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Abstract: Data visualization has several advantages, such as representing vast amounts of data
and visually demonstrating patterns within it. Manifold learning methods help us estimate lower-
dimensional representations of data, thereby enabling more effective visualizations. In data analysis,
relying on a single view can often lead to misleading conclusions due to its limited perspective.
Hence, leveraging multiple views simultaneously and interactively can mitigate this risk and enhance
performance by exploiting diverse information sources. Additionally, incorporating different views
concurrently during the graph construction process using interactive visualization approach has
improved overall performance. In this paper, we introduce a novel algorithm for joint consistent graph
construction and label estimation. Our method simultaneously constructs a unified graph and predicts
the labels of unlabeled samples. Furthermore, the proposed approach estimates a projection matrix
that enables the prediction of labels for unseen samples. Moreover, it incorporates the information in
the label space to further enhance the accuracy. In addition, it merges the information in different
views along with the labels to construct a consensus graph. Experimental results conducted on
various image databases demonstrate the superiority of our fusion approach compared to using a
single view or other fusion algorithms. This highlights the effectiveness of leveraging multiple views
and simultaneously constructing a unified graph for improved performance in data classification and
visualization tasks in semi-supervised contexts.

Keywords: information fusion; data visualization; graph construction; semi-supervised learning

1. Introduction

The reason for the success of data visualization is that it can give us a rapid insight into
the data and their relations [1]. In real life, we often face data that have a lot of dimensions;
hence, it is challenging to visualize the data. One possible solution among others is to
transform the data into another medium that enables effective visualization. Two possible
options are using graphs and reducing the dimensions. Graphs are useful tools that help us
to determine the relation between the samples and visualize this relationship. On the other
hand, dimensionality reduction and embedding calculation methods enable the visualiza-
tion of data by extracting lower and informative dimensions from data, making it easier to
visualize and analyze complex data [2]. For instance, a large number of features need to be
mapped into a smaller number that fit the suitable and effective visualization criteria, e.g.,
if 100 features can be effectively mapped to 3 features, the data can be visualized in a 3D
space. Additionally for reducing the number of features, interactivity can be referred to as
an instrument to keep data at a low dimensional level allowing it to zoom into other levels
of data when required.

One popular embedding calculation method used in data visualization is t-Distributed
Stochastic Neighbor Embedding (t-SNE) [3]. t-SNE is a nonlinear dimensionality reduc-
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tion technique particularly useful for visualizing high-dimensional datasets. It converts
data similarities into joint probabilities and then optimizes the placement of points in a
lower-dimensional space to approximate the input probabilities. UMAP (Uniform Man-
ifold Approximation and Projection) [4] is a nonparametric graph-based dimensionality
reduction algorithm that applied Riemannian geometry and algebraic topology to find
low-dimensional embeddings of structured data. The authors of [5] extended UMAP to
a parametric optimization over neural network weights, learning a parametric relation-
ship between data and embedding. The method was adopted for representation and
semi-supervised learning.

The rapid growth of data, mostly unlabeled and few labeled, causes attraction toward
semi-supervised learning methods since they can benefit from the information from both
labeled and unlabeled samples [6,7]. Graph-based learning methods are a widely used
method that can benefit from the labeled and unlabeled samples simultaneously. Graph-
based semi-supervised learning algorithms use an affinity graph to transfer the label of the
labeled data to the unlabeled data. The affinity graph represents how close the samples are
to each other, so its construction is important and has a crucial impact on the results.

While most learning algorithms focus on using a single view or descriptor [8], using
multiple views can improve the performance of learning tasks [9–13]. One of the main
problems with using multiple descriptors is the fusion of the available information in
the views.

Recently, the use of multiple descriptors to construct graphs has attracted the attention
of researchers [14–16]. The main goal in graph-based multi-view learning is to use the
affinity graph(s) to utilize and merge the available information in different views. One
of the most common solutions in graph-based multi-view learning is to take multiple
pre-constructed graphs and merge them [17–19].

The main difference in these algorithms is how the graphs are merged to construct
a unified graph. While several fusion algorithms exist, in [18], the authors constructed
several similarity matrices using the Gaussian kernel as the edge weighting method and
then adopted linear summation of the normalized similarity matrices. In another study,
the authors of [20] proposed an adaptive weight assignment where the weight for each
view is calculated using a function of label smoothness assumption. In [17], the authors
considered that some of the views might be noisy and contain misleading information, so
it is better to exclude them from the fusion process by assigning them a very small weight.
They achieve their goal by applying sparsity constraints to the weights. In [19], the authors
proposed an algorithm that iteratively updates the similarity matrix corresponding to each
of the descriptors by fusing the similarity matrix of other views and the similarity of the
neighbors of each view.

