
Innovative algorithms for completion of

resource intensive tasks in IoT devices

and novel applications in the Smart City

& Smart Building

Author:
Asier Garmendia Orbegozo

Advisors:

Associate Prof. Jose David Nuñez-Gonzalez
PhD Miguel Angel Anton Gonzalez

2024

(cc) 2024 Asier Garmendia Orbegozo (cc by 4.0)

Acknowledgment

I would like to begin by thanking my thesis director, José David Núñez-González.
This thesis would not be possible without the uninterrupted and unconditional
availability throughout the entire period of my stay at the university. Both
in academic matters and in more practical matters it has been a fundamental
pillar in the years that the thesis has lasted. Likewise, I would like to thank the
availability and help provided by Miguel Ángel Antón, co-director of this thesis
at Tecnalia, who has offered us the opportunity to use powerful computational
resources in addition to providing valuable knowledge in many aspects.

Likewise, I appreciate all the support that my parents have given me, who
have been of special importance for the development of the thesis. I was encour-
aged to start this doctoral career when I was considering other options along
with the possibility of obtaining the doctorate.

I would also like to thank Itziar Alonso from Tecnalia who opened the pos-
sibility for me to do the doctorate when I was doing my master’s thesis at the
research center.

i

Reconocimiento

Me gustaŕıa comenzar agradeciendo a mi director de tesis, José David Núñez-
González. Esta tesis no seŕıa posible realizarla sin la disponibilidad ininterrump-
ida e incondicional durante todo el peŕıodo de mi estancia en la universidad.
Tanto en cuestiones académicas como en cuestiones más prácticas ha sido un
pilar fundamental en los años que ha durado la tesis. Asimismo, me gustaŕıa
agradecer la disponibilidad y ayuda brindada por Miguel Ángel Antón, codirec-
tor de esta tesis de Tecnalia, quien nos ha ofrecido la oportunidad de utilizar
potentes recursos computacionales además de aportar valiosos conocimientos en
muchos aspectos.

De igual manera agradezco todo el apoyo que me han brindado mis padres,
quienes han sido de especial importancia para el desarrollo de la tesis. Me an-
imaron a iniciar esta carrera de doctorado cuando estaba considerando otras
opciones junto con la posibilidad de obtener el doctorado.

Me gustaŕıa agradecer también a Itziar Alonso de Tecnalia que me abrió la
posibilidad de realizar el doctorado cuando estaba realizando el trabajo fin de
máster en el centro de investigación.

ii

Aitortza

Hasteko, nire tesi zuzendaria izan den José David Nuñez-González eskertu nahi
nuke. Tesi hau ezingo nuke burutu ez bazen bere etengabeko prestutasuna
bitarteko tesiak iraun duen urteotan. Arlo akademikoan zein kontu praktikoa-
goetan ezinbesteko zutabea izan da tesiak iraun duen urteotan niretzat. Era
berean, Miguel Angel Antonek eskainitako prestutasuna eskertu nahi nuke, be-
rau zuzendariordea izanik tesi honetan. Tecnaliako partaide gisa, bertako bali-
abide konputazional aurreratuak eskuragarri jartzeaz gain ezagutza baliotsuak
eskaini baitizkigu hainbat arlotan.

Modu berean, nire gurasoek eskaini didaten babesa eskertu nahiko nuke, oso
garrantzitsuak izan baitira tesiaren garapenerako. Tesiaren ibilbidea has nezan
animatu ninduten beste aukera batzuen artean nuenean tesiarekin hastea.

Azkenik, Tecnaliako Itziar Alonsori eskerrak eman nahi nizkioke, doktoretza
tesia burutzeko aukera ireki zidalako, ikerketa zentro berean master amaierako
lana burutzen ari nintzen garaian.

iii

Resumen

Con la irrupción de los dispositivos electrónicos al alcance de la ciudadańıa en
los últimos años, estos ofrecen distintas posibilidades en cuanto a obtención y
manipulación de la información y generación de nuevo conocimiento se refiere.
Debido a los grandes avances tecnológicos, cada vez se pueden encontrar dispos-
itivos con menor tamaño y consumo con mayores prestaciones computacionales
capaces de ofrecer distintos servicios a los usuarios, favoreciendo y facilitando
la vida de estos. Los dispositivos llamados IoT (Internet Of Things) por sus
siglas en inglés, ofrecen al usuario la posibilidad de medir distintos parámetros
del entorno, como intercomunicar entre ellos como con otros computadores más
potentes. En una área de red local, se pueden encontrar además de estos dis-
positivos reducidos, otros llamados computadores Edge, que permiten la unión
de estos dispositivos con otros servidores remotos, además de ofrecer otros ser-
vicios como la interconexión entre distintos dispositivos. Los dispositivos IoT
se podŕıan clasificar en una área de red local en la capa IoT, los computadores
formaŕıan la capa Edge, y finalmente, en la capa de la nube o Cloud se encon-
traŕıan los servidores remotos de la nube.

Cada vez son más las aplicaciones que requieren de una acción inmediata en
la capa del usuario final o IoT, que al estar formado por dispositivos IoT, tiene
unas caracteŕısticas determinadas. Estos dispositivos al ser de tamaño reducido,
para facilitar su transporte, versatilidad a la hora del despliegue y reducir los
costes de enerǵıa para alargar su funcionalidad sin necesidad de ninguna inter-
vención, no están dotados de procesadores tan potentes como otros computa-
dores de otras capas. Del mismo modo, las memorias de estos dispositivos no
son del mismo tamaño que los que se pueden encontrar en otros dispositivos
como los computadores Edge, que ofrecen suficiente memoria para abordar una
gran variedad de cómputos relacionados con la ejecución de distintas tareas.
Por ello, es preciso hacer modificaciones en las tareas o en las distribuciones en
la carga de trabajo entre distintos dispositivos para hacer viable la ejecución de
tareas complejas en el menor tiempo posible.

La ejecución cerca de los dispositivos IoT o dispositivos de los usuarios fi-
nales, es esencial para garantizar que la ejecución de tareas cŕıticas con el tiempo
de respuesta se completen en el menor tiempo posible, ya que la transmisión de
la información referida a dicha tarea por la red conlleva un importante retraso

iv

que dificulta el cumplimiento del requerimiento de la latencia. Aun siendo la
capa que ofrece las mayores prestaciones, la capa de la nube se convierte el
peor destino de computación en estos entornos, al no poder cumplir con dichos
requerimientos. En cambio, los computadores Edge están suficientemente ca-
pacitados para llevar a cabo tareas que requieren de cálculos computacionales
de gran complejidad y gasto, y lo suficientemente cerca de los dispositivos fi-
nales para que la transmisión de la información entre dispositivos no sea ningún
inconveniente.

Para dar una respuesta optimizada en varias aplicaciones es preciso el uso
de técnicas de Machine Learning o Aprendizaje Automático, que usan arquitec-
turas o modelos complejos que muchas veces no es viable su entrenamiento e
implementación en dispositivos reducidos. En los últimos años, han sido muy
relevantes en distintos campos las técnicas de Aprendizaje Profundo o Deep
Learning, siendo las redes neuronales su principal herramienta. Estas redes, al
estar compuestos por distintas capas y un sinf́ın de parámetros para su rep-
resentación requieren mucha memoria y capacidad de cómputo para su entre-
namiento que no les pueden ofrecer los dipsositivos reducidos en versión original.
Aun entrenando en otros computadores más potentes e implantando una vez en-
trenados para su fase de inferencia en los dispositivos finales, es dif́ıcil que estos
dispositivos alberguen de suficiente memoria para su representación. Es por
ello, que en esta tesis uno de los objetivos principales ha sido la reducción de
estas redes a través de diferentes técnicas. No obstante, los modelos reducidos
es posible que no cumplan con los requisitos de precisión establecidos por las
aplicaciones, debido a que al reducir sus dimensiones pasa lo mismo con su ca-
pacidad de predicción.

Otra opción muy interesante para posibilitar la ejecución de tareas complejas
con una latencia baja y con suficiente precisión es la de enviar las tareas desde
dispositivos finales a dispositivos de la capa Edge, al estar estos últimos dotados
de mayores prestaciones para su entrenamiento como ejecución. De este modo,
no habŕıa necesidad de reducir los algoritmos empleados para dar la respuesta
en cada tarea y el resultado final conservaŕıa la capacidad de predicción de los
modelos originales. Uno de los problemas al emplear esta técnica de descarga
de tareas es la posible sobrecarga de varios computadores al estar recibiendo las
tareas de una multitud de dispositivos finales. Para evitar este tipo de conflictos
es necesario el empleo de una poĺıtica de descarga que permita la distribución
equitativa de tareas entre los computadores cercanos de la capa Edge con el fin
de evitar las citadas sobrecargas en estos dispositivos y la ejecución de todas las
tareas en la latencia requerida.

Finalmente, durante la tesis como tercer objetivo se ha establecido la elab-
oración de una aplicación innovativa que utilizara las mediciones obtenidas por
los dispsotivos IoT que al fusionar con otras fuentes de información ofreciera un
conocimiento novedoso. En este caso, se ha optado por utilizar las mediciones
obtenidas por los sensores colocados en las puertas de distintos tipos de edifi-

v

cios en ciudades de Madrid y Melbourne. Utilizando técnicas de aprendizaje
no supervisado, que se centra en encontrar relaciones entre datos sin que estos
estén etiquetados, se ha pretendido identificar los distintos edificios partiendo de
las mediciones de los sensores que interpretaban la actividad de los ciudadanos
cerca de estos edificios.

La metodoloǵıa empleada en el transcurso de la tesis para llegar a cumplir
los objetivos preestablecidos con sendos trabajos que finalmente han sido pub-
licados en revistas cient́ıficas de impacto, ha sido similar en todos los casos.
Primero, se ha detectado una deficiencia o flaqueza en la literatura. Esta podŕıa
ser una falta de técnica o conocimiento concreto o una posibilidad de mejora
en una aplicación o tecnoloǵıa concreta. Acto siguiente, se ha desarrollado una
solución optimizada que mejorará los resultados obtenidos en otros trabajos o
se ha desarrollado una técnica novedosa que ofreciera una visión diferente o
conocimiento innovador. Para dar firmeza a las soluciones propuestas, estas
se han contrastado utilizando bases de datos abiertos con las alternativas que
mejores resultados ofrećıan en la literatura.

En el primer trabajo, el objetivo principal fue la reducción de los modelos
de Aprendizaje Profundo, que al fin y al cabo se ha centrado en reducir las
dimensiones de las redes neuronales para que puedan ajustar a las restricciones
de memoria establecidas por los dispositivos finales. Para llegar a dicho obje-
tivo existen distintas posibilidades entre los que destacan técnicas de podaje o
pruning y técnicas de cuantización. La primera variante se centra en reducir las
conexiones o neuronas de las diferentes capas que forman las redes neuronales.
Para ello, se establece una poĺıtica de relevancia para establecer una orden entre
distintos componentes que prioriza la eliminación de ciertos componentes por
encima de otros. Finalmente, se eliminan los componentes menos relevantes en
el resultado final, acelerando la capacidad de respuesta del modelo resultante y
reduciendo su tamaño. En el segundo, los pesos que representan las conexiones
entre neuronas al estar representados en formato de cierta cantidad de bits, es-
tos pueden reducir el tamaño que ocupan en la memoria al utilizar un número
de bits menor. Esto se consigue al reducir el número de bits utilizado para su
representación con la consiguiente reducción de precisión del modelo.

Al ver que en la literatura el uso de técnicas de podaje era el predominante
con el objetivo de preservar la capaccidad de predicción del modelo resultante
y reducir la memoria que ocupa en el dispositivo final, optamos por mejorar
alguna variante que ofreciera resultados subóptimos en términos de eficiencia
y precisión. La descomposición en valores singulares (SVD), ha ofrecido una
reducción en la memoria significativa al reducir la dimensión de la matriz rep-
resentante de una capa formante de una red neuronal en otras tres matrices de
considerable menor tamaño. En estas matrices los valores de mayor relevancia
se colocan en las primeras filas y columnas y conservando solo etas, se consigue
una mayor reducción de tamaño del modelo resultante. No obstante, la relevan-
cia de cada componente puede ser determinado por distintos criterios, que en

vi

este caso el que mejor resultado ofrece es el coste. Este último es la diferencia
que ofrece el modelo resultante en cuanto a la precisión se refiere cuando al
modelo se le elimina dicho componente comparado con la precisión del modelo
original. Aśı, los elementos de mayor coste son los que preservan en el modelo
final.

A pesar de ser una técnica con un rendimiento alto en varias bases de datos
abiertas, es verdad que las capas de las redes neuronales no son independientes
entre śı, y que la técnica previamente mencionada no tiene en cuenta la relación
existente entre estas capas. Por ello, en el primer trabajo que constituye esta
tesis se utiliza la idea de que las relevancias de los componentes de distintas ca-
pas están relacionadas por las interconexiones entre ellas. Es decir, la relevancia
de un componente de una capa no viene dada por su relevancia individual sola-
mente, sino que también influyen las conexiones con los componentes de otras
capas subyacentes y las relevancias de los componentes de estas capas. Las rele-
vancias de los componentes se propagan hacia atrás empezando por la capa final
de una red neuronal a través de las conexiones con los componentes de otras
capas.

Para verificar nuestra hipótesis se realizó una comparación con otro trabajo
de la literatura que utilizaba una optimización de la descomposición de los val-
ores singulares de las matrices representantes de una capa de la red en varias
bases de datos abiertas. Se vio que en ciertos casos nuestra alternativa ofrećıa
un resultado mejor pero que en otros la versión de la literatura ofrećıa un mejor
rendimiento.

En el segundo trabajo, el objetivo principal ha sido el establecimiento de
una técnica de distribución de tareas entre computadores constituyentes de la
capa Edge e IoT en una área de red local. Al no llegar a la precisión pretendida
por las aplicaciones utilizando técnicas de reducción de los modelos utilizados
en el primer objetivo, la distribución de tareas entre distintos computadores con
mayores prestaciones que los dispositivos finales es una alternativa eficaz que
ofrece un tiempo de respuesta aceptable sin reducir los modelos utilizados para
la ejecución de las tareas. Aunque la solución propuesta en este segundo trabajo
en un principio puede dar la impresión de que no puede tener ningún inconve-
niente, es verdad que en determinadas situaciones en las que los dispositivos
finales env́ıan varias tareas a la vez a estos computadores Edge, estos últimos
pueden sobrecargarse y no ofrecer la respuesta requerida por los dispositivos fi-
nales en sus respectivas tareas. Para evitar estos conflictos es preciso el empleo
de una poĺıtica de descarga de tareas que garantice la ejecución de todas las
tareas en la latencia requerida, a la vez que evite la sobrecarga de determinados
computadores y evite la congestión de tráfico de la red.

Los grafos, compuestos por nodos y arcos que unen estos nodos se asemejan
mucho a la arquitectura de una área de red local. Debido a esta similitud, en el
segundo trabajo se optó por utilizar las redes neuronales basadas en grafos para

vii

determinar en cada situación el destino óptimo de descarga de una tarea dentro
del área de red local. Los nodos representaban los computadores y los arcos
las interconexiones entre estos. Las caracteŕısticas de los nodos veńıan deter-
minados por las caracteŕısticas computacionales (capacidad de procesamiento,
memoria, etc.) y por las caracteŕısticas de las tareas (longitud de la tarea y
latencia), y las caracteŕısticas de los arcos por la valoración del arco, que es
la relación entre las tareas ejecutadas satisfactoriamente utilizando la conexión
como v́ıa de descarga, y todas las tareas descargadas utilizando dicha conexión.

Sin embargo, el aprendizaje por refuerzo o Reinforcement Learning ofrece
la posibilidad de considerar los últimos cambios del entorno a analizar con la
consiguiente mejor interpretación de este. Por ello, se utilizaron en paralelo
técnicas de Deep Q-Network que aplica el uso de redes neuronales en el ámbito
del aprendizaje por refuerzo. El aprendizaje por refuerzo se basa en un agente
y su entorno, en el que el agente a través de su poĺıtica de decisión determina la
acción óptima a tomar en cada instante y recibe del entorno el siguiente instante
y la recompensa por la acción tomada. La optimización se centra en maximizar
la recompensa acumulada a través de las consecutivas acciones tomadas en el
entorno. En esta casúıstica, las posibles acciones son los posibles destinos de
descarga de las tareas, la recompensa positiva en caso de cumplimiento de la
tarea en la latencia requerida y negativa en caso contrario, y las caracteŕısticas
que determinan el entorno seŕıan las caracteŕısticas de los computadores, las
caracteŕısticas de las tareas y el estado de los computadores y la red.

Las dos alternativas propuestas se compararon utilizando un simulador de
computación en Edge llamado PureEdgeSim, frente a las poĺıticas de descarga
que tiene por defecto el simulador. Se compararon el rendimiento obtenido por
las distintas técnicas y la distribución de tareas entre distintas capas, entre otras
métricas. Se vio que en casos en los que entre los dispositivos finales se encon-
traban los computadores Edge se obteńıan los mejores resultados. Al contrario,
cuando el destinatario era un servidor remoto de la nube, los resultados estaban
lejos de ser los óptimos debido a que en varias tareas el requerimiento de la la-
tencia no se cumpĺıa por el atraso acarreado al atravesar la red entre la conexión
entre el dispositivo final y el servidor. Al aumentar los dispositivos finales que
requeŕıan el uso de otros computadores más potentes para la ejecución de tareas
asignadas a ellas, se véıa un aumento de tareas ejecutadas entre los dispositivos
finales al no disponer de suficientes computadores Edge para tantas tareas. En
estos casos, las poĺıticas de descarga propuestas eran capaces de distribuir las
tareas más complejas entre los computadores Edge y las más simples entre los
dispositivos IoT. Ambas alternativas propuestas mejoraban el rendimiento ofre-
cido por las poĺıticas por defecto del simulador, la basada en el aprendizaje por
refuerzo siendo superior por su capacidad de consideración de los últimos cam-
bios en el entorno.

En el último trabajo que constituye la tesis, se utilizaron técnicas de agru-
pamiento y redes neuronales basados en grafos para ofrecer un nuevo conocimiento

viii

en el ámbito del Smart City partiendo de simples métricas de actividad de los
ciudadanos en los alrededores de diferentes tipos de edificios. Los sensores colo-
cados en frente de los edificios contabilizaban los pasos de los peatones, que con
un preprocesamiento de los datos previo se obtuvieron medias de estos durante
distintas franjas horarias. Utilizando este tipo de información se consigue clasi-
ficar los distintos tipos de edificios basándose en la actividad de los ciudadanos
en distintas franjas horarias de distintos tipos de d́ıas (semanales o de fines de
semana) y la tipoloǵıa de los edificios circundantes.

Al disponer de una gran cantidad de caracteŕısticas por sensor, al disponer
de medias en franjas horarias de dos horas por dos tipos de d́ıas, lo preciso es
reducir la dimensionalidad de la problemática utilizando diversas técnicas. En
este trabajo se optó por utilizar la técnica de Análisis de Componentes Prin-
cipales (PCA) para reducir las caracteŕısticas que representan a cada sensor.
Acto siguiente, se llevaron a cabo dos agrupamientos basándose en dos criterios.
El primero se basó en las medias de las activaciones de estos sensores en las
franjas horarias de los diferentes d́ıas, y el segundo se basó en el número de
edificios circundantes en un radio de 300 m desde cada sensor.

Con la finalidad de optimizar las agrupaciones obtenidas en el proceso de
agrupamiento, se empleo el entrenamiento de la red basada en el grafo para
obtener un agrupamiento más diferenciador que en los procesos previos. Los
nodos constituyan los sensores, las caracteŕısticas de los nodos las activaciones
medias de los sensores en las distintas franjas horarias, y las caracteŕısticas de
los arcos las inversas de las distancias entre sensores, para incluir el componente
de la tipoloǵıa de los edificios circundantes.

Para verificar la bondad de los agrupamientos, se emplearon modelos de
aprendizaje supervisado atribuyendo como etiqueta el grupo asignado a cada
sensor en el proceso de agrupamiento. Atendiendo a la precisión obtenida por
el modelo, se verificó la bondad de los agrupamientos, viendo que el proceso
que atend́ıa a la tipoloǵıa de los edifcios circundantes era superior al otro pro-
ceso de agrupamiento. Del mismo modo, la validación del grafo se llevó a cabo
dividiendo los sensores de cada grupo en ejemplos de entrenamiento y testeo,
obteniendo las mismas métricas de rendimiento que en el proceso de validación
anterior. Se vio en los resultados que el agrupamiento basado en la tipoloǵıa de
los edificos circundantes era superior al resto, también a la alternativa que haćıa
uso de las redes neuronales basadas en los grafos, este último ofreciendo una lig-
era mejoŕıa respecto al agrupamiento basado en la actividad de los peatones.

Como conclusión, en el primer trabajo se vio que la relevancia de los com-
ponentes entre distintas capas podŕıa tener su impacto en el resultado final a la
hora de determinar los elementos menos representativos para el podaje de una
red neuronal. A su vez, ambas técnicas contrapuestas eran costosas en tiempo y
recursos computacionales, y el criterio que menos timpo y recursos requeŕıa para
determinar los elementos a podar podŕıa basarse en solamente atender la mag-

ix

nitud de los pesos de las matrices. En el segundo trabajo, aunque los resultados
eran satisfactorios, no se pordŕıan comparar directamente con otros trabajos de
la literatura al disponer de entornos totalmente diferentes y experimentos dis-
tintos. A su vez, seŕıa preciso contar también con el consumo energético de los
computadores como caracteŕıstica diferencial a la hora de establecer la poĺıtica
de descarga entre distintos puntos de computación. En el tercer trabajo, al
disponer de una información novedosa y relevante en el ámbito de una ciudad
inteligente, se podŕıa emplear el nuevo conocimiento generado como punto de
partida para una óptima distribución de enerǵıa y alumbrado entre distintos
tipos de edificios.

x

Abstract

This thesis has been focused on the topic of Machine Learning, where we have
been working on the refinement of different methods from the literature, and
diverse applications related to Smart Cities and Edge Computing. Precisely, the
main contributions have been made by improving algorithms to ease their com-
putation in resource constrained devices, establishing policies for orchestrating
load distribution between these devices and the acquisition of new knowledge
based on the data obtained by these devices through long periods of time, open-
ing the way to novel applications.

The first work focuses on the refinement of methods for reducing the Neu-
ral Networks on resource constrained devices. Due to the lightweight nature of
these devices it is not viable to carry out computation of these algorithms on
them, so that, variants for reducing or modifying these algorithms have been
proposed. The principle of backpropagation of the relevances of components of
the network has been imposed to a relevant work from the literature to offer a
new way for shrinking Neural Networks.

The second contribution is related to the paradigm of offloading of tasks in
Edge Computing between different computation centers. The offloading pol-
icy that ensures load balance and computation of all tasks within the required
latency is pursued. We have implemented a Graph Neural Network for re-
producing the local network structure, including the devices’ properties and
network state as features of the graph. In parallel, we used the RL technique
Deep Q-Network due to the constant updates of the network environment, and
the ability of RL algorithms to learn these constant changes of the networking
environment. We tested both task offloading policies in a well-known simulator,
and we outperformed the default policies of the simulator.

The last work consists of a novel application for Smart Cities based on the
readings of sensors located outside different buildings in a city. These data,
collected over several months, was a source of new knowledge about the essence
of these buildings. Sensor reading patterns reflect the pedestrians activity in
these buildings. Consequently, a classification of buildings was achieved based
on the typology of buildings surrounding these sensors and the pedestrians’
mobility pattern at different time intervals of different days of the week.

xi

Contents

1 Synthesis 1
1.1 Introduction . 1
1.2 Theoretical framework . 7
1.3 Objectives & Research Methodology 15

1.3.1 General objectives . 15
1.3.2 Research methodology . 15
1.3.3 Specific objectives . 16

1.4 Discussion of results . 31
1.4.1 Neural Network Reduction 31
1.4.2 Offloading of tasks in the Edge 32
1.4.3 Cooperation of Edge devices 35

1.5 Relevance of Results . 38

2 Conclusions & Discussion 40

A Articles 49
A.1 SLRProp: A Back-Propagation Variant of Sparse Low Rank Method

for DNNs Reduction . 49
A.2 Task Offloading in Edge Computing using GNNs and DQN . . . 64
A.3 Graph Based Learning for Building Prediction in Smart Cities . 88

xii

List of Acronyms

AI Artificial Intelligence
AUC Area Under the ROC curve
BOSME Bayesian network-based over sampling method
CNN Convolutional Neural Networks
CPU Central Processing Unit
DL Deep Learning
DNN Deep Neural Networks
DQN Deep Q-Network
DT Decision Tree
EC Edge Computing
FC Fully Connected
FN False Negatives
FP False Positives
FPR False Positive Rate
FRL Final Response Layer
GB Gyga Byte
GCN Graph Convolutional Neural Networks
GNN Graph Neural Networks
HAIS Hybrid Artificial Intelligence Systems
HCD Highest Computing Device
HDR Highest Data Rate Offloading
ICMSLE International Conference on Statistics and Machine Learning
IEEE the Institute of Electrical and Electronics Engineers
IoT Internet of Things
ITS Intelligent Transportation Systems
JIF Journal Impact Factor
MDPI Multidisciplinary Digital Publishing Institute
MIP Millions of Instructions per Second
ML Machine Learning
MLP Multilayer Perceptron
NN Neural Networks
PCA Principal Component Analysis
RAM Random Access Memory
RF Random Forest

xiii

RL Reinforcement Learning
RT Real-Time
SVD Single Value Decomposition
SLR Sparse Low-Rank Method
SVM Supported Vector Machine
TB Tera Byte
TN True Negatives
TP True Positives
TPR True Positive Rate
Wh Watt-hour

xiv

List of Figures

1 Fields of use of IoT devices . 2
2 Overview of a Smart City . 3
3 Subcategories of Machine Learning. 5
4 Different layers of a network . 8
5 Graphical representation of a Neural Network 10
6 Single Value Decomposition . 18
7 Overview of the training procedure of DQN. 24
8 Overview of the entire process. 26
9 Cumulative explained variance for the Melbourne building fea-

ture based case and pedestrians with mean hourly mean count
feature based case. 29

10 Task distribution with different algorithms and number of Edge
devices . 34

11 Success rates with different algorithms and number of Edge devices 35
12 Clustering based on the typology of buildings. Black points indi-

cate the centroids of each cluster. 36

xv

List of Tables

1 SLR vs. SLRProp accuracies for different datasets. 32
2 Success rate of different algorithms including different type of

destiny devices (10 Edge devices). 33
3 Success rate of different algorithms including different type of

destiny devices (20 Edge devices). 33
4 Success rate of different algorithms including different type of

destiny devices (30 Edge devices). 34
5 Performance metrics for Building typology dataset based clustering. 37
6 Performance metrics for time-interval mean activation dataset

based clustering. 38
7 Comparative of results with the literature. 39

xvi

Chapter 1

Synthesis

In this synthesis Chapter an overview of this thesis is given to ease the un-
derstanding of it. The subject of the thesis is presented in this Section and
theoretical insights are given as well. General objectives are defined and the
results obtained in the works developed during the thesis are summarized. The
Chapter is organized as follows: Section 1.1 introduces the readers to the topic
of research. Section 1.2 gives a more detailed overview of the theoretical frame-
work. In Section 1.3 general objectives of research are described and the results
obtained through the investigation are summarized in Section 1.4.

The rest of the thesis follows this division: Chapter 2 introduces the conclu-
sions made after the entire investigation have been carried out. Finally, in the
Appendix Chapter the published papers of the works that make up the thesis
are attached.

1.1 Introduction

During the last decades the use of Internet of Things (IoT) devices has
drastically increased, in such a way that we can nowadays find in any scenario
at any moment tens of devices of these nature surrounding us. IoT devices
are atypical computing devices that have the ability to connect wirelessly to a
network and transmit data. These are intended to respond to different events
of the environment where they are located, sense different parameters or collect
data related to those events or parameters. Examples of such devices could be
found in a Smart Home (different devices interact with each other to offer
conveniences to the residents), in a Smart Building (smart sensors could give
an updated state of all available halls) or in a Smart Factory (sensors could
provide information about anomalies in an assembly plant). In the same way,
there are other type of devices called Edge Datacenters in a local networking
area such as gateways, which offer different services like communication with a
cloud remote server, routing of network traffic or aggregation and preprocessing

1

Figure 1: Fields of use of IoT devices
Source: Alghofaili, Y.; Rassam, M.A. A Trust Management Model for IoT

Devices and Services Based on the Multi-Criteria Decision-Making Approach
and Deep Long Short-Term Memory Technique. Sensors 2022, 22, 634.

https://doi.org/10.3390/s22020634

of data among others. These devices reduce latency and optimize bandwidth
compared to the cloud servers, becoming an interesting alternative for different
applications. In this PhD thesis paradigms related to computation of tasks in
resource constrained devices have been studied in depth.

Due to the reduced size of these IoT devices, it is non-viable to provide
them with long memory and processors with high capabilities, among other
resources. The nature of these devices requires minimal resources to preserve
their lightweight essence, but being capable to respond immediately to different
events. Consequently, in the majority of the cases these devices need to offload
their tasks to more powerful computers that are provided with sufficient memory
and high-powered processors. However, there are some cases in which it could
be interesting to carry out more complex calculations without sending them to
a remote server. Modifying the algorithms used to solve the tasks assigned to
these tiny devices is one of the alternatives to achieve it.

Instead, in other scenarios where there are powerful Datacenters close to the
IoT devices that can alleviate the workload on these tiny devices, the offloading
of tasks from source devices to more resource rich computers offers multiple

2

Figure 2: Overview of a Smart City
Source: https://www.mercadoit.com/blog/noticias-it/smart-city-

sostenibilidad-para-todos/

benefits. Task offloading can be defined as the transfer of resource-intensive
computational tasks to an external, resource-rich platform such as the ones
used in Cloud or Edge[1]. One of them, is the possibility to compute complex
models without the need to adjust these architectures. However, establishment
of an optimized orchestration between different devices is essential to alleviate
the workload on them. Otherwise, some Datacenters would collect too many
tasks facing the overloading issue.

Smart Cities and Smart Buildings are becoming increasingly more popu-
lar terms in the society. These are entities that use technology to enable efficient
and economical use of resources. Finally, possible potential applications are de-
scribed and analyzed. Collection of data through long periods of time could be
a potential source of information for obtaining valuable and novel knowledge in
Smart Cities and Smart Buildings.

The use of IoT devices is increasing exponentially in different areas such
as Smart Cities, Smart Home or Healthcare among others. The optimization
of their use is a fundamental issue as an enhanced performance would benefit
users and the environment. From a wide range of conveniences that metropoli-
tan areas could obtain from these applications to the breakthroughs that have
been making in medicine, there are a multitude of benefits that developing of
different algorithms to adequate into the application and the environment in
which they are supposed to be run brings with it.

3

Different applications that are assigned to these type of devices solicit the
use of statistical methods and algorithms. To this end, Artificial Intelligence
(AI) is the way to achieve the desired solution on these applications. In the
summer of 1956 at the Dartmouth College convention, John McCarthy defined
the AI like ”the science and engineering to make intelligent machines”. Machine
Learning (ML) was launched in 1959 [2], being a subcategory of AI in the field
of Computer Science that makes use of Mathematics and Statistics, to give
computers the ability to learn. Thus, ML is a subarea of the AI that connects
Computer Science with the Mathematics and Statistics. Within ML there are
different subcategories that are the following:

• Supervised Learning learns a function that connects input data to out-
put data based on training input-output instances. Its main purpose is
the task of prediction of one or various output variables starting from the
input variables, using a model that learns a relationship between instances
whose inputs and outputs are known. Different types of Supervised Learn-
ing algorithms could be found that are divided in two main groups. The
classification algorithms cover all the algorithms whose output values are
limited within a set of values. The regression algorithms cover all the
algorithms that the outputs can have continuous values within a range.

• Unsupervised Learning covers all the algorithms that find the struc-
ture or the relationships between different variables of a dataset, finding
relationships and dividing the instances into clusters. In this case, the
instances are not labelled.

• Reinforcement Learning (RL) is the subcategory that concerns with
how agents should take actions in an environment with the objective of
maximizing a cumulative reward. The two main elements are the environ-
ment, which is the representation of the problem to be solved including
all the components that are involved in the paradigm in question, and the
agent, the algorithm that is going to be learned.

Among the different possibilities of Supervised Learning, and more specif-
ically classification algorithms, Deep Learning (DL) techniques are of special
interest where Neural Networks (NNs) are its main algorithm. NNs trains
computers to process data in a similar way that human brain does. The use of
Deep Neural Networks (DNNs), which are feedforward network with mul-
tiple hidden layers, in different environments and other architectures related
to ML has emerged in such a way that currently NN designs have billions of
parameters with a great capability of prediction, being one of the most used
type of architecture in prediction tasks. Among others, some of those applica-
tions include image, sound, and textual data recognition. In contrast to other
ML algorithms, the DNNs have achieved a remarkable accuracy in many sce-
narios. However, the use of these networks in memory and processing resource
constrained devices becomes complicated due to the amount of data needed to
develop these architectures and the high computation costs for training them.

4

Figure 3: Subcategories of Machine Learning.

In many cases, there are different alternatives to tackle these problems, starting
from sending tasks’ information to other powerful computation centers to modi-
fying the tasks themselves or the tools required to solve the tasks, as mentioned
above.

Within the Supervised Learning methods as well there are other approaches
very interesting like Graph Neural Networks (GNNs). A Graph is com-
posed of a set of nodes(V) and edges(E), represented by G(E, V), whose data
structure is non-linear. The edges connect any two nodes in the graph. Any
system consisting of space and time structural relationship information can be
contemplated as a space-time graph. NNs can deal with static structures and
time-varying features of the graph.

G = (V,E,Xv(t), Xe(t))

These NNs are trained to carry out time series analysis using the time-
varying characteristics of the graph. In the area of ML time series analysis,
time series data sets are different from spatial data because they are causally
consistent, meaning that data from the past is highly correlated with data from
the present and future. A Graph Convolutional Network (GCN) differs from
GNN that the NN that handles its features is a Convolutional Neural Network
(CNN). The operation of convolution multiplies the input neurons with a set of
weights that are known as filters or kernels. The filters across the whole input
and enable CNNs to learn features also from neighboring cells acting as a sliding
window. Within the same layer, the same filter will be used throughout image,
this is referred to as weight sharing[3].

