pubs.acs.org/joc

Article

Exploring the Reactivity of Rigid 1-Azadienes Derived from Methylene γ -Lactams. Applications to the Stereoselective Synthesis of Spiro- γ -Lactams

Adrián López-Francés, Zuriñe Serna-Burgos, Xabier del Corte, Jesús M. de los Santos, Abel de Cózar,* and Javier Vicario*

possible to in situ generate rigid 1-azadienes locked by a γ -lactam core. The 4π -electron system of those rigid 1-azadienes can behave as both diene and dienophile species through a spontaneous cyclodimerization reaction or exclusively as dienes or dienophiles if they are trapped with imines or cyclopentadiene, respectively. The use of chiral rigid 1azadienes as dienophiles in the cycloaddition reaction with cyclopentadiene leads to the formation of spiro- γ -lactams bearing four stereogenic centers in a highly stereospecific manner, reporting the first example of the use of methylene- γ -lactams in the synthesis of spirocycles.

of (Azadiene and dienophile) of marine-derived fungus,^{7b} or the isoquinoline-cored alkaloid

INTRODUCTION

Spirocycles are a fascinating and essential class of chemical structures in organic chemistry.¹ They are characterized by the presence of two or more rings that share a single common atom, creating a unique and intricate molecular arrangement. Owing to their unique three-dimensional architecture and favorable physicochemical attributes,² spirocycles have found applications in various areas of organic chemistry, including drug discovery³ and natural product synthesis.⁴ The distinct geometry of spirocycles imparts steric rigidity, which can enhance their stability and resistance to degradation, rendering them valuable scaffolds in medicinal chemistry. Numerous biologically active compounds, such as antioxidants, antibiotics, antidiabetic and antiviral agents, and contraceptive and anticancer drugs, feature spirocyclic motifs in their structures, providing improved pharmacokinetic properties and target specificity.⁵ The ability to modulate the spatial arrangement and electronic properties of spirocycles further contributes to their role as privileged structures in drug design.^{3d,6}

Within this family of compounds, spirolactams are spirocyclic structures in which a quaternary bridgehead center is contained within a lactam ring. In particular, spirocycles containing γ -lactam structures can be found in a wide range of natural products, pharmaceuticals, and biologically active compounds. Interestingly, many of these compounds exhibit important biological activities, such as antiemetic Rolapitant,^{7a} Spirostaphylotrichin X, an anti-influenza agent isolated from a marine-derived fungus,^{7b} or the isoquinoline-cored alkaloid Annosqualine isolated in 2004 from the stem of *Annona* squamosa(Figure 1).^{7c}

The construction of all classes of spirocycles involves the creation of a quaternary center, which is itself a significant challenge in synthetic organic chemistry.⁸ In this regard, among the innumerable established approaches for the construction of 6-membered cyclic structures, the Diels–Alder cycloaddition and its analogous reactions, where one of the carbon atoms of the diene or the dienophile is replaced by a heteroatom, are some of the most efficient methods, leading to the formation of substituted spirocyclic derivatives.⁹ The use of the Diels–Alder reaction as a tool for the synthesis of 6-membered spirocyclic compounds obviously requires the presence of an exocyclic C=C double bond at the (hetero)-diene or (hetero)dienophile species in order to create the quaternary bridgehead center at the fusion point of both rings of the final structure.

Received:	April 5, 2024
Revised:	May 24, 2024
Accepted:	May 31, 2024
Published:	June 19, 2024

Figure 1. Structure of some relevant γ -spirolactams.

Scheme 1. Synthetic Protocol for the Generation of Rigid 1-Azadiene 4 and Its Spontaneous Cyclodimerization Reaction

In this context, there are some limited examples that illustrate the use of methylene- γ -lactones as dienophiles in intramolecular¹⁰ or intermolecular¹¹ Diels—Alder reactions for the synthesis of spiro- γ -lactones, most of them reported as single examples of general methodologies. However, as far as we are concerned, there are no described examples in the literature where the analogous methylene- γ -lactams are used as substrates in [4 + 2] processes leading to spiro- γ -lactams.

In the past, we have reported an efficient synthesis of 3amino unsaturated y-lactam derivatives through a Brønsted acid-catalyzed multicomponent reaction between amines, aldehydes, and pyruvate derivatives.¹² Key features of the structure of those substrates are the presence of a reactive endocyclic enamine moiety embedded in a chiral environment and, taking the advantage of those two attributes, we have used these γ -lactam substrates in diverse stereoselective reactions.^{12c,13} Particularly, those substrates were found to be very adequate for the generation of rigid 1-azadienes and, very recently, we have reported a bispericyclic cyclodimerization reaction of chiral 1-azadienes derived from methylene- γ lactams, leading to complex γ -spirolactam derivatives bearing two γ -lactam cores and a dihydropyridine ring.¹⁴ Remarkably, in this report, although a racemic mixture of chiral azadienes is used, a single diastereomer is obtained instead of the expected statistical mixture, postulating a strong chiral self-recognition phenomenon in the cycloaddition process, associated with a combination of stabilizing electrostatic and dispersion interaction energies. As part of our ongoing pursuit in the development of new methodologies for the construction of scaffolds found in drug structures, we decided to explore the potential of the Diels-Alder reaction using methylene- γ lactam-derived rigid 1-azadienes in the creation of novel spirocyclic systems. For all the reasons mentioned above, herein, we report a study on the reactivity of rigid 1-azadienes derived from methylene- γ -lactams and their applications to the stereoselective synthesis of novel γ -spirolactams.

RESULTS AND DISCUSSION

Initially, following a known procedure,¹² the starting 3-amino γ -lactam derivative **1** was prepared through a multicomponent protocol consisting of the reaction of formaldehyde, *p*-toluidine, and ethyl pyruvate in the presence of a Brønsted

acid catalyst (see the Supporting Information). Next, the functionalization of substituted γ -lactam substrate 1 with Eschenmoser's salt was accomplished in very good yield in the presence of triethylamine using refluxing chloroform as a solvent (Scheme 1). Attempting to prepare 1-azadiene species from substrate 2 via direct elimination of trimethylamine by traditional methods using methyl iodide or Me₂SO₄ did not result in the target azadiene product and, for this reason, the dimethylamino moiety was replaced by an acetoxy group by stirring functionalized γ -lactam 2 in neat acetic anhydride at room temperature, leading instantaneously to substituted γ lactam 3. Owing to the quick decomposition of substrate 3 under exposure to silica or alumina, the isolation of a pure sample by chromatography was unachievable. For this reason, acetoxy-substituted γ -lactam 3 was used in the next step without further purification.

Next, in order to promote the elimination of acetic acid and the formation of the target azadiene, substrate 3 was treated under basic conditions in the presence of triethylamine in heated chloroform. However, under those reaction conditions, spiro- γ -lactam 5 was obtained as the sole reaction product. In congruence with our previous research, we theorized that bicyclic spiro- γ -lactam 5 might be formed through the initial formation of rigid 1-azadiene 4, followed by a fast [4 + 2] cyclodimerization reaction (Scheme 1). Indeed, this fast dimerization reaction has been attributed to the formation of dimer aggregates of the starting acetylated γ -lactam units 3 in solution prior to the formation of the azadiene species 4. The computational studies show that γ -lactam substrates 3 are strongly associated by means of two reciprocal π -stacking interactions between the two aromatic substituents at the enamine and the lactamic nitrogen, leading to a bispericiclic transition state, where the concept "hermaphroditism of molecules" was proposed for such behavior.¹⁴

Considering this, we theorized that the formation of the dimer aggregate could be prevented in the presence of an excess of a reagent with a similar affinity in solution for γ -lactam substrates 3. This would allow avoiding the intrinsic dimerization reaction, thus leading to the reaction of the 1-azadiene moiety with other substrates rather than with itself. With this concept in mind and in order to further extend the synthetic applications of rigid 1-azadiene 4, next, we tried to

capture the in situ-generated substrate 4 by the generation of the 4π -electron system in the presence of different dienophile species. The specific procedure involved the treatment of the acetylated substrate 3 with triethylamine in the presence of a dienophile. Since 1-azadiene 4 is, in principle, an electron-poor 4π -electron system, the inverse electron demand Diels–Alder reaction was initially studied using electron-rich dienophiles. However, the presence of various enamines or enols as dienophiles during the generation of 1-azadiene 4 did not lead to the expected reaction, and only the formation of dimer 5 was observed.

In view of the very strained structure expected in substrate 4, we thought that, maybe due to the rigidity of the cyclic structure, the amide carbonyl at the γ -lactam ring may be pushed out from the planarity, thus inhibiting the conjugation with the 4π -system, which may make the electron-withdrawing effect of such substituent ineffective. This is in agreement with the crystal structure reported for similar substrates.^{12c,14} For this reason, next, we generated the 1-azadiene species 4 in the presence of electron-poor dienophiles, such as dimethyl acetylenedicarboxylate, methyl acrylate, or maleic anhydride. However, under those conditions, no aza-Diels—Alder product was obtained, and only dimerization reaction was again observed.

Still hoping that our theory regarding the deactivation of the conjugation was nonfictional, the reaction was studied using simple alkenes as 2π -electron systems. We were disappointed to discover that the use of styrene, cyclopentene, cyclohexene, or indene in the reaction did not provide the expected aza-Diels-Alder substrate, resulting once again only in the formation of dimeric compound 5. However, when the generation of 1-azadiene 4 was carried out in the presence of cyclopentadiene, a new product was observed, whose molecular formula matched the sum of both starting products. Although the result seemed to indicate an aza-Diels-Alder reaction, where cyclopentadiene (CpH) acted as the dienophile, a careful examination of the spectroscopic data led to the conclusion that what actually occurred was a [4 + 2]cycloaddition reaction, where cyclopentadiene acted as the 4π electron system, while the conjugated double bond of 1azadiene 4 acted as the dienophile, resulting in the formation of spirocyclic γ -lactam 6 with good yield and as a single diastereomer (Scheme 2).

Scheme 2. Reaction of In Situ-Generated 1-Azadienes with Cyclopentadiene and *N-p*-Tolyl-methanimine

Following with our quest on the investigation of the reactivity of 1-azadiene 4 and, still keeping our hopes that substrate 4 could act as 4π -electron system in a cycloaddition reaction, we performed a careful check of all the trace products obtained in the reactions. In fact, we could determine in the crude the presence of an almost undetectable trace that we believed could come from the aza-Diels–Alder reaction of 1-azadiene species with an imine substrate resultant from some impurities in the preparation of starting γ -lactam substrates 1. Therefore, we carried out the generation of 1-azadiene 4 from

acetylated substrate 3 in the presence of trietylamine and *N*-*p*-tolyl-methanimine as the aza- 2π -electron system. To our delight, under those reaction conditions, the selective formation of a 1,3-pyrimidine ring was observed through a process that we assumed to proceed through a [4 + 2] cycloaddition reaction where 1-azadiene species 4 acted as the 4π -electron system, leading to the formation of bicyclic substrate 7 in good yield (Scheme 2).

In the next stage, due to the easiness for the preparation of starting γ -lactam substrates through a multicomponent reaction,¹² we extended our research to the investigation of the reactivity and stereoselectivity of rigid 1-azadienes generated from chiral substrates. As in the previous case, dimethylaminomethyl-substituted γ -lactams 9 were prepared by the reaction of γ -lactams 8 with Eschenmoser's salt in the presence of trimethylamine as a base and using refluxing chloroform as a solvent. Next, the dimethylamino group in 9 was replaced by an acetoxy group upon treatment with neat acetic anhydride. The generation of 1-azadienes 11 with trimethylamine in heated chloroform leads to the cyclodimerization products 5' (see the Supporting Information) analogous to substrate 5 (see Scheme 1) as expected, due to the prior formation of the dimer aggregate of substrates 10 in solution.¹⁴ Following the successful method described previously, for the aza-Diels-Alder reaction, it implies the generation of the 1-azadiene species 11 in the presence of an excess of N-p-tolyl-methanimine did not provide the cycloaddition product and only the presence of cyclodimerization substrate was detected by nuclear magnetic resonance (NMR). However, under similar conditions, in the presence of an excess of cyclopentadiene, spiro- γ -lactams 12 were obtained as single diastereomers through a highly stereoselective Diels-Alder reaction (Scheme 3).

In view of the interest of the spiro- γ -lactam substrates obtained and the high stereoselectivity observed in the process, we extended the scope of the reaction to the use of differently substituted γ -lactam substrates 10. Besides the model reaction starting from *p*-toluidine-derived γ -lactam 10a (Ar = *p*- MeC_6H_4), the reaction proceeds with good yield and the same degree of stereoselectivity when using the substrate 10b (Ar = Ph), derived from simple aniline. However, the use of functionalized γ -lactam **10c** (Ar = *p*-MeOC₆H₄), derived from an electron-rich aniline such as *p*-anisidine, resulted in a decrease in the reaction yield. The reaction was also applied to the use of substrates derived from para-halogen-substituted anilines 10d-f (Ar = p-BrC₆H₄, p-ClC₆H₄, p-FC₆H₄), obtaining spiro- γ -lactams 12d-f in good yields. Likewise, a slight drop in the reaction yields was observed when using γ lactams 10g-h (Ar = m-ClC₆H₄, o-FC₆H₄), derived from mchloroaniline and o-fluoroaniline. Finally, the use of γ -lactam **10i** (Ar = m-CF₃C₆H₄), derived from m-trifluoromethylaniline, also led to the cycloaddition product 12i, although with a moderate yield (Scheme 3).

As usual, the substrates 12, resulting from the [4 + 2] cycloaddition reaction, were characterized based on their spectroscopic data and high-resolution mass spectroscopy (HRMS). In the ¹H NMR spectrum of compound 12a, the most characteristic chemical shifts correspond to the two protons of the C==C double bond in the norbornene unit at $\delta_{\rm H} = 6.55$ and 6.42 ppm, appearing as two double doublets with a reciprocal coupling constant ${}^{3}J_{\rm HH} = 5.7$ Hz, typical for a double bond in a *cis* configuration, and both showing an identical coupling constant ${}^{3}J_{\rm HH} = 3.1$ Hz with the bridging CH groups.

The four diastereotopic protons of the two methylene group of norbornene unit in **12a** appear as one complex multiplet in the range $\delta_{\rm H} = 2.22 - 2.13$ ppm, for two of them, a second multiplet integrating one proton at $\delta_{\rm H} = 1.48$ ppm and a clear double doublet for the fourth proton at $\delta_{\rm H} = 0.84$ ppm, with a geminal coupling constant ${}^2J_{\rm HH} = 12.4$ Hz and a second vicinal coupling constant ${}^3J_{\rm HH} = 2.9$ Hz. The two CH groups of norbornene appear at $\delta_{\rm H} = 2.89$ and 3.12 ppm. Due to the weak and poorly resolved coupling with the neighboring protons, both signals appear as two broad singlets. Finally, the CH of the asymmetric carbon belonging to the γ -lactam core appears as a singlet at $\delta_{\rm H} = 4.85$ ppm.

Regarding the ¹³C NMR spectrum of spiro- γ -lactams 12, the most characteristic chemical shifts for compound 12a are those corresponding to the γ -lactam ring, which appear at $\delta_C = 165.3$ and 159.0 ppm, typical for an amide carbonyl and an imine, respectively, both within a cycle, the quaternary carbon at $\delta_C = 58.1$ ppm, and the CH of the asymmetric carbon at $\delta_C = 69.6$ ppm. Additionally, the presence of the norbornene ring is inferred by the presence of the two olefinic CH groups at $\delta_C = 51.9$ and 134.3 ppm, the two aliphatic CH carbons at $\delta_C = 51.9$ and 43.0 ppm, and the two methylene groups at $\delta_C = 46.1$ and 34.9 ppm. The multiplicity of the signals in the ¹³C NMR spectrum was confirmed through distortionless enhanced polarization transfer (DEPT) and heteronuclear single quantum coherence (HSQC) experiments.

It is worth noting that a multigram scale reaction was also performed starting from 2.17 g (4 mmol) of γ -lactam 9d, leading to 1.46 g of spiro- γ -lactam 12d in 65% yield. Taking the advantage of this reaction and, in order to unambiguously elucidate the structure of the substrates obtained in the cycloaddition reaction as well as the relative configuration of the stereocenters, a single crystal of spirocyclic γ -lactam 12d was isolated. The X-ray structure of 12d revealed a relative configuration 1 R^* ,2 S^* ,2 S^* ,4 R^* for the four stereocenters of the final substrate (Figure 2). According to this configuration, an *endo* stereospecific transition state is proposed for the

Figure 2. X-ray structure of spiro-γ-lactam **12d** (H, white; C, gray; O, red; N, blue; Br, orange) (1*R*,2*S*,2′*S*,4*R* enantiomer shown).

cycloaddition reaction, where the diene species approaches from the less hindered face, that is, the opposite to the phenyl group at the chiral carbon, which leads to the formation of one exclusive diastereomer bearing four stereocenters.

Intrigued by the results obtained through the reaction of azadienes 11 in the presence of CpH, where exclusive formation of cycloadduct 12 was observed, we decided to carry out a density functional theory (DFT) mechanistic study in order to shed some light on how CpH prevents the azadiene dimerization. With this purpose, we initially evaluated the

Figure 3. Gibbs binding free energies (ΔG_b) and contour plots of the RGD isosurfaces (density cutoff = 0.20 au) of complexes 10d·CpH and 10d·10d computed at the M06-2X-GD3 (PCM)/6-31+G**//M06-2X-GD3 (PCM)/6-31G* level of theory. The green surfaces indicate attractive noncovalent interactions. Data of complex 10d·10d taken from ref 14.

Figure 4. Main geometrical features and Gibbs activation energies computed for the less energetic transition structures associated with the [4 + 2] cycloaddition reaction of 11d and CpH (CpH acting as a diene) computed at the M06-2X-GD3 (PCM)/6-31+G**//M06-2X-GD3 (PCM)/6-31G* level of theory. Distances are in Å.

possible interaction between the acetylated precursor 10 and CpH by means of binding free energies as outlined below

$$\Delta G_{\rm b} = \Delta G_{\rm complex} - \sum \Delta G_i \tag{1}$$

where ΔG_i indicates the free energy of the isolated species.