In addition to using descriptors extracted from the data, some algorithms try to also
extract information from the label of samples and create the affinity matrix by looking at
the similarity between labels [9,21]. Hence, using the labels along with feature descriptors
as a source of information for graph construction can lead to a graph with richer edges.

Recent multi-view methods focus on directly constructing a unified graph by fusing
the information in the feature spaces [22]. These methods do not adopt pre-constructed
graphs as inputs. The direct construction of the graph from the features eliminates the
different choices for graph construction and can lead to graphs with fewer erroneous edges.

Since graph construction is an intermediate step in Graph-based Label Propagation
methods, some algorithms treat graph construction and the post-graph learning task (e.g.,
label propagation) as two separate tasks [9,19]. In these methods, an affinity matrix is
constructed in the first step (or the affinity matrices obtained from different descriptors are
merged to obtain one graph), and then the fused graph is adopted to estimate the label of
unknown samples. However, this is not the best choice because the label of the samples
may also affect the affinity matrix [21]; hence, constructing the graph and propagating the
labels should not be treated as separate tasks.
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One of the important issues in the applicability of semi-supervised methods is how
they treat the samples not presented in the learning process. The works in [23,24] are
transductive methods, meaning that they can only estimate the labels in the training set. In
these algorithms, for new unseen samples, the algorithm has to start from scratch and one
has to repeat the whole learning process. On the other hand, inductive methods estimate
a mapping function from the feature space to the label space [25]. Using the mapping
function, one can directly estimate the label of unseen samples via the projection matrix
without repeating the learning process.

Based on what is explained above, in this article, we propose a unified criterion that
has the following advantages.

• It benefits from multiple descriptors for each sample. This can improve the unified
graph estimation, which can well represent the relationship between nodes.

• It automatically fuses the information of different views.
• It not only uses the information in the feature space but also uses the available infor-

mation in the label space.
• It does not require pre-constructed graphs based on individual views but can construct

a single graph by considering the information from different views.
• The process of constructing the affinity graph and propagating the labels is simultane-

ously carried out in a single framework.
• It estimates a linear projection function to estimate the label of unseen samples.

The rest of this paper is organized as follows: Section 2 surveys some basic assumptions
about graph-based semi-supervised learning and reviews some of the previous works in this
area. Section 3 presents our proposed algorithm. In Section 4, we report the experimental
results on public databases. Finally, Section 5 concludes the paper.

2. Related Work
2.1. Notations

Let X ∈ Rd×N denote the data matrix where d represents the dimensionality of each
sample and N is the number of samples. Without loss of generality, we consider that the data
are relocated such that the first l samples are labeled ones and the rest of the samples (from
l + 1 to l + u) are unlabeled. Moreover, Y = [Yl , Yu] = [y1; y2; ....; yl ; yl+1; ...; yl+u] ∈ RN×C

where C is the number of classes of the corresponding binary labels. For the labeled sample
xi that belongs to the cth class, we have yic = 1 and zero for other elements. Moreover, for
unlabeled samples, the Yu matrix (the label matrix of unlabeled samples) is a zero matrix.
Similarly, we have the soft label matrix F = [f1; f2; ....; fN ] ∈ RN×C, where Fic shows the
probability that sample xi belonging to the cth class.

In addition, consider an affinity graph as G = {X, W}, where X is the set of nodes (i.e.,
the data matrix) and W is the symmetric affinity matrix, where wij denotes the similarity
between nodes xi and xj. Also, the Laplacian matrix is defined as L = D − W, where D is a
diagonal matrix with Dii = ∑N

j=1 Wij and zero otherwise.

