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Abstract: The captured energy of a wind turbine (WT) can be converted into electricity by a generator.
Therefore, to improve the efficiency of this system, both the structures of WTs and generators should
be considered for control. But the present challenge is WT uncertainty, while the input signals to
the generator should be smooth. In this paper, a permanent magnet synchronous generator (PMSG)
is considered. The dynamics of the PMSG can be described using two axes, named d-q reference
frameworks, with an input in each framework direction. To obtain the maximum power and to
overcome the uncertainty by means of a smooth signal, the dynamic sliding mode controller (D-SMC)
is implemented. In the D-SMC, an integrator is placed in the control scheme in order to suppress
the chattering, because it acts like a low-pass filter. To estimate the state added by the integrator, a
new observer-based neural network (ONN) is proposed. The proof of the stability of the D-SMC and
ONN is based on Lyapunov theory. To prove the advantages of the D-SMC, a comparison was also
carried out by traditional sliding mode control (T-SMC) with a similar ONN. From this comparison,
we know that the advantages of the D-SMC are clear in terms of real implementation, concept, and
chattering suppression.

Keywords: wind turbine; permanent magnet synchronous generator; observer-based neural network;
sliding mode control; chattering

MSC: 93C10

1. Introduction

Global warming is a dangerous phenomenon posing a problem for the future of the
Earth. It seems that using clean renewable energies such as wind and solar is the only
approach for humans to reduce the effects of global warming [1,2], which are apparent in
most countries [3]. However, due to the economical preference for and freely accessible
nature of wind energy, many researchers are focusing on wind turbines (WTs) [4,5]. In
past decades, fixed-speed WTs (FWTs) were used extensively [6,7], but in the case of wind
speed change, FWTs have some limitations in capturing the maximum wind power [8].
Therefore, in recent years, variable-speed WTs (VWTs) have been constructed and used
in industries [9]. The approach of maximum power capturing using VWTs is based on
achieving the critical rated wind speed [10]. Below and above of this rate, the torque of the
permanent magnet synchronous generator (PMSG) and pitch angle of the turbine blades
(PATB) serve as the controller variables [11,12]. When the generator torque is controlled, the
power coefficient is fixed. But when the power coefficient declines, the PATB is controlled
to reduce the mechanical power of the captured wind so as not to exceed the nominal
power of the VWT [11,12]. The other important wind speed boundaries which should be
considered are cut-in and cut-out [11,12]. The WT would need to be shut down outside of
this interval because of reasons linked to both economical and fatigue damage [13].
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Therefore, torque control is an important issue in WTs [14–23], even in the presence of
important challenges, i.e., drivetrain uncertainties, which can produce mechanical stress [8].
Hence, a robust controller should be designed to remove the effect of these uncertainties [15].
Many controllers have been proposed in the literature, though they are not robust, including
the proportional–integral–derivative controller (PID) [16], the linear quadratic Gaussian
controller (LQG) [17–19], the adaptive back-stepping controller [20], and model predictive
control (MPC) [21]. Aside from them, the sliding mode controller (SMC) has the property
of invariance and plays a powerful role in fighting against uncertainties [24,25]. The
most prominent characteristic of the SMC is its invariance, since it is stronger than its
robustness [26,27]. For this reason, many studies have focused on the torque control of WTs
using the SMC [8,14,22,23,28,29]. Most of these methods have chattering as an unwanted
phenomenon. For achieving the elimination of chattering, some methodologies have
been presented [30], for example, the boundary layer SMC (B-SMC) [31,32], the adaptive
boundary layer SMC (AB-SMC) [33,34], the higher-order SMC (H-SMC) [22,35,36], and the
dynamic SMC (D-SMC) [26,27]. The most prominent property of the SMC, i.e., invariance,
is missing in the B-SMC and AB-SMC [26–31]. Higher system model derivatives are needed
in the H-SMC, which should be provided by observers [37–41]. In the D-SMC, a low-pass
filter, such as an integrator, is set before the plant to remove the effect of chattering [26,27].
This increases the plant dimension. Therefore, in the D-SMC, the dynamics produced by
this integrator should be estimated using a suitable observer [27]. However, in the H-SMC,
an observer is needed to identify plant differentiation. This is the superior aspect of the
D-SMC compared to the H-SMC.

