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Abstract 

This paper analyses the probabilistic future behaviour of heat-waves (HWs) in the city of Madrid in the 

twenty-first century, using maximum daily temperatures from twenty-one climate circulation models 

under two representative concentration pathways (RCP 8.5 & RCP 4.5). HWs are modelled considering 

three factors: number per annum, duration and intensity, characterised by three stochastic processes: 

Poisson, Gamma and truncated Gaussian, respectively. Potential correlations between these processes 

are also considered. The probabilistic temperature behaviour is combined with an epidemiological 

model with stochastic mortality risk following a generalized extreme value distribution (gev). The 

objective of this study is to obtain probability distributions of mortality and risk measures such as the 

mean value of the 5% of worst cases in the 21st century, in particular from 2025 to 2100. Estimates 

from stochastic models for characterising HWs and epidemiological impacts on human health can vary 

from one climate model to another, so relying on a single climate model can be problematic. For this 

reason, the calculations are carried out for 21 models and the average of the results is obtained. A 

sensitivity adaptation analysis is also performed. Under RCP 8.5 for 2100 for Madrid city a mean excess 

of 3.6ºC over the 38ºC temperature threshold is expected as the average of all models, with an expected 

attributable mortality of 1,614 people, but these figures may be substantially exceeded in some cases if 

the highest-risk cases occur. 

Keywords: Heatwaves, Climate models, Stochastic diffusion modelling, Risk, Uncertainty 

 

1. INTRODUCTION 

1.1 Heat-waves 

   Heat-waves (HWs) are among the best-known meteorological events that regularly mark European 

summers  (Schär et al. 2004; Vautard et al. 2013). Climate-change projections suggest that European 

summer heat-waves will become more frequent and severe in the 21st century (Schär et al. 2004; Meehl 

and Tebaldi 2004; Beniston 2004; Fischer and Schär 2010). HWs often lead to higher morbidity (illness) 

and mortality (death), mainly in the elderly, infants and persons with pre-existing cardiovascular and 

respiratory diseases (Basu and Samet 2002; Patz et al. 2005; Fischer and Schär 2010; Campbell et al. 

2018). The World Health Organization (WHO, 2020) considers that heat-waves are currently and in the 

coming decades will continue to be one of the most natural dangerous hazards around the globe. For 

example, during the record-breaking HW that affected mainland Europe in summer 2003 there were 
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more than 70,000 deaths (Robine et al. 2008; Fischer and Schär 2010; García-Herrera et al. 2010; 

AghaKouchak et al. 2020). Between 1998 and 2017 HWs caused about 166,000 deaths around the 

world, including the 70,000 deaths in Europe in 2003 (Wallemacq 2018; AghaKouchak et al. 2020). 

Moreover, HWs also affect other socio-economic activities (e.g., water supply, food and livelihood 

security, energy and transportation, among others) and a wide range of terrestrial ecosystems (Allen et 

al. 2010; Smith 2011; Heres et al. 2021).  

   HWs typically occur when temperatures exceed thresholds set according to climatological and 

epidemiological criteria. Epidemiological thresholds depend on local climate conditions and may be 

modified by other variables such as pollution, humidity and wind. Heat-wave events therefore depend 

mainly on local climate and geographical conditions (Robinson 2001; Perkins and Alexander 2013; 

Abadie et al. 2019). However, despite their significant adverse impacts there is no single, strict 

definition of HWs other than as a series of consecutive hot days (Robinson 2001; Perkins and Alexander 

2013; He et al. 2019). However, the World Meteorological Organization (WMO) provides a more 

comprehensible definition: HWs are periods of unusually hot and dry or hot and humid weather that 

have a subtle onset and cessation, a duration of at least two–three days, usually with a discernible impact 

on human and natural systems (McGregor et al., 2015). Xu et al (2016) review some definitions of HWs 

and find that heat-wave intensity plays a relatively more important role than duration in determining 

HW-related deaths. The frequency, severity and duration of HWs and the associated mortality in India 

between 1960 and 2009 is analysed by Mazdiyasni et al (2017) using historic data. They find statistically 

significant increases in heat waves in this period. 

   The effects of heat-waves are generally more serious in urban areas due to the urban heat island (UHI) 

effect (in which temperatures increase in urban areas as a result of man-made structures and activities) 

(Campbel et al. 2018; Abadie et al. 2019). The UHI effect has been shown to be associated with an 

increasing impact of HWs on populations, increasing the risk of illness and death for vulnerable 

residents in major cities (Tomlinson et al. 2011; Campbell et al. 2018). For this paper the city of Madrid 

is selected as a case study due to its size (604.3 km2), population (6.7 million in the metropolitan area) 

because HW events frequently occur in Madrid in summer. However, the proposed methodology could 

be applied to any city for which the necessary information is available. For the reasons indicated above, 

Madrid is frequently used to study the impacts of HW events on human health and other factors (see 

for example the following recent publications on the topic: Díaz et al. 2019; Follos et al. 2020; López-

Bueno et al. 2020; 2021). Following the same criterion as Díaz et al. (2015; 2019), it is assumed that 

there is a HW in Madrid if the critical temperature of 35ºC is exceeded on one or more consecutive 

days. Note that according to Díaz et al. (2019) there is a different threshold for each city, depending on 

its different geographical patterns. 

1.2 Use of stochastic diffusion models 

   There are various ways to analyse HWs using stochastic models. These models incorporate 

uncertainty into projections, enabling probability distributions to be obtained for certain future times, 

from which expected values and certain statistics such as volatility and percentiles can be drawn. 

Stochastic models for HWs can be divided into two groups depending on whether they are based on 

time series or on extreme values: 

1.2.1 Based on time series analysis 

   In this approach, time series parameters are estimated as in Macchiato et al. (1993) and Kyselý (2010). 

There is usually a deterministic part that includes seasonal effects and the trend and a stochastic part 

that can be modelled as an autoregressive process of order one AR(1). The parameters of the stochastic 

part include the mean, the volatility and the first order autocorrelation coefficient. This stochastic part 

is a mean-reverting model estimated using time series of daily maximum air temperatures. When this 

type of model is used, low temperatures and both affect the calculations. This class of stochastic models 
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can be used with historical observational data, with future simulated data through regionalized climate 

models, and even with past climate simulations. After the parameters (deterministic and stochastic) 

have been calculated a number of paths can be simulated and the definition of a heat-wave applied to 

obtain HW behaviour (number, duration and intensity). 

1.2.2 Extreme Value Theory 

   In this approach the models proposed are close to the techniques of Extreme Value Theory (EVT), 

e.g. the well-known peak-over-threshold model (POT). In this class of model, HW information is first 

extracted from the time series (historic or projections (future)) and fitted to a model with the frequency, 

intensity and duration of an HW as in Furrer el al. (2010) and Abadie et al. (2019). The parameters can 

vary over time according to historical or future data. After the parameters have been calculated 

correlated values at a time t can be simulated and distributions obtained with parameters such as the 

mean, median, percentiles and worst cases. 

1.3 General choices to be made for HW projections  

   The objective of this study is not only to determine figures for expected mortality due to HWs but 

also to obtain distributions of mortality and risk measures such as the mean value of the 5% of worst 

cases in the distribution (ES (95%)).  The scenarios selected are RCP 4.5 and RCP 8.5 in the 21st 

century, and more specifically from 2025 to 2100. The calculations are made for 21 models with the 

average of their parameters, expected values and risk measures being obtained. 

   Mortality risk projections will be calculated using an epidemiological model and considering the 

uncertainty of mortality risk (MR) in that model. The possibility of acclimatisation by absorbing the 

impact of half the expected excess temperature is also considered as a sensitivity analysis. 

 

   The rest of the paper is organized as follows: Section 2 describes the materials and methods used. 

Section 3 shows the results for HWs and the associated mortality risk and discusses the main results. 

Section 4 presents the main conclusions. 

 

2. MATERIALS and METHODS 

2.1 Stochastic diffusion models 

   Some studies on HWs that use stochastic models are cited below in the following lines. For example, 

Furrer et al. (2010) propose a stochastic model with a Poisson process for the number of HWs per year, 

a geometric distribution for duration and a Generalized Pareto (GP) distribution for excess temperature. 

Their model is calibrated with historical data from Phoenix, Arizona (US), Fort Collins, Colorado (US) 

and Paris (France). Some years later, Abadie et al. (2019) calibrate a stochastic diffusion model to 

characterize statistics of extreme events using future data from a climate model. The three-factor model 

proposed uses a Poisson process for the number of heat waves, a Gamma process for the mean duration 

and a truncated Gaussian process for mean excess temperature, where potential correlations between 

the three processes are considered in building the three-variate model. On the other hand, Coles et al. 

(1994) proposed and used some models based on the bivariate extreme value theory. 

   When modelling future heat waves, it is important to take into account the non-stationary nature of 

climate change. According to Kharin et al. (2007), the uncertainty in modelling the climate strongly 

affects the values taken as extremes. Moreover, Brown et al. (2008) analyse changes in extreme daily 

temperatures since 1950 using an extreme value distribution with time-varying parameters. In their 

model events are assumed to occur according to a Poisson process, and the excesses above the threshold 

are assumed to follow a Generalized Pareto distribution. 
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   In this paper two stochastic models are used, the first for temperature and the second an 

epidemiological model.  