2.2. Gaussian Field and Harmonic Functions [26]

The cluster hypothesis, which is one of the basic assumptions in label propagation,
assumes that the nodes that are close to each other in the feature space should have similar
labels (i.e., their corresponding label vectors should be close to each other). Mathematically,
it can be written as

min
F

N

∑
i,j=1

||fi − fj||2 Wij = min
F

Tr(FT L F) (1)

where Tr(.) indicates the trace of a matrix. For the pair of samples xi and xj with cor-
responding soft labels fi and fj, respectively, the similarity between the pair of nodes is
coded in Wij. It is worth noting that Wij can be estimated using any similarity function
like Cosine. Equation (1) asserts that, if Wij is high (the pair of samples are similar), then
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the corresponding soft labels should be similar (i.e., the difference between them should
be small). The solution of the objective function of Equation (1) that gives the label of
unlabeled samples (i.e., fu) is

fu = (Duu − Wuu)
−1Wulfl (2)

where Wuu is the subgraph of the W matrix that shows the similarity between the unlabeled
samples and Duu is its corresponding Laplacian matrix, and Wul is the subgraph of the W
matrix that shows the similarity between the unlabeled and labeled samples and fl contains
the label of labeled samples [26].

2.3. Local and Global Consistency [27]

A second notion that can be adopted is that the prediction of the samples should be
such that the predicted label of the labeled samples is close to their true label. This is called
label fitness and can be written in mathematical terms as follows.

min
F

l

∑
i=1

||fi − yi||2 = min
F

Tr (F − Y)T U (F − Y). (3)

where the diagonal matrix U is Uii = 0 for the unlabeled samples and Uii ̸= 0 for the
labeled samples.

By adding Equation (3) to Equation (1), one can define a new minimization function
(known as the Local and Global Consistency [27]) as

min
F

N

∑
i,j=1

|| 1√
Dii

fi −
1√
Djj

fj||2 Wij + µ
l

∑
i=1

||fi − yi||2 (4)

where µ is the balance parameter. The first term that enforces close samples to have similar
labels is local and is based on the assumption that nearby points are likely to have the same
label. The second term that enforces samples in a cluster or class to have similar labels is
global and is based on the assumption that points on the same structure (typically referred
to as a cluster or a manifold) are likely to have the same label.

Following some mathematical operations, the problem of Equation (4) can be rewritten as

min
F

Tr (FT L F) + Tr (F − Y)T U (F − Y) (5)

where U is a diagonal matrix with Uii = µ for the labeled samples.

2.4. Review on Flexible Manifold Embedding [25]

One of the drawbacks of the works described in [26,27] is that they can only deal with
unlabeled samples and predict their label. When a new sample arrives, one has to construct
a new graph using the new sample and solve the minimization function.

The Flexible Manifold Embedding (FME) method [25] solves this problem by adding
a projection matrix calculation to the minimization function of the LGC in Equation (5).
The projection matrix is computed to provide label estimation of an arbitrary sample via
a linear mapping. In other words, the projection matrix defines a function to map data
features to the label space. The objective function of the FME is

min
F, Q, b

Tr (FT L F) + Tr (F − Y)T U (F − Y) + (6)

µ (γ ||XTQ + 1bT − F||2 + ||Q||2)

The first term is called the label smoothness term (similar to the objective function of
GRF in Equation (1)) which penalizes the pair of samples (xi and xj) with high similarity
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(high Wij) having different labels. In other words, it enforces similar samples to have close
(similar) label vectors. The second term represents the fitness of labels on labeled samples
which penalizes the labeled samples when their true labels and predicted ones are different.
In other words, it enforces the true label and predicted label of labeled samples to be
similar. The third term is the error of label fitness of all samples adopting linear projection;
it enforces the predicted label of each sample obtained via linear projection to be similar to
its soft label value. The fourth term is the regularization of the projection matrix. µ and γ
are two balance parameters that control the importance of the label estimation error and
sparsity of the projection matrix, and ||.||2 declares the ℓ2 norm of a matrix. Equation (6)
has a closed-form solution as

Q = γ [γ XHcXT + I]−1XHcF (7)

b =
1

l + u
[FT1 − WTX1] (8)

F = (U + L + µ γ Hc − µ γ2 M)−1U Y (9)

where M = XT
c Xc (γ XT

c Xc + I)−1. Xc and Hc = I − 1
l+u 1 1T are the centered data matrix

and the centering matrix, respectively. The mathematical proofs of Equations (7)–(9) are
described in [25].

2.5. Data Smoothness Assumption

The data smoothness assumption states that two samples that are close to each other
in the embedding space should also have similar labels. Since the similarity between nodes
is encoded in the affinity matrix, it can be defined mathematically as follows:

min
S

1
2

N

∑
i,j=1

||xi − xj||2 Pij = min
S

Tr (X L XT) (10)

where the L matrix represents the Laplacian matrix of the graph P.

