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Abstract

The necessity of conscious awareness in human learning has been a long-standing topic in psychology

and neuroscience. Previous research on non-conscious associative learning is limited by the low signal-to-

noise ratio of the subliminal stimulus, and the evidence remains controversial, including failures to replicate.

Using functional MRI decoded neurofeedback (fMRI-DecNef) we guided participants from both sexes to

generate neural patterns akin to those observed when visually perceiving real-world entities (e.g., dogs).

Importantly, participants remained unaware of the actual content represented by these patterns. We utilized

an associative DecNef approach to imbue perceptual meaning (e.g., dogs) into Japanese hiragana characters

that held no inherent meaning for our participants, bypassing a conscious link between the characters and

the dogs concept. Despite their lack of awareness regarding the neurofeedback objective, participants suc-

cessfully learned to activate the target perceptual representations in the bilateral fusiform. The behavioural

significance of our training was evaluated in a visual search task. DecNef and control participants searched

for dogs or scissors targets that were pre-cued by the hiragana used during DecNef training or by a control

hiragana. The DecNef hiragana did not prime search for its associated target but, strikingly, participants

were impaired at searching for the targeted perceptual category. Hence, conscious awareness may function

to support higher-order associative learning. Meanwhile, lower-level forms of re-learning, modification, or

plasticity in existing neural representations can occur unconsciously, with behavioural consequences out-

side the original training context. The work also provides an account of DecNef effects in terms of neural

representational drift.
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Significance Statement

This study examined the role of conscious awareness in human learning by using fMRI-DecNef.

These techniques enabled participants to self-regulate their brain activity to align with the perceptual rep-

resentations generated by a real-world entity (i.e., dogs), without awareness of the content they represented.

We demonstrated that established brain conceptual representations can be unconsciously modified, influ-

encing visual search behaviour for the targeted perceptual content through the neural representational drift

mechanism. Nonetheless, our research suggests that conscious awareness plays a role in more advanced forms

of associative learning. Further, this study offers methodological insights for improving DecNef protocols

and suggests potential for personalized interventions, including guidance to correct maladaptive conceptual

representations.

Keywords: decoded neurofeedback, associative learning, representational drift, consciousness
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Introduction

The acquisition of word meanings depends on associative learning of symbols and episodic referents

(Blewitt, 1982; M. D. Smith, 1978). A longstanding question in psychology and neuroscience concerns

whether conscious awareness is necessary for higher-level associative learning.

Prior research provided evidence of unconscious associative learning between subliminal visual items

and conscious rewards (Pessiglione et al., 2008; Seitz, Kim, & Watanabe, 2009; Skora, Yeomans, Crombag,

& Scott, 2021), as well as fear conditioning responses to stimuli not consciously perceived (Raio, Carmel,

Carrasco, & Phelps, 2012). Studies using evaluative learning paradigms have suggested that emotional value

can be conditioned into neutral visuals, like nonsense syllables, and that these associations can be made

implicitly, even without participants awareness (Hofmann, De Houwer, Perugini, Baeyens, & Crombez, 2010;

Staats & Staats, 1957; Tryon & Cicero, 1989). However, the aforementioned evidence is controversial and

has faced substantial criticism (Field, 2000; Mertens & Engelhard, 2020; Shanks & Dickinson, 1990; Shanks

& John, 1994), raising the possibility that the results were due to experimental demand characteristics and

participants’ awareness of the experimental goals, not from non-conscious knowledge (Field, 2000; Page,

1974; Stahl, Haaf, & Corneille, 2016).

Research on unconscious associative learning is limited due to the low signal-to-noise ratio of the brief

and masked unconscious stimulus. Learning may falter in these conditions. Addressing this challenge requires

an increase in signal strength in the unconscious condition (Lau, 2022). Here, we used fMRI-DecNef to enable

participants generate brain patterns matching a target state without awareness of the content represented by

those brain patterns (Watanabe, Sasaki, Shibata, & Kawato, 2017). Previous DecNef studies mainly centered

on modulating affective responses to faces (Shibata, Watanabe, Kawato, & Sasaki, 2016), fear (Koizumi et

al., 2016; Taschereau-Dumouchel et al., 2018) or confidence (Cortese, Amano, Koizumi, Kawato, & Lau,

2016). Here we used DecNef training to shape brain representations and form novel conceptual knowledge.

Specifically, we aimed to incept the perceptual meaning of a real-world entity into a Japanese hiragana that

had no inherent meaning for our participants, by reinforcing related neural patterns. To achieve this, we

developed an open framework for DecNef that integrates several enhancements to the standard pipeline,

namely, a customised decoder that provides more fine-grained and less binomial/overconfident predictions

during DecNef training (Margolles, Mei, Elosegi, & Soto, 2023).