In a previous investigation, it was demonstrated that analogous acetylated γ -lactams tend to aggregate due to strong $\pi - \pi$ interaction ($\Delta G_{\rm b}$ (**10d·10d**) of -12.7 kcal·mol⁻¹ for the case of *p*-bromine-substituted aniline).¹⁴

In the case under study, the calculated $\Delta G_{\rm b}$ (10d·CpH) was $-7.7 \text{ kcal·mol}^{-1}$ (Figure 3). This result indicates that the $\pi - \pi$ stacking interaction between 10d and CpH favors 10d·CpH formation. However, the computed CpH-10d interaction is weaker than the one obtained for 10d·10d as reflected in the larger green surface observed in the computed reduced density gradient (RGD) plot (the more extensive surface is related with higher noncovalent interactions, Figure 3). Therefore, despite of the high excess of CpH (6 equiv), on the basis of these results, we could not ensure, in a theoretical manner, that

CpH would be capable of preventing the **10d**·**10d** aggregation related to the dimeric spirocycle formation.

Subsequently, we explored the energetic profiles related to the [4 + 2] cycloaddition between 11d and CpH. In order to have a complete overview of the reaction, all the possible roles of both reagents were analyzed [i.e.,11d acting as both as diene (namely, TS1) and dienophile (denoted as TS2)]. In Figures 4 and 5 are collected the main geometrical features of the computed transition structures and the activation free energy barriers related to this reaction (see the Supporting Information for further details).

As far as azadiene **11d** acts as a dienophile, our calculations show that the less energetic transition structure is, as expected, the one in which CpH approaches the opposite side of the phenyl substituent of the γ -lactam ring in an *exo* fashion (Gibbs activation barrier of 15.2 kcal mol⁻¹ for **TS1d**·*exo* in Figure 4). Geometrical inspection of **TS1d**·*exo* shows that it corresponds to a concerted but highly asynchronous process where the methylene C–C bond develops earlier than the

Figure 5. Main geometrical features and Gibbs activation energies computed for the less energetic transition structures associated with the [4 + 2] cycloaddition reaction of 11d and CpH (CpH acting as a dienophile) computed at the M06-2X-GD3 (PCM)/6-31+G**//M06-2X-GD3 (PCM)/6-31G* level of theory. Distances are in Å.

other C-C bond. Furthermore, it was observed that the analogous endo TS (TS1d·endo) lies +2.5 kcal mol⁻¹ above, probably due to a stronger stabilizing interaction between CpH and the γ -lactam ring, analogously to the one present on 10d. CpH mentioned above (Figure 3). We also analyzed the profiles associated with the CpH reacting through the same side of the phenyl substituent. In this case, the computed activation barrier associated with an exo approach (TS1d·exo) is +6.8 kcal mol^{-1} upper than the less energetic transition state (TS1d·exo). We relate that phenomenon to the higher steric hindrance between the incoming CpH and the phenyl moiety. Unfortunately, all our attempts to isolate the analogous stationary point related with the endo attack by the phenyl face were unsuccessful, leading to a transition structure in which the γ -lactam acts as an azadiene in few optimization steps.

We were also able to isolate the stationary point associated with **11d** acting as an azadiene. In this context, we observed a rise in the energy barrier in all cases, for instance, the less energetic transition structure associated with this chemoselectivity (**TS2d**·*endo* in Figure 5) is 3.5 kcal mol⁻¹ more energetic than **TS1d**·*exo*. It is worth mentioning that again the approaching of the CpH to the γ -lactam ring is favored from the opposite face of the phenyl moiety. The observed differences in the computed activation free energies indicate a strong preference toward the diastereoselective formation of **12d** through **TS1d**·*exo*, in perfect agreement with the experimental results.

Remarkably, the activation barrier of 15.2 kcal mol⁻¹ associated with this cycloaddition is 0.8 kcal mol⁻¹ lower than the one computed for the dimerization of **11d** ($\Delta G^a = 16.0 \text{ kcal mol}^{-1}$).¹⁴ Therefore, this former process is kinetically favored, but mixtures of products would be expected on the basis of that energetic difference. We hypothesize that both, the lower free activation barrier of **TS1d**, when CpH acts as diene, and the high excess of CpH used, may compensate the higher preference toward acetylated **10d·10d** aggregation, thus favoring **12d** formation instead of the dimerization reaction.

CONCLUSIONS

The presence of an endocyclic enamine group within γ -lactam derivatives, synthesized via a multicomponent reaction involving amines, aldehydes, and pyruvates, renders them highly advantageous as precursors for the generation of cyclic rigid 1-azadienes through their functionalization with Eschenmoser's salt. The in situ-generated rigid 1-azadienes undergo a fast spontaneous cyclodimerization process, where the 1azadiene moiety acts as both diene and dienophile species. However, it is possible to trap the dienic system, working exclusively as a diene species, in the presence of N-p-tolylmethanimine, or as a dienophile, if an excess of cyclopentadiene is present during its generation. In addition, the utilization of chiral 1-azadienes as dienophiles in the cycloaddition reaction with cyclopentadiene leads to the formation of spiro- γ -lactams bearing four stereogenic centers in a highly stereospecific manner. DFT calculations indicate that this fact can be attributed to a combination of a lower activation barrier, with the use of excess of CpH, which prevents the dimer formation. As far as we are concerned, this represents the first example of a cycloaddition reaction leading to the formation of spiro- γ -lactams using methylene γ -lactams as starting materials.

EXPERIMENTAL SECTION

General Information. Solvents for extraction and chromatography were of technical grade. All solvents used in reactions were freshly distilled from appropriate drying agents before use. All other reagents were recrystallized or distilled as necessary. All reactions were performed under an atmosphere of dry nitrogen. Analytical thin-layer chromatography was performed with silica gel 60 F₂₅₄ plates, and visualization was accomplished by UV light. ¹H, ¹³C, and ¹⁹F NMR spectra were recorded at 25 °C on a Bruker Advance 400 (at 400, 101, and 282 MHz, respectively), and TMS was used as the internal standard for ¹H and ¹³C and CFCl₃ for the ¹⁹F nucleus. Coupling constants (*J*) are reported in Hertz to the nearest 0.1 Hz. Data for 1 H NMR spectra are reported as follows: (chemical shift, multiplicity, coupling constant, integration). Multiplicity abbreviations are as follows: (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet) and br (broad). ¹³C NMR values were recorded with complete proton decoupling. Carbon types, structure assignments,

and attribution of peaks were determined from DEPT-NMR. Structural assignments were made with additional information from g-correlated spectroscopy, gHSQC, and g-heteronuclear multiple bond correlation experiments. Relative stereochemistry was assigned based on the 1D-NOE experiments. HRMS spectra were obtained by positive-ion electrospray ionization (ESI Agilent Jet Stream) through a liquid chromatography-quadrupole time of flight spectrometry method. Data are reported in the form m/z (intensity relative to base = 100). The structure of compounds **12d** and **12f** was determined on a crystal prepared from a CDCl₃ solvent system by slow evaporation in a vial at room temperature. X-ray data were obtained using an Agilent Technologies Super-Nova (Cu) diffractometer. Infrared (IR) spectra were taken in a Nicolet iS10 Termo Scientific spectrometer as neat solids.

Theoretical calculations have been carried out within the DFT framework.¹⁵ Reaction profiles analysis have been carried out at the M06-2X-GD3(PCM)/6-31G* level by using the GAUSSIAN 1616 suite of programs. Single-point energy calculations have been computed at M06-2X(PCM)/6-31+G** from previously optimized structures. This highly parametrized method was well suited for the treatment of nonbonding interactions.¹⁷ Thermal Gibbs corrections were computed at the same level, at the selected temperature, and were not scaled. Solvent effects were estimated by the polarization continuum $model^{18}$ (PCM) method within the self-consistent reaction field approach.¹⁹ All SCRF-PCM calculations were performed using chloroform ($\varepsilon = 4.7113$) as the model solvent. All the stationary points were characterized by harmonic vibrational analysis. Local minima showed positive definite Hessians. Fully optimized transition structures showed only one imaginary frequency associated with nuclear motion along the chemical transformation under study. Reaction paths were checked by intrinsic reaction coordinate (IRC) calculations. Activation Gibbs free energies were computed by using stationary points directly connected by IRC calculations. Representation of the noncovalent interactions (NCI plots) were computed using the NCIPLOT3²⁰ program using wave functions computed at the M06-2X-GD3(PCM)/6-31G* level of optimized structures.

General Procedure for the Synthesis of γ -Lactams 1 and 8. Following a literature procedure,^{12,13} a solution of amine (2 equiv), aldehyde (1 equiv), ethyl pyruvate (3 equiv), and 1,1'-binaphthyl-2,2'-diyl hydrogen phosphate (10% mol) in CH₂Cl₂ (10 mL) was stirred overnight at room temperature in the presence of anhydrous MgSO₄. Next, the reaction was filtered, and the resulting crude residue was purified by crystallization or flash column chromatog-raphy to afford pure 3-amino-3-pyrrolidin-2-ones 1 and 8.

1-(*p*-Tolyl)-3-(*p*-tolylamino)-1,5-dihydro-2H-pyrrol-2-one (1). The general procedure was followed using *p*-toluidine (0.215 g, 2 mmol, 2 equiv), a 37% aqueous solution of formaldehyde (0.075 mL, 1 mmol, 1 equiv), and ethyl pyruvate (0.335 mL, 3 mmol, 3 equiv) in Et₂O, affording 0.217 g (78%) of 1 as an orange solid after flash column chromatography (hexanes/AcOEt 9:1). mp (Et₂O): 178–180 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, ³J_{HH} = 8.5 Hz, 2 × CH_{Ar}), 7.20 (d, ³J_{HH} = 8.2 Hz, 2 × CH_{Ar}), 7.13 (d, ³J_{HH} = 8.5 Hz, 2 × CH_{Ar}), 7.11 (d, ³J_{HH} = 8.5 Hz, 2 × CH_{Ar}), 7.11 (d, ³J_{HH} = 8.5 Hz, 2 × CH_{Ar}), 7.12 (d, ³J_{HH} = 8.5 Hz, 2 × CH_{Ar}), 7.13 (d, ³J_{HH} = 2.6 Hz, 1H, = CH), 4.37 (d, ³J_{HH} = 2.6 Hz, 2H, CH₂), 2.34 (s, 3H, CH₃), 2.32 (s, 3H, CH₃) ppm. ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 166.5 (C=O), 139.2 (C_{quat}), 136.8 (C_{quat}), 134.5 (C_{quat}), 134.3 (C_{quat}), 130.7 (=C_{quat}), 130.0 (2 × CH_{Ar}), 129.8 (2 × CH_{Ar}), 119.0 (2 × CH_{Ar}), 116.8 (2 × CH_{Ar}), 99.8 (=CH), 49.8 (CH₂), 21.0 (CH₃), 20.8 (CH₃) ppm. FTIR (neat) *n*_{max}: 3325 (NH_{st}), 3073 (= CH_{st}), 1671 (C=O_{st}), 1644 (C=C_{st}) cm⁻¹. HRMS (ESI-TOF) *m*/z calcd for C₁₈H₁₉N₂O [M + H]⁺, 279.1497; found, 279.1501.

5-Phenyl-1-(p-tolyl)-3-(p-tolylamino)-1,5-dihydro-2H-pyrrol-2one (**8a**). The general procedure was followed using p-toluidine (0.215 g, 2 mmol, 2 equiv), benzaldehyde (0.102 mL, 1 mmol, 1 equiv), and ethyl pyruvate (0.335 mL, 3 mmol, 3 equiv), affording 0.340 g (96%) of **8a** as a white solid after crystallization (Et₂O). mp (Et₂O): 214–215 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.40 (d, ³J_{HH} = 8.5 Hz, 2H, 2 × CH_{Ar}), 7.32–7.17 (m, 5H, 5 × CH_{Ar}), 7.10 (d, ³J_{HH} = 8.0 Hz, 2H, 2 × CH_{Ar}), 7.09 (d, ³J_{HH} = 8.0 Hz, 2H, 2 × CH_{Ar}), 6.98 (d, ${}^{3}J_{HH} = 8.5 \text{ Hz}, 2H, 2 \times \text{CH}_{Ar}$), 6.58 (s, 1H, NH), 6.01 (d, ${}^{3}J_{HH} = 2.6 \text{ Hz}, 1H, = \text{CH}$), 5.63 (d, ${}^{3}J_{HH} = 2.6 \text{ Hz}, 1H, \text{CHN}$), 2.29 (s, 3H, CH₃), 2.26 (s, 3H, CH₃) ppm. ${}^{13}\text{C}$ {¹H} NMR (101 MHz, CDCl₃) δ 167.0 (C=O), 138.8 (C_{quat}), 137.6 (C_{quat}), 134.8 (C_{quat}), 134.8 (C_{quat}), 132.0 (C_{quat}), 130.5 (C_{quat}), 129.9 (2 × CH_{Ar}), 129.6 (2 × CH_{Ar}), 129.0 (2 × CH_{Ar}), 128.2 (CH_{Ar}), 126.9 (2 × CH_{Ar}), 121.6 (2 × CH_{Ar}), 116.8 (2 × CH_{Ar}), 107.2 (=CH), 64.3 (CHN), 21.0 (CH₃), 20.8 (CH₃) ppm. FTIR (neat) n_{max} · 3306 (NH_{st}), 1684 (C=O_{st}), 1665 (C=C_{st}) cm⁻¹. HRMS (ESI-TOF) m/z: [M + H]⁺, calcd for C₂₄H₂₃N₂O 355.1810; found, 355.1805.

1,5-Diphenyl-3-(phenylamino)-1,5-dihydro-2H-pyrrol-2-one (8b). The general procedure was followed using aniline (0.182 mL, 2 mmol, 2 equiv), benzaldehyde (0.102 mL, 1 mmol, 1 equiv), and ethyl pyruvate (0.335 mL, 3 mmol, 3 equiv), affording 0.212 g (65%) of **8b** as white crystals after crystallization (Et_2O). mp (Et_2O) = 224– 225 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 8.09 (s, 1H, NH), 7.62 (dd, ${}^{3}J_{HH} = 8.7 \text{ Hz}$, ${}^{4}J_{HH} = 1.2 \text{ Hz}$, 2H, 2 × CH_{Ar}), 7.43–7.15 (m, 9H, 9 × CH_{Ar}), 7.09–7.04 (m, 2H, 2 × CH_{Ar}), 6.86 (tt, ${}^{3}J_{HH} = 7.0 \text{ Hz}$, ${}^{4}J_{\rm HH}$ = 1.4 Hz, 2H, 2 × CH_{Ar}), 6.34 (d, ${}^{3}J_{\rm HH}$ = 2.7 Hz, 1H, = CH), 6.06 (d, ${}^{3}J_{HH}$ = 2.7 Hz, 1H, CHN) ppm. ${}^{13}C$ {¹H} NMR (101 MHz, DMSO- d_6) δ 166.52 (C=O), 142.0 (C_{quat}), 138.0 (C_{quat}), 137.2 (C_{quat}) , 131.8 (C_{quat}) , 129.0 $(2 \times CH_{Ar})$, 128.8 $(2 \times CH_{Ar})$, 128.7 $(2 \times CH_{Ar})$ \times CH_{Ar}), 127.7 (CH_{Ar}), 126.8 (2 × CH_{Ar}), 124.4 (CH_{Ar}), 121.5 (2 × CH_{Ar}), 120.2 (CH_{Ar}), 116.7 (2 × CH_{Ar}), 109.8 (=CH), 62.4 (CHN) ppm. FTIR (neat) n_{max} : 3303 (NH_{st}), 1681 (C=O_{st}), 1666 (C=C_{st}) cm⁻¹. HRMS (ESI-TOF) m/z: [M + H]⁺, calcd for C₂₂H₁₉N₂O 327.1497; found, 327.1501.

1-(4-Methoxyphenyl)-3-((4-methoxyphenyl)amino)-5-phenyl-1,5-dihydro-2H-pyrrol-2-one (8c). The general procedure was followed using p-anisidine (0.246 g, 2 mmol, 2 equiv), benzaldehyde (0.102 mL, 1 mmol, 1 equiv), and ethyl pyruvate (0.335 mL, 3 mmol, 3 equiv), affording 0.300 g (78%) of 8c as a white solid after flash column chromatography (hexanes/AcOEt 8:2). mp (Et₂O): 198-200 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.36 (d, ³J_{HH} = 9.1 Hz, 2H, 2 × CH_{Ar}), 7.30–7.16 (m, 5H, 5 × CH_{Ar}), 7.03 (d, ${}^{3}J_{HH}$ = 8.9 Hz, 2H, 2 × CH_{Ar}), 6.86 (d, ${}^{3}J_{HH}$ = 8.9 Hz, 2H, 2 × CH_{Ar}), 6.81 (d, ${}^{3}J_{HH}$ = 9.1 Hz, 2H, 2 × CH_{Ar}), 6.46 (br s, 1H, NH), 5.94 (d, ${}^{3}J_{HH}$ = 2.5 Hz, 1H, = CH), 5.57 (d, ${}^{3}J_{HH}$ = 2.5 Hz, 1H, CHN), 3.78 (s, 3H, CH₃), 3.74 (s, 3H, CH₃) ppm. ${}^{13}C$ {¹H} NMR (75 MHz, CDCl₃) δ 167.3 (C=O), 157.1 (C_{quat}), 154.5 (C_{quat}), 137.8 (C_{quat}), 135.0 (C_{quat}), 133.1 (C_{quat}), 130.4 (C_{quat}), 129.0 (2 × CH_{Ar}), 128.2 (2 × CH_{Ar}), 127.1 (2 $\times CH_{Ar}$), 123.9 (2 × CH_{Ar}), 118.6 (2 × CH_{Ar}), 114.8 (2 × CH_{Ar}), 114.3 (2 \times CH_{Ar}), 106.3 (=CH), 64.9 (CHN), 55.7 (CH_3), 55.5 (CH₃) ppm. FTIR (neat) n_{max} : 3304 (NH_{st}), 3017 (=CH_{st}), 1669 $(C=O_{st})$, 1659 $(C=C_{st})$, 1250 $(C-O_{st})$, 1032 $(C-O_{st})$ cm⁻¹. HRMS (ESI-TOF) m/z: $[M + H]^+$, calcd for $C_{24}H_{23}N_2O_3$ 387.1709; found, 387.1702.