3. Proposed Method
3.1. Learning Model

By merging data smoothness in the FME framework; we propose a Joint Graph
Construction and multi-view FME algorithm (JGC-MFME), which has two advantages.
First, it helps us to estimate the affinity graphs directly, so there is no need to use a
previously constructed graph. Second, it helps us use multiple sources of information to
construct a graph that represents the relationship between samples. The proposed method
also unifies the graph construction and classification into a single criterion.

To make the data smoothness term suitable for multi-view learning, we define it as

min
S

V

∑
v=1

N

∑
i,j=1

||xvi − xvj||2 Sij = min
S

V

∑
v=1

Tr(Xv L XT
v ) (11)

where xvj represents the vth view of the jth sample and V denotes the number of views. It
states that the unified similarity matrix should satisfy the data smoothness assumption in
all views. As we explained before, to have a single similarity matrix when we have several
views, one possible option is to calculate one affinity graph in each view that encodes the
similarity between the pair of samples in that view and preserves the data smoothness
assumption of that view. Then, for a unified graph, one can merge the calculated affinity
matrices of different views. The second solution is to directly construct one affinity matrix
such that it simultaneously preserves the smoothness assumption in all views. In other
words, the similarity between each pair is calculated such that the smoothness assumption
is minimized among all views.
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The proposed criterion is constructed by inserting Equation (11) to the FME framework
as follows:

min
S,F,Q,b

[
V

∑
v=1

Tr(Xv L XT
v ) + λ Tr(FT L F) +

Tr((F − Y)T U (F − Y)) + γ ||S||2 +

µ (||Q||2 + α ||XT
concQ + 1bT − F||2) ]

s.t. 0 ≤ Sij ≤ 1
N

∑
j=1

Sij = 1 (12)

where S is the unified similarity matrix. By solving the above criteria, we obtain the unified
similarity matrix, the soft label matrix, the projection matrix, and the bias vector, i.e., S,
F, W, and b, respectively. It is worth noting that, since we have multiple descriptors, we
concatenate the features of the descriptors to form the matrix Xconc. As a result, the size of
Xconc becomes (∑V

v=1 dv)× N.
In the following, we explain the novelties of the proposed method from the objective

function. As we can see, the first and second terms in Equation (12) show the presence
of the data along with the labels in the objective function which shows that not only the
features but also the labels affect the objective function. As mentioned before, this is one of
the contributions of this article. Moreover, we observe that the consensus affinity graph
(i.e., S) is an unknown of the proposed method which shows that it is not a pre-constructed
graph but an automatically estimated one. Moreover, the consensus affinity graph (i.e., S)
along with the labels (i.e., F) is an output of the optimization function which shows that the
proposed method simultaneously estimates these unknowns inside its objective function.
Furthermore, the linear projection function is also an output of the proposed method which
helps us to estimate the label of unseen samples without repeating the optimization process.

3.2. Optimization

In the following, we present an iterative alternating scheme to solve Equation (12).
Step1: Fix F, Q, and b, and update S. Since F, Q, and b are fixed, the problem in

Equation (12) becomes:

minS ∑V
v=1 Tr (Xv L XT

v ) + λ Tr(FT L F) + γ ||S||2

s.t. 0 ≤ Sij ≤ 1 ∑N
j=1 Sij = 1

(13)

Denote dx
ij = ∑V

v=1 ||xv
i − xv

j ||22 and d f
ij = ||fi − fj||22 as the distance between nodes xi

and xj in all views and the distance between their soft labels, respectively.
We rewrite Equation (13) as follows:

minS ∑N
i,j=1 Sij (dx

ij + λ d f
ij) + γ ||S||22

= minS ∑N
i,j=1[Sij dij + γ S2

ij]

s.t. 0 ≤ Sij ≤ 1 ∑N
j=1 Sij = 1

(14)

where dij = dx
ij + λ d f

ij.
The solution of Equation (14) can be obtained by the algorithm presented in [22].
Step 2: Fix S, and update Q, b, and F. Thus, since S is fixed, the problem of

Equation (12) can be simplified as follows:

minF,Q,b λ Tr(FT L F) + (F − Y)U (F − Y)T+

µ (||Q||2 + α ||XT
concQ + 1bT − F||2)

(15)
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This is nothing but the FME problem shown in Equation (6). Thus, the solution can be
obtained using Equations (7)–(9).