First, we trained a classifier to differentiate between brain patterns associated with perceiving dogs

or scissors images (Figure 1A). During several DecNef training sessions, participants self-regulated their brain

activity while viewing a hiragana to maximize the size of a feedback disk and monetary reward (Figure 1B).

Participants were unaware that the feedback depended on how closely their brain activity patterns matched

the classifier’s representation of dogs in the bilateral fusiform. We chose the fusiform due to its role in object

recognition and imagery (Dijkstra, van Gaal, Geerligs, Bosch, & van Gerven, 2021; Lee, Kravitz, & Baker,

2012; Reddy, Tsuchiya, & Serre, 2010; Stokes, Thompson, Cusack, & Duncan, 2009). We anticipated that

this approach would create associative knowledge, imbuing the hiragana with the meaning of dogs. The

behavioural significance of the DecNef was evaluated using a visual search task involving dogs and scissors,

with the search target being pre-cued by the DecNef hiragana or by a control hiragana (Figure 1C). We

hypothesized that associating the hiragana to the dogs concept would lead to automatic attention shifts

towards the matching search item, resulting in faster performance and distinct neural responses compared

to the control hiragana (Soto, Hodsoll, Rotshtein, & Humphreys, 2008; Soto, Humphreys, & Rotshtein,

2007). Additionally, we compared the search behavior of the DecNef group to a control group to understand

better how DecNef training influenced the target category’s representation itself. This contrast explores
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the potential of DecNef training to unconsciously modify the neural representation of the target concept,

resulting in distinct search performance for dogs targets compared to scissors.

Figure 1: Overview of the experimental design. (A) Participants viewed pictures of dogs and scissors. We trained a
custom logistic regression decoder using perceptual data from the bilateral fusiform to distinguish between the multi-
voxel patterns associated with each class. (B) Over four DecNef sessions, our goal was to covertly associate a neutral
hiragana with the perceptual meaning of dogs using reinforcement learning. Participants self-regulated their brain
activity in the bilateral fusiform while looking at an hiragana. Monetary rewards were given based on the alignment
of their brain activity patterns with the target class (i.e., dogs) as determined by the classifier. The decoded volumes
matched the three fMRI volumes acquired between 5 and 11 seconds after hiragana onset, aligning with the peak
of the Hemodynamic Response Function during self-regulation. Importantly, participants remained unaware of the
experiment’s true objective and the existence of a target category. (C) Upon completion of the four DecNef sessions, a
visual search task was administered to evaluate the behavioural and neural impact of the DecNef training. Participants
looked for dogs or scissors targets, which were either pre-signaled by the hiragana used during DecNef training or
by a new hiragana. We anticipated changes in search times due to the unconscious priming of dogs’ perceptual
representations driven by the targeted hiragana.

Materials and Methods

Participants

The DecNef training involved a group of 18 young adults (23-36 years old, mean±SD age: 28.19±3.73

years, 6 males) with normal or corrected-to-normal vision, who were right-handed and unfamiliar with the

Japanese language. A sample size of 18 is well above average in DecNef studies (Cortese et al., 2016;

Koizumi et al., 2016; Taschereau-Dumouchel et al., 2018). The experimental procedures were conducted

5

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 11, 2023. ; https://doi.org/10.1101/2023.07.04.547632doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.04.547632
http://creativecommons.org/licenses/by-nc/4.0/


in accordance with the Declaration of Helsinki and approved by the BCBL Research Ethics Board. All

participants provided written informed consent and at the end of the experiment, received a fixed monetary

compensation of 105€ for their participation in the study. Additionally, we included a control group of 36

young participants to double the DecNef group sample size and improve the statistical power of our analysis

for detecting any differences between groups (20-29 years old, mean±SD age: 23.16±2.62 years, 11 males).

One of the participants had to be replaced due to a high number of errors (i.e., > 40%).

We also note here that the decoded neurofeedback paradigm is a special case when it comes to

the selection of a control group. Standard fMRI neurofeedback studies are based on explicit approaches in

which participants are aware of the strategy that should be used to modulate brain activity in the targeted

region, and hence standard fMRI neurofeedback approaches use control groups in which participants receive

feedback of a non-target brain region, sham feedback, or perform mental strategies without neurofeedback

signaling (Sorger, Scharnowski, Linden, Hampson, & Young, 2019). In the case of DecNef, and specifically

in our associative DecNef study, the above is not applicable (Sorger et al., 2019) because the neurofeedback

training occurs at an implicit level, namely, participants are unaware of (i) the target brain region (ii) what

the neurofeedback signal represents (iii) the strategy that may be used to regulate activity in the target

region. Because of this, we elected to include a control group of participants that did not undergo DecNef in

order to test that the behavioral pattern of search performance in the DecNef group was indeed specific to

DecNef training. Note that a similar approach was used in prior associative DecNef studies (Amano, Shibata,

Kawato, Sasaki, & Watanabe, 2016; Knotts, Cortese, Tascherau-Dumouchel, Kawato, & Lau, 2019).