1-(4-Bromophenyl)-3-((4-bromophenyl)amino)-5-phenyl-1,5-dihydro-2H-pyrrol-2-one (8d). The general procedure was followed using p-bromoaniline (0.344 g, 2 mmol, 2 equiv), benzaldehyde (0.102 mL, 1 mmol, 1 equiv), and ethyl pyruvate (0.335 mL, 3 mmol, 3 equiv), affording 0.396 g (82%) of 8d as a white solid after flash column chromatography (hexanes/AcOEt 8:2). mp (Et₂O): 225-226 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, ³J_{HH} = 9.0 Hz, 2H, 2 × CH_{Ar}), 7.39 (d, ${}^{3}J_{HH}$ = 9.2 Hz, 2H, 2 × CH_{Ar}), 7.38 (d, ${}^{3}J_{HH}$ = 8.9 Hz, 2H, 2 × CH_{Ar}), 7.32–7.24 (m, 3H, 3 × CH_{Ar}), 7.18 (d, ${}^{3}J_{HH}$ = 8.3 Hz, 2H, 2 × CH_{Ar}), 6.94 (d, ${}^{3}J_{HH}$ = 8.9 Hz, 2H, 2 × CH_{Ar}), 6.66 (s, 1H, NH), 6.05 (d, ${}^{3}J_{HH}$ = 2.6 Hz, 1H, = CH), 5.63 (d, ${}^{3}J_{HH}$ = 2.6 Hz, 1H, CHN) ppm. ${}^{13}C$ {¹H} NMR (101 MHz, CDCl₃) δ 167.1 (C=O), 140.3 (C_{quat}), 136.9 (C_{quat}), 136.4 (C_{quat}), 132.4 (2 × CH_{Ar}), 132.1 (2 × CH_{Ar}), 131.8 (C_{quat}), 129.3 (2 × CH_{Ar}), 128.6 (CH_{Ar}), 126.7 (2 × CH_{Ar}), 122.9 (2 × CH_{Ar}), 118.4 (2 × CH_{Ar}), 118.1 (C_{quat}), 113.6 (C_{quat}) , 108.9 (=CH), 64.3 (CHN) ppm. FTIR (neat) n_{max} : 3327 $(N\dot{H}_{st})$, 1672 (C=O_{st}), 1642 (C=C_{st}), 1073 (C-Br_{st}), 820 (C- Br_{st}) cm⁻¹. HRMS (ESI-TOF) m/z: [M + H]⁺, calcd for C₂₂H₁₇Br₂N₂O 482.9708; found, 482.9715.

1-(4-Chlorophenyl)-3-((4-chlorophenyl)amino)-5-phenyl-1,5-dihydro-2H-pyrrol-2-one (**8e**). The general procedure was followed using *p*-chloroaniline (0.212 g, 2 mmol, 2 equiv), benzaldehyde (0.102 mL, 1 mmol, 1 equiv), and ethyl pyruvate (0.335 mL, 3 mmol, 3 equiv), affording 0.304 g (77%) of **8e** as a white solid after crystallization (Et₂O). mp (Et₂O) = 207–209 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.53–7.46 (m, 2H, 2 × CH_{Ar}), 7.33–7.26 (m, 3H, 3 × CH_{Ar}), 7.26–7.22 (m, 4H, 4 × CH_{Ar}), 7.19 (dd, ³J_{HH} = 8.1, ⁴J_{HH} = 1.6 Hz, 2H, 2 × CH_{Ar}). 7.03–6.95 (m, 2H, 2 × CH_{Ar}), 6.63 (s, 1H, NH), 6.05 (d, ³J_{HH} = 2.6 Hz, 1H, = CH), 5.64 (d, ³J_{HH} = 2.6 Hz, 1H, CHN) ppm. ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 167.1 (C=O), 139.9 (C_{quat}), 137.0 (C_{quat}), 135.9 (C_{quat}), 131.9 (C_{quat}), 130.4 (C_{quat}), 129.5 (2 × CH_{Ar}), 129.3 (2 × CH_{Ar}), 129.2 (2 × CH_{Ar}), 128.6 (CH_{Ar}), 126.8 (2 × CH_{Ar}), 126.4 (C_{quat}), 122.6 (2 × CH_{Ar}), 118.0 (2 × CH_{Ar}), 108.7 (=CH), 64.3 (CHN) ppm. FTIR (neat) *n*max: 3328 (NH_{st}), 1664 (C=O_{st}), 1617 (C=C_{st}) cm⁻¹. HRMS (ESI-TOF) *m*/z: [M + H]⁺, calcd for C₂₂H₁₇Cl₂N₂O 395.0718; found, 395.0715.

1-(4-Fluorophenyl)-3-((4-fluorophenyl)amino)-5-phenyl-1,5-dihydro-2H-pyrrol-2-one (8f). The general procedure was followed using p-fluoroaniline (0.222 g, 2 mmol, 2 equiv), benzaldehyde (0.102 mL, 1 mmol, 1 equiv), and ethyl pyruvate (0.335 mL, 3 mmol, 3 equiv) to afford 0.344 g (95%) of 8f as a yellow solid after crystallization (Et₂O). mp (Et₂O) = 213-215 °C. ¹H NMR (400 MHz, CDCl_3) δ 7.49–7.43 (m, 2H, 2 × CH_{Ar}), 7.32–7.26 (m, 2H, 2 \times CH_{Ar}), 7.25–7.22 (m, 1H, CH_{Ar}), 7.20–7.16 (m, 2H, 2 \times CH_{Ar}), 7.04–6.93 (m, 6H, 6 × CH_{Ar}), 6.55 (s, 1H, NH), 6.00 (d, ${}^{3}J_{HH} = 2.6$ Hz, 1H, = CH), 5.61 (d, ${}^{3}J_{HH} = 2.6$ Hz, 1H, CHN) ppm. ${}^{13}C$ {¹H} NMR (101 MHz, CDCl₃) δ 167.2 (C=O), 160.0 (d, ${}^{1}J_{FC}$ = 245.1 Hz, C_{quat}), 157.8 (d, ${}^{1}J_{FC}$ = 240.7 Hz, C_{quat}), 137.5 (d, ${}^{4}J_{FC}$ = 2.4 Hz, C_{quat}), 137.2 (C_{quat}), 133.5 (d, ${}^{4}J_{FC}$ = 3.0 Hz, C_{quat}), 132.6 (C_{quat}), 129.2 (2 × CH_{Ar}), 128.5 (CH_{Ar}), 126.9 (2 × CH_{Ar}), 123.7 (d, ${}^{2}J_{FC}$ = 8.0 Hz 2 × CH_{Ar}), 118.4 (d, ${}^{3}J_{FC} = 7.7$ Hz 2 × CH_{Ar}), 116.2 (d, ${}^{3}J_{FC} = 28.0$ Hz 2 × CH_{Ar}), 115.9 (d, ${}^{2}J_{FC} = 28.0$ Hz, 2 × CH_{Ar}), 107.4 (= CH), 77.4 (CH), 64.7 (CHN) ppm. ${}^{19}F$ { ${}^{1}H$ } NMR (282 MHz, CDCl₃) δ –116.9, –121.9 ppm. FTIR (neat) n_{max} : 3328 (NH_{st}), 1664 $(C=O_{st})$, 1615 $(C=C_{st})$ cm⁻¹. HRMS (ESI-TOF) m/z: $[M + H]^+$, calcd for C₂₂H₁₇F₂N₂O 363.1309; found, 363.1307

1-(3-Chlorophenyl)-3-((3-chlorophenyl)amino)-5-phenyl-1,5-dihydro-2H-pyrrol-2-one (8g). The general procedure was followed using m-chloroaniline (0.212 mL, 2 mmol, 2 equiv), benzaldehyde (0.102 mL, 1 mmol, 1 equiv), and ethyl pyruvate (0.335 mL, 3 mmol, 3 equiv), affording 0.350 g (89%) of 8g as white crystals after crystallization (Et₂O). mp (Et₂O) = 203-205 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.70 (t, ⁴*J*_{HH} = 2.0 Hz, 1H, CH_{Ar}), 7.38 (ddd, ³*J*_{HH} = 8.3 Hz, $4J_{HH} = 2.2$ Hz, $4J_{HH} = 1.0$ Hz, 1H, CH_{Ar}), 7.35–7.25 (m, 3H, $3 \times$ CH_Ar), 7.24–7.15 (m, 4H, 4 \times CH_Ar), 7.08–7.03 (m, 2H, 2 \times $\begin{array}{l} \text{CH}_{\text{Ar}}), 6.93 \ (\text{dd}, \,{}^{3}J_{\text{HH}} = 7.8 \ \text{Hz}, \,{}^{4}J_{\text{HH}} = 2.1 \ \text{Hz}, \,{}^{4}J_{\text{HH}} = 1.2 \ \text{Hz}, \, 2\text{H}, \, 2 \\ \times \ \text{CH}_{\text{Ar}}), 6.70 \ (s, 1\text{H}, \text{NH}), 6.11 \ (d, \,{}^{3}J_{\text{HH}} = 2.6 \ \text{Hz}, 1\text{H}, = \text{CH}), 5.66 \\ (d, \,\,{}^{3}J_{\text{HH}} = 2.6 \ \text{Hz}, 1\text{H}, \ \text{CHN}) \ \text{ppm.}^{-13}\text{C} \ \{^{1}\text{H}\} \ \text{NMR} \ (101 \ \text{MHz}, \\ \end{array}$ $CDCl_3$) δ 167.0 (C=O), 142.3 (C_{quat}), 138.3 (C_{quat}), 136.6 (C_{quat}), 135.1 (C_{quat}), 134.6 (C_{quat}), 131.4 (C_{quat}), 130.4 (CH_{Ar}), 129.9 (CH_{Ar}) , 129.2 (2 × CH_{Ar}), 128.5 (CH_{Ar}) , 126.6 (2 × CH_{Ar}), 125.0 (CH_{Ar}) , 121.4 (CH_{Ar}) , 121.3 (CH_{Ar}) , 119.1 (CH_{Ar}) , 116.4 (CH_{Ar}) , 115.0 (CH_{Ar}), 109.4 (=CH), 64.2 (CHN) ppm. FTIR (neat) n_{max} : 3325 (NH_{st}), 1695 (C= O_{st}), 1612 (C= C_{st}) cm⁻¹. HRMS (ESI-TOF) m/z: $[M + H]^+$, calcd for $C_{22}H_{17}Cl_2N_2O$ 395.0718; found, 395.0714.

1-(2-Fluorophenyl)-3-((2-fluorophenyl)amino)-5-phenyl-1,5-dihydro-2H-pyrrol-2-one (**8**h). The general procedure was followed using *o*-fluoroaniline (0.193 mL, 2 mmol, 2 equiv), benzaldehyde (0.102 mL, 1 mmol, 1 equiv), and ethyl pyruvate (0.335 mL, 3 mmol, 3 equiv), affording 0.279 g (77%) of **8h** as a white solid after crystallization (Et₂O). mp (Et₂O): 176–178 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.33–7.19 (m, 6H, 6× CH_{Ar}), 7.17–7.03 (m, 5H, 5× CH_{Ar}), 6.94–6.84 (m, 2H, 2 × CH_{Ar}), 6.21 (d, ³J_{HH} = 2.6 Hz, 1H, = CH), 5.73 (d, ³J_{HH} = 2.6 Hz, 1H, CHN) ppm. ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 167.0 (C=O), 157.4 (d, ¹J_{FC} = 250.3 Hz, C_{quat}), 152.5 (d, ¹J_{FC} = 243.6 Hz, C_{quat}), 136.6 (C_{quat}), 132.1 (C_{quat}), 130.1 (d, ²J_{FC} = 10.9 Hz, C_{quat}), 128.9 (2 × CH_{Ar}), 128.7 (CH_{Ar}), 128.6 (d, ³J_{FC} = 8.0 Hz, CH_{Ar}), 128.5 (d, ⁴J_{FC} = 1.6 Hz, CH_{Ar}), 127.5 (2 × CH_{Ar}), 124.6 (d, ³J_{FC} = 11.6 Hz, C_{quat}), 121.4 (d, ³J_{FC} = 7.2 Hz, CH_{Ar}), 116.7 (d, ⁴J_{FC} = 1.7 Hz, CH_{Ar}), 116.6 (d, ²J_{FC} = 20.3 Hz, CH_{Ar}), 115.5 (d, ² J_{FC} = 18.7 Hz, CH_{Ar}), 109.8 (=CH), 65.41 (d, ⁴ J_{FC} = 4.3 Hz, CHN) ppm. ¹⁹F {¹H} NMR (282 MHz, CDCl₃) δ –120.6, –132.1 ppm. FTIR n_{max} 3323 (NH_{st}), 1693 (C=O_{st}), 1657 (C=C_{st}), 1112 (C-F_{st}) cm⁻¹.

5-Phenyl-1-(3-(trifluoromethyl)phenyl)-3-((3-(trifluoromethyl)phenyl)amino)-1,5-dihydro-2H-pyrrol-2-one (8i). The general procedure was followed using m-(trifluoromethyl)aniline (0.250 g, 2 mmol, 2 equiv), benzaldehyde (0.102 mL, 1 mmol, 1 equiv), and ethyl pyruvate (0.335 mL, 3 mmol, 3 equiv), affording 0.301 g (65%) of 8i as a white solid after flash column chromatography (hexanes/ AcOEt 8:2). mp (Et₂O): 198–200 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.93 (s, 1H, CH_{Ar}), 7.72 (d, ${}^{3}J_{HH}$ = 8.3 Hz, 1H, CH_{Ar}), 7.44–7.37 (m, 2H, 2 × CH_{Ar}), 7.35–7.27 (m, 5H, 5× CH_{Ar}), 7.24 (d, ${}^{3}J_{HH} = 1.8$ Hz, 2H, $2 \times CH_{Ar}$), 7.23–7.19 (m, 2H, $2 \times CH_{Ar}$), 6.85 (s, 1H, NH), 6.15 (d, ${}^{3}J_{HH}$ = 2.6 Hz, 1H, = CH), 5.73 (d, ${}^{3}J_{HH}$ = 2.6 Hz, 1H, CHN) ppm. ${}^{13}C$ {¹H} NMR (101 MHz, CDCl₃) δ 167.2 (C=O), 141.7 (C_{quat}) , 137.8 (C_{quat}) , 136.4 (C_{quat}) , 132.0 $(q, {}^{2}J_{FC} = 32.4 \text{ Hz}, C_{quat})$, 131.6 (C_{quat}), 131.5 (q, ${}^{2}J_{FC}$ = 32.4 Hz, C_{quat}), 130.1 (CH_{Ar}), 129.6 (CH_{Ar}) , 129.4 (2 × CH_{Ar}), 128.8 (CH_{Ar}) , 126.8 (2 × CH_{Ar}), 124.2 (CH_{Ar}), 124.0 (q, ${}^{1}J_{FC}$ = 272.4 Hz, CF₃), 123.9 (q, ${}^{1}J_{FC}$ = 272.5 Hz, CF₃), 121.61 (q, ${}^{3}J_{FC}$ = 3.8 Hz, CH_{Ar}), 119.9 (CH_{Ar}), 118.1 (q, ${}^{3}J_{FC}$ = 3.8 Hz, CH_{Ar}), 118.0 (q, ${}^{3}J_{FC}$ = 4.0 Hz, CH_{Ar}), 113.1 (q, ${}^{3}J_{FC}$ = 3.9 Hz, CH_{Ar}), 109.7 (=CH), 64.3 (CHN) ppm. ${}^{19}F$ {¹H} NMR (282 MHz, CDCl3) δ -63.3, -63.2 ppm. FTIR (neat) n_{max} : 3323 (NH_{st}), 1675 (C=O_{st}), 1663 (C=C_{st}), 1201 (C-F_{st}) cm⁻¹. HRMS (ESI-TOF) m/z calcd for C₂₄H₁₇F₆N₂O [M + H]⁺, 463.1245; found, 463.1247.

General Procedure for the Functionalization of γ -Lactams 1 and 8 with Eschenmoser's Salt. The corresponding 3-amino-3pyrrolidin-2-one 1 or 8 (1 mmol, 1 equiv) was stirred overnight with 1.5 equiv of *N*,*N*-dimethylmethyleneiminium iodide (0.278 g, 1.5 mmol, 1.5 equiv) in the presence of freshly distilled triethylamine (0.279 mL, 2.0 mmol, 2 equiv) in refluxing chloroform (3 mL) under a N₂ atmosphere. The reaction crude was acidified with 0.5 M HCl aqueous solution and extracted with dichloromethane (2 × 20 mL). The combined organic layers were dried with MgSO₄ and purified by flash column chromatography, affording the corresponding pure functionalized γ -lactams 2 or 9. In some cases, other purification processes were necessary as detailed for each compound.

4-((Dimethylamino)methyl)-1-(p-tolyl)-3-(p-tolylamino)-1,5-dihydro-2H-pyrrol-2-one (2). The general procedure was followed using 1-(p-tolyl)-3-(p-tolylamino)-1,5-dihydro-2H-pyrrol-2-one (0.278 g, 1 mmol, 1 equiv) 1 to afford 0.242 g (72%) of 2 as red crystals after crystallization (hexanes/CH₂Cl₂ 3:1). mp (hexanes/ CH_2Cl_2 = 106–107 °C. ¹H NMR (400 MHz, $CDCl_3$) δ 7.68 (d, ${}^{3}J_{\rm HH} = 8.5 \text{ Hz}, 2\text{H}, 2 \times \text{CH}_{\rm Ar}), 7.19 \text{ (d, } {}^{3}J_{\rm HH} = 8.5 \text{ Hz}, 2\text{H}, 2 \times \text{CH}_{\rm Ar}),$ 7.08 (d, ${}^{3}J_{HH}$ = 8.2 Hz, 2H, 2 × CH_{Ar}), 6.85 (d, ${}^{3}J_{HH}$ = 8.2 Hz, 2H, 2 \times CH_{Ar}), 6.05 (s, 1H, NH), 4.35 (s, 2H, CH₂), 3.11 (s, 2H, CH₂NMe₂), 2.34 (s, 3H, CH_{3Tol}), 2.31 (s, 3H, CH_{3Tol}), 2.19 (s, 6H, 2 × NCH₃) ppm. ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 167.1 (C=O), 139.8 (C_{quat}) , 136.9 (C_{quat}) , 133.6 (C_{quat}) , 132.6 (C_{quat}) , 131.4 (C_{quat}) , 129.7 (2 × CH_{Ar}), 129.6 (2 × CH_{Ar}), 119.5 (2 × CH_{Ar}), 118.9 (C_{quat}), 118.4 (2 × CH_{Ar}), 56.6 (CH₂), 51.0 (CH₂), 45.6 (2 × NCH₃), 20.9 (CH_{3Tol}), 20.8 (CH_{3Tol}) ppm. FTIR (neat) n_{max} : 3031 $(=CH_{st})$, 1686 $(C=O_{st})$, 1615 $(C=C_{st})$ cm⁻¹. HRMS (ESI-TOF) m/z: $[M-Me_2N]^+$, calcd for C₁₉H₁₉N₂O 291.1497; found, 291.1495.