5

The objective of this thesis is to focus on the solutions to the computational
incapacities [4] faced by these devices that could be different IoT devices, such
as sensors, actuators or small devices among many others. At the same time,
the collaboration of IoT devices could be beneficial for different reasons, like
reduction of latency [5], computational costs, enhancement of performance or
possibility to offer new services that would not be possible separately[6].

Furthermore, the cooperation of these devices would be a great resource
from a wider perspective. The combination of data collected by these devices
could be a source of new knowledge offering new opportunities to different type
of entities. For instance, in a Smart Building or a Smart City, Real-Time (RT)
measurements from sensors could give to the users information about the actual
traffic situation or agglomerations of citizens. Therefore, people could avoid
different traffic routes or overcrowded streets. In a Smart Building the coop-
eration of sensors and actuators make the lifestyle of residents convenient by
providing an optimal use of household appliances and autonomous regulation of
these, achieving the desired conditions previously imposed.

For these reasons, this work extends the literature giving new alternatives to
cover the benefits mentioned above. Some of them are focused on reducing the
dimension of the architectures [4] used for offering the service themselves with-
out relegating different tasks to other devices and others on reorganizing the
load distribution between different computation centers in a local networking
area [5]. Different strategies have been proposed and many other applications
are studied. The use of these techniques reduces the time needed to respond
user’s needs compared to the centralized models where all intensive tasks are
transmitted to the cloud servers. Similarly, the overall performance of each ap-
plication is enhanced, ensuring the achievement of the required latency and high
accuracy. Moreover, security is guaranteed avoiding excessive network traffic,
these transfers frequently being victims of intrusion attacks.

Last but not least, in Smart Cities the continuous measurements made by
sensors stored for long periods of time, offer valuable information to different
entities. These could obtain diverse type of benefits depending on the area they
work. Citizens’ pedestrian activity patterns can give an insight of typology
or essence of each street, building, urban area, etc. This information used
in an intelligent way can enhance these entities’ performance. For instance,
strategical locations could be discovered following this methodology, having a
positive impact on these entities. Long-time sensor readings can give an insight
of future natural and social incidents. Attending these with enough precocity
would avoid major disasters. Similarly, conflicting areas could be uncovered
and entities like local police must focus their effort on these areas when it
comes to security. Different urban conflicts should be resolved with less effort
anticipating them, like strikes, football hooligan battles or other criminal acts.
In addition, citizens’ life quality is improved by offering new opportunities with
the information and knowledge provided by the tools presented in this thesis[6].

6

1.2 Theoretical framework

Smart Cities are entities that carry out intelligent management of resources
and infrastructure to optimize their use, promote sustainable development and
improve the lives of citizens. Predictive models make it possible to anticipate
where and when a situation of saturation of public services (demand peaks) or
underuse of them will occur. Temporal and geographical predictions on the be-
havior of users of public services are the key to effective management of energy
distribution services (electricity, gas, district heating...), water management,
garbage collection and even aspects related to emissions into the atmosphere
and pollution, among others, and to anticipate demand. The identification of
the different patterns of use of these services based on historical data facili-
tates their prediction and subsequent management. Furthermore, in addition
to geographical and temporal relationships between data, there are also inter-
relationships between the usage patterns of different services that graph-based
data structures are capable of representing and quantifying. Similarly, pedes-
trians patterns of mobility could give an useful information about the location
and timing of potential crowds.

Management and decision-making tools based on AI algorithms have great
potential to offer new and more efficient services to improve people’s living con-
ditions. These tools are possible thanks to the collection of information from the
physical environment in RT through the IoT and the fusion of a big quantity of
data from heterogeneous sources (Big Data). Among the different data sources,
in addition to the installed sensors, there is free access information or Open Data
and the contextual information associated with the data, mainly space-time but
also the relationship between the different variables. The collaborative use of all
of these type of data would bring various benefits to the citizens, starting from
reduction of energy and pollution to optimized public services. Security would
also be enhanced with an adequate extraction of knowledge from the sources
already mentioned.

The use of sensors, actuators or other type of IoT devices offer useful in-
formation to the users, RT response and provide information to higher level
computing centers for more complex tasks. On the other hand, DL models re-
quire high computability for the training phase and a big amount of available
memory to store their parameters for the latter inference. Consequently, IoT
devices cannot store such amount of data and train deep models, needing to ad-
just data and model sizes or send these assignments to more powerful devices.
These could alleviate the issue of lack of resources faced by IoT devices, offering
them an alternative to carry out a diversity of tasks[1].

In an architecture of different computing centers in which we can distinguish
different layers depending on the computational complexity of each component
of the network. There are many criteria for dividing layers and we can find
different sparsification levels in these layer classifications. All of these, include

7

Figure 4: Different layers of a network
Source: PureEdgeSim: A simulation framework for performance evaluation of

cloud, edge and mist computing environments - Scientific Figure on
ResearchGate. Available from:

https://www.researchgate.net/figure/The-task-offloading-flow-and-the-role-of-
the-orchestrator-It-consists-of-the-followingf ig4347134683

a cloud level in which there is a general resource-rich network remote servers
with ability to store, manage and process data. It offers appropriate automation
tools that could be useful in many cases. Moreover, it is equipped with com-
puting resources that are totally configurable, with possibility of release with a
minimal management effort.

In contrast, the lowest level where sensors and IoT devices could be found is
referred as IoT layer. These devices are equipped with restricted computing ca-
pabilities but offer immediate response to the users. Meanwhile, between them
we can define other layers such as Fog and Edge layers with computers provided
with higher capabilities than the previous ones, but with less processing capac-
ity and memory than the cloud. However, they are usually located close to the
IoT devices, which is a clear advantage for various reasons such as latency and
security among others.

The IoT devices are not equipped with as much complex architectures as
other higher-level computing centers such as cloud servers or Edge Datacenters.
Although the level of compression is very high on these devices, they still lack
of sufficient space to store large memory and powerful [7]. As a consequence,
they are not able to carry out tasks that are far more complex than giving a

8

simple measurement or giving an immediate response to a certain input. These
tasks include calculating derivatives of first and second order or iterative loops
that can carry a very long time to execute in a simple processor. Oppositely
in a high capacity multiprocessor computer, parallel computation and greater
speed ease the execution in a considerably faster way than in the previous case.
The storage of millions of parameters needed to describe DL models is viable
in these devices equipped with sufficient memory. On the contrary, due to the
high number of components needed to constitute DL models is not possible to
carry out inference process of such models in IoT devices, not at least in their
original version.

Instead, at the other end there is usually a cloud server without problems
of memory availability and very high processability in every networking envi-
ronment. The weakness of using this alternative is that the transmission of
information from IoT devices to the cloud carries certain time delay and possi-
ble loss of information through the network[8]. This loss could be a consequence
of loss of connection or other type misinformation of messages. Not only infor-
mation could be incomplete or with errors, but also it would be a potential
victim of intrusion attacks. According to [9] in the digital world, malicious
activities that violate the confidentiality, integrity, or availability of data and
devices are known as intrusions. The vulnerability is higher when the time
that the information is exposed through the network increase, and that is the
reason why transferring to the cloud confidential information is not the appro-
priate election. On the contrary, IoT devices do not spose information through
the network when they attend any task, becoming the safest option. The la-
tency required by many applications also preclude the use of cloud as the final
computing center due to longer time delay. The essential requirement of RT
computation is the immediate response, and that is impossible to achieve us-
ing cloud computation. Consequently, there is no other choice than completing
these tasks in IoT devices or at the most in the closest Edge Datacenter.

However, the ML architectures designed for carrying out diverse type of
tasks could be modified while preserving their efficiency and accuracy to a large
extent. Reduction of the amount of parameters that represent the models is
a possible way for achieving it, reducing the information used for representing
these parameters or by modifying the structures of these architectures [4]. By
this way, a reduction in size of these models is achieved, reducing the size of data
needed to represent their components as well. Finally, the modified versions of
models could fit in the mentioned resource constrained devices and they could
avoid the lack of memory problem. Although the processors of these devices will
continue being much weaker than those in the cloud and Edge Datacenters, this
modifications facilitate the execution of diverse tasks without offloading to more
powerful devices with the advantage that this implies in terms of immediateness
of response and security.

9

Figure 5: Graphical representation of a Neural Network

Among supervised ML architectures, one of the most used and successful
is the NN. NNs are composed of neurons and connections. Each of them have
assigned a weight that is modified as learning goes forward. If the weight in-
creases or decreases, the signal strength of a given connection does the same.
A threshold should be established for each connection such that a signal is sent
only if the aggregated signal surpasses that threshold. NNs are trained using
labelled instances, each containing a known input” and output(label), forming
probability-weighted associations between this pairs, that are stored within the
data structure of the network itself. The training of the network from a set of
examples is carried out by calculating the difference between the inferred output
of the network (prediction) and a target output, this difference being the error.
Consequently, the network adjusts its weights using the error value and in accor-
dance with a learning rule. After several iterations, on which many refinements
of the weights take place, the NN will produce the desired output that should
be similar to the target output. The training would be terminated based on cer-
tain criteria. A graphical representation of this architecture is given in Figure 5.

One of the most used and effective ways to reduce the dimension of these
networks is the use of techniques such as pruning and quantization. The first
one consists of removing elements (neurons or weights) that have negligible con-
tribution in the final result or prediction. The criteria followed to decide which
parameters have to be removed is often complex. On the other hand, quanti-
zation involves replacing different data types to reduced width data types, by
transforming data to fit into new data types’ shapes. As a result, resultant
networks are able to emulate the performance of the original ones and even
improve these in some cases in which overfitting issues were hindering their pre-

10

dictability. Additionally, by reducing the width of the data, IoT devices could
face the storage issue mentioned above and collect datasets and parameters of
these networks in constrained memory sizes.

Having knowledge about which of the elements of the original network are
the most adequate to prune is not straightforward. A good criteria to select
components to prune from the original network is the use of the derivatives of
the Hessian matrix [10][11] or Taylor expansions [12][13] of first order to ap-
proximate the change of loss in the objective function as an effect of pruning.
Attending the magnitude of the components or weights of each layer of the net-
work [14][15] is a good criteria to lighten the original layers of the network as
well. Low-rank decomposition for convolution layers as well as fully connected
layers were applied in several works [16][17][18].

Other alternative to carry out ML tasks with latency requirements success-
fully and avoiding excessively long network transmissions that take place when
the tasks are sent to the cloud, is the offloading of tasks to near-by available
computing centers equipped with sufficiently strong processors and large mem-
ories. When IoT devices are assigned to execute certain computation but they
are not equipped with sufficient resources or they are overloaded, they have the
opportunity to transmit through the network their assigned task to other more
powerful devices thanks to the interconnectivity between different computers
and gadgets. The destinies of these offloaded tasks could be other Edge Data-
centers that offer the possibility to temporarily store data. Less interesting is
the option of transferring the tasks to the cloud server, due to the reasons men-
tioned above. In some cases, there are other gadgets in the IoT layer that have
sufficient capabilities to respond certain type of tasks’ needs, being potential
destinies for these type of jobs.

Proper offloading strategy is crucial to avoid situations in which in an ar-
chitecture certain computers absorb all the tasks of the end-user devices sur-
rounding it. As a result, several tasks may not be executed or may be executed
with certain delay. To avoid such a situation, load balance between computing
Datacenters should be guaranteed and all tasks should be successfully executed.
In some scenarios in which latency requirements are much more flexible, cloud
servers could provide the same functionality of Edge Datacenters, with higher
computability but with longer network transmission. Although this would carry
a relaxation of load between Edge Datacenters, these strategies are more prone
to suffer from intrusion attacks and network failures. In contrast, Edge Data-
centers have sufficient available memory and proccessability for the majority of
the assigned tasks and they are located closer to the users. As a consequence,
shorter time delay and higher security and safety have a positive impact on
the final applications’ performances. With an optimized orchestration strategy,
tasks should be equally distributed between all available Edge Datacenters, as-
signing more tasks to the ones that have more free memory space and whose
processor is less loaded.

11

According to the traditional time series analysis, various analysis can be
performed on the data such as plotting correlation and autocorrelation plots,
time domain vs frequency analysis, state estimation over time, etc. [19]. clas-
sify into multilinear regression models (ARIMA), models based on NNs (CNN,
RNN) [20][21] and GNNs [22]. GNN applications applied to spatio-temporal
predictive models are listed below:

• Since these networks are capable of capturing spatial and temporal pat-
terns of the graph, they can be used in various applications in intelligent
transportation systems (ITS), such as route planning, navigation, and
traffic control and management.

• Due to the ability to handle large amounts of information, spatiotempo-
ral GNNs can be used for forecasting, conflict prediction, and pandemic
prediction.

• In RL, we can use these NNs to predict the future states of agents consid-
ering the social influence of other agents.

• These networks can also be used in successful inventory planning and
logistics cost optimization for online marketplaces.

RL itself also offers potential to achieve knowledge from the environment,
and apply this knowledge to make decisions[21]. RL is a general framework
where agents learn to perform actions in an environment so as to maximize a
reward [23].

The agent and environment continuously interact with each other. At each
time step, the agent takes the optimal action (at) that maximizes the sum of
rewards on the environment based on its policy π(at | st), where st is the current
observation from the environment, while receives a reward rt+1 and the next
observation st+1 from the environment depending on the action taken(at). The
goal is to improve the policy so as to maximize the sum of rewards (return).
The dynamism of many real world environments make this DL branch very suit-
able to use in such environments. The constant changes that may appear in a
Smart City or a Smart Building have a consequent downgrade of performance
in the models that work on them if these constant variances are not considered.
These constant updates that will be the nature of learning process of the RL
techniques, ensure consideration of the latest modifications of the environment
in which the application takes place. As a result, a better representation of
the problem is guaranteed and a better policy should be obtained following this
learning process.

When the environment that is to be learned is simple, an optimal policy
that guarantees good results is easily achievable. However, when there are many
possible states and several type of actions, there are more complex approaches

12

that are better suited to the problem at hand. Combination of NNs and Q-
Learning, which is a model-free RL algorithm that determines the value of a
given action in a given state of the environment, was proposed as an alternative
to the original version, offering a new way of obtaining the optimal policy. The
Deep Q-Network (DQN)[24] is composed by two NNs, the first one represented
by the θ parameters, for estimating the Q values of the action a and the second
one represented by θ′ for estimating the Qt+1 values of the next state st+1 and
action at+1. The learning process takes place in the first network or the principal
network, and after a number of iterations the values obtained are copied to the
second network which has been fixed for those iterations. Using the Bellman
optimality equation (see Equation 1) as a repetitive refresh, convergence of the
Q function is ensured.

Qi+1(st, at) = E[r + γ ∗maxat+1
Qi(st+1, at+1)] (1)

Using the NNs approximation can be done using θ parameters and minimizing
the loss function. Here, the The discount factor γ states the influence of future
rewards.

Li(θ) = Est,at,r,st+1 ρ[(yi −Q(st, at; θi))
2] (2)

yi = r + γ ∗maxat+1
Q(st+1, at+1; θi−1) (3)

From a broader perspective there are many possible applications that use of the
information derived from IoT devices. In a Smart City, sensors act as data accu-
mulators, sensing different events of the environment in which they are located,
such as traffic incidents or pedestrians’ mobility, and transmitting these data
to more powerful servers. The measurements of these devices should be stored
in a Datacenter or a remote server from which valuable information would be
obtained to enhance citizens lives. Nonetheless, the continuous activity of these
devices needs a constant supervision and an appropriate energy management.
The simplicity of these devices carries frequent breakdowns and other problems
that needed to be supervised and repaired by experts. As if that were not
enough, vandalism attacks occur often in conflicting areas, becoming essential
a constant supervision of these gadgets.

Predictions about citizens’ lifestyles and mobility patterns could be useful
for different end users. The sensor measurements data stored for a certain
period of time could give an insight about the pedestrians trends through dif-
ferent metropolitan areas. This tendencies might have variations during the day
and throughout the week. After collecting data throughout a certain period of
time and transmitting it to a remote server in which data it can managed and
stored, data processing is essential. This involves elimination or replacement of
incomplete and erroneous data, translation of formatted data and detection and
elimination of outliers. As a consequence of a correct understanding of data,

13

different applications could be pioneered.

Different classification of sensors or group of sensors could be done by ap-
plying supervised ML algorithms or unsupervised ML algorithms. In the same
way, bigger urban areas could be classified such as streets or buildings. These
could benefit citizens lives by offering the possibility of knowing with a series
of simple measurements the typology of each of the mentioned entities, giving
an insight of what they could find when they access there. Moreover, by using
ML algorithms detection of anomalies in large data is feasible[25]. In a similar
way, different entities could obtain benefits from these classifications. This is
because knowing in RT the patterns of use of streets or buildings would ease
the detection of conflicting areas, for instance. The council could detect touris-
tic zones, so that in the future these attractions should be emphasized for new
visitors.

These classifications could be done for processing data for a short period of
time or a longer period. In the first case, changes in the mobility of citizens
could be detected in RT, and consequently optimal decisions should be made to
guarantee security and good standards of living of citizens. In the latter case,
some entities such as merchants would obtain the population mobility patterns
of different urban areas and decide strategically where to locate their shops.
Moreover, the activity of these customers throughout the day and for different
days of the week could give an useful information for establishing the optimal
stores’ opening hours.

14

1.3 Objectives & Research Methodology

In this section general and specific objectives are described and the works that
were focused on these are referenced. In addition, the research methodology
that have been followed in these works is described.

1.3.1 General objectives

These are the main objectives that are addressed throughout the thesis, framed
in the ML Area following two main lines:

• Algorithmics/Computation. Algorithms belonging to different categories
of ML, including supervised learning, unsupervised learning, and RL, have
been studied in depth. New variants of algorithms have been developed
that introduce new knowledge. We tested our alternatives with methods
from the literature on known datasets from [23] and using a well-known
simulator [26] in the field. In this way, the proposed algorithms were
competitive with regard to the accuracy and other performance metrics
against the best literature methodologies proposed so far.

• Applications. New applications have been proposed from data captured
by small sensors stored for long periods of time. Through the work de-
veloped in this thesis, valuable new knowledge was obtained and possible
applications along these lines were identified. To do this, we worked with
open source data from the city of Melbourne [27] & Madrid [28] in the
context of the Building Prediction work.

1.3.2 Research methodology

The research procedure in all the works that form this thesis has been the
following:

1. Notice about a deficit or problem (a suboptimal or improvable alternative)
in the literature.

2. Propose an alternative or solution to the deficiency in question in some
aspect of ML.

3. Test new variants/alternatives from an empirical perspective, comparing
them with competitive methods from the literature.

The programming of the computational/algorithmic part of all the works
has been using Python programming language [29]. To be specific, Python has
been used to implement the algorithms used to outperform the results of NN
reduction techniques [4], for the algorithms for the appropriate task offloading
decision problem, and for the algorithmic part of the application building pre-
diction. The packages that have been useful in computing processes are the
following: Pandas [30], Numpy [31], Tensorflow [23], Keras [32] and Scikit -
Learn [33]. For the task offloading paradigm, the experimentation process was

15

developed in the PureEdgeSim Edge Computing simulator[26].

The hardware environment in which all of our development work was car-
ried out is a ×64 Ubuntu 20.04.4 LTS Operating System equipped with an Intel
Core i7-11850H working at 2.5 GHz×16 and 32 GB DDR-4 RAM and a NVIDIA
T1200 Laptop GPU (driver version: 510.47.03, CUDA version:11.6).

In the experimental phase of our work, databases from the Tensorflow [23]
and UCI [34] repositories have been used. Open data from the city of Melbourne
[27] & Madrid [28] has also been used.

1.3.3 Specific objectives

Among all the aforementioned methods and strategies that would be potential
techniques for obtaining novel insights into citizen patterns, the objectives spec-
ified in this Section summarize the direction of the thesis. The general purpose
is to complete computationally expensive tasks, such as inference and training
DL and ML models on resource-constrained devices, without the need to send
them to remote servers. Furthermore, these small devices should be a valuable
source of knowledge, as they continuously measure real-world events. As a con-
sequence, data stored over a longer period of time must be used in cooperation
with readings from other devices and other information to gain valuable insights
into Smart Cities and Smart Buildings.

• The first specific objective of the thesis was the optimization of algorithms
to adapt to the characteristics of devices with limited resources, covering
the general algorithmic/computing objective. This optimization of the
ML model for processing on a device with limited resources (hardware)
will be carried out by shrinking the model in memory, adapting the in-
ference time to the response time needs of the application and reducing
energy consumption of the IoT device while maintaining the accuracy of
the results as much as possible. This objective was met in [4].

• The second specific objective of the thesis is the processing of informa-
tion, making decisions and acting on the active systems of the technical
infrastructures of the Smart City through “Intelligent Sensors/Actuators”
(Edge Intelligence and On-device Intelligence) using techniques of Edge
Computing (EC) related with the algorithmic/computing general objec-
tive and met in [5]. The training of the ML models to distribute the
workload in the Edge will be carried out in the cloud (Cloud Intelligence)
which will subsequently be optimized for computing in embedded systems
(Edge Computing).

16

• The third specific objective of the thesis is the improvement of predictive
ML models applied to spatio-temporal data represented in the form of
relational graphs and their validation in the field of optimization of public
services offered in the Smart City (energy consumption, water, garbage,
pollution, etc.) connected with the second general objective. The re-
search to be developed will focus on the adaptation and improvement of
these models to predict the use patterns of public services in the city
and buildings with the aim of optimizing their management by efficiently
incorporating the spatio-temporal interrelationships existing in the data.
This objective was met in [6].

Reduction of Neural Networks

As briefly mentioned in the previous section, one of the drawbacks of the need
to serve different tasks in RT at the IoT layer is the lack of computational re-
sources. Sensors, actuators and other types of IoT devices can act immediately
to provide a response in this type of applications but have several limitations
in terms of computability and memory. As a consequence, it is not feasible
to run some of the ML models that are designed to address the needs of RT
applications on these weak devices. Especially, DL networks have billions of
parameters needed to represent their structure. These devices are not prepared
to perform either their training or subsequent inference, which needs to store
billions of parameters that represent these deep models.

For this reason, according to the first general objective, a refinement of the
reduction techniques included in ML has been carried out, realizing the pos-
sibility of completing ML complex algorithms in resource-constrained devices.
To do this, the data must be preprocessed, managed, and compressed to ensure
that the data size is compact enough to fit in the devices’ memory.

The dimension of different ML algorithms and especially DL algorithms is
such that in most cases it is not feasible to run them on IoT devices. The num-
ber of parameters to represent these architectures is too high and the values of
these parameters need good precision to obtain desirable model performance.
At the same time, the devices in question with limited resources cannot store
all the data with high precision, so some data need to be ignored or a lower
precision needs to be set to represent the parameters.

To achieve the goal of adapting DL models to IoT devices, pruning techniques
are essential to remove some of the elements from the original networks that
have a minor impact on the output. These elements are redundant due to
the negligible effect they have on the predictability of the model. Different
elements of the original network can be removed, whether they are connections
between different neurons or the neurons themselves. The decision of which
items should be removed is not straightforward and a good policy is needed to
make this decision. According to the first specific objective, our intention was

17

Figure 6: Single Value Decomposition
Available from: https://webdocs.cs.ualberta.ca/ rgreiner/R/OLD-

BiCluster/SVDApproaches.html

to outperform the most promising SoA methods by offering new alternatives
that include the knowledge demonstrated in relevant works.

Deficiency or problem Single Value Decomposition (SVD) was a valuable
methodology to perform this reduction by decreasing the number of parameters
of the original networks. In an FC layer that has m inputs and n outputs
neurons, activation a ∈ Rn of the layer with n nodes is represented as

a = g(WTX+ b) (4)

where X describes the input to the layer, and g() describes any feasible ac-
tivation function. FC layers connections are represented by a weight matrix
W ∈ Rmn and a bias vector b ∈ Rn where each parameter in the weight matrix
W is wij ∈ R (1 ≤ i ≤ m, 1 ≤ j ≤ n), and bias matrix b is bj ∈ R(1 ≤ j ≤ n).
Using low-ranks factorization original matrices are decomposed. The decompo-
sition is applied to the weight matrix W after the entire model has been trained.
The SVD approach decomposes the weight matrix W as W = USVT where
U ∈ Rm×m , VT ∈ Rn×n are orthogonal matrices and S ∈ Rm×n is a diagonal
matrix.

S is a singular diagonal matrix where the most significant singular values
go from the top left to the bottom right in descending order. The truncation
process consists of maintaining k most significant values in the decomposed ma-
trices. By this way, the first k rows of U and the first k columns of VT are kept.
In order to achieve a higher compression rate Sparse Low-Rank Method (SLR)
[18] is a valid alternative. Instead of using rank k reduced rank rk is used.
By this way, first rk rows of U and the first rk columns of VT are kept, being
rk lower than k. Conserving only the most significant rows (rm) and columns

18

(rn) from each column and row from U and VT , respectively, following a cost
criteria, even a higher compression is achieved. This criteria is defined in the
next paragraphs.

In a Convolutional Neural Network (CNN) there are two main type of layers.
Some are Fully Connected (FC) Layers and some other Convolutional Layers.
FC layers are those in which each node of each layer is connected to each node of
the next layer. All nodes in subsequent layers are interconnected in these types
of layers. On the contrary, in convolutional layers the operation of convolution
takes place, which is a sliding scalar product, where the kernel moves along the
input matrix and the scalar product is obtained in the same way that occurs
with vectors. A higher flexibility of convolutional layers in learning is due to the
fact that not all input nodes of a neuron are connected to output nodes. The
number of weights per layer is also much smaller, which is specially useful with
high-dimensional inputs, such as image data[35].

Both fully connected layers and convolutional layers can be pruned, but it is
much more effective in terms of accuracy, time and energy efficiency to prune the
former as shown in [36], which contributes to lower losses in the prediction abil-
ity with the same parameter reduction rate. Convolutional layers are typically
placed in the first positions in DNNs and are more sensitive than those placed
in the last positions in many cases. With the dispersion of SVD matrices a low
compression rate can be achieved without large losses in precision. The criteria
for sparsification can be diverse, being the compression rate defined in [18] the
optimal one in theory, the relationship between the parameters necessary to
define the sparse decomposed matrices and the parameters of the matrix of the
original weights. In our work we aim to overcome the precision of the resulting
network originated from sparse matrices, and the proposal is the consideration
of relevance in the final decision of more than one layer.

The importance of a neuron is defined by whether or not there is a change
in network performance after removing it. Let c be the default cost of the
NN with the original trained weight W estimated for the p training samples,
computed using any loss function. Let ĉ be the cost value of the network with
sparse weights Ŵ. By truncating with reduced range rr a specific row of Û

or a column of V̂
T

we have the absolute change in cost is or os. These are
calculated as follows:

isi = |c− ĉi| (5)

osj = |c− ĉj | (6)

In this way, the rows and columns with the highest cost are considered the
most important rows (rm) and columns (rn) of each column and row of U and
VT , respectively.

Although the use of the SLR method is a valuable tool for pruning a weight
matrix, it treats the layers of an NN independently, without considering any

19

correlation between them. Each layer of a NN is interconnected with each
other, and there is no doubt that some of them are more relevant than others,
or have more impact on the output of the network. But these layers, since they
are not isolated, should backpropagate their relevance to the previous layers as
proposed in [37]. As a result, the relevance of each neuron in the final decision
is the composition of weights that are interconnected to the relevance of the
corresponding element of the Final Response Layer (FRL).

Proposed alternative To overcome the methods available in the literature,
we chose to mix the principles of the SLR method [18] and backpropagation[37].
The sum of the relevances corresponding to each layer is given by the Equation
7.

sk = |w(k+1)|⊤|w(k+2)|⊤...|w(n)|⊤sn (7)

The relevance of each neuron in the final decision is the composition of
weights that are interconnected to the relevance of the corresponding FRL ele-
ment. The absolute values of the weights that are connected to each of the FRL
neurons are multiplied by their relevance in the FRL.

sk,j =
∑
i

|w(k+1)
i,j |sk+1,i (8)

The equation 8 shows the relevance of the jth neuron in the k-th layer, which
propagates the relevances of the neurons in the subsequent k + 1-th layer that
are connected to it .

By introducing this idea into the SVD matrices, keeping only the most rele-
vant rows of the U matrices, we can consider only the most relevant neurons of
each layer. The procedure in the non-FRL FC layers is similar to the original
SLR method except for the scattering of the U matrices where the relevance
propagated through subsequent layers is considered to determine the most rel-
evant neurons.

As a consequence, a better consideration of the relevance of each neuron in
each layer is achieved, due to the correlation between layers of a network. In this
way, pruning the irrelevant components of each layer can be optimally achieved
by retaining only the most significant parts layer by layer.

Testing the proposed alternative Our proposed variant, SLRProp [4], was
tested against the original SLR method. Both have been tested on well-known
open source image recognition datasets Cifar10, Cifar100 and MNIST obtained
from Tensorflow [23]. All of them have been trained using 10,000 default test
images and 50,000 and 60,000 training images for the Cifar and MNIST datasets,
respectively. To show their effectiveness on sensor-related datasets, they were
also applied to the room occupancy estimation dataset [34]. In this case, 1000

20

samples were used for testing and the rest (9129 samples) were used to train
the network.

In each case, we opted for establishing the same reduction rate (0.5) and
sparsity rate (0.5) defined in [18], and we tested each variant with different rank
k, which determines the number of columns and rows kept in the sparsified ma-
trices. We incremented the rank k until the performance metrics were equal to
the ones obtained by the original network structure. In the testing phase 10 dif-
ferent seeds were established for testing each methodology in each dataset. The
network models pruned were VGG16 applied on Cifar10 and Cifar100 datasets,
Lenet5 applied on MNIST and finally a model consisting of 3 FC layers for
Room Occupancy Estimation dataset.

Evaluation metrics used for determining which of the methods used was best
for keeping the performance of the former network as high as possible were the
accuracy vs. compression rate, AUC vs. compression, recall vs. compression,
precision vs. compression, and specificity vs. compression, where the compres-
sion rate was defined in [4]. This last metric determines the ratio of the number
of parameters between the sparse decomposed matrices and the weight matri-
ces of the original network. Accuracy determines the goodness of the classifier.
Recall provides the probability that an instance classified as positive is actually
positive. Precision states the probability that an instance belonging to the posi-
tive class is classified as positive. AUC is the area under the ROC curve, that is,
a graph that shows the performance of a classification model at all classification
thresholds. What is plotted on the curve is the FPR and TPR on the x and
y axes, respectively, whose definitions are given in Equation 12 and 13. The
definitions of the rest of the metrics mentioned above are given in Equations
9–11, where TP, TN, FP and FP represent True Positives, True Negatives and
False Positives and False Negatives, respectively. We use the compression rate
of the previous FC layer of FRL to verify the accuracy of the resulting network
under different compression rate regimes.

Accuracy(Acc) =
TP + TN

TP + TN + FP + FN
(9)

Recall(Re) =
TP

TP + FN
(10)

Precision(Pr) =
TP

TP + FP
(11)

TruePositiveRate(TPR) =
TP

TP + FN
(12)

FalsePositiveRate(FPR) =
FP

FP + TN
(13)

Specificity(Spec) =
FP

FP + TN
(14)

21

When the problem is multi-class, the evaluation of these parameters is car-
ried out in the following way. For each class, all instances that do not belong
to the class in question are considered negative, and instances that belong to
the class are considered positive. For each class there are Accuracy, Recall and
Precision metrics, and the overall values of these metrics are obtained by micro-
averaging (giving equal weight to each instance), macro-averaging (giving equal
weight to each class), or giving different weights to each class, becoming an
interesting alternative when the data is unbalanced. In our case, as the data
was equally balanced we opted for using macro-averaging metrics.

Offloading of tasks in the Edge

The lack of resources continued to be a limitation on the solution given for
the first specific objective. The algorithms and structures used to address user
needs and application demands were modified and adjusted to the properties
of resource-constrained devices. As a consequence, their performance suffered
a degradation, less noticeable due to optimized reduction techniques but still
significant in certain environments and applications.

On occasions when Edge Datacenters are located near these IoT devices,
provided with greater capacities and greater memory than the IoT devices,
these can be potential destinations for computing tasks that were not feasible
to compute on the source devices due to memory and processability restric-
tions. According to the second specific objective, tasks have been offloaded
to resource-rich platforms, processing information and making decisions at the
Edge. In most cases, this is a better solution than compressing the original
network architecture to achieve the desired precision for each particular appli-
cation. Otherwise, if the accuracy requirements are not strict but an immediate
response from the device is required, compressing the original structure would
be a more suitable alternative, despite the short time required to send the in-
formation to the Edge Datacenters thanks to their proximity.

When multiple IoT devices offload their assigned task to the nearest Edge
Datacenter, the latter may face the problem of overload. In this situation, many
tasks may not be able to complete within the required latency, or simply will
not be completed due to lack of resources. Alternatively, if there are other Edge
Datacenters available within a reasonable distance, tasks that were not possible
to complete on the source device could be offloaded to these alternative data
centers. In other cases, some of the IoT devices themselves have small processors
that can handle the simplest tasks. Consequently, for simpler tasks these latter
devices could be good destinations to complete them.

Deficiency or problem When in a network environment there are differ-
ent types of devices classifiable in different layers, such as the Edge layer, the
IoT layer and the cloud, different types of potential download destinations will
be available. For this reason, it is especially important to establish a good

22

download policy to make the most of your computing capabilities. Due to the
processability and large memories offered by most Edge Datacenters, these must
be preserved to perform the most complex and computationally heavy tasks. In
contrast, simpler tasks and those that are supposed to react in an extremely
short time should be computed on the source device or the closest device that
can offer enough resources to complete them successfully.

