

[ Write answer ]

Figure 6: Instructions and task for users participating in the second user study. In this example, no
verbalization is given to the user.

used to annotate STS datasets (Agirre et al., 2015a). The Figure corresponds to
the case where a verbalization is shown to the volunteer. We then measured the
agreement of the volunteers with the gold standard STS score. In order to contrast
whether the verbalizations had any impact in the performance of the users in the
task, we run three scenarios: no verbalization, automatic verbalization based on
the Interpretable STS gold standard, automatic verbalization based on the Inter-
pretable STS system output.

7.3. Second user study: English students
In the second user study, we consider an English as a Second Language edu-

cation scenario, where the volunteers played the role of an inspector who is over-
seeing the grades given by a lecturer to a student. The student had to summarize
a piece of news into a single headline. We re-use the pairs of sentences in the
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Headlines dataset, together with their similarity score. The volunteer is given two
sentences: the first one is the reference headline used by the professor to asses the
student, and the second headline is produced by the student. The similarity score
is used as the grade given to the student.

The task given to the user is thus to assess to what extent they agree with the
grading. Users were given the following information: the reference headline of
the professor, the headline done by the student, the grade given, and, optionally,
the feedback in the form of the automatically produced verbalization. We collect
the feedback (agreement level) in the form of an integer between 0 (complete
disagreement) and 10 (complete agreement). Figure 6 shows the instructions and
one example pair, alongside the grade.

We run three scenarios: no verbalization, automatic verbalization based on
the Interpretable STS gold standard, and automatic verbalization based on the
Interpretable STS system output.

7.4. Setting the task
To conduct the user studies, we randomly selected 48 sentence pairs from the

Headlines dataset (see section 3). The sentence pairs are accompanied by a gold
standard similarity score which ranges from 0 (no similarity) to 5 (equivalence),
and we thus sampled the 48 pairs uniformly according to the score. The same set
of 48 pairs was used in the two user studies.

The first user study involved 4 native English speakers. For the second user
study, which was related to an English as a Second Language setting, we involved
4 non-native English speakers with a verified level C1 of English.

To test whether verbalizations are useful or not, we randomly split the 48 items
in 4 item sets (A, B, C and D) and distributed them among participants (E1-E4)
according to the sketch shown in table 9.

The sketch helps organize which files are distributed without verbalizations,
which ones are distributed with verbalizations based on gold standard annotations
of the Semeval data, and which ones are distributed with verbalizations produced
by the system described in section 5 (using the system chunk input data). The
sketch distributes items across users and verbalizations in a uniform way in order
to reduce biases across users, verbalizations and item sets. The same sketch has
been used to distribute the files for both scenarios.

Rows from table 9 show how each item set with a specific verbalization (No
verb, GS verb, SYS verb) is assigned to each participant and in which order. For
instance, user E4 will do E4 1, E4 2 and E4 3 in order, that is, the user will first
do items in the item set D with no verbalization, then the item set C with GS
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Item sets No verb GS verb SYS verb
A E1 1 E2 2 E3 2
B E2 1 E3 3 E4 3
C E3 1 E4 2 E1 2
D E4 1 E1 3 E2 3

Table 9: Sketch used to distribute item sets (A-D) among participants (E1-E4) with the three
possible verbalizations option in the rows. The number after the underscore refers to the order of
presentation to the user, e.g. E2 2 is shown to user E2 after E2 1 and before E2 3.

No verb SYS verb GS verb
Pearson r 0.83 0.92 0.90
Spearman ρ 0.83 0.92 0.91

Table 10: First user study: Correlations for non verbalized items, gold standard verbalized items
and system verbalized items.

verbalization and finally the item set B with SYS verbalization. We always show
the no verbalized item set first, followed by verbalized itemsets, which are offered
in different orders.

7.5. Results
To measure the results of the first user study, we use the correlation between

the scores given by participants and the gold standard STS score. We follow the
tradition on the open evaluation tasks on STS (Agirre et al., 2012, 2015a) and
use Pearson coefficient correlation as the main measure, but also report Spearman
rank correlation. Table 10 shows the correlation for non-verbalized pairs, gold
standard verbalized pairs, and system verbalized pairs. Both correlation measures
seem to output very similar values, with higher correlation values for the verbal-
ized scenarios, showing that the explanations are indeed helpful in this task. The
verbalizations obtained from the system output are comparable to those of the
gold standard, showing that approximate performance might be enough for being
helpful in this task. Even if the amount of data points is small, we performed sig-
nificance tests between the verbalization options using Fisher’s z-transformation
for relatedness (Press et al., 2002, equation 14.5.10). The difference between sys-
tem verbalization and no verbalizations is statistically significant for both Pearson
and Spearman15, but the p-values for gold standard verbalizations vs. no verbal-

