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Chemoselective reaction of methoxyaminomethyl
BODIPYs with unprotected carbohydrates:
a powerful tool for accessing BODIPY
neoglycosides†

Ana M. Gómez, *a Luis García-Fernández, b,c Andrés G. Santana, a
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The neoglycosylation of methoxyaminomethyl-appended BODIPYs with unprotected reducing mono-,

di-, and trisaccharides produces, in a regio- and stereoselective manner, cyclic N-glycosyl-N-methoxy–

BODIPY conjugates, as a relevant class of neoglycosides that display excellent photophysical character-

istics in pure water, even at high dye concentrations. In addition, the cellular uptake of some of the neo-

glycosylated BODIPYs has been confirmed via fluorescence microscopy, and a BODIPY–acarbose conju-

gate showed comparable enzymatic inhibitory activity to acarbose for two different α-amylases: A. oryzae

α-amylase (AOA) and human salivary α-amylase (HSA).

Introduction

Carbohydrates, ubiquitous in Nature, play significant roles in
many biological processes ranging from infection (viral and
bacterial), cell recognition, triggering of immune responses,
and cancer metastasis.1 In recent years, it has also become
clear that carbohydrate–protein interactions involving cell
surface proteins,2 or cell surface carbohydrates,3 are key to
health and disease mechanisms.4,5 The investigation of these
processes, which falls under the umbrella of Glycobiology6 is,
therefore, a field attracting increasing interest. In this context,
fluorescence imaging techniques have become powerful tools
for the visualization of biomolecules, and the assessment of

these phenomena. Such studies often require the derivatiza-
tion of glycans by labeling with fluorophores7 or by attachment
to surfaces.8 In this context, difluoroboron dipyrromethene
(4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) or BODIPY dyes,
e.g., 1 (Fig. 1A),9 have arguably become one of the most
popular fluorophores for saccharide tagging.7b,10 BODIPYs
display relatively high photostability, neutral total charge,
sharp absorption and emission spectra, notable chemical
robustness, and high fluorescence quantum yield (ΦF).

9 More
interestingly, all of the above properties can be modulated by
subtle postfunctional modifications of the dipyrromethene
core.11,12 Thus, incorporating diverse functional groups to the
BODIPY core can fine-tune the absorption and emission wave-
lengths of these dyes. This tunability enables the design of
BODIPY derivatives with tailored fluorescence properties,
making them suitable for various applications.13 BODIPY
derivatives possess many ideal photosensitizer (PS) features,
which makes them useful agents in photodynamic therapy
(PDT),14 and, more recently, in photothermal therapy (PTT).15

They have also been used in optoelectronic devices, including
organic light-emitting diodes (OLEDs)16 and organic photovol-
taics (OPVs).17 Derivatives of BODIPY are frequently used in
biological imaging.18 Their fluorescence makes them excellent
for observing cellular structures, biomolecule distribution
within cells, and dynamics.19

In this regard, because of their wide range of uses, adjusta-
ble fluorescence characteristics, and photostability, lumines-
cent BODIPY–sugar probes have gained the attention of
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researchers for the potential applications of such molecular
systems in bio-imaging.20 The carbohydrate component of
BODIPY–carbohydrate conjugates plays an important role
since it confers remarkable properties to the BODIPY glycop-
robes. Thus, the sugar component provides enhanced solubi-
lity in polar solvents (including water),21 biocompatibility,22

targeting ability,23 cell endocytosis,24 and, in some instances,
reduced toxicity25 to the glyco-fluorophores.7,8