The environmental characteristics that affect the offloading decision are mul-
tiple. Some of them are related to the characteristics of the devices and others
to the nature of the tasks. The most representative properties that indicate the
suitability of a device to solve a certain task are the available RAM memory of
the computing device, the millions of instructions per second (MIP), the central
processing unit (CPU) and the memory. On the other hand, the characteristics
of the tasks that can affect the download decision are the desired latency and
the file size in bits associated with the task.

Among the wide variety of tools to establish the optimal download policy,
few investigations have chosen to use RL or GNN methods. The continuous
changes in characteristics of many networking environments lead to the use of
algorithms that take these updates into account in the learning process. The
availability of Edge Datacenters can vary over time, while network traffic also
has many variations RL is a useful branch of deep learning in which the agent
continuously learns the properties of the environment online while receiving the
reward obtained by performing a certain action. Consequently, the agent learns
the changing environment where applications and tasks are developed and device
and network characteristics updates are continually learned. For these reasons,
the second objective of this thesis is to achieve a policy that optimizes the use
of resources while ensuring the completion of tasks within the required latency.
This goal can be achieved using DQNs, which are a good solution for diverse
environments where there are constant updates and there are multiple possible
states and actions.

Proposed alternative As an alternative to address the problem of the in-
ability to attend to tasks at the IoT layer, an appropriate offloading algorithm
was designed that improves the overall efficiency and performance of the sys-
tems and guarantees load balancing between the different computing centers.

To achieve these objectives, two different methods were applied compared
to the known predetermined methodologies. In fact, GNN was applied as an
architecture to emulate the network environment, where promising results were
obtained. Furthermore, due to their suitability for constantly acquiring new
information about the environment, DQNs were as promising as the previous
ones in solving the problem at hand. Updated knowledge could be obtained by
following this latest methodology.

23

Figure 7: Overview of the training procedure of DQN.

In a DQN the environment is represented by all the possible states that
would be in each case the real situation of the environment. In our case, the
status of each device that makes up the network environment, including its ac-
tual availability parameters, task properties, and actual network traffic, would
represent the state of the environment. The possible actions would be the pos-
sible decisions to download a certain task from its source device. Finally, the
reward would be favorable or not if the task has been successfully completed
satisfying the previously imposed requirements.

In the case of DQN, each device would send information about its status to
the cloud (Step 1). There, having the state of the environment (st) based on the
download policy π(at|st), the optimal action at must be taken. If the task was
completed meeting the requirements the reward would be 1, and 0 otherwise.
In this way, an optimal download policy would be obtained after converging
the Q function. Finally, the obtained Q function would determine the optimal
download destination in the cloud after each device sends its state to the cloud,
and this returns the message to the task generator indicating where to download
your assigned task (Step 2). After sending the task to the target device (Step
3) and completing the task on this device, the results will be sent back to the
source device (Step 4). A graphical description of the DQN training process is
provided in Figure 7.

In addition to RL alternatives, another Deep Learning architecture that
adapts well to the network environment where different devices are intercon-
nected with each other is a Graph. A Graph is composed of a set of nodes(V)

24

and edges(E), represented by G(E, V), whose data structure is non-linear. The
edges connect any two nodes in the graph. Any system consisting of space and
time structural relationship information can be contemplated as a space-time
graph. NNs can deal with static structures and time-varying features of the
graph.

A graph is represented by the pair G = (V,A). The V represents the set
of nodes and the A the set of edges. The nodes represent the elements of the
system and the edges the interconnections between them. A valued graph is
referred to a graph G that has assigned a numerical weight Wij to each edge
(i, j). There is a possibility of weighting the nodes as well assigning a value Wi

to each node i.
A GNN is a sort of NN that works directly with the graph structure. Character-
istics of interconnections between devices can be represented by edge character-
istics, and node characteristics can be characteristics of the devices themselves.
Otherwise, edge features may also represent another type of relationship be-
tween devices. Working with a GNN would allow us to know the properties of
each situation in which tasks originally assigned to IoT devices are offloaded to
other devices, and to inform the user about the optimal download destination
on each occasion.

The features mentioned in the previous paragraphs can be reflected in the
node features, because each node in the graph can represent each computing
device on the network. Some of these computers may have assigned a task that
must be completed within a desired time period, and this task would also be
represented by the node itself. Each node is interconnected with each other in
the network structure and the edges between the nodes can reflect each network
connection, the characteristics of which must be representative of the applica-
tion in question. Because of this, connection offloading rating could be a good
predictor of how good a download path is at transferring a certain task at a
given time on the network. This score can be defined as the number of tasks
successfully executed using the offloading path, divided by the total number of
tasks offloaded using the path, using a predefined offloading policy in a training
process. Using this new parameter, all network connections can be classified
based on their suitability for each situation, informing end users about them.

These features describe the network structure in a parallel graph network
structure. The input of the network would be composed of the characteristics of
the tasks and devices that make up the network structure, and the output, the
optimal download destination for that task. Consequently, a GNN could have
the ability to adapt its neurons and weights to achieve the desired output with
each input to the network. The ground-truth data for deciding which is the op-
timal offloading destiny in each case has to be established as well. This could be
obtained by following any of the previously defined and tested methodologies,
that is, by following a certain policy, the download destination obtained would
be the optimal one in each case. As a result, the ground-truth data would be
used in the training phase and consequently the NN would adapt its components.

25

Figure 8: Overview of the entire process.

Once the entire training procedure of the default algorithm has been com-
pleted, the GNN would use as ground-truth the offloading decisions and the
output generated in the previous step, and carry out the training process after
defining the offloading rating for each network connection as edge feature. The
training of the GNN would be carried out in the cloud. Finally, the download
decision would be made by the cloud after each device sends the message with
information about its status, and the cloud would return the message to the
task-generating device informing about the download destination. After send-
ing the task to the target device and completing it on this device, the results
will be sent back to the source device. An overview of the entire process is given
in figure 8.

Testing the proposed alternative We reproduced our proposed alterna-
tives in the simulator [26] and we tested them against the default offloading
policies of the simulator. We established different numbers of Edge Datacen-
ters, IoT devices and the cloud, and we repeated the experimental process under
different conditions. We opted for establishing 10, 20 and 30 end user devices,
forming the IoT-Edge Layer, and we repeated the experiment 3 times. These de-
vices were dynamic and their range of motion was limited to an area of 200x200
units. The Fog-Edge layer was composed of four data centers each of them
located symmetrically in the covering area. Each of these Edge Datacenters
was covering an area of 100x100 units. Finally, there was a resource rich cloud
platform offering higher computability and memory.

Each of the IoT devices were interconnected with each other. In this way, in-
terconnections between them were feasible. Similarly, each of these IoT devices
was connected to the nearest Edge Datacenters and they were all connected to

26

the cloud. The orchestrator of the decision to download was the cloud. It was
equipped with 200 cores, with 40,000 MIPS and 16 GB of RAM and 1 TB of
memory. The Edge Datacenters were equipped with 10 cores, with 40,000 MIPS
and 16 GB of RAM and 200 GB of memory. Its idle power consumption was
100 Wh with a maximum consumption of 250 Wh.

The operating system of the IoT devices was Linux and they had an ar-
chitecture of ×86. These devices had dynamic behavior in some cases, with a
speed of 1.8 m/s. The type of network connection used to interconnect with the
rest of the devices was WiFi with a bandwidth of 1300 Mbits/s, with a latency
of 0.005 s. There were 5 different types of Edge devices with different battery,
mobility pattern, memory and processors. Each of them generated 4 different
types of tasks, with different generation rates, latency and file size length.

In the experimental process we considered the following parameters: energy
consumption, tasks executed in each layer and success rate, that is, number of
tasks successfully executed divided by the total number of tasks. Task failure
could be due to different reasons, such as lack of available memory, violation of
latency constraints, or network traffic congestion. In each case, the potential
download destinations were all types of devices, IoT devices and Edge Data-
centers, IoT devices and cloud, Edge Datacenters and cloud, IoT devices them-
selves, and Edge Datacenters themselves. 6 different tests for a fixed number of
IoT devices.

Furthermore, we considered the download distribution between different
types of download destinations when the number of IoT devices was 10, 20
and 30. Finally, to know more about the performance of these destinations, for
a different number of IoT devices we obtained the metrics of performance for
the devices that make up each layer.

Cooperation of Edge devices

The cooperative use of IoT and Edge devices can alleviate different problems in
a complex system such as a smart building or a smart city. According to the
second general objective, useful information could be obtained by acquiring,
storing and analyzing the readings and measurements obtained through IoT
devices, such as sensors or other types of gadgets. The positioning of these
devices would be a key factor in deciding what information is intended to be
obtained. Placing sensors in urban areas would be useful to learn more about
crowd evolution in metropolises, or placement in indoor areas could be useful
to address capacity issues or to understand mobility patterns, behaviors and
attitudes of users.

Deficiency or problem The placement of sensors in different buildings would
be a source of information about the mobility patterns of pedestrians and the
typology of these establishments. Likewise, different identifications can be made

27

with these trends. There are big differences between the mobility patterns of
hospitals or shopping centers frequented every day and schools or offices, which
people rarely access on weekends. At the same time, there are fluctuations
throughout the days, with peak hours in some cases. ML and DL tools would be
useful to gain valuable insights from these readings obtained from IoT devices
and stored over a long period of time, either in an Edge Datacenter or on a
remote server. Following this proposal, the third objective of the thesis is to
devise an innovative way to identify building types from sensor readings. There
was no other work that offered this type of knowledge in the way we propose,
thus filling the gap found in the literature.

Proposed alternative In a metropolitan area the number of devices located
to perform uninterrupted measurements is very large. Consequently, informa-
tion overload is a potential drawback encountered in these scenarios. Excess
information would make it difficult to train ML algorithms, making it difficult
to obtain novel insights into the properties of different urban areas. Due to
this excess of features obtained by sensors and other IoT devices located in
Smart Cities and Smart Buildings, a dimensionality reduction is often essential
for an adequate training process of ML algorithms. Consequently, the reduced
size of the datasets better adapts to most models, facilitating the training pro-
cess, obtaining better results in the inference process and achieving more precise
knowledge.

Readings from sensors located outside several buildings would give an idea of
pedestrian mobility patterns between this type of infrastructure. Consequently,
knowing the frequencies of access to these buildings it is possible to achieve a
classification of the buildings based on their nature or typology.

Open access data is a valuable source of information from which new in-
sights can be gained. There are different repositories that store measurements
of various types of nature from different cities around the world. This data is
open to all users and becomes a notable source. As if that were not enough, in
most cases privacy problems make open access to large repositories that could
be useful for different applications impossible. This is not the case with sensor
readings, where the anonymity of citizens is fully preserved. In other fields, such
as medicine, a large amount of data is not available due to privacy issues.

According to the third specific objective of this thesis, after reducing the
number of characteristics of the data obtained by a large number of gadgets
located in a Smart City to facilitate the subsequent training process, using an
unsupervised ML algorithm and GNNs a classification of different type of build-
ings regarding their frequencies of access through different days and different
time windows have been proposed.

28

Figure 9: Cumulative explained variance for the Melbourne building feature
based case and pedestrians with mean hourly mean count feature based case.

For these purposes, a feature size reduction is sought using Principal Com-
ponent Analysis (PCA) as a tool, carrying out dimensional reduction of the
original data set with a large number of connected variables while maintaining
the greatest possible variance in the data set. This is a process of calculating
the principal components of a set of points, that are succession of p unit vectors
where the i-th vector is the direction of a line that best fits the data while being
orthogonal to the first i-1 vectors, and using them to perform a change of basis
on the data. We opted for regarding the proportion of accumulated explained
variance and selecting the minimum number of components from which the in-
crease is negligible. This proportion would be different for each applications,
due to the differences on accuracy requirements. In this case we established a
95% variation that is explained by the number of components selected. Fig-
ure 9 shows that with 14 components the desired variation was achieved for
the case based on building typology characteristics. Likewise, 5 components
were sufficient to satisfy the requirement mentioned above for the case based on
pedestrian activity characteristics. These different ways of dividing buildings
are defined below.

Once the feature size reduction of the data is achieved, the next step would
be the classification of different buildings based on their features. The nature
of the problems leads us to use unsupervised ML methods, since there are no
previously established labels for the readings of the sensors located in front
of different buildings. Clustering methods are potential tools to divide these
types of entities into different groups that discover natural patterns between
instances. Group partitioning is carried out by achieving the greatest possible
dissimilarity between elements belonging to different groups and the greatest

29

possible similarity between elements belonging to the same group. K-Means is
an interesting and simplistic method to obtain good results in the clustering
process with minimal effort. In this algorithm, each instance belongs to the
group with the closest mean or centroid. At each iteration, these centroids are
updated so that the geometric mean of the group is represented by the centroid.

In our case, the features used to represent instances (sensors located in front
of buildings) were the type of buildings surrounding these sensors within a pre-
defined radius on the first attempt, and their average activity over different
intervals of time of different days of the week on the second attempt. Both
groups would be a valuable source of new knowledge.

Similarly, GNNs and specially GCNs are a powerful tool to use in this sce-
nario, given their similarity to the problem at hand. In this case, the nodes
would represent the buildings or sensors located in these infrastructures. The
edges or arcs that connect different nodes can have different types of character-
istics that we would be interested in some of them. Distance would obviously
be a good parameter, since most of the buildings of each type are located in
the same cities, such as supermarkets, schools, sports stadiums, etc. Thus, the
higher the distance between these nodes the lower would be the similarity be-
tween them. For this reason, the inverse of the distance between different nodes
would be a suitable feature for edges.

In principle there was no labeled data, only sensor readings from different
buildings. However, after performing an initial clustering of buildings and divid-
ing them into different groups, a labeled ground truth data could be obtained
and it would be feasible to use it in the subsequent GCN training phase. Using
the inverse of the distance as edge weight, magnifying the similarity of the clos-
est buildings, GCN could be trained.

In short, the GCN would classify each node of the network as part of each
of the clusters made in the previous phase, each building corresponding to a
typology. In the end, from the readings of the sensor located at the door of each
building it is possible to arrive at the typology of these buildings.

Testing the proposed alternative We use data from Madrid and Mel-
bourne to validate our proposed methodology. First, a PCA was performed
to reduce the dimensionality of the problem and then clustering of different
datasets was performed. To decide what would be the optimal number of clus-
ters to perform the unsupervised ML algorithm, we chose to use the elbow
method, which is a heuristic used to determine the optimal number of clusters.
The method is as follows, plot the explained variation as a function of the num-
ber of clusters, and the point at which the graph flattens indicates the optimal
number of clusters, enough to achieve the desired difference and consistency
between the clusters. Finally, the clusters obtained were used as real data for

30

the GCN training process.

To validate these groups, different supervised ML methods were used. Using
10-fold cross-validation, inference accuracy was observed for each supervised
ML model, applying 30 different seeds. This validation strategy divides the
original set of training data into 10 smaller sets, each of them being used in
one iteration for testing and the rest for training, completing 10 iterations. The
selected supervised ML methods were Supported Vector Machine (SVM), Ran-
dom Forest (RF), Decision Tree (DT), Multilayer Perceptron (MLP), Boosting
and Bagging. The performance metrics observed were Accuracy, Recall, Preci-
sion, and F-Score. These metrics, except F-Score, are defined in the equation
9, 10 and 11. The equation 15 defines the latter. Additionally, we obtained
confidence intervals for each supervised ML algorithm. Finally, we applied the
Kolmogorov-Smirnov test to confirm that the means come from a normal or
non-normal distribution, and to know the statistical significance of the differ-
ence in mean precisions we applied the Kruskal-Wallis test.

To validate the goodness of the GCN, we test it as follows. The division of
the sensors belonging to each cluster was done this way: 80% was used for the
training process, 10% was used for the validation phase, and the remaining 10%
was used for the testing process. To emulate a cross-validation process, we mix
the sensors belonging to each clusters, so 10 different divisions were made to
train the network in 10 different ways. We repeat the process for 10 different
seeds and look at the precision and confidence intervals. In the same way, we
applied the Kolmogorov-Smirnov test to confirm that the means come from a
normal or non-normal distribution, and to know the statistical significance of
the difference in means of precisions we applied the Kruskal-Wallis test.

F − Score(F) =
2 ∗ Pr ∗Re

Pr +Re
(15)

1.4 Discussion of results

This Section presents the most representative results for each objective proposed
in the previous Section. The experimental processes are not described in their
entirety since they are already detailed in each of the works related to each of
the objectives presented above.

1.4.1 Neural Network Reduction

With the objective of reducing the size of the original architectures and the
information necessary to represent their components, we proposed SLRProp, a
variant of the Sparse Low Rank method pioneered by [18].

In the experimental process we tested our variant against the original SLR
method. There was a noticeable equality in the accuracy obtained by each

31

Rank
k

Cifar10-
SLR

Cifar10-
SLRProp

Cifar100-
SLR

Cifar100-
SLRProp

MNIST-
SLR

MNIST-
SLRProp

Room-
SLR

Room-
SLRProp

k = 2 17.037% 17.4074% 4% 2.8519% 21.084% 23.492% 17.5% 17.5

k = 4 52.3333% 43.5185% 9.8889% 8.8889% 38.006% 40.053% 17.7% 17.7%

k = 8 89.5926% 81.4444% 47.4444% 37.9259% 71.597% 80.469% 83% 83.9%

k =
16

92.963% 92.963% 63.4074% 62.4444% 93.258% 94.245% - -

k =
32

- - - - 98.416% 98.385% - -

Table 1: SLR vs. SLRProp accuracies for different datasets.

method when the number of k was such that the accuracy obtained was identical
to that obtained when more columns and rows were kept. There was superior-
ity over the original SLR when both methods were tested on the FC layer prior
to the FRL of the VGG16 architecture tested on the Cifar10 dataset. On the
contrary, in the pruning applied to the FC layer of VGG16 tested in Cifar100
there was an insignificant difference between both alternatives, and the same
occurred in the case of the pruning applied to the FC layer of Lenet5 tested in
MNIST and in the case of Room occupancy estimate. However, for the com-
pression regimes where higher data reduction was achieved, the application of
SLRProp was superior in terms of accuracy in the case of MNIST, but inferior in
the case of the Cifar10 and Cifar100 datasets. All results are detailed in Table 1.

This implies that depending on the nature of the application or task, the best
alternative will be different. In some environments where higher compression
would be desirable, it would be appropriate to choose a variant that works better
for lower k. On the contrary, if the required precision is higher, although the
compression rate achieved would not be as high, the variant that obtains better
performance metrics would be the one that would be considered. As mentioned
above, the compression regime itself does not determine the choice of any of
the variants, because these perform differently with the same compression rate
when tested on different data sets. In each case, the expert in question would
have to determine which option to consider, but the new alternative offers a
slight improvement for some scenarios. In general, in more cases the original
SLR method was superior to the variant proposed in this work. However, the
usefulness of our variant was demonstrated through the experimental process.

1.4.2 Offloading of tasks in the Edge

The best success rate results were obtained when Edge Datacenters were in-
cluded as possible download destinations. This is an expected consequence of
including powerful calculation centers near IoT devices that facilitate trans-
mission to them. These devices have sufficiently powerful processors and large
memories to handle the vast majority of the tasks assigned to them. Conversely,

32

Algorithm
All de-
vices

Edge
&
Edge
DC

Edge
&
Cloud

Edge
DC &
Cloud

Edge
Edge
DC

Trade
Off

99.9194
%

100 %
66.0484
%

99.9194
%

54.5161
%

100 %

Round
Robin

99.8387
%

100 %
47.1774
%

99.8387
%

55.4839
%

100 %

GNN
99.9194
%

100 %
80.4032
%

99.9194
%

59.1935
%

100 %

DQN
99.9194
%

100 %
82.0968
%

100 %
65.5645
%

100 %

Table 2: Success rate of different algorithms including different type of destiny
devices (10 Edge devices).

Algorithm
All de-
vices

Edge
&
Edge
DC

Edge
&
Cloud

Edge
DC &
Cloud

Edge
Edge
DC

Trade
Off

99.8641
%

100 %
61.8478
%

99.8913
%

97.1739
%

100 %

Round
Robin

99.8370
%

99.7011
%

96.30434
%

99.8370
%

59.9185
%

100 %

GNN
99.9185
%

100 %
84.4837
%

99.9185
%

97.1739
%

100 %

DQN
99.9457
%

100 %
84.3478
%

99.9728
%

97.1739
%

100 %

Table 3: Success rate of different algorithms including different type of destiny
devices (20 Edge devices).

when tasks were offloaded to the cloud they may not have met latency require-
ments, and if tasks are offloaded to IoT devices, they may not have been able
to respond due to lack of resources. As the number of Edge devices grew, the
success rates of cases where Edge datacenters were excluded improved signifi-
cantly, due to the greater number of free IoT devices. In this case, the number
of IoT devices with sufficient processability and memory grew and fewer tasks
were transmitted to the cloud. The success rates of different algorithms for 10,
20 and 30 IoT devices are shown in Tables 2, 3 and 4 respectively.

When it comes to the energy efficiency the only noticeable difference was
the change in the energy consumption of the IoT devices when the number of
IoT devices and consequently the number of tasks grew. This was due to the
increase in the number of tasks downloaded to this type of device. The energy
consumption of the Edge Datacenters suffered slight increases as the number
of IoT devices and consequently the number of tasks grew, but since they were

33

Algorithm
All de-
vices

Edge
&
Edge
DC

Edge
&
Cloud

Edge
DC &
Cloud

Edge
Edge
DC

Trade
Off

99.9324
%

99.8986
%

70.2196
%

99.8986
%

89.0541
%

100 %

Round
Robin

99.1892
%

99.4595
%

91.5541
%

99.8311
%

99.3986
%

100 %

GNN
99.9493
%

100 %
92.3142
%

99.9324
%

93.9696
%

100 %

DQN
99.9662
%

100 %
94.0372
%

99.9662
%

94.5777
%

100 %

Table 4: Success rate of different algorithms including different type of destiny
devices (30 Edge devices).

almost complete in all scenarios, the differences were not perceptible compared
to those observed in the IoT layer.

The distribution of tasks between different types of devices was favorable for
Edge Datacenters, due to their computing capacity and their proximity to the
IoT layer. When more tasks were assigned to IoT devices, a higher percentage
of them were offloaded to other IoT devices or to the cloud, as a result of the
overload situation faced by Edge Datacenters. Figure 10 shows the distribution
between different layers.

Figure 10: Task distribution with different algorithms and number of Edge
devices

34

The success rates of different layers were different at all. The worst results
were obtained by the cloud due to the long time needed to transmit the in-
formation through the network to achieve this. Between the Edge devices and
Edge Datacenters, the last ones obtained the best success rates. Obviously, the
higher capabilities and larger memory were superior in terms of computability
compared to the Edge devices, but with a good enough algorithm to orchestrate
all the tasks among all possible destinations, offloading the less demanding tasks
to weakest computing centers, success rate could be preserved with higher num-
ber of generated tasks. A comparative of success rates for different numbers of
Edge devices is given in Figure 11 for DQN and GNN algorithms.

Figure 11: Success rates with different algorithms and number of Edge devices

In almost all possible configurations, GNN and DQN were superior in terms
of accuracy and provided good load balancing on the network. Among them
there was an insignificant difference in favor of DQN, because DQN decided to
offload a greater number of tasks to Edge Datacenters, becoming a better alter-
native, due to the better performance when Edge Datacenters were included as
possible offload destinations. Updated environmental information would benefit
the DQN training process, becoming the best alternative to obtain the most pre-
cise knowledge about the circumstances of all devices and establish an optimal
download policy.

1.4.3 Cooperation of Edge devices

The cooperative application of information provided by sensors provided an in-
teresting insight into the use of buildings and their nature. Clustering methods
combined with GNNs proved to be a potential tool to classify different types of
buildings using only the mobility patterns of pedestrians entering these estab-
lishments.

35

Figure 12: Clustering based on the typology of buildings. Black points indicate
the centroids of each cluster.

First, an improvement in the accuracy of the clustering methods was ob-
served after applying dimension reduction techniques. The excess of features
was a problem that obstructed the correct division of instances into different
clusters. With fewer features used to represent each data, the clustering process
achieved a noticeably better result, obtaining more distinguishable groups of
instances.

Subsequently, the clusterings of buildings were carried out following differ-
ent strategies. First, the number of building types surrounding each sensor were
the characteristics used to describe each of them. After obtaining the principal
components, the K-Means algorithm was applied after evaluating the optimal
number of clusters according to the elbow method. After applying dimension
reduction, the clusters obtained were 5 using the elbow method. The same pro-
cess was then repeated for characteristics of mobility patterns across different
time intervals of days throughout the week. In this case, 4 clusters reached the
point where the graphic flattens out indicating the optimal number of clusters.

Next, the clusterings were carried out knowing the optimal number of cen-
troids. Figure 12 shows the clusters obtained for clustering based on construc-
tion characteristics. There are some groups that are better defined than others.
For example, Cluster 5 and Cluster 3 are more distinctive than the rest of the
Clusters, as instances of different Clusters merge slightly between instances of
other Clusters.

36

Classifier Accuracy Precision Recall F-Score
Confidence
interval

SVM 93.39% 92.99% 93.24% 92.93%
92.64-
94.15%

RF 94.14% 93.42% 93.92% 93.08%
93.42-
95.07%

DT 88.86% 89.44% 89.05% 88.90%
87.06-
90.21%

MLP 81.86% 82.50% 81.80% 81.45%
79.48-
84.23%

GNB 91.96% 92.52% 91.89% 91.39%
90.74-
93.19%

Adaboost 95.15% 94.28% 93.55% 93.79%
94.41-
95.90%

Bagging 91.54% 90.49% 90.59% 90.17%
90.51-
92.56%

Table 5: Performance metrics for Building typology dataset based clustering.

To validate these clusters, different supervised ML methods were used. The
performance metrics obtained by most of the models used in the process were
higher for clustering carried out according to the type of building surround-
ing the sensor than for clustering based on mobility at different times. The
maximum precision was obtained with the Adaboost method with 95.15% and
93.79% F1-Score for the first case. In the latter case, SVM offered the highest
performance with 88.89% precision and 88.7% F1-Score. This shows that the
typology of the buildings surrounding each of the buildings is a better predictor
than the mobility pattern itself. Mobility patterns should predict the essence
of each building but this can vary for different reasons. Instead, the typology
of the surrounding buildings is a static characteristic, much more reliable than
the mobility pattern. All accuracy and F1 score results for the supervised ML
models mentioned in Section 1.3.3 are given in Table 5 and 6 respectively .

The correlation between both clusterings was also observed. The general
trend followed by the sensors of each cluster was observed in the other data
set. We concluded that the sensors that have more activity during the week
were mainly related to office buildings, the sensors with more activity on week-
ends with residential apartments or House/Townhouse type, and those that had
similar activity throughout the week were more similar with the Retail type
of buildings. This obviously makes sense considering that pedestrians typically
spend most of their time at work during the week and at home on weekends.
At the same time, the shops are visited throughout the week. The sensors with
the most activity at midnight on weekends were of the Townhouse type, which
makes sense.

37

Classifier Accuracy Precision Recall F-Score
Confidence
interval

SVM 87.14% 88.03% 87.32% 87.02%
85.45-
88.84%

RF 85.07% 85.03% 84.93% 84.86%
83.66-
86.48%

DT 87.43% 87.70% 87.32% 87.02%
85.74-
89.12%

MLP 66.71% 66.92% 66.71% 66.31%
64.66-
78.66%

GNB 85.71% 88.02% 85.92% 86.40%
83.93-
87.50%

Adaboost 81.85% 82.09% 81.78% 81.76%
80.10-
83.60%

Bagging 86.10% 86.98% 86.24% 85.83%
84.48-
87.71%

Table 6: Performance metrics for time-interval mean activation dataset based
clustering.

Finally, considering the grouping carried out following the criterion of sensor
activity in different time intervals, GCN was applied, with the characteristics
of the nodes being the activities of different time intervals and the characteris-
tics of the edges being the inverse of the distance between the different nodes.
The precision obtained was 87%. This shows that the GCN structure offers a
slightly better result than clustering itself by observing only pedestrian activity
in different time intervals and days of the week. It is worth noting that Table
5 shows the maximum accuracies of the supervised ML algorithms for classi-
fying instances into different groups, being superior for most of the algorithms
to the GCN when pedestrian activity was used as a grouping criterion. At the
same time, as mentioned above, the typology of most of the buildings was more
determining than the mobility patterns of users due to the possible variations
that they may suffer. The data collection covered a period of time long enough
to reflect the real trend of pedestrians, not being a problem and hampering
the predictive strength of this characteristic. Table 5 reviews the accuracies
obtained following the 3 ways presented in this subsection in comparison with
the results obtained by [38].

1.5 Relevance of Results

In this Section we state the contribution and impacts of works that compound
this Thesis to the literature. The chronological order of the publications of the
works does not follow the order in which the objectives have been presented in
this Thesis report. This is not the order in which the works have been published:

38

Method
Average
Accuracy

Top-1 Clustering(Activity) 88.89%

Top-1 Clustering(Building Typology) 95.15%

Top-1 GCN(Activity) 87.00 %

L. Zhuo et al.[38] 85.66%

Table 7: Comparative of results with the literature.

• The first contribution on Reviewing and Discussing Graph Reduction in
Edge Computing Context was presented in International Conference on
Statistics and Machine Learning in Electronics (ICSMLE 2022) and pub-
lished as conference paper in ”MDPI Computation”[39]. We committed
with an lengthened version in Sensors journal in 2023 under the title SLR-
Prop: A Back-Propagation Variant of Sparse Low Rank Method for DNNs
Reduction [4].

Journal Ranking:

MDPI Sensors (2023). Category: Chemistry, Analytical; Engineering,
Electrical & Electronic; Intsruments & Instrumentation.

2022 Journal Impact Factor: 3.9 (100/275 Q2). JIF Percentile: 63.8.

• The second contribution on Task Offloading in Edge Computing using
GNNs and DQN was published in journal Computer Modelling in Engi-
neering & Sciences in 2023.

Journal Ranking:

Computer Modeling in Engineering & Sciences (2023). Category: Math-
ematics.

2022 Journal Impact Factor: 2.4 (34/107 Q2). JIF Percentile: 68.7. -

• Finally, we contributed publishing the work named Graph based learning
for building prediction in Smart Cities in journal IEEE Access in 2022.

Journal Ranking:

IEEE Access (2022). Category: Multidisciplinary.

2022 Journal Impact Factor: 3.9 (73/158 Q2). JIF Percentile: 54.1.

• Independently, we contributed in the 18th International Conference on
Hybrid Artificial Intelligence Systems (HAIS 2023), with the work named
Comprehensive Analysis of Different Techniques for Data Augmentation
and Proposal of New Variants of BOSME and GAN and was published
as conference paper in ”Hybrid Artificial Intelligent Systems” [40].

39

Chapter 2

Conclusions & Discussion

In this thesis we have made different contributions that can be divided into 2
groups. Some of them have focused on performing complex ML tasks at and
near the IoT layer, offering ways to reduce models and orchestrate load balanc-
ing between IoT and Edge layer. The other part of the work has focused on
applications based on the data obtained and stored by IoT devices.

Throughout the thesis we have covered the 2 general objectives presented
in Section 1.3. The algorithmic/computation objective have been studied and
developed in the three works that made up this thesis, specially being the core
of the [4][5]. The modification and computation of complex DL models have
been carried out in an efficient way, obtaining promising results in term of opti-
misation of memory usage, load balancing and performance. The second general
objective, which is related to the application of these models, was demonstrated
in [6] as a valuable and novel source of knowledge. The specific objectives pre-
sented in Section 1.5 were met, i.e., the reduction of DL models to adapt them
to resource-constrained devices, the offloading of resource-intensive tasks from
IoT devices to the Edge layer along with the correct orchestration of tasks be-
tween different devices, and finally applications for Smart Cities using the data
acquired by these IoT devices and stored for a long period of time in remote
servers or Datacenters. Each objective has been structured around a topic. In
case of the reduction of models the main topic has been Pruning techniques,
Edge Offloading has been the second topic of interest and finally Building clas-
sification has been the research interest of the last specific objective.

In each case, the methodology used has been the following. First, in order to
obtain a general overview of the framework of the issue in question an intensive
search of the actual and most relevant works has been done. Later, the weak-
nesses or the gaps that could be filled have been identified. Finally, the solutions
to these have been proposed with the alternatives to the algorithms/policies or
novel applications, and these have been tested against the most recent relevant
works.

40

According to the first specific objective, the introduction of the concept of
backpropagation of relevances from the FRL to the rest of the layers of the orig-
inal network does not always overcome the assumption of relevances indepen-
dently within the layers. However, the general result shows that the SLRProp
method is slightly better than the original version of sparsification presented
by [18]. In this way, the breakthrough presented by [37] is preserved in this
experiment; relevances propagated between different layers through connections
between neurons. This shows that the components of each layer have certain
influence on the rest of the network components, even though the main con-
tribution to the final result of each component is more connected with other
aspects than the absolute values of the weights of the connections across lay-
ers. In this case, the cost defined as the difference of the accuracy between
the case when a certain component is eliminated from the original network and
the original structure’s accuracy showed that it might be more crucial when se-
lecting which connections should be removed when pruning the original network.

The proposed alternative offers a slight improvement in different accuracy
metrics, but is still too costly in terms of time efficiency and computational load.
Considering the absolute values of the weights of these networks as a criteria to
decide which columns and rows are maintained in the sparsified matrices offers
a near identical result in terms of accuracy that needs ∼ 100x less time for
sparsifying the SVD matrices in the training phase. In applications where time
response is crucial, this last alternative method may be more adequate.

According to the second specific objective, our proposed algorithms out-
perform the default PureEdgeSim simulator methods in terms of success rate
and load balancing. In other works such as [41] they achieved an average im-
provement of 20.48%, 16.28% and 12.36% with respect to random download,
higher data rate downloading (HDR) and the highest computing device (HCD)
respectively. In [42] they achieved a 20% reduction in total computation delay
and 25% reduction in average computation delay compared to the GK-means
DQN-based offloading policy. In our case, the rest of the offloading policies an-
alyzed offered a better result, since they offered decent behavior in most cases.
However, our methods significantly improved the success rates of the mentioned
algorithms that offer quite similar energy consumption and this has more to
do with the distribution of tasks in different layers. Our network environments
and experimental setup are completely different compared to those used in the
works just mentioned. Therefore, the comparison cannot be made directly be-
tween different works.