4-((Dimethylamino)methyl)-5-phenyl-1-(p-tolyl)-3-(p-tolylamino)-1,5-dihydro-2H-pyrrol-2-one (**9a**). The general procedure was followed using 5-phenyl-1-(p-tolyl)-3-(p-tolylamino)-1,5-dihydro-2H-pyrrol-2-one **8a** (0.354 g, 1 mmol, 1 equiv), affording 0.342 g (83%) of **9a** as red crystals after flash column chromatography (hexanes/AcOEt 8:2) followed by crystallization (pentane/Et₂O 3:1). mp (pentane/Et₂O) = 98–100 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, ³J_{HH} = 8.5 Hz, 2H, 2 × CH_{Ar}), 7.33–7.29 (m, 4H, 4 × CH_{Ar}), 7.25 (m, 1H, CH_{Ar}), 7.06 (d, ³J_{HH} = 8.2 Hz, 2H, 2 × CH_{Ar}), 7.02 (d, ³J_{HH} = 8.2 Hz, 2H, 2 × CH_{Ar}), 6.12 (s, 1H, NH), 5.69 (s, 1H, CH), 2.78 (d, ²J_{HH} = 13.9 Hz, 1H, CH_ACH_B), 2.67 (d, ²J_{HH} = 13.9 Hz, 1H, CH_ACH_B), 2.24 (s, 3H, CH_{3Tol}), 2.11 (s, 6H, 2 × NCH₃) ppm. ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 167.7 (C=O), 140.1 (C_{quat}), 137.8 (C_{quat}), 135.4 (C_{quat}), 134.0 (C_{quat}), 131.3 (C_{quat}),

129.6 (2 × CH_{Ar}), 129.5 (2 × CH_{Ar}), 128.9 (2 × CH_{Ar}), 128.0 (2 × CH_{Ar}), 127.2 (C_{quat}), 127.0 (2 × CH_{Ar}), 120.1 (2 × CH_{Ar}), 119.1 (CH_{Ar}), 64.6 (CH), 55.3 (CH₂), 45.5 (2 × NCH₃), 20.9 (CH_{3Tol}), 20.8 (CH_{3Tol}) ppm. FTIR (neat) n_{max} : 3331 (NH_{st}), 1689 (C=O_{st}), 1614 (C=C_{st}) cm⁻¹. HRMS (ESI-TOF) m/z: [M–Me₂N]⁺, calcd for C₂₅H₂₃N₂O 367.1810; found, 367.1806.

4-((Dimethylamino)methyl)-1,5-diphenyl-3-(phenylamino)-1,5dihydro-2H-pyrrol-2-one (9b). The general procedure was followed using 1,5-diphenyl-3-(phenylamino)-1,5-dihydro-2H-pyrrol-2-one (0.326 g, 1 mmol, 1 equiv) 8b to afford 0.314 g (82%) of 9b as white crystals after flash column chromatography (hexanes/AcOEt 8:2) followed by crystallization (pentane/Et₂O 3:1). mp (pentane/ Et_2O) = 140–142 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.56 (dd, ³J_{HH} = 8.8 Hz, ${}^{4}J_{\rm HH}$ = 1.2 Hz, 2H, 2 × CH_{Ar}), 7.28–7.32 (m, 4H, 4 × CH_{Ar}), 7.21–7.16 (m, 3H, 3 × CH_{Ar}), 7.15–7.11 (m, 2H, 2 × CH_{Ar}), 6.99–6.94 (m, 1H, 1 × CH_{Ar}), 6.84 (tt, ${}^{3}J_{HH}$ = 7.3 Hz, ${}^{4}J_{HH}$ = 1.2 Hz, 1H, CH_{Ar}), 6.75 (dd, ${}^{3}J_{HH} = 8.8$ Hz, ${}^{4}J_{HH} = 1.2$ Hz, 2H, 2 × CH_{Ar}), 6.17 (s, 1H, NH), 5.67 (s, 1H, CH), 3.05-2.36 (m, 2H, CH₂), 2.04 (s, 6H, 2 × NCH₃) ppm. ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 167.8 (C=O), 142.8 (C_{quat}), 137.9 (C_{quat}), 137.5 (C_{quat}), 130.8 (C_{quat}), 129.4 (CH_{Ar}), 129.1 (2 × CH_{Ar}), 129.0 (2 × CH_{Ar}), 128.9 (2 × CH_{Ar}), 128.1 (CH_{Ar}), 126.9 (2 × CH_{Ar}), 124.4 (CH_{Ar}), 121.5 (CH_{Ar}) , 120.6 (2 × CH_{Ar}), 118.3 (2 × CH_{Ar}), 64.5 (CH), 55.5 (CH₂), 45.5 (2 × NCH₃) ppm. FTIR (neat) ν_{max} : 3039 (=CH_{st}), 1691 (C= O_{st}), 1610 (C= C_{st}) cm⁻¹. HRMS (ESI-TOF) m/z: [M + H]⁺, calcd for C₂₅H₂₆N₃O 384.2076; found, 384.2074.

4-((Dimethylamino)methyl)-1-(4-methoxyphenyl)-3-((4methoxyphenyl)amino)-5-phenyl-1,5-dihydro-2H-pyrrol-2-one (9c). The general procedure was followed using 1-(4-methoxyphenyl)-3-((4-methoxyphenyl)amino)-5-phenyl-1,5-dihydro-2H-pyrrol-2-one (0.386 g, 1 mmol, 1 equiv) 8c to afford 0.310 g (70%) of 9c as an orange oil after flash column chromatography (hexanes/AcOEt 8:2). ¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, ³J_{HH} = 9.2 Hz, 2H, 2 × CH_{Ar}), 7.31–7.27 (m, 5H, 5 × CH_{Ar}), 6.89 (d, ${}^{3}J_{HH}$ = 8.9 Hz, 2H, 2 × CH_{Ar}), 6.79 (d, ${}^{3}J_{HH}$ = 8.9 Hz, 2H, 2 × CH_{Ar}), 6.78 (d, ${}^{3}J_{HH}$ = 9.2 Hz, 2H, 2 \times CH_{Ar}), 6.07 (s, 1H, NH), 5.63 (s, 1H, CH), 3.76 (s, 3H, OCH₃), 3.71 (s, 3H, OCH₃), 2.69 (d, ${}^{2}J_{HH} = 13.8$ Hz, 1H, C<u>H</u>_ACH_B), 2.61 (d, ${}^{2}J_{HH} = 13.8$ Hz, 1H, CH_AC<u>H_B</u>), 2.08 (s, 6H, 2 × NCH₃) ppm. ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 167.6 (C=O), 156.6 (C_{quat}) , 155.6 (C_{quat}) , 137.7 (C_{quat}) , 135.4 (C_{quat}) , 132.3 (C_{quat}) , 131.5 (C_{quat}) , 131.0 (C_{quat}) , 128.9 $(2 \times CH_{Ar})$, 128.0 $(2 \times CH_{Ar})$, 127.2 (2 \times CH_{Ar}), 122.9 (2 \times CH_{Ar}), 122.4 (CH_{Ar}), 114.4 (2 \times CH_{Ar}), 114.2 (2 × CH_{Ar}), 65.1 (CH), 55.6 (OCH₃), 55.4 (OCH₃), 54.7 (CH₂), 45.3 (2 × NCH₃) ppm. FTIR (neat) n_{max} : 3035 (= CH_{st}), 1688 (C= O_{st}), 1616 (C= C_{st}) cm⁻¹. HRMS (ESI-TOF) m/z: $[M + H]^+$, calcd for C₂₇H₃₀N₃O₃ 444.2287; found, 444.2277.

1-(4-Bromophenyl)-3-((4-bromophenyl)amino)-4-((dimethylamino)methyl)-5-phenyl-1,5-dihydro-2H-pyrrol-2-one (9d). The general procedure was followed using 1-(4-bromophenyl)-3-((4-bromophenyl)amino)-5-phenyl-1,5-dihydro-2H-pyrrol-2-one 8d (0.484 g, 1 mmol, 1 equiv), affording 0.504 g (93%) of 9d as orange crystals after flash column chromatography (hexanes/AcOEt 7:3) followed by crystallization (pentane/Et₂O 3:1). mp (pentane/ Et₂O) = 139–141 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, ³J_{HH} = 7.6 Hz, 2H, 2 × CH_{Ar}), 7.37–7.25 (m, 9H, 9 × CH_{Ar}), 6.68 (d, ${}^{3}J_{HH}$ = 7.6 Hz, 2H, 2 × CH_{Ar}), 6.38 (s, 1H, NH), 5.66 (s, 1H, CH), 2.76 (d, ${}^{2}J_{\text{HH}}$ = 14.5 Hz, 1H, C<u>H</u>_ACH_B), 2.72 (d, ${}^{2}J_{\text{HH}}$ = 14.5 Hz, 1H, CH_AC<u>H</u>_B), 2.11 (s, 6H, 2 × NCH₃) ppm. 13 C {¹H} NMR (101 MHz, $CDCl_3$ δ 167.5 (C=O), 141.8 (C_{quat}), 136.8 (C_{quat}), 136.8 (C_{quat}), 132.0 (2 × CH_{Ar}), 131.9 (2 × CH_{Ar}), 130.7 (C_{quat}), 130.6 (C_{quat}), $129.2(2 \times CH_{Ar})$, 128.5 (CH_{Ar}), 126.8 (2 × CH_{Ar}), 122.0 (2 × CH_{Ar}), 119.7 (2 × CH_{Ar}), 117.3 (C_{quat}), 113.6 (C_{quat}), 64.4 (CH), 55.5 (CH₂), 45.5 (2 × NCH₃) ppm. FTIR (neat) n_{max} : 3321 (NH_{st}), 1689 (C= O_{st}), 1604 (C= C_{st}) cm⁻¹. HRMS (ESI-TOF) m/z: [M + H^+ , calcd for $C_{25}H_{24}Br_2N_3O$ 542.0286; found, 542.0269.

1-(p-Chlorophenyl)-3-((p-chlorophenyl)amino)-4-((dimethylamino)methyl)-5-phenyl-1,5-dihydro-2H-pyrrol-2-one (**9e**). The general procedure was followed using 1-(p-chlorophenyl)-3-((p-chlorophenyl)amino)-5-phenyl-1,5-dihydro-2H-pyrrol-2-one (0.395 g, 1 mmol, 1 equiv) **8e** to afford 0.281 g (62%) of **9e** as a red solid after flash column chromatography (hexanes/AcOEt 8:2). ¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, ³J_{HH} = 9.1 Hz, 2H, 2 × CH_{Ar}), 7.34–7.23 (m, 5H, 5 × CH_{Ar}), 7.18 (d, ³J_{HH} = 9.0 Hz, 2H, 2 × CH_{Ar}), 7.14 (d, ³J_{HH} = 8.9 Hz, 2H, 2 × CH_{Ar}), 6.72 (d, ³J_{HH} = 8.9 Hz, 2H, 2 × CH_{Ar}), 6.25 (s, 1H, NH), 5.62 (s, 1H, CH), 2.73 (d, ²J_{HH} = 12.5 Hz, 1H, C<u>H</u>_ACH_B), 2.59 (d, ²J_{HH} = 12.5 Hz, 1H, CH_ACDCl₃) δ 167.5 (C=O), 141.3 (C_{quat}), 136.9 (C_{quat}), 136.4 (C_{quat}), 130.8 (C_{quat}), 130.2 (C_{quat}), 129.6 (C_{quat}), 126.9 (2 × CH_{Ar}), 129.0 (2 × CH_{Ar}), 128.5 (CH_{Ar}), 126.9 (2 × CH_{Ar}), 126.5 (C_{quat}), 121.7 (2 × CH_{Ar}), 119.6 (2 × CH_{Ar}), 64.6 (CH), 55.6 (CH₂), 45.5 (2 × NCH₃) ppm. FTIR (neat) ν_{max} : 3399 (N–H_{st}), 1695 (C=O_{st}), 1613 (C=C_{st}) cm⁻¹. HRMS (ESI-TOF) *m*/*z*: [M + H]⁺, calcd for C₂₅H₂₄Cl₂N₃O 452.1218; found, 452.1228.

4-((Dimethylamino)methyl)-1-(p-fluorophenyl)-3-((pfluorophenyl)amino)-5-phenyl-1,5-dihydro-2H-pyrrol-2-one (9f). The general procedure was followed using 1-(p-fluorophenyl)-3-((pfluorophenyl)amino)-5-phenyl-1,5-dihydro-2H-pyrrol-2-one (0.362 g, 1 mmol, 1 equiv) 8f to afford 0.248 g (59%) of 9f as a white solid after flash column chromatography (hexanes/AcOEt 8:2). ¹H NMR (400 MHz, CDCl₃) δ 7.56–7.48 (m, 2H, 2 × CH_{Ar}), 7.33–7.20 (m, 5H, 5 × CH_{Ar}), 6.98–6.86 (m, 4H, 4 × CH_{Ar}), 6.82 (dd, ${}^{3}J_{HH} = 9.1$ Hz, ${}^{4}J_{HH} = 4.7$ Hz, 2H, 2 × CH_{Ar}), 6.24 (s, 1H, NH), 5.61 (s, 1H, CH), 2.66 (m, 2H, CH_2), 2.06 (s, 6H, 2 \times NCH_3) ppm. ^{13}C $\{^1H\}$ NMR (101 MHz, CDCl₃) δ 167.6 (C=O), 159.5 (d, ${}^{1}J_{FC}$ = 244.2 Hz, C_{quat}), 158.4 (d, ${}^{1}J_{FC}$ = 240.5 Hz, C_{quat}), 138.5 (d, ${}^{4}J_{FC}$ = 2.6 Hz, C_{quat}), 137.1 (C_{quat}), 133.9 (d, ${}^{4}J_{FC}$ = 2.6 Hz, C_{quat}), 134.5 (C_{quat}), 13 129.1 (2 × CH_{Ar}), 128.3 (CH_{Ar}) 127.3 (C_{quat}), 127.0 (2 × CH_{Ar}), 122.6 (d, ${}^{4}J_{FC}$ = 8.1 Hz, 2 × CH_{Ar}), 120.9 (d, ${}^{3}J_{FC}$ = 7.9 Hz, 2 × CH_{Ar}), 115.8 (d, ${}^{3}J_{FC}$ = 1.3 Hz, 2 × CH_{Ar}), 115.6 (d, ${}^{3}J_{FC}$ = 1.4 Hz, 2 × CH_{Ar}), 64.9 (CH), 55.2 (CH₂), 45.5 (2 × NCH₃) ppm. ¹⁹F {¹H} NMR (282 MHz, CDCl₃) δ –117.7, –121.5 ppm. FTIR (neat) ν_{max} : 3297 (N-H_{st}), 1699 (C= O_{st}), 1601 (C= C_{st}) cm⁻¹. HRMS (ESI-TOF) m/z: $[M + H]^+$, calcd for $C_{25}H_{24}F_2N_3O$ 420.1809; found, 420.1819.

1-(3-Chlorophenyl)-3-((3-chlorophenyl)amino)-4-((dimethylamino)methyl)-5-phenyl-1,5-dihydro-2H-pyrrol-2-one (9g). The general procedure was followed using 1-(3-chlorophenyl)-3-((3-chlorophenyl)amino)-5-phenyl-1,5-dihydro-2H-pyrrol-2-one 8g (0.395 g, 1 mmol, 1 equiv), affording 0.402 g (89%) of 9g as yellow crystals after chromatography (hexanes/AcOEt 7:3) followed by crystallization (pentane/Et₂O 3:1). mp (pentane/Et₂O) = 128-130 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.79 (t, ⁴J_{HH} = 2.1 Hz, 1H, CH_{Ar}), 7.45 (ddd, ³J_{HH} = 8.3 Hz, ⁴J_{HH} = 2.3 Hz, ⁴J_{HH} = 1.0 Hz, 1H, CH_{Ar}), 7.39–7.24 (m, 5H, 5 × CH_{Ar}), 7.16 (t, ³J_{HH} = 8.0 Hz, 1H, CH_{Ar}), 7.11 (t, ³J_{HH} = 8.0 Hz, 1H, CH_{Ar}), 7.01 (ddd, ³J_{HH} = 8.0 Hz, ⁴J_{HH} = 2.0 Hz, ⁴J_{HH} = 0.9 Hz, 1H, CH_{Ar}), 6.87 (ddd, ³J_{HH} = 8.0 Hz, ⁴J_{HH} = 2.0 Hz, ${}^{4}J_{HH} = 0.9$ Hz, 1H, CH_{Ar}), 6.81 (t, ${}^{4}J_{HH} = 2.1$ Hz, 1H, CH_{Ar}), 6.67 (ddd, ${}^{3}J_{HH}$ = 8.3 Hz, ${}^{4}J_{HH}$ = 2.3 Hz, ${}^{4}J_{HH}$ = 1.0 Hz, 1H, CH_{Ar}), 6.51 (s, 1H, NH), 5.69 (s, 1H, CH), 2.81 (d, ${}^{2}J_{HH} = 14.3$ Hz, 1H, $C\underline{H}_{A}CH_{B}$), 2.74 (d, ² J_{HH} = 14.3 Hz, 1H, $CH_{A}C\underline{H}_{B}$), 2.13 (s, 6H, 2 × NCH₃) ppm. ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 167.5 (C=O), 144.1 (C_{quat}), 138.9 (C_{quat}), 136.6 (C_{quat}), 134.7 (C_{quat}), 134.6 (C_{quat}) , 132.2 (C_{quat}) , 130.5 (C_{quat}) , 130.1 (CH_{Ar}) , 129.9 (CH_{Ar}) , $129.2 (2 \times CH_{Ar})$, $128.5 (CH_{Ar})$, $126.9 (2 \times CH_{Ar})$, $124.5 (CH_{Ar})$, 121.3 (CH_{Ar}), 120.6 (CH_{Ar}), 118.4 (CH_{Ar}), 118.0 (CH_{Ar}), 115.9 (CH_{Ar}) , 64.6 (CH), 55.5 (CH₂), 45.5 (2 × NCH₃) ppm. FTIR (neat) n_{max} : 3315 (NH_{st}), 1694 (C=O_{st}), 1602 (C=C_{st}) cm⁻¹. HRMS (ESI-TOF) m/z: $[M + H]^+$, calcd for $C_{25}H_{24}Cl_2N_3O$ 452.1296; found, 452.1303.