In a broad sense, BODIPY–carbohydrate conjugates can be
divided into linker-free or tethered derivatives. Classically, syn-
thetic routes to the former class have been less
exploited,10,21,26 and attention has been mainly devoted to the
synthesis of BODIPY–carbohydrate conjugates connected
through a “linker”. Among the latter, synthetic approaches to
tethered BODIPY–carbohydrate hybrids, e.g., 2 (Fig. 1A), often
rely on the use of click reactions, in particular the copper(I)-
catalyzed azide–alkyne cycloaddition (CuAAC)27 on azido- or
alkynyl BODIPYs.28,29 On the contrary, methods based on
carbohydrate transformations, for instance, the glycosylation
of hydroxyl-appended BODIPYs, e.g., 4, with glycosyl donors
3a, leading to glycosyl BODIPYs 5 (Fig. 1B),30 have been scar-
cely employed.31

Seeking a powerful method to covalently link BODIPYs and
carbohydrates, we were mindful of the seminal contribution by

Peri, Dumy and Mutter,32 which reported the regio- chemo-
and stereoselective formation of glycosidic bonds between
unprotected reducing sugars, e.g. 3b (Fig. 1C), and secondary
methoxyamine-containing aglycons. This transformation pro-
vides access to cyclic N-glycosyl-N,O-dialkyl neoglycosides in
the thermodynamically most stable configurations.33 These
derivatives display conformational behavior similar to natural
O-glycosides.34 This ligation method, further validated by
Langenhan and Thorson,35 has proven useful in the prepa-
ration of bioactive probes and early-stage leads in drug
discovery.36

Along these lines, we report in this manuscript the prepa-
ration of methoxyaminomethyl BODIPY dyes, i.e., 6, and their
reaction with unprotected reducing sugar derivatives e.g., 3b,
to afford BODIPY-neoglycosides, i.e., 7 (Fig. 1C). Specifically,
the method is applied to different methoxyaminomethyl
BODIPY compounds as well as to saccharides of different
chain lengths. The ensuing BODIPY conjugates displayed
excellent photophysical properties in water and at high dye
concentrations. Furthermore, some of these conjugates were
submitted to biological studies including cellular uptake,
intracellular localization, and cytotoxicity in healthy and
tumoral cells. One of the sugar derivatives employed in these
studies has been acarbose. Acarbose, an α-amylase and
α-glucosidase inhibitor, exerts a well-defined glucoregulatory
effect. Cancer cells are known to exhibit a heightened depen-
dence on glucose for ATP production compared to their non-
malignant counterparts.37 Consequently, targeting this meta-
bolic pathway by restricting glucose availability represents a
well-established strategy in cancer therapy.38–40 Finally, the
acarbose–BODIPY conjugate was also evaluated as a chromo-
genic inhibitor of α-amylases.

Results and discussion

To evaluate the feasibility, scope and limitations of this
approach, we initiated our studies with the preparation of
methoxyaminomethyl BODIPYs 6a–c (Fig. 2). These fluorescent
dyes are derived from 8-aryl, 1,3,5,7 tetramethyl BODIPYs. In
these compounds the methyl groups at C-1 and C-7 force the
8-aryl group to adopt an orthogonal orientation relative to the
BODIPY core.31a This arrangement prevents unwanted aggrega-
tion and restricts the rotation of the aryl substituent, thereby
preserving the chromophore’s emission properties. In
addition, the presence of the aryl and methyl groups in the
BODIPY framework has a beneficial effect on its photostability
and chemical robustness.31b

Our synthetic strategy began by reacting previously
described formyl BODIPYs 8a,41 8b,42 and 8c,31a with methox-
yamine hydrochloride salt using pyridine as a mediator
(Fig. 2). This produced the corresponding BODIPY-O-methyl
oximes 9a–c in good yields (81%, 84%, and 74%, respect-
ively).43 Compounds 9a and 9b were obtained as single stereoi-
somers while 9c exhibited a 6 : 1 mixture of isomers at the
oxime double bond, as determined by 1H-NMR spectroscopy.