It should be mentioned that one can estimate the label of a test sample via

f = xT
conc Q + 1bT (16)

where xconc is the concatenation of features of all views.
Apart from the class label obtained from the f vector, one can also use it for interactive

visualization. One possible use of these visualizations is in active learning [28–30] and
incremental learning, where labeled samples are incrementally added to a database. In
these cases, users progressively increase the number of labeled samples and immediately
visualize the data. Via visualization one can determine the samples that are close to the
class border and, hence, are difficult to classify and cause misclassification. Consequently,
the user can assign a label to those samples. In this way, it is unnecessary to set labels for
all samples but only those in the class border which can cause misclassification.

4. Experimental Results

This section is dedicated to the comparison of the performance of the proposed
method with that of several state-of-the-art algorithms. The algorithms that we adopt
for comparison are FME with single view, FME with concatenating feature descriptors,
SNF [19], SMGI [17], DGFLP [21], MLGC [18], and AMGL [31].

4.1. Databases

We use four image databases, namely PF01 [32], PIE [33], FERET [34], and MNIST [35],
to evaluate the performance of the proposed method. PF01 contains 1819 images from
103 subjects with 17 images each. For the PIE database, we take a subset containing
1926 images from 68 subjects. In the FERET database, we use a subset with 1400 images
of 200 subjects, where each subject has 7 images. The MNIST database is a handwritten
digit database for numbers from 0 to 9 with a total of 70,000 images, of which 60,000 are for
training and 10,000 are for testing.

4.2. Image Descriptors

As we are dealing with multi-view methods, several views are required, so we extract
multiple descriptors from the images in the databases. For face databases, we extract
LBP [36], Gabor [37], and Cov [38] as image descriptors. After resizing the images to
32 × 32 pixels, the LBP operator with radius one and neighborhood size eight is applied
to them and then reshaped to a 900-feature vector. The second descriptor is the Gabor
wavelet [37] applied at five scales and eight orientations. The result is then concatenated
into a 2560-feature vector. The third view is the covariance descriptor [38]. We divide
each image into nine blocks and the results of applying the covariance descriptor are
concatenated into a 405-feature vector.

Since MNIST is a large database, we use deep networks as they extract better de-
scriptors. We feed the images to a deep network and extract the information in the layer
before the last layer. Two networks, namely VGG-16 and VGG19 [39], are used. Each deep
descriptor is a vector with 4096 features. In Table 1, a summary of the databases used and
the descriptors extracted is explained.

In the preprocessing step, for each descriptor, we use PCA to reduce the dimensionality
such that 90% of the variance is preserved. Then, each descriptor is normalized to have
zero mean and unit variance.

We divide the datasets into training and test data, and, since we are in the semi-
supervised context, the training set is also divided into labeled and unlabeled sets. In each
training dataset, we select l samples as labeled and the rest as unlabeled. Moreover, the
experiments are repeated for 10 combinations of labeled and unlabeled samples (i.e., we
have ten splits).
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Table 1. Short description of the adopted databases.

Dataset Num. of
Classes

Num. of
Samples

Num. of
Samples in
Each Class

Extracted Descriptors Dimension

PF01
Cov [38] 405

107 1819 17 Gabor [37] 2560
LBP [36] 900

PIE
Cov [38] 405

68 1926 27∼29 Gabor [37] 2560
LBP [36] 900

FERET
Cov [38] 405

200 1400 7 Gabor [37] 2560
LBP [36] 900

MNIST 10 60,000 5421∼6742 VGG16 [39] 4096
VGG19 [39] 4096

To set the parameters for the proposed algorithm, we use the first split of labeled/
unlabeled and try several values. The parameter with the highest accuracy is selected as
the best parameter and fixed for the remaining splits.

For the proposed method we have λ, γ, µ, and α as balance parameters. We vary the pa-
rameters of the projection matrix (i.e., µ and α) within {0.0001, 0.001, 0.01, 0.1, 2, 5, 10, 100, 1000}
and the label smoothness term parameter (i.e., λ) within {0.0001, 0.001, 0.01, 0.1, 2, 5, 10, 20}.
For γ, we adopt the value proposed by [22].

4.3. Data Visualization

In this section, we focus on data visualization to have a visual observation of how the
data are distributed after applying the proposed method. It should be noted that, when
one proposes an embedding or data transformation algorithm, there exist several ways
to evaluate the data projection method. Data visualization methods are qualitative tools
that help us to visually observe the calculated embedding. In this article, we proposed
an embedding method that receives data features as input and provides several outputs
(e.g., labels and affinity matrix). It is common to adopt the label vector of each sample as a
sample representation of data in the label space. Apart from numerical comparisons, we
use data visualization tools to visually demonstrate the labels of samples along with the
consensus affinity matrix as two calculated outputs of the proposed method.