The distribution of tasks was different in our two algorithms, with a larger
number of tasks being offloaded to the Edge Datacenters when DQN was ap-
plied. This resulted in a slight improvement in the success rate due to the
greater capabilities of this type of computing centers. Between both types of
algorithms, the best results were offered by DQN with a slight variation. The

41

ability to obtain the optimal policy increased when the number of Edge devices
and, consequently, the number of generated tasks was larger. The same was true
for GNN: by having more nodes and a broader network structure, the algorithm
was able to reach a near-optimal offloading decision.

According to the third specific objective, the potential of clustering methods,
specifically K-means algorithm, at identifying groups of sensors following differ-
ent criteria has been demonstrated. The typology of the rest of the buildings
surrounding the buildings themselves was the main factor when dividing sen-
sors into different groups. Regarding the clustering made following the activity
patterns, the overall activity of the pedestrians in these type of buildings does
not determine in a clear way their typology. The datasets used and the length
of time period in which the data were detected and stored were sufficient, but
in other experimental setups the results may probably be a little closer to the
first case of clustering.

As regards GCN, the results were better for the same grouping criteria (ac-
tivity patterns). The graph, thanks to its architecture, eased the learning of
the structure of the city composed of buildings. The edges’ feature (inverse of
distance) was a determining characteristic of the buildings, due to the similarity
between buildings that are close to each other.

Limitations

Throughout the different researches that have been completed during the thesis,
some limitations have been found in terms of computability and data avialability.

• The training and validation of different algorithms have been designed
regarding the time availability and the processing and memory resources.
The number of iterations and different seeds were fixed so as not to exceed
the predicted computation time.

• The datasets used for training and testing different models were selected
according to the predicted training time in each case. However, the
datasets used were sufficient to verify the goodness and quality of the
proposed alternatives, solving the problems or deficiencies found in the
literature.

Future work

From the works presented, new lines of research emerge that are proposed as
future work. Due to the environmental dilemma that we are globally facing
these days, there is a special interest on reducing the carbon footprint and min-
imizing energy usage. Thus, the objective for the future research work is the
reduction of energy usage in these type of techniques and applications. Green
algorithms are becoming more diverse and their popularity is increasing in an

42

unprecedented way.

According to the first work, the reduction of the models will also be enhanced
by achieving a variant that deals with the minimization of energy consumption.
Reducing the inference and training time of these reduction techniques would
be a key factor to minimize the computation time and consequently the energy
consumption of these operations.

According to the second work, the workload balance between the Edge and
IoT layer guarantees the completion of the tasks within the required latency.
However, the Edge Datacenters would have a higher energy consumption than
the IoT devices. Consequently, the optimization of the offloading policy would
take care of the total energy consumption of the entire network and consider
this last at dividing workload among different devices while complying latency
requirements.

According to the third work, knowledge of the building typology would fa-
cilitate the optimal supply of energy and lighting in these urban areas, avoiding
energy waste in less busy buildings at certain time intervals throughout the day
on different days of the week. The inclusion of more than one criterion to group
buildings may improve the results obtained in this thesis, including determining
factors such as those we have treated independently.

43

Bibliography

[1] Firdose Saeik, Marios Avgeris, Dimitrios Spatharakis, Nina Santi, Dim-
itrios Dechouniotis, John Violos, Aris Leivadeas, Nikolaos Athanasopoulos,
Nathalie Mitton, and Symeon Papavassiliou. Task offloading in edge and
cloud computing: A survey on mathematical, artificial intelligence and con-
trol theory solutions. Computer Networks, 195:108177, 2021.

[2] Arthur L. Samuel. Some Studies in Machine Learning Using the Game of
Checkers. I, pages 335–365. Springer New York, New York, NY, 1988.

[3] Inneke Mayachita. Understanding Graph Convolutional Networks
for Node Classification. https://towardsdatascience.com/understanding-
graph-convolutional-networks-for-node-classification-a2bfdb7aba7b.

[4] Asier Garmendia-Orbegozo, Jose David Nuñez-Gonzalez, and Miguel Angel
Anton. Slrprop: A back-propagation variant of sparse low rank method for
dnns reduction. Sensors, 23(5), 2023.

[5] Miguel Angel Anton Asier Garmendia-Orbegozo, Jose David Nunez-
Gonzalez. Task offloading in edge computing using gnns and dqn. Computer
Modeling in Engineering & Sciences, 2024.

[6] Asier Garmendia-Orbegozo, Sarah Noye, Miguel Angel Anton, and J. David
Nuñez-Gonzalez. Graph based learning for building prediction in smart
cities. IEEE Access, 10:45471–45484, 2022.

[7] Mithilesh Shirsat. The Intersection of Machine Learning and IoT. [Post].
LinkedIn. https://www.linkedin.com/pulse/intersection-machine-learning-
iot-mithilesh-shirsat/.

[8] James McCaffrey. Machine learning with iot devices on the edge. MSDN
Magazine Issues, 33(7), 2018.

[9] Shahid Anwar, Jasni Mohamad Zain, Mohamad Zolkipli, Zakira Inayat,
Suleman Khan, Bokolo Anthony Jnr, and Victor Chang. From intrusion
detection to an intrusion response system: Fundamentals, requirements,
and future directions. Algorithms, 2017, 03 2017.

44

[10] Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. In
D. Touretzky, editor, Advances in Neural Information Processing Systems,
volume 2. Morgan-Kaufmann, 1989.

[11] B. Hassibi, D.G. Stork, and G.J. Wolff. Optimal brain surgeon and general
network pruning. In IEEE International Conference on Neural Networks,
pages 293–299 vol.1, 1993.

[12] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz.
Pruning convolutional neural networks for resource efficient transfer learn-
ing. 11 2016.

[13] Chaohui Yu, Jindong Wang, Yiqiang Chen, and Zijing Wu. Transfer chan-
nel pruning for compressing deep domain adaptation models. In Leong Hou
U. and Hady W. Lauw, editors, Trends and Applications in Knowledge
Discovery and Data Mining, pages 257–273, Cham, 2019. Springer Inter-
national Publishing.

[14] Ming Yuan and Yi Lin. Model selection and estimation in regression with
grouped variables. Journal of the Royal Statistical Society: Series B (Sta-
tistical Methodology), 68(1):49–67, 2006.

[15] R Muthukrishnan and R Rohini. Lasso: A feature selection technique
in predictive modeling for machine learning. In 2016 IEEE International
Conference on Advances in Computer Applications (ICACA), pages 18–20,
2016.

[16] Maksim Kholiavchenko. Iterative low-rank approximation for cnn compres-
sion. 03 2018.

[17] Xiyu Yu, Tongliang Liu, Xinchao Wang, and Dacheng Tao. On compress-
ing deep models by low rank and sparse decomposition. In 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages
67–76, 2017.

[18] Sridhar Swaminathan, Deepak Garg, Rajkumar Kannan, and Frederic An-
dres. Sparse low rank factorization for deep neural network compression.
Neurocomputing, 02 2020.

[19] Analytics india magazine — artificial intelligence, data science, machine
learning. https://analyticsindiamag.com/.

[20] Sima Jeddi and Saeed Sharifian. A water cycle optimized wavelet neu-
ral network algorithm for demand prediction in cloud computing. Cluster
Computing, 22, 12 2019.

[21] Seung-Seob Lee and Sukyoung Lee. Resource allocation for vehicular fog
computing using reinforcement learning combined with heuristic informa-
tion. IEEE Internet of Things Journal, 7(10):10450–10464, 2020.

45

[22] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang,
Zhiyuan Liu, Lifeng Wang, Changcheng Li, and Maosong Sun. Graph
neural networks: A review of methods and applications. AI Open, 1:57–81,
2020.

[23] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng
Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving,
Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore,
Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner,
Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Va-
sudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Watten-
berg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-
scale machine learning on heterogeneous systems, 2015. Software available
from tensorflow.org.

[24] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei Rusu, Joel
Veness, Marc Bellemare, Alex Graves, Martin Riedmiller, Andreas Fidje-
land, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioan-
nis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane
Legg, and Demis Hassabis. Human-level control through deep reinforce-
ment learning. Nature, 518:529–33, 02 2015.

[25] Muhammad Islam, Abdulsalam S. Dukyil, Saleh Alyahya, and Shabana
Habib. An iot enable anomaly detection system for smart city surveillance.
Sensors, 23(4), 2023.

[26] Charafeddine Mechalikh, Hajer Taktak, and Faouzi Moussa. Pureedgesim:
A simulation toolkit for performance evaluation of cloud, fog, and pure
edge computing environments. In 2019 International Conference on High
Performance Computing Simulation (HPCS), pages 700–707, 2019.

[27] City of melbourne open data. https://data.melbourne.vic.gov.au/pages/home/.

[28] City of madrid open data. https://datos.madrid.es/portal/site/egob.

[29] Guido Van Rossum and Fred L. Drake. Python 3 Reference Manual. Cre-
ateSpace, Scotts Valley, CA, 2009.

[30] Wes McKinney. Data Structures for Statistical Computing in Python. In
Stéfan van der Walt and Jarrod Millman, editors, Proceedings of the 9th
Python in Science Conference, pages 56 – 61, 2010.

[31] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf
Gommers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Tay-
lor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus,
Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane,

46

Jaime Fernández del Ŕıo, Mark Wiebe, Pearu Peterson, Pierre Gérard-
Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer Ab-
basi, Christoph Gohlke, and Travis E. Oliphant. Array programming with
NumPy. Nature, 585(7825):357–362, September 2020.

[32] Francois Chollet et al. Keras, 2015. https://github.com/fchollet/keras.

[33] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-
learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

[34] Kolby Nottingham Markelle Kelly, Rachel Longjohn. The UCI Machine
Learning Repository. https://archive.ics.uci.edu.

[35] Built In: National Tech Startups. Fully connected layer vs. convolutional
layer: Explained. https://builtin.com/machine-learning/fully-connected-
layer, 2022. [Online; accessed 26-October-2023].

[36] Song Han, Jeff Pool, John Tran, and William J. Dally. Learning both
weights and connections for efficient neural networks, 2015.

[37] Ruichi Yu, Ang Li, Chun-Fu Chen, Jui-Hsin Lai, Vlad I. Morariu, Xintong
Han, Mingfei Gao, Ching-Yung Lin, and Larry S. Davis. Nisp: Pruning
networks using neuron importance score propagation, 2017.

[38] Li Zhuo, Qingli Shi, Chenyang Zhang, Qiuping Li, and Haiyan Tao. Iden-
tifying building functions from the spatiotemporal population density and
the interactions of people among buildings. ISPRS International Journal
of Geo-Information, 8(6), 2019.

[39] Asier Garmendia-Orbegozo, José David Núñez-Gonzalez, and Miguel Ángel
Antón. Reviewing and discussing graph reduction in edge computing con-
text. Computation, 10(9), 2022.

[40] Asier Garmendia-Orbegozo, Jose David Nuñez-Gonzalez, Miguel Angel An-
ton Gonzalez, and Manuel Graña. Comprehensive analysis of different
techniques for data augmentation and proposal of new variants of bosme
and gan. In Pablo Garćıa Bringas, Hilde Pérez Garćıa, Francisco Javier
Mart́ınez de Pisón, Francisco Mart́ınez Álvarez, Alicia Troncoso Lora,
Álvaro Herrero, José Luis Calvo Rolle, Héctor Quintián, and Emilio Cor-
chado, editors, Hybrid Artificial Intelligent Systems, pages 145–155, Cham,
2023. Springer Nature Switzerland.

[41] Mohammed Maray, Ehzaz Mustafa, Junaid Shuja, and Muhammad Bilal.
Dependent task offloading with deadline-aware scheduling in mobile edge
networks. Internet of Things, 23:100868, 2023.

47

[42] Liang Zhao, Zijia Zhao, Enchao Zhang, Ammar Hawbani, Ahmed Al-
Dubai, and Amir Hussain. A digital twin-assisted intelligent partial of-
floading approach for vehicular edge computing. IEEE Journal on Selected
Areas in Communications, 08 2023.

48

Appendix A

Articles

A.1 SLRProp: A Back-Propagation Variant of
Sparse Low Rank Method for DNNs Re-
duction

49

Citation: Garmendia-Orbegozo, A.;

Nuñez-Gonzalez, J.D.; Anton, M.A.

SLRProp: A Back-Propagation

Variant of Sparse Low Rank Method

for DNNs Reduction. Sensors 2023,

23, 2718. https://doi.org/10.3390/

s23052718

Academic Editor: Juan M. Corchado

Received: 19 January 2023

Revised: 16 February 2023

Accepted: 28 February 2023

Published: 2 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

SLRProp: A Back-Propagation Variant of Sparse Low Rank
Method for DNNs Reduction
Asier Garmendia-Orbegozo 1,† , Jose David Nuñez-Gonzalez 1,*,† and Miguel Angel Anton 2,†

1 Department of Applied Mathematics, University of the Basque Country UPV/EHU, 20600 Eibar, Spain
2 TECNALIA, Basque Research and Technology Alliance (BRTA), 20009 San Sebastian, Spain
* Correspondence: josedavid.nunez@ehu.eus
† These authors contributed equally to this work.

Abstract: Application of deep neural networks (DNN) in edge computing has emerged as a con-
sequence of the need of real time and distributed response of different devices in a large number
of scenarios. To this end, shredding these original structures is urgent due to the high number
of parameters needed to represent them. As a consequence, the most representative components
of different layers are kept in order to maintain the network’s accuracy as close as possible to the
entire network’s ones. To do so, two different approaches have been developed in this work. First,
the Sparse Low Rank Method (SLR) has been applied to two different Fully Connected (FC) layers
to watch their effect on the final response, and the method has been applied to the latest of these
layers as a duplicate. On the contrary, SLRProp has been proposed as a variant case, where the
relevances of the previous FC layer’s components were weighed as the sum of the products of each
of these neurons’ absolute values and the relevances of the neurons from the last FC layer that are
connected with the neurons from the previous FC layer. Thus, the relationship of relevances across
layer was considered. Experiments have been carried out in well-known architectures to conclude
whether the relevances throughout layers have less effect on the final response of the network than
the independent relevances intra-layer.

Keywords: pruning; deep learning; edge computing

1. Introduction

The use of deep neural networks (DNN) in different scenarios related to Machine
Learning (ML) applications has developed in such a way that currently neural network
designs have billions of parameters with a great capability of prediction, as one of the
most used types of architecture in prediction tasks. Specifically, some of those applications
include image, sound, and textual data recognition. In contrast to other ML algorithms,
the DNNs have achieved a remarkable accuracy. However, the use of these networks in
memory and processing resource constrained devices is limited due to the amount of data
needed to develop these architectures and the high computation costs for training them.
Consequently, different reduction techniques are essential to fit these former networks in
resource constrained devices, such as edge devices.

Among others, the most used and effective way to shrink these networks is the use
of techniques such as pruning and quantization. The former one consists of removing
parameters (neurons or weights) that have negligible contribution while maintaining the
accuracy of the classifier. On the other hand, quantization involves replacing datatypes
to reduced width datatypes, by transforming data to fit into new datatypes’ shapes. In
this way, reduced networks are able to compete with the original ones in terms of accuracy
and even improve these in some cases in which overfitting issues were hindering their
predictability. Moreover, by reducing the width of the data, edge devices could face the
storage issue mentioned above and collect larger datasets in constrained memory sizes.

Sensors 2023, 23, 2718. https://doi.org/10.3390/s23052718 https://www.mdpi.com/journal/sensors

Sensors 2023, 23, 2718 2 of 14

Mainly convolutional neural networks (CNN) became a widely used network structure
in image recognition tasks. Such a success is built upon a large number of model parameters
and convolutional operations. As a result, the huge storage and computation costs make
these models difficult to be deployed on resource-constrained devices, such as phones and
robots, needing to adopt different reduction techniques.

In this work, we introduce a new variant to the Sparse Low Rank (SLR) method to
develop weight pruning in well-known architectures, SLRProp. We judge that the last
Fully Connected (FC) Layer, Final Response Layer (FRL), is the most relevant to the final
decision. Moreover, the relevance of weights of this final layer are propagated to the
previous layers, making each neuron non-independent of the previous layers in terms of
relevance. Consequently, the connections of each neuron has a direct relationship with
neuron’s predictability in the final decision of the network, needing to consider them. After
factorizing the weight matrices of FC Layers, we sparsified them only considering the most
relevant parts and propagate these relevances to the previous FC layers by considering
the connections between different FC layers. Similarly, we performed a parallel process in
which the sparsification of matrices has been carried out independently between layers,
only considering the relevance intra-layer. Finally, we state the validity of the supposition of
backpropagating the relevance within layers. As a result, the pruning process is optimized
by determining the less relevant components of each layer, as a consequence of the addition
of the backpropagation concept to the Sparse Low Rank Method contributed in this work.

State of the Art

There have been several attempts to reduce DNNs dimensionality by applying the
techniques mentioned above. Pruning techniques consist of removing part of connections
(weights) or neurons from the original network so as to reduce the dimension of the original
structure by maintaining its ability to predict. The core of these techniques reside on the
redundancy that some elements add to the entire architecture. Memory size and bandwidth
reduction are addressed with these techniques. Redundancy is lowered and overfitting is
faced in some scenarios. Different classifications of works based on this ability are made
depending on element pruned, structured/unstructured (symmetry), and static/dynamic.

Static pruning is the process of removing elements of a network structure offline
before training and inference processes. During these last processes no changes are made
to the network previously modified. However, removal of different components of the
architecture requires a fine-tuning or retraining of the pruned network. This is a direct
consequence of the changes that suffer the network by removing big part of its elements.
Thus, some computation effort is needed in order to reach comparable accuracy to the
original network.

The pruning has been carried out by following different criteria. In [1,2], they used
the second derivative of the Hessian matrix to reduce the dimension of the original ar-
chitecture. Optimal Brain Damage (OBD) and Optimal Brain Surgeon (OBS) work under
three assumptions. Quadratic: the cost function is near quadratic. Extremal: the pruning
is conducted after the network converged. Diagonal: sums up the error of individual
weights by pruning the result of the error caused by their co-consequence. Additionally,
OBS avoids the diagonal assumption and improves neuron removal precision by up to 90%
reduction in weights for XOR networks. Using Taylor expansions of first order [3,4] was
also an alternative to the previous ones to tackle networks’ dimension issues, as a criterion
to approximate the change of loss in the objective function as an effect of pruning.

Some works were based on the magnitude of the elements themselves. It is undoubt-
edly true that near-zero values of weights make far less contributions to the results than
others that surpass a certain threshold value. In this way, removing connections that may
appear unnecessary, the original network is shrunk. The best way to accomplish this is the
removal of weights layer by layer to not abruptly decrease the performance of the resulting
network. LASSO [5] was introduced as a penalty term. It shrinks the least absolute valued
feature’s corresponding weights by increasing weight sparsity. This operation has been

Sensors 2023, 23, 2718 3 of 14

shown to offer a better performance than traditional procedures such as OBS by selecting
the most significantly contributed variables instead of using all the variables, achieving
approximately 60% more sparsity than OBS. The problem with LASSO is that is an elemen-
twise pruning technique leading to an unstructured network and sparse weight matrices.
By performing this technique dividing the process by groups—as Group LASSO [6] does,
removing entire groups of neurons and maintaining the original network’s structure—this
last issue was solved. Groups are made based on geometry, computational complexity, or
group sparsity, among others.

Singular Value Decomposition (SVD) is an effective and promising technique to shred
convolutional or FC layers by reducing the number of parameters needed to represent them.
Not only it has been useful for image classification tasks, but also in object detection [7]
scenarios and others related with DNN-based acoustic modeling [8,9]. Low-rank decom-
position for convolution layers as well as fully connected layers were applied in several
works. Kholiavchenko et al. [10] proposed an iterative approach to low-rank decomposition
by applying dynamic rank selection to image classification and object detection models.
One of its negative aspects was that iteratively applying low-rank decomposition needs
longer time and higher computational resources for rank selection in deeper models. The
alternative proposed by [11] assumes the properties of both low-rank and sparseness of
weight matrices while aiming to reconstruct the original matrix. In [12], through mixing the
concepts of sparsity and existence of unequal contributions of neurons towards achieving
the target, the Sparse Low Rank (SLR) method is proposed—a method that scatters SVD
matrices to compress them by conserving lower rank for unimportant neurons. As a result,
it is feasible to reduce the 3.6× storage space of SVD without much variance on the model
accuracy. Speedup in the computation was another advantage that has the structured
sparsity obtained by the presented approach.

The majority of the previous works had paid attention to the individual pruning of
layers while not considering the connection between different layers. In [13], they claimed
that the last FC layer is the most relevant of the entire network regarding the effect on
the final response of the entire network. Considering this last, they proposed to prune
the previous layer of the network when considering the connections of neurons with
the neurons of this last FC layer called the Final Response Layer (FRL). In this way, the
relevances of the neurons considered independently for the FRL were backpropagated to
the previous layer’s neurons. The pruning of the rest of the layers was carried out similarly,
scoring the relevance of the neurons when considering the connections with the posterior
layers’ neurons.

Other alternatives have been proposed to carry out static pruning. In [14], they pro-
posed an innovative method for CNNs pruning called layerwise relevance propagation.
Each unit’s relevance to the final decision is measured, and the units that are below a prede-
fined threshold are removed from the original structure. As a last step, each component’s
relevance is recalculated by calculating the total relevance per layer to keep it constant
through the iterations. Thus, each unit’s relevance is recalculated to maintain this value.
In [15], a method of pruning redundant features along with their related feature maps,
according to their relative cosine distances in the feature space, is proposed, and the authors
achieve smaller networks with a significant download in post-training inference compu-
tational costs and achieving a decent performance. Redundancy can be minimized while
inference cost (FLOPS) is reduced by 40% for VGG-16, 28%/39% for ResNet-56/110 models
trained on CIFAR-10, and 28% for ResNet-34 trained on ImageNet database with almost
negligible loss of accuracy. To fix the decrease in accuracy after pruning, models were
retrained for some iterations maintaining all hyper-parameters.

2. Material and Methods

In this section, we describe the methodology proposed in order to attempt to improve
the results obtained in the literature for different neural networks and datasets. Additionally,
we present the datasets and models used for experimentation.

Sensors 2023, 23, 2718 4 of 14

2.1. Methodology

The approach we present in this study follows this methodology. First, traditional
low-rank decomposition SVD is applied to the weight matrix of the final FC layer, called
FRL. Next, input and output weights in the layer are selected for sparsification using
different neuron selection strategies. Then, sparsification is applied to the selected input
and output neuron components in the decomposed matrices. With the most relevant
neurons of the final FC layer obtained we back propagate their relevance to the prior FC
layer, following the idea proposed by [13], and we obtained the relevance of the neurons
composing the prior FC layer. Finally, we repeated the process of sparsification for the
decomposed matrices of the prior FC layer. In parallel, we performed the same process
of sparsification but only considering the relevance of each individual layer for the last
two FC layers. The results and comparative of both methodologies are summarized in
Section 4.

2.1.1. Single Value Decomposition (SVD)

One way for decomposing matrices representing the weights of neural networks is
the use of low-rank factorization. A convolutional neural network is composed of a large
number of convolutional layers and fully connected layers. By applying this technique
to convolutional kernels weights optimization of the inference speed, the convolution
operation could be obtained due to the reduction in the time needed for multiplication with
factorized matrices compared to that of multiplication with 3D weights of kernels.

In a FC layer having m input and n output neurons, activation a ∈ Rn of the layer
with n nodes is represented as

a = g(WTX + b) (1)

where X represents the input to the layer, and g() represents any of the possible activation
functions. FC layers connections form a weight matrix W ∈ Rmn and a bias vector b ∈ Rn

where each parameter in the weight matrix W is wij ∈ R (1 ≤ i ≤ m, 1 ≤ j ≤ n), and bias
matrix b is bj ∈ R(1 ≤ j ≤ n). The proposed approach is applied to the weight matrix
W after training the entire model. The SVD approach decomposes the weight matrix W
as W = USVT where U ∈ Rm×m, VT ∈ Rn×n are orthogonal matrices and S ∈ Rm×n is a
diagonal matrix.

2.1.2. Sparse Low Rank Decomposition

The matrix S is a diagonal matrix containing n non-negative singular values in a
decreasing order. The k singular values that are most significant are kept by Truncated
SVD where the decomposed matrices U, S, and VT become Û, Ŝ, V̂T ∈ Rm×k,Rk×k,Rk×n.
By this way, the original weights W are replaced into reconstructed approximated weight
Ŵ as Ŵ = ÛŜV̂T .

In SVD we have diagonal matrix sigma S with the most significant singular values
from the upper left to lower right in a decreasing order. In the truncation process the first k
rows of U and columns of V̂T are kept.

Simulating the approach driven by [12] we compressed truncated matrices Û, Ŝ, and
V̂ based on the importance of the m input and n output neurons, i.e., we represented a
few columns of Û and rows of V̂T with a rank lower than k, called reduced rank rk. In this
way, only rk most significant rows and columns are kept in Û and V̂T , respectively, due
to the order of importance of W that starts from left to right through columns of Û and
top to bottom through rows of V̂T . We considered only the most significant rows (rm) and
columns (rn) from each column and row from Û and V̂T , respectively, following the cost
criteria, briefly explained in the next subsection.

When the matrices Û, Ŝ and V̂T are sparsified with sr and rr, the total number of
non-zero parameters of the Û, Ŝ, V̂T become k(m− rm + n− rn + 1) + rk(rm + rn), which
is less than the number of non-zero parameters of truncated SVD k(m + n + 1).

Sensors 2023, 23, 2718 5 of 14

Pruning fully connected layers is much more effective in terms of accuracy, time, and
energy efficiency than pruning convolutional layers as shown in [16], which contributes to
bigger losses in prediction capability with the same rate of reduction in parameters. Those
are usually placed in the first positions in DNNs, and they are more sensitive than the ones
that are placed in the last positions in many cases. In this study, we followed the approach
directed by [12] sparsifying SVD matrices achieving a low compression rate without big
losses in accuracy. We used as a metric of sparsification the compression rate defined in [12],
as the ratio between the parameters needed to define the sparsified decomposed matrices
and the original weights’ matrix parameters. In our case, we analyzed their 3 variants of
applying SLR, that were based in cost, weights, and activations, and we proposed two new
variants that sum the importance of cost and weights and cost and activations due to the
fact that each of them performed as the best variant in different compression rate regimes.

Overall, the most relevant attribute was the cost, so we decided to establish this as the
criteria for selection of the rows and columns for sparsification. An explanation of the full
process of this method is given in Algorithm 1.

Algorithm 1 SLRProp

Weights1←FRL weights
Weights2←Previous FC layer weights
U, S, V ← SVD(Weights1)
tU, tS, tV ← U[:, 0 : rank], S[0 : rank], V[0 : rank, :]
for Nrows do

tempU[row, rk :] = 0
Weightst← tempU ∗ tS ∗ tV
Score← Accuracy(Weightst)
is←Ranking of rows

end for
for Ncolumns do

tempV[rk :, column] = 0
Weightst← tU ∗ tS ∗ tempV
Score← Accuracy(Weightst)
os←Ranking of columns

end for
U(rmrows)← 0 where rm=sr*m
V(rncolumns)← 0 where rn=sr*n
U2, S2, V2← SVD(Weights2)
tU2, tS2, tV2← U2[:, 0 : rank], S2[0 : rank], V2[0 : rank, :]
for Nrows do

Score← ∑ Abs(U2[i, j] ∗ is[j])
is2←Ranking of rows

end for
for Ncolumns do

tempV2[rr :, column] = 0
Weightst2← tU2 ∗ tS2 ∗ tempV2
Score← Accuracy(Weightst2)
os2←Ranking of columns

end for
U2(rmrows)← 0
V2(rmcolumns)← 0

2.1.3. Selection of Rows and Columns Based on Cost

A neuron’s importance is defined by whether there is a change or not in the network
performance after removing it. Let c be the default cost of the neural network with original
trained weight W estimated for the p training samples, computed using any loss function.
Let ĉ be the value of cost of the network with sparsified weights Ŵ. By truncating with

Sensors 2023, 23, 2718 6 of 14

reduced rank rr a specific row of Û or column of V̂T we have the absolute change in cost is
or os. Those are calculated as follows:

isi = |c− ĉi| (2)

osj = |c− ĉj| (3)

As the sparsification process purpose is to ensure that the functionality of the network
does not change after compression, and not to reduce the overall network cost or improve
accuracy, only the absolute change in the cost value is considered.

2.1.4. Propagation of Relevance between Layers

As it is known, the majority of neural networks can be formulated as a nested function.
Thus, we can define a network with n hidden layers as a F(n) = f (n) ◦ f (n−1) ◦ ... ◦ f (1).
Each layer can be represented as follows:

f (n)(x) = σ(n)(w(n)x + b(n)) (4)

where σ(n) is the activation function of each layer, w(n) is the corresponding layers connec-
tions’ weight function, and b(n) is the bias of each layer. At this stage it is possible to say
that all of these layers are interconnected and each of them has direct relevance on the final
decision of the entire network. Consequently, weights from the FRL, that is the last Fully
Connected Layer, backpropagate their relevance to the prior layers as proposed in [13]. As
a result, the relevance of each neuron in the final decision is the composition of weights
that are interconnected until the FRL corresponding element’s relevance. The summation
of the corresponding relevances is given by Equation (5).

sk = |w(k+1)|>|w(k+2)|>...|w(n)|>sn (5)

The absolute value of the weights that are connected to each of the neurons of the FRL are
multiplied by the relevance of these in the FRL.

sk,j = ∑
i
|w(k+1)

i,j |sk+1,i (6)

Equation (6) shows the relevance of the j-th neuron in the k-th layer, which propagates the
relevances of the neurons from the posterior k + 1-th layer that are connected with it.

By introducing this idea to the SVD matrices, keeping only the most relevant rows of
U matrices, we can consider only the most relevant neurons of that layer. The procedure
in the FC layers that are not the FRL, is similar to the original SLR method except for the
sparsification of the U matrices where the relevance propagated through the posterior
layers is considered to determine the most relevant neurons. This relevance is propagated
following Equation (6).

In summary, the main contributions made by this work are the following. The pruning
of weights carried out in these FC layers is more optimal than in the original SLR method.
Consequently, the performance of the resulting network is raised, obtaining sub-optimal
results in terms of different performance metrics defined in Section 4 with far less weights
needed compared with the original structure. Thus, in scenarios in which original network
structures cannot fit end user devices due to memory restrictions are crucial for such
reduction techniques.

2.2. Materials

Regarding the materials, we used two well-known models for image recognition, VGG-
16 [17] and Lenet5 [18], where VGG architecture is much known for its memory intensive
FC layers. It is worth noting that VGG is the commonly used architecture with FC layers
where other popular image recognition models, such as ResNet, Inception, MobileNet,

Sensors 2023, 23, 2718 7 of 14

ResNet, DenseNet, and object detection models, do not have FC layers except the final
softmax layer. Tables 1 and 2 show the specifications of each network structure.

These two different approaches were tested on different well-known datasets, Cifar10
(VGG16), Cifar100 (VGG16), and MNIST (Lenet5). Each of them contain 32 × 32 images
(color images in Cifar10/Cifar100 and grayscale images in MNIST). In case of Cifar10 and
MNIST there are 10 different classes and 100 in Cifar100. All of them have been trained
using default 10,000 test images and 50,000 and 60,000 training images for the Cifar and
MNIST datasets, respectively. Different compression rates were applied for sparsifying
SVD matrices; therefore, for each dataset we obtained different performance metrics for
each method. Overall, we were able to state which method was the best in each case. The
datasets used for experiments comprise a good mix of different image types, sizes, and
number of classes. CIFAR-10 and CIFAR-100 have general purpose image classes where
MNIST dataset contains handwritten digit images.

Moreover, to demonstrate the usefulness of our approach in sensor related data we
tested our approach in a model consisting of 3 FC layers for the Room Occupancy Estimation
Data Set from the UCI Machine Learning Repository. It is a dataset for estimating the precise
number of occupants in a room using multiple non-intrusive environmental sensors such as
temperature, light, sound, CO2, and PIR. There are 10,129 instances using 1000 for testing
and the rest for training. Table 3 shows the specifications of the network structure.

Table 1. VGG16 model trained for 32 × 32 images.

Layer Name Layer Type Feature Map Output Size of Images Kernel Size Stride Activation

Input Image 1 32 × 32 × 3 - - -
Conv-1 2 × Conv 64 32 × 32 × 64 3 × 3 1 relu
Pool1 Maxpool 64 16 × 16 × 64 3 × 3 2 relu

Conv-2 2 × Conv 128 16 × 16 × 128 3 × 3 1 relu
Pool2 Maxpool 128 8 × 8 × 128 3 × 3 2 relu

Conv-3 2 × Conv 256 8 × 8 × 256 3 × 3 1 relu
Pool3 Maxpool 256 4 × 4 × 256 3 × 3 2 relu

Conv-4 2 × Conv 512 4 × 4 × 512 3 × 3 1 relu
Pool4 Maxpool 512 2 × 2 × 512 3 × 3 2 relu

Conv-5 2 × Conv 512 2 × 2 × 512 3 × 3 1 relu
Pool5 Maxpool 512 1 × 1 × 512 3 × 3 2 relu

Flatten Flatten - 512 - - relu
FC6 Dense - 4096 - - relu
FC7 Dense - 4096 - - relu
FC8 Dense - # of classes - - softmax

Table 2. Lenet5 model trained for 32 × 32 images.

Layer Name Layer Type Feature Map Output Size of Images Kernel Size Stride Activation

Input Image 1 32 × 32 × 3 - - -
Conv-1 1 × Conv 6 28 × 28 × 6 5 × 5 1 tanh
Pool1 Avgppool 6 14 × 14 × 6 2 × 2 2 tanh

Conv-2 1 × Conv 16 10 × 10 × 16 5 × 5 1 tanh
Pool2 Avgppool 16 5 × 5 × 16 2 × 2 2 tanh

Flatten Flatten - 400 - - tanh
FC3 Dense - 120 - - relu
FC4 Dense - 84 - - relu
FC5 Dense - # of classes - - softmax

Table 3. FC layers model.