Apparatus

Our DecNef pipeline required three high-performance computers: the computer controlling the MRI

scanner; a server computer, which analyzed the data in real time; and a client computer for feedback and

stimuli presentation during MRI scanning. The three computers were connected through an ethernet local

area network.

MRI settings

Whole-brain data was acquired on a 3T Siemens Magnetom Prisma-fit whole-body MRI scanner

with a 64-channel head-coil at the BCBL facilities. A gradient-echo echo-planar imaging sequence was

used with the following parameters: time-to-repetition (TR) = 2000 ms, time-to-echo (TE) = 28 ms, flip

angle (FA) = 74º, field of view (FoV) = 192 mm, 34 axial slices with no inter-slice gap and a 3*3*3.5

mm3 voxel resolution. Five volumes were acquired as MRI heat-up at the beginning of each fMRI run to

ensure steady-state magnetization. These volumes were then discarded from analyses. Additionally, one

high-resolution T1-weighted structural MPRAGE scan was acquired: TR = 2530 ms, TE = 2.36 ms, FA

= 7º, FoV = 256 mm, 1 mm isotropic voxel resolution, 176 slices. Visual stimuli were presented on an

out-of-bore screen, which participants viewed through a mirror mounted on the head coil. To minimize head

movements, participants were instructed to keep their head as still as possible, and the head-coil of the MRI

scanner was cushioned with foam. Participants used padded headphones to minimize background scanner

noise, to facilitate the presentation of auditory stimuli, and to enable communication with experimenters via

a compatible microphone.
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fMRI scans for decoder construction

The decoder construction session involved four perceptual runs and two mental imagery runs, each

lasting approximately 8 minutes.

First, participants completed four perceptual runs in which they were presented with pictures of

dogs and scissors from the THINGS database (Hebart et al., 2019). Each perceptual run was composed of

seven dogs and seven scissors trials, and every trial had a duration of 22 seconds. A trial started with a

white fixation point lasting 1500 ms (.37 ◦ of visual angle), positioned at the center of the screen against

a black background. This was followed by the sequential presentation of 12 example pictures (8.06◦) from

a specific visual category (dogs or scissors), with each image lasting for 750 ms each. Picture presentation

were interleaved with 250 ms visual fixation periods. The same images were used for each category across

trials, but were presented in random order. Finally, to maximize the separation between the brain activity

patterns across trials, we included a 8500 ms inter-trial interval (ITI) with a red fixation (.37 ◦) at the center

of the screen (Figure 1A). During the perceptual runs, participants were instructed to focus their attention

on the presented pictures and actively engage in processing their meaning. Additionally, each perceptual run

featured four trials where visual-noise patterns were displayed. These gaussian noise patterns were crafted

by randomly selecting colored pixels with varying intensities from the RGB (Red, Green, Blue) spectrum. In

each trial, 12 of these patterns were shown (8.06 ◦), chosen at random from a pool of 60 samples. The data

gathered from the visual noise trials were also used to train the decoder, allowing us to tackle representational

noise when distinguishing between dogs and scissors perceptual representations during DecNef training (see

the ’Algorithm for decoding’ section for more details).

Furthermore, we sought to consider that any representation induced during DecNef, resembling

the target representations, would be internally generated. Consequently, following the perceptual runs,

participants underwent two mental imagery runs. During these runs, they were instructed to vividly imagine

a picture of their choice from each of the visual categories. This image was chosen at the start of the

perceptual runs based on its ease of imagination for the participant. Each mental imagery run comprised

nine imagery trials for every category, with each trial lasting 22 seconds. These trials began with a 1500 ms

white fixation (.37◦) against a black background, succeeded by a 12-second period where participants were

guided to imagine the chosen category image, all while holding their fixation. To indicate which category

they should imagine, auditory prompts in Spanish, either ’Perro’ (meaning dog; 375 ms) or ’Tijeras’ (meaning

scissors; 676 ms), were played three times during the 12-second span. Auditory cues were used to avoid any

visual stimulation that could interfere with visual imagery. The volume of the auditory cues was adjusted

individually for each participant. After the onset of the auditory prompt, participants had to visualize for

approximately 4.5 seconds until the next auditory cue began. They were instructed to mentally project

a vivid and static image at the center of the screen. Upon hearing the second and third auditory cues,

participants were directed to re-activate the target image for that trial. Between trials, an ITI with a red

fixation point (.37 ◦) was displayed at the screen’s center for 8500 ms. Following both the perceptual and

mental imagery runs, participants were invited to take a short break of 1-2 minutes. We used OpenSesame

software (Mathôt & March, 2022; Mathôt, Schreij, & Theeuwes, 2012) to control stimulus presentation.