4-((Dimethylamino)methyl)-1-(2-fluorophenyl)-3-((2-fluorophenyl)amino)-5-phenyl-1,5-dihydro-2H-pyrrol-2-one (9h). The general procedure was followed using 1-(2-fluorophenyl)-3-((2-fluorophenyl)amino)-5-phenyl-1,5-dihydro-2H-pyrrol-2-one 8h (0.362 g, 1 mmol, 1 equiv), affording 0.403 g (96%) of 9h as yellow crystals after chromatography (hexanes/AcOEt 8:2) followed by crystallization (pentane/Et₂O 3:1). mp (pentane/Et₂O) = 150–152 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.35–7.20 (m, 6H, 6 × CH_{Ar}), 7.13–6.93 (m, 6H, 6 × CH_{Ar}), 6.90–6.82 (m, 1H, CH_Ar), 6.57 (s, 1H, NH), 5.67 (s, 1H, CH), 2.85 (d, ²J_{HH} = 14.5 Hz, 1H, CH_ACH_B), 2.80 (d, ${}^{2}J_{HH}$ = 14.5 Hz, 1H, CH_AC<u>H</u>_B), 2.11 (s, 6H, 2 × NCH₃) ppm. ${}^{13}C$ {¹H} NMR 167.3 (C=O), 157.2 (d, ${}^{1}J_{FC}$ = 250.0 Hz, C_{quat}), 153.8 (d, ${}^{1}J_{FC}$ = 243.0 Hz, C_{quat}), 136.2 (C_{quat}), 131.9 (C_{quat}), 131.2 (C_{quat}), 131.1 (d, ${}^{2}J_{FC}$ = 11.2 Hz, C_{quat}), 128.9 (2 × CH_A), 128.5 (CH_A), 128.4 (d, ${}^{4}J_{FC}$ = 1.1 Hz, CH_A), 128.2 (d, ${}^{3}J_{FC}$ = 8.0 Hz, CH_A), 127.6 (2 × CH_A), 124.5 (d, ${}^{2}J_{FC}$ = 11.5 Hz, C_{quat}), 124.4 (d, ${}^{3}J_{FC}$ = 3.6 Hz, CH_A), 124.1 (d, ${}^{3}J_{FC}$ = 3.6 Hz, CH_A), 121.5 (d, ${}^{3}J_{FC}$ = 7.2 Hz, CH_A), 119.0 (d, ${}^{4}J_{FC}$ = 2.1 Hz, CH_A), 116.6 (d, ${}^{2}J_{FC}$ = 20.3 Hz, CH_A), 115.4 (d, ${}^{2}J_{CF}$ = 19.0 Hz, CH_A), 66.2 (d, ${}^{4}J_{FC}$ = 4.5 Hz, CH), 55.8 (CH₂), 45.5 (2 × NCH₃) ppm. ${}^{19}F$ {¹H} NMR (282 MHz, CDCl₃) δ -120.3, -131.0 ppm. FTIR (neat) n_{max} : 3323 (NH_{st}), 1685 (C=O_{st}), 1600 (C=C_{st}) cm⁻¹. HRMS (ESI-TOF) m/z: [M + H]⁺, calcd for C₂CH₂A_F, N₃O 420.1887; found, 420.1889.

4-((Dimethylamino)methyl)-5-phenyl-1-(3-(trifluoromethyl)phenyl)-3-((3-(trifluoromethyl)phenyl)amino)-1,5-dihydro-2H-pyrrol-2-one (9i). The general procedure was applied using 5-phenyl-1-(3-(trifluoromethyl)phenyl)-3-((3-(trifluoromethyl)phenyl)amino)-1,5-dihydro-2H-pyrrol-2-one (0.462 g, 1 mmol, 1 equiv) 8i to afford 0.478 g (92%) of 9i as white crystals after flash column chromatography (hexanes/AcOEt 7:3) followed by crystallization (Et₂O). mp (Et₂O) = 114–116 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.99 (s, 1H, \dot{CH}_{Ar}), 7.81 (d, ${}^{3}J_{HH}$ = 8.2 Hz, 1H, \dot{CH}_{Ar}), 7.41–7.24 (m, 8H, 8 × CH_{Ar}), 7.15 (d, ${}^{3}J_{HH}$ = 7.7 Hz, 1H, CH_{Ar}), 7.05 (s, 1H, CH_{Ar}), 6.97 (d, ${}^{3}J_{HH}$ = 8.1 Hz, 1H, CH_{Ar}), 6.62 (s, 1H, NH), 5.74 (s, 1H, CH), 2.80 (d, ${}^{2}J_{HH}$ = 14.7 Hz, 1H, CH_ACH_B), 2.76 (d, ${}^{2}J_{HH}$ = 14.7 Hz, 1H, CH_ACH_B , 2.12 (s, 6H, 2 × NCH_3) ppm. ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 167.6 (C=O), 143.4 (C_{quat}), 138.3 (C_{quat}) , 136.3 (C_{quat}) , 133.1 (C_{quat}) , 131.5 $(q, {}^{2}J_{FC} = 32.1 \text{ Hz}, C_{quat})$, 131.3 (q, ${}^{2}J_{FC} = 32.5$ Hz, C_{quat}), 130.5 (C_{quat}), 129.6 (CH_{Ar}), 129.5 $\begin{array}{l} ({\rm CH}_{\rm Ar}), 129.3 \ (2\times {\rm CH}_{\rm Ar}), 128.7 \ ({\rm CH}_{\rm Ar}), 124.1 \ (q, {}^{1}J_{\rm FC} = 275.5 \ {\rm Hz}, \\ {\rm C}_{\rm quat}), 123.9 \ (q, {}^{1}J_{\rm FC} = 275.5 \ {\rm Hz}, \ {\rm C}_{\rm quat}), 126.9 \ (2\times {\rm CH}_{\rm Ar}), 123.4 \\ ({\rm CH}_{\rm Ar}), 121.0 \ (q, {}^{3}J_{\rm FC} = 3.8 \ {\rm Hz}, {\rm CH}_{\rm Ar}), 120.67 \ ({\rm CH}_{\rm Ar}), 117.8 \ (q, {}^{3}J_{\rm FC}) \end{array}$ = 3.8 Hz, CH_{Ar}), 117.1 (q, ${}^{3}J_{FC}$ = 4.0 Hz, CH_{Ar}), 114.3 (q, ${}^{3}J_{FC}$ = 3.9 Hz, CH_{Ar}), 64.7 (CH), 55.6 (CH₂), 45.5 (2 × NCH₃) ppm. ${}^{19}F$ {¹H} NMR (282 MHz, CDCl₃) δ -63.2, -63.3 ppm. FTIR (neat) n_{max} : 3334 (NH_{st}), 1688 (C= O_{st}), 1611 (C= C_{st}) cm⁻¹. HRMS (ESI-TOF) m/z: [M + H]⁺, calcd for C₂₇H₂₄F₆N₃O 520.1824; found, 520.1834

General Procedure for the Synthesis and Isolation of Acetylated Lactam 10. To a solution of 4-((dimethylamino)-methyl)-5-phenyl-1-(p-tolyl)-3-(p-tolylamino)-1,5-dihydro-2H-pyrrol-2-one 9a (0.367 g, 1 mmol, 1 equiv) in chloroform (3 mL), 12 equiv of acetic anhydride (1.1 mL) was added at room temperature. After 5 min, the solvent was evaporated and the obtained residue was dried in a vacuum pump, where the product crystallized spontaneously. The red crystals were washed with Et₂O, affording pure 10.

(5-Oxo-2-phenyl-1-(p-tolyl)-4-(p-tolylamino)-2,5-dihydro-1Hpyrrol-3-yl)methyl Acetate (10). The general procedure was followed, affording 0.397 g (93%) of 10 as red crystals. mp (Acetic acid) = 162–164 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.39 (d, ³J_{HH} = 8.5 Hz, 2H, 2 × CH_{Ar}), 7.32–7.19 (m, 5H, 5 × CH_{Ar}), 7.07 (d, ${}^{3}J_{HH}$ = 8.3 Hz, 2H, 2 × CH_{Ar}), 7.07 (d, ${}^{3}J_{HH}$ = 8.5 Hz, 2H, 2 × CH_{Ar}), 6.96 (d, ${}^{3}J_{HH}$ = 8.3 Hz, 2H, 2 × CH_{Ar}), 6.34 (s, 1H, NH), 5.57 (s, 1H, CH), 4.62 (d, ${}^{2}J_{HH}$ = 13.3 Hz, 1H, C<u>H</u>_ACH_B), 4.22 (d, ${}^{2}J_{HH}$ = 13.3 Hz, 1H, CH_AC<u>H</u>_B), 2.29 (s, 3H, CH_{3Tol}), 2.25 (s, 3H, CH_{3Tol}), 1.88 (s, 3H, CH₃). ^{13}C {¹H} NMR (101 MHz, CDCl₃) δ 170.6 (C=O), 167.0 (C=O), 138.2 (C_{quat}), 136.7 (C_{quat}), 134.8 (C_{quat}), 134.6 (C_{quat}) , 133.1 (C_{quat}) , 132.6 (C_{quat}) , 129.8 $(2 \times CH_{Ar})$, 129.6 $(2 \times CH_{Ar})$ CH_{Ar}), 129.1 (2 × CH_{Ar}), 128.5 (CH_{Ar}), 127.3 (2 × CH_{Ar}), 121.9 (2 × CH_{Ar}), 120.9 (2 × CH_{Ar}), 115.3 (C_{quat}), 65.4 (CH), 58.1 (CH₂), 21.0 (CH_{3Tol}), 20.9 (CH_{3Tol}), 20.7 (CH₃) ppm. FTIR (neat) n_{max} : 3388 (NH_{st}), 1739 (C=O_{st}), 1675 (C=O_{st}), 1615 (C=C_{st}) cm⁻¹. HRMS (ESI-TOF) m/z: $[M + H]^+$, calcd for C₂₇H₂₇N₂O₃ 427.2022; found, 427.2025.

General Procedure for the Synthesis and Isolation of Spirocyclic Dihydropyridines 5 and 5'. A solution of the corresponding functionalized γ -lactam 2 or 9a (1 mmol, 1 equiv) in chloroform (3 mL) was stirred at room temperature under the presence of 12 equiv of acetic anhydride. After 5 min, the formation of the acetylated intermediate 3 or 10a was detected by NMR. Then, acetic acid was removed under low pressure and freshly distilled triethylamine (0.167 mL, 1.2 equiv) and CHCl₃ (3 mL) were added to the reaction. The mixture was heated at 55 °C overnight. The reaction crude was acidified with 0.5 M HCl aqueous solution and extracted with dichloromethane (2 × 20 mL). The combined organic layers were dried with MgSO₄ and purified by flash column chromatography, affording the corresponding spirocyclic dihydropyridine 5 or 5'.

(Z)-1,1',6'-Trip-tolyl-4-(p-tolylimino)-3',4',5',6'-tetrahydrospiro-[pyrrolidine-3,2'-pyrrolo[3,4-b]pyridine]-5,7'(1'H)-dione (5). The general procedure was followed, affording 0.476 g (82%) of 5 as a yellow solid after chromatography (hexanes/AcOEt 85:15). ¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, ${}^{3}J_{\rm HH}$ = 8.5 Hz, 2H, 2 × CH_{Ar}), 7.48 (d, ${}^{3}J_{\rm HH}$ = 8.6 Hz, 2H, 2 × CH_{Ar}), 7.21–6.96 (m, 10H, 5 × CH_{Ar}), 6.47 (d, ${}^{3}J_{HH} = 8.3$ Hz, H, CH_{Ar}), 4.33 (s, 2H, CH₂), 4.24 (d, ${}^{2}J_{HH} = 10.2$ Hz, 1H, CH_ACH_B), 3.87 (d, ${}^{2}J_{HH} = 10.2$ Hz, 1H, CH_ACH_B), 2.99– 2.76 (m, 1H, CHACHB), 2.70-2.44 (m, 2H, CH2), 2.33 (s, 3H, CH₃), 2.32 (s, 3H, CH₃), 2.30 (s, 3H, CH₃), 2.29 (s, 3H, CH₃), 2.23–2.13 (m, 1H, CH_AC<u>H_B</u>) ppm. ^{13}C {¹H} NMR (101 MHz, CDCl₃) δ 165.0 (C=O), 161.7 (C=O), 156.7 (C_{quat}), 146.2 (C_{quat}), 139.8 (C_{quat}), 137.2 (C_{quat}), 136.6 (C_{quat}), 136.2 (C_{quat}), 136.2 (C_{quat}) , 135.8 (C_{quat}) , 134.0 (C_{quat}) , 133.2 (C_{quat}) , 129.7 $(2 \times CH_{Ar})$, 129.5 (4 × CH_{Ar}), 128.9 (4 × CH_{Ar}), 122.5 (C_{quat}), 119.8 (2 × CH_{Ar}), 118.4 (2 × CH_{Ar}), 118.0 (2 × CH_{Ar}), 61.5 (C_{quat}), 56.0 (CH₂), 50.8 (CH₂), 29.8 (CH₂), 21.2 (CH₃), 21.1 (CH₃), 21.0 (CH₃), 20.8 (CH₃), 19.5 (CH₂) ppm. FTIR (neat) n_{max} : 1696 (C= O_{st}), 1669 (C=N_{st}), 1627 (C=C_{st}) cm⁻¹. HRMS (ESI-TOF) m/z: $[M + H]^+$, calcd for $C_{38}H_{37}N_4O_2$ 581.2917; found, 581.2912.

(2R*,3R*,5'R*,Z)-2,5'-Diphenyl-1,1',6'-trip-tolyl-4-(p-tolylimino)-3',4',5',6'-tetrahydrospiro[pyrrolidine-3,2'-pyrrolo[3,4-b]pyridine]-5,7'(1'H)-dione (5'). The general procedure was applied starting from (5-oxo-2-phenyl-1-(*p*-tolyl)-4-(*p*-tolylamino)-2,5-dihydro-1*H*-pyrrol-3-yl)methyl acetate 9a (0.451 g, 1 mmol) to afford 0.322 g (88%) of 5' as a yellow oil after chromatography (hexanes/AcOEt 9:1). ¹H NMR (400 MHz, CDCl₃) δ 7.68–6.80 (m, 24H, 24 × CH_{Ar}), 6.30 (d, ${}^{3}J_{HH}$ = 8.2 Hz, 2H, 2 × CH_{Ar}), 5.52 (s, 1H, CH), 4.94 (s, 1H, CH), 2.54–2.05 (m, 2H, CH₂), 2.35 (s, 3H, CH_{3Tol}), 2.28 (s, 3H, CH3Tol), 2.24 (s, 3H, CH3Tol), 2.20 (s, 3H, CH3Tol), 1.67 (m, 1H, CH_ACH_B), 1.47 (m, 1H, CH_ACH_B) ppm. ¹³C NMR {¹H} (101 MHz, CDCl₃) & 166.2 (C_{quat}), 161.2 (C_{quat}), 157.6 (C_{quat}), 146.2 (C_{quat}), 140.4 (C_{quat}), 137.8 (C_{quat}), 136.8 (C_{quat}), 136.5 (C_{quat}), 135.9 (C_{quat}), 135.7 (C_{quat}), 135.5 (C_{quat}), 134.0 (C_{quat}), 133.9 (C_{quat}), 134.4 (C_{quat}), 132.6 (C_{quat}), 129.9 (2 × CH_Ar), 129.8 (2 × CH_Ar), 129.5 (\dot{CH}_{Ar}), 129.4 ($\dot{2} \times CH_{Ar}$), 129.3 ($2 \times CH_{Ar}$), 129.2 ($2 \times$ CH_{Ar}), 129.1 (CH_{Ar}), 128.8 (2 × CH_{Ar}), 128.7 (2 × CH_{Ar}), 128.2 (2 \times CH_{Ar}), 126.1 (2 \times CH_{Ar}), 121.6 (2 \times CH_{Ar}), 120.1 (2 \times CH_{Ar}), 117.6 $(2 \times CH_{Ar})$, 72.3 (CH), 66.9 (C_{quat}), 65.0 (CH), 24.5 (CH₂), 21.1 (CH₃Tol), 21.0 (CH₃Tol), 20.9 (CH₃Tol), 20.7 (CH₃Tol), 18.1 (CH₂) ppm. FTIR (neat) n_{max} : 1698 (C=O_{st}), 1669 (C=N_{st}), 1628 $(C = C_{st})$ cm⁻¹. HRMS (ESI-TOF) m/z: $[M + H]^+$, calcd for C₅₀H₄₅N₄O₂ 733.3543; found, 733.3537.

