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Abstract: The study delves into the use of the thiol-yne click reaction to enhance (bio)conjugation
methodologies, particularly focusing on immobilizing biomolecules onto PLLA surfaces. The thiol-
yne click reaction, known for its efficiency, selectivity, and versatility in forming carbon-sulfur
bonds under mild conditions without transition metal catalysts, is explored for conjugating the
fluorophore dansyl onto PLLA surfaces. This approach aims to broaden bioconjugation strategies
beyond traditional methods like the Michael-type reaction, expanding their applicability to diverse
biomolecules. Utilizing a photoinitiator and specific light for photo-immobilization, the thiol-yne
click reaction offers spatial and temporal control, with the absence of transition metal catalysts
mitigating concerns of cytotoxicity and metal contamination, rendering it suitable for biomedical
applications. The objectives of this research encompass demonstrating the feasibility of the thiol-
yne click reaction for surface functionalization and enriching bioconjugation strategies for tailoring
PLLA surfaces, ultimately advancing biomedical technologies through precise control over surface
properties and functionality. For this purpose, PLLA surfaces were activated through hydrolysis
and amidation to introduce the activated alkyne moiety (PLLA-Alkyne), followed by photo-induced
dansyl immobilization (PLLA-Dns) with Irgacure 651. Various surface characterization techniques,
including SEM, WCA, XPS, ATR-FTIR, and fluorescence microscopy and spectroscopy, validated
the successful conjugation. This metal-free method preserves the material’s bulk properties while
enabling thiol-containing molecule immobilization.

Keywords: thiol-yne; coatings; conjugation

1. Introduction

In recent years, the demand for advanced bioconjugation strategies has led to sig-
nificant innovations in materials science and bioengineering [1]. Bioconjugation, which
involves chemically linking two molecules, including a biomolecule such as a protein, pep-
tide, oligosaccharide, or oligonucleotide, has evolved substantially. Traditional methods
often relied on crosslinking agents or enzyme-mediated conjugation [2–5]. However, the ad-
vent of click chemistry has revolutionized this field due to its high efficiency, specificity, and
operational simplicity [6–8]. Indeed, click chemistry, particularly through photo-induced
reactions, has significantly expanded the versatility and applicability of biofunctionalized
materials across various emerging fields such as 3D printing, tissue engineering, sensor
design, and the biocatalyzed production of chemical building blocks [9].These photoclick
reactions offer the advantages of selectivity and high yields combined with light-triggered
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reactions [10]. Unlike conventional click reactions, which rely on catalysts or moderate heat-
ing to initiate the reaction, photo-mediated reactions provide a level of temporal control,
allowing the reaction to be precisely triggered at a specific moment [9,11].

The term “photoclick chemistry” was first coined in 2008 to describe the tetrazole-
ene reaction [9,10]. Since then, it has been applied to numerous other photo-mediated
reactions, including the thiol-ene and thiol-yne click reactions. Furthermore, compared to
other biorthogonal click reactions, such as the renowned Copper-Catalyzed Azide-Alkyne
Cycloaddition (CuAAC) reaction [12–14], photoclick reactions integrate into biological
systems, widely spreading this tool to biological fields [11]. Among photoclick reactions,
the thiol-yne photoclick reaction has garnered considerable attention for its metal-free
nature and versatility in bioconjugation processes [15,16]. Thiols are exemplary for bio-
conjugation due to their high nucleophilicity compared to amino groups in peptides and
related biomolecules [17,18]. Thiol-containing amino acids, such as cysteine, and small
peptides, like glutathione, are important indicators in disease diagnostics [19,20]. The
first report of the addition of sulfides to alkynes mediated by radicals was in the 1930s by
Finzi and Kohler [21,22]. Since that time, this reaction has proven to be a very valuable
tool for the synthesis of linear polymers, for the subsequent modification of polymers
with pendant alkyne groups, or for access to cross-linked networks [23–25]. However,
to the best of our knowledge, there are still no examples of the use of this reaction to
perform a bioconjugation process on a surface. This method offers several advantages,
including the ability to couple two thiols with one alkyne under mild conditions using a
chemical radical source, UV irradiation, or even sunlight at ambient temperature [21]. The
robustness and adaptability of the radical mechanism make the thiol-yne procedure highly
attractive for creating multifunctional materials, offering a robust pathway for enhancing
the functionality of polymers for applications such as (bio)coatings [26–28].