Fig. 1 (A) BODIPY (1) and tethered BODIPY–carbohydrate conjugates
(2). (B) Glycosylation of hydroxyl-containing BODIPYs (4) with glycosyl
donors 3a, leading to BODIPY glycosides 5. (C) Reaction of methoxyami-
nomethyl BODIPYs 6, with unprotected reducing sugars 3b, leading to
BODIPY-neoglycosides 7.
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Reduction of the O-methyl oximes 9a–c with NaCNBH3 in
glacial acetic acid then gave the expected methoxyaminomethyl
BODIPYs 6a, 6b and 6c in fair to good yields (74%, 73% and
38%, respectively, Fig. 2). In the latter case, the zwitterionic
N-cyanoboronated-N-alkoxyamine derivative 6d was also iso-
lated (32% yield) as a crystalline derivative (Fig. 2).44 This boro-
nated species was characterized by NMR spectroscopy, mass
spectrometry, and single crystal X-ray crystallography. The
1H-NMR spectrum of compound 6d showed benzylic protons
that appeared as diastereotopic signals, due to the chiral nitro-
gen atom at the benzylic position. X-Ray diffraction confirmed
that compound 6d crystallized as a racemic compound
(Fig. S84 in ESI†).

Next, we tested the compared reactivity of methoxyamino-
methyl BODIPY derivatives 6a–d in the neoglycosylation reac-
tion using D-glucose as the glycosyl donor.45 Thus, treatment
of methoxyaminomethyl BODIPYs 6a–c, under the reaction
conditions initially recommended by Peri et al. (DMF/AcOH, r.
t.),32 resulted in the synthesis of glucosyl derivatives 10a, 10b,
and 10c in 37%, 25% and 40% yields, respectively (Fig. 3).
Similarly, neoglycosylation of N-cyanoboronated-N-methoxya-
mine 6d, with D-glucose yielded derivative 10c in a slightly
lower yield (25%, Fig. 3).

In agreement with literature precedents,32 the glycosylation
of N,O-disubstituted secondary hydroxylamino BODIPYs (6)
with D-glucose took place in a completely regio- and stereocon-

trolled manner, leading to the corresponding β-D-glucopyrano-
syl derivatives (10a–c), with the expected 1,2-trans stereo-
selectivity on the carbohydrate moiety (Fig. 3).

The β-configuration at the BODIPY-attached anomeric
carbon was rigorously established for compounds 10a–c, on
the basis of their observed J1′,2′ coupling constants in their
1H-NMR spectra. In the case of compound 10b, with no over-
lapping with other proton signals, the observed diagnostic
coupling constant (4.16 ppm, J1′,2′ = 9.0 Hz) could be deter-
mined from its 1H-NMR spectrum. On the contrary, the stereo-
chemical assignment of the C-1′ configuration in gluco-
BODIPYs 10a and 10c had to be carried out in their corres-
ponding per-O-acetyl derivatives, 10a-OAc and 10c-OAc (see
ESI† for details), where the improved splitting of the proton
signals allowed the unequivocal assignment of their anomeric
protons.

The stereoselection of the process has been ascribed to a
thermodynamic equilibrium between the open iminium inter-
mediate, i.e., 11, and the closed ring isomer, i.e., 10, in its
most stable form (Fig. 3).32,36

Having established that all three methoxyamino BODIPYs
(6a–c) could be used as aglycons in the neoglycosylation reac-
tion, we then set up to optimize the reaction conditions for gly-
cosyl coupling using BODIPY 6a and D-glucose as partners.
Compound 6a was selected owing to the easiness of its prepa-
ration and its observed improved reactivity toward D-glucose,
under the assumption that the results obtained with this com-
pound could be extended to isomeric BODIPYs 6b and 6c.