The concepts of model identification [42,43], disturbance observer [28,29,44–46], and
state observer [47,48] are used in a wide range of systems. Hence, these concepts refer to
the estimation of unmeasurable or unknown parts of the systems or systems states. An
observer is implemented by known system inputs and system outputs [42–51]. Based
on the above discussion, using the D-SMC in WT torque control can help overcome both
chattering and uncertainty to remove mechanical stress. Furthermore, to construct the
D-SMC, a plant model is identified by an observer-based neural network (ONN). In this
study, the stability of the ONN and D-SMC are proven by using Lyapunov approaches.

Therefore, based on the above discussion, chattering is a challenge in all of the men-
tioned works. Motivated by the above discussion about the drawbacks of other chattering
suppression methods, we propose the use of the D-SMC in WT, connected to the PMSG
for torque control. The proposed D-SMC was constructed by a new ONN to identify
the plant model, preserve the invariance property and prevent chattering, and overcome
mechanical stresses. A reliable comparison was carried out using the same ONN for both
the D-SMC and T-SMC. Finally, to prove the stability of both the proposed controller and
ONN, Lyapunov stability approaches are used.

Therefore, to put it concisely, the main contribution of this paper is its proposal of a
new scheme for a D-SMC to control nonlinear WTs connected to a PMSG, which is modeled
in d-q frameworks. The approach is chattering-free and based on a new observer-based
neural network (ONN).

Six sections are presented to described the construction of the proposed method. A
complete model of a WT is demonstrated in Section 2. Then, the ONN and its proposed
structure are described in Section 3. Section 4 is focused on a comparison and the pro-
posed controller. Furthermore, the superiority of the proposed controller is shown by two
simulations in Section 5. Finally, some conclusions are provided in Section 6.

2. Configuration and Structure of Turbine

The WT model consists of the generator part, the mechanical drivetrain part, and
the aerodynamic part [22,52,53], which are shown in Figure 1, along with the model’s
corresponding signals.
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2.1. The Aerodynamic Part

The following equation describes the wind power generated by a WT, which is de-
pendent on the blade length r, wind speed v(t), air density ρa, and power coefficient
Cp [14].

Pwind =
π r2v3ρa

2
Cp(λ,β) (1)

Here, λ and β represent the tip speed ratio (TSR) and pitch blades, respectively. The
TSR can be defined by dividing the tip blade’s linear velocity and wind speed [14].

λ =
rωr

v
(2)

In the above equation,ωr is the angular velocity of the rotor side. Based on Equation (1),
the rotor torque or wind generated torque can be calculated as follows [14]:

Tr =
Pwind
ωr

=
π r3v2ρa

2λ
Cp(λ,β) (3)

2.2. The Drivetrain Part

Although some papers have used a one-mass model [50], to have both a steady state
and transient response [52], as well as a kinetic characteristic [53], in the WT, the mechanical
drivetrain section should be modeled by a two-mass damper, as shown in Figure 2. This
two-mass mechanical drivetrain is described by Equation (4), including the moment of
inertia Jr and Jg, the external damping of Kr and Kg, and generator torque Tg [14].

Jr
.
ωr = −Krωr + Tr − Tls

Jg
.
ωg = −Kgωg − Tg + Ths

(4)
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As ωr is the angular velocity of the rotor side, the angular velocity of the generator
side isωg. The low-speed shaft braking torque Tls is defined as follows [14]:

Tls = Kls(ωr −ωls) + Bls(θr − θls) (5)
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Then, in the low-speed section, shaft angular speed, shaft angular velocity, shaft
damping, and shaft stiffness are θls, ωls, Kls, and Bls, respectively, and θr is the speed
deviation on the rotor side. Finally, the gearbox ratio, in an ideal case, can be defined as
follows [14]:

ng =
Tls
Ths

=
ωg

ωr
(6)

Then, the second section of Equation (4) can be rewritten as

Jg
(
ng

.
ωr
)
= −Kg

(
ngωr

)
− Tg +

(
Tls
ng

)
(7)

or
ng

2Jg
.
ωr = −ng

2Kgωr − ngTg + Tls (8)

In order to have all variables in the low-speed shaft, Equation (8) and the first section
of Equation (4) should be combined:

Jt
.
ωr = −Ktωr + Tr − ngTg (9)

where Jt = Jr + ng
2Jg, and Kt = Kr + ng

2Kg.