Among polymers, poly(L-lactic acid) (PLLA), a biodegradable and bioresorbable poly-
mer [29], has become a key material in biomedical applications [30–32]. Its uses range
from tissue engineering scaffolds to drug delivery systems [33,34]. PLLA’s biocompati-
bility and mechanical properties make it an ideal substrate for further functionalization
through surface modification [32,35–37]. Modifying PLLA surfaces to immobilize bioactive
molecules can significantly enhance their interaction with biological environments, thereby
improving the material’s performance in medical applications [38]. In this context, the
thiol-yne photo-click reaction presents a promising strategy for immobilizing bioactive
molecules onto polymeric surfaces. This technique can graft various biomolecules onto
PLLA surfaces, enhancing their interactions with cells and tissues [39].

In recent years, one of the research lines of our group has focused its attention on
the modification of different types of surfaces through click reactions in the absence of
metal catalysts. Particularly, we have reported that previously derivatized PLLA surfaces
with electron-deficient alkyne moieties can be easily modified with azide-yne and aza-
Michael-type click reactions in catalyst-free versions. In fact, different biomolecules, such
as tryptophan or amoxicillin, and dyes, such as dansyl, have been effectively conjugated to
PLLA surfaces employing these methodologies [40,41]. These types of alkynes with electron-
withdrawing substituents have demonstrated to be interesting 1,4-Michael acceptors due
to their stability and high reactivity. Although these compounds can react via numerous
pathways, they are renowned for their interaction with nucleophiles in conjugate addition
reactions [17,40,42]. The practical implementation of the thiol-yne photo-click reaction
for polymeric surface modification involves several key steps [24]. Initially, polymer
surfaces need to be functionalized with alkyne groups, achievable through various chemical
treatments. Subsequently, the thiol-containing biomolecules are introduced, and the system
is exposed to UV light to induce the click reaction. This process results in the formation of
stable thioether bonds, effectively immobilizing the biomolecules onto the polymer surface.
Compared to other metal-free click reactions, a key advantage of thiol-yne reactions is
that they enable the bioconjugation of two molecules in a single step. The efficiency and
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specificity of this reaction can be further enhanced by optimizing parameters such as light
intensity, reaction time, and the concentration of reactants.

In this study, we focus on an activated alkyne featuring an electron-attracting group
to promote Michael-type click reactions with thiols without requiring metal catalysts.
Propiolic acid serves as the activated alkyne, chosen for its commercial availability and ease
of modification. The primary objective is to devise a method for conjugating fluorophore
molecules onto polymer surfaces using the alkyne-activated thiol-yne click reaction. Before
the conjugation of the fluorophore through the photoclick reaction, it was necessary to
carry out different modifications on the poly-L-lactic acid (PLLA) polymeric substrate, to
facilitate the covalent attachment of the electron-deficient alkyne moiety. These alkyne-
activated substrates have demonstrated a propensity to react with derivatized fluorophore
compounds, offering a straightforward means to immobilize diverse molecules through
simple modification.

2. Materials and Methods
2.1. Materials

Poly-L-lactide (PLLA) polymer pellets were purchased from Corbion (Amsterdam,
The Netherlands). A variety of solvents were used in the synthesis of PLLA films as well
as surface functionalization and fluorophore derivatization: acetone (99%, Macron Fine
Chemical, Gliwice, Poland), chloroform (CHCl3, >98% Macron Fine Chemicals, Gliwice,
Poland), ethanol (EtOH, 99.8%, Macron Fine Chemicals, Gliwice, Poland), methanol (MeOH,
98%, Macron Fine Chemicals, Gliwice, Poland), tetrahydrofuran (THF, 99%, Macron Fine
Chemicals, Gliwice, Poland), diethyl ether (Et2O, 99%, Macron Fine Chemical, Gliwice,
Poland), acetic acid (AcOH, Sigma Aldrich, St. Louis, MO, USA), deuterated chloroform
(CDCl3, 99.8% Sigma Aldrich, St. Louis, MO, USA), and Milli Q water. Some reagents
were employed for the derivatization of dansyl fluorophore: dansyl chloride (99%, Sigma
Aldrich, St. Louis, MO, USA), cysteamine hydrochloride (99%, Sigma Aldrich, St. Louis,
MO, USA), sodium hydroxide (99%, Panreac, Darmstadt, Germany), sodium hydrogen
carbonate (NaHCO3, 99%, Merck, Darmstadt, Germany), sodium carbonate (Na2CO3, 98%,
Panreac, Darmstadt, Germany), sodium borohydride (NaBH4, 98%, Sigma Aldrich, St.
Louise, MO, USA), Irgacure 651 (2,2-dimethoxy-2-phenylacetophenone, Sigma Aldrich,
St. Louis, MO, USA), N-(3-dimethylaminopropyl)-N-ethylcarbodiimide hydrochloride
(EDC·HCl, 98%, Sigma Aldrich, St. Louis, MO, USA), N-hydroxysuccinimide (NHS, 98%,
Sigma Aldrich, St. Louis, MO, USA), ethylendiamine (99%, Sigma Aldrich, St. Louis,
MO, USA), triethylamine (Et3N, <99.5%, Sigma Aldrich, St. Louis, MO, USA), propiolic
acid (95%, Sigma Aldrich, St. Louis, MO, USA), sodium sulfate anhydrous (Na2SO4, 98%,
Panreac, Darmstadt, Germany), magnesium sulfate anhydrous (MgSO4, 98%, Panreac,
Darmstadt, Germany).