 

2.1.1 Temperature model 

  The critical temperature was calculated using the methodology of Diaz et al. (2015) with daily 

maximum daily temperatures from 2010 to 2018 in the meteorological station el Retiro of Madrid City 

(AEMET, 2021) and daily natural mortality of Madrid city for the same period, that information was 

provided by the Spanish National Institute of Statistics (INE, 2021), a methodology description is shown 

in Appendix A.1. A value of 38ºC was calculated for this critical temperature above which there is a 

significant increase in daily mortality in Madrid city. 

  We follow the temperature stochastic model in Abadie, et al. (2019), a brief description of which is 

provided in Appendix A.2. This model takes into account three stochastic characteristics of HWs: (1) 

the number of HWs in a given year; (2) their duration in days; and (3) their intensity measured by their 

exceedance of the critical temperature of 38ºC. Two correlations are also included in the model: (1) an 

expected negative correlation between the number of HWs per year and their durations (because a 

longer duration is usually associated with a lower number of HWs); and (2) the correlation between the 

duration of HWs and their temperature exceedances, with higher temperature exceedance expected for 

longer-lasting HWs. The three HW characteristics in the model (number, duration and intensity) have 

expected values that change over time according with exponential parameters. Table 1 shows the 

parameters to be calibrated for each of the 21 temperature models. These parameters are calibrated using 

nonlinear least squares for each model. In this study, all possible HWs in the year are used and not only 

those in the summer. 

 

Table 1: Temperature model parameters 

Parameter Units Description 

𝜆(𝑡) (-) Number of HWs in year t 

α (y-1) Exponential parameter of number of HWs  𝜆(0) 

dur(t) (days) HW duration 

γ (y-1) Exponential parameter of HW duration 𝑑(0) 

𝑔(𝑡) (°C) Temperature exceedance above 38ºC 

β (y-1) Exponential parameter of temperature excess 𝑔(0) 

𝜎𝐸 (°C) Volatility of temperature excess 

𝜌1,2 (-) Correlation of number of HWs and duration 

temperature excess 𝜌2,3 (-) Correlation of duration and temperature excess  

𝜎𝐷 (days) Volatility of duration 

    

2.1.2 Epidemiological model 

   A model for mortality risk projections is used as per epidemiological Equation (1), where mortality 

for a HW is proportional to the product of HW days and excess temperature as in Diaz et al. (2015). In 

this epidemiological model, HW-related mortality is also proportional to the specific mortality risk for 

Madrid city and to the background daily mortality. Formality ratios are as defined below (Diaz et al. 

2015). 
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𝑀𝑡 = 𝑀𝑅 × 𝐵 × ∑(𝛥𝑇𝑖 × 𝑁𝑖)

𝑘𝑡

𝑖=0

 (1) 

Where: 

𝐵 = 74.26 is the background daily mortality rate for death from natural causes during HW days 

calculated using the mortality data for Madrid city (from 2010 to 2018) and the critical temperature of 

38ºC. 

𝛥𝑇𝑖 is the excess temperature over the threshold (Tmax – Tcrit) for HW i in year t. 

𝑁𝑖 is the duration of HW i in year t. 

𝑘𝑡 is the number of HWs in year t. 

𝑘𝑡, 𝑁𝑖 and 𝛥𝑇𝑖 correspond to the three variables of the stochastic temperature models (number, duration 

and excess temperature of HWs). There is also a fourth stochastic variable in the form of the mortality 

risk (MR). This variable is modelled as a generalised extreme value distribution (gev) as shown in 

Appendix A.3. 

The relative risk was calculated using the cited data obtain a value of 1.05 with a 95% confidence 

interval (CI) (1.02, 1.08). Then the mortality risk (MR) in Madrid is 4.76% within a 95% confidence 

interval (CI) (1.96%, 7.41%). Using these percentiles, the GEV parameters are calculated as 𝜇 =

4.2828, 𝜎 = 1.4379 and 𝜉 = −0.3158. These calculations are applied for each Monte Carlo 

simulation using the four stochastic variables and a distribution of annual mortality is obtained for each 

model. 

2.2 Assumptions explored and climate data 

   In this study, three indicators are calculated. The first is the mean (or expected value) and the other 

two are risk measures: the Value at Risk VaR (95%) is the 95th percentile and the Expected Shortfall 

(ES) (95%) is the average of 5% worst cases. Technically ES (95%) is considered a better measure of 

risk than VaR (95%) since it provides more information about the tail of the distribution with more 

harmful values. Here, risk is considered to mean that something worse than expected could happen. 

   Daily maximum near-surface air temperatures (Tmax) for the city of Madrid (central grid) and for the 

study period of 2006-2100 are drawn from NASA Earth Exchange Global Daily Downscaled 

Projections (NEX-GDDP) (freely available at https://www.nccs.nasa.gov/services/data-

collections/land-based-products/nex-gddp). The NEX-GDDP dataset comprises downscaled climate 

scenarios for the globe, derived from General Circulation Model (GCM) runs conducted under the 

Coupled Model Intercomparison Project Phase 5 (CMIP5), which includes projections for RCP 4.5 and 

RCP 8.5 from 21 models and scenarios for which daily scenarios were produced and distributed under 

the Coupled Model Intercomparison Project Phase 5 (CMIP5) (Thrasher et al. 2012; NEX-GDDP 

2021).  As can be seen in Table 2, the effect of bias correction is quite limited. 
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   A time-frame (2025 vs 2100) is used with uncertainty in the epidemiological model (MR) modelled 

using a generalised extreme value distribution and the impact of acclimatisation being explored in the 

form of a sensitivity analysis. 

 

3. RESULTS and DISCUSSION  

3.1 Parameter estimation 

   Figure 1 shows the number of HWs per year, their duration and their expected values under RCP 8.5, 

using climate model 1 (ACCESS1-0 in Table 2). This Figure shows a substantial increase in the 

expected duration of HWs, which is especially conspicuous from the 2040s onwards. This result is 

consistent with those in Abadie et al. (2019), Chapman et al. (2019) and Perkins-Kirkpatrick and Lewis 

(2020). However, the trend in the number of HWs is not so clear, due to the increase in their duration 

over time. 

   Figure 2 shows the expected mean excess temperature in the case of HWs under RCP 8.5 and RCP 

4.5 scenarios in climate model 1 (ACCESS1-0 in Table 2). This figure shows a faster increase in excess 

temperature in scenario RCP 8.5. The gap between the expected mean excess temperatures for the two 

scenarios widens rapidly over the years. 

Figures 1 and 2 are generated using the model data and the parameters calculated. Other figures can be 

generated with data from other climate models and their estimated parameters, as shown in Tables A1 

and A2 in the Appendix A.2.  

Table 2: Effects of the bias correction.  
 

No. Model V1 V2 

1 ACCESS1-0 -0.7765 1.0010 

2 BNU-ESM -0.8479 1.0043 

3 CCSM4 -0.6975 0.9972 

4 CESM1(BGC) -0.7127 0.9978 

5 CNRM-CM5 -0.7393 0.9989 

6 CSIRO-Mk3.6.0 -0.8190 1.0032 

7 CanESM2 -0.9059 1.0078 

8 GFDL-CM3 -0.8149 1.0058 

9 GFDL-ESM2G -0.8825 1.0059 

10 GFDL-ESM2M -0.8956 1.0065 

11 IPSL-CMSA-LR -0.8487 1.0047 

12 IPSL-CM5A-MR -0.7604 1.0005 

13 MIROC-ESM -0.8790 1.0061 

14 MIROC-ESM-CHEM -0.8709 1.0055 

15 MIROC5 -0.7495 0.9995 

16 MPI-ESM-LR -0.7917 1.0016 

17 MPI-ESM-MR -0.7947 1.0017 

18 MRI-CGCM3 -0.6545 0.9948 

19 NorESM1-M -0.8471 1.0045 

20 bbc-csm1-1 -0.8550 1.0049 

21 inmcm4 -0.8069 1.0030 
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Fig 1. Evolution of HW characteristics per year (number of HWs per year and mean HW duration) as 

obtained from climate model 1 (see Table 2) and evolution of expected values from the fitted stochastic 

model under RCP 8.5. 

 

Fig 2. Evolution of mean excess temperature on HW days as obtained for climate model 1and expected 

values from the fitted stochastic model under RCP 4.5 and RCP 8.5. 
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Table 3. Model parameters for climate model 1 (ACCESS1-0). 

Parameters RCP 4.5 RCP 8.5 

λ(0) 1.3919 1.9057 

α 0.0153 0.0162 

dur(0) 1.7678 1.1776 

γ 0.0117 0.0268 

temp(0) 0.6175 0.5043 

β 0.0095 0.0205 

𝜎𝐸 0.5458 0.5594 

𝜌1,2 0.3149 0.2031 

𝜌2,3 0.5851 0.3945 

𝜎𝐷 1.9506 3.0525 

 

   Table 3 shows the estimated parameters for climate model 1 (ACCESS1-0) under RCP 4.5 and RCP 

8.5.  Table 3 shows the exponential increase in the number of HWs per year, their duration and their 

associated temperature excess above 38ºC. Table 3 also shows the differences in the correlations 

calculated (𝜌1,2  and  𝜌2,3) under the two scenarios. 