Accordingly, we examined a variety of reaction conditions
for the transformation 6a → 10a (Table 1).36 In general, the
different methods evaluated involved changes in the solvent
system, temperature (T ), and catalyst. Thus, the use of DMF/
AcOH (1 : 1) solvent mixtures led to modest yields of 10a,
which could be slightly improved by increasing the reaction
temperature (compare entries i and ii, r.t. vs. 40 °C, Table 1).
The use of MeOH/CH2Cl2 (6 : 1) as a solvent system, in the
absence of acid, produced a modest 25% yield of 10a (Table 1,
entry iii). The use of a AcONa/AcOH buffer, as the reaction
media, did not result in the formation of 10a (Table 1, entry

Fig. 2 Methoxyaminomethyl BODIPY derivatives 6a–d, obtained from
formyl-BODIPYs 8a–c, via BODIPY oximes 9a–c.

Fig. 3 Stereoselective synthesis of BODIPY neoglucosides 10a–c, from
the reaction of methoxyaminomethyl BODIPYs 6a–d with D-glucose
(DMF/AcOH, r.t.).
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iv). Better results were obtained when the neoglycosylation
reaction was carried out in MeOH/AcOH (1 : 1) solvent mix-
tures. Thus heating (60 °C) of the reaction for 48 h produced a
40% yield of 10a (Table 1, entry v). Interestingly, the use micro-
wave irradiation (MW) allowed the reaction time to be reduced
to 1 h, and the yield increased to 73% (Table 1, entry vi).
Finally, best yields were obtained under microwave irradiation
(MW, 60 °C, 1 h, 87% yield) in the presence of 5-methoxyan-
thranilic acid as nucleophilic catalyst, as suggested by
Langenhan and coworkers (Table 1, entry vii).46

Likewise, the application of the optimized reaction con-
ditions (MeOH/AcOH, 5-methoxyanthranilic acid cat., MW,
60 °C, 1 h) to methoxyamino BODIPYs 6b and 6c, allowed the
preparation of glucoconjugates 10b and 10c in 76% and 84%
yields, respectively (compare with yields displayed in Fig. 3).

To evaluate the scope of the method regarding the sugar
donor, we studied the reaction of BODIPY 6a with a variety of
commercially available unprotected reducing sugars, includ-
ing: (i) cellobiose, lactose, and maltose disaccharides, which
differ in the configuration of their interglycosidic bond (β-
versus α-, e.g., cellobiose and lactose versus maltose); (ii) malto-
triose as an example of a trisaccharide, and (iii) acarbose as a
pseudotetrasaccharide. In each neoglycosylation reaction, the
expected BODIPY-saccharides 12, 13, 14, 15, and 16, respect-
ively, with β-anomeric configuration at the linking position,
could be isolated (Fig. 4). The β-configuration at the BODIPY-
attached anomeric carbon in compounds 15 and 16 was rigor-
ously established from their corresponding per-O-acetyl deriva-
tives, 15-OAc and 16-OAc (see ESI† for details) on the basis of
their observed J1′,2′ coupling constants in their 1H-NMR
spectra. On the other hand, the β-configuration at the BODIPY-
attached anomeric carbon in compounds 12–14 was postulated
in accordance with the literature precedents and the similarity
with the related BODIPY glycosides prepared in this study,
since only one isomer was isolated in each case.

Photophysical studies

The photophysical features of the novel BODIPY glycoconju-
gates were next studied. The attachment of progressively
complex carbohydrate units at C-2 of the BODIPY core, facili-
tated by the methoxyaminomethyl spacer, enhanced the hydro-
philicity of the dye significantly, ultimately rendering it ready
soluble in water. Indeed, the intrinsic photophysical properties
of representative BODIPY glycoconjugates 10a and 14–16 in

diluted water solutions (Table 2) closely resembled those of
their hydrophobic 8-phenyl BODIPY precursors (which lead to
formyl dyes 8).32 Regardless of the number of carbohydrate

Table 1 Optimization of reaction conditionsa for the preparation of neoglucoside 10a by reaction of 6a with D-glucose

Entry Solvent(s) T (°C)/t Catalyst Yieldb (%)

i DMF/AcOH (1 : 1) r.t./20 h — 37
ii DMF/AcOH (1 : 1) 40 °C/20 h — 40
iii MeOH/CH2Cl2 (6 : 1) 60 °C/48 h — 25
iv AcONa/AcOH pH = 5 r.t./24 h — —
v MeOH/AcOH (1 : 1) 60 °C/48 h — 40
vi MeOH/AcOH (1 : 1) 60 °C/1 h (MW) — 73
vii MeOH/AcOH (1 : 1) 60 °C/1 h (MW) 5-Methoxy-anthranilic acid 87

a Reaction conditions: 6a (1.0 mmol), D-glucose (3.0 mmol). b Isolated yields.