Layer Name Layer Type Output Size Activation

Input Data # of attributes -
FC1 Dense 4000 relu
FC2 Dense 4000 relu
FC3 Dense 4000 relu
FC4 Dense # of classes sigmoid

Sensors 2023, 23, 2718 8 of 14

The environment in which all development of our work had been processed is a ×64
Ubuntu 20.04.4 LTS Operating System equipped with an Intel Core i7-11850H working at
2.5 GHz × 16 and 32 GB DDR-4 RAM and a NVIDIA T1200 Laptop GPU (driver version:
510.47.03, CUDA version:11.6).

3. Proposed Approach

As cited above, the intention of this research was to realize the connection of relevances
between different layers. To do so, we opted for applying the approach presented by [12]
in two different FC layers. First, we applied it independently. To show that there is a direct
relationship between neurons from different layers, we considered the relevance of the FRL
and backpropagate it until the second FC layer that we pruned in the parallel process. In
this way, we could see the effect of backpropagating the relevance throughout layers and
see the correlation between them.

We applied the SLR approach proposed by [12] to obtain information about the most
relevant parts forming the FRL. In this way, we were able to know the relevances for the
final decision of each of the neurons comprising this last FC layer. To calculate the relevance
propagated to the previous layers we used the insight introduced in Section 2.1.4 and
multiplied each of the absolute value of weights that was connected with each neuron of
the next layer with the relevance of these neurons from the next layer, for each neuron
comprising the layer in question. Finally, after obtaining the relevances for each neuron
from the layer, we sparsified the weight matrix of this layer the same way as for the FRL
but while sparsifying the U matrix in the following way. We considered only the rows that
obtained the highest value after the summation of multiplications of absolute weights of
connections with each of the relevances of neurons connected from the next layer, instead
of considering the original relevances of neurons as we implemented for the FRL.

At the same time, we carried out sparsification of the same number of layers only
considering the independent relevances of each layer, following the criteria proposed
by [12]. In this work, they present three different criteria to determine which elements of
each layer were more relevant to the final decision of the network. Overall, the criteria
based in the cost of weights was the most adequate to reduce the dimensionality of the
problem and maintain the performance of the architecture to be as high as possible. The
graphical representation of both approaches is given by Figure 1.

In case of VGG16, the FRL corresponds to FC7, and the backpropagation of the
relevances has been carried out until FC6. FRL and previous FC layer of Lenet5 are FC4
and FC3, respectively. In case of the aforementioned three FC layers’ architecture these
layers are FC3 and FC2, respectively.

Figure 1. Comparison of the proposed approaches.

Sensors 2023, 23, 2718 9 of 14

4. Experiment

In this section, details about the entire experimentation process are described. The
results obtained are summarized as well.

Performance Metrics

Evaluation metrics used for determining which of the methods used is best for keeping
the performance of the former network as high as possible are the accuracy vs. compression
rate, AUC vs. compression, recall vs. compression, precision vs. compression, and
specificity vs. compression, where the compression rate was defined in [12]. This last metric
determines the relationship of the number of parameters between sparsified decomposed
matrices and the original network’s weight matrices. AUC is the area below the ROC
curve—i.e., a graph showing the performance of a classification model at all classification
thresholds. What is plotted in the curve is the FPR and TPR in the x and y axes, respectively,
whose definitions are given in Equation (10) and (11). The definitions of the rest of the
metrics mentioned above are given in Equations (7)–(9), where TP, TN, FP, and FP stand for
True Positives, True Negatives, False Positives, and False Negatives, respectively. We used
FRL’s previous FC layer’s compression rate to check the accuracy of the resultant network
on different compression rate regimes.

Each of the variants proposed in this work, considering or not the relevance between
layers, have been tested on well-known open source datasets for image recognition Cifar10,
Cifar100, and MNIST. All of them have been trained using default 10,000 test images
and 50,000 and 60,000 training images for the Cifar and MNIST datasets, respectively.
To show their effectiveness in sensor related datasets, they were applied to the Room
Occupancy Detection Dataset too. In this case, 1,000 samples were used for testing and
the rest (9,129 samples) for training the network. In each case, we opted for establishing
the same reduction rate (0.5) and sparsity rate (0.5) defined in [12], and we tested each
variant with different rank k, which determines the number of columns and rows kept in
the sparsified Û and V̂T matrices. We incremented the rank k until the performance metrics
were equal to the ones obtained by the original network structure. In the testing phase 10
different seeds were established for testing each methodology in each dataset.

Accuracy(Acc) =
TP + TN

TP + TN + FP + FN
(7)

Recall(Re) =
TP

TP + FN
(8)

Precision(Pr) =
TP

TP + FP
(9)

TruePositiveRate(TPR) =
TP

TP + FN
(10)

FalsePositiveRate(FPR) =
FP

FP + TN
(11)

Speci f icity(Spec) =
FP

FP + TN
(12)

5. Results

Figure 2 shows the accuracies obtained after testing both pruning techniques for the
VGG16 architecture on the Cifar10 dataset. As is clear, there was no significant difference
between the methods when applying an extremely low compression rate, which means that
very few parameters of the original matrices were kept. Similarly, we could observe the
same pattern when a higher number of parameters were kept in the original decomposed
matrices, but there were significant differences between both compression rate regimes. In
this case, applying the SLR method independently to different FC layers offers a higher

Sensors 2023, 23, 2718 10 of 14

accuracy with the same compression rate, i.e., keeping the same number of connections
between neurons.

Figure 2. Accuracies for pruning VGG16 network on Cifar10 dataset for different compression rates.

Similarly, there could be the same pattern in case of Cifar100 dataset for the same net-
work architecture. The SLR method was applied independently without any consideration
of propagation of relevances across layers. In this case for lower compression rate regimes
the difference is high as well. Figure 3 shows the results summarized for the Cifar100
dataset.

Simultaneously, Lenet5 architecture was pruned following both methodologies on
MNIST dataset. Figure 4 shows the accuracies obtained for different compression rates.
As could be observed, for the majority of the pruning rates applied when applying the
SLR independently in different layers offers better performance than considering the
backpropagation rule of the relevances from the FRL. However, in certain compression
rate regimes, the last one outperforms the former one, but the difference is insignificant
compared to the overall performance result.

Finally, both methodologies for pruning FC layers were adopted for pruning FRL
and the previous FC layer of the Room Occupancy Detection dataset. Figure 5 shows the
accuracies obtained for different compression rates. There is a clear tendency towards
SLRProp in terms of accuracy, which determines that for the majority of the regions of
compression SLRProp outperforms the SLR method.

Figure 3. Accuracies for pruning VGG16 network on Cifar100 dataset for different compression rates.

Sensors 2023, 23, 2718 11 of 14

Figure 4. Accuracies for pruning Lenet5 network on MNIST dataset for different compression rates.

Figure 5. Accuracies for pruning FC layers architecture on Room Occupancy Detection dataset for
different compression rates.

Overall, if we observe in detail each of the metrics defined in the previous section
and given in Appendix A, we can obtain a general verdict about the performance of SLR
and SLRProp applied to the four datasets described in Section 2. In 30 cases SLR obtained
a higher metric value, and in 33 cases SLRProp obtained a better performance result. In
14 cases the results are identical for both methods. In Table 4 a brief review of these metrics
is given. Once having this comparison, we can deduce that SLRProp’s performance is
slightly better than the original SLR that was presented by [12].

Table 4. SLR vs. SLRProp accuracies for different datasets.

Rank k Cifar10-SLR Cifar10-
SLRProp

Cifar100-
SLR

Cifar100-
SLRProp MNIST-SLR MNIST-

SLRProp Room-SLR Room-
SLRProp

k = 2 17.037% 17.4074% 4% 2.8519% 21.084% 23.492% 17.5% 17.5
k = 4 52.3333% 43.5185% 9.8889% 8.8889% 38.006% 40.053% 17.7% 17.7%
k = 8 89.5926% 81.4444% 47.4444% 37.9259% 71.597% 80.469% 83% 83.9%

k = 16 92.963% 92.963% 63.4074% 62.4444% 93.258% 94.245% - -
k = 32 - - - - 98.416% 98.385% - -

Sensors 2023, 23, 2718 12 of 14

6. Discussion

As demonstrated in the previous section, the introduction of the concept of backprop-
agation of the relevances from the FRL to the rest of the layers of the original network
does not always outperform the supposition of the relevances independently within layers.
However, the general result shows that the SLRProp method is slightly better than the
original version of sparsification presented by [12]. In this way, the breakthrough presented
by [13] is preserved in this experiment; the final result the relevances propagated between
different layers through the connections between neurons is of particular importance. For
relatively high compression rate regimes, where the number of pruned connections is not
very high, the performance metrics are almost identical for all architectures applied for
the four different datasets. On the contrary, for very low compression rate regimes the
performance metrics do not follow a distinguishable pattern, which shows the random-
ness of both methods when an excessive pruning is carried out in any of the mentioned
architectures.

This shows that the components of each layer have certain influence on the rest of
the network components, even though the main contribution to the final result of each
component is more connected with other aspects than the connections’ weights’ absolute
values across layers. In this case, the cost defined as the difference of the accuracy between
the case when a certain component is eliminated from the original network and the original
structure’s accuracy showed that it could be more crucial when selecting which connections
should be removed when pruning the original network. Additionally, backpropagating
the relevances of the FRL to the previous FC layers could yield an even more adequate
performance when applied to certain datasets, e.g., for the Room Occupancy Detection
dataset. Consequently, this paper shows that the relevances propagated between layers
play an important role when determining which are the most important components of the
network structure.

To summarize, it is possible to say that the proposition presented by [13] echoed in
Equation (6) is conserved in this experimental process, thus challenging its validity for
every architecture of a convolutional neural network focused on image recognition. In
fact, the ranking of the connection’s relevance proposed by [12] offers an optimal result
in terms of accuracy and network compression—needing only a very low percentage of
parameters for representing sparsified matrices compared to the original network’s matrices.
However, the computational cost of calculating each matrices’ components costs might
be too high and ineffective in many scenarios, which creates the need for an alternative
method for solving this issue of the training phase. The SLRProp alternative offers a slight
improvement in different accuracy metrics, but is still too costly in terms of time efficiency
and computational load. Attending these networks’ weights’ absolute values as a criteria
to decide which columns and rows are maintained in the sparsified matrices offers a near
identical result in terms of accuracy that needs ∼ 100x less time for sparsifying the SVD
matrices in the training phase. In applications where time response is crucial, this last
alternative method may be more adequate.

Author Contributions: All the authors have contributed equally to this work. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Informed Consent Statement: Not applicable.

Data Availability Statement: The raw data used in this work is available at https://keras.io/api/
datasets/ (accessed on 12 December 2022) and at https://archive.ics.uci.edu/ml/index.php (accessed
on 16 December 2022) were a brief explanation of each dataset is given, as well as and explanation of
how to use the data.

Conflicts of Interest: The authors declare no conflict of interest.

Sample Availability: Samples of the compounds are available from the authors.

Sensors 2023, 23, 2718 13 of 14

Abbreviations
The following abbreviations are used in this manuscript:

AUC Area Under the ROC Curve
CNN Convolutional Neural Networks
DNN Deep Neural Networks
FC Fully Connected
FN False Negatives
FP False Positives
FPR False Positive Rate
FRL Final Response Layer
ML Machine Learning
OBD Optimal Brain Damage
OBS Optimal Brain Surgeon
SLR Sparse Low Rank Method
SVD Singular Value Decomposition
TN True Negatives
TP True Positives
TPR True Positive Rate

Appendix A

In this appendix the performance metrics described in this article for each of the
datasets mentioned in Section 2 are given.

Table A1. SLR vs. SLRProp Cifar10.

Method-Rank k Accuracy AUC Recall Precision Specificity

SLR-k = 2 17.037% 52.2763% 0% 0% -
SLRProp-k = 2 17.4074% 50.6373% 0% 0% -

SLR-k = 4 52.3333% 77.6934% 80.9155% 26.9259% -
SLRProp-k = 4 43.5185 74.7603 62.4146% 17.4074% -

SLR-k = 8 89.5926% 98.7243% 86% 92.0401% -
SLRProp-k = 8 81.4444% 97.3784% 74.037% 87.3035% -

SLR-k = 16 92.963% 99.1493% 92.9630% 93.2764% -
SLRProp-k = 16 92.963% 99.1873% 92.9630% 93.5727% -

Table A2. SLR vs. SLRProp Cifar100.

Method-Rank k Accuracy AUC Recall Precision Specificity

SLR-k = 2 4% 68.0924% 0% 0% 100%
SLRProp-k = 2 2.8519% 65.6321% 0% 0% 100%

SLR-k = 4 9.8889% 80.7851% 0.0741% 0.6667% 99.9996%
SLRProp-k = 4 8.8889% 81.2581% 0.1481% 4% 100%

SLR-k = 8 47.4444% 96.5314% 18.3333% 86.0334% 99.9719%
SLRProp-k = 8 37.9259% 95.0432% 12.6667% 77.8508% 99.9637%

SLR-k = 16 63.4074% 96.2422% 54.7037% 76.9269% 99.8316%
SLRProp-k = 16 62.4444% 96.2004% 53.0741% 79.3686% 99.8578%

Table A3. SLR vs. SLRProp MNIST.

Method-Rank k Accuracy AUC Recall Precision Specificity

SLR-k = 2 21.084% 58.7361% 20.914% 21.176% 91.3463%
SLRProp-k = 2 23.492% 59.857% 23.309% 23.5553% 91.5947%

SLR-k = 4 38.006% 74.2785% 37.41% 38.4775% 93.3527%
SLRProp-k = 4 40.053% 77.2657% 39.267% 40.6033% 93.6218%

SLR-k = 8 80.469% 94.7351% 80.219% 80.774% 97.8786%
SLRProp-k = 8 71.597% 92.8456% 70.98% 72.2031% 96.3698%

SLR-k = 16 93.258% 98.6997% 93.16% 93.3691% 99.2649%
SLRProp-k = 16 94.245% 98.856% 94.167% 94.3613% 99.3748%

SLR-k = 32 98.416% 99.7014% 98.393% 98.455% 99.8284%
SLRProp-k = 32 98.385% 99.7007% 98.366% 98.43% 99.8257%

Sensors 2023, 23, 2718 14 of 14

Table A4. SLR vs. SLRProp Room Occupancy Estimation.

Method-Rank k Accuracy AUC Recall Precision Specificity

SLR-k = 2 17.5% 49.8478% 17.5% 17.5% 72.5%
SLRProp-k = 2 17.5% 49.9085% 17.5% 17.5449% 72.5833%

SLR-k = 4 17.7% 62.6004% 17.5% 19.774% 76.3333%
SLRProp-k = 4 17.7% 63.3562% 17.5% 19.774% 76.3333%

SLR-k = 8 83% 93.9923% 49.8% 73.5598% 94.0333%
SLRProp-k = 8 83.89% 95.5216% 51.8% 77.54449% 95.08%

References
1. LeCun, Y.; Denker, J.; Solla, S. Optimal Brain Damage. In Advances in Neural Information Processing Systems; Touretzky, D., Ed.;

Morgan-Kaufmann: Burlington, MA, USA, 1989; Volume 2.
2. Hassibi, B.; Stork, D.; Wolff, G. Optimal Brain Surgeon and general network pruning. In Proceedings of the IEEE International

Conference on Neural Networks, San Francisco, CA, USA, 28 March–1 April 1993; Volume 1, pp. 293–299. [CrossRef]
3. Molchanov, P.; Tyree, S.; Karras, T.; Aila, T.; Kautz, J. Pruning Convolutional Neural Networks for Resource Efficient Inference.

arXiv 2016, arXiv:1611.06440. https://doi.org/10.48550/ARXIV.1611.06440.
4. Yu, C.; Wang, J.; Chen, Y.; Wu, Z. Transfer Channel Pruning for Compressing Deep Domain Adaptation Models. Int. J. Mach.

Learn. Cibern. 2019, 10, 3129–3144. [CrossRef]
5. Muthukrishnan, R.; Rohini, R. LASSO: A feature selection technique in predictive modeling for machine learning. In Proceedings

of the 2016 IEEE International Conference on Advances in Computer Applications (ICACA), Coimbatore, India, 24 October 2016;
pp. 18–20. [CrossRef]

6. Yuan, M.; Lin, Y. Model selection and estimation in regression with grouped variables. J. R. Stat. Soc. Ser. B Stat. Methodol. 2006,
68, 49–67. [CrossRef]

7. Girshick, R. Fast R-CNN. arXiv 2015, arXiv:1504.08083.
8. Sainath, T.N.; Kingsbury, B.; Sindhwani, V.; Arisoy, E.; Ramabhadran, B. Low-rank matrix factorization for Deep Neural Network

training with high-dimensional output targets. In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech
and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013; pp. 6655–6659. [CrossRef]

9. Xue, J.; Li, J.; Gong, Y. Restructuring of deep neural network acoustic models with singular value decomposition. In Proceedings
of the Annual Conference of the International Speech Communication Association (INTERSPEECH 2016), San Francisco, CA,
USA, 8–12 September 2016; pp. 2365–2369.

10. Kholiavchenko, M. Iterative Low-Rank Approximation for CNN Compression. arXiv 2018, arXiv:1803.08995.
11. On Compressing Deep Models by Low Rank and Sparse Decomposition. In Proceedings of the 2017 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 67–76. [CrossRef]
12. Swaminathan, S.; Garg, D.; Kannan, R.; Andres, F. Sparse Low Rank Factorization for Deep Neural Network Compression.

Neurocomputing 2020, 398, 185–196. [CrossRef]
13. Yu, R.; Li, A.; Chen, C.F.; Lai, J.H.; Morariu, V.I.; Han, X.; Gao, M.; Lin, C.Y.; Davis, L.S. NISP: Pruning Networks using Neuron

Importance Score Propagation. arXiv 2017, arXiv:1711.05908.
14. Yeom, S.K.; Seegerer, P.; Lapuschkin, S.; Binder, A.; Wiedemann, S.; Müller, K.R.; Samek, W. Pruning by explaining: A novel

criterion for deep neural network pruning. Pattern Recognit. 2021, 115, 107899. [CrossRef]
15. Ayinde, B.O.; Inanc, T.; Zurada, J.M. Redundant feature pruning for accelerated inference in deep neural networks. Neural Netw.

2019, 118, 148–158. [CrossRef]
16. Han, S.; Pool, J.; Tran, J.; Dally, W.J. Learning both Weights and Connections for Efficient Neural Networks. arXiv 2015,

arXiv:1506.02626.
17. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556.
18. Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-Based Learning Applied to Document Recognition. Proc. IEEE 1998,

86, 2278–2324. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

A.2 Task Offloading in Edge Computing using
GNNs and DQN

64

This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Computer Modeling in
Engineering & Sciences echT PressScience

DOI: 10.32604/cmes.2024.045912

ARTICLE

Task Offloading in Edge Computing Using GNNs and DQN

Asier Garmendia-Orbegozo1, Jose David Nunez-Gonzalez1,* and Miguel Angel Anton2

1Department of Applied Mathematics, University of the Basque Country UPV/EHU, Eibar, 20600, Spain
2TECNALIA, Basque Research and Technology Alliance (BRTA), San Sebastian, 20009, Spain

*Corresponding Author: Jose David Nunez-Gonzalez. Email: josedavid.nunez@ehu.eus

Received: 11 September 2023 Accepted: 04 December 2023

ABSTRACT

In a network environment composed of different types of computing centers that can be divided into different
layers (clod, edge layer, and others), the interconnection between them offers the possibility of peer-to-peer task
offloading. For many resource-constrained devices, the computation of many types of tasks is not feasible because
they cannot support such computations as they do not have enough available memory and processing capacity. In
this scenario, it is worth considering transferring these tasks to resource-rich platforms, such as Edge Data Centers
or remote cloud servers. For different reasons, it is more exciting and appropriate to download various tasks to
specific download destinations depending on the properties and state of the environment and the nature of the
functions. At the same time, establishing an optimal offloading policy, which ensures that all tasks are executed
within the required latency and avoids excessive workload on specific computing centers is not easy. This study
presents two alternatives to solve the offloading decision paradigm by introducing two well-known algorithms,
Graph Neural Networks (GNN) and Deep Q-Network (DQN). It applies the alternatives on a well-known Edge
Computing simulator called PureEdgeSim and compares them with the two default methods, Trade-Off and Round
Robin. Experiments showed that variants offer a slight improvement in task success rate and workload distribution.
In terms of energy efficiency, they provided similar results. Finally, the success rates of different computing centers
are tested, and the lack of capacity of remote cloud servers to respond to applications in real-time is demonstrated.
These novel ways of finding a download strategy in a local networking environment are unique as they emulate the
state and structure of the environment innovatively, considering the quality of its connections and constant updates.
The download score defined in this research is a crucial feature for determining the quality of a download path in
the GNN training process and has not previously been proposed. Simultaneously, the suitability of Reinforcement
Learning (RL) techniques is demonstrated due to the dynamism of the network environment, considering all the
key factors that affect the decision to offload a given task, including the actual state of all devices.

KEYWORDS
Edge computing; edge offloading; fog computing; task offloading

1 Introduction

Various computing centers can be found in a local networking environment, with possible
interconnections. In the Edge Computing paradigm, this interconnection facilitates the transmission

Published Online: February 2024

2 CMES, 2024

of information is of particular interest. In many cases, when resource-constrained devices are allocated
to solve computationally expensive tasks, they can become overloaded and not powerful enough
regarding processability and memory availability. In this way, weaker computers can alleviate their
computational load by assigning different tasks to more powerful devices nearby. These devices can
vary depending on their complexity and proximity to these end-user devices. This variation of possible
destinations is appropriate to distinguish different layers in an architecture, dividing it into the cloud,
fog/edge, and IoT (Internet of Things) layers. The cloud tier comprises remote network servers rich in
general resources with the capacity to store, manage, and process data. This general computer is the
richest regarding processability and resource availability and often acts as a network orchestrator. In
contrast, at the lowest level, it can find sensors, gadgets, and other IoT devices equipped with restricted
computing capabilities but offer immediate responses to users. Its function is to collect information
from the environment and act on environmental changes, among others. Meanwhile, other layers can
be defined, such as the Fog and Edge layers, with greater capacities than the previous ones but with
less processing and memory capacity than the cloud, being a valuable alternative for different types of
computations.

Management and decision-making tools based on Artificial Intelligence (AI) algorithms have
great potential to offer new and more efficient services that improve people’s living conditions. These
services could be of various types, from the classification of multiple classes of land cover [1] to systems
where pollution forecasts are made [2]. These tools are possible thanks to the collection of information
from the physical environment in real-time (RT) and the subsequent use of this data in complex
Machine Learning (ML) and Deep Learning (DL) models. The models require high computability
for the training phase and a large amount of available memory to store their parameters for the last
inference. Consequently, IoT devices cannot store such an amount of data or train deep models, so
they need to adjust the data and model sizes or send these mappings to more powerful devices. This
could alleviate the problem of lack of resources faced by IoT devices, but a drop in accuracy would
be inevitable. When end-user devices intend to perform certain calculations but are not equipped
with sufficient resources or are overloaded, they have the opportunity to transmit their assigned
tasks to other devices over the network given the interconnectivity between different nodes. A proper
offloading strategy is crucial to avoid situations where certain nodes in an architecture absorb all tasks
from nearby end devices. As a result, load balancing between nodes must be ensured and all tasks must
be executed successfully.

In addition, depending on the environment in which this paradigm is located or in which the
application is intended to be used, some alternatives will be more beneficial. For example, if there are
latency requirements for tasks, streaming to the nearest nodes will be more appropriate than streaming
to the cloud, although cloud servers are unlimited in memory and offer the highest processing
capabilities. The weakness of using this alternative is that transmitting information from end-user
devices to the cloud involves some delay and possible loss of information over the network. This loss
could result from connection loss or other erroneous message information. The information can be
vulnerable to intrusion attacks and inaccurate or incomplete. Transferring confidential information to
the cloud is not the right decision because the vulnerability grows with increased information exposure
over the network.

In contrast, IoT devices do not expose information over the network when they perform a task,
making them the most secure option. The latency required by many applications also prevents using the
cloud as a final computing center due to increased delay. The essential requirement of RT computing
is immediate response, which is impossible to achieve using cloud computing. On the other hand,
end-user devices offer immediate feedback, but their limitations can lead to a lack of model accuracy.

CMES, 2024 3

Excessively reducing the size of the models and the data needed to represent them leads to a severe
drop in the performance of the resulting models. For example, a simple actuator has to give a specific
response depending on the values in the environment. In order to obtain the answer, it can be necessary
to apply an ML model that would not be feasible to compute on the IoT device or not with its original
structure. However, the interconnectivity between different computers at different layers offers the
possibility of computing these models in other computing centers, alleviating the computational load
of these tiny devices.

In order to solve the problems mentioned above, it is essential to establish an appropriate task
offloading policy. This would indicate in each case if it is necessary to carry out the download process,
and if so, what the most appropriate destination will be in each case.

There are many alternatives intended to help with the task offloading decision problem. Some
researchers opted for optimization algorithms. Other studies have chosen methods based on AI. Other
alternatives, such as population-based and control theory methods, are outside the research interest.

This study applies Graph Neural Networks (GNNs) and Deep Q-Networks (DQN) to decide
if it is feasible to offload a task from an end-user device to a richer computing center in terms of
processability and available memory in each situation and to determine which is the best destination
available in the area. It represents the local network structure in which different types of devices can be
found in the Graph structure where each node is a computer, and the edges are the interconnections
between them. This architecture can be extrapolated to an area of local networks where different IoT
devices are interconnected with each other and with more powerful Edge Datacenters that offer the
possibility of offloading tasks from small devices to Datacenters such as a Smart Home with small
gadgets and a central router. In addition, the agent learns the network environment in the DQN
learning process, where each action will be a decision to offload the task to one of the potential
destination computers surrounding the source computer originating the task. Each state will represent
each situation where all the characteristics of computers will be reflected. In each scenario, this
research establishes a general remote cloud server that will serve as the orchestrator of the offload
strategy and a fixed number of Edge Computing data centers and end-user devices or Edge devices.
The proposed methods are evaluated by observing the success rate of the generated tasks, workload
balance, and energy consumption. Finally, This study analyzes which computing nodes are most
suitable for downloading the success rates of each device type.

The main contributions made in this work are the following. We offer a novel alternative to
establish a task offloading strategy in a local network environment. The network architecture is almost
replicated in the GNN architecture and the quality of a network connection for download issues has
been rated with a novel parameter called download rating. Furthermore, environment updates are fully
considered in the DQN learning process. Our methodology offers an innovative way to offload tasks
in a local network environment, ensuring load balancing and completion of tasks within the desired
latency. An overview of the procedure is given in Fig. 1.

The rest of the paper is organized as follows. Section 2 reviews some of the most representative
works published in the literature. Section 3 specifies the new algorithms proposed by this work.
Section 4 presents the materials and methodology applied in this work. In Section 5, we carry out
different experiments of the task offloading paradigm using a known simulator and the results are
presented. In Section 6, these results are analyzed and conclusions are reached.

4 CMES, 2024

Figure 1: Overview of the entire process

2 State of the Art

Over the last decade, several researchers have found the task offloading paradigm a conflict
of interest. The opportunity to transfer tasks from resource-constrained devices to resource-rich
computing data centers can alleviate the computational load on end-user devices and complete tasks
that were not feasible to complete at the source due to processing and memory constraints.

Those techniques have been widely used in different areas. Different techniques have been used
in virtual reality (VR) applications, such as fog computing-based radio access networks (F-RAN)
[3] or ML-based intelligent programming solutions [4]. In autonomous vehicle applications, task
offloading techniques have been used to improve performance by reducing latency and transmission
cost, as was done in [5]. Real-time traffic management was feasible by distributing decision-making
tasks to Edge devices [6]. In the area of robotic task offloading, new paradigms have emerged, in [7],
they presented an approach to simultaneous localization and mapping (SLAM) for RGB-D cameras
like the Microsoft Kinect, and in [8], a novel Robot-Inference-and-Learning-as-a-Service (RILaaS)
platform for low-latency and secure inference serving of deep models that could be deployed on robots
was introduced. Nonetheless, there are already commercial solutions for offloading tasks in robotics
[9–11]. Similarly, cloud-based solutions can be found in video streaming applications [12,13]. However,
offloading Edge should improve performance as in [14,15], by enabling gateways and facilitating
caching and transcoding mechanisms, respectively. The challenge of transferring computationally
expensive tasks to Edge nodes has been addressed in [16–18] in the area of disaster management,
but is still underexplored in this field. In the IoT field, task offloading has been of special interest
since its inception, since these devices with limited resources often face this drawback. Due to the long
delays involved in network transfer between IoT devices and the cloud, edge offloading needs to be
considered. The collaboration between IoT devices and Edge devices could be useful in the area of
smart health, being a good alternative to help paralyzed patients [19]. However, due to the growing
number of IoT devices, the best option would be the collaboration between the Edge and Cloud
servers as they did in [20] proposing a paradigm that foresees an IoT Cloud Provider (ICP)-oriented
cooperation, which allows all devices that belong to the same public/private owner to participate in
the federation process.

Different strategies have been proposed to solve the problem of task offloading. Optimization
algorithms have become a very useful and frequently used solution for this paradigm. Mixed integer
programming (MIP) has become a useful tool for resource allocation problems, addressing network
synthesis and allocation issues [21]. In other words, they opted for greedy heuristic solutions [22–24] to

CMES, 2024 5

solve the task offloading problem. The main advantage of these is that they offer a low execution time,
they do not require specialized optimization tools for their resolution and rather they can be expressed
as pseudocode, easily implementable in any programming language. These become much more efficient
when the task offloading problem is modeled as a nonlinear constrained optimization problem, or
when the scale of the scenario is large enough [25]. In this case, a greedy heuristic could estimate
the exact solution [13,22,24]. In other words, game theory was chosen, formulating the problem of
partial task offloading in a multi-user infrastructure, Edge Computing and multi-channel wireless
interference environment as an offloading game [26]. The Cloud-Edge game could be seen as an
infrastructure game in which the players are the corresponding infrastructures [27]. Contract theory
[28–30] and local search [31,32] are another type of optimization solutions for the task offloading
problem.

Another interesting approach to solving the problem of task offloading is the use of methods
based on AI. This branch includes all ML methods, including Supervised Learning, Unsupervised
Learning, DL, and Deep Reinforcement Learning (DRL) methods. The download destination could
be chosen following the simplest models, such as a regression model [33] or regression trees [34].
However, given the dynamism of network environments, modeling has been performed with the
support vector regressor [35] and the nearest neighbor regressor [36] for future load prediction and
energy efficient utilization of the Edge servers, respectively. In [37], a resource-aware offloading video
analysis in Mobile Edge Computing and a resource-aware offloading (ROA) algorithm using the
radial basis function networks (RBFN) method to improve reward were proposed under the resource
deadline constraint. Taking into account unsupervised models, clustering models are useful tools to
group resources depending on the distance between computing nodes [38] and task demands [39] and
analyze the allocated resources [40].

DL can be an accurate tool for making task offloading decisions, based on the resource usage of
the processing Edge nodes, the workload, and the quality of services (QoS) constraints defined in the
Service Level Agreement (SLA) [41]. In [42], a new multi-objective strategy based on biogeography-
based optimization (BBO) algorithm for Mobile Edge Computing (MEC) offloading was proposed
to satisfy multiple user requirements (execution time, power consumption, energy, and cost). In [43], a
task offloading model based on dynamic priority adjustment was proposed. Second, a multi-objective
optimization model for task scheduling was constructed based on the task offloading model, which
optimizes the time delay and energy consumption. In [44], they proposed an Improved Gorilla Troops
Algorithm (IGTA) to offload dependent tasks in MEC environments with three objectives: minimizing
the application execution latency, the power consumption of light devices, and the used cost of MEC
resources. DL models have been used to minimize the computational load under dynamic network
conditions and constrained computational resources [45]. A model that also considers the challenges
of speed, power, and security, while satisfying QoS with dynamic needs, has been proposed to
determine the combination of different computing nodes [46]. In [47], they developed a novel calibrated
contextual bandit learning (CCBL) algorithm, where users learn the computational delay functions of
micro base stations and predict the task offloading decisions of other users in a decentralized manner.
At [48], they presented a novel federated learning framework for GAN, namely Collaborated g Ame
Parallel Learning (CAP), which supports parallel training of data and models for GAN and achieves
collaborative learning between edge servers, devices, and Cloud. Furthermore, they proposed a Mix-
Generator (Mix-G) module that splits a generator into the sharing layer and the personalizing layer.

DRL techniques have emerged as an interesting alternative to typical task-offloading policies.
Deep Q networks have been used to solve the task offloading problem [49] and have been optimized by
introducing a short-term memory (LSTM) [50] into them. An intelligent partial offloading scheme was

6 CMES, 2024

proposed in [51], namely digital twin-assisted intelligent partial offloading (IGNITE), which combines
the improved clustering algorithm with the digital twin (DT) technique, in which unreasonable
decisions can be avoided by reducing the size of the decision space and finding the optimal offloading
space in advance. In the same field, reference [52] proposed a mobility-dependent task offloading
(MESON) scheme for urban vehicle edge calculation (VEC) and developed a DRL-based algorithm to
train the offloading strategy. To improve the training efficiency, a vehicle mobility detection algorithm
was further designed to detect the communication time between vehicles and Road Side Units (RSUs).
In this way, MESON was able to avoid unreasonable decisions by reducing the size of the action
space. Finally, the DRL algorithm was used to train the offloading strategy. In [53], they used the
Markov decision process (MDP) that minimizes the total completion time. In [54], they considered a
wireless MEC system that governs a binary offloading decision to execute the task locally on the Edge
devices or on the remote server, proposing a Reinforcement Learning-based Intelligent Offloading
online (RLIO) framework that adopts the optimal offloading policy.

Other approaches that differ from those mentioned above include population-based methods
and control theory-based methods. Swarm Intelligence methods [55,56] and Evolutionary Algorithms
[57,58] are the two variants of population-based methods that have been proposed to address the
problem. Solutions based on control theory include optimal control [59,60], state feedback control
[61] and Lyapunov optimization processes [62] among others.