   Tables A.1 and A.2 in Appendix A.2 presents these parameters for the 21 climate models under the 

RCP 4.5 and RCP 8.5 scenarios. With these values it is possible to generate figures similar to Figures 

1 and 2 for climate model 1. The means are shown in Table 4. Note that these values are for a non-

adaptation case. The means of the models in the RCP 4.5 and RCP 8.5 cases also show significant 

increases in the number, duration and excess temperature of HWs. 

 

Table 4. Mean of stochastic model parameters. 

Parameters RCP 4.5 RCP 8.5 

λ(0) 1.6212 1.9665 

α 0.0134 0.0175 

dur(0) 1.3089 1.0378 

γ 0.0120 0.0266 

temp(0) 0.5505 0.4723 

β 0.0103 0.0217 

𝜎𝐸 0.5953 0.5925 

𝜌1,2 0.4298 0.3217 

𝜌2,3 0.6448 0.5049 

𝜎𝐷 1.6805 3.2623 

 

   Table 5 shows the mean of the expected values using the 21 climate models. The expected increase 

in all three factors (number, duration and intensity of HWs) can be seen. The mean in 2100 for expected 

HW duration is about triple in the RCP 8.5 scenario, with the number of HWs being 60% more. The 

expected excess temperature by 2100 is 3.56ºC in the RCP 8.5 scenario, which is significantly higher 

than the 1.48ºC that appears in the RCP 4.5 scenario. The differences between the two scenarios become 

significant in the mid-21st century: closest values are obtained for 2025. 
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Table 5. Mean of expected values using the 21 climate models. 

Expected mean values RCP 4.5 RCP 8.5 

λ(t) 2025 2.06 2.60 

λ(t) 2050 2.83 3.82 

λ(t) 2075 3.93 5.74 

λ(t) 2100 5.50 8.82 

dur(t) 2025 1.63 1.65 

dur(t) 2050 2.20 3.11 

dur(t) 2075 2.99 6.11 

dur(t) 2100 4.10 12.69 

temp(t) 2025 0.67 0.70 

temp(t) 2050 0.86 1.20 

temp(t) 2075 1.12 2.06 

temp(t) 2100 1.48 3.56 

 

   For the RCP 8.5 case the mean of the 21 climate models for 2050 in Madrid under RCP 8.5 is expected 

to be 3.8 HWs lasting 3.1 days, with an expected excess temperature above 38ºC of 1.2º. For the RCP 

4.5 case the figure expected for 2050 is a mean of 2.8 HWs lasting 2.2 days, with an excess temperature 

of 0.9ºC. The gap between the excess temperatures in the two models widens significantly in the second 

half of the 21st century. 

   The figures in Tables A.1 and A.2 with the differences between models highlight the problem of 

relying on a single model compared to using the mean of various models as in Tables 4 and 5. One 

model can give significantly different results from another. Some models can generate extreme values 

above or below the average. If all models are equally likely, the use of such extreme values can generate 

results that range from alarming to non-worrisome. Note that this paper does not assume that one climate 

model is better or worse than another. Therefore, if only one climate model is used there is a risk in 

choosing it. 

3.2 Stochastic projections 

   Figure 3 shows the distribution of the excess temperature in climate model 1 for the year 2100 under 

the RCP 8.5 scenario. It shows that some extreme excess temperature values are above the expected 

value of 3.45 ºC (see Table A.2.a for this climate model). Those extreme values are of great importance 

for prevention and adaptation policies because of the negative effects when these situations, which are 

unlikely but possible, actually happen. 

   Figure 4 shows the distribution of mortality in Madrid for 2100 under RCP 8.5 for climate model 1. 

This distribution was obtained by applying the epidemiological stochastic model to the stochastic 

temperature model using Equation 1. As can be seen, the expected value is 1,626 but in 5% of cases it 

may be more than 3,547, with the mean of the 5% of worst cases being 4,414 (see Table 7). All the 

expected mortality and risk values for all the models under the RCP 4.5 scenario are in Table 6. Table 

7 shows the equivalent values for RCP 8.5. The mean of 21 models in Madrid for 2100 under RCP 8.5 

shows an expected mortality of 1,614 with 5% of cases in which mortality is above 3,609 cases and the 

mean of the 5% of worst cases being 4,530 (see Table 7). 

   Tables 6 and 7 show the related expected mortality and risk values under RCP 4.5 and RCP 8.5, 

respectively.  
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Fig 3. Histogram from Monte Carlo projections of climate model 1 of temperature exceedances in 

2100 under RCP 8.5. 

 

Fig 4. Histogram of climate model 1 from Monte Carlo of mortality projections for the 2100 climate 

and under RCP 8.5. 

 

3.3 Analysis of sources of variation 

   Figure 5 shows the trends over time of the three risk measures. Expected value using a 

financial/economic type approach is not really a risk measure, since in such approaches the risk is the 

possibility of worst cases. The 95th percentile (or Value at Risk VaR(95%) can be used to establish the 

frontier where the worst cases begin but it does not inform about the shape of the distribution tail. The 

mean of the 5% worst cases, i.e. the Expected Shortfall ES(95%), is therefore considered a better 

measure of risk. Figures similar to Figure 5 for all other climate models can be obtained using the data 

from Table 6 for RCP 4.5 and that from Table 7 for RCP 8.5.
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Table 6: Results for Madrid under the RCP 4.5 scenario, without adaptation. 

 
2025 

 

2050 

 

2075 

 

2100 

  Expected VaR(95%) ES(95%) Expected VaR(95%) ES(95%) Expected VaR(95%) ES(95%) Expected VaR(95%) ES(95%) 

ACCESS1-0 15 70 126 34 135 212 79 264 383 187 529 730 

BNU-ESM 9 46 87 19 80 134 39 137 212 78 241 340 

CCSM4 17 78 137 29 115 187 47 173 267 78 258 381 

CESM1(BGC) 13 62 117 24 104 174 47 174 269 91 295 421 

CNRM-CM5 3 19 55 6 34 77 12 59 112 25 106 179 

CSIRO-Mk3.6.0 20 90 159 50 187 289 132 402 575 351 900 1,196 

CanESM2 21 82 129 48 154 226 109 306 414 250 619 803 

GFDL-CM3 59 260 430 156 532 779 408 1,149 1,547 1,087 2,600 3,346 

GFDL-ESM2G 12 55 101 15 69 122 20 86 145 27 110 181 

GFDL-ESM2M 9 53 114 17 84 159 32 138 232 61 229 354 

IPSL-CMSA-LR 4 30 79 14 72 141 48 185 291 167 492 686 

IPSL-CM5A-MR 11 74 173 25 134 268 53 240 418 120 456 701 

MIROC-ESM 20 81 135 49 166 249 125 348 488 322 782 1,024 

MIROC-ESM-CHEM 31 115 181 75 232 333 183 477 638 459 1,050 1,338 

MIROC5 11 56 107 21 95 164 41 163 253 85 289 429 

MPI-ESM-LR 4 31 71 13 72 133 39 164 266 118 391 577 

MPI-ESM-MR 6 31 75 15 68 124 42 153 237 128 375 522 

MRI-CGCM3 2 16 56 5 34 84 14 70 134 38 151 247 

NorESM1-M 19 85 144 38 140 219 73 234 339 142 405 552 

bbc-csm1-1 7 38 88 12 64 120 25 109 190 53 191 294 

inmcm4 1 7 28 2 15 42 4 29 62 10 55 106 

NASA 14 66 123 32 123 202 75 241 356 185 501 686 
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Table 7: Results for Madrid under the RCP 8.5 scenario, without adaptation. 

 
2025 

 

2050 

 

2075 

 

2100 

 
 Expected VaR(95%) ES(95%) Expected VaR(95%) ES(95%) Expected VaR(95%) ES(95%) Expected VaR(95%) ES(95%) 

ACCESS1-0 19 95 194 79 290 445 348 935 1,257 1,626 3,547 4,414 

BNU-ESM 19 94 253 69 302 547 267 878 1,326 1,082 2,747 3,631 

CCSM4 25 113 200 77 273 410 255 714 984 869 2,015 2,562 

CESM1(BGC) 20 85 150 62 211 313 205 545 740 689 1,552 1,967 

CNRM-CM5 1 14 40 10 52 100 59 212 322 357 943 1,253 

CSIRO-Mk3.6.0 26 123 269 95 364 573 414 1,178 1,614 1,941 4,339 5,438 

CanESM2 42 199 366 153 530 798 577 1,539 2,052 2,265 4,992 6,228 

GFDL-CM3 55 296 616 262 1,027 1,634 1,076 3,100 4,236 4,467 10,172 12,716 

GFDL-ESM2G 7 41 100 33 135 230 166 485 683 914 2,082 2,654 

GFDL-ESM2M 14 79 156 53 208 329 202 582 811 773 1,790 2,298 

IPSL-CMSA-LR 14 83 216 64 278 489 323 1,000 1,437 1,805 4,326 5,576 

IPSL-CM5A-MR 14 87 250 57 292 655 337 1,246 1,920 2,585 6,064 7,758 

MIROC-ESM 18 95 248 84 366 626 535 1,431 1,918 3,979 8,015 9,639 

MIROC-ESM-CHEM 44 204 363 176 578 838 777 1,908 2,469 3,626 7,460 9,020 

MIROC5 13 77 170 48 204 340 191 591 844 775 1,884 2,477 

MPI-ESM-LR 15 90 241 67 288 502 340 1,023 1,413 1,919 4,326 5,457 

MPI-ESM-MR 10 36 154 47 206 376 290 818 1,140 1,955 4,094 5,028 

MRI-CGCM3 2 24 78 14 76 148 83 278 414 520 1,279 1,656 

NorESM1-M 21 89 157 68 224 327 236 618 825 849 1,875 2,337 

bbc-csm1-1 22 114 220 68 262 424 217 665 944 722 1,817 2,387 

inmcm4 2 12 41 7 39 78 34 126 197 181 479 645 

NASA 19 98 213 76 295 485 330 946 1,312 1,614 3,609 4,530 
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Fig. 5: Trend over time of mortality obtained with climate model 1 under RCP 8.5: Expected values, 

95th percentile (Var(95%)) and Expected Shortfall (ES(95%)). 
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Fig. 6: Statistics for probabilistic mortality forecasts to 2100 (RCP 4.5) for the 21 climate models. 