2.3. The Permanent Magnet Synchronous Generator (PMSG) Part

A model of the PMSG, as two independent d-q dynamic current structures, can be
described as follows [54,55]:

.
iq = −Rg

Lg
iq − pωgid − pψf

Lg
ωg +

uq
Lg.

id = −Rg
Lg

id + pωgiq +
ud
Lg

(10)

where uq, iq, and ud, id are the q-axis and d-axis voltage and current, respectively; Rg and
Lg are stator resistance and inductance, respectively; ψf is the permanent magnet flux; and,
finally, p is the number of pole pairs. Using Equation (6) yields the following results:

.
iq = −Rg

Lg
iq − pngωrid − pψf

Lg
ngωr +

uq
Lg.

id = −Rg
Lg

id + pngωriq +
ud
Lg

(11)

Moreover, the generator torque is Tg = 3
2 pψfiq + (Ld − Lq)idiq, where Ld and Lq

are the equivalent inductance in d-q directions. For a generator with flat poles, we have
Ld = Lq, and therefore, Tg = 3

2 pψfiq.

3. The Observer-Based Neural Network (ONN) Proposed Approach

Based on the previous WT models, i.e., using the derivative of Equation (9) and the
equation stating that

.
Tg = 3

2 pψf
.
iq, and then replacing the first part of Equation (11), the

following equalities can be yielded:

..
ωr = −Kt

Jt

.
ωr − ng

.
Tg
Jt
+

.
Tr
Jt
= −Kt

Jt

.
ωr − ng

3pψf
.
iq

2Jt
+

.
Tr
Jt

= −Kt
Jt

.
ωr +

3Rgpngψfiq
2LgJt

+
3p2ng

2ψfωrid
2Jt

+
3p2ng

2ψf
2ωr

2LgJt
− 3pngψfuq

2LgJt
+

.
Tr
Jt

= −Kt
Jt

.
ωr +

Rgng
LgJt

Tg +
3p2ng

2ωrψfid
2Jt

+
3p2ng

2ψf
2ωr

2LgJt
− 3pngψfuq

2LgJt
+

.
Tr
Jt

= −Kt
Jt

.
ωr −

Rg
Lg

.
ωr −

RgKt
LgJt

ωr +
RgTr
LgJt

+
3p2ng

2ψfωrid
2Jt

+
3p2ng

2ψf
2ωr

2LgJt

− 3pngψfuq
2LgJt

+
.
Tr
Jt

=
(
−Kt

Jt
− Rg

Lg

) .
ωr +

(
3p2ng

2ψfid
2Jt

+
3p2ng

2ψf
2

2LgJt
− RgKt

LgJt

)
ωr −

3pngψf
2LgJt

uq

+
RgTr
LgJt

+
.
Tr
Jt

(12)
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Note that the last equation is obtained after rearranging. For power factor correction
or compensation (PFC), the current of the d − axis is set to zero, i.e., id = 0, and therefore,
from Equation (11), we have ud = −Lgpngωriq. Hence,

..
ωr =

(
−Kt

Jt
− Rg

Lg

) .
ωr +

(
3p2ng

2ψf
2

2LgJt
− RgKt

LgJt

)
ωr

−
(

3pngψf
2LgJt

)
uq +

(
RgTr
LgJt

+
.
Tr
Jt

) (13)

For simplicity, the state variables x1 = ωr and x2 =
.
ωr, with the following linear state

feedback, are defined:

uq =
2LgJt

3pngψf

[(
−Kt

Jt
−

Rg

Lg
+ a2

)
x2 +

(
3p2ng

2ψf
2

2LgJt
−

RgKt

LgJt
+ a1

)
x1 − z(t)

]
(14)

where z is the new input control signal; now, Equation (13) can be rewritten as follows:

.
x = Ax + Bz + B∆ (15)

where ∆ is an unknown part, and

A =

[
0 1

−a1 −a2

]
, B =

[
0
1

]
, x =

[
x1
x2

]
(16)

∆ =
RgTr

LgJt
+

.
Tr

Jt
(17)

In the above equation, a1 and a2 are constants and are selected in order to have a
Hurwitz matrix A. Matrix A is a Hurwitz matrix if, for any matrix Q (symmetric pos-
itive definite), a matrix P (symmetric positive definite) can be find from the following
Lyapunov equation:

ATP + PA = −Q (18)

Using the D-SMC for system Equation (15), the sliding surface is defined as follows:

s = c1(ωr −ωrd) + c2(
.
ωr −

.
ωrd) + c3(

..
ωr −

..
ωrd)

= c1(x1 −ωrd) + c2(x2 −
.
ωrd) + c3(

.
x2 −

..
ωrd)

(19)

However, variable
.
x2 is not accessible due to the unknown variable ∆. This variable

is unknown and can be considered as the uncertainty because Tr and
.
Tr are completely

unknown. These variables are unknown because various power factors, Cp, are used in the
literature [45,53]. To calculate this variable, a new ONN structure is proposed, as described
in the following paragraphs.

Since neural networks have the property of universal approximation [26], one can find
some weights Θ for the continuous function ∆ so that

∆ = ΘTΦ(x) + ε(x) (20)

where the neural network approximation error is norm-bounded, i.e., ∥ε(x)∥ ≤ Fε, and
Θ ∈ R2×1 is the unknown weight vector; also, Φ(x) = [ϕ1(x),ϕ2(x)]

T is the Sigmoidal
function in the hidden layer.

ϕi(x) =
2

1+exp(−2Nix)
− 1 : i = 1, 2

Ni = [n1, n2]

nj =

{
0 : j ̸= i
1 : j = i

(21)
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Hence, Equation (15) can be expressed as follows:

.
x = Ax + Bz + B(ΘTΦ + ε) (22)

Nevertheless, Equation (22) is described by the following approximate model:

.
x̂ = Ax̂ + Bz + BΘ̂TΦ(x) (23)

The identification error can be defined as follows:

x̃ = x − x̂
Θ̃ = Θ − Θ̂

(24)

From Equations (22) and (23) and their subtraction, one can conclude that

.
x̃ = Ax̃ + B(Θ̃

T
Φ(x) + ε) (25)

Theorem 1. When the adaptive weight is updated based on the following equation, the error
x̃ = x − x̂ converges to zero.

.
Θ̂ = ρ1AΦ∥x̃∥ − ρ2Θ̂∥x̃∥ (26)

The above includes the use of scalars ρ1 > 0 and ρ2 > 0, which are constant.

Proof. We proceed with the Lyapunov function as the sum of two quadratic sections.

V =
1
2

x̃TPx̃ +
1

2ρ2
Θ̃

T
Θ̃ (27)

Derivative of Lyapunov Equation (27) with respect to time leads to the following:

.
V =

1
2

x̃TP
.
x̃ +

1
2

.
x̃

T
Px̃ +

1
ρ2

Θ̃
T

.
Θ̃ (28)

In the above,
.

Θ̃ = −
.

Θ̂; now, using Equations (18), (25), and (26) in Equation (28)
results in the following:

.
V = x̃TPB(ΘTΦ + ε)− 1

2

.
x̃

T
Qx̃ +

ρ1
ρ2

Θ̃
T

AΦ∥x∥+ Θ̃
T

Θ̃∥x∥ (29)

Consider the following inequality [24]:

−x̃TQx̃ ≤ −λmin(Q)∥x̃∥2 < 0 (30)

And consider that
Θ̃

T
Θ̂ = Θ̃

T
(Θ − Θ̃) ≤ FΘ∥Θ̃∥ − ∥Θ̃∥2

Θ̃
T

AΦ ≤ FΦ∥Θ̃∥ ∥A∥
(31)

where λmin denotes the minimum eign-value, and FΦ and FΘ are the bounds of neural
network parameters.

∥ΘT∥ = ∥Θ∥ ≤ FΘ, ∥ΦT∥ = ∥Φ∥ ≤ FΦ (32)

Therefore,

.
V ≤ − 1

2λmin(Q)∥x̃∥2 + ∥x̃∥ ∥P∥ ∥B∥
(
∥Θ̃∥FΦ + Fε

)
+ρ1
ρ2

FΦ∥Θ̃∥ ∥A∥ ∥x̃∥+
(

FΘ∥Θ̃∥+ ∥Θ̃∥2) ∥x̃∥
(33)
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Taking into account ∥B∥ = 1 results in the following:

.
V ≤ −1

2
λmin(Q)∥x̃∥2 +

(
∥P∥Fε −

[
∥Θ̃∥2 −

(
∥P∥FΦ + FΘ +

ρ1
ρ2

FΦ∥A∥
)

∥Θ̃∥
])

∥x̃∥ (34)

Now, we define Fx̃:

Fx̃ =
∥P∥Fε − 1

4

(
∥P∥FΦ + FΘ + ρ1

ρ2
FΦ∥A∥

)2

1
2λmin(Q)

(35)

Then,

.
V ≤ −1

2
λmin(Q)( ∥x̃∥ − Fx̃) ∥x̃∥ −

(
∥Θ̃∥ − 1

2

[
∥P∥FΦ + FΘ +

ρ1
ρ2

FΦ∥A∥
])2

∥x̃∥ (36)

or
.

V ≤ −1
2
λmin(Q)( ∥x̃∥ − Fx̃) ∥x̃∥ (37)

Suppose ∥x̃∥ > Fx̃; therefore,
.

V ≤ −0.5λmin(Q)( ∥x̃∥ − Fx̃) ∥x̃∥ ≤ 0, which leads to
the following:

0 ≤
∫ t

0 0.5 ( ∥x̃(τ)∥ − Fx̃) ∥x̃(τ)∥ λmin(Q)dτ
≤
∫ t

0 0.5 ( ∥x̃(τ)∥ − Fx̃) ∥x̃(τ)∥ λmin(Q)dτ+ V(t) ≤ V(0)
(38)

This inequality is true even if t → ∞ , since V(0) is finite and positive. Therefore, the
Barbalat’s lemma [24] results in the following:

lim
t→∞

0.5 ( ∥x̃∥ − Fx̃) ∥x̃∥ λmin(Q) = 0 (39)

It is clear that λmin(Q) is greater than zero, so Equation (39) causes a decrease in ∥x̃∥
into the bound of Fx̃, i.e., lim

t→∞
∥x̃∥ ≤ Fx̃. □

Remark 1. Parameters ρ1 and ρ1 are selected in order to prevent drift in Equation (26).

4. Sliding Mode Controller (SMC) Design

In this section, two new approaches are proposed: the D-SMC and T-SMC. In both of
them, the same presented ONN of Equation (23) is used to ensure a trustworthy comparison.

4.1. The Proposed D-SMC Approach

As has been mentioned, variable
.
x2 is not accessible in Equation (39). To this end, the

ONN in Equation (23) is proposed. Substituting the observer equation (Equation (23)) and
Equation (26) into the sliding surface equation (Equation (19)) results in the following:

s = c1(x̂1 −ωrd) + c2(x̂2 −
.
ωrd) + c3(

.
x̂2 −

..
ωrd) (40)

Hence, by definition of G = [0, 1], we have the following (note that GB = 1):

.
s = c1(x̂2 −

.
ωrd) + c2(GAx̂ + z + Θ̂TΦ − ..

ωrd)

+c3

(
GA
[
Ax̂ + Bz + BΘ̂TΦ

]
+

.
z +

[
ρ1AΦ ∥x̃∥ − ρ2Θ̂ ∥x̃∥

]TΦ + Θ̂TΦ − ...
ωrd

) (41)

or
.
s = c1(x̂2 −

.
ωrd) + c2(GAx̂ + z + Θ̂TΦ − ..

ωrd)

+c3

(
GA2x̂ + GABz + GABΘ̂TΦ +

.
z + ρ1ΦTAT ∥x̃∥Φ − ρ2Θ̂T ∥x̃∥Φ + Θ̂TΦ − ...

ωrd

) (42)
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Theorem 2. The reaching-to-sliding surface equation (Equation (19)) is provided in finite time if
the following chattering-free signal is used as the input control for the system (Equation (15)).

.
z = − c1(x̂2−

.
ωrd)+c2(GAx̂+z+Θ̂TΦ− ..

ωrd)
c3

−
c3

(
GA2x̂+GABz+GABΘ̂TΦ+

.
z+ρ1ΦTAT ∥x̃∥Φ−ρ2Θ̂T ∥x̃∥Φ+Θ̂TΦ− ...

ωrd

)
c3

−h1sign(s)+h2s
c3

(43)

The above includes the constant parameters h1 and h2.