General Procedure for the Synthesis and Isolation of Bicycle 7. A solution of the corresponding functionalized γ -lactam 2 (1 mmol, 1 equiv) in chloroform (3 mL) was stirred at room temperature under the presence of 12 equiv of acetic anhydride. After 5 min, the formation of the acetylated intermediate 3 was detected by NMR. Then, acetic acid was removed under low pressure and freshly distilled triethylamine (0.167 mL, 1.2 equiv), *N*-*p*-tolylmethanimine (0.273 mL, 2 equiv) and CHCl₃ (3 mL) were added to the reaction. The mixture was heated at 55 °C overnight. The reaction crude was acidified with 0.5 M HCl aqueous solution and extracted with dichloromethane (2 × 20 mL). The combined organic layers were dried with MgSO₄ and purified by flash column chromatography (hexanes/AcOEt 8:2), affording the corresponding bicycle 7.

1,3,6-Trip-tolyl-1,2,3,4,5,6-hexahydro-7H-pyrrolo[3,4-d]pyrimidin-7-one (7). The general procedure was followed, affording 0.172 g (42%) of 7 as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, ³J_{HH} = 8.6 Hz, 2H, 2 × CH_{Ar}), 7.15 (d, ³J_{HH} = 8.4 Hz, 2H, 2 × CH_{Ar}), 7.09 (d, ³J_{HH} = 8.4 Hz, 2H, 2 × CH_{Ar}), 7.00 (d, ³J_{HH} = 8.6 Hz, 2H, 2 × CH_{Ar}), 6.95 (d, ³J_{HH} = 8.4 Hz, 2H, 2 × CH_{Ar}), 6.72 (d, ${}^{3}J_{\text{HH}} = 8.6 \text{ Hz}, 2\text{H}, 2 \times \text{CH}_{\text{Ar}}), 4.83 (s, 1\text{H}, \text{CH}), 4.41 (d, {}^{4}J_{\text{HH}} = 1.2 \text{ Hz}, 2\text{H}, \text{CH}_{2}), 4.20 (d, {}^{4}J_{\text{HH}} = 1.2 \text{ Hz}, 2\text{H}, \text{CH}_{2}), 2.32 (s, 3\text{H}, \text{CH}_{3}), 2.30 (s, 3\text{H}, \text{CH}_{3}), 2.23 (s, 3\text{H}, \text{CH}_{3}) \text{ ppm.} {}^{13}\text{C} {}^{1}\text{H} \text{NMR} (101 \text{ MHz}, \text{CDCl}_{3}) \delta 165.1 (C=0), 146.5 (C_{quat}), 143.3 (C_{quat}), 137.5 (C_{quat}), 136.7 (C_{quat}), 133.9 (C_{quat}), 133.5 (C_{quat}), 130.3 (C_{quat}), 130.2 (2 \times \text{CH}_{\text{Ar}}), 130.0 (4 \times \text{CH}_{\text{Ar}}), 127.6 (C_{quat}), 122.5 (2 \times \text{CH}_{\text{Ar}}), 118.9 (2 \times \text{CH}_{\text{Ar}}), 117.4 (2 \times \text{CH}_{\text{Ar}}), 71.5 (\text{CH}_{2}), 50.3 (\text{CH}_{2}), 48.3 (\text{CH}_{2}), 21.3 (\text{CH}_{3}), 21.2 (\text{CH}_{3}), 20.9 (\text{CH}_{3}) \text{ ppm. FTIR} (neat) n_{\text{max}}: 1687 (C=O_{\text{st}}), 1631 (C=C_{\text{st}}) \text{ cm}^{-1}. \text{HRMS} (\text{ESI-TOF}) m/z: [M + H]^+, (and the scission of the tetrahydropyrimidine) calcd for C_{19}H_{19}N_2O 291.1497; found, 291.1493.$

General Procedure for the Synthesis of Spiro Bicyclo[2.2.1]heptane Pyrrolidines 6 and 12. A solution of the corresponding functionalized γ -lactam 2 or 9 (1 mmol, 1 equiv) in chloroform (3 mL) was stirred at room temperature under the presence of 12 equiv of acetic anhydride. After 5 min, the formation of the acetylated intermediate 3 or 10 was detected by NMR. Then, acetic acid was removed under low pressure and freshly distilled triethylamine (0.167 mL, 1.2 equiv), cyclopentadiene (0.5 mL, 6 equiv), and CHCl₃ (3 mL) were added to the reaction. The mixture was heated at 55 °C overnight. The reaction crude was acidified with HCl 0.5 M aqueous solution and extracted with dichloromethane (2 × 20 mL). The combined organic layers were dried with MgSO₄ and purified by chromatography, affording the corresponding spiro bicyclo[2.2.1]heptane pyrrolidines 6 or 12.

(1S*,2R*,4S*,Z)-1'-(p-Tolyl)-4'-(p-tolylimino)spiro[bicyclo[2.2.1]heptane-2,3'-pyrrolidin]-5-en-5'-one (6). The general procedure was applied using 4-((dimethylamino)methyl)-1-(p-tolyl)-3-(p-tolylamino)-1,5-dihydro-2H-pyrrol-2-one (0.335 g, 1 mmol, 1 equiv) 2 to afford 0.260 g (73%) of 6 as a yellow oil after flash column chromatography (hexanes/AcOEt 9:1). ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, ${}^{3}J_{HH}$ = 8.6 Hz, 2H, 2 × CH_{Ar}), 7.11 (d, ${}^{3}J_{HH}$ = 8.6 Hz, 2H, 2 \times CH_{Ar}), 7.08 (d, ³J_{HH} = 8.6 Hz, 2H, 2 \times CH_{Ar}), 6.93 (d, ³J_{HH} = 8.4 Hz, 2H, 2 × CH_{Ar}), 5.98 (ddt, ${}^{3}J_{HH}$ = 5.6 Hz, ${}^{3}J_{HH}$ = 2.7 Hz, ${}^{4}J_{HH}$ = 1.3 Hz, 1H, = CH), 5.81 (dtd, ${}^{3}J_{HH}$ = 5.7 Hz, ${}^{3}J_{HH}$ = 3.0 Hz, ${}^{4}J_{HH}$ = 2.0 Hz, 1H, = CH), 4.68 (ddq, ${}^{3}J_{HH}$ = 6.1 Hz, ${}^{3}J_{HH}$ = 2.9 Hz, ${}^{4}J_{HH}$ = 1.5 Hz, 1H, CH), 4.25 (q, ${}^{4}J_{HH} = 1.6$ Hz, 2H, CH₂), 2.78–2.64 (m, 1H, CH), 2.59 (ddtd, ${}^{2}J_{HH} = 15.6$ Hz, ${}^{3}J_{HH} = 5.8$ Hz, ${}^{3}J_{HH} = 2.9$ Hz, ${}^{4}J_{\rm HH}$ = 1.9 Hz, 1H, CH), 2.45 (dd, ${}^{2}J_{\rm HH}$ = 17.8 Hz, ${}^{3}J_{\rm HH}$ = 7.1 Hz, 1H, CH), 2.30 (s, 6H, $2 \times CH_3$), 2.22–2.11 (m, 2H, CH₂) ppm. ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 165.3 (C=O), 144.1 (C_{quat}), 137.6 (C_{quat}), 135.8 (CH), 134.3 (C_{quat}), 133.0 (C_{quat}), 132.2 (C_{quat}), 130.4 (CH), 129.5 (2 × CH_{Ar}), 129.3 (2 × CH_{Ar}), 125.9 (C_{quat}), 122.0 (2 × CH_{Ar}), 118.4 (2 × CH_{Ar}), 70.0 (CH), 51.1 (CH₂), 39.2 (CH₂), 35.2 (CH), 25.9 (CH₂), 21.0 (CH₃), 20.9 (CH₃) ppm. FTIR (neat) n_{max}: $3027 (=CH_{st}), 1704 (C=O_{st}), 1678 (C=C_{st}) cm^{-1}$. HRMS (ESI-TOF) m/z: $[M + H]^+$, calcd for C₂₄H₂₅N₂O 357.1967; found, 357.1965.

(1S*,2R*,2'R*,4S*,Z)-2'-Phenyl-1'-(p-tolyl)-4'-(p-tolylimino)spiro[bicyclo[2.2.1]heptane-2,3'-pyrrolidin]-5-en-5'-one (12a). The general procedure was applied using 4-((dimethylamino)methyl)-5phenyl-1-(p-tolyl)-3-(p-tolylamino)-1,5-dihydro-2H-pyrrol-2-one (0.412 g, 1 mmol, 1 equiv) 9a to afford 0.359 g (83%) of 12a as a yellow oil after flash column chromatography (hexanes/AcOEt 98:02). ¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, ³J_{HH} = 8.6 Hz, 2H, 2 × CH_{Ar}), 7.38–7.29 (m, 2H, 2 × CH_{Ar}), 7.28 (d, ${}^{3}J_{HH} = 7.3$ Hz, 1H, CH_{Ar}), 7.15 (d, ${}^{3}J_{HH} = 8.5$ Hz, 2H, 2 × CH_{Ar}), 7.08 (d, ${}^{3}J_{HH} = 8.5$ Hz, 2H, 2 × CH_{Ar}), 7.08 (d, ${}^{3}J_{HH}$ = 8.2 Hz, 2H, 2 × CH_{Ar}), 7.02 (d, ${}^{3}J_{\text{HH}} = 8.2 \text{ Hz}, 2\text{H}, 2 \times \text{CH}_{\text{Ar}}), 6.55 \text{ (dd, } {}^{3}J_{\text{HH}} = 5.7 \text{ Hz}, {}^{3}J_{\text{HH}} = 3.1 \text{ Hz},$ 1H, = CH), 6.42 (dd, ${}^{3}J_{HH}$ = 5.7 Hz, ${}^{3}J_{HH}$ = 3.1 Hz, 1H, = CH), 4.85 (s, 1H, CH), 3.12 (s, 1H, CH), 2.89 (s, 1H, CH), 2.35 (s, 3H, CH₃), 2.24 (s, 3H, CH₃), 2.22-2.13 (m, 2H, CH₂), 1.48 (m, 1H, CH_ACH_B , 0.84 (dd, ${}^2J_{HH}$ = 12.4 Hz, ${}^3J_{HH}$ = 2.9 Hz, 1H, CH_ACH_B) ppm. ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 165.3 (C=O), 159.0 (C_{quat}) , 147.4 (C_{quat}) , 142.6 (CH), 139.5 (C_{quat}) , 136.1 (C_{quat}) , 135.5 (C_{quat}) , 134.3 (CH), 133.4 (C_{quat}) , 129.4 $(2 \times CH_{Ar})$, 129.3 $(2 \times CH_{Ar})$ CH_{Ar}^{1}), 129.2 (2 × CH_{Ar}), 128.2 (CH), 126.7 (2 × CH_{Ar}), 121.0 (2 × CH_{Ar}), 118.2 (2 × CH_{Ar}), 69.6 (CH), 58.1 (C_{quat}), 51.9 (CH), 46.1 (CH₂), 43.0 (CH), 34.9 (CH₂), 21.2 (CH₃), 21.0 (CH₃) ppm. FTIR (neat) n_{max} : 3031 (=CH_{st}), 1701 (C=O_{st}), 1675 (C=C_{st}) cm⁻¹.

HRMS (ESI-TOF) m/z: $[M + H]^+$, (and the scission of the spirocycle) calcd for $C_{25}H_{23}N_2O$ 367.1810; found, 367.1807.

(15*,2R*,2'R*,4S*,Z)-1',2'-Diphenyl-4'-(phenylimino)spiro-[bicyclo[2.2.1]heptane-2,3'-pyrrolidin]-5-en-5'-one (12b). The general procedure was applied using 4-((dimethylamino)methyl)-1,5diphenyl-3-(phenylamino)-1,5-dihydro-2H-pyrrol-2-one 9b (0.383 g, 1 mmol, 1 equiv) to afford 0.309 g (76%) of 12b as a yellow oil after flash column chromatography (hexanes/AcOEt 98:2). ¹H NMR (400 MHz, CDCl₃) δ 7.44 (d, ³J_{HH} = 7.8 Hz, 2H, 2 × CH_{Ar}), 7.26 (t, ³J_{HH} = 7.8 Hz, 4H, 4 × CH_{Ar}), 7.20 (d, ${}^{3}J_{HH}$ = 7.0 Hz, 1H, CH_{Ar}), 7.17– 7.09 (m, 2H, 2 × CH_{Ar}), 7.06–6.98 (m, 4H, 4 × CH_{Ar}), 6.82 (d, ${}^{3}J_{HH}$ = 7.4 Hz, 2H, 2 × CH_{Ar}), 6.47 (dd, ${}^{3}J_{HH}$ = 5.7 Hz, ${}^{3}J_{HH}$ = 3.1 Hz, 1H, = CH), 6.34 (dd, ${}^{3}J_{HH}$ = 5.7 Hz, ${}^{3}J_{HH}$ = 3.1 Hz, 1H, = CH), 4.79 (s, 1H, CH), 3.05 (s, 1H, CH), 2.82 (s, 1H, CH), 2.33-2.10 (m, 1H, CH), 2.08 (d, ${}^{3}J_{HH} = 3.7$ Hz, 1H, CH), 1.71–1.15 (m, 1H, C<u>H</u>_ACH_B), 0.78 (dd, ${}^{2}J_{HH} = 12.4$ Hz, ${}^{3}J_{HH} = 3.0$ Hz, 1H, CH_AC<u>H</u>_B) ppm. ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 165.5 (C=O), 159.1 (C_{quat}), 150.1 (C_{quat}), 142.7 (CH), 139.5 (C_{quat}), 138.5 (C_{quat}), 134.3 (CH), 129.4 (2 × CH_{Ar}), 128.9 (2 × CH_{Ar}), 128.6 (2 × CH_{Ar}), 128.4 (CH), 126.7 (2 \times CH_{Ar}), 125.8 (CH), 124.0 (CH), 121.2 (2 \times (CH_{Ar}) , 118.0 (2 × $CH_{Ar})$, 69.6 (CH), 58.1 (C_{quat}), 52.0 (CH), 46.1 (CH₂), 43.0 (CH), 34.9 (CH₂) ppm. FTIR (neat) n_{max} : 3061 (= CH_{st}), 1699 (C= O_{st}), 1682 (C= C_{st}) cm⁻¹. HRMS (ESI-TOF) m/z: $[M + H]^+$, calcd for $C_{28}H_{25}N_2O$ 405.1967; found, 405.1965.

(1S*,2R*,2'R*,4S*,Z)-1'-(4-Methoxyphenyl)-4'-((4methoxyphenyl)imino)-2'-phenylspiro[bicyclo[2.2.1]heptane-2,3'pyrrolidin]-5-en-5'-one (12c). The general procedure was applied using 4-((dimethylamino)methyl)-1-(4-methoxyphenyl)-3-((4methoxyphenyl)amino)-5-phenyl-1,5-dihydro-2H-pyrrol-2-one (0.444 g, 1 mmol, 1 equiv) 9c to afford 0.218 g (47%) of 12c as yellow crystals after flash column chromatography (hexanes/AcOEt 98:2) followed by crystallization (hexanes/CHCl₃ 3:1). mp (hexanes/ $CHCl_3$ = 124–126 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.43–7.40 (m, 2H, 2 × CH_{Ar}), 7.36–7.31 (m, 2H, 2 × CH_{Ar}), 7.29–7.24 (m, 1H, CH_{Ar}), 7.08 (dd, ${}^{3}J_{HH}$ = 8.3 Hz, ${}^{3}J_{HH}$ = 1.4 Hz, 2H, 2 × CH_{Ar}), 6.99–6.87 (m, 4H, 4 × CH_{Ar}), 6.79–6,72 (m, 2H, 2 × CH_{Ar}), 6.55 $(dd, {}^{3}J_{HH} = 5.7 Hz, {}^{3}J_{HH} = 2.9 Hz, 1H, = CH), 6.43 (dd, {}^{3}J_{HH} = 5.7 Hz)$ Hz, ${}^{3}J_{HH} = 2.9$ Hz, 1H, = CH), 4.81 (s, 1H, CH), 3.82 (s, 3H, OCH₃), 3.72 (s, 3H, OCH₃), 3.12 (s, 1H, CH), 2.90 (s, 1H, CH), 2.23–2.13 (m, 2H, CH₂), 1.52–1.46 (m, 1H, CH_ACH_B), 0.83 (dd, ${}^{2}J_{\rm HH}$ = 12.3 Hz, ${}^{3}J_{\rm HH}$ = 2.9 Hz, 1H, CH_AC<u>H</u>_B) ppm. 13 C {¹H} NMR (101 MHz, CDCl₃) δ 165.0 (C=O), 159.1 (C_{quat}), 157.5 (C_{quat}), 156.8 (C_{quat}), 142.7 (C_{quat}), 142.6 (CH), 139.6 (C_{quat}), 134.4 (CH), 131.7 (\dot{C}_{quat}), 129.3 ($2 \times CH_{Ar}$), 128.8 (CH), 126.8 ($2 \times CH_{Ar}$), 123.0 (2 \times CH_{Ar}), 120.3 (2 \times CH_{Ar}), 114.1 (2 \times CH_{Ar}), 113.1 (2 \times CH_{Ar}), 70.2 (CH), 58.2 (C_{guat}), 55.5 (OCH₃), 55.4 (OCH₃), 52.0 (CH), 46.1 (CH₂), 43.0 (CH), 34.9 (CH₂) ppm. FTIR (neat) n_{max}: $3056 (=CH_{st}), 1690 (C=O_{st}), 1645 (C=C_{st}) cm^{-1}$. HRMS (ESI-TOF) m/z: $[M + H]^+$ calcd for $C_{30}H_{29}N_2O_3$ 465.2178; found, 465.2166.