Expected values, 95th percentile (VaR(95%)) and Expected Shortfall (ES(95%)). 

 

 

Fig. 7 Statistics for probabilistic mortality forecasts to 2100 (RCP 8.5) for the 21 models. Expected 

values, 95th percentile (Var(95%)) and Expected Shortfall (ES(95%)). 
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   Figures 6 and 7 show significant differences in expected mortality and associated risk measures 

depending on the model selected for the RCP 4.5 and RCP 8.5 scenarios (see also Tables 6 and 7). Some 

scenarios generate extreme values and others moderate values. Tables 6 and 7 show the means of the 

risk values for the 21 climate models. Substantial differences between models can be seen. There is a 

distribution of results because there is a risk model problem. 

3.4 Sensitivity analysis with potential acclimatisation 

   This section analyses potential acclimatisation, assuming that it is possible to acclimatise by absorbing 

the impact of half the expected excess temperature, as per proposed Equation (2), where there is a new 

maximum temperature 𝑇𝑚𝑎𝑥
∗  for each time t, that is: 

𝑇𝑚𝑎𝑥
∗ = 𝑇𝑚𝑎𝑥 +

𝑡𝑒𝑚𝑝(0) × (𝑒𝛽𝑡 − 1)

2
 (2) 

where 𝛽 is as defined in Table 1. 

   The adaptation case involves the mean of model parameters in Table 8 and the mean of expected 

values in Table 9.  

Table 8. Mean of model parameters in the adaptation case. 

Parameters RCP 4.5 RCP 8.5 

λ(0) 1.568 1.705 

α 0.012 0.018 

dur(0) 1.277 1.083 

γ 0.011 0.022 

temp(0) 0.538 0.474 

β 0.010 0.019 

𝜎𝐸 0.592 0.585 

𝜌1,2 0.437 0.371 

𝜌2,3 0.636 0.539 

𝜎𝐷 1.611 2.473 

 

Table 9: Mean of expected values using the 21 climate models in 

the adaptation case. 

Expected mean values RCP 4.5 RCP 8.5 

λ(t) 2025 1.96 2.32 

λ(t) 2050 2.63 3.52 

λ(t) 2075 3.57 5.42 

λ(t) 2100 4.87 8.45 

dur(t) 2025 1.57 1.64 

dur(t) 2050 2.07 2.84 

dur(t) 2075 2.75 5.00 

dur(t) 2100 3.67 8.93 

temp(t) 2025 0.64 0.67 

temp(t) 2050 0.81 1.07 

temp(t) 2075 1.04 1.73 

temp(t) 2100 1.33 2.79 
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   Tables 10 and 11 show the expected values and the risk measures in the adaptation case under the 

RCP 4.5 and RCP 8.5 scenarios respectively. For the same case, the figures also show major differences 

in duration and excess temperature depending on the model and scenario. 

   Table 12 shows significant differences between the models, risk metrics and acclimatisation. 

However, the differences between using a deterministic or stochastic MR are not significant. 

   Compared to Abadie et al. (2019), this paper makes four contributions: (1) it analyses the behaviour 

of 21 climate models for a city (Madrid); (2) it provides a stochastic modelling of the epidemiological 

counterpart; (3) it calculates adaptation effects (acclimatisation); (4) it corrects the statistical bias for 

the maximum temperatures for the city of Madrid; and (5) it calculates new epidemiological values for 

Madid city using data from 2010 to 2018. The statistical bias correction adjusts the future projections 

of each climate model to produce internally consistent fields that have the same statistical intensity 

distribution as climate observations (e.g., in this study climate observations from Madrid’s El Retiro 

Park are used. These data sets are provided by the Spanish Meteorology Agency, AEMET) (Piani et al. 

2010, Gudmundsson et al. 2012). 
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Table 10: Results for Madrid under the RCP 4.5 scenario, with adaptation. 

   2025     2050     2075     2100   

 
Expected VaR(95%) ES(95%) Expected VaR(95%) ES(95%) Expected VaR(95%) ES(95%) Expected VaR(95%) ES(95%) 

ACCESS1-0 13 63 115 28 113 186 62 214 316 136 402 562 

BNU-ESM 13 63 115 16 67 115 30 109 172 55 179 261 

CCSM4 16 74 129 25 106 173 40 151 239 63 223 329 

CESM1(BGC) 11 53 99 19 84 145 36 137 217 65 222 325 

CNRM-CM5 3 18 52 5 30 71 10 51 100 20 88 156 

CSIRO-Mk3.6.0 18 84 155 43 167 270 106 351 515 267 754 1,022 

CanESM2 17 73 122 38 135 201 81 245 347 172 463 620 

GFDL-CM3 49 220 378 118 420 634 288 851 1,183 713 1,805 2,366 

GFDL-ESM2G 11 55 103 15 69 120 20 87 147 26 110 177 

GFDL-ESM2M 8 52 115 15 80 161 29 129 229 53 211 336 

IPSL-CMSA-LR 3 24 64 10 55 109 32 131 215 105 336 484 

IPSL-CM5A-MR 11 70 176 21 119 253 42 203 369 86 348 566 

MIROC-ESM 16 70 116 39 138 208 94 278 388 227 585 773 

MIROC-ESM-CHEM 27 102 159 60 194 281 136 373 511 313 761 993 

MIROC5 10 54 105 19 89 157 36 146 241 68 244 378 

MPI-ESM-LR 4 27 66 10 58 113 29 129 217 82 293 446 

MPI-ESM-MR 5 29 67 12 58 109 31 119 189 81 257 369 

MRI-CGCM3 2 15 55 4 29 78 10 57 119 26 114 201 

NorESM1-M 16 70 119 30 111 175 55 180 261 99 290 400 

bbc-csm1-1 5 32 79 10 54 109 20 93 166 42 161 258 

inmcm4 1 7 28 2 14 40 4 25 57 8 47 92 

NASA 12 60 115 26 104 177 57 193 295 129 376 529 
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Table 11: Results for Madrid under the RCP 8.5 scenario, with adaptation. 

 
2025 

 

2050 

 

2075 

 

2100 

 
 Expected VaR(95%) ES(95%) Expected VaR(95%) ES(95%) Expected VaR(95%) ES(95%) Expected VaR(95%) ES(95%) 

ACCESS1-0 17 85 168 61 229 366 238 686 951 949 2,200 2,789 

BNU-ESM 14 71 152 47 182 300 166 502 702 636 1,530 1,984 

CCSM4 20 93 167 59 215 332 180 527 734 566 1,373 1,779 

CESM1(BGC) 16 73 134 48 171 270 147 424 589 467 1,115 1,448 

CNRM-CM5 1 13 40 8 45 92 40 156 247 213 606 836 

CSIRO-Mk3.6.0 18 90 181 68 249 400 274 770 1,057 1,173 2,617 3,325 

CanESM2 31 144 268 104 361 549 369 987 1,340 1,338 2,961 3,695 

GFDL-CM3 55 261 449 193 664 970 671 1,813 2,408 2,396 5,464 6,827 

GFDL-ESM2G 6 34 83 24 101 175 108 334 483 528 1,258 1,630 

GFDL-ESM2M 12 71 148 40 171 288 142 452 659 499 1,279 1,690 

IPSL-CMSA-LR 11 64 197 49 231 451 220 799 1,222 1,092 3,017 4,071 

IPSL-CM5A-MR 17 92 233 59 264 466 235 765 1,109 1,038 2,559 3,359 

MIROC-ESM 22 109 241 85 324 517 368 1,005 1,362 1,757 3,703 4,579 

MIROC-ESM-CHEM 37 171 326 131 450 677 497 1,266 1,678 2,002 4,195 5,156 

MIROC5 10 61 127 36 153 255 130 415 600 478 1,213 1,588 

MPI-ESM-LR 11 63 171 44 194 341 214 655 928 1,167 2,688 3,431 

MPI-ESM-MR 10 49 107 39 144 230 181 490 668 894 1,931 2,410 

MRI-CGCM3 2 20 66 10 61 126 55 202 313 306 803 1,079 

NorESM1-M 16 70 127 50 176 263 165 452 616 558 1,281 1,637 

bbc-csm1-1 18 90 174 50 197 324 147 466 663 456 1,175 1,561 

inmcm4 2 11 38 6 33 69 25 98 159 111 322 448 

NASA 16 83 171 58 220 355 218 632 880 887 2,061 2,634 
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Table 12: Sensitivity of mortality forecasts to modelling choices.  