Proof. Considering Equations (42) and (43) provides the following:

.
s = −h1sign(s)− h2s (44)

Using V = 0.5s2 as the Lyapunov function leads to the following:

.
V = s

.
s = s(−h1sign(s)− h2s) = −h1|s| − h2s2 ≤ −h1|s| (45)

Consider tf and suppose that s(tf) = 0; then, it can be shown that tf ≤ |s(0)|
h1

[24]. □

Remark 2. Parameter h1 is selected to enable reaching to the sliding surface in a small time tf and pa-
rameter h2 is selected to ensure good performance for the closed loop system.

Note that the implemented proposed D-SMC and ONN are presented in Figure 3.
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As explained before and shown in this figure, the sliding surface s is calculated based
on the reference of rotor angular velocity ωrd, as well as the neural observer output

..
ω̂r.

Then,
.
z is calculated and z obtained via the integration of

.
z. Finally, uq is obtained using

state feedback.

4.2. The Proposed T-SMC Approach

Consider the following sliding surface:

s = c1(x̂1 −ωrd) + c2(x̂2 −
.
ωrd) (46)
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Using Equation (23) and equality GB = 1 results in the following:

.
s = c1(x̂2 −

.
ωrd) + c2(GAx̂ + z + Θ̂TΦ − .

ωrd) (47)

Theorem 3. The reaching-to-sliding surface equation (Equation (46)) is carried out in finite time if
the following signal is used as the input control for the system equation (Equation (15)).

z = −c1(x̂2 −
.
ωrd) + c2(GAx̂ + Θ̂TΦ − ..

ωrd) + h1sign(s) + h2s
c2

(48)

The above includes the constant parameters h1 and h2.

Proof. Substituting Equation (48) into Equation (47), we can conclude that:

.
s = −h1sign(s)− h2s (49)

Then, the Lyapunov function, V = 0.5s2, results in the following:

.
V = s

.
s = s(−h1sign(s)− h2s) = −h1|s| − h2s2 ≤ −h1|s| (50)

Consider tf and suppose that s(tf) = 0; then, it can be shown that tf ≤ |s(0)|
h1

[24].
Hence, proof is obtained. □

4.3. The Reference of Rotor Angular Velocity

Based on Figure 4, the VWT operation mode is divided by a known rated index into
four regions. When the wind speed is smaller than cut-in, VWT is shut down because
of the economic conditions. The pitch blades of a VWT are set to its constant optimal
value, and generator torque is controlled for the wind speed bigger than the cut-in wind
speed and smaller than the rated wind speed. For this operation mode, the maximum
power coefficient is provided by increasing rotor speed. For the wind speed bigger than the
rated wind speed and smaller than the cut-out wind speed, the pitch angle of the blades
is increased to reduce the rotor speed. In this case, the generator power is regulated to its
rated value. Finally, for protection against fatigue damage, the VWT is shut down above
the cut-out operation mode [13].
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From Figure 4, in the second operation mode and for torque control, the reference of
rotor angular velocity can be written as follows:

ωrd = ωrated
v(t)− vcut−in

vb − vcut−in
(51)

According to Equation (2), it is clear that:

ωrated =
λvrated

r
(52)

We use a two-mass VWT with a power of 5 MW which is placed in the National Re-
newable Energy Laboratory (NREL) in Colorado. The parameters of this WT are presented
in Table 1 [56].

Table 1. VWT parameters.

Parameter Value Unit

vcut−in 3 m/s

vb 10.2 m/s

vrated 11.4 m/s

vcut−out 25 m/s

βopt 0 deg

λopt 7.55 rad

In addition, due to the use of the NREL WT, the parameters of the mechanical part are
also listed in Table 2 [56].

Table 2. VWT drivetrain parameters.

Notation Value Unit

r 21.62 m

ρa 1.308 kg/m3

Jr 3.25 × 105 kg × m2

Jg 34.4 kg × m2

Kr 27.36 (N × m)/(rad/s)

Kg 0.2 (N × m)/(rad/s)

Kls 9.5 × 103 (N × m)/rad

Bls 2.691 × 105 (N × m)/(rad/s)

ng 43.165 Scalar

Furthermore, the parameters of the PMSG are specified in Table 3.

Table 3. The PMSG parameters.