(1S*,2R*,2'R*,4S*,Z)-1'-(4-BromophenvI)-4'-((4-bromophenvI)imino)-2'-phenylspiro[bicyclo[2.2.1]heptane-2,3'-pyrrolidin]-5-en-5'-one (12d). The general procedure was applied using 1-(4bromophenyl)-3-((4-bromophenyl)amino)-4-((dimethylamino)methyl)-5-phenyl-1,5-dihydro-2H-pyrrol-2-one (0.541 g, 1 mmol, 1 equiv) 9d to afford 0.427 g (76%) of 12d as yellow crystals after flash column chromatography (hexanes/AcOEt 95:5) followed by crystallization (hexanes/CHCl₃ 3:1). mp (hexanes/CHCl₃) = 200-201 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, ³J_{HH} = 8.9 Hz, 2H, 2 × CH_{Ar}), 7.44 (d, ${}^{3}J_{HH}$ = 8.9 Hz, 2H, 2 × CH_{Ar}), 7.36 (d, ${}^{3}J_{HH}$ = 7.0 Hz, 2H, 2 × CH_{Ar}), 7.35 (d, ${}^{3}J_{HH}$ = 7.0 Hz, 2H, 2 × CH_{Ar}), 7.35 – 7.32 (m, 2H, 2 × CH_{Ar}), 7.30 (d, ${}^{3}J_{HH}$ = 7.0 Hz, 1H, CH_{Ar}), 7.03 (d, ${}^{3}J_{HH}$ = 8.6 Hz, 2H, 2 × CH_{Ar}), 6.78 (d, ${}^{3}J_{HH}$ = 8.6 Hz, 2H, 2 × CH_{Ar}), 6.58 (dd, ${}^{3}J_{HH}$ = 5.6 Hz, ${}^{3}J_{HH}$ = 2.9 Hz, 1H, = CH), 6.42 (dd, ${}^{3}J_{HH}$ = 5.6 Hz, ${}^{3}J_{HH}$ = 2.9 Hz, 1H, = CH), 4.85 (s, 1H, CH), 3.11 (s, 1H, CH), 2.91 (s, 1H, CH), 2.22-2.02 (m, 2H, CH₂), 1.53 (d, ${}^{3}J_{HH}$ = 3.3 Hz, 1H, C<u>H</u>_ACH_B), 0.87 (dd, ${}^{2}J_{HH}$ = 12.5 Hz, ${}^{3}J_{HH} = 3.3$ Hz, 1H, CH_AC<u>H</u>_B) ppm. ${}^{13}C$ {¹H} NMR (101 MHz, CDCl₃) δ 165.9 (C=O), 158.9 (C_{quat}), 148.9 (C_{quat}), 142.9 (CH), 138.8 (C_{quat}), 137.4 (C_{quat}), 134.1 (CH), 132.1 (2 × CH_{Ar}), 131.7 (2 \times CH_{Ar}), 129.6 (2 \times CH_{Ar}), 128.7 (CH), 126.6 (2 \times CH_{Ar}), 122.5 (2

× CH_{Ar}), 119.9 (2 × CH_{Ar}), 119.2 (C_{quat}), 117.2 (C_{quat}), 69.5 (CH), 58.1 (C_{quat}), 52.2 (CH), 46.2 (CH₂), 43.0 (CH), 35.1 (CH₂) ppm. FTIR (neat) n_{max} : 3048 (=CH_{st}), 1696 (C=O_{st}), 1672 (C=C_{st}) cm⁻¹. HRMS (ESI-TOF) m/z: [M + H]⁺, calcd for C₂₈H₂₃Br₂N₂O 563.0157; found, 563.0149.

(1S*,2R*,2'R*,4S*,Z)-1'-(4-Chlorophenyl)-4'-((4-chlorophenyl)imino)-2'-phenylspiro[bicyclo[2.2.1]heptane-2,3'-pyrrolidin]-5-en-5'-one (12e). The general procedure was applied using 4-((dimethylamino)methyl)-1-(4-chlorophenyl)-3-((4-chlorophenyl)amino)-5-phenyl-1,5-dihydro-2H-pyrrol-2-one (0.452 g, 1 mmol, 1 equiv) 9e to afford 0.307 g (68%) of 12e as a yellow oil after flash column chromatography (pentane/Et₂O 98:2). ¹H NMR (400 MHz, CDCl₃) δ 7.53–7.44 (m, 2H, 2 × CH_{Ar}), 7.40–7.27 (m, 5H, 5 × CH_{Ar}), 7.22–7.17 (m, 2H, 2 × CH_{Ar}), 7.05–7.03 (m, 2H, 2 × CH_{Ar}), 6.86–6.82 (m, 2H, 2 × CH_{Ar}), 6.58 (dd, ${}^{3}J_{HH}$ = 5.7 Hz, ${}^{4}J_{HH}$ = 3.1 Hz, 1H, = CH), 6.43 (dd, ${}^{3}J_{HH}$ = 5.7 Hz, ${}^{4}J_{HH}$ = 3.0 Hz, 1H, = CH), 4.85 (s, 1H, CH), 3.11 (s, 1H, CH), 2.91 (s, 1H, CH), 2.14 (dd, ${}^{3}J_{HH} = 8.5$ Hz, ${}^{3}J_{HH} = 4.0$ Hz, 2H, CH₂), 1.55–1.46 (m, 1H, C<u>H</u>_ACH_B), 0.87 $(dd, {}^{2}J_{HH} = 12.5 \text{ Hz}, {}^{4}J_{HH} = 3.0 \text{ Hz}, 1\text{H}, \text{CH}_{A}\text{CH}_{B}) \text{ ppm.} {}^{13}\text{C} \{{}^{1}\text{H}\}$ NMR (101 MHz, $CDCl_3$) δ 165.9 (C=O), 159.0 (C_{quat}), 148.4 (C_{quat}), 151.4 (C_{quat}), 143.0 (CH), 138.9 (C_{quat}), 137.0 (C_{quat}), 134.1 (CH), 131.4 (C_{quat}), 129.5 (2 × CH_{Ar}), 129.4 (C_{quat}), 129.1 (2 × CH_{Ar}), 128.7 (2 × CH_{Ar}), 128.6 (CH_{Ar}), 126.6 (2 × CH_{Ar}), 122.3 (2 \times CH_{Ar}), 119.6 (2 \times CH_{Ar}), 69.6 (CH₂), 58.1 (C_{quat}), 52.2 (CH₂), 46.2 (CH), 43.0 (CH₂), 35.1 (CH) ppm. FTIR (neat) n_{max} : 3057 (= CH_{st}), 1708 (C= O_{st}), 1682 (C= C_{st}) cm⁻¹. HRMS (ESI-TOF) m/z: $[M + H]^+$, calcd for $C_{28}H_{23}Cl_2N_2O$ 473.1187; found, 473.1178.

(1S*,2R*,2'R*,4S*,Z)-1'-(4-Fluorophenyl)-4'-((4-fluorophenyl)imino)-2'-phenylspiro[bicyclo[2.2.1]heptane-2,3'-pyrrolidin]-5-en-5'-one (12f). The general procedure was applied using 4-((dimethylamino)methyl)-1-(4-fluorophenyl)-3-((4-fluorophenyl)amino)-5-phenyl-1,5-dihydro-2H-pyrrol-2-one (0.419 g, 1 mmol, 1 equiv) 9f to afford 0.216 g (49%) of 12f as a yellow oil after flash column chromatography (pentane/Et₂O 98:2). ¹H NMR (400 MHz, CDCl₃) δ 7.50–7.42 (m, 2H, 2 × CH_{Ar}), 7.40–7.28 (m, 3H, 3 × CH_{Ar}), 7.10–7.00 (m, 4H, 4 × CH_{Ar}), 6.97–6.80 (m, 4H, 4 × CH_{Ar}), 6.57 (dd, ${}^{3}J_{HH} = 5.7$ Hz, ${}^{4}J_{HH} = 3.1$ Hz, 1H, = CH), 6.43 (dd, ${}^{3}J_{HH} =$ 5.7 Hz, ${}^{4}J_{HH}$ = 3.1 Hz, 1H, = CH), 4.82 (s, 1H, CH), 3.12 (s, 1H, CH), 2.91 (s, 1H, CH), 2.23–1.98 (m, 2H, CH₂), 1.53–1.49 (m, 1H, $C\underline{H}_{A}CH_{B}$), 0.85 (dd, ² J_{HH} = 12.4 Hz, ⁴ J_{HH} = 3.0 Hz, 1H, $CH_{A}C\underline{H}_{B}$) ppm. ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 166.2 (C=O), 160.7 (d, $J_{FC} = 246.7$ Hz, C_{quat}), 160.4 (d, ${}^{1}J_{FC} = 242.0$ Hz, C_{quat}), 159.4 (C_{quat}) , 146.0 (d, ${}^{4}J_{FC} = 2.9$ Hz, C_{quat}), 143.2 (CH), 139.4 (C_{quat}), 134.8 (d, ${}^{4}J_{FC} = 3.0$ Hz, C_{quat}), 134.5 (CH), 129.8 (2 × CH_A), 128.9 (2 × CH_A), 127.0 (CH_A), 123.6 (d, ${}^{3}J_{FC} = 8.0$ Hz, 2 × CH_A), 120.1 (d, ${}^{3}J_{FC} = 8.1$ Hz, 2 × CH_{Ar}), 116.1 (d, ${}^{2}J_{FC} = 22.5$ Hz, 2 × CH_{Ar}), 115.6 (d, ${}^{2}J_{FC}$ = 22.6 Hz, 2 × CH_{Ar}), 70.4 (CH), 58.5 (C_{auat}), 52.4 (CH), 46.4 (CH₂), 43.4 (CH), 35.4 (CH₂) ppm. 19 F { 11 H} NMR (282 MHz, CDCl₃) δ –115.4, –120.0 ppm. FTIR (neat) n_{max} : 3057 $(=CH_{st})$, 1704 $(C=O_{st})$, 1673 $(C=C_{st})$ cm⁻¹. HRMS (ESI-TOF) m/z: [M + H]⁺, calcd for C₂₈H₂₃F₂N₂O 441.1778; found, 441.1765. (15*,2R*,2'R*,4S*,Z)-1'-(3-Chlorophenyl)-4'-((3-chlorophenyl)imino)-2'-phenylspiro[bicyclo[2.2.1]heptane-2,3'-pyrrolidin]-5-en-5'-one (12g). The general procedure was applied using 1-(3chlorophenyl)-3-((3-chlorophenyl)amino)-4-((dimethylamino)methyl)-5-phenyl-1,5-dihydro-2H-pyrrol-2-one (0,452 g, 1 mmol, 1 equiv) 9g to afford 0.123 g (26%) of 12g as yellow crystals after flash column chromatography (pentane/Et₂O 8:2) followed by crystallization (pentane/Et₂O 3:1). mp (pentane/Et₂O) = 189–191 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.76 (t, ⁴J_{HH} = 2.1 Hz, 1H, CH_{Ar}), 7.37 $(t, {}^{3}J_{HH} = 7.5 \text{ Hz}, 2H, 2 \times CH_{Ar}), 7.35-7.27 \text{ (m, 1H, CH}_{Ar}), 7.29 \text{ (d,}$ ${}^{3}J_{\rm HH}$ = 7.5 Hz, 2H, 2 × CH_{Ar}), 7.13 (d, ${}^{3}J_{\rm HH}$ = 8. 0 Hz, 2H, 2 × CH_{Ar}), 7.08 (d, ${}^{4}J_{HH}$ = 1.2 Hz, 2H, 2 × CH_{Ar}), 7.05 (s, 1H, CH_{Ar}), 6.90 (d, ${}^{4}J_{HH}$ = 2.1 Hz, 1H, CH_{Ar}), 6.77 (ddd, ${}^{3}J_{HH}$ = 8.0 Hz, ${}^{4}J_{HH}$ = 2.1 Hz, ${}^{4}J_{HH} = 1.2$ Hz, 1H, CH_{Ar}), 6.59 (dd, ${}^{3}J_{HH} = 5.8$ Hz, ${}^{3}J_{HH} = 3.1$ Hz, 1H, = CH), 6.44 (dd, ${}^{3}J_{HH}$ = 5.8 Hz, ${}^{3}J_{HH}$ = 3.1 Hz, 1H, = CH), 4.87 (s, 1H, CH), 3.12 (s, 1H, CH), 2.92 (s, 1H, CH), 2.17-2.11 (m, 2H, CH₂), 1.54–1.50 (m, 1H, CH_ACH_B), 0.87 (dd, ${}^{2}J_{HH}$ = 12.5 Hz, ${}^{3}J_{HH}$ = 3.0 Hz, 1H, CH_ACH_B) ppm. ${}^{13}C$ {¹H} NMR (101 MHz,

CDCl₃) δ 166.0 (C=O), 158.7 (C_{ouat}), 151.1 (C_{ouat}), 142.8 (CH),

139.3 (C_{quat}), 138.6 (C_{quat}), 134.7 (C_{quat}), 134.3 (C_{quat}), 134.0 (CH), 129.8 (CH), 129.6 (CH), 129.5 (2 × CH_{Ar}), 128.6 (CH), 126.4 (2 × CH_{Ar}), 125.9 (CH), 123.9 (CH), 121.1 (CH), 118.5 (CH), 118,1 (CH), 116.0 (CH), 69.4 (CH), 58.0 (C_{quat}), 52.0 (CH), 46.0 (CH₂), 42.9 (CH), 35.0 (CH₂) ppm. FTIR (neat) n_{max} : 3025 (=CH_{st}), 1703 (C=O_{st}), 1677 (C=C_{st}) cm⁻¹. HRMS (ESI-TOF) m/z: [M + H]⁺, calcd for C₂₈H₂₃Cl₂N₂O 473.1187; found, 473.1178.

(1S*,2R*,2'R*,4S*,Z)-1'-(2-Fluorophenyl)-4'-((2-fluorophenyl)imino)-2'-phenylspiro[bicyclo[2.2.1]heptane-2,3'-pyrrolidin]-5-en-5'-one (12h). The general procedure was applied using 4-((dimethylamino)methyl)-1-(2-fluorophenyl)-3-((2-fluorophenyl)amino)-5-phenyl-1,5-dihydro-2H-pyrrol-2-one (0.419 g, 1 mmol, 1 equiv) 9h to afford 0.238 g (54%) of 12h as yellow crystals after flash column chromatography (hexanes/AcOEt 95:5) followed by crystallization (hexanes/CHCl₃ 3:1). mp (hexanes/CHCl₃) = 166-168 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.49–7.41 (m, 4H, 4 × CH_{Ar}), 7.37–7.33 (m, 1H, CH_{Ar}), 7.29–7.23 (m, 5H, 5 × CH_{Ar}), 7.19 (d, ${}^{3}J_{HH}$ = 7.5 Hz, 2H, 2 × CH_{Ar}), 7.13 (t, ${}^{3}J_{HH}$ = 7.5 Hz, 1H, CH_{Ar}), 6.67 (3, 2H, = CH), 5.02 (s, 1H, CH), 3.48 (s, 1H, CH), 3.09 (s, 1H, CH), 2.49–2.41 (m, 2H, CH₂), 1.69 (d, ${}^{3}J_{HH} = 8.9$ Hz, 1H, CH_ACH_B , 0.98 (d, ${}^2J_{HH}$ = 12.4 Hz, 1H, CH_ACH_B) ppm. ${}^{13}C$ { ^{1}H } NMR (101 MHz, CDCl₃) δ 168.3 (C=O), 159.2 (C_{quat}), 157.4 (d, ${}^{1}J_{FC}$ = 250.7 Hz, C_{quat}), 151.4 (d, ${}^{1}J_{FC}$ = 243.4 Hz, C_{quat}), 142.5 (CH), 138.8 (C_{quat}), 137.5 (d, ${}^{2}J_{FC}$ = 13.4 Hz, C_{quat}), 134.6 (CH), 129.5 (d, ${}^{3}J_{\rm FC}$ = 8.0 Hz, CH_{Ar}), 129.1 (2 × CH_{Ar}), 128.73 (CH_{Ar}), 128.4 (2 × CH_{Ar}), 127.5 (CH_{Ar}), 125.0 (d, ${}^{3}J_{FC}$ = 7.6 Hz, CH_{Ar}), 124.8 (d, ${}^{2}J_{FC}$ = 11.6 Hz, C_{quat}), 124.5 (d, ${}^{3}J_{FC}$ = 3.6 Hz, CH_{Ar}), 124.1 (d, ${}^{3}J_{FC}$ = 3.6 Hz, CH_{Ar}), 121.3 (d, ${}^{4}J_{FC}$ = 2.2 Hz, CH_{Ar}), 116.6 (d, ${}^{2}J_{FC}$ = 19.6 Hz, CH_{Ar}), 115.4 (d, ${}^{2}J_{FC}$ = 20.3 Hz, CH_{Ar}), 71.1 (d, ${}^{4}J_{FC}$ = 3.6 Hz, CH), 58.2 (C_{quat}), 52.5 (CH), 45.9 (CH₂), 43.3 (CH), 35.7 (CH₂) ppm. ¹⁹F {¹H} NMR (282 MHz, CDCl₃) δ –119.9, –127.7 ppm. FTIR (neat) n_{max} : 3056 (=CH_{st}), 1717 (C=O_{st}), 1681 (C=C_{st}) cm⁻¹. HRMS (ESI-TOF) m/z: $[M + H]^+$, calcd for $C_{28}H_{23}F_2N_2O$ 441.1778; found, 441.1775.