2.2. Methods
2.2.1. Synthesis of Dansyl Derivative 2a

Dansyl chloride (0.50 g, 1.85 mmol) was dissolved in acetone (51 mL) and water (2 mL).
Then, previously prepared cysteamine hydrochloride (0.11 g, 0.93 mmol) in aqueous
NaHCO3 (0.1 M, 12 mL) solution was added in small portions. In addition, NaOH (0.5 M)
was used to keep the solution at a pH of 7.5. Then, the mixture was stirred for 90 min at room
temperature. After that, chloroform (100 mL) was added to the solutions, and layers were
separated. The organic layer was washed with sodium carbonate solution (4 × 20 mL) and
water (1 × 20 mL). Finally, the organic phase was collected, dried over anhydrous MgSO4,
and the solvent was evaporated under vacuum to afford N,N′-(disulfanediylbis(ethane-
2,1-diyl))bis(5-(dimethylamino)naphthalene-1-sulfonamide), which was used in the next
step without further purification. 1H-NMR (300 MHz, CDCl3) (δ, ppm): 8.54 (d, J = 8.5 Hz,
1H, CHarom), 8.24–8.20 (m, 2H, CHarom), 7.56–7.52 (m, 2H, CHarom), 7.17 (d, J = 7.6 Hz, 1H,
CHarom), 5.24 (t, J = 6.3 Hz, 1H, NH), 3.09 (q, J = 6.3 Hz, 2H, NHCH2), 2.88 (s, 6H, 2 × CH3),
2.48 (t, J = 6.3 Hz, 2H, S-CH2); 13C-NMR (75 MHz, CDCl3) (δ, ppm): 152.2 (Carom-N),
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134.5 (Carom-S), 132.4 (Carom-H), 130.8 (Carom-C), 130.0 (Carom-H), 129.8 (Carom-H), 129.6
(Carom-H), 123.3 (Carom-H), 118.7 (Carom-C), 115.4 (Carom-H), 45.6 (N(CH3)2), 41.7 (NHCH2),
37.9(S-CH2).

2.2.2. Synthesis of Dansyl Derivative 2b

Previously synthesized compound 2a (0.09 g, 0.16 mmol) was dissolved in THF (6 mL)
and water (1 mL) at 0 ◦C. Then, NaBH4 (0.06 g, 1.63 mmol) was added in small portions.
After, the reaction was vigorously stirred for 4 h at room temperature. Following, the
solvent was evaporated under vacuum, and the obtained solid was dissolved in water
(10 mL). This last aqueous solution was extracted with diethyl ether (3 × 10 mL). Finally,
organic layers were collected, dried over anhydrous Na2SO4, and solvent evaporated under
vacuum to afford 5-(dimethylamino)-N-(2-mercaptoethyl)naphthalene-1-sulfonamide (2b)
as a brownish oil (0.03 g, 57%). 1H-NMR (300 MHz, CDCl3) (δ, ppm): 8.56 (d, J = 8.5 Hz,
1H, CHarom), 8.26–8.23 (m, 2H, CHarom), 7.55–7.52 (m, 2H, CHarom), 7.20 (d, J = 7.6 Hz, 1H,
CHarom), 5.18 (t, J = 6.3 Hz, 1H, NH), 3.10–3.07 (m, 2H, NHCH2), 2.89 (s, 6H, 2×CH3), 2.51
(dt, J = 8.7, 6.4 Hz, 2H, SHCH2), 1.21 (t, J = 8.7 Hz, 1H, SH); 13C-NMR (75 MHz, CDCl3) (δ,
ppm): 152.1 (Carom-N), 150.1 (Carom-S), 134.6 (Carom-H), 130.7 (Carom-C), 129.9 (Carom-H),
129.5 (Carom-H), 128.6 (Carom-H), 123.2 (Carom-H), 118.5 (Carom-C), 115.3 (Carom-H), 45.9
(NH-CH2), 45.4 (N(CH3)2), 24.8 (SHCH2).