Notation Value Unit

Rg 2 Ohm

Lg 12 Henry

ψf 25 Weber

p 12 Scalar
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5. Simulation Results

Both the D-SMC and T-SMC were simulated using the parameters of a1 = 1 and a2 = 2
for the state feedback. Moreover, the same proposed ONN was used in both approaches
for a reliable comparison. Moreover, the initial values of ONN weights were set to zero, i.e.,
Θ1(0) = Θ2(0) = 0. Also, we chose h1 = 5, h2 = 20, ρ1 = 1, and ρ2 = 5. The wind speed
and the reference of rotor speed, denoted by Equation (51), are shown in Figures 5 and 6,
respectively. Note that this wind speed is in the second region, with a mean value of 7 and
added white noise to simulate a read wind.
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In the proposed D-SMC approach, the sliding surface coefficients are selected as
c1 = 10, c2 = 0.1, and c3 = 0.01. This selection causes the zero dynamics of sliding surface
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(19) or (40) to be set to zero, i.e., when the sliding surface reaches zero in finite time, the
sliding variables converge to zero. The initial value of z(0) is set to zero, i.e., z(0) = 0. This
is needed for the calculation of the input control signal from Equation (43). Figures 7–10
show the simulation results. Figure 7 shows the sliding surface, which converges to zero
in finite time. Figure 8 shows the performance of the proposed ONN. Reference signal
tracking can also be seen from this figure. In Figure 9, the torque input control signal of the
PMSG in the q-axis is depicted. This chattering-free signal is also the D-SMC output. The
adaptive weights of the ONN are shown in Figure 10. Note that the initial oscillations in
Figures 9 and 10 are not chattering.
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The advantage of the D-SMC approach is shown using the T-SMC with similar param-
eters. For example, the selected sliding coefficients in Equation (46) are c1 = 10 and c2 = 0.1.
Figures 11–14 show the simulation results. The sliding surface’s finite-time convergence to
zero can be seen, as in the previous example. Good tracking of the ONN state, rotor speed,
and its desired signal can be seen. Figure 13 shows the available chattering in the torque
signal, which cannot be applied to the actuator of the PMSG in the q-axis. The adaptive
weights of the ONN are shown in Figure 14.

Based on Figures 7 and 11, one can see the sliding surface’s convergence to zero
happens in finite time in both approaches. From Figures 8 and 12, it is clear that when the
wind speed is decreased (for example, at 10.4 s), the rotor angular velocity decreases to
near zero due to the economic reasons. On the other hand, if the wind speed is increased
(for example, at 14 s), the rotor angular velocity also increases. Figures 10 and 14 show
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the adaptive weights of the neural network in both the D-SMC and T-SMC, respectively.
Note that the initial oscillations in the D-SMC are due to the added integrator and are not
chattering. High-frequency chattering can be seen in Figure 13, while Figure 9 indicates
smoothness and is without chattering. Due to the available chattering in the d-axis input of
the T-SMC, it cannot be applied to the PMSG.

These two simulations show the advantages of the T-SMC and D-SMC in the tracking
of the desired signal and also the good performance of the proposed ONN. However,
chattering is available in the T-SMC and can be suppressed in the D-SMC. This is what
makes the D-SMC a priority over the T-SMC.
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6. Conclusions

A novel structure of torque control has been constructed for a VWT coupled to a
PMSG. A PMSG has been described in d-q reference frameworks. In order to obtain a
good performance, smooth control signals should be used as the inputs for the PMSG in
both d-q directions. Moreover, the available uncertainties of the WT model are another
issue which should be considered. To this end, a novel D-SMC is presented in this paper.
Using the proposed D-SMC, high-frequency chattering is removed by a low-pass integrator
filter. Then, to implement the D-SMC and to identify the extra state, an ONN is proposed.
Moreover, the stability of the D-SMC and ONN has been proved using Lyapunov theory.
Additionally, a comparison using the T-SMC has also been provided. To exhibit the fair
advantages and superiority of the D-SMC over the T-SMC, a similar novel ONN was
implemented in two SMC-based controllers. Chattering elimination results can be seen in
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the D-SMC, while the chattering remains in the T-SMC. Moreover, the design procedure
developed in this work shows the simplicity of the realization, and the concept for, the
proposed D-SMC. Future works can be focused on the selection of other generators such as
double-fed induction generators (DFIGs) and comparisons to the PMSG.
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