15p-values of 0.057
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No verb SYS verb GS verb
Agreement level 7.4 7.6 8.8
Binary agreement 77% 83% 94%

Table 11: Second user study: Agreement level with grade [0..10] with non verbalized items, gold
standard verbalized items and system verbalized items.

izations are larger16. Finally, the difference between system and gold standard
verbalizations is not statistically significant.

In the second user study the results correspond to the agreement level in each
scenario (cf. Table 11). The table reports both the mean agreement level (the
average of the raw agreement level introduced by the user), and the binary agree-
ment (how many times the user entered an agreement of 5 or larger). In this user
study, the effect of system verbalizations is not as clear as in the previous case: the
binary agreement is better (83% vs. 77%) but the mean agreement level is very
similar (7.6 vs. 7.4 agreement). The automatic verbalizations produced using
gold standard annotations do have a clear impact in the task (94% vs. 77% binary
agreement, and 8.8 vs. 7.4 agreement level), as the users tend to agree more with
the scores assigned by the lecturer. The difference between system verbalization
and no verbalizations is not statistically significant in any case, but the difference
between gold verbalizations and no verbalization is significant 17.

All in all, the results show that a simple method to produce verbalizations
based on Interpretable STS annotations are effective in both user studies, as the
users could accomplish better the task at hand. This is a strong indication that our
annotation task is well-defined, and leads to verbalizations which are intelligible
and which help the users understand the semantic similarity of the target texts.
The results obtained by the Interpretable STS systems are promising, with a clear
positive effect in the first user study.

8. Conclusions and future work

This paper presents Interpretable Semantic Textual Similarity, where we for-
malize an interpretability layer on top of STS. We describe a publicly available
dataset of sentence pairs, where the relations between segments in each sentence

16p-values of 0.178 on Pearson and 0.107 on Spearman
17p-values of 0.019 and 0.031 for the agreement level and binary agreement, respectively, using

paired t-test
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are labeled with a relation type and a similarity score. The labels represent rela-
tions between segments such as equivalence, opposition, specificity, similarity and
relatedness, together with factuality and polarity differences. The Interpretable
STS labels are closely related to those available in Natural Logic or Textual En-
tailment, and, thus, our dataset is complementary to resources such as those pre-
sented in Pavlick et al. (2015).

We have also built a system for Interpretable STS, based on a pipeline which
first identifies the chunks in each input sentence, then aligns the chunks between
the two sentences, and finally uses a supervised system to label the alignments and
a mixture of several similarity measures to score the alignments. The good results
and the improvement over baselines show that Interpretable STS is a feasible task
in all steps: alignment, labeling of relations and scoring of similarity. It is also
indirect evidence that the task is well designed and the annotation consistent, as
also supported by the high inter-annotator agreement.

Beyond the low-level annotation we also studied whether the annotations could
be useful in final applications. To do so, we constructed a simple verbalization
algorithm, which given two sentences and the Interpretable STS annotations, pro-
duces a textual explanation of the differences/similarities between the sentences.
We then carried out two succesfull small-scale user studies, which show evidence
that users which had access to the explanations perform the task better. We take
this as a preliminary indication that automatically produced explanations are ef-
fective to understand the texts.

In the near future, we would like to improve the performance of the Inter-
pretable STS system. The current system performs each step independently (align-
ment, labeling and scoring of the chunk pair), but does not enforce consistency.
For instance, it can produce a weak relation type like REL and a strong similar-
ity score such as 4.5, or vice versa. In fact, the alignment score could feed the
typing, and the type of the alignment could be useful for assigning the score. We
are thus currently exploring joint algorithms which would perform some of the
steps together, using neural networks as in (Zhou et al., 2016). The error analy-
sis shows that our system has a bias towards equivalence and high scores, which
future versions of the system should try to remedy.

We would also like to improve our simple and naive verbalization algorithm,
as the effectiveness in real tasks also depends on producing natural-looking text
which is up to the point and does not contain superfluous information. Finally, we
plan to perform a more extensive user study on a real task. Tutoring systems for
English as a second language look like a promising direction for building systems
which can automatically grade students and produce explanations of the grading.
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