2.2.3. Preparation, Hydrolysis, and Amidation of PLLA Films

PLLA pellets (1 g) were dissolved in 50 mL of chloroform, followed by reprecipitation
in cold distilled methanol and subsequent drying under vacuum at 40 ◦C. The fabrication
of PLLA films followed the established procedure outlined in our previous work [43].
Hydrolysis and amidation conditions remained consistent with those detailed in our earlier
studies [40,41].

2.2.4. Immobilization of Dansyl Derivative 2b onto PLLA Films via Metal-Free Thiol-Yne
Click Reaction

The synthesized dansyl derivative 2b (10 mmol) was dissolved in ethanol, and the
photoiniator Irgacure 651 (0.10 mmol) was added. This mixture was homogenized under
ultrasound, and then propiolated PLLA (PLLA-Alkyne) surfaces were immersed in the
solution for 1 h and exposed to ultraviolet light under an Hg lamp. Afterwards, the
obtained dansylate surfaces (PLLA-Dns) were washed with ethanol and water and dried
under vacuum at room temperature.

2.2.5. Nuclear Magnetic Resonance (NMR)

For the characterization of the derivatized fluorophore, proton (1H-NMR) and carbon-
13 (13C-NMR) nuclear magnetic resonance spectra were obtained using an AV-300 spec-
trometer (300 MHz for 1H and 75 MHz for 13C) (Bruker, Rheinstetten, Germany) at room
temperature with deuterated chloroform as the solvent. Chemical shifts (δ) are reported in
parts per million (ppm) relative to TMS, using the residual signal of the solvent [7.26 ppm
(1H) and 77.0 ppm (13C)] as the internal reference. Coupling constants (J) are reported in
hertz (Hz).

2.2.6. Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR)

PLLA surface functionalizations were analyzed via an FTIR spectrophotometer (NICO-
LET Nexus 670 FT-IR, Thermo Scientific, Loughborough, UK) equipped with an ATR.
2 × 1 cm PLLA surfaces were measured using 32 scans from 4000 cm−1 to 500 cm−1 within
the wavenumber range and a resolution of 4 cm−1.

2.2.7. Water Contact Angle (WCA)

The alteration in wettability of PLLA surfaces resulting from surface modifications was
studied using the static contact angle method (NEURTEK Instruments OCA 15 EC, Eibar,
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Spain). Milli-Q water was used as a testing liquid, and measurements were conducted at
room temperature using the sessile drop method with 2 µL per drop. Average values were
determined from five measurements for each composition.

2.2.8. Scanning Electron Microscope (SEM)

Morphological observations were carried out on functionalized PLLA surfaces employ-
ing a HITACHI S-4800 electronic microscope (Hitachi, Singapore). An electron acceleration
voltage of 1.5 kV over a distance of 7.1 mm × 5.00 k was applied for different functionalized
PLLA surfaces.

2.2.9. X-ray Photoelectron Spectroscopy (XPS)

The elemental analysis of modified PLLA surfaces was performed using X-ray photo-
electron spectroscopy (XPS) with a SPECS system (Surface Nano Analysis, Berlin, Germany).
This system uses a focus monochromatic radiation source 500 with a dual anode Al/Ag,
equipped with a 150 1D-DLD analyzer (Phoibos, Berlin, Germany). The PLLA samples
were secured with stainless steel holders and carbon tape during the measurements. Addi-
tionally, a carbon reference was employed for the measurements.

2.2.10. Fluorescence Microscopy

The fluorescence of PLLA surfaces, both before and after the thiol-yne click reaction,
was analyzed using a Zeiss Axioskop epifluorescence microscope (Zeiss, Jena, Germany).