Items Sensitivity 

RCP 8.5 Expected 2100 ES(95%) 2100 2.5-3.5 

RCP 8.5 ES(95%) 2025  ES(95%) 2100 110-40 

ES(95%) 2100 RCP 4.5 ES(95%) 2100 RCP 8.5 4-15 

MR deterministic MR stochastic 1.02 

RCP 8.5 No acclimatisation ES(95%) acclimatization ES(95%) 0.58 

 

4 CONCLUSIONS  

   Daily time series of maximum future temperatures drawn from climate models can be used to analyse 

HW characteristics (number, duration and intensity) including trends over time. These variables have 

volatilities and correlations. With all these values it is possible to estimate distributions of excess 

temperature above a critical value, which in the city of Madrid was set at 38ºC. These distributions 

enable expected values to be obtained, along with risk measures such as the 95thpercentile (VaR(95%) 

and the mean of the 5% of worst cases (ES(95%)). For these calculations, two scenarios are considered: 

RCP 8.5 and RCP 4.5, which enable differential effects depending on the probability assigned to each 

scenario to be analysed.  

   The climate information obtained is combined with an epidemiological model, where the mortality 

risk (MR) is stochastic, and is modelled using a generalised extreme value distribution (gev). With these 

data the distributions of HW-related mortality are calculated for each time selected. The resulting 

distributions are then used to calculate expected values and risk measures. These risk measures are 

significant because the possible measures to be adopted should be suitable for counteracting the worst 

cases as far as possible and not just the expected average. Depending on the model selected ES(95%) 

may be between the two and six times the expected value.  

   Another source of risk is the climate model. When a climate model is selected, it assumed that the 

information which it generates is true. However, as proved in this paper, the downscaling information 

generated for each of the 21climate models selected is totally different and generates different expected 

and risk value measures for excess temperature and HW-related mortality. If a single climate model is 

used, depending on which model it is the results may be extreme compared to the average of all the 

climate models selected.  

   The mean under RCP 8.5 is an expected attributed mortality of 76 for 2050, increasing to 1,614 for 

2100. The ES(95%) risk measure ranges from 494 in 2050 to 4,684 in 2100. 

   A possible acclimatisation effect is considered, assuming that it is possible to acclimatise by absorbing 

the impact of half the expected excess temperature. In that case the effects of HW-related mortality may 

be about 42% lower. 

   The proposed methodology can be applied to other cities, with a variety of results being obtained 

depending on each climate model. For this reason, this paper suggests the use of a set of climate models. 
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Appendix A.1. Determination of daily mortality threshold temperature and mortality risk. 

  In order to estimate the heat wave definition temperature (threshold or critical temperature) we follow 

to Diaz et al (2015) and Carmona et al. (2017). The procedure is described in the following lines:  

1) we first fit an ARIMA model to the daily mortality due to natural causes for all days and for all the 

summer days (June, July, August and September; JJAS) for the period 2010-2018. The ARIMA fitting 

is estimated through the "auto.arima" function from the R package "forecast" that fits the best model 

taking into account the ACI/c and BIC criteria (Wang et al. 2006, Hyndman et al. 2008); 2) mortality 

residuals (i.e. the difference between the raw mortality and the fitted mortality) are used to estimate the 

mean value of the mortality and theirs corresponding confidence intervals (CI; 95%) for all days of the 

period 2010-2018 and for the summer days for the same period, these estimations are performed each 

2ºC of the maximum daily temperature (Tmax) for the summers of the period 2010-2018; 3) a scatter-

plot diagram is plotted by using the mean values of residuals mortality and their corresponding 95% CI 

(vertical axis) versus summer Tmax (each 2ºC) (horizontal axis) (Figure A.1).  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.1. Scatter plot for residuals of natural-cause mortality daily time series and daily maximum 

temperatures (ºC) for summer times for the period 2010-2018. The small black points correspond to 

the mean values of residuals of mortality and “-“ are the 95% CI (lower and upper bounds). The 

horizontal dashed lines are the 95% CI for the mean value of residuals of mortality for all days of the 

period 2010-2018. 

   We have followed Díaz et al. (2015), Carmona et al. (2017) and López-Bueno et al. (2021) to estimate 

the RR and the MR. To estimate the RR we follow this procedure:  

 

1) We fist calculated a new variable named Theat that is obtained as:  

 

Theat = 0                               if Tmax  <   Threshold  

Theat = Tmax - Threshold    if Tmax  >= Threshold 

 

where Tmax is the daily maximum temperatures for summer (from June to September; JJAS) and 
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Threshold is the daily mortality threshold temperature. The method used to estimate this threshold is 

based on Díaz et al (2015) and is explained previously in Appendix A.1.  

 

2) We have fitted a Generalized Liner Model or GLM (using a Poisson family and a log link) between 

the new mortality rate (TM) as dependent variable and the Theat as independent variable. Furthermore, 

we have considered the short-term memory or persistence (lags from 1 to 4 days, where theirs 

corresponding variables are Theat1, Theat2, Theat3, and Theat4, respectively) of heat wave events on 

daily mortality following to Alberdi et al. (1998), Díaz et al. (2015) and Carmona et al. (2017). On the 

other hand, we have considered the trend and auto-correlation (coefficient at lag 1 and where its 

corresponding variable is TM1) as well as the seasonal components (yearly, six-monthly and quarterly) 

of the time series of mortality (Díaz et al. 2015, Carmona el at. 2017). This model is defined by the 

following formula (Carmona et al. 2017, López-Bueno et al. 2021): 

 

Log(TM) = bo + b1 Trend + b2 sin(365) + b3 cos(365) + b4 sin(180) + b5 cos(180) + b6 sin(120) + b7 

cos(120) + b8 sin(90) + b9 cos(90) + b10 TM1 + [b11 Theat + b12 Theat1 + b13 Theat2 + b14 Theat3 

+ b15 Theat4]  

 

3) The heat-related relative risk (RR) is estimated as the e (2.7172) power of the sum of the coefficients 

b11, b12, b13, and b14 that are statistically significant (p-values < 0.05) (López-Bueno et al. 2021).  

 

4). Finally, we have estimated the mortality risk (MR) (Díaz et al. 2015, Carmona el at. 2017), that is, 

MR = [(RR -  1)/RR]*100.  

 

Appendix A.2. The stochastic HWs model. 

   There is assumed to be a Poisson process that generates HWs. The expected mean number of HWs 

at time t is estimated using Equation A.1: 

 

𝜆(𝑡) = 𝜆(0)𝑒𝛼𝑡 A.1 

   The duration of an HW cannot be zero days, so there is also assumed to be a gamma process that 

determines the duration in days of an HW when it occurs. The expected mean duration of HWs at time 

t is estimated using Equation A.2: 

𝑑(𝑡) = 𝑑(0)𝑒𝛾𝑡 A.2 

 

 

In the gamma process their volatility is calibrated. 

   The temperature exceedance above 30ºC is obtained from a zero-truncated normal distribution 

correlated with the HW duration. The expected mean temperature exceedance over 38ºC at time t is 

estimated using Equation A.3: 
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𝑔(𝑡) = 𝑔(0)𝑒𝛽𝑡 A.3 

   Correlation between temperature exceedance and duration can be simulated by obtaining random 

samples correlated for temperature exceedance using Equation A.4: 

𝜌𝑥1 + 𝑥2√1 − 𝜌2 A.4 

where 𝑥1 y 𝑥2 are two independent, normalised samples of duration and temperature exceedance. 

 

   The Tables A.1 to A.2 show the parameters and expected values for Madrid under the RCP 4.5 and 

8.5 respectively in the no adaptation case. 