Fig. 4 Screening of carbohydrate substrates: stereoselective synthesis
of BODIPY saccharides 12–16 by reaction of unprotected reducing
sugars with BODIPY 6a.

Table 2 Photophysical properties of representative BODIPY neoglyco-
sides in water (dye concentration 2 μM)

Dye λab
a (nm) εmax

b × 104 (M−1 cm−1) λfl
c (nm) ϕd τe (ns)

10a 502.5 2.7 513.5 0.52 3.80
14 502.5 2.8 513.5 0.53 3.60
15 502.5 4.2 513.5 0.49 3.70
16 502.5 5.0 513.5 0.50 3.70

aMaximum absorption wavelength. bMaximum molar absorption.
cMaximum fluorescence wavelength. d Fluorescence quantum yield.
e Fluorescence lifetime.
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units appended (ranging from one to four), these water-soluble
dyes exhibited strong absorption and fluorescence bands in
pure water (peaked at 502 nm and 513 nm, respectively, with
molar extinction coefficients up to 50 000 M−1 cm−1 and 53%
respectively, Table 2). Note that even at this low dye concen-
tration, the parent 8-phenyl BODIPY was entirely insoluble and
was prone to aggregate in aqueous solutions, resulting in the
complete quenching of its fluorescent signal.47

To ensure the efficiency of these dyes as fluorescent biop-
robes in physiological media, it is crucial to maintain their
solubility and fluorescence response at higher concentrations.
Thus, to assess the solubility and fluorescence performance of
the BODIPY glycoconjugates at elevated concentrations in
water, we studied the impact of dye concentration on their
photophysical properties.

The incorporation of D-glucose or D-maltose to the BODIPY
core, as in 10a or 14, respectively, facilitated the attainment of
homogeneous water solutions up to 0.1 mM (Fig. 5). This
water solubility was significantly enhanced by increasing the
number of appended carbohydrate units, enabling the attain-
ment of aqueous solution up to 1.9 mM in 15 with three sugar
units (D-maltotriose), and even 2.4 mM grafting four sugar
units (acarbose) in 16 (Fig. 5 and Fig. S85 in ESI†). However, at
the highest concentration, the absorption profile of 15 and 16
became broader with a notable increase in the absorbance at
shorter wavelengths (Fig. 5 and Fig. S85 in ESI†). According to
the exciton model,48 this spectral trend is indicative of H-type
aggregation. Such aggregation should be a consequence of a
weak exciton coupling, since its spectroscopic contribution
arises as a shoulder of the main absorption band, even at the

highest optical density (dye concentration around 2 mM for
BODIPY conjugates 15 and 16) herein tested in pure water.
H-Aggregates are usually not fluorescent, as evidenced by both,
a drastic decrease of the fluorescence efficiency (Fig. S87 in
ESI†) and the absence of new emission bands in the fluo-
rescence spectrum (Fig. 5). It is noteworthy that the observed
increase of the long-wavelength shoulder in the fluorescence
profile at this concentration was likely attributed to the reab-
sorption/reemission phenomena, which were not fully cor-
rected solely by reducing the optical pathway in such highly
concentrated media.49