In the first experiment, we want to compare the effect of increasing the number of
labeled samples. As the objective of this visualization is comparison, we adopt the scatter
plot visualization [40]. We apply the well-known t-SNE [3] algorithm to the PIE and PF01
databases. We apply the t-SNE algorithm on the label matrix calculated by (16) and plot
the output for the first 20 classes. In Figure 1a,b, we plot the output for the PIE database
when 5 and 15 labels per class are adopted. In Figure 2a,b, we plot the output for the PF01
database when three and five labels per class are adopted. As we observe, the separation
between the classes increases when we increase the number of labeled samples. This is
what we will also observe in the classification accuracy.

Moreover, as we compare Figure 1a with Figure 1b and Figure 2a with Figure 2b, we
observe that increasing the number of labeled samples increases the separability between
the classes. However, increasing labeled samples requires human effort and intervention.
Moreover, we observe that some classes are completely separated from others—hence,
there is no need to increase the number of labeled samples in those classes—while some
classes are still mixed and finding a clear class border for them is challenging. Interactive
visualization can be useful in this case, as one can visualize the data and the user may
only annotate samples of the mixed classes, consequently increasing the separability and
enhancing the performance without increasing the number of labeled samples for all classes.
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Figure 1. t-SNE visualization for PIE database. (a) Five labeled per class. (b) Fifteen labeled per class.
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Figure 2. t-SNE visualization for PF01 database. (a) Three labeled per class. (b) Five labeled per class.

In the second experiment, we focus on the affinity matrix visualization on the PF01
database. Without loss of generality, we rearrange the samples such that the samples in
the same class are close to each other. Then, we plot the initial graph (Figure 3a), the final
graph (Figure 3b), and the ideal graph (Figure 3c) for the first 100 samples. The initial graph
is the one we start the algorithm with. The final graph is the affinity matrix calculated after
the last iteration of the proposed method. The ideal graph is our desired graph where we
only have edges for the samples in the same class and no link exists between the samples
in different classes. For this reason, we artificially create the link only for the within-class
samples and no links exist for between-class samples. As we can see, after the optimization
process, the final graph (i.e., Figure 3b) is more similar to the ideal graph compared to
the initial graph. More precisely, in Figure 3b) we can see points (i.e., edges) between
the samples in the same class. It shows that, after the optimization process, the proposed
method could find the samples in the same class and create a link between them. In other
words, we observe that the links between the samples in the same class are enhanced. As
we will see, this phenomenon will be confirmed by the accuracy of the proposed method.
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Figure 3. Visualization of affinity matrices. (a) The initial graph. (b) The final graph. (c) The
ideal graph.

4.4. Small Databases

For the adopted face databases (PIE, PF01, and FERET), which are relatively small, the
test set is empty and all samples are adopted for training. From training data, l samples are
selected randomly as labeled while the other samples are handled as unlabeled. For small
databases that have few samples, we adopt this strategy.

The labels of the unlabeled data are obtained using the estimated matrix, F, the solution
of Equation (12). We compute the label estimate over unlabeled samples in 10 combinations
of labeled/unlabeled. For the PIE, PF01, and FERET databases, the accuracy for FME with
a single descriptor, FME with feature concatenation, and the proposed method is given in
Table 2. The highest accuracy between the methods is represented in bold font.

As we can see, the proposed technique can enhance the performance compared to the
use of a single descriptor. Moreover, we can see that the fusion performed by the simple
feature concatenation in the FME solution can also improve the accuracy compared to
the single descriptor. However, compared to single descriptors and concatenation, the
proposed algorithm achieves superior performance by showing higher average accuracy
and lower standard deviation. It demonstrates that the proposed method can better evoke
discriminant data from various descriptors.
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Table 2. Results obtained by the proposed method and FME with a single descriptor. Concatenation
of the features is also treated as a single descriptor. The table shows the average and standard
deviation of accuracy obtained on ten splits.