   The Tables A.3 to A.4 show the parameters and expected values for Madrid under the RCP 4.5 and 

8.5 respectively in the adaptation case. 
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Table A.1a:  Parameters and expected values for Madrid under RCP 4.5, without adaptation. 
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Parameters M0145 M0245 M0345 M0445 M0545 M0645 M0745 M0845 M0945 M1045 Mean 

λ(0) 1.392 1.504 1.678 1.569 0.768 1.815 2.523 3.371 1.856 1.468 1.621 
α 0.015 0.011 0.011 0.012 0.013 0.015 0.011 0.009 0.006 0.012 0.013 

dur(0) 1.768 1.492 1.839 1.506 0.724 1.488 1.689 2.205 1.283 1.114 1.309 

γ 0.012 0.009 0.005 0.010 0.013 0.015 0.010 0.016 0.006 0.009 0.012 

temp(0) 0.617 0.574 0.796 0.598 0.345 0.640 0.572 0.783 0.739 0.552 0.550 

β 0.010 0.009 0.005 0.008 0.009 0.012 0.013 0.016 0.002 0.008 0.010 

𝜎𝐸 0.546 0.565 0.638 0.540 0.562 0.558 0.467 0.720 0.599 0.692 0.595 

𝜌1,2 0.315 0.227 0.430 0.252 0.662 0.446 0.423 0.280 0.540 0.610 0.430 

𝜌2,3 0.585 0.305 0.628 0.614 0.806 0.718 0.709 0.716 0.678 0.796 0.645 

𝜎𝐷 1.951 1.639 1.408 1.967 1.493 1.761 1.154 2.661 1.144 1.449 1.680 

Expected 

Values 

M0145 M0245 M0345 M0445 M0545 M0645 M0745 M0845 M0945 M1045 Mean 

λ(t) 2025 1.86 1.86 2.08 1.95 0.98 2.43 3.14 4.03 2.10 1.84 2.06 
λ(t) 2050 2.73 2.46 2.76 2.61 1.35 3.58 4.18 5.10 2.46 2.47 2.83 

λ(t) 2075 4.01 3.24 3.67 3.48 1.85 5.27 5.56 6.45 2.89 3.33 3.93 

λ(t) 2100 5.88 4.28 4.87 4.65 2.55 7.75 7.40 8.16 3.39 4.47 5.50 

dur(t) 2025 2.21 1.78 2.01 1.81 0.93 1.96 2.05 3.00 1.43 1.32 1.63 

dur(t) 2050 2.95 2.23 2.25 2.30 1.30 2.83 2.65 4.48 1.64 1.66 2.20 

dur(t) 2075 3.95 2.81 2.53 2.94 1.81 4.08 3.41 6.71 1.89 2.08 2.99 

dur(t) 2100 5.29 3.53 2.84 3.74 2.51 5.87 4.40 10.04 2.18 2.61 4.10 
temp(t

) 
2025 0.74 0.68 0.88 0.69 0.41 0.80 0.74 1.06 0.76 0.64 0.67 

temp(t

) 
2050 0.94 0.85 1.01 0.84 0.52 1.09 1.03 1.57 0.79 0.79 0.86 

temp(t

) 
2075 1.19 1.07 1.16 1.03 0.65 1.47 1.44 2.34 0.82 0.96 1.12 

temp(t

) 
2100 1.51 1.34 1.33 1.25 0.82 1.98 2.00 3.48 0.85 1.18 1.48 
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Table A.1b:  Parameters and expected values for Madrid under RCP 4.5, without adaptation.   
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Parameters M1145 M1245 M1345 M1445 M1545 M1645 M1745 M1845 M1945 M2045 M2145 Mean 

λ(0) 0.961 1.064 2.783 3.342 1.484 0.723 1.107 0.745 2.517 1.006 0.369 1.621 
α 0.016 0.014 0.015 0.013 0.015 0.024 0.017 0.014 0.007 0.011 0.020 0.013 

dur(0) 1.051 1.774 1.243 1.323 1.363 1.172 0.705 0.621 1.620 1.070 0.436 1.309 

γ 0.019 0.011 0.012 0.014 0.008 0.011 0.020 0.017 0.011 0.012 0.013 0.012 

temp(0) 0.249 0.542 0.560 0.768 0.593 0.395 0.438 0.219 0.675 0.546 0.359 0.550 

β 0.020 0.010 0.014 0.011 0.007 0.012 0.011 0.016 0.009 0.009 0.007 0.010 

𝜎𝐸 0.527 0.772 0.484 0.510 0.621 0.601 0.532 0.587 0.562 0.695 0.724 0.595 

𝜌1,2 0.377 0.292 0.517 0.302 0.530 0.446 0.492 0.730 0.011 0.444 0.701 0.430 

𝜌2,3 0.624 0.653 0.649 0.505 0.732 0.771 0.629 0.806 0.516 0.498 0.604 0.645 

𝜎𝐷 2.346 3.347 1.119 1.270 1.315 1.726 1.482 1.591 1.880 1.701 0.886 1.680 

Expected 

Values 

M1145 M1245 M1345 M1445 M1545 M1645 M1745 M1845 M1945 M2045 M2145 Mean 

λ(t) 2025 1.30 1.38 3.67 4.26 1.99 1.15 1.52 0.98 2.89 1.24 0.53 2.06 
λ(t) 2050 1.94 1.94 5.28 5.87 2.93 2.11 2.31 1.41 3.46 1.63 0.87 2.83 

λ(t) 2075 2.90 2.74 7.59 8.09 4.31 3.87 3.52 2.02 4.14 2.14 1.42 3.93 

λ(t) 2100 4.33 3.85 10.92 11.15 6.34 7.10 5.34 2.91 4.96 2.81 2.31 5.50 

dur(t) 2025 1.50 2.21 1.56 1.73 1.58 1.44 1.04 0.85 1.99 1.35 0.56 1.63 

dur(t) 2050 2.38 2.94 2.09 2.45 1.91 1.90 1.72 1.29 2.61 1.84 0.77 2.20 

dur(t) 2075 3.79 3.92 2.81 3.48 2.31 2.50 2.87 1.94 3.42 2.51 1.06 2.99 

dur(t) 2100 6.03 5.23 3.77 4.93 2.80 3.28 4.77 2.94 4.49 3.42 1.46 4.10 
temp(t

) 
2025 0.36 0.65 0.73 0.95 0.68 0.49 0.54 0.29 0.81 0.65 0.41 0.67 

temp(t

) 
2050 0.59 0.83 1.03 1.27 0.80 0.66 0.72 0.44 1.02 0.81 0.48 0.86 

temp(t

) 
2075 0.96 1.06 1.45 1.68 0.95 0.89 0.95 0.65 1.30 1.02 0.57 1.12 

temp(t

) 
2100 1.57 1.36 2.05 2.23 1.13 1.19 1.26 0.96 1.64 1.28 0.67 1.48 
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Table A.2a: parameters and expected values for Madrid under RCP 8.5, without adaptation. 
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Parameters M0185 M0245 M0385 M0485 M0585 M0685 M0785 M0885 M0985 M1085 Mean 

λ(0) 1.906 1.375 2.143 1.574 0.317 1.996 3.036 3.763 1.069 1.994 1.966 
α 0.016 0.019 0.016 0.019 0.036 0.017 0.009 0.006 0.025 0.017 0.017 

dur(0) 1.178 1.330 1.398 1.617 0.766 1.186 1.634 1.923 0.770 1.094 1.038 

γ 0.027 0.022 0.019 0.016 0.019 0.026 0.026 0.028 0.023 0.019 0.027 

temp(0) 0.504 0.635 0.604 0.655 0.239 0.495 0.626 0.728 0.325 0.446 0.472 

β 0.020 0.017 0.017 0.015 0.023 0.022 0.021 0.024 0.024 0.021 0.022 

𝜎𝐸 0.559 0.694 0.543 0.571 0.572 0.500 0.563 0.735 0.592 0.695 0.593 

𝜌1,2 0.203 0.180 0.252 0.388 0.551 0.327 0.115 -0.111 0.691 0.502 0.322 

𝜌2,3 0.394 0.241 0.567 0.343 0.867 0.478 0.366 0.240 0.723 0.674 0.505 

𝜎𝐷 3.053 4.756 2.343 1.728 1.619 3.611 4.341 8.719 1.541 1.538 3.262 

Expected 

Values 

M0185 M0245 M0385 M0485 M0585 M0685 M0785 M0885 M0985 M1085 Mean 

λ(t) 2025 2.59 1.98 2.91 2.27 0.63 2.77 3.63 4.24 1.71 2.74 2.60 
λ(t) 2050 3.89 3.20 4.34 3.66 1.56 4.27 4.59 4.96 3.16 4.17 3.82 

λ(t) 2075 5.84 5.18 6.49 5.90 3.84 6.58 5.80 5.81 5.86 6.33 5.74 

λ(t) 2100 8.77 8.38 9.69 9.53 9.48 10.14 7.33 6.80 10.86 9.62 8.82 

dur(t) 2025 1.96 2.03 2.00 2.20 1.10 1.93 2.67 3.26 1.20 1.57 1.65 

dur(t) 2050 3.84 3.52 3.22 3.31 1.77 3.66 5.11 6.55 2.14 2.52 3.11 

dur(t) 2075 7.50 6.12 5.16 4.96 2.86 6.93 9.75 13.13 3.83 4.05 6.11 

dur(t) 2100 14.67 10.64 8.28 7.45 4.61 13.14 18.64 26.34 6.84 6.50 12.69 
temp(t

) 
2025 0.74 0.88 0.83 0.87 0.37 0.75 0.93 1.15 0.52 0.67 0.70 

temp(t

) 
2050 1.24 1.36 1.26 1.25 0.65 1.31 1.58 2.08 0.95 1.13 1.20 

temp(t

) 
2075 2.07 2.10 1.92 1.81 1.16 2.27 2.66 3.78 1.76 1.93 2.06 

temp(t

) 
2100 3.45 3.25 2.92 2.61 2.05 3.93 4.50 6.86 3.24 3.28 3.56 
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Table A.2b: parameters and expected values for Madrid under RCP 8.5, without adaptation.   
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Parameters M1185 M1285 M1385 M1485 M1585 M1685 M1785 M1885 M1985 M2085 M2185 Mean 