2.2.11. Fluorescence Spectroscopy

The emission spectra of the PLLA films were recorded using an Edinburgh Instruments
spectrofluorimeter (Edinburg Instruments, FLSP920 model, Livingston, UK) with UV region
excitation in a front-face configuration. The samples were positioned at 40◦ and 50◦ angles
to the excitation and emission beams, respectively, and tilted at a 30◦ angle relative to the
plane formed by the direction of incidence and detection.

3. Results

To immobilize the desired fluorophore, preactivation of the PLLA surface was essential.
The preactivation process was consistent with our previous works [40,41]. Briefly, PLLA
was hydrolyzed and then amidated with ethylenediamine, enabling subsequent derivatiza-
tion with propiolic acid. Both amidation reactions were performed under EDC·HCl/NHS
conditions at room temperature. Once the required alkyne group was incorporated onto the
surface, the synthesized fluorophore derivative was immobilized onto the PLLA surfaces
using thiol-yne click chemistry. This method excludes the need for a catalyst and employs
a photoinitiator, providing a straightforward and efficient approach to surface modification
(Scheme 1).

The appearance of new bond formation was followed by ATR-FTIR analysis (Figure 1A).
In fact, after hydrolysis and the first amidation step, prominent bands at 3300–3250 cm−1

and 2900 cm−1 appeared in the PLLA-COOH and PLLA-NH2 spectra, attributed to the
stretching vibrations of N-H, O-H, and Csp3-H, respectively, which corroborated the suc-
cessful preactivation process. Upon further grafting with propiolic acid, the presence of
distinctive stretching bands at 3350 cm−1 and 2090 cm−1 confirmed the incorporation of
the terminal alkyne moiety onto PLLA surfaces. Furthermore, the presence of a band at
1650 cm−1, indicative of C=O stretching and consistent with the typical appearance of
C=O in amides, provided strong evidence of the success of the second amidation reac-
tion. Finally, following conjugation with dansyl derivative 2b via a thiol-yne photoclick
reaction (PLLA-Dns), the Csp-Csp stretching signal disappeared, confirming the effective
immobilization of the dansyl derivative onto PLLA.
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Scheme 1. PLLA surface preactivation and dansyl flurophore 2b photo-immobilization via thiol-yne
click chemistry.

The success of each functionalization step was corroborated by means of XPS in order
to determine the chemical composition of the surfaces (Figure 1B). After hydrolysis, two
major contributions were observed at 284 eV and 535 eV, corresponding to C1s (69.9%)
and O1s (29.8%), respectively. Following amidation with ethylenediamine, a new peak
at 400 eV attributed to N1s (1.8%) emerged in the spectrum of PLLA-NH2, confirming
the successful amidation of hydrolyzed PLLA. Moreover, high-resolution carbon spectra
corroborated the introduction of nitrogen, as evidenced by the enhanced peak of the C-
O/C-N contribution at 285.8 eV. Subsequent to the second amidation process employing
propiolic acid (PLLA-Alkyne), similar carbon, oxygen, and nitrogen content values were
obtained compared to PLLA-NH2, namely 62.0%, 26.0%, and 3.2%, respectively. However,
notable changes were detected in the nitrogen high-resolution spectra of PLLA-NH2 and
PLLA-Alkyne (Figure 1C). Specifically, contributions observed at 398.9 eV, 399.7 eV, and
400.6 eV corresponding to NH2, N-C=O, and C-NH functionalities on PLLA-NH2 surfaces
disappeared, while NH-C=O contributions increased on PLLA-Alkyne surfaces. These
findings confirmed the introduction of the activated terminal alkyne group crucial for
facilitating the attack of the corresponding nucleophilic partner, in this case the thiol moiety
of the fluorophore derivative. Upon further functionalization with the dansyl derivative, a
new peak around 169 eV corresponding to the S2p (0.8%) element was observed. These
results reaffirmed the immobilization of the dansyl derivative 2b onto the PLLA surface
through the metal-free thiol-yne photoclick reaction.