To quantify the impact of the aggregation and/or reabsorp-
tion/reemission phenomena on the fluorescence response, the
absolute fluorescence quantum yields were estimated as a
function of dye concentration (Fig. S87 in ESI†). As expected,
an increase in dye concentration led to a decrease in fluo-
rescence efficiency due to reabsorption and reemission effects
(the optical path length was maintained at 1 mm for all dye
concentrations) and the promotion of H-aggregates.
Remarkably, all the BODIPY glycoconjugates retained a sub-
stantial fluorescence response (higher than 20%) at
0.1–0.2 mM concentrations, which are typical for the biological
assays. Beyond this dye concentration, the fluorescence
efficiency sharply decreased due to an increase in reabsorp-
tion/reemission and aggregation probabilities, which were
enhanced at high optical densities, as shown in Fig. 5. Despite
these adverse conditions, dyes 15 and 16 (bearing maltotriose
and acarbose residues, respectively) still were able to retain a
measurable fluorescence signal. Furthermore, their molar
absorption coefficients were the highest ones recorded (almost
double than those recorded for 10a and 14, bearing glucose
and maltose respectively, Table 2). Consequently, an enhance-
ment in the hydrophilicity of the BODIPY derivative is also
evident in a more efficient harvesting of incoming excitation
light, likely because the dye is better solvated and stabilized in
the aqueous environment. These photophysical properties are
expected to enhance the potential of BODIPYs 15 and 16 as biop-
robes. In particular, the good solubility in pure water, without
any hint of aggregation, and the bright fluorescence signal up to
0.1 mM, a concentration high enough for bioimaging essays in
the aqueous cellular media, support this notion.

Toxicity on mammalian cells (healthy and tumor)

To analyze the toxicity of the different compounds on healthy
and tumor cells, we conducted a toxicity test using healthy
human breast epithelial cells (HMEpiC) and human breast
adenocarcinoma epithelial cells (MCF-7, ECACC) (Fig. 6A and
B, respectively). We observed that the toxicity of BODIPY-sac-
charides increased with the number of sugar units in both
healthy and tumor cells. Regarding cytotoxic derivatives 15
and 16, the former (maltotriose–BODIPY conjugate) displayed
higher cytotoxicity against tumor cells (MCF-7) than against
healthy human breast epithelial cells (HMEpiC) (Table 3). On
the contrary, BODIPY–acarbose glycoconjugate (16), showed a
different behavior, displaying similar LC50 against HMEpiC
and MCF-7 cells (Fig. 7 and Table 3).

Fig. 5 Normalized absorption (solid line) and fluorescence (dashed
line) spectra of BODIPY glycoconjugates 10a and 15 bearing one and
three carbohydrate units, respectively, as a function of the dye concen-
tration in water using optically matched solutions (see ESI† for details).
The spectra of BODIPY conjugates 14 and 16 are collected in Fig. S85 in
ESI.† The recorded absorption spectra scaled by the molar absorption
coefficient are collected in Fig. S86 in ESI.†
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Cancer cells exhibit heightened glucose absorption and rely
on an aerobic glycolytic pathway to fulfill their metabolic
requirements for growth and proliferation. Targeting the inhi-

bition of aerobic glycolysis presents a strategic therapeutic
avenue to impede cancer cell progression.40 In this sense, the
use of acarbose or maltotriose could inhibit glucose uptake
and promote glucose deprivation. In this way, both cell types
showed the capacity to uptake the different BODIPYs deriva-
tives (Fig. 7), which accumulated around the nucleus of the
cell.

Cell internalization of BODIPY–acarbose conjugate 16

To evaluate cell internalization, BODIPY–acarbose conjugate
16 was selected due to its capacity to produce glucose depri-
vation.40 We conducted several staining experiments.
Lysosomes and mitochondria stains were performed together
with actin and nucleus (Fig. 8, and Fig. S88–S90† for full-size
pictures).