PIE
hhhhhhhhhhhhhhhhhhNum. of Lab. Samples/Class

Method
Cov Gabor LBP Concat. JGC-MFME

15 80.93 ± 3.71 91.79 ± 3.32 87.75 ± 3.90 94.31 ± 2.88 94.44 ± 2.76

17 81.93 ± 4.06 91.09 ± 3.08 88.11 ± 2.99 94.54 ± 2.51 94.75 ± 2.58

FERET
hhhhhhhhhhhhhhhhhNum. of Lab. samples/class

method
Cov Gabor LBP Concat. JGC-MFME

3 59.17 ± 9.53 79.80 ± 8.96 72.01 ± 10.3 83.98 ± 8.06 85.50 ± 7.64

5 67.27 ± 18.67 86.00 ± 15.38 85.15 ± 17.66 90.72 ± 12.98 91.77 ± 12.98

PF01
hhhhhhhhhhhhhhhhhNum. of Lab. samples/class

method
Cov Gabor LBP Concat. JGC-MFME

5 70.24 ± 3.34 84.26 ± 3.76 79.57 ± 2.55 91.30 ± 2.03 92.28 ± 1.61

7 71.82 ± 5.93 85.81 ± 4.93 80.71 ± 4.51 93.22 ± 2.39 94.13 ± 2.01

4.5. Large Databases

The presence of all samples for training is not the case for real problems. Moreover,
for large databases, it is difficult to use all the samples in the training phase, as this
requires a lot of memory and increases the computational cost. Therefore, we separate the
MNIST database into two parts: train and test. The train set contains both labeled and
unlabeled data. It is worth mentioning that the difference between the test samples and
the unlabeled samples is that the unlabeled samples are considered as training data; hence,
they participate in model estimation, i.e., the underlying manifold. However, test samples
are not adopted to train the model.

In the MNIST database, we take 1000 images of each class as train data and leave the
rest of the images as unseen or test samples. Similar to small databases, l images in the
training set are considered as labeled data and the rest as unlabeled and we compute the
accuracy of the correct propagation of labeling of unlabeled and test samples separately.
We repeat this setup for 10 combinations of labeled and unlabeled samples, and report the
average and standard deviation of the accuracy in Table 3. The highest accuracy between
the methods is represented with bold font. We report the accuracy for the unlabeled and
test samples separately and compare the proposed method with the following algorithms:
SNF [19], SMGI [17], DGFLP [21], MLGC [18], AMGL [31], and MMCL [41].

As we can see for the unlabeled samples, the proposed fusion technique has higher
accuracy compared to using a single descriptor, which proves that using data smoothness
can increase performance. We also observe that the proposed method is superior to
the competing fusion techniques due to two reasons. First, the adopted learning model
(simultaneous graph and label estimation) can better estimate the labels. Second, the
fusion of the descriptors from different views can also increase the performance of the
proposed model.

Moreover, we report the accuracy of the test samples in Table 3. We remark on the
fact that for transductive methods (namely, SMGI, DGFLP, MLGC, and AMGL) that cannot
work on unseen samples, no accuracy is reported for the test data. Moreover, for the
proposed method, we adopt Equation (9) to estimate the label of unseen samples.

Similarly to the results obtained for the unlabeled samples, the results obtained by the
proposed method have superior accuracy compared to the use of a single view. Moreover,
the close accuracy between the unlabeled samples and the test samples shows that (1) the
proposed method can estimate the underlying structure of the data well over the unlabeled
samples and (2) the obtained solution does not suffer from over-fitting or under-fitting of
the training set.
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Table 3. Results on MNIST database for different labeled and unlabeled combinations and three
different numbers of labeled samples. (Top) Over the unlabeled samples which are estimated by the
algorithms. (Bottom) Over the test samples estimated via the linear projection of FME algorithm.

MNIST (Accuracy on Unlabeled Data)
```````````Method

Lab./class
20 30 40

Single descriptor (VGG16) 94.53 ± 0.3 95.17 ± 0.3 95.59 ± 0.3

Single descriptor (VGG19) 94.35 ± 0.5 94.99 ± 0.5 95.35 ± 0.4

Feature Concat. 95.87 ± 0.4 96.28 ± 0.4 96.66 ± 0.3

SNF [19] 94.53 ± 0.6 95.81 ± 0.4 96.49 ± 0.3

SMGI [17] 88.40 ± 0.9 89.66 ± 0.7 89.84 ± 0.7

DGFLP [21] 92.14 ± 0.5 92.70 ± 0.5 93.06 ± 0.3

MLGC [18] 88.20 ± 1.4 89.45 ± 1.0 90.27 ± 0.7

AMGL [31] 94.99 ± 0.5 95.39 ± 0.3 95.67 ± 0.3

MMCL [41] 52.45 ± 14.5 49.98 ± 13.9 49.22 ± 13

JGC-MFME 95.91 ± 0.4 96.34 ± 0.4 96.68 ± 0.3
MNIST (Accuracy on Test Data)