Most of the mentioned studies implemented using an outdated methodology that has been
surpassed by recent models such as deep models or Reinforcement Learning (RL) models, or those
that chose to use these techniques are single objective and/and do not care about task’ features and the
actual workload of the destinations. In contrast, this study applies a simplistic approach that considers
the nature of the tasks and the updated status of potential download destinations, facilitating user
understanding while achieving high accuracy and competitive performance. It provides a methodology
representing the network architecture in a graph and an RL technique that considers all the key factors
when determining the optimal download decision. The research proposes a novel feature to evaluate
the goodness of a download destination, which is a critical factor in determining whether a potential
download route is valuable for a given task. Table 1 compares the latest and most relevant works,
specifying the methodology proposed in each work.

Table 1: Comparative of current works on edge computing

Work Proposed method Field

[24] Heuristic greedy offloading scheme Multi-access mobile edge
computing

[28] Contract theory. Negotiation between task publisher
and fog nodes as an optimization problem

Fog computing

[33] Multi-task regression problem & Multi-task learning
based feedforward neural network (MTFNN) model

Multi-access edge computing

[34] Module placement method by classification and
regression tree algorithm (MPCA) & Probability of
network’s resource utilization in the module offloading
(MPMCP)

Mobile fog computing

[37] Radial basis function networks-based resource-aware
offloading

Video analytics in mobile edge
computing

(Continued)

CMES, 2024 7

Table 1 (continued)

Work Proposed method Field

[38] Balanced clustering and joint resources allocation
(BCJRA)

Mobile fog computing

[39] Dynamic mobile cloudlet cluster policy (DMCCP) Fog computing
[40] Server partitioning algorithm based on clustering.

Multi-user game with Nash equilibrium
Mobile edge computing

[41] Neural networks for mapping quality of service required
levels and (expected) application workload to concrete
resource demand

Edge computing

[42] Multi-objective strategy based on the
biogeography-based optimization (BBO) algorithm

Mobile edge computing

[43] Task unloading model based on dynamic priority
adjustment & Multi-objective optimization model

Task offloading & Real-time
scheduling

[44] Improved Gorilla troops algorithm (IGTA) Multi-access edge computing
[46] Deep learning-based dynamic task offloading in mobile

cloudlet (DLDTO)
Mobile computing

[47] Novel calibrated contextual bandit learning (CCBL)
algorithm

Mobile edge computing into
an ultra-dense network
(UDN)

[48] Collaborated game parallel learning (CAP) for GANs &
Mix-generator module (Mix-G) that divides a generator
into the sharing layer and personalizing layer

[49] Deep Q-learning approach for designing optimal
offloading schemes, jointly considering selection of
target server and determination of data transmission
mode

Mobile edge computing

[50] DRL & LSTM network layer and the candidate network
set

Mobile edge computing

[51] Digital twin-assisted intelligent partial offloading
(IGNITE)

Vehicle edge computing

[52] Mobility-aware dependent task offloading (MESON)
scheme for urban VEC and a DRL-based algorithm to
train the offloading strategy

Vehicle edge computing

[53] Markov decision process IoT & Edge computing
[54] Reinforcement learning based intelligent online

offloading (RLIO)
Mobile edge computing

[55] Fuzzy clustering Mobile edge computing

3 Proposed Algorithms

This study proposes a well-known DRL technique using GNN and DQN to solve the task
offloading problem. Brief descriptions of both architectures are given in this section. Finally, the

8 CMES, 2024

training processes of both algorithms are explained utilizing Fig. 2, showing the complete architecture
procedure.

Figure 2: Training procedure of the entire architecture divided in different steps

3.1 Graph Neural Network
Graphs are a data structure representing a collection of elements (nodes) and their connections

(edges). A GNN is a type of neural network (NN) that works directly with the graph’s structure. In the
used case, each node in the network represents a computing center that can be an IoT/Edge device, an
Edge server, or a cloud server. Graphs are a data structure representing a collection of elements (nodes)
and their connections (edges). The edges between these nodes represent the connections between the
different computing centers, which can be the download paths of the tasks that must be completed to
meet their requirements.

Each node represents each computing device, a potential destination for the download task in
question. Furthermore, the edges represent the connection between these devices, whose characteristics
are as follows. The characteristics of each node are determined by the computing device’s available
RAM, millions of instructions per second (MIPS), central processing unit and memory, and the desired
task latency and file size in bits associated with the task. The characteristics of Edge are determined by
the offload classification defined in this work, that is, the number of tasks successfully executed using
the offload path divided by the total number of tasks offloaded using the path.

The output size of the network will be determined by the number of possible destinations of the
task initially assigned to the IoT/Edge device. The number of output neurons will be equal to those
possible destinations. The output would be binary, downloading/not downloading to each possible
destination.

To train the network, we apply the real data produced by the architecture following two well-
known offloading algorithms, Trade-Off and Round Robin. The download destinations for each task
obtained following any of the mentioned algorithms would be the actual data used to train the network.
Once the network is trained, the input would be the task with its characteristics and the output would
be a binary decision of the possible download destinations. A brief description of our algorithm is
provided in Algorithm 1.

CMES, 2024 9

Algorithm 1: GNN
Nodes ←Available computing centers
Edges ←Connection between computing centers
NodeFeatures ←RAM, Mips, CPU, latency, file size
for NTasksExecuted Satisfactory do

Destinynode ← TradeOff /Round − Robin(task)

EdgesSuccessfullyExeceutedTasks ← EdgesSuccessfullyExeceutedTasks + 1
end for
for NEdges do

EdgeFeature ←EdgesSuccessfullyExeceutedTasks/NTasksOffloadedbyEdge
end for
for Ntasks do

Output ← GNN(task)

Loss ← CrossEntropyLoss(Output, Destinynode)
end for
for Ntasks do

OffloadingDestiny ← GNN(task)
end for

3.2 Deep Q-Network
RL is a framework in which the agent attempts to learn from its environment by obtaining different

rewards on each action performed in that environment. The agent’s objective is to maximize the sum of
rewards obtained by performing consecutive actions following its policy, and by optimizing this policy
the problem in question is solved. After obtaining an observation of its environment (st) the agent acts
at following its policy π(at|st). Consequently, depending on the action performed in that observation,
a reward and the next observation (st+1) are obtained.

DQN was developed by [63]. Deep neural networks (DNN) and replay techniques were used to
optimize the Q-learning process. Q-learning is based on the function Q that measures the expected
return or the discounted sum of rewards obtained from state s by taking action a first and following
policy π . An optimal function Q∗ is defined and, using the Bellman optimization equation (see Eq. (1))
as an iterative update, convergence of the function Q is guaranteed.

Qi+1(s, a) = E[r + γ ∗ maxa′Qi(s′, a′)] (1)

Representing the function Q by combining all possible actions and states is not the most practical
option in most cases. For this reason, a function approximator is used for this. Using the NN
approximation can be done using parameters θ and minimizing the loss function.

Li(θ) = Es,a,r,s′ρ[(yi − Q(s, a; θi))
2] yi = r + γ ∗ maxa′Q(s′, a′; θi−1) (2)

In the use case, the actions were the possible decision to download to each of the potential
destinations on the network, given the state of the environment. The state of the environment will
be determined by the task’s characteristics and each device’s state and capabilities. The properties
of the task that conditioned the state of the environment were the maximum allowed latency and
the size of the file in bits belonging to the task. Similarly, each computing device’s available RAM,
MIPS, central processing unit, and memory determined the rest of the state properties. If the task
requirements were successfully met, the reward for downloading to a given computing center would

10 CMES, 2024

be 1, and −1 if the requirements for that action were not met. Following the technique above, the
optimal download policy was obtained. Finally, the optimized policy would determine the optimal
download destination for each task. Algorithm 2 summarizes the method.

Algorithm 2: DQN
for N tasks do

s ←RAM,Mips,CPU,memory,latency and file size
for N possible destinies do

a ← Possible destiny
Calculate L(θi)

end for
a ← maxaQ(s, a; θ)

Qi+1 ← Q(s, a)

end for

3.3 Training Procedure & Orchestration of Tasks
In the case of GNN, it is first necessary to perform a training process following any of the two

default methods available in the simulator. In each iteration, any devices that make up the IoT layer
will randomly create a task. All devices will send a message to the cloud reporting their actual status,
even if they have a task to solve (Step 1 in Fig. 2). In this scenario, the cloud will orchestrate the
download action following the predetermined algorithm by sending a message to the device (Step 2
in Fig. 2), and this will be downloaded to the destination (Step 3 in Fig. 2). After all, if the task has
been completed by meeting the requirements, that will be a positive result for the subsequent training
of the GNN; otherwise, it will be negative. Once the entire training procedure of the default algorithm
is completed, the GNN will use the download decisions and the output generated in the previous step
as ground truth and perform the training process after defining the download rating for each network
connection. As an edge feature. For both training procedures, the graph shape was determined by the
network structure (influenced by the number of IoT devices), the learning rate was 0.001, the optimizer
was Stochastic Gradient Descent (SGD), and 10000 was the number of epochs. The GNN training will
be conducted through the cloud. Finally, the cloud will decide to download after each device sends the
message with the information about its status (Step 1 in Fig. 2), and the cloud will return the message to
the task-generating device informing about the download destination (Step 2 in Fig. 2). After sending
the task to the target device (Step 3 in Fig. 2) and completing the task on this device, the results will
be sent back to the source device (Step 4 in Fig. 2).

In the case of DQN, each device will send information about its status to the cloud (Step 1 in
Fig. 2). There, taking the state of the environment based on the offloading policy, the optimal action
must be taken. If the task was completed meeting the requirements, the reward will be 1, and 0
otherwise. In this way, an optimal offloading policy will be obtained after converging the Q function.

Finally, the Q function obtained will determine the optimal download destination in the cloud
after each device sends its state to the cloud, and it returns the message to the task generator indicating
where to download its assigned task (Step 2 in Fig. 2). After sending the task to the target device
(Step 3 in Fig. 2) and completing the task on this device, the results will be sent back to the source
device (Step 4 in Fig. 2).

CMES, 2024 11

4 Material & Methodology

This section explains the environment in which the methodologies presented in the previous
section were applied in the experimental process. The software and hardware used in the experiments
are also described.

For the experimental processes we chose to use a well-known Edge Computing simulator called
PureEdgeSim [64]. The simulator offers high configurability through its modular design. In this way,
by editing each module and adjusting it to the user’s needs, it is simple and feasible to reproduce the
desired environment in each case.

The hardware environment in which all development of our work took place is a ×64 Ubuntu
20.04.4 LTS Operating System equipped with an Intel Core i7-11850H working at 2.5 GHz ×16
and 32 GB DDR-4 RAM and a NVIDIA T1200 Laptop GPU (driver version: 510.47.03, CUDA
version:11.6).

The study established between 10 and 30 end-user devices in this case, forming the IoT-Edge
layer. It repeated the experiment 3 times and compared the results of applying the abovementioned
algorithms to make task-offloading decisions. These devices were dynamic, and their range of motion
was limited to 200 × 200 units. The Fog-Edge layer comprised four data centers, each located
symmetrically in the coverage area. Each of these Edge Data Centers covered an area of 100 × 100
units. Finally, a resource-rich cloud platform offered greater computing and memory.

Each of the end-user devices was interconnected with each other. In this way, interconnections
between them were feasible. Similarly, each of these end-user devices was connected to the nearest
Edge Datacenters, and all were connected to the cloud.

The orchestrator of the decision to download was the cloud. It was equipped with 200 cores, 40,000
MIPS, 16 GB of RAM, and 1 TB of memory.

The Edge Datacenters were equipped with ten cores, 40,000 MIPS, 16 GB of RAM, and 200 GB
of memory. Its idle power consumption was 100 Wh, with a maximum consumption of 250 Wh.

Finally, the number of Edge devices or end-user devices was 10, 20, and 30 in each experimental
test. Their operating system was Linux and they had an architecture of ×86. These devices had dynamic
behavior in some cases, with a speed of 1.8 m/s. The type of network connection used to interconnect
with the rest of the devices was WiFi with a bandwidth of 1300 Mbits/s, with a latency of 0.005 s. There
were 5 different types of Edge devices and their characteristics are summarized in Table 2.

Table 2: Characteristics of different types of Edge devices

Device type Type 1 Type 2 Type 3 Type 4 Type 5

Speed (m/s) 1.8 0 0 0 1.8
Pause duration (m/s) 100–400 0 0 0 100–400
Mobility duration (m/s) 60–100 0 0 0 60–100
Battery powered Yes No Yes No No
Battery capacity (Wh) 18.75 – 56.2 – –
Initial battery (%) 100 – 100 – –
Idle energy consumption (Wh) 0.2 3.8 1.7 0.4011 0.4011
Max. energy consumption (Wh) 5 5.5 23.6 0.436 0.436
Cores 8 4 8 0 0

(Continued)

12 CMES, 2024

Table 2 (continued)

Device type Type 1 Type 2 Type 3 Type 4 Type 5

MIPS 25000 16000 110000 0 0
RAM (GB) 4 4 8 0 0
Storage (MB) 256 128 256 0 0
Percentage 18 11 11 28 32

Each device could spawn any applications or tasks whose specifications are summarized in Table 3.
Container size refers to the size of the application in kB. The request size refers to the download request
sent to the orchestrator and then to the device where the task will be downloaded in kB. Result size
refers to the downloaded task results in kB.

Table 3: Characteristics of different types of tasks

Application type Hard real-time Soft real-time Non real-time

Generation rate/s 20 30 3
Latency (s) 0.02 0.5 300
Task length (Millions of instructions) 500 5000 30000
Container size (kB) 20 1500 2200
Request size (kB) 20 1500 2500
Results size (kB) 20 50 200
Percentage 20 30 50

This study applied the offload decision algorithms against the default methods provided by the
simulator, Round Robin, and Trade-Off. It introduced different options regarding possible download
destinations by including all devices, Edge devices only, Edge Data Centers only, Edge Data Centers
and cloud-only, Edge devices and cloud-only, and Edge devices and Edge Data Centers only.

In total, there were 6 offloading configurations × 3 number of Edge device possibilities × 4
algorithms = 72 simulation configurations. Each simulation time was established at 200 s.

5 Experiments & Results

In the experimental process, we considered the following parameters: energy consumption, tasks
executed in each layer, and success rate. Additionally, we considered the distribution of the workload
among different devices. Task failure could be due to different reasons, such as lack of available
memory, violation of latency constraints, or network traffic congestion. His explanation is given
below:

• Success rate: The ratio of the number of successfully executed tasks divided by the total number
of tasks.

• Energy consumption: The power consumed by all devices of each type during each experimen-
tation process.

CMES, 2024 13

• Workload distribution: Refers to the number of tasks distributed by each type of device in each
experimentation process.

5.1 Tests with 10 Edge Devices
First, only ten devices were placed in the end-user layer, and these devices were divided into various

types following the percentages shown in Table 2. These randomly generated the three types of tasks
following the percentages and generation rates listed in Table 3. The success rate results are depicted
in Table 4.

Table 4: Success rate of different algorithms including different types of destiny devices (10 Edge
devices)

Algorithm All devices Edge & Edge
DC

Edge &
Cloud

Edge DC
& Cloud

Edge Edge DC

Trade Off 99.9194% 100% 66.0484% 99.9194% 54.5161% 100%
Round Robin 99.8387% 100% 47.1774% 99.8387% 55.4839% 100%
GNN 99.9194% 100% 80.4032% 99.9194% 59.1935% 100%
DQN 99.9194% 100% 82.0968% 100% 65.5645% 100%

As can be seen, the most critical environments were when there were no Edge Data Centers
available as possible download destinations. This could be because the Edge devices were not equipped
with sufficient capabilities to computationally support the rest of the devices’ tasks. Likewise, the cloud
was too far from these end-user devices, so latency requirements were not met in most cases where the
cloud was the download destination. Those problems were solved when tasks were offloaded to Edge
Data Centers, which are computationally less powerful than the cloud platform but still have high
capabilities. In the same way, being located close to these Edge devices, task latency was not an issue.

The energy consumption of Edge devices and Edge Data Centers are shown in Tables 5 and 6,
respectively. Energy consumption was higher in cases where there were no Edge Data Centers available
as possible download destinations, and the algorithm chosen to decide the download destination was
GNN or DQN. In these cases, because the best download destinations were not available, the Edge
devices that can perform the tasks consume more power. However, in the default algorithms, this is
not the case. Most of the tasks could have been offloaded to the cloud, which hurts the success rate,
as seen in Table 4. Edge Data Centers show a similar consumption pattern for all algorithms, slightly
lower for all download policies when they were not potential download destinations.

Table 5: Energy consumption in Wh of Edge devices for different algorithms including different types
of destiny devices (10 Edge devices)

Algorithm All devices Edge & Edge DC Edge & Cloud Edge DC & Cloud Edge Edge DC

Trade Off 3.1947 3.2359 3.9221 3.1246 3.5854 3.1246
Round Robin 3.1032 3.1246 3.1184 3.1246 3.6223 3.1246
GNN 3.1745 3.2707 4.3367 3.1246 3.6223 3.1246
DQN 3.1487 3.1902 4.5019 3.1246 3.6406 3.1246

14 CMES, 2024

Table 6: Energy consumption in Wh of Edge Datacenters for different algorithms including different
type of destiny devices (10 Edge devices)

Algorithm All devices Edge & Edge DC Edge & Cloud Edge DC & Cloud Edge Edge DC

Trade Off 34.4092 34.7847 33.8889 34.5972 33.6111 34.9722
Round Robin 34.3193 34.9722 33.8889 34.5966 33.8889 34.9722
GNN 34.3577 34.6034 33.8889 35.0087 33.8889 34.9722
DQN 34.4162 34.8765 33.8889 35.0125 33.8889 34.9722

5.2 Tests with 20 Edge Devices
We repeated the experiment from the previous subsection by changing the number of Edge devices

to 20. The results of the success rates are shown in Table 7.

Table 7: Success rate of different algorithms including different type of destiny devices (20 Edge
devices)

Algorithm All devices Edge & Edge
DC

Edge &
Cloud

Edge DC
& Cloud

Edge Edge DC

Trade Off 99.8641% 100% 61.8478% 99.8913% 97.1739% 100%
Round Robin 99.8370% 99.7011% 96.30434% 99.8370% 59.9185% 100%
GNN 99.9185% 100% 84.4837% 99.9185% 97.1739% 100%
DQN 99.9457% 100% 84.3478% 99.9728% 97.1739% 100%

The success rate trend continued when we doubled the number of Edge devices. However, as the
number of free Edge devices must have been higher than in the previous experiment the success rates
were higher when Edge devices were involved and not Edge Data Centers. In cases where Edge Data
Centers were possible destinations, rates are 100% or close to it. In this test, when Edge Datacenters
were not potential destinations, performance degradation was observed when Edge devices were
the only potential destinations for the Round Robin algorithm and when the cloud was also a
potential offload destination for the Trade-Off algorithm. In these cases, the Edge devices would
not be sufficient to respond to the tasks and the cloud would not respond within the desired latency,
respectively.

Tables 8 and 9 show the energy consumption of edge devices and Edge Data Centers, respectively.

Table 8: Energy consumption in Wh of Edge devices for different algorithms including different types
of destiny devices (20 Edge devices)

Algorithm All devices Edge & Edge DC Edge & Cloud Edge DC & Cloud Edge Edge DC

Trade Off 8.3796 7.7330 8.7102 7.0386 9.3050 7.0386
Round Robin 7.6535 6.9917 8.6272 7.0386 8.0294 7.0386
GNN 7.6113 7.2317 8.7088 7.0386 9.3050 7.0386
DQN 6.6980 7.5004 8.7049 7.0386 9.3286 7.0386

CMES, 2024 15

Table 9: Energy consumption in Wh of Edge Datacenters for different algorithms including different
type of destiny devices (20 Edge devices)

Algorithm All devices Edge & Edge DC Edge & Cloud Edge DC & Cloud Edge Edge DC

Trade Off 34.9217 35.4306 33.8889 36.1160 33.8889 36.6806
Round Robin 34.9298 35.9590 33.8889 35.9284 33.8889 36.6806
GNN 34.9240 36.6409 33.8889 36.1788 33.8889 36.6806
DQN 34.3268 35.7012 33.8889 36.2064 33.8889 36.6806

There is no evident variation in the power consumption of Edge Data Centers when doubling
the number of Edge devices generating tasks. However, the power consumption of the Edge devices
was almost double that in the previous case since more tasks were generated while the number of
Edge Data Centers was fixed. Since computing platforms with higher capabilities were the same for a
larger number of tasks, more tasks were offloaded to devices with limited resources. As in the previous
experiment, Edge device consumption was slightly higher for cases where Edge Data Centers do not
receive any tasks.

5.3 Tests with 30 Edge Devices
Finally, we replicated the experiment from the previous subsections by changing the number of

Edge devices to 30. The results of the success rates are shown in Table 10.

Table 10: Success rate of different algorithms including different types of destiny devices (30 Edge
devices)

Algorithm All devices Edge & Edge DC Edge & Cloud Edge DC & Cloud Edge Edge DC

Trade Off 99.9324% 99.8986% 70.2196% 99.8986% 89.0541% 100%
Round Robin 99.1892% 99.4595% 91.5541% 99.8311% 99.3986% 100%
GNN 99.9493% 100% 92.3142% 99.9324% 93.9696% 100%
DQN 99.9662% 100% 94.0372% 99.9662% 94.5777% 100%

Overall the success rates are better than with 10 Edge devices but comparable to the case of 20
devices.

The power consumption of the Edge devices and Edge Data Centers are shown in Tables 11 and 12,
respectively. The increase was proportional to previous cases, with a low variation in the consumption
of Edge Data Centers and a significant variation in the consumption of Edge devices. Apart from the
lineal increase in consumption due to the higher number of tasks computed in these types of devices, in
the case when Edge devices and Cloud where potential destinies the highest energy consumptions were
reported when DQN and GNN were the applied algorithms, as consequence of a higher number of
tasks offloaded to Edge devices than to the cloud. As in the previous cases, when a greater proportion
of tasks were offloaded to Edge devices (higher energy consumption) the success rates were higher,
due to the latency violation that occurred when the cloud was in charge of performing the task.

16 CMES, 2024

Table 11: Energy consumption in Wh of Edge devices for different algorithms including different types
of destiny devices (30 Edge devices)

Algorithm All devices Edge & Edge DC Edge & Cloud Edge DC & Cloud Edge Edge DC

Trade Off 14.1875 11.6458 12.4942 10.6673 13.8637 10.6673
Round Robin 10.7567 12.1466 12.9142 10.6673 13.8015 10.6673
GNN 12.9003 12.0004 13.2908 10.6673 13.8015 10.6673
DQN 11.9993 11.8096 13.4561 10.6673 13.8015 10.6673

Table 12: Energy consumption in Wh of Edge Datacenters for different algorithms including different
types of destiny devices (30 Edge devices)

Algorithm All devices Edge & Edge DC Edge & Cloud Edge DC & Cloud Edge Edge DC

Trade Off 34.8949 36.0532 33.8889 37.1575 33.8889 38.0972
Round Robin 35.6297 36.4035 33.8889 36.9680 33.8889 38.0972
GNN 35.1027 36.3284 33.8889 37.0880 33.8889 38.0972
DQN 35.9075 36.1982 33.8889 37.2137 33.8889 38.0972

5.4 Task Distribution with Varying Edge Devices
Next, this study established all types of computing devices as possible offloading destinations,

and by varying the number of Edge devices between 10 and 30, as in the previous tests, this research
observed the distribution of the download destinations in each case. The algorithms considered were
GNN and DQN.

Fig. 3 indicates that the incremental trend toward computing tasks on Edge devices remains for
both algorithms as the number of Edge devices grows and, consequently, the number of generated tasks
does as well. This agrees with the increase in energy consumption observed in the previous sections.
For both algorithms, the Edge Data Centers cannot attend to more tasks in the case of 30 Edge devices,
relegating the rest of the tasks to the Edge devices, consequently having them attend to more tasks.

Figure 3: Task distribution with different algorithms and number of Edge devices

CMES, 2024 17

5.5 Success Rate of Different Layers
Finally, we established as possible offloading destinies all types of computation devices and varied

the number of Edge devices between 10 and 30 as in previous tests we observed the success rate of
different layers, to determine the optimal destination for computing the tasks generated by end-user
devices. The algorithms regarded were GNN and DQN.

In this case, the worst results were given by the cloud platform. Although in terms of computa-
tional capabilities, it is the best option compared to the rest of the devices, the latency requirements
were more difficult to meet due to the long time required to cross the entire network. This was expected.
However, Edge devices were as good as Edge Datacenters in terms of accuracy for 10 and 20 devices. In
the latter case, where 30 Edge devices were generating tasks, the Edge Data Centers were fully occupied,
so more tasks were offloaded to resource-constrained devices. In isolated cases, the Edge devices were
not able to complete the task, which is the reason why in the last case the Edge devices did not reach
100% accuracy for both algorithms. Fig. 4 shows the success rates for each layer & algorithm with
different numbers of Edge devices.

Figure 4: Success rates with different algorithms and number of Edge devices

6 Discussion & Conclusion

Section 5 presents the results obtained in the experimental process and observes different
parameters.

Regarding success rate, there is a clear trend in favor of cases where Edge Data Centers were
included in the download destinations. This is because they had sufficient computability and were
located close to the Edge devices from where the tasks were generated. The worst results were obtained
when only the cloud was available as a powerful computing center. In this situation, where network
traffic congestion will have caused longer delays in task responses, meeting latency requirements will
have been challenging. Tasks that had been offloaded to other Edge devices cannot be executed due
to the lack of resources. As the number of Edge devices grew, the success rates of cases where Edge
Data Centers were excluded improved significantly due to the increased number of free Edge devices.
In this case, the number of Edge devices with sufficient computability grew, and fewer tasks had to be
transmitted to the cloud.

Considering the differences between the different algorithms regarding success rate, there was a
slightly favorable trend toward DQN, especially when the number of Edge devices was significant. In
this case, there were possible offloading destinations, that is, more possible actions given the state of the
environment. By learning an optimal policy, it will be more feasible to reach the optimal download

18 CMES, 2024

destination with this algorithm. GNN also outperformed the two default simulator methods when
the number of Edge devices was 20 and 30. This was because the graph was complex, and although
optimizing the network would be more difficult, the decision to offload was closer to optimal.

In terms of energy efficiency, there was no big difference between the first 3 tests. Obviously,
in the case of 20 and 30 devices, the power consumption of Edge devices grew linearly from
∼3 to ∼10 Wh and ∼13 Wh, respectively, due to the larger amount of generated and downloaded tasks
to these devices. On the contrary, the energy consumption of the Edge Data Centers almost remained
at ∼34 Wh, even though the number of generated tasks increased. This was because the Edge Data
Centers were full and other types of devices were needed to handle the rest of the tasks. This would
have caused a reduction in the success rate, especially in the case of the 2 default algorithms and when
the cloud and Edge Data Centers were included. In this situation, the rest of the tasks that were not
attended to by the Edge Data Centers would have been offloaded to the cloud, meeting the problems
mentioned in the previous paragraphs.

Regarding the distribution of tasks between different types of devices, we observed that when
the number of Edge devices was not too high (10 or 20 devices), the Edge Data Centers were the
destinations for most tasks. In contrast, when the number of devices grew to 30, they did not have
enough free memory space, or their processors were busy. As a result, more tasks were offloaded to
Edge devices, and a slight increase in the number of tasks offloaded to the cloud was also observed. In
the experiment, this study compared only the proposed algorithms since they had the best performance
in terms of success rate. Among them, DQN decided to download more tasks to Edge Data Centers,
becoming a better alternative due to the better performance when Edge Data Centers were included
in the possible download destinations.

Finally, the success rates of different types of devices were carefully compared. This study
established all types of devices as possible destinations for the two proposed algorithms. It changed the
number of Edge devices to between 10 and 30. There was a clear difference between the performance
of the cloud and the rest of the devices. As mentioned in this section, the violation of the latency
requirement is responsible for such performance degradation, given the high delay caused when
traversing the network to transfer the task to the cloud and return the results to the Edge devices.
Between Edge devices and Edge Data Centers, the latter had the best success rate. The larger capacities
and larger memory were superior in computability compared to Edge devices. However, with an
algorithm good enough to orchestrate all tasks between all possible destinations, offloading the
less demanding tasks to the weakest computation centers, the success rate can be preserved with a
higher number of generated tasks. That is why the proposed algorithms outperform the two default
algorithms: they can offload less demanding tasks to weaker devices and more complex ones to Edge
Data Centers. In this way, the task load was balanced between all available devices, meeting latency
requirements.

We saw that our proposed algorithms outperform the default PureEdgeSim simulator methods in
terms of success rate and load balancing. For example, for the case in which 30 Edge devices generated
tasks, GNN and DQN achieved an improvement of 22.1% and 23.8% respectively concerning the
Trade-Off when the Edge Datacenters were not included as potential destinations. However, GNN
achieved an average improvement of 3.6% concerning Trade-Off and Round Robin, and DQN
achieved an average improvement of 4.1% concerning Trade-Off and Round Robin. In other works,
such as [53], they achieved an average improvement of 20.48%, 16.28%, and 12.36% concerning
random download, higher data rate download (HDR), and the largest computing device (HCD),
respectively. In [51], they achieved a 20% reduction in total computation delay and a 25% reduction in
average computation delay compared to the GK-means DQN-based offloading policy. In our case, the

CMES, 2024 19

rest of the offloading policies analyzed offered a better result since they offered decent behavior in most
cases. However, our methods significantly improved the success rates of the mentioned algorithms offer
quite similar energy consumption, and have more to do with the distribution of tasks in different layers.
Our network environments and experimental setup are completely different compared to those used in
the works just mentioned. Therefore, the comparison cannot be made directly between different works.
The distribution of tasks was different in our two algorithms, with a larger number of tasks being
offloaded to the Edge Data Centers when DQN was applied. This resulted in a slight improvement
in the success rate due to the greater capabilities of this type of computing center. Between both types
of algorithms, the best results were offered by DQN with a slight variation. The ability to obtain the
optimal policy increased when the number of Edge devices and, consequently, the number of generated
tasks was larger. The same was true for GNN: by having more nodes and a broader network structure,
the algorithm was able to reach a near-optimal offloading decision.

These algorithms could be a useful tool to provide proper orchestration in an environment where
many IoT devices are requested to solve complex tasks and the characteristics of the environment
are constantly updated. For example, in a Smart Building, several sensors can be located that detect
different parameters and have to react by activating any other system based on the readings they
obtain. Deciding what action to take may require the use of ML or DL techniques to take the optimal
action. In this situation, these small devices could alleviate the computational burden of these deep
models by offloading them to other powerful devices such as Edge Data Centers.

In this research, the introduction of GNN and DQN to the paradigm of task-offloading in a local
network environment involving IoT, Edge, and Cloud layers is carried out. The similarity between
the architectures of a graph and a local network involving the just mentioned devices favored the use
of GNN to satisfactorily solve the task offloading paradigm. The offloading ratio used as an edge
feature in this study is a good predictor of how good a potential target can be at accomplishing a
task. Furthermore, the use of DQN slightly improved the results obtained with GNN. The learning
process of the latter favors the consideration of the constant updates of an environment. The novelty
offered using the proposed methodology in a local networking environment is the consideration of
constant network updates and the scoring of network connections using the novel offloading rating
parameter, being both GNNs and DQN powerful tools to impose an optimized offloading strategy in
an environment made up of resource-constrained devices.

Among the limitations found during this research work, it is worth highlighting the difficulties
in reproducing other methodologies provided by the literature using the PureEdgeSim simulator. The
complexity of the simulator was an advantage in adjusting the properties of the network environment
to the needs. On the contrary, the reproduction of any algorithm has a high complexity. At the same
time, as other environmental properties can directly impact the state of the network, such as vandalism
attacks, natural disasters, or intrusion attacks, these must be considered in the simulation, applying a
random appearance factor to them.

In future work, more algorithms can be implemented using the simulator to compare them with
those presented in this study. Until now, the only default implementable algorithms for the simulator
in question were tried and tested against our methods, and due to the complexity of the simulator,
no others were implemented. Other types of network structures can be interesting for research and
applicable using the methodology proposed in this work. Furthermore, combining RL techniques with
the graph will open up an exciting research area.

Acknowledgement: The authors wish to express their appreciation to the reviewers for their helpful
suggestions which greatly improved the presentation of this paper. This work is partially supported

20 CMES, 2024

by the project a Optimization of Deep Learning algorithms for Edge IoT devices for sensorization
and control in Buildings and Infrastructures (EMBED) funded by the Gipuzkoa Provincial Council
and approved under the 2023 call of the Guipuzcoan Network of Science, Technology and Innovation
Program with File Number 2023-CIEN-000051-01.

Funding Statement: This work has received funding from TECNALIA, Basque Research and Technol-
ogy Alliance (BRTA). This work is partially supported by the project a Optimization of Deep Learning
algorithms for Edge IoT devices for sensorization and control in Buildings and Infrastructures
(EMBED) funded by the Gipuzkoa Provincial Council and approved under the 2023 call of the
Guipuzcoan Network of Science, Technology and Innovation Program with File Number 2023-CIEN
-000051-01.

Author Contributions: The authors confirm contribution to the paper as follows: study conception
and design: A. Garmendia-Orbegozo, J. D. Nunez-Gonzalez and M. A. Anton; data collection: A.
Garmendia-Orbegozo, J. D. Nunez-Gonzalez and M. A. Anton; analysis and interpretation of results:
A. Garmendia-Orbegozo, J. D. Nunez-Gonzalez and M. A. Anton; draft manuscript preparation: A.
Garmendia-Orbegozo, J. D. Nunez-Gonzalez and M. A. Anton. All authors reviewed the results and
approved the final version of the manuscript.

Availability of Data and Materials: All data used in the experimental process was generated using the
PureEdgeSim simulator, which is perfectly reproducible following the instructions of Section 4.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
1. Yadav, C. S., Pradhan, M. K., Gangadharan, S. M. P., Chaudhary, J. K., Singh, J. et al. (2022). Multi-class

pixel certainty active learning model for classification of land cover classes using hyperspectral imagery.
Electronics, 11(17), 2799.