According to Fig. 8A, acarbose–BODIPY 16 is located near
the nucleus but outside the mitochondria. The internalization
process for 16 appears to be through the lysosomes as can be
observed in Fig. 8B and C, and no accumulation was observed
in the mitochondria. Lightning confocal microscopy (Fig. 8C)
provides images to study spatiotemporal localization. The
results showed a colocalization of the BODIPYs with the lyso-
somes and corroborate the capacity of cells to internalize acar-
bose–BODIPY 16.

Enzymatic studies

To validate the neoglycosylation tagging protocol from an enzy-
matic perspective, we decided to study how the newly incorpor-
ated BODIPY appendage could affect the binding affinity of a

Fig. 6 Toxicity assays of BODIPY conjugates 10a (D-glucose), 14
(D-maltose), 15 (D-maltotriose), and 16 (acarbose), on HMEpiC (A) and
MCF-7 (B) cells.

Table 3 Observed LC50 value on healthy human breast epithelial cells
(HMEpiC) and human breast adenocarcinoma epithelial cells (MCF-7,
ECACC) of BODIPY–saccharide conjugates 15 and 16

LC50 (mM) 15 (D-maltotriose) 16 (acarbose)

HMEpiC 1.8 0.32
MCF7 0.75 0.24

Fig. 7 Epifluorescence imaging of HMEpiC and MCF-7 cells showing
BODIPYs internalization in green. Actin is marked in red and the nucleus
in blue. Scale bar: 50 µm.

Fig. 8 (A) Confocal imaging of mitochondria (light blue), nucleus (blue),
actin (red) stain and BODIPY internalization (green). Scale bar: 30 µm (B)
confocal imaging of lysosomes (light blue), nucleus (blue), actin (red)
stain and BODIPY internalization (green). Scale bar: 30 µm (C) lightning
image and colocalization analysis of the lysosomes (red) and BODIPY
(green). Scale bar: 20 µm.
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well-known amylase inhibitor, such as acarbose.50 The latter is
a pseudo-tetrasaccharide composed of an acarvosine unit,
responsible for the inhibitory activity, which has been deriva-
tized with D-maltose at the reducing end. With this purpose in
mind, we tackled enzymatic inhibition studies of two different
α-amylases: A. oryzae α-amylase (AOA) and human salivary
α-amylase (HSA). The obtained IC50 values (Table 4) are in
accordance with reported data,51 confirm a dose-dependent
competitive inhibition mode and reveal that the incorporation
of the methoxyamino-BODIPY aglycon to acarbose, not only
does not interfere with the inhibitory activity for AOA, but
improves by two-fold the binding affinity for HSA. Overall,
these results indicate that the neoglycosylation of selective
enzymatic ligands with BODIPY dyes could be a convenient
way to turn them into chromogenic probes with biological
applications without affecting their inhibitory potency.

Conclusions

The neoglycosylation protocol used for the conjugation of
BODIPYs to unprotected carbohydrate derivatives is a versatile
and highly selective coupling method, which occurs under mild
reaction conditions. The method can be applied to a variety of
carbohydrate derivatives, including those with complex struc-
tures. The attachment of a sufficient number of saccharide
units to the BODIPY core led to completely water-soluble dyes,
retaining a high fluorescence signal even at high concentrations
and hence suitable for use as fluorescent probes in physiologi-
cal media. The biological studies of the BODIPY-neoglycosides
showed excellent biocompatibilities and no cytotoxicity up to
0.1 mM of the probes. The cell’s ability to uptake various
BODIPY derivatives within a non-toxic range could have appli-
cations in various biological fields including bio-imaging.
Specifically, the fluorescent acarbose–BODIPY conjugate 16
demonstrated the capability to be taken up by cells and loca-
lized within lysosomes, as evidenced by lighting confocal
microscopy. This derivative also showed a binding affinity for
α-amylases that is comparable to or better than that of acarbose
alone, according to enzymatic activity studies. Accordingly, the
uptake capacity combined with the PS features of BODIPY con-
jugates show promise in future biological applications in photo-
dynamic and photothermal therapies.
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