(1S*,2R*,2'R*,4S*,Z)-2'-Phenyl-1'-(3-(trifluoromethyl)phenyl)-4'-((3-(trifluoromethyl)phenyl)imino)spiro[bicyclo[2.2.1]heptane-2,3'-pyrrolidin]-5-en-5'-one (12i). The general procedure was applied using 4-((dimethylamino)methyl)-5-phenyl-1-(3-(trifluoromethyl)phenyl)-3-((3-(trifluoromethyl)phenyl)amino)-1,5dihydro-2H-pyrrol-2-one (0.519 g, 1 mmol, 1 equiv) 9i to afford 0.222 g (41%) of 12i as a yellow solid after flash column chromatography (Pentane/Et₂O 8:2). ¹H NMR (400 MHz, CDCl₃) δ 7.89 (s, 1H, CH_{Ar}), 7.68–7.63 (m, 1H, CH_{Ar}), 7.46 (t, ³J_{HH} = 7.8 Hz, 1H, CH_{Ar}), 7.41–7.30 (m, 6H, 6 × CH_{Ar}), 7.15 (s, 1H, CH_{Ar}), 7.07 (dt, ${}^{3}J_{HH} = 8.3$ Hz, ${}^{3}J_{HH} = 2.5$ Hz, 3H, 3 × CH_{Ar}), 6.60 (dd, ${}^{3}J_{HH}$ = 5.6 Hz, ${}^{3}J_{HH}$ = 3.1 Hz, 1H, = CH), 6.46 (dd, ${}^{3}J_{HH}$ = 5.6 Hz, ${}^{3}J_{HH}$ = 3.1 Hz, 1H, = CH), 4.91 (s, 1H, CH), 3.17 (s, 1H, CH), 2.94 (s, 1H, CH), 2.21-2.14 (m, 2H, CH₂), 1.54 (s, 1H, CH_ACH_B), 0.91 (dd, ${}^{2}J_{\rm HH}$ = 12.4 Hz, ${}^{3}J_{\rm HH}$ = 3.0 Hz, 1H, CH_AC<u>H</u>_B) ppm. ${}^{13}C$ {¹H} NMR (101 MHz, CDCl₃) δ 166.7 (C=O), 159.2 (C_{quat}), 150.5 (C_{quat}), 143.4 (=CH), 139.2 (C_{quat}),138.9 (C_{quat}), 134.1 (=CH), 131.8 (q, ${}^{2}J_{\rm FC}$ = 37.4 Hz, C_{quat}), 131.5 (q, ${}^{2}J_{\rm FC}$ = 37.4 Hz, C_{quat}), 130.0 (2 × (CH_{Ar}) , 129.9 (2 × (CH_{Ar}) , 129.4 ((CH_{Ar}) , 129.1 ((CH_{Ar}) , 126.9 (CH_{Ar}) , 124.2 (CH_{Ar}) , 122.9 $(d, {}^{3}J_{FC} = 4.0 \text{ Hz}, CH_{Ar})$, 121.6 (CH_{Ar}) , 121.2 (d, ${}^{3}J_{FC}$ = 4.0 Hz, CH_{Ar}), 118.1 (d, ${}^{3}J_{FC}$ = 4.0 Hz, CH_{Ar}), 115.6 (d, ${}^{3}J_{FC} = 4.0$ Hz, CH_{Ar}), 70.0 (CH), 58.5 (C_{quat}), 52.6 (CH), 46.5 (CH₂), 43.4 (CH), 35.6 (CH₂) ppm. ¹⁹F {¹H} NMR (282 MHz, CDCl₃) δ -62.5, -62.8 ppm. FTIR (neat) n_{max} : 3045 (=CH_{st}), 1699 $(C=O_{st})$, 1664 $(C=C_{st})$ cm⁻¹. HRMS (ESI-TOF) m/z: $[M + H]^+$, calcd for C₃₀H₂₃F₆N₂O 541.1715; found, 541.1711.

ASSOCIATED CONTENT

Data Availability Statement

The data underlying this study are available in the published article and its Supporting Information.

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.joc.4c00822.

Copies of ¹H, ¹³C, and ¹⁹F NMR spectra for compounds **1**, **2**, **5**, **5'**, **6**, **7**, **8**, **9**, **10**, and **12**, 2D NMR spectra for compounds **5**, **7**, **9a**, **12a**, and **12h**, and cif file and thermal ellipsoid plot for **12d** and **12h**; and Cartesian coordinates, energies, and number of imaginary frequencies of local minima and transition structures discussed in this work computed at the DFT level (PDF)

Accession Codes

CCDC 2257537 and 2257539 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

AUTHOR INFORMATION

Corresponding Authors

- Abel de Cózar Department of Organic Chemistry I, Donostia International Physics Centre (DIPC), University of the Basque Country, Donostia-San Sebastián 20018, Spain; Ikerbasque, Basque Foundation for Science, Bilbao 48009, Spain; ◎ orcid.org/0000-0001-8430-4076; Email: abel.decozar@ehu.eus
- Javier Vicario Department of Organic Chemistry I, Faculty of Pharmacy, University of the Basque Country, Vitoria-Gasteiz 01006, Spain; orcid.org/0000-0002-8976-0991; Email: javier.vicario@ehu.eus

Authors

- Adrián López-Francés Department of Organic Chemistry I, Faculty of Pharmacy, University of the Basque Country, Vitoria-Gasteiz 01006, Spain; orcid.org/0000-0002-6363-2246
- Zuriñe Serna-Burgos Department of Organic Chemistry I, Faculty of Pharmacy, University of the Basque Country, Vitoria-Gasteiz 01006, Spain
- Xabier del Corte Department of Organic Chemistry I, Faculty of Pharmacy, University of the Basque Country, Vitoria-Gasteiz 01006, Spain
- Jesús M. de los Santos Department of Organic Chemistry I, Faculty of Pharmacy, University of the Basque Country, Vitoria-Gasteiz 01006, Spain; orcid.org/0000-0003-1315-4263

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.joc.4c00822

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Financial support PID2021-122558OB-I00 funded by the Ministerio de Ciencia, Innovación y Universidades MICIU/ AEI/10.13039/501100011033 and by "ERDF A way of making Europe", and by Gobierno Vasco (GV, IT1701-22 and IT1553-22; UPV-EHU) is gratefully acknowledged. The authors are grateful for technical and human support provided by SGIker (UPV/EHU/ERDF, EU). The authors thank SGI/IZO-SGIker of the UPV/EHU and the DIPC for the generous allocation of analytical and computational resources. A.L.-F. thanks the Basque Country Government for a predoctoral grant. Open Access funding provided by University of Basque Country.

REFERENCES

(1) Spiro Compounds: Synthesis and Applications; Rios Torres, R., Ed.; John Wiley & Sons, Inc., 2022..

(2) (a) Lovering, F.; Bikker, J.; Humblet, C. Escape from Flatland: Increasing Saturation as an Approach to Improving Clinical Success. J. Med. Chem. 2009, 52, 6752–6756. (b) Müller, G.; Berkenbosch, T.; Benningshof, J. C. J.; Stumpfe, D.; Bajorath, J. Charting Biologically Relevant Spirocyclic Compound Space. Chemistry 2017, 23, 703–710. (3) (a) Hiesinger, K.; Dar'in, D.; Proschak, E.; Krasavin, M. Spirocyclic Scaffolds in Medicinal Chemistry. J. Med. Chem. 2021, 64, 150–183. (b) Zheng, Y.; Tice, C. M.; Singh, S. B. The use of spirocyclic scaffolds in drug discovery. Bioorg. Med. Chem. Lett. 2014, 24, 3673–3682. (c) Moshnenko, N.; Kazantsev, A.; Chupakhin, E.; Bakulina, O.; Dar'in, D. Synthetic Routes to Approved Drugs Containing a Spirocycle. Molecules 2023, 28, 4209. (d) Zheng, Y.-J.; Tice, C. M. The utilization of spirocyclic scaffolds in novel drug discovery. Expert Opin. Drug Discovery 2016, 11, 831–834.

(4) (a) Chupakhin, E.; Babich, O.; Prosekov, A.; Asyakina, L.; Krasavin, M. Spirocyclic Motifs in Natural Products. *Molecules* **2019**, *24*, 4165. (b) Smith, L. K.; Baxendale, I. R. Total syntheses of natural products containing spirocarbocycles. *Org. Biomol. Chem.* **2015**, *13*, 9907–9933.

(5) (a) Anchoori, R. K.; Anchoori, V.; Lam, B.; Tseng, S.-H.; Das, S.; Velasquez, F. C.; Karanam, B.; Poddatoori, D.; Patnam, R.; Rudek, M. A.; Chang, Y.-N.; Roden, R. B. S. Development and anticancer properties of Up284, a spirocyclic candidate ADRM1/RPN13 inhibitor. PLoS One 2023, 18, No. e0285221. (b) Lukin, A.; Chudinov, M.; Vedekhina, T.; Rogacheva, E.; Kraeva, L.; Bakulina, O.; Krasavin, M. Exploration of Spirocyclic Derivatives of Ciprofloxacin as Antibacterial Agents. Molecules 2022, 27, 4864. (c) Ragab, S. S.; Sweed, A. M. K.; Elrashedy, A. A.; Allayeh, A. K. Design, Synthesis, Antiviral Evaluation, and Molecular Dynamics Simulation Studies of New Spirocyclic Thiopyrimidinones as Anti HCoV-229E. Chem. Biodiversity 2022, 19, No. e202200632. (d) Zhao, A. X.; Horsfall, L. E.; Hulme, A. N. New Methods for the Synthesis of Spirocyclic Cephalosporin Analogues. Molecules 2021, 26, 6035. (e) Acosta-Quiroga, K.; Rojas-Peña, C.; Nerio, L. S.; Gutiérrez, M.; Polo-Cuadrado, E. Spirocyclic derivatives as antioxidants: a review. RSC Adv. 2021, 11, 21926-21954. (f) Cobb, A. J. A.; Dell'Isola, A.; Abdulsattar, B. O.; McLachlan, M. M. W.; Neuman, B. W.; Müller, C.; Shankland, K.; Al-Mulla, H. M. N.; Binks, A. W. D.; Elvidge, W. Synthesis and antiviral activity of novel spirocyclic nucleosides. New J. Chem. 2018, 42, 18363-18380. (g) Goyard, D.; Kónya, B.; Chajistamatiou, A. S.; Chrysina, E. D.; Leroy, J.; Balzarin, S.; Tournier, M.; Tousch, D.; Petit, P.; Duret, C.; Maurel, P.; Somsák, L.; Docsa, T.; Gergely, P.; Praly, J.-P.; Azay-Milhau, J.; Vidal, S. Glucosederived spiro-isoxazolines are anti-hyperglycemic agents against type 2 diabetes through glycogen phosphorylase inhibition. Eur. J. Med. Chem. 2016, 108, 444-454. (h) Ramdani, L. H.; Talhi, O.; Taibi, N.; Delort, L.; Decombat, C.; Silva, A.; Bachari, K.; Vasson, M.-P.; Caldefie-Chezet, F. Effects of Spiro-bisheterocycles on Proliferation and Apoptosis in Human Breast Cancer Cell Lines. Anticancer Res. 2016, 36, 6399-6408. (i) Elger, W.; Beier, S.; Pollow, K.; Garfield, R.; Shi, S. Q.; Hillisch, A. Conception and Pharmacodynamic Profile of Drospirenone. Steroids 2003, 68, 891-905.

(6) (a) Zheng, Y. -J.; Tice, C. M. The utilization of spirocyclic scaffolds in novel drug discovery. *Expert Opin. Drug Discov.* **2016**, *11*, 831–834, DOI: 10.1080/17460441.2016.1195367. (b) Marson, C. M. New and unusual scaffolds in medicinal chemistry. *Chem. Soc. Rev.* **2011**, *40*, 5514–5533. (c) Kombarov, R.; Altieri, A.; Genis, D.; Kirpichenok, M.; Kochubey, V.; Rakitina, N.; Titarenko, Z. BioCores: identification of a drug/natural product-based privileged structural motif for small-molecule lead discovery. *Mol. Diversity* **2010**, *14*, 193–200.

(7) (a) Schwartzberg, L. S.; Modiano, M. R.; Rapoport, B. L.; Chasen, M. R.; Gridelli, C.; Urban, L.; Poma, A.; Arora, S.; Navari, R. M.; Schnadig, I. D. Safety and efficacy of rolapitant for prevention of chemotherapy-induced nausea and vomiting after administration of moderately emetogenic chemotherapy or anthracycline and cyclo-phosphamide regimens in patients with cancer: a randomised, active-controlled, double-blind, phase 3 trial. *Lancet Oncol.* **2015**, *16*, 1071–1078. (b) Wang, J.; Chen, F.; Liu, Y.; Liu, Y.; Li, K.; Yang, X.; Liu, S.; Zhou, X.; Yang, J. Spirostaphylotrichin X from a Marine-Derived Fungus as an Anti-influenza Agent Targeting RNA Polymerase PB2. *J. Nat. Prod.* **2018**, *81*, 2722–2730. (c) Yang, Y.-L.; Chang, F.-R.; Wu, Y.-C. Annosqualine: a Novel Alkaloid from the Stems of Annona squamosa. *Helv. Chim. Acta* **2004**, *87*, 1392–1399.

(8) (a) Quaternary Stereocenters: Challenges and Solutions for Organic Synthesis; Christoffers, J., Baro, A., Eds.; Wiley-VCH Weinheim. Germany, 2005. (b) Shimizu, M. Construction of Asymmetric Quaternary Carbon Centers with High Enantioselectivity. Angew. Chem., Int. Ed. 2011, 50, 5998–6000.

(9) Cycloaddition Reactions in Organic Synthesis; Kobayashi, S., Jørgensen, K. A., Eds.; Wiley-VCH Verlag, 2001.

(10) (a) Ng, S. M.; Beaudry, C. M.; Trauner, D. Intramolecular Diels–Alder Reactions of 5-Vinyl-1,3-cyclohexadienes. *Org. Lett.* **2003**, *5*, 1701–1704. (b) Richter, F.; Bauer, M.; Perez, C.; Maichle-Mössmer, C.; Maier, M. E. Intramolecular Diels–Alder Reactions Using α -Methylene Lactones as Dienophile. *J. Org. Chem.* **2002**, *67*, 2474–2480.

(11) (a) Luo, Z.; Xing, Z.; Gao, R.; Han, Y.; Ren, J.; Wang, Z. Visible-light organophotoredox-mediated intermolecular formal [4 + 2] cycloadditions of arylcyclobutylamines with olefins. Org. Biomol. Chem. 2023, 21, 4637-4642. (b) Lording, W. J.; Fallon, T.; Sherburn, M. S.; Paddon-Row, M. N. The simplest Diels-Alder reactions are not endo-selective. Chem. Sci. 2020, 11, 11915-11926. (c) Merritt, A. T.; Pouwer, R. H.; Williams, D. J.; Williams, C. M.; Ley, S. V. The clerodane ring system: investigating the viability of a direct Diels-Alder approach. Org. Biomol. Chem. 2011, 9, 4745-4747. (d) Takeda, K.; Imaoka, I.; Yoshii, E. Diels-Alder reaction of α -substituted acrylates and α -(methylene)lactones: Conformation of dienophiles and endo/exo selectivity. Tetrahedron 1994, 50, 10839-10848. (e) Posner, G. H.; Nelson, T. D.; Kinter, C. M.; Afarinkia, K. 3bromo-2-pyrone: an easily prepared chameleon diene and a synthetic equivalent of 2-pyrone in thermal diels-alder cycloadditions. Tetrahedron Lett. 1991, 32, 5295-5298. (f) Posner, G. H.; Nelson, T. D.; Kinter, C. M.; Johnson, N. Diels-Alder cycloadditions using nucleophilic 3-(p-tolylthio)-2-pyrone. Regiocontrolled and stereocontrolled synthesis of unsaturated, bridged, bicyclic lactones. J. Org. Chem. 1992, 57, 4083-4088.

(12) (a) Palacios, F.; Vicario, J.; Aparicio, D. An Efficient Synthesis of Achiral and Chiral Cyclic Dehydro-a-Amino Acid Derivatives Through Nucleophilic Addition of Amines to β , γ -Unsaturated α -Keto Esters. Eur. J. Org Chem. 2006, 2006, 2843-2850. (b) del Corte, X.; Maestro, A.; Vicario, J.; Martinez de Marigorta, E.; Palacios, F. Brönsted-Acid-Catalyzed Asymmetric Three-Component Reaction of Amines, Aldehydes, and Pyruvate Derivatives. Enantioselective Synthesis of Highly Functionalized y-Lactam Derivatives. Org. Lett. 2018, 20, 317-320. (c) del Corte, X.; López-Francés, A.; Maestro, A.; Martinez de Marigorta, E.; Palacios, F.; Vicario, J. Brönsted Acid Catalyzed Multicomponent Synthesis of Phosphorus and Fluorine-Derived *γ*-Lactam Derivatives. J. Org. Chem. 2020, 85, 14369-14383. (13) (a) López-Francés, A.; del Corte, X.; Serna-Burgos, Z.; Martínez de Marigorta, E.; Palacios, F.; Vicario, J. Exploring the Synthetic Potential of γ -Lactam Derivatives Obtained from a Multicomponent Reaction-Applications as Antiproliferative Agents. Molecules 2022, 27, 3624. (b) del Corte, X.; López-Francés, A.; Martínez de Marigorta, E.; Palacios, F.; Vicario, J. Stereo- and Regioselective [3 + 3] Annulation Reaction Catalyzed by Ytterbium: Synthesis of Bicyclic 1,4-Dihydropyridines. Adv. Synth. Catal. 2021, 363, 4761-4769.

(14) López-Francés, A.; del Corte, X.; Serna-Burgos, Z.; de los Santos, J. M.; de Cózar, A.; Vicario, J. Chiral Self-Recognition in a Bispericyclic Cyclodimerisation Reaction of 1-Azadienes. *Org. Chem. Front.* **2023**, *10*, 6103–6111.

(15) Parr, R. G.; Yang, W. Density-Functional Theory of Atoms and Molecules; Oxford University Press: Oxford, NY, 1989

(16) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian16. Revision C.01; Gaussian Inc.: Wallingford, CT, 2016.

(17) (a) Zhao, Y.; Truhlar, D. G. Density Functionals with Broad Applicability in Chemistry. *Acc. Chem. Res.* **2008**, *41*, 157–167. (b) Zhao, Y.; Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. *Theor. Chem. Acc.* **2008**, *120*, 215–241.

(18) Cammi, R.; Mennucci, B.; Tomasi, J. Fast Evaluation of Geometries and Properties of Excited Molecules in Solution: A Tamm-Dancoff Model with Application to 4-Dimethylaminobenzonitrile. J. Phys. Chem. A 2000, 104, 5631–5637.

(19) Tomasi, J.; Mennucci, B.; Cammi, R. Quantum Mechanical Continuum Solvation Models. *Chem. Rev.* **2005**, *105*, 2999–3094.

(20) (a) Contreras-Garcia, J.; Johnson, E. R.; Keinan, S.; Chaudret, R.; Piquemal, J.-P.; Beratan, D. N.; Yang, W. NCIPLOT: A Program for Plotting Noncovalent Interaction Regions. *J. Chem. Theory Comput.* **2011**, *7*, 625–632. (b) Johnson, E. R.; Keinan, S.; Mori-Sanchez, P.; Contreras-Garcia, J.; Cohen, A. J.; Yang, W. Revealing Noncovalent Interactions. J. Am. Chem. Soc. **2010**, *132*, 6498–6506.

NOTE ADDED AFTER ASAP PUBLICATION

This paper was published ASAP on June 19, 2024. Due to a production error, reference 6a was inadvertently omitted. The corrected version was reposted on June 2024.