For this thiol-yne click reaction, an Irgacure 651 photoinitiator was used to photoim-
mobilize the dansyl derivative 2b. PLLA-alkyne samples carrying the dansyl derivative
were exposed to irradiation for 1 h across a broad spectrum, ranging from 260 to 400 nm.
Notably, the UV maximum absorption peak of the photoinitiator lies between 310 and
350 nm. Through confocal microscopy (Figure 2), the fluorescence emission from the PLLA-
Dns surface was observed. Upon light excitation of both pristine PLLA and PLLA-Dns,
only PLLA-Dns exhibited a green emission, corresponding to the dansyl region. These
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findings certainly confirmed the completion of the immobilization of dansyl derivative 2b
via the thiol-yne click reaction.
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Similarly, steady-state fluorescence spectroscopy was also employed for the corrobo-
ration of the fluorophore immobilization (Figure 2B). Pristine PLLA and PLLA-Dns were
excited at the same wavelengths, but only the PLLA-Dns sample exhibited a maximum
peak at 405 nm, which could be related to dansyl derivative 2b fluorescence emission.
These findings, along with the confocal fluorescence emission, confirmed the successful
photoimmobilization of dansyl derivative 2b using the thiol-yne click reaction.

Regarding surface morphology, SEM images in Figure 3A revealed that PLLA surfaces
experienced fissures and cracking after hydrolysis and amidation reactions, resulting in
heterogeneous surfaces. Following the photo-immobilization of the dansyl derivative 2b,
the surface exhibited minimal non-uniform protrusions. These specific surface variations
further indicated the successful surface functionalization and effective immobilization of
the dansyl derivative.



Coatings 2024, 14, 839 8 of 11
Coatings 2024, 14, x FOR PEER REVIEW 8 of 11 
 

 

 
Figure 2. (A) Confocal microscopy of PLLA and PLLA-Dns surfaces. (B) Steady-state fluorescence 
spectroscopy of PLLA and PLLA-Dns surfaces. 

 
Figure 3. (A) SEM images of pristine and functionalized PLLA surfaces (10 µm) (B) Water contact 
angle values of pristine and functionalized PLLA surfaces. 

Figure 2. (A) Confocal microscopy of PLLA and PLLA-Dns surfaces. (B) Steady-state fluorescence
spectroscopy of PLLA and PLLA-Dns surfaces.

Coatings 2024, 14, x FOR PEER REVIEW 8 of 11 
 

 

 
Figure 2. (A) Confocal microscopy of PLLA and PLLA-Dns surfaces. (B) Steady-state fluorescence 
spectroscopy of PLLA and PLLA-Dns surfaces. 

 
Figure 3. (A) SEM images of pristine and functionalized PLLA surfaces (10 µm) (B) Water contact 
angle values of pristine and functionalized PLLA surfaces. 

Figure 3. (A) SEM images of pristine and functionalized PLLA surfaces (10 µm) (B) Water contact
angle values of pristine and functionalized PLLA surfaces.



Coatings 2024, 14, 839 9 of 11

Moreover, the wettability properties of the surface were analyzed after each function-
alization step by means of water contact angle (Figure 3B). Hydrolysis and both amidation
reactions significantly increased the surface’s hydrophilicity, reducing the contact angle
value from 111 ± 4.7◦ to 38.7 ± 4.6◦. However, after the photoimmobilization of the dansyl
derivative 2b, the water contact angle (WCA) value increased to 81.3 ± 6.3◦. This increase
corroborated the presence of aromatic groups and sulfur elements on the polymer surface.
These findings, consistent with those obtained in other studies, align with the presence
of aromatic functional groups in dansyl, which make the surface less prone to forming
hydrogen bonds with water [40]. This change in WCA value reaffirmed the successful
immobilization of the dansyl derivative 2b through the thiol-yne click reaction.

4. Conclusions

This study developed a surface treatment strategy for the conjugation of fluorophore
compounds onto polymer surfaces using a metal-free thiol-yne photoclick reaction. The
success of surface pre-functionalization and the covalent attachment of the fluorophore to
it were confirmed through several characterization techniques, including ATR-FTIR, XPS,
water contact angle measurements, SEM, and fluorescence analysis. This work provides a
new route for conjugating biological compounds via click reactions, effectively overcoming
the drawbacks of cytotoxic metals. By combining simple amidation reactions with advanced
metal-free Michael-type click reactions, it is possible to create bioactivated materials suitable
for a wide range of biomedical applications, such as implant coatings, biosensors, and
tissue engineering. Future investigations will focus on broadening the research scope and
assessing the degradability and cell cytotoxicity of the proposed coating. This study not
only expands the potential of metal-free click chemistry in developing novel conjugation
strategies but also highlights the promising future trends in thiol-yne click chemistry in
creating advanced biomedical materials.
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