2. Haq, M. A. (2022). SmoteDNN: A novel model for air pollution forecasting and AQI classification.
Computers, Materials & Continua, 71(1), 1403–1425.

3. You, D., Doan, T. V., Torre, R., Mehrabi, M., Kropp, A. et al. (2019). Fog computing as an enabler for
immersive media: Service scenarios and research opportunities. IEEE Access, 7, 65797–65810.

4. ComÅa, I. S., Muntean, G. M., Trestian, R. (2021). An innovative machine-learning-based scheduling
solution for improving live UHD video streaming quality in highly dynamic network environments. IEEE
Transactions on Broadcasting, 67(1), 212–224.

5. Fraedrich, E., Cyganski, R., Wolf, I., Lenz, B. (2016). User perspectives on autonomous driving a use-case-
driven study in Germany. https://core.ac.uk/download/pdf/31023753.pdf (accessed on 21/07/2023).

6. Wang, X., Ning, Z., Wang, L. (2018). Offloading in Internet of Vehicles: A fog-enabled real-time traffic
management system. IEEE Transactions on Industrial Informatics, 14(10), 4568–4578.

7. Song, D., Tanwani, A. K., Goldberg, K., Siciliano, B. (2019). Networked-, cloud- and fog-robotics. Springer.
Robotics Goes MOOC, Springer Nature MOOCs, Bruno Siciliano (Editor).

8. Tanwani, A. K., Anand, R., Gonzalez, J. E., Goldberg, K. (2020). RILaaS: Robot inference and learning
as a service. IEEE Robotics and Automation Letters, 5(3), 4423–4430.

9. A.W. Services, AWS robomaker (2021). https://aws.amazon.com/robomaker/ (accessed on 21/07/2023).
10. Google, cloud robotics core (2021). https://googlecloudrobotics.github.io/core/ (accessed on 21/07/2023).

CMES, 2024 21

11. Rapyuta robotics (2021). https://www.rapyuta-robotics.com (accessed on 21/07/2023).
12. Papagianni, C., Leivadeas, A., Papavassiliou, S. (2013). A cloud-oriented content delivery network

paradigm: Modeling and assessment. IEEE Transactions on Dependable and Secure Computing, 10,
287–300.

13. Bilal, K., Erbad, A., Hefeeda, M. (2017). Crowdsourced multi-view live video streaming using cloud
computing. IEEE Access, 5, 12635–12647.

14. Fajardo, J. O., Taboada, I., Liberal, F. (2015). Improving content delivery efficiency through multi-layer
mobile edge adaptation. IEEE Network, 29, 40–46.

15. Tran, T., Pandey, P., Hajisami, A., Pompili, D. (2017). Collaborative multi-bitrate video caching and
processing in mobile-edge computing networks. 2017 13th Annual Conference on Wireless On-Demand
Network Systems and Services (WONS). Jackson Hole, Wyoming, USA.

16. Kim, K., Hong, C. S. (2019). Optimal task-UAV-edge matching for computation offloading in UAV
assisted mobile edge computing. 2019 20th Asia-Pacific Network Operations and Management Symposium
(APNOMS).

17. Chen, S. C., Lin, C. P., Hsu, H. C., Shu, J. H., Liang, Y. et al. (2019). Serum bilirubin improves the risk
predictions of cardiovascular and total death in diabetic patients. Clinica Chimica Acta, 488, 1–6.

18. Avgeris, M., Spatharakis, D., Dechouniotis, D., Kalatzis, N., Roussaki, I. et al. (2019). Where there is fire
there is smoke: A scalable edge computing framework for early fire detection. Sensors, 19(3), 639.

19. Jacob, S., Alagirisamy, M., Menon, V. G., Kumar, B. M., Jhanjhi, N. Z. et al. (2020). An adaptive and flexible
brain energized full body exoskeleton with IoT edge for assisting the paralyzed patients. IEEE Access, 8,
100721–100731.

20. Farris, I., Militano, L., Nitti, M., Atzori, L., Iera, A. (2016). MIFaaS: A mobile-IoT-federation-as-a-service
model for dynamic cooperation of IoT cloud providers. Future Generation Computer Systems, 70, 126–137.

21. Lee, E. K., Lewis, D. P. (2006). Integer programming for telecommunications. In: Resende, G. C., Pardalos,
P. M. (Eds.), Handbook of optimization in telecommunications, pp. 67–102. Boston, MA, USA: Springer.
https://doi.org/10.1007/978-0-387-30165-5_3

22. Ketyko, I., Kecskes, L., Nemes, C., Farkas, L. (2016). Multi-user computation offloading as multiple knap-
sack problem for 5G mobile edge computing. 2016 European Conference on Networks and Communications
(EuCNC). Athens, Greece.

23. Bilal, K., Erbad, A., Hefeeda, M. (2017). Crowdsourced multi-view live video streaming using cloud
computing. IEEE Access, vol. 5, pp. 12635–12647.

24. Guo, H., Liu, J., Zhang, J. (2018). Computation offloading for multi-access mobile edge computing in ultra-
dense networks. IEEE Communications Magazine, 56(8), 14–19.

25. Zhao, Y., Hu, W., Yang, Z. (2015). High-resolution transmission electron microscopy study on reversion of
al2cumg precipitates in alâcuâmg alloys under irradiation. Micron, 76, 1–5.

26. Chen, X., Jiao, L., Li, W., Fu, X. (2016). Efficient multi-user computation offloading for mobile-edge cloud
computing. IEEE/ACM Transactions on Networking, 24(5), 2795–2808.

27. Liu, Y., Xu, C., Zhan, Y., Liu, Z., Guan, J. et al. (2017). Incentive mechanism for computation offloading
using edge computing: A Stackelberg game approach. Computer Networks, 129, 399–409.

28. Zeng, M., Li, Y., Zhang, K., Waqas, M., Jin, D. (2018). Incentive mechanism design for computation
offloading in heterogeneous fog computing: A contract-based approach. 2018 IEEE International Confer-
ence on Communications (ICC). Kansas, MO, USA.

29. Du, J., Gelenbe, E., Jiang, C., Zhang, H., Ren, Y. (2017). Contract design for traffic offloading and resource
allocation in heterogeneous ultra-dense networks. IEEE Journal on Selected Areas in Communications,
35(11), 2457–2467.

30. Zhang, Y., Pan, M., Song, L., Dawy, Z., Han, Z. (2017). A survey of contract theory-based incentive
mechanism design in wireless networks. IEEE Wireless Communications, 24(3), 80–85.

22 CMES, 2024

31. Gendreau, M., Potvin, J. Y. (2010). Handbook of metaheuristics, vol. 2. Springer.
32. Wang, Y., Breedveld, S., Heijmen, B., Petit, S. (2016). Evaluation of plan quality assurance models for

prostate cancer patients based on fully automatically generated pareto-optimal treatment plans. Physics
in Medicine and Biology, 61, 4268–4282.

33. Yang, B., Cao, X., Bassey, J., Li, X., Kroecker, T. et al. (2019). Computation offloading in multi-access
edge computing networks: A multi-task learning approach. ICC 2019-2019 IEEE International Conference
on Communications (ICC). Shanghai, China.

34. Rahbari, D., Nickray, M. (2020). Task offloading in mobile fog computing by classification and regression
tree. Peer-to-Peer Networking and Applications, 13, 104–122.

35. Hu, R., Jiang, J., Liu, G., Wang, L. (2013). CPU load prediction using support vector regression and Kalman
smoother for cloud. 2013 IEEE 33rd International Conference on Distributed Computing Systems Workshops.
Philadelphia, PA, USA.

36. Farahnakian, F., Pahikkala, T., Liljeberg, P., Plosila, J. (2013). Energy aware consolidation algorithm based
on K-nearest neighbor regression for cloud data centers. 2013 IEEE/ACM 6th International Conference on
Utility and Cloud Computing. Dresden, Germany.

37. Appadurai, J., Prabaharan, S., Venkateswaran, N., Roseline, S., Rama, B. (2023). Radial basis function
networks-based resource-aware offloading video analytics in mobile edge computing. Wireless Networks.
https://doi.org/10.1007/s11276-023-03420-7

38. Cheng, H., Xia, W., Yan, F., Shen, L. (2019). Balanced clustering and joint resources allocation in
cooperative fog computing system. 2019 IEEE Global Communications Conference (GLOBECOM). Big
Island, Hawaii, USA.

39. Li, Y., Anh, N. T., Nooh, A. S., Ra, K., Jo, M. (2018). Dynamic mobile cloudlet clustering for fog computing.
2018 International Conference on Electronics, Information, and Communication (ICEIC). Honolulu, Hawaii,
USA.

40. Li, G., Lin, Q., Wu, J., Zhang, Y., Yan, J. (2019). Dynamic computation offloading based on graph
partitioning in mobile edge computing. IEEE Access, 7, 185131–185139.

41. Bouras, I., Aisopos, F., Violos, J., Kousiouris, G., Psychas, A. et al. (2023). Mapping of quality
of service requirements to resource demands for IAAS. Proceedings of the 9th International Con-
ference on Cloud Computing and Services Science CLOSER, pp. 263–270. Heraklion, Crete, Greece.
https://doi.org/10.5220/0007676902630270

42. Li, H., Zheng, P., Wang, T., Wang, J., Liu, T. (2022). A multi-objective task offloading based on BBO
algorithm under deadline constrain in mobile edge computing. Cluster Computing, 26, 4051–4067.

43. Dai, Z., Ding, W., Min, Q., Gu, C., Yao, B. et al. (2023). M-E-AWA: A novel task scheduling approach
based on weight vector adaptive updating for fog computing. Processes, 11(4), 1053.

44. Hosny, K., Ibrahim Awad, A., Khashaba, M., Rushdy, E. (2023). New improved multi-objective gorilla
troops algorithm for dependent tasks offloading problem in multi-access edge computing. Journal of Grid
Computing, 21, 21.

45. Yu, S., Wang, X., Langar, R. (2017). Computation offloading for mobile edge computing: A deep
learning approach. 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio
Communications (PIMRC). Montreal, QC, Canada.

46. Rani, D., Muthukumar, P. (2021). Deep learning based dynamic task offloading in mobile cloudlet
environments. Evolutionary Intelligence, 14, 499–507.

47. Zhang, R., Cheng, P., Chen, Z., Liu, S., Vucetic, B. et al. (2022). Calibrated bandit learning for decentralized
task offloading in ultra-dense networks. IEEE Transactions on Communications, 70(4), 2547–2560.

48. Zhang, J., Zhao, L., Yu, K., Min, G., Al-Dubai, A. et al. (2023). A novel federated learning scheme for
generative adversarial networks. IEEE Transactions on Mobile Computing, 1–17. https://doi.org/10.1109/
lTMC.2023.3278668

CMES, 2024 23

49. Zhang, K., Zhu, Y., Leng, S., He, Y., Maharjan, S. et al. (2019). Deep learning empowered task offloading
for mobile edge computing in urban informatics. IEEE Internet of Things Journal, 6(5), 7635–7647.

50. Lu, H., Gu, C., Luo, F., Ding, W., Liu, X. (2019). Optimization of lightweight task offloading strategy for
mobile edge computing based on deep reinforcement learning. Future Generation Computer Systems, 102,
847–861.

51. Zhao, L., Zhao, Z., Zhang, E., Hawbani, A., Al-Dubai, A. et al. (2023). A digital twin-assisted intelligent
partial offloading approach for vehicular edge computing. IEEE Journal on Selected Areas in Communica-
tions, 41, 3386–3400.

52. Zhao, L., Zhang, E., Wan, S., Hawbani, A., Al-Dubai, A. et al. (2023). MESON: A mobility-aware
dependent task offloading scheme for urban vehicular edge computing. IEEE Transactions on Mobile
Computing.

53. Maray, M., Mustafa, E., Shuja, J., Bilal, M. (2023). Dependent task offloading with deadline-aware
scheduling in mobile edge networks. Internet of Things, 23, 100868.

54. Mustafa, E., Shuja, J., Bilal, K., Mustafa, S., Maqsood, T. et al. (2022). Reinforcement learning for
intelligent online computation offloading in wireless powered edge networks. Cluster Computing, 26,
1053–1062.

55. Liu, J., Wei, X., Wang, T., Wang, J. (2019). An ant colony optimization fuzzy clustering task scheduling
algorithm in mobile edge computing. Security and Privacy in New Computing Environments: Second EAI
International Conference, SPNCE 2019. Tianjin, China, Springer.

56. Hussein, M. K., Mousa, M. H. (2020). Efficient task offloading for IoT-based applications in fog computing
using ant colony optimization. IEEE Access, 8, 37191–37201.

57. Zhang, D., Haider, F., St-Hilaire, M., Makaya, C. (2019). Model and algorithms for the planning of fog
computing networks. IEEE Internet of Things Journal, 6(2), 3873–3884.

58. Al-habob, A. A., Dobre, O. A., Garcia Armada, A. (2019). Sequential task scheduling for mobile edge
computing using genetic algorithm. 2019 IEEE Globecom Workshops (GC Wkshps). Big Island, Hawaii,
USA.

59. Li, Y. (2017). Edge computing-based access network selection for heterogeneous wireless networks (Ph.D.
Thesis). Université de Rennes 1, France.

60. Avgeris, M., Dechouniotis, D., Athanasopoulos, N., Papavassiliou, S. (2019). Adaptive resource allocation
for computation offloading: A control-theoretic approach. ACM Transactions on Internet Technology,
19(2), 23. https://doi.org/10.1145/3284553

61. Kalatzis, N., Avgeris, M., Dechouniotis, D., Papadakis-Vlachopapadopoulos, K., Roussaki, I. et al.
(2018). Edge computing in IoT ecosystems for UAV-enabled early fire detection. 2018 IEEE International
Conference on Smart Computing (SMARTCOMP). Taormina, Sicily, Italy.

62. Pu, L., Chen, X., Xu, J., Fu, X. (2016). D2D fogging: An energy-efficient and incentive-aware task offload-
ing framework via network-assisted D2D collaboration. IEEE Journal on Selected Areas in Communications,
34(12), 3887–3901.

63. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J. et al. (2015). Human-level control through
deep reinforcement learning. Nature, 518, 529–533.

64. Mechalikh, C., Taktak, H., Moussa, F. (2020). PureEdgeSim: A simulation framework for performance
evaluation of cloud, edge and mist computing environments. Computer Science and Information Systems,
18(1), 43–66.

A.3 Graph Based Learning for Building Predic-
tion in Smart Cities

88

Received April 7, 2022, accepted April 20, 2022, date of publication April 22, 2022, date of current version May 3, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3169890

Graph Based Learning for Building
Prediction in Smart Cities
ASIER GARMENDIA-ORBEGOZO 1, (Member, IEEE), SARAH NOYE2, (Member, IEEE),
MIGUEL ANGEL ANTON 2, (Senior Member, IEEE),
AND J. DAVID NUÑEZ-GONZALEZ 1, (Senior Member, IEEE)
1Department of Applied Mathematics, University of the Basque Country, 48940 Leioa, Spain
2TECNALIA, Basque Research and Technology Alliance (BRTA), 20018 Donostia-San Sebastian, Spain

Corresponding author: Asier Garmendia-Orbegozo (asier.garmendiao@ehu.eus)

This work was supported by the TECNALIA Member of Basque Research and Tecnology Alliance.

ABSTRACT Anticipating pedestrians’ activity is a necessary task for providing a safe and energy efficient
environment in an urban area. By locating strategically sensors throughout the city useful information could
be obtained. By knowing the average activity of those throughout different days of the weekwe could identify
the typology of the buildings neighboring those sensors. For these type of purposes, clustering methods
show great capability forming groups of items that have great similarity intra clusters and dissimilarity
inter cluster. Different approaches are made to classify sensors depending on the typology of buildings
surrounding them and the mean pedestrians’ counts for different time intervals. By this way, sensors could
be classified in different groups according to their activation patterns and the environment in which they are
located through clustering processes and using graph convolutional networks. This study reveals that there
is a close relationship between the activity pattern of the pedestrians’ and the type of environment sensors
that collect pedestrians’ data are located. By this way, institutions could alleviate a great amount of effort
needed to ensure safe and energy efficient urban areas, only knowing the typology of buildings of an urban
zone.

INDEX TERMS Building prediction, clustering, graph networks, smart city, sensors.

I. INTRODUCTION
The increasing number of Internet of Things (IoT) devices
spread throughout cities has evolved in a scenario in which
different public services has developed positively, in the way
that dynamically information is provided and decision are
made in real-time. As a consequence, citizen’s lifestyle has
become safer, more convenient and environmental issues
could be faced up more efficiently.
In a smart city, sensors play the role of collectors, obtaining

a huge number of data by sensing different parameters of
the environment and different events, such as traffic inci-
dents or pedestrians’ mobility. The elevate activity of these
devices carries with it a proper maintenance and an intel-
ligent distribution so as to avoid different problems related
to safety and energy consumption and to tackle security
issues. According to the International Energy Agency (2015),
the implementation of a correct control illumination system
could save energy by up to 35%. These numbers are behind

The associate editor coordinating the review of this manuscript and

approving it for publication was Wentao Fan .

the increasing use of more advanced control illumination
systems mainly in the commercial and public sectors where
lighting represents the highest energy consumption.1

The positioning of sensors and the distributed management
of them is determining. Thus, it is important to make a correct
classification of the building typologies, if those could give
us the information of the environment they are placed or the
pedestrians’ tendencies or patterns of mobility.
In this work, which is an extension of ‘‘Building typol-

ogy prediction in Smart Cities’’ presented in the CIB W78
Information Technology for Construction 39th Conference
WBC 2022 [20], two clusterings of sensors were developed.
One of them was performed based on the typology of the
buildings near-by the sensors, and the second based on the
average counts that sensors had made during different time
slots throughout different days of the week. After applying
Principal Component Analysis (PCA) in order to reduce the

1Design of a Smart and Compact Illumination System. Available online
at https://www.redalyc.org/jatsRepo/5722/572261854020/html/index.
htmlredalyc.org

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 45471

A. Garmendia-Orbegozo et al.: Graph Based Learning for Building Prediction in Smart Cities

dimensionality of the problem, a clustering was performed
and it was created a pair of new datasets adding to each sensor
the cluster it belongs to in each case. Later on, supervised
Machine Learning (ML) learning algorithms were applied
to the latter datasets to validate the clusterings carried out
previously.
Finally, a graph convolutional network (GCN) was per-

formed in order to enhance the results obtained from the
clustering based on the average counts that sensors had
made. By this way, it was feasible to raise different perfor-
mance metrics of the classification of sensors based on their
activity.
This is a novel research in this field due to the lack of

attempts to classify sensors based on their characteristics.
A similar approach has been carried out in [5] classifying
buildings depending on human interaction. In this case, the
classification of buildings was done attending the interaction
of people and spatio-temporal population density. The main
contributions of this work are the following. On the one
hand, processing of data to know the activity of sensors and
the typology of buildings surrounding them is performed so
that sensors are characterized. Next, clustering based on the
information obtained in the previous phase is carried out
grouping sensors. By this way, pedestrian activity would be
predicted giving the opportunity to anticipate in different
ways providing an eco-friendly and safe urban environment.
Finally, an alternative approach driven by a GCN is carried
out.
The remainder of this work is organized as follows.

Section 2 reviews the literature. In section 3 the fundamen-
tal concepts about PCA, clustering and supervised machine
learning are described and the proposed methodology is
reviewed. The materials used in this work are described in
Section 4. The experimental work is presented in Section 5.
The experimental results and analysis are presented in
Section 6. Conclusions of this work and outlines of some
potential directions for further investigation are made in
Section 7. The abbreviations cited in this paper are summa-
rized in Table 12.

II. LITERATURE REVIEW
In the way of achieving a smart distribution and maintenance
of cities different researches have beenmade recently in order
to tackle a wide variety of issues, such as building function-
ality identification, pedestrians detection, traffic prediction
or other type of detections. Different skills have been used
in those works enabling optimum solutions to the mentioned
tasks.
Different techniques have been developed to address tasks

related with traffic. In [2] a camera based system was used,
even though bad visibility conditions caused by bad weather
or insufficient lighting were limiting factors. The same prob-
lem was limiting their performance in infrared sensor based
system [3]. Similarly, in [4] a sparse coverage of video cam-
eras in the public space was performed, acceptance levels
amongst citizens being too low, though.

Identifying the buildings’ typology has been useful in a
wide range of applications. In [5] a new method to iden-
tify building functions from the perspective of the spatial
distribution and spatial interactions of human activities was
proposed. First, taxi data were used to acquire the spa-
tiotemporal interaction characteristics among buildings with
different functions. Then, the spatiotemporal population den-
sity distribution was adopted to depict the building vitality.
Finally, an iterative clusteringmethodwas introduced to iden-
tify the building functions.
The correlation between space and time in smart cities has

emerged the need of different research lines so as to solve
the lack of works bridging this two variables. Heterogeneity
related to the distribution within space and the dynamism
of data through time has led to the partitioning of space in
regions and time intervals. In [9] they provide a method
for combining both spatial and temporal factors in predicting
pedestrian flow within city centres. The model utilizes sensor
data over an extended time period that allows seasonality
and time of day factors to be incorporated as well as actual
walking distances to points of interest and transport terminals
in contrast to Euclidean distances to identify influencing
factors.
Different approaches has been made in order to solve

issues related to traffic incidents, by using binomial logistic
regression and space–time cube model [6] or geographic
information system (GIS) to visualize the distribution of
pedestrian crashes in cities to explore the relationships
between pedestrian crashes and the population, road network,
land use and social services and activities and to analyze the
impacts of the building environment and road characteristics
on the severity of pedestrian crashes by combining the binary
logistic regression and tree-based models [7], among others.
Nowadays, the complex spatial dependency of road networks,
non-linear temporal dynamics with changing road conditions,
and the inherent difficulty of long-term forecasting is chal-
lenging. In [8] there is a presented deep learning framework
titled, ‘‘Diffusion Convolutional Recurrent Neural Network
(DCRNN)’’ for traffic forecasting. With the aim of making
traffic prediction and the incorporation of spatial and tem-
poral dependency in the traffic flow, DCRNN also integrates
the encoder-decoder architecture with a scheduled sampling
technique to improve performance and long-term forecast of
traffic.
With the advancement of AI techniques, new methods

have emerged to perform clustering tasks. In that sense,
graph clustering has become one of the most popular and
widely adopted methods. There are an increasing num-
ber of applications that use graphs to represent data. For
example, in e-commerce, a graph-based learning system can
provide extremely accurate suggestions by using the interac-
tions between customers and products, recommender system,
social networks, biological protein-protein networks [10].
In chemistry, molecules are represented as graphs, and their
bioactivity must be determined in order to develop new drugs.
Whereas citation network; traffic forecasting, taxi demand

45472 VOLUME 10, 2022

A. Garmendia-Orbegozo et al.: Graph Based Learning for Building Prediction in Smart Cities

prediction are all used to predict the concentrations of a
wide variability of air pollutants. By forecasting the crowd
flows to predict urban traffic flow, management of tourism
flows can be predicted. Finding the way to incorporate graph
structure information into a machine learning model is the
core problem in graph machine learning.
Traffic forecasting is essential for guidance and traffic

control. In [11] there is a proposed model based on
Spatio-Temporal Graph Convolutional Networks (STGCN)
for traffic prediction. STGCN seeks to predict in the traf-
fic domain by integrating convolution with graphs and
space-time convolution in blocks so that the training is faster
with a smaller number of parameters. In [12] a proposed
Origin – Destination based Temporal Graph Attention Net-
work (OD-TGAT) framework is used for taxi demand fore-
casting. This model has two main building blocks: a graph
network and a neural network. This is the first representa-
tion of a model employed graphing network used for taxi
demand prediction. In [13] there is a proposed hybrid model
based on deep learning methods. This hybrid model inte-
grates Graph Convolutional networks and Long Short-Term
Memory networks (GC-LSTM) to establish and predict the
spatiotemporal variation in space-time of PM2.5 concentra-
tions by applying the graph convolutional networks (GCN)
to extract the spatial dependency between different stations,
as well as the Long Short-Term Memory (LSTM) to capture
the temporal dependency between observations at different
times.
Forecasting the crowd flows in each and every part of

a city, especially in irregular regions, is very important for
the following reasons: traffic control, risk assessment, and
public safety. Nevertheless, it is very challenging because
of the interactions and spatial correlations between different
regions. In [14], the proposed multi-view graph convolu-
tional network (MVGCN) is used to predict the inflow and
outflow in each and every irregular region of a city to inte-
grate the geospatial position via spatial graph convolutions.
In [15] the proposed attention-based deep spatio-temporal
network, with multi-task learning (ADST-Net) at a citywide
level, creates a goal to predict urban traffic flow. ADST-Net
furthermore introduces an outside embedding mechanism to
extricate the impact of external factors on flow prediction,
such as weather conditions.

III. FUNDAMENTAL CONCEPTS AND
PROPOSED METHODOLOGY
A. PROPOSED METHODOLOGY
This research has followed the approach described in this
section. As it is shown in Fig. 1 one can distinguish 3 main
phases. The second one, could be divided into 2 subphases
depending the architecture used to tackle the problem in
question. Both of them, the GCN and the clustering method
are based on the previous processing of data obtained from
open data source from the city of Melbourne. In this first
part of the research new datasets derived from the ones

FIGURE 1. Diagram of the proposed methodology.

obtained from the open sources were calculated followed by
a dimensionality reduction technique. The three dimension-
ality reduction techniques that we compared were Principal
Component Analysis (PCA), Unifold Manifold Approxima-
tion and Projection (UMAP) and t-Distributed Stochastic
Neighbor Embedding (tSNE). The activity throughout dif-
ferent time intervals of days of the sensors was calculated
as well as the number of buildings of each type of their
surroundings as explained in section IV, where materials
are described in depth. After this, reduction techniques were
carried out to reduce the dimensionality of the issue, and use
fewer variables in the next phase raising the efficiency of
these.
In the second phase with the information obtained in

the previous one a clustering process or a graph convolu-
tional network is carried out to distinguish groups of sensors
depending on their activity throughout the day or the type
of environment(building) they are located. In case of the
clustering processes a posterior validation using supervised
Machine Learning algorithms was performed to show the
effectiveness of the previous approach. For both datasets,
3 clusterings were done to determine which of the dimension-
ality reduction techniques suits best for this problem. After
all, we verified that PCA was the most adequate method to
use in this case, continuing the rest of the work applying this
technique.
Within this section a more detailed explanation of each of

the concepts of the phases mentioned above is given.

B. PRINCIPAL COMPONENT ANALYSIS (PCA)
Principal Component Analysis is the process of computing
the principal components of a collection of points, that are
sequence of p unit vectors where the i-th vector is the direc-
tion of a line that best fits the data while being orthogonal
to the first i-1 vectors, and using them to perform a change
of basis on the data. One of the objectives of using this
method is to carry out the dimensionality-reduction of a
data set with a large number of connected variables while

VOLUME 10, 2022 45473

A. Garmendia-Orbegozo et al.: Graph Based Learning for Building Prediction in Smart Cities

maintaining as much variance as feasible in the data set. This
is accomplished by converting to a new set of uncorrelated
variables known as principle components (PCs), which are
sorted so that the first few keep the majority of the vari-
ance existing in a dataset [16]. Among other dimensionality
reduction techniques PCA offers lowest computational cost
compared to tSNE or UMAP. To decide which of them fits
best our problem, we developed part of the methodology
with each of the 3 dimensionality reduction techniques and
after all, we saw that clustering of sensors provides a better
accuracy with PCA than with the other two methods. In fact,
PCA outperformed in a range of 5% the performance of
UMAP and in 10% the performance of tSME. Further details
are contained in section 6. Consequently, during the rest of
the work we adopted PCA as the dimensionality reduction
technique.
Generally, a reduction in the number of variables in a data

set carries a reduction in accuracy. Nevertheless, there is a
trade-off between accuracy and simplicity. The reason for
this reduction is not only that smaller data sets are easier to
study and display, but also the machine learning algorithms
can analyze data more easily and quickly without having to
deal with superfluous factors.2

In this case, adopting this technique is the optimum solu-
tion in order to lower the number of dimensions of the
problem in question.

C. CLUSTERING
Clustering is a type of unsupervised learning method. Unsu-
pervised learning is a technique for extracting references from
datasets that contain input data but no labelled answers, and
self-discovering naturally occurring patterns. It is a method
for identifying significant structure, explaining underlying
processes, generating traits, and groups in a set of samples.
Clustering is the process of partitioning a population or

set of data points into several groups so that the similarity
of points within a group is high and dissimilarity between
points from different groups is high, as well. It is essentially a
grouping of items based on their similarity and dissimilarity.
This method is critical since it determines the inherent

grouping among the unlabeled data. There are no require-
ments for a successful clustering. It is up to the user to
determine what criteria employ to satisfy its needs. For
instance, we might be interested in locating representations
for homogeneous groups (data reduction), locating ‘‘natural
clusters’’ and describing their unknown qualities (‘‘natu-
ral’’ data types), locating useful and appropriate groupings
(‘‘useful’’ data classes), or locating odd data objects (outlier
detection).
It is worth differentiating between fuzzy clustering and

hard/crisp clustering. The former one gives the degree of

2A Step-by-Step Explanation of Principal Component Analysis (PCA).
Available online at https://builtin.com/data-science/step-step-explanation-
principal-component-analysisbuiltin.com

belonging to each cluster for each item, whereas the latter
one classifies each item to an unique cluster.
Attending the criteria used for dividing the clusters by the

algorithm, different clustering methods can be defined. These
are the type of methods and the most important examples of
them:

• Density-Based Methods: k-Means, Partitioning Around
Medoids (PAM), Clustering Large
Applications(CLARA), k-Prototypes, K-Mode.

• Hierarchical Based Methods: Sequential Agglom-
erative Hierarchical Non-overlapping(SAHN), Bal-
anced Iterative Reducing and Clustering Using
Hierarchies(BIRCH), Clustering Using Representa-
tives(CURE), Robust Clustering using Links(ROCK).

• Partitioning Methods: Density-based spatial clustering
of applications with noise(DBSCAN), Density-based
Clustering(DENCLUE).

• Grid-based Methods: Statistical Information
Grid(STING), Wavecluster.

The simplest and most satisfactory unsupervised machine
learning approach for solving the clustering problem in many
cases is the K-means clustering algorithm. The K-means
algorithm divides n observations into k clusters, with each
observation belonging to a cluster. The centroids of each
cluster are initialized randomly from the initial observation
set, and the rest of the items are assigned to the nearest
centroid’s cluster. After each assignation the centroids are
recalculated and identical process is repeated until there are
no remaining observations to classify.3

D. SUPERVISED MACHINE LEARNING METHODS
The supervised machine learning techniques aim to clas-
sify a set of items based on their features and other set of
pre-classified items with the same features. This techniques
infer a function from a training data set to use it to classify
other instances from a test data set. Each instance of a training
set consists of a set of features seen as an input vector and
the desired output, which is the remaining feature for the
instances of the testing data set.
After differentiating those two data sets, the inferred func-

tion is used for predicting the output for the instances of the
test data set (known beforehand). By this way, the accuracy of
the algorithm could be stated comparing the results obtained
from the classification process and the ground-truth. As well
as that, those algorithms could be used for validating the
results of a clustering process.
There are many algorithms that can address this task,

and variations of them can be found in the literature. These
are some of the most commonly used ones: Naive-Bayes,
Decision Tree, Supported Vector Machine, Artificial Neural
Networks, Boosting methods, Bagging methods, etc.

3Clustering in Machine Learning. Available online at https://www.
geeksforgeeks.org/clustering-in-machine-learning/geeksforgeeks.org

45474 VOLUME 10, 2022

A. Garmendia-Orbegozo et al.: Graph Based Learning for Building Prediction in Smart Cities

FIGURE 2. Valued undirected graph.

E. BASICS OF NEURAL NETWORKS
An artificial neural network is based on a collection of
connected units or nodes called artificial neurons, which
loosely model the neurons in a biological brain These values
can be integer, real, or binary. Based on the inputs and the
weights, the weighting function produces a weighted sum
that is passed through an activation function to produce an
output.

F. CONVOLUTIONAL NEURAL NETWORKS (CNNS)
The higher performance of convolutional neural networks or
ConvNet with picture, speech, or audio signal inputs sets
them apart from other artificial neural networks [18].
They are divided into three sorts of layers:

• Convolutional layer. The convolutional layer is the cen-
tral component of a CNN, and it is here where the major-
ity of the computation takes place. Input data, a filter,
and a feature map are components required.

• Pooling layer. Downsampling, also known as pooling
layers, is a dimensionality reduction technique that
reduces the number of factors in the input. The pooling
process sweeps a filter across the entire input, similar to
the convolutional layer, however this filter does not have
any weights.

• Fully-connected (FC) layer. The full-connected layer’s
name is self-explanatory. In partially linked layers, the
pixel values of the input image are not directly connected
to the output layer, as previously stated.

G. GRAPH THEORY
1) BASIC CONCEPTS
A graph is represented by the pair G = (V ,A). The V
represents the set of vertices or nodes and the A the set of
edges (or arcs).
The nodes represent the elements of the system and edges

the interrelationships between them. If all the edges can be
traversed in both directions, the graph is known as undirected.
In the case of directed graphs, each edge has a direction,
generally represented by its origin node and its destination
node.
Valued graph: is a graphG together with a functionWE that

assigns a numerical weightWij to each edge (i, j). Eventually
it can also coexist with aWV function that assigns aWi value
to each i node.

FIGURE 3. Undirected graph.

FIGURE 4. Directed graph.

As can be seen in the Fig. 2 a valued graph is shown in
which each arc has an associated weight that is the length
between two nodes [19].
The graph is undirected if the arcs are formed by pairs of

unordered vertices, not pointed.
As can be seen in the Fig. 3 an undirected graph is shown

formed by the vertices V = {1, 4, 5, 7, 9} and the set of
arcs A ={(1,4), (4,1), (5,1), (1, 5), (7,9), (9.7), (7.5), (5.7),
(4.9), (9.4) }.
When a graph is directed, it is also known as diagraph.