λ(0) 1.049 1.700 3.868 4.110 1.824 2.284 1.896 1.039 2.189 1.619 0.543 1.966 
α 0.023 0.016 0.010 0.008 0.019 0.014 0.016 0.021 0.015 0.016 0.027 0.017 

dur(0) 1.445 0.221 0.224 0.933 0.965 0.727 0.531 0.515 1.294 1.626 0.415 1.038 

γ 0.024 0.051 0.050 0.033 0.021 0.032 0.037 0.026 0.019 0.018 0.024 0.027 

temp(0) 0.323 0.487 0.524 0.670 0.419 0.324 0.347 0.159 0.549 0.574 0.284 0.472 

β 0.027 0.021 0.023 0.022 0.019 0.027 0.026 0.031 0.019 0.017 0.019 0.022 

𝜎𝐸 0.609 0.668 0.495 0.510 0.637 0.584 0.484 0.644 0.519 0.622 0.646 0.593 

𝜌1,2 0.400 0.066 0.049 0.088 0.406 0.277 0.226 0.706 0.444 0.316 0.681 0.322 

𝜌2,3 0.592 0.418 0.427 0.513 0.658 0.551 0.134 0.834 0.497 0.644 0.441 0.505 

𝜎𝐷 4.233 7.886 3.641 3.157 2.090 3.634 3.755 1.455 1.569 2.875 0.966 3.262 

Expected 

Values 

M1185 M1285 M1385 M1485 M1585 M1685 M1785 M1885 M1985 M2085 M2185 Mean 

λ(t) 2025 1.61 2.31 4.64 4.83 2.64 2.99 2.57 1.56 2.91 2.20 0.91 2.60 
λ(t) 2050 2.84 3.46 5.91 5.96 4.30 4.27 3.82 2.65 4.23 3.28 1.78 3.82 

λ(t) 2075 5.00 5.18 7.51 7.37 7.00 6.10 5.69 4.51 6.15 4.91 3.49 5.74 

λ(t) 2100 8.80 7.76 9.56 9.10 11.39 8.70 8.48 7.69 8.94 7.33 6.84 8.82 

dur(t) 2025 2.28 0.58 0.58 1.74 1.43 1.34 1.06 0.84 1.85 2.31 0.65 1.65 

dur(t) 2050 4.15 2.06 2.02 3.96 2.40 2.97 2.65 1.61 2.97 3.66 1.19 3.11 

dur(t) 2075 7.57 7.31 7.03 9.00 4.02 6.62 6.60 3.09 4.75 5.80 2.17 6.11 

dur(t) 2100 13.79 25.97 24.49 20.45 6.74 14.75 16.45 5.91 7.62 9.20 3.94 12.69 
temp(t

) 
2025 0.53 0.72 0.82 1.02 0.61 0.54 0.57 0.29 0.79 0.79 0.41 0.70 

temp(t

) 
2050 1.04 1.21 1.47 1.77 0.99 1.05 1.08 0.62 1.28 1.19 0.66 1.20 

temp(t

) 
2075 2.01 2.04 2.64 3.08 1.61 2.05 2.06 1.36 2.07 1.81 1.07 2.06 

temp(t

) 
2100 3.91 3.43 4.74 5.34 2.61 4.01 3.93 2.95 3.34 2.75 1.73 3.56 
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Table A.3a:  Parameters and expected values for Madrid under RCP 4.5, with adaptation. 
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Parameters M0145 M0245 M0345 M0445 M0545 M0645 M0745 M0845 M0945 M1045 Mean 

λ(0) 1.394 1.528 1.682 1.525 0.795 1.630 2.315 3.249 1.832 1.450 1.568 
α 0.013 0.010 0.011 0.011 0.011 0.016 0.012 0.009 0.006 0.011 0.012 

dur(0) 1.666 1.405 1.755 1.471 0.718 1.615 1.721 1.982 1.281 1.142 1.277 

γ 0.012 0.008 0.005 0.008 0.012 0.012 0.008 0.016 0.006 0.009 0.011 

temp(0) 0.612 0.560 0.794 0.607 0.320 0.626 0.541 0.779 0.739 0.518 0.538 

β 0.009 0.008 0.005 0.007 0.010 0.011 0.012 0.014 0.001 0.008 0.010 

𝜎𝐸 0.543 0.552 0.638 0.574 0.557 0.556 0.484 0.699 0.602 0.699 0.592 

𝜌1,2 0.328 0.377 0.373 0.335 0.674 0.233 0.470 0.277 0.534 0.484 0.437 

𝜌2,3 0.598 0.332 0.642 0.627 0.805 0.606 0.668 0.686 0.678 0.742 0.636 

𝜎𝐷 1.762 1.289 1.384 1.467 1.442 2.181 1.144 2.523 1.155 1.629 1.611 

Expected 

Values 

M0145 M0245 M0345 M0445 M0545 M0645 M0745 M0845 M0945 M1045 Mean 

λ(t) 2025 1.79 1.84 2.05 1.89 0.98 2.20 2.88 3.82 2.06 1.78 1.96 
λ(t) 2050 2.48 2.34 2.67 2.52 1.29 3.27 3.85 4.74 2.41 2.34 2.63 

λ(t) 2075 3.44 2.99 3.47 3.34 1.69 4.86 5.14 5.88 2.82 3.07 3.57 

λ(t) 2100 4.78 3.81 4.51 4.44 2.22 7.22 6.86 7.29 3.30 4.03 4.87 

dur(t) 2025 2.09 1.64 1.92 1.71 0.90 2.04 2.01 2.70 1.43 1.35 1.57 

dur(t) 2050 2.82 2.02 2.16 2.09 1.23 2.76 2.46 4.04 1.65 1.67 2.07 

dur(t) 2075 3.80 2.48 2.44 2.55 1.66 3.74 3.01 6.06 1.90 2.07 2.75 

dur(t) 2100 5.13 3.05 2.74 3.12 2.25 5.08 3.69 9.08 2.19 2.57 3.67 
temp(t

) 
2025 0.72 0.65 0.87 0.69 0.39 0.78 0.68 1.01 0.76 0.61 0.64 

temp(t

) 
2050 0.90 0.80 0.97 0.82 0.50 1.03 0.93 1.42 0.78 0.75 0.81 

temp(t

) 
2075 1.12 0.98 1.09 0.96 0.63 1.38 1.27 1.99 0.81 0.93 1.04 

temp(t

) 
2100 1.40 1.20 1.22 1.14 0.81 1.83 1.73 2.79 0.83 1.14 1.33 
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Table A.3b:  Parameters for Madrid under RCP 4.5, with adaptation.   
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Parameters M114

5 

M1245 M1345 M1445 M1545 M1645 M1745 M1845 M1945 M2045 M2145 Mean 

λ(0) 0.873 1.154 2.615 3.214 1.438 0.713 1.035 0.713 2.400 0.975 0.394 1.568 
α 0.015 0.010 0.014 0.012 0.014 0.022 0.016 0.014 0.006 0.011 0.018 0.012 

dur(0) 0.944 1.638 1.201 1.298 1.387 1.099 0.824 0.642 1.515 1.080 0.440 1.277 

γ 0.018 0.013 0.011 0.012 0.007 0.010 0.016 0.014 0.010 0.010 0.012 0.011 

temp(0) 0.238 0.540 0.545 0.746 0.581 0.370 0.428 0.218 0.664 0.517 0.347 0.538 

β 0.018 0.009 0.013 0.011 0.007 0.011 0.010 0.014 0.008 0.009 0.006 0.010 

𝜎𝐸 0.520 0.759 0.462 0.495 0.621 0.581 0.523 0.585 0.533 0.734 0.706 0.592 

𝜌1,2 0.428 0.251 0.483 0.397 0.534 0.452 0.628 0.662 0.169 0.389 0.689 0.437 

𝜌2,3 0.694 0.609 0.631 0.553 0.707 0.800 0.650 0.776 0.477 0.488 0.594 0.636 

𝜎𝐷 2.053 3.649 1.082 1.095 1.395 1.697 1.292 1.648 1.460 1.571 0.904 1.611 

Expected 

Values 

M114

5 

M1245 M1345 M1445 M1545 M1645 M1745 M1845 M1945 M2045 M2145 Mean 

λ(t) 2025 1.16 1.39 3.40 4.05 1.87 1.09 1.40 0.93 2.71 1.21 0.55 1.96 
λ(t) 2050 1.70 1.77 4.79 5.50 2.65 1.92 2.09 1.30 3.18 1.60 0.85 2.63 