fMRI training data preprocessing

The fMRI volumes used for training the decoder were preprocessed using a customized pipeline in

AFNI v21.0.05 (Cox, 1996), which was created through the Nipype v.1.4.1 (Gorgolewski et al., 2011) interface

module for Python 3.6.
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The first experimental volume from the decoder construction session, obtained after the heat-up

volumes, served as a functional reference for the realignment of volumes for each participant. That reference

DICOM file was converted to NifTi format using Dcm2Niix (Li, Morgan, Ashburner, Smith, & Rorden, 2016)

and de-obliqued to match cardinal coordinate orientation with AFNI 3dWarp command.

The subsequent perceptual and mental imagery volumes were co-registered to the reference volume

using AFNI 3dvolreg command using heptic (7th order) Lagrange polynomial interpolation (Oakes et al.,

2005). The OpenSesame task logs were used to label all volumes, indicating their corresponding stimulus

category, trials onset times, and fMRI run. For each run, we linearly detrended the fMRI time series

to remove drift before training the decoder. To match the characteristics of the Hemodynamic Response

Function (HRF) and capture the peak neural activity associated with the presented stimuli, we selected these

fMRI volumes occurring between 5 and 18 seconds following the initial picture/auditory prompt presentation.

This spanned 7 volumes per trial in both the perception and mental imagery runs. The selected perceptual

and mental imagery samples were stacked independently for ROI delineation and decoder training. Next,

the stacked perceptual volumes were z-scored by subtracting the samples’ mean value at each voxel and

dividing by the standard deviation. The standardization of the scans in the imagery runs was performed by

using the voxels mean and standard deviation from the perceptual samples. This approach was utilized to

establish a uniform and comparable scale for the data from both conditions, and investigate the extent to

which information could generalize from perception to mental imagery.

Algorithm for decoding

To establish the ROI for DecNef training, our initial step was to outline the regions where perceptual

representations, triggered by the pictures, converged with internally generated representations during mental

imagery. Previous research had identified these overlapping regions in the fusiform gyrus (Dijkstra et al.,

2021; Lee et al., 2012; Reddy et al., 2010; Stokes et al., 2009). The rationale behind this approach is

that the brain activity patterns used for training the classifier are mainly externally triggered through the

presentation of the images, while the relevant brain activity patterns during DecNef training may stem

from internal mental simulation. Therefore, our goal was to enhance the cross-domain generalization of our

machine learning classifier and facilitate DecNef training by focusing on these voxels located at the overlap

between perception and imagery in the fusiform region.

Accordingly, a searchlight decoding analysis was conducted for each participant. The initial step

involved creating a binarized functional brain mask from the skull-stripped reference brain volume. Next,

z-scored volumes from the perceptual and mental imagery runs were masked to exclude non-brain voxels

with zero values. Then, we performed a cross-domain searchlight analysis in the subject’s native space using

Brain Imaging Analysis Kit (BrainIAK v. 0.9.1; http://brainiak.org; (Kumar et al., 2021). A searchlight of

9 * 9 * 9 voxels was defined by a cube cluster of 4-voxel (3 mm * 4 voxels = 12 mm) radius. We employed

the scans from the perceptual runs, excluding data from visual noise samples, to train a standard logistic

regression classifier with L2 regularization within each searchlight. This classifier was then applied to the

imagery data in order to decode the content of mental imagery volumes as either dogs or scissors categories.

We evaluated the decoder’s performance by computing the area under the receiver operating characteristic

curve (AUC) and subsequently assigned this performance score to the center voxel of each searchlight. This

resulted in a comprehensive whole-brain map of cross-domain decoding results.