```````````Method
Lab./class

20 30 40

Single descriptor (VGG16) 94.98 ± 0.5 95.39 ± 0.3 95.81 ± 0.3

Single descriptor (VGG19) 95.05 ± 0.5 95.64 ± 0.4 95.97 ± 0.4

Feature Concat. 95.47 ± 0.5 96.79 ± 0.5 96.21 ± 0.4

SNF [19] 94.79 ± 0.6 95.97 ± 0.3 96.64 ± 0.2

JGC-MFME 95.92 ± 0.4 95.36 ± 0.3 96.76 ± 0.3

4.6. Ablation Study

In this section, we perform two ablation studies to evaluate the effect of different parts
of the proposed method. We select one set of labeled/unlabeled (i.e., one split) and perform
the experiments. From the PF01 database, we select one split with 7 labeled samples per
class, and from the PIE database with 17 labeled samples per class.

The first experiment applies the proposed method as explained in the article versus
excluding the PCA preprocessing step. As we can see in Table 4, when we exclude the
PCA, due to the use of the whole features that can be redundant, noisy, or irrelevant, the
accuracy of the proposed method drops (even though this drop is not significant). On the
other hand, we can see that we have an increase in the CPU time of the proposed method
which is due to the large number of features that lead to larger projection matrices and
more unknowns that should be estimated. Hence, the use of PCA, even though it does not
significantly increase the accuracy, can significantly reduce the computational time.

In the second ablation study, we evaluate the effect of parameters. According to
Equation (12), the main parameters of the proposed method are λ, γ, µ, and α. In each
experiment, we set one parameter to zero and keep the rest intact. The results are reported
in Table 5. As we observe, the accuracy drops as we eliminate the parameters. However,
we can see that the elimination of the term associated with λ has the least effect on the
accuracy while the terms weighed by Uii and γ have a crucial contribution to the final
classification accuracy.
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Table 4. The effect of using PCA on the performance of the proposed method.

Database Evaluation Metric Prop. Method Prop. Method
(Without PCA)

PF01 7 labeled Acc (%) 95.14 93.36
CPU time (Sec) 23 65

PIE 17 labeled Acc (%) 90.12 89.61
CPU time (Sec) 20 47

Table 5. Parameter ablation study. In this experiment, we evaluate the effect of each parameter by
setting it to zero.

Database Prop. Method λ = 0 α = 0 µ = 0 Uii = 0 γ = 0

PF01 7 labeled 95.14 94.95 60.84 60.84 0.93 0.93

PIE 17 labeled 90.12 90 66.1 66.1 1.55 1.55

5. Conclusions

In this paper, we have proposed a semi-supervised learning algorithm that uses the
assumption of data smoothness in its minimization framework. Moreover, the proposed
method is multi-view, which allows us to utilize the information available in different
feature descriptors. In addition, it is a multi-view data visualization method that fuses
the information from different sources and encounters a more discriminative yet lower
dimension that is more optimal for visualization. Moreover, the proposed unified frame-
work simultaneously estimates the unified graph, the labels of unlabeled samples, and
the projection matrix. Since the projection matrix is used to predict the labels of unseen
samples, the proposed method is easily applicable to large databases to predict the labels
of unseen samples since it does not require the use of the entire data in the training phase.
Experimental results show that the proposed method has better performance compared
to using a single descriptor and other fusion techniques. Furthermore, via affinity matrix
visualization, the current work shows that, inside the iterations, the proposed method
allows for more optimal estimations of the relation between the nodes. Also, by adopting
the t-SNE visualization, we demonstrate that the estimated embedding in the label space
becomes more discriminative as the number of labeled samples increases. It is worth noting
that active learning is useful in semi-supervised learning where one can select unlabeled
samples to go to human annotation, hence increasing the number of labeled samples.
As we observed, using interactive visualization, one can visualize the samples and only
select samples close to the class borders for annotation. By doing so, one can increase
the separability between the classes without increasing the labeled samples in all classes,
consequently reducing the human effort in labeling samples.

One drawback of the proposed method is that it assigns the same weights to different
views. However, some descriptors might be more informative compared to others, so
adaptively assigning weights to the views can improve the performance.
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