In this type of graph the pairs of nodes that form the edges
are ordered and are represented by an arrow indicating the
direction of the relationship u→ v.
As can be seen in the Fig. 4 a directed graph is shown

formed by the vertices V = C,D,E,F,H , and the arcs A =
{(C,D,), (D,F), (E,H), (H ,E), (E,C)} form the directed
graph G = V ,A.

2) GRAPH REPRESENTATION
• List of neighbors: associates to each node the list of its
neighbors, that is, neighbors (i) = j : (i, j) ∈ E

• Adjacency matrix: of Boolean values 0, 1 such that
M (i, j) = 1⇔ (i, j) ∈ E

VOLUME 10, 2022 45475

A. Garmendia-Orbegozo et al.: Graph Based Learning for Building Prediction in Smart Cities

The graphs can be applied to different tasks such as the
following:

• Node Classification: this categorization, which is
founded exclusively on non-attribute graphs, is based on
the graph’s structure and the class of the known nodes in
our experiment.

• Link prediction: here the nodes’ classes aren’t taken into
account.

• Node clustering: node clustering can be applied to a
group items by their proximity to each other.

H. GRAPH NEURAL NETWORKS (GNNS) AND GRAPH
CONVOLUTIONAL NETWORKS(GCNS)
Graphs are a type of data structure that represents a collection
of items (nodes) and their connections (edges). A Graph
Neural Network is a sort of Neural Network that works with
the graph structure directly. Node categorization is a common
use of GNN. Every node in the network has a label, and
predictions of the labels of the nodes using ground-truth data
is being made. Convolutional networks multiply the input
neurons with a set of weights that are commonly known as
filters or kernels. The filters act as a slidingwindow across the
whole image and enable CNNs to learn features from neigh-
boring cells. GCNs perform similar operations where the
model learns the features by inspecting neighboring nodes.
The major difference between CNNs and GNNs is that CNNs
are specially built to operate on regular (Euclidean) structured
data, while GNNs are the generalized version of CNNs where
the numbers of nodes connections vary and the nodes are
unordered (irregular on non-Euclidean structured data).4

In our experiment, sensors represent the nodes of the graph,
so that node classification is performed to obtain different
sensor groups. These nodes’ features represent the mean
activity of sensors. The number of features was reduced by
applying PCA, finally obtaining only 5 features per node for
the clustering based in the activity of sensors, and 14 features
for the clustering based in the buildings’ typology. On the
other hand, edges are the invert of the relative distances
between sensors.

IV. MATERIALS AND METHODS
In this section, we describe the materials used in this work.
We introduce a description of the datasets used.

A. DATASETS
The data that has been used in this work is partly from
the city of Melbourne.5 In this portal we can find an open
dataset: Pedestrian Counting System - Monthly (counts per
hour). This dataset contains hourly pedestrian counts since

4Understanding Graph Convolutional Networks for Node Classification.
Available online at https://towardsdatascience.com/understanding-graph-
convolutional-networks-for-node-classification-
a2bfdb7aba7btowardssciencedata.com

5City of Melbourne Open Data, available at https://data.melbourne.
vic.gov.au/stories/s/data-principles/9f8u-v2fn?src=hdrCity of Melbourne
Open Data

2009 from pedestrian sensor devices located across the
city. In the same way we can find Pedestrian Counting
System - Sensor Locations. This dataset contains status, loca-
tion and directional information for each pedestrian sensor
device installed throughout the city transportation. Finally,
Buildings with name dataset contains the information about
the typology of the buildings and their locations.
In order to expand the amount of data used to train

the classifiers described in section V we made use of the
pedestrian mobility information provided by the city hall
of Madrid.6 There were counts of pedestrian and cyclists
from 2019 to 2021. Although there were counts available
of 2019, due to several break downs of sensors there were
variousmissing values. Furthermore, we considered only data
between 2020 and 2021.

1) PEDESTRIAN COUNTING DATASETS OF MELBOURNE
The Pedestrian Counting System - Monthly (counts per hour)
dataset7 contains hourly pedestrian counts (since 2009) using
pedestrian sensor devices located across the city. The data is
updated on a monthly basis. This dataset contains 3,482,938
records in all, and it has been collected from May 1st, 2009
to December 31th, 2020.
In order to avoid analysing instances from sensors that

were not working or were damaged, we used another
dataset named Pedestrian Counting System - Sensor Loca-
tions dataset.8 This dataset contains information about status,
location and direction for each pedestrian sensor device
installed throughout the city. It is made available by the
City of Melbourne with a Creative Commons Attribution 4.0
International license.9

We conducted to the exploratory analysis of the data from
the previous data set in order to know if all the sensors
have enough information to include them later in a PCA
analysis and clustering. It is important to know the activity
of the sensors and see in which period there was no record of
pedestrian crossings as part of the exploratory analysis. After
this, we removed the instances from sensors which had not
been operating.
After all, we decided to establish two hour time intervals

for each day and separate weekdays from Saturdays and
Sundays. By this way, we generated a new dataset (named
Melbourne pedestrians with mean hourly count datafinal all
and both hourly counts, for both cities’ mean values) that

6City of Madrid Open Data, available at https://datos.madrid.es/portal/
site/egob/menuitem.c05c1f754a33a9fbe4b2e4b284f1a5a0/?vgnextoid=
695cd64d6f9b9610VgnVCM1000001d4a900aRCRD&vgnextchannel=
374512b9ace9f310VgnVCM100000171f5a0aRCRD&vgnextfmt=
default#City of Madrid Open Data

7Pedestrian Counting System - Monthly (counts per hour). Available
online at https://data.melbourne.vic.gov.au/Transport/Pedestrian-Counting-
System-Monthly-counts-per-hour/b2ak-trbp?src=featured_bannerdata.
melbourne.vic.gov.au

8Pedestrian Counting System - Sensor Locations. Available online at
https://data.melbourne.vic.gov.au/Transport/Pedestrian-Counting-System-
Sensor-Locations/h57g-5234data.melbourne.vic.gov.au

9Creative Commons Attribution 4.0 International license, available at
https://creativecommons.org/licenses/by/4.0/legalcodecreativecommons.org

45476 VOLUME 10, 2022

A. Garmendia-Orbegozo et al.: Graph Based Learning for Building Prediction in Smart Cities

included the mean hourly count value for each sensor in
different time intervals of different days (weekday, Saturday,
Sunday).

2) BUILDINGS WITH NAME DATASET OF MELBOURNE
This dataset contains the typology of buildings that will be
used to calculate the geodesic distance that exists from a
pedestrian sensor to a type of building. By this way, we reg-
istered the buildings that were under a previously defined
neighboring distance (300 m) from each sensor (obtaining
their location from Pedestrian Counting System - Sensor
Locations dataset) and these values were used later to perform
a PCA and posterior clustering of sensors depending on the
typology of the buildings near-by. Thus, the predominant
types of buildings surrounding each sensor could be known.
These results were summarised in a new dataset (named
Melbourne count pedestrians buildings) that had been used
in the posterior phases.

3) MADRID PEDESTRIAN DATASETS
These datasets contain the hourly pedestrian counts of every
sensor spread throughout the city of Madrid for each year.
They contain information about each sensor, its latitude and
longitude, information of its address, and the typology of the
address (pedestrian street, sidewalk, etc.).

V. EXPERIMENTAL WORK
After obtaining the desired data, we sought out to divide the
sensor into different groups or clusters. For this purpose it
is advisable to reduce the number of features of each dataset,
not only for enhancing the interpretability of the data, but also
for improving the results of clustering, because the machine
learning algorithms can analyze data more easily and quickly
without having to deal with superfluous factors. After this
reduction had been made, we present the techniques used
to divide the sensors based on different criteria, depending
on the building typology surrounding them and the number
of the activations that they had in different time intervals
throughout the week. Finally, we validate each division made
in the previous phase by using supervised machine learning
algorithms.

A. PRINCIPAL COMPONENT ANALYSIS (PCA)
First, we analysed the cumulative explained variance of dif-
ferent numbers of components for each dataset, after scaling
the data with mean 0 and standard deviation of 1 for each
attribute for optimizing the results. There is no single answer
or method to identify the optimal number of main compo-
nents to use. A very widespreadway of proceeding consists of
evaluating the proportion of accumulated explained variance
and selecting the minimum number of components from
which the increase is no longer substantial. Depending on
the degree of accuracy required this proportion varies. In our
case, we established a 95 % of variation to be explained by
the amount of components selected.

FIGURE 5. Cumulative explained variance for the Melbourne count
pedestrians buildings and Melbourne pedestrians with mean hourly
count datafinal all datasets.

FIGURE 6. Cumulative explained variance for the Melbourne & Madrid
mean hourly count dataset.

As it can be seen in the Fig. 5, with 14 components the
desired variance is achieved for the Melbourne count pedes-
trians buildings dataset. In the same way, 5 components were
sufficient to satisfy the requirement mentioned above for the
Melbourne pedestrians with mean hourly count datafinal all
dataset. However, 6 was the optimum number of components
to satisfy the mentioned requirement in case of both cities’
pedestrians activity pattern dataset, as it can be seen in Fig. 6.

B. CLUSTERING
1) SELECTING OPTIMAL NUMBER OF CLUSTERS
To select the optimal number of clusters there are different
traditional methods. For the problem in question, we are
going to use the elbow method. The function Inertia simply
computes the squared distance of each sample in a cluster to
its cluster center and sums them up. The smaller the Inertia
value, the more coherent are the different clusters. When as
many clusters are added as there are samples in the data set,
then the Inertia value would be zero. After obtaining principal
components, we proceed to apply the K-Means algorithm
after evaluating the optimal number of clusters according
to the elbow method. The point in which the graph flattens
will indicate the optimal number of clusters, just enough to
achieve a desired difference and coherence between clusters.

VOLUME 10, 2022 45477

A. Garmendia-Orbegozo et al.: Graph Based Learning for Building Prediction in Smart Cities

FIGURE 7. Elbow method to obtain the optimal number of clusters for
Melbourne pedestrians with mean hourly count datafinal all dataset.

FIGURE 8. Elbow method to obtain the optimal number of clusters for
Melbourne & Madrid pedestrians with mean hourly count dataset.

TABLE 1. Sensors and clusters based on buildings’ typology.

As it can be seen in the Fig. 7, 6 clusters would be a
reasonable option for the Melbourne pedestrians with mean
hourly count datafinal all dataset, but 4 also could be con-
sidered. At the beginning we decided to choose 6 clusters
and similarly for the Melbourne count pedestrians buildings
dataset, with 6 clusters as well.
When considering data from both cities we concluded that

5 would be the optimum number of clusters as it is shown
in Fig. 8

2) CLUSTERING BASED ON BUILDINGS’ TYPOLOGY
The Fig. 9 shows the clusters based on the typology of build-
ings. We can differ some clear groups analysing only the two
first principal components. But as we will see in the section 6
the fusion of the clusters 4 and 6 improved the supervised
classifiers performance.

FIGURE 9. Clustering based on the typology of buildings. Black points
indicate the centroids of each cluster.

FIGURE 10. Clusters based on pedestrians’ activity. Black points indicate
the centroids of each cluster.

Table 1 shows the cluster’s name based on the main type
of buildings that have near-by the sensors included on it. The
sensors of the cluster named ‘‘Rest of sensors’’ do not have
a clear predominance of typology of any building. Thus, was
made its nominalisation.

3) CLUSTERING BASED ON THE ACTIVATION
OF THE SENSORS
In the clustering based on the mean activations of the sensor
per time interval throughout theweekwe obtained the clusters
shown in the Fig. 10.
Clearly, there is a sensor that differs completely from the

rest observing the two first principal components. In the
results and analysis section (section 6) we could see that
taking out this data the latter classifier outperformed the
former one. At the same time, it is noticeable the similarity
between the clusters 1 and 3, and for this reason we saw that
the accuracy of the classifier after fusing clusters 1 and 3 was
enhanced.
Table 2 shows the name of the clusters and sensors based on

their activity. Depending whether their sensors’ main activa-
tions were concentrated in weekdays or weekends and their
frequency of activations was the nominalisation of clusters
made. The sensors that have a very high activity pattern

45478 VOLUME 10, 2022

A. Garmendia-Orbegozo et al.: Graph Based Learning for Building Prediction in Smart Cities

TABLE 2. Sensors and clusters based on the pedestrians’ activity of
Melbourne.

FIGURE 11. Clusters based on pedestrians’ activity from Madrid &
Melbourne. Black points indicate the centroids of each cluster.

TABLE 3. Sensors and clusters based on the pedestrians’ activity of
Melbourne & Madrid.

on weekdays were grouped in weekday++ cluster, while
the ones that were mostly activated in weekdays but with
a minor activity were grouped in weekday cluster. Sensors
whose activity was concentrated in weekends were grouped
in weekend cluster and the ones that follow a similar activity
pattern throughout all the week were grouped in weekday-
weekend++ cluster, whose activity was also very high.
In order to conclude more accurate results, as we men-

tioned above we merged pedestrians’ activity data from
Madrid andMelbourne.We repeated the process of clustering
and we obtained the clusters shown in Fig. 11.

C. VALIDATION USING SUPERVISED ML ALGORITHMS
Next step was to validate the goodness of the clusterings per-
formed in the previous phase by applying supervisedmachine

TABLE 4. The optimal parameter values for different machine learning
algorithms.

learning algorithms in both cases. With the obtained clusters
wemodified the former datasets and included the cluster each
sensor belongs to as an extra feature, that was to be used as
the output of the machine learning algorithms. By this way,
observing different performance metrics of the algorithms we
can deduce the goodness of the clusterings.
For all datasets different machine learning algorithms were

applied. Those were: Supported Vector Machine (SVM),
Random Forest (RF), Decision Tree (DT), Multilayer Percep-
tron (MLP), Gaussian Naive-Bayes (GNB), Adaboost (base
classifier: RF for the Buildings’ dataset and DT for the mean
activation’s dataset) and Bagging (base classifier: SVM). For
them, an optimization of the parameters was done, in order
to enhance their performance. The optimal hyperparameters
and the range of parameters used to find the optimal ones
(between parentheses) are given in Table 4.

1) MODEL EVALUATION METRICS
The performance of our model was evaluated using the fol-
lowing metrics:

• Confusion matrix: It is a specific table structure that
shows the performance of an algorithm class by class.
The examples of an actual class are represented by each
row of the matrix, whereas the instances in a predicted
class are represented by each column.10

10Confusion matrix, Available online at https://en.wikipedia.org/wiki/
Confusion_matrixen.wikipedia.org

VOLUME 10, 2022 45479

A. Garmendia-Orbegozo et al.: Graph Based Learning for Building Prediction in Smart Cities

• Accuracy: It is the proportion of correct predictions
among the total number of cases being examined.

Accuracy(Acc) =
TP+ TN

TP+ TN + FP+ FN
(1)

• Precision: It gives the probability of an instance pre-
dicted of one class being of such class in reality.

Precision(Pr) =
TP

TP+ FP
(2)

• Recall: It gives the probability of an instance belonging
to a class being predicted of such class.

Recall(Re) =
TP

TP+ FN
(3)

• F-Score: A performance metric that takes into account
the trade-off between Precision and Recall.

F − Score(F) =
2 ∗ Pr ∗ Re
Pr + Re

(4)

Notation: TP = True positive; FP = False positive;
TN = True negative; FN = False negative

D. GRAPH CONVOLUTIONAL NETWORK
After obtaining a ground-truth data from the clustering based
on the activity patterns of sensors, this was used to build
the convolutional graph. The nodes of the graph were the
sensors themselves and the edges were weigthed by the invert
of the distance used as their feature. Those all distances
were obtained from the Pedestrian Counting System - Sensor
Locations dataset.
We performed a two convolutional layer network. The first

layer has as input features the number of components(5) and
22 features as output. The second layer has these 22 features
as input and the number of classes as output features. The
number of features was adjusted manually to optimize the
accuracy of the network. Simpler layers could not achieve
the desired performance, and with more features the structure
was too complex for the learning process of this problem. The
activation function used was Relu. For training the network
0.001 learning rate was used, and the optimization algorithm
chosen was Adam. These last parameters were adjusted man-
ually to reach the highest performance of the network as
well. A too low learning rate derives in a computationally too
long learning process, while a higher one would not produce
optimal results.
The feature matrix was calculated using the components

obtained in PCA for the Melbourne pedestrians with mean
hourly count datafinall all dataset derived from Pedestrian
Couunting Datasets of Melbourne(2009-2020). The edges of
the graph were the inverse of relative distances between sen-
sors (nodes), thus strengthening the links between proximal
sensors.
The division of the sensor belonging to each cluster was

done in the followingway: 80%was used for training process,
10% was used for validation phase and the rest 10% for

TABLE 5. Accuracies for building typology (B) and time-interval mean
activation (A) datasets based clustering after 3 different
dimensionality reduction techniques.

testing process. In order to emulate a cross-validation process,
we shuffled 10 times the sensors belonging to each clusters,
so that 10 different divisions were carried out to train the
network in 10 different ways.

VI. RESULTS AND ANALYSIS
In this section the results obtained after applying supervised
ML algorithms to all datasets are presented. As wementioned
beforehand, new datasets had been made after obtaining the
cluster predicted for each sensor, adding as an extra feature
the cluster each sensor belongs to. This feature was used as
the output of the supervised algorithms.
As mentioned in section 5.2.1 for both datasets from

Melbourne the number of clusters was decided to fix at
6 clusters, following the elbow method after applying dimen-
sionality reduction techniques.
To decide which of the dimensionality reduction tech-

niques between UMAP, PCA nad tSNE, fits best with our
data, we followed in parallel three clustering processes for
both datasets after applying these techniques. As it could be
seen in Table 5 the best results were achieved after applying
PCA as the dimensionality reduction method for both clus-
terings, so we followed the rest of the work applying this
technique.
In the same way, the clustering made attending the mean

activations of the sensors in different time intervals showed
that a sensor was clearly different attending the first two
principal components, as it is shown in Fig. 10. Thus, after
analysing different confusion matrices we saw that it was
classified in a random cluster, sowe decided to remove it from
the dataset. Moreover, after examining the activations of the
sensor belonging to cluster 1 and 3we decided tomerge them,
assuming that they had a closely similar activity throughout
different days. After applying those changes we observed an
improvement of the performance metrics of a significance of
5-6% on average.
For the clustering based on buildings’ typology we saw

in the confusion matrix calculated for each classification
algorithm that the sensors of cluster 6 were almost always
classified as part of the cluster 4, so we decided to merge
those two clusters. After this change had been made, the
performance metrics outperformed the former ones by a sig-
nificance of 1-1.5% on average.
In Table 6 different scores for different algorithms applied

to the Buildings’ typology dataset based clustering are shown.

45480 VOLUME 10, 2022

A. Garmendia-Orbegozo et al.: Graph Based Learning for Building Prediction in Smart Cities

TABLE 6. Metrics for building typology dataset based clustering.

TABLE 7. Metrics for time-interval mean activation dataset based
clustering.

The scorings are the mean values of 10-fold cross validations
for 30 different seeds.
In the same way, Table 7 shows the scores for differ-

ent algorithms applied to the time-interval mean activation
dataset based clustering. The proceeding of obtaining the
scores was identical to the previous case.
For the former dataset Adaboost algorithm with RF as

base classifier outperformed the rest of the classifiers’ perfor-
mance metrics. In case of the latter dataset, DT was the algo-
rithm that solved the classification issue more adequately. For
both we firstly supposed the H0 hypothesis, that says that
each of the mean scores obtained previously came from a nor-
mal distribution. After applying Kolmogorov-Smirnov test
to all the scores obtained in every cross-validation processes
(n>50) we concluded that H0 hypothesis was negligible, due
to the fact that p-values obtained in both cases (7.66e-188 for
buildings dataset and 1.78e-131 for Mean activations dataset)
were lower than 0.05. Thus, as H1 hypothesis confirms the
means come from a non normal distribution.
Consequently in order to know the statistical significance

of the difference of the accuracies’ means, we applied the
Kruskal-Wallis test. We got the statistics of 8.08504 and
0.85582 and p-values of 0.99996 and 1.0 for the Build-
ings and Mean activations datasets respectively. Thus,

TABLE 8. Metrics for time-interval mean activation dataset (Madrid &
Melbourne) based clustering.

we can not conclude that all the means arise from different
distributions.
In order to figure out the relationship between both

clusterings, we analyzed the general trend that followed
the sensors of each cluster in the other dataset. We con-
cluded that the sensors belonging to the cluster weekday and
weekday++ were mainly related to the Office buildings,
the sensors from weekend++ to Residential apartment-
House/Townhouse type of buildings and finally the ones from
weekday-weekend++ to the Retail type of buildings. Obvi-
ously, this makes sense taking into account that pedestrians
usually spend most of their time at work during the week and
at home at the weekends. At the same time, retails are visited
throughout all the week.
Finally, seeking out to emulate the performance of the

clustering based on the buildings’ typology by the clustering
based on the sensors’ activity, we enlarged the former dataset
by applying the data from the city of Madrid. Table 8 shows
the scores for different algorithms applied to the time-interval
mean activation based dataset (Madrid &Melbourne) cluster-
ing. The proceeding of obtaining the scores was identical to
the previous cases.
The best classifier in terms of accuracy, precision, recall

and F-score was SVM in this case.We firstly supposed the H0
hypothesis, that says that each of the mean scores obtained
previously came from a normal distribution. After applying
Kolmogorov-Smirnov test to all the scores obtained in every
cross-validation processes for thementioned classifier (n>50)
we concluded that H0 hypothesis was negligible, due to the
fact that p-value obtained (1.32e-173) was lower than 0.05.
Thus, as H1 hypothesis confirms the means come from a non
normal distribution.
Consequently in order to know the statistical significance

of the difference of the accuracies’ means, we applied the
Kruskal-Wallis test. We got the statistic of 0.0 and p-value of
1.0. Thus, we can not conclude that all the means arise from
different distributions.
As the results obtained for the clustering process depend-

ing on the activity of sensors did not outperform the ones

VOLUME 10, 2022 45481

A. Garmendia-Orbegozo et al.: Graph Based Learning for Building Prediction in Smart Cities

TABLE 9. Results of accuracy of the GCN.

TABLE 10. Computation times for 10-fold Cross Validation for different
algorithms.

TABLE 11. Comparative of results with the literature.

based on the building typology, even if we merge data from
Madrid and Melbourne, we opted for designing a graph
convolutional network with the ground-truth data obtained
from the clustering based on the activity patterns of sen-
sors from Melbourne. After training for 10 different seeds
each 10 divisions of the sensors mentioned in section 5.4,
we obtained the following accuracies in the testing process
that are summarized in Table 11.
We firstly supposed the H0 hypothesis, that says that each

of the mean accuracies obtained previously came from a nor-
mal distribution. After applying Kolmogorov-Smirnov test to
all the accuracies obtained in every cross-validation processes
(n>50) we concluded that H0 hypothesis was negligible, due
to the fact that p-value obtained(6.26e-49) was lower than
0.05. Thus, as H1 hypothesis confirms the means come from
a non normal distribution. Consequently in order to know
the statistical significance of the difference of the accuracies’
means, we applied the Kruskal-Wallis test.We got the p-value
0.81437. Thus, we can not conclude that all means arise from
different distributions.
Attending the time needed by eachmethod to obtain groups

of buildings based in both criteria, we can observe that the
application of k-Means clustering algorithm and posterior
validation using supervised ML algorithms is much faster
than obtaining them using a graph convolutional network.
The time needed by each method for 10-fold cross validation
is shown in Table 10. The environment in which all develop-
ment of our work had been processed is a x64 Windows 10
Operating System equipped with a Intel Core i5-10210U
working at 1,6 GHz (4,2 GHz Turbo frequency, 4 core and
8 subprocesses) and 8 GB DDR-4 RAM.

TABLE 12. Abbreviations used in this paper.

After all, we obtained top accuracies of 88.89% and
95.15% in the validation of the clustering methods of
sensor classification attending their main activity and the
building typology surrounding them, respectively. Finally,
we achieved 87.00% accuracy using GCN. All of our
attempts, outperformed the results obtained in [5], where
they achieved 85.66% of overall accuracy, as it is shown
in Table 11.

45482 VOLUME 10, 2022

A. Garmendia-Orbegozo et al.: Graph Based Learning for Building Prediction in Smart Cities

VII. CONCLUSION AND FUTURE WORK
This paper shows the potential of clustering methods, specif-
ically K-means algorithm, at identifying groups of sensors
following different criteria. First, the typology of the build-
ings that were within a relatively short distance (<300 m)
from each sensor was identified and counted the number of
buildings that were within such distance for each type. At the
same time, the activation pattern of different sensors was
evaluated by obtaining the mean activation in 2-hourly time
intervals throughout different days of the week.
As it has been presented, the typology of the buildings

was the main factor when dividing sensors into different
groups. Thus, we can deduce that those sensors were placed
in different types of buildings, and so were made the clusters.
On the other hand, the variations of occupants around the

sensors should be also a good feature to determine the sen-
sor’s typology. After all, the classifications made by different
supervised ML algorithms show that this clustering was not
as conclusive as the previous one, even if we enlarged the
number of sensors collecting data by adding data from the city
of Madrid. Trying to improve the classification results based
on the pedestrians’ activity, a graph convolutional network
was performed but there was no significance in improvement
of metrics.
However, it was feasible to link clusters based on building

typology with the ones based on the pedestrians’ activity,
revealing that there is a close connection between the activity
pattern of the sensors and the type of environment they are
located. By this way, it would be possible to tackle different
security and energy efficiency tasks by knowing only the
building types of an urban zone, not needing any further
information. Furthermore, institutions could alleviate a great
amount of effort needed to ensure safe and energy efficient
urban areas.
Following this research line next step would be forecasting

spatiotemporal changes in pedestrians’ patterns. By doing
so, real time predictions could be made, avoiding different
issues and providing cities with a higher security and energy
efficiency, among other benefits.

ACKNOWLEDGMENT
The authors would like to thank the TECNALIA Member
of Basque Research and Tecnology Alliance for technical
support.

REFERENCES
[1] A. Sinaeepourfard, J. Garcia, X. Masip, E. Marin, J. Cirera, G. Grau,

and F. Casaus, ‘‘Estimating smart city sensors data generation: Current
and future data in the city of Barcelona,’’ in Proc. Medit. Ad Hoc Netw.
Workshop (Med-Hoc-Net), 15th IFIP MEDHOCNET, Vilanova i la Geltrú,
Spain, Jun. 2016.

[2] N. Buch, S. A. Velastin, and J. Orwell, ‘‘A review of computer vision
techniques for the analysis of urban traffic,’’ IEEE Trans. Intell. Transp.
Syst., vol. 12, no. 3, pp. 920–939, Mar. 2011.

[3] L. Klein, D. Gibson, and M. Mills, Traffic Detector Handbook, vol. 1,
no. FHWA-HRT-06-108, 3rd ed. McLean, VA, USA: Federal Highway
Administration, 2006.

[4] S. Himmel, M. Ziefle, and K. Arning, From Living Space to Urban Quar-
ter: Acceptance of ICT Monitoring Solutions in an Ageing Society. Berlin,
Germany: Springer, 2013.

[5] L. Zhuo, Q. Shi, C. Zhang, Q. Li, and H. Tao, ‘‘Identifying building
functions from the spatiotemporal population density and the interactions
of people among buildings,’’ ISPRS Int. J. Geo-Inf., vol. 8, no. 6, p. 247,
May 2019.

[6] J. Yoon and S. Lee, ‘‘Spatio-temporal patterns in pedestrian crashes
and their determining factors: Application of a space-time cube
analysis model,’’ Accident Anal. Prevention, vol. 161, Oct. 2021,
Art. no. 106291.

[7] L. Hu, X. Wu, J. Huang, Y. Peng, and W. Liu, ‘‘Investigation of clusters
and injuries in pedestrian crashes using GIS in Changsha, China,’’ Saf. Sci.,
vol. 127, Jul. 2020, Art. no. 104710.

[8] Y. Li, R. Yu, C. Shahabi, and Y. Liu, ‘‘Diffusion convolutional
recurrent neural network: Data-driven traffic forecasting,’’ Jul. 2017,
arXiv:1707.01926.

[9] L. M. Pfiester, R. G. Thompson, and L. Zhang, ‘‘Spatiotemporal explo-
ration of Melbourne pedestrian demand,’’ J. Transp. Geogr., vol. 95,
Jul. 2021, Art. no. 103151.

[10] W. L. Hamilton, R. Ying, and J. Leskovec, ‘‘Representation learning on
graphs: Methods and applications,’’ 2017, arXiv:1709.05584.

[11] B. Yu, H. Yin, and Z. Zhu, ‘‘Spatio-temporal graph convolutional
networks: A deep learning framework for traffic forecasting,’’ 2017,
arXiv:1709.04875.

[12] Y. Xu and D. Li, ‘‘Incorporating graph attention and recurrent architectures
for city-wide taxi demand prediction,’’ ISPRS Int. J. Geo-Inf., vol. 8, no. 9,
p. 414, 2019.

[13] Y. Qi, Q. Li, H. Karimian, and D. Liu, ‘‘A hybrid model for spatiotem-
poral forecasting of PM2.5 based on graph convolutional neural network
and long short-term memory,’’ Sci. Total Environ., vol. 664, pp. 1–10,
May 2019.

[14] J. Sun, J. Zhang, Q. Li, X. Yi, Y. Liang, and Y. Zheng, ‘‘Predicting citywide
crowd flows in irregular regions using multi-view graph convolutional
networks,’’ vol. 14, no. 8, 2019, pp. 1–12, arXiv:1903.07789.

[15] H. Jia, H. Luo, H. Wang, F. Zhao, Q. Ke, M. Wu, and Y. Zhao, ‘‘ADST:
Forecasting metro flow using attention-based deep spatial-temporal net-
works with multi-task learning,’’ Sensors, vol. 20, no. 16, p. 4574,
Aug. 2020.

[16] I. T. Jolliffe, Principal Component Analysis, 2nd ed. New York, NY, USA:
Springer, 2020.

[17] U. Saralegui, ‘‘Occupancy estimation and people flow prediction in
smart environments,’’ Facultad de Informática, Universidad del País
Vasco/Euskal Herriko Unibertsitatea, San Sebastian, Spain, 2017.

[18] IBM Cloud Education. (Oct. 20, 2020). Convolutional Neural Networks.
[Online]. Available: https://www.ibm.com/cloud/learn/convolutional-
neuralnetworks

[19] L. Joyanes, I. Zahonero, M. Fernández, and L. Sánchez, Estructura de
Datos en C++. Libro de Problemas. New York, NY, USA: McGraw-Hill,
2007.

[20] A. Garmendia-Orbegozo, S. Noye, U. Saralegui, M. A. Anton,
and J. D. Nuñez-Gonzalez, ‘‘Building typology prediction in smart
cities,’’ in Proc. Proc. CIB W78 Inf. Technol. Construct. 39th Conf. WBC,
2022.

ASIER GARMENDIA-ORBEGOZO (Member,
IEEE) was born in Azpeitia, Gipuzkoa, Basque
Country, Spain, in 1996. He received the B.S.
degree in physics and electronic engineering and
the M.S. degree in embedded systems engineer-
ing from the University of the Basque Country
(UPV/EHU), whose Director and Co-Director
are J. David Nuñez-Gonzalez and Miguel Angel
Anton, respectively, where he is currently pursu-
ing the Ph.D. degree in informatics engineering.

His research interests include the application of different data mining and
machine learning techniques for gaining and generating knowledge and
transferring them to edge and end-user devices.

VOLUME 10, 2022 45483

A. Garmendia-Orbegozo et al.: Graph Based Learning for Building Prediction in Smart Cities

SARAH NOYE (Member, IEEE) received the
Industrial Engineering degree from the Écoles
Nationale Supérieure des Mines de Nancy, France,
and the Ph.D. degree in systems engineering from
Imperial College London, U.K. During her Ph.D.
degree, sheworkedwith wireless sensors for build-
ing commissioning at the Center for Systems Engi-
neering and Innovation, London, providing data
analysis solutions to detect deviations between
design and actual performance. In 2017, she joined

TECNALIA, where she works as a Researcher in the field of artificial
intelligence algorithms. She has significant experience in various projects
that apply artificial intelligence both in the design and optimization of the
operation of smart buildings. She has co-directed several master’s theses
and student internships on artificial intelligence topics. She currently leads
the artificial intelligence strategy focused on graphic systems and semantic
models in TECNALIA. Since 2019, she has been co-directing a Ph.D.
degree in machine learning metamodels for optimizing the operation and
maintenance of buildings.

MIGUEL ANGEL ANTON (Senior Member,
IEEE) received the B.S. degree in indus-
trial engineering from the University of the
Basque Country, Donostia-San Sebastian, Spain,
in 1997, the M.S. degree in automation and
industrial electronics from the University of
Navarra, Donostia-San Sebastian, in 2004, and
the Ph.D. degree in electronics and com-
munications from the University of Navarra,
in 2009. From 2003 to 2004, he was a Student

Researcher with the Telemedicine Group, Vicomtech Technological Centre.
From 2005 to 2010, he was a Ph.D. student and a Junior Researcher in the
field of bioinformatics for the development of algorithms for optimization,
clustering, and pattern searching using large genomic databases with the
CEIT Research Centre. Since 2011, he has been a Senior Researcher with
Fundación TECNALIA Research and Innovation, Donostia-San Sebastian.
His research interests include the Internet of Things (IoT), embedded
intelligence in edge computing, the development of optimization algorithms,
and cognitivemanagement of buildings and infrastructures. His scientific and
technological production comprises publications on bioinformatics, intelli-
gent building management, energy management, and embedded systems.

J. DAVID NUÑEZ-GONZALEZ (Senior Member,
IEEE) received the Ph.D. degree in computer
science, in 2016. He is an Associate Professor
with the Applied Mathematics Department, Uni-
versity of the Basque Country. He is currently
advising undergraduate, master’s, and Ph.D.
students. He has contributed for several publica-
tions (JCR journals, books chapters, and confer-
ence papers) and participated in two European
projects (SandS from FP7 and CybSpeed from

H2020). His research interests include machine learning and artificial
intelligence.

45484 VOLUME 10, 2022