λ(t) 2075 2.47 2.26 6.77 7.46 3.74 3.36 3.12 1.84 3.73 2.11 1.32 3.57 

λ(t) 2100 3.61 2.89 9.55 10.11 5.29 5.89 4.66 2.59 4.38 2.79 2.06 4.87 

dur(t) 2025 1.34 2.09 1.47 1.63 1.59 1.34 1.12 0.84 1.84 1.31 0.56 1.57 

dur(t) 2050 2.12 2.86 1.93 2.21 1.91 1.74 1.68 1.21 2.38 1.70 0.76 2.07 

dur(t) 2075 3.35 3.94 2.53 3.00 2.29 2.26 2.52 1.73 3.07 2.20 1.04 2.75 

dur(t) 2100 5.30 5.41 3.32 4.06 2.75 2.93 3.79 2.49 3.97 2.84 1.42 3.67 
temp(t

) 
2025 0.34 0.64 0.70 0.91 0.66 0.46 0.52 0.29 0.78 0.62 0.39 0.64 

temp(t

) 
2050 0.53 0.80 0.96 1.19 0.78 0.61 0.67 0.41 0.96 0.77 0.45 0.81 

temp(t

) 
2075 0.84 1.00 1.33 1.55 0.92 0.81 0.87 0.58 1.19 0.97 0.52 1.04 

temp(t

) 
2100 1.34 1.25 1.84 2.03 1.08 1.08 1.13 0.82 1.47 1.22 0.60 1.33 
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Table A.4a:  Parameters and expected values for Madrid under RCP 8.5, with adaptation. 
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Parameters M0185 M0245 M0385 M0485 M0585 M0685 M0785 M0885 M0985 M1085 Mean 

λ(0) 1.579 1.238 1.775 1.473 0.378 1.880 2.707 3.242 0.901 1.647 1.705 
α 0.019 0.019 0.017 0.018 0.032 0.018 0.012 0.008 0.025 0.018 0.018 

dur(0) 1.343 1.155 1.419 1.422 0.726 1.111 1.499 1.991 0.751 1.107 1.083 

γ 0.021 0.021 0.017 0.017 0.018 0.024 0.022 0.024 0.021 0.018 0.022 

temp(0) 0.510 0.609 0.626 0.643 0.216 0.483 0.594 0.699 0.354 0.452 0.474 

β 0.018 0.016 0.014 0.013 0.022 0.020 0.019 0.021 0.021 0.019 0.019 

𝜎𝐸 0.556 0.657 0.554 0.572 0.553 0.512 0.553 0.702 0.598 0.688 0.585 

𝜌1,2 0.236 0.418 0.275 0.354 0.491 0.314 0.240 -0.001 0.724 0.382 0.371 

𝜌2,3 0.471 0.405 0.530 0.370 0.834 0.498 0.316 0.548 0.668 0.610 0.539 

𝜎𝐷 2.731 2.202 2.172 1.833 1.665 2.657 3.048 4.352 1.341 1.911 2.473 

Expected 

Values 

M0185 M0245 M0385 M0485 M0585 M0685 M0785 M0885 M0985 M1085 Mean 

λ(t) 2025 2.26 1.77 2.44 2.09 0.69 2.62 3.42 3.77 1.46 2.30 2.32 
λ(t) 2050 3.64 2.83 3.71 3.30 1.53 4.07 4.65 4.61 2.75 3.58 3.52 

λ(t) 2075 5.86 4.53 5.63 5.21 3.40 6.32 6.32 5.63 5.17 5.57 5.42 

λ(t) 2100 9.41 7.25 8.55 8.24 7.54 9.80 8.59 6.87 9.74 8.65 8.45 

dur(t) 2025 2.00 1.73 1.97 1.97 1.03 1.75 2.30 3.12 1.13 1.55 1.64 

dur(t) 2050 3.39 2.95 3.03 3.02 1.63 3.18 4.03 5.64 1.92 2.40 2.84 

dur(t) 2075 5.75 5.02 4.67 4.63 2.59 5.78 7.06 10.20 3.27 3.72 5.00 

dur(t) 2100 9.73 8.55 7.19 7.10 4.11 10.51 12.37 18.44 5.56 5.76 8.93 
temp(t

) 
2025 0.72 0.82 0.82 0.82 0.33 0.70 0.85 1.05 0.53 0.64 0.67 

temp(t

) 
2050 1.13 1.23 1.18 1.13 0.57 1.14 1.35 1.77 0.89 1.02 1.07 

temp(t

) 
2075 1.76 1.83 1.69 1.56 0.98 1.87 2.15 3.01 1.50 1.62 1.73 

temp(t

) 
2100 2.77 2.72 2.43 2.15 1.68 3.05 3.42 5.10 2.54 2.58 2.79 
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Table A.4b:  Parameters and expected values for Madrid under RCP 8.5, with adaptation.   
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Parameters M1185 M1285 M1385 M1485 M1585 M1685 M1785 M1885 M1985 M2085 M2185 Mean 

λ(0) 0.788 1.468 3.154 3.794 1.553 2.007 1.553 0.920 1.777 1.471 0.493 1.705 
α 0.024 0.018 0.015 0.011 0.020 0.016 0.019 0.020 0.017 0.017 0.025 0.018 

dur(0) 1.713 0.931 0.611 0.949 1.010 0.521 0.852 0.465 1.268 1.462 0.424 1.083 

γ 0.020 0.028 0.031 0.028 0.018 0.033 0.025 0.026 0.017 0.017 0.023 0.022 

temp(0) 0.309 0.519 0.537 0.688 0.409 0.344 0.358 0.173 0.547 0.584 0.291 0.474 

β 0.025 0.017 0.020 0.018 0.018 0.023 0.023 0.027 0.017 0.015 0.018 0.019 

𝜎𝐸 0.587 0.679 0.483 0.509 0.611 0.568 0.494 0.607 0.506 0.646 0.645 0.585 

𝜌1,2 0.292 0.222 0.282 0.177 0.430 0.288 0.484 0.631 0.391 0.452 0.708 0.371 

𝜌2,3 0.445 0.554 0.449 0.377 0.747 0.599 0.412 0.843 0.495 0.648 0.505 0.539 

𝜎𝐷 6.012 4.007 2.534 2.872 1.756 2.812 1.696 1.572 1.605 2.139 1.019 2.473 

Expected 

Values 

M1185 M1285 M1385 M1485 M1585 M1685 M1785 M1885 M1985 M2085 M2185 Mean 

λ(t) 2025 1.25 2.05 4.16 4.68 2.27 2.70 2.21 1.35 2.43 2.02 0.79 2.32 
λ(t) 2050 2.30 3.19 6.00 6.16 3.73 3.99 3.52 2.22 3.68 3.06 1.46 3.52 

λ(t) 2075 4.23 4.96 8.64 8.11 6.13 5.90 5.61 3.67 5.56 4.65 2.72 5.42 

λ(t) 2100 7.78 7.71 12.45 10.67 10.07 8.71 8.93 6.06 8.41 7.06 5.04 8.45 

dur(t) 2025 2.51 1.60 1.09 1.62 1.42 0.98 1.37 0.77 1.77 2.00 0.66 1.64 

dur(t) 2050 4.16 3.26 2.36 3.26 2.22 2.26 2.58 1.48 2.73 3.04 1.16 2.84 

dur(t) 2075 6.88 6.63 5.07 6.59 3.47 5.21 4.83 2.85 4.23 4.60 2.06 5.00 

dur(t) 2100 11.39 13.50 10.92 13.28 5.42 11.99 9.07 5.51 6.54 6.97 3.65 8.93 
temp(t

) 
2025 0.49 0.72 0.78 0.98 0.58 0.53 0.55 0.29 0.76 0.77 0.41 0.67 

temp(t

) 
2050 0.91 1.11 1.29 1.55 0.91 0.94 0.97 0.58 1.16 1.12 0.63 1.07 

temp(t

) 
2075 1.68 1.70 2.13 2.45 1.43 1.67 1.71 1.15 1.77 1.63 0.98 1.73 

temp(t

) 
2100 3.12 2.61 3.51 3.88 2.25 2.96 3.00 2.29 2.70 2.36 1.52 2.79 
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Appendix A.3. The stochastic mortality risk model  

   The mortality risk (MR) is modelled as a generalised extreme value distribution (gev) whose 

cumulative distribution function is given by Equation (A.5). 

 

𝐹(𝑥) = 𝑒(−(1+𝜉
𝑥−𝜇

𝜎
)

−
1
𝜉), 1 + 𝜉

𝑥 − 𝜇

𝜎
> 0. (A.5) 

with three parameters:  

𝜇 ∈ 𝑅 location, 𝜎 > 0 scale, 𝜉 ∈ 𝑅 shape. 

   The probability density function (p.d.f.) is described by Equation (A.6) and (A.7): 

1

𝜎
(1 + 𝜉

𝑥 − 𝜇

𝜎
)

−
𝜉+1

𝜉 𝑒(−(1+𝜉
𝑥−𝜇

𝜎
)

−
1
𝜉), 𝜉 ≠ 0 (A.6) 

𝑒−
𝑥−𝜇

𝜎 , 𝜉 = 0.   

(A.7) 

   The mean is calculated with Equations (A.8), (A.9) and (A.10) 

𝜇 + 𝜎(Γ(1 − 𝜉) − 1), if 𝜉 ≠ 0, 𝜉 < 1 (A.8) 

𝜇 + 𝜎𝛾, if 𝜉 ≠ 0, 𝜉 < 1 (A.9) 

∞, if 𝜉 ≥ 1 (A.10) 

where 𝛤 is the gamma funtion and 𝛾 is Euler´s constant (𝛾 = 0.5772). 

   Figure A.1 shows the probability density function of the GEV distribution with the parameter values 

calculated. 
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Fig. A.3. Probability density function GEV distribution. 
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