Following this, we manually generated a spherical mask in each participant’s original functional

space. The center of this mask was positioned around the voxels demonstrating the highest level of general-
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ization from perception to mental imagery. In doing so, we analyzed the resulting searchlight maps across

various mental imagery maps to draw our fusiform ROIs. The goal was to guarantee that the ultimate ROI

for DecNef encompassed areas where the overlap between perception and imagery remained consistent over

time. Visualizing the searchlight maps for each run allowed us to achieve a balance between selecting an

overly narrow ROI and an overly broad ROI. Accordingly, this approach serves to address potential issues,

such as neglecting spatial variability during DecNef training due to a narrow ROI or the risk of overfitting

our decoder because of an excessively broad ROI. Further, the fusiform gyrus encompasses various regions

with distinct functional and representational roles (see Pitcher, Charles, Devlin, Walsh, and Duchaine, 2009;

Schwarzlose, Baker, and Kanwisher, 2005 in relation to faces, bodies, and objects). Opting for selecting an

overly broad ROI and overly distributed voxels across the fusiform would pose a challenge to interpreting

the outcomes of DecNef training. Therefore, we chose to utilize searchlight maps as a method to pinpoint

fusiform areas characterized by more consistent functional, spatial, and temporal patterns.

The brain areas showing better classification performance varied to some extent across participants.

Although our a priori target was on the fusiform region, the first participant exhibited noteworthy cross-

domain decoding, particularly in the parietal cortex. Consequently, we incorporated this region alongside

the bilateral fusiform into the DecNef training. The second and third participants exhibited greater decoding

performance in the left fusiform gyrus compared to the right, leading us to choose the left fusiform as the

target for DecNef. However, for subsequent participants, we opted to utilize a uniform region for DecNef

training, centered in the bilateral fusiform gyrus. Across these three participants, this region consistently

demonstrated a high degree of decoding accuracy. We aimed to ensure uniform ROI dimensions for both

the left and right fusiform areas across all participants. The masks, on average, covered 561.35 voxels per

hemisphere, with a standard deviation of ±150.29 voxels. The spheres encompassing the left and right

fusiform regions were combined to form a single bilateral fusiform mask. The stacked perceptual and mental

simulation data was ultimately masked to preserve only the voxels located within the targeted bilateral

fusiform ROI.

Subsequently, for each participant, we trained a custom decoder on the ROI mask obtained through

the aforementioned searchlight analysis. The perceptual data served as the training set, and the classifier

hyperparameters were optimized using the mental imagery data as the validation dataset. This method

enhanced the decoder’s ability to generalize to the DecNef training sessions. During the development of our

DecNef pipeline, we observed that sparse logistic regression classifiers (Yamashita, Sato, Yoshioka, Tong, &

Kamitani, 2008), as commonly employed in previous DecNef training studies (Cortese et al., 2016; Cortese,

Amano, Koizumi, Lau, & Kawato, 2017; Koizumi et al., 2016; Taschereau-Dumouchel et al., 2018), tended

to produce highly bimodal/overconfident probability distributions for out-of-sample distribution predictions

in the imagery or DecNef runs (Bai, Mei, Wang, & Xiong, 2021). Moreover, prior DecNef research did

not explicitly address representational noise during DecNef training (Watanabe et al., 2017), which encom-

passes neural patterns that do not directly correspond to the specific trained representations or categories.

This factor may reduce the capacity of the decoder to discriminate target from non-target representations,

constraining the feedback signal and thereby hinder participants’ learning. These issues were addressed by

developing a custom logistic regression classifier using Keras (Chollet, 2015) (v2.7) and Tensorflow (Abadi

et al., 2016) (v2.7). The classifier consisted of a fully connected input and a softmax output layer, specifically

designed for the binary classification of samples into dogs or scissors categories. To prevent overfitting, we

applied regularization to the kernel weights and layer outputs using an L2 kernel regularizer of .1 and an L1

activity regularizer of .001, respectively. We used a default Stochastic Gradient Descent optimizer with a
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learning rate of .0001. Specifically, we employed Binary Cross-Entropy loss as the loss function with scissors

labeled as 0, dogs as 1, and visual noise images as 0.5. By adopting this strategy, we achieved a more

continuous representational gradient between categories and decreased the network’s susceptibility to the

representational noise during testing. As a result, the network exhibited improved discrimination between

the relevant classes by generating more moderated predicted probabilities. To evaluate the performance of

our decoder, we utilized the AUC. We set a tolerance of .0001, which represents the minimum change in the

validation loss required to qualify as an improvement. We also established a patience of 50 epochs; if there

was no improvement in the validation loss after these 50 epochs, the training would be halted. Finally, we

utilized a batch size of 64 to compute the gradient during each iteration. A comparison among the standard

and sparse regression decoders, as well as our custom classifier using BCE Loss can be found in Margolles

et al. (2023).

DecNef training procedure

The DecNef training consisted of four fMRI sessions, each lasting approximately 70 minutes, per-

formed on consecutive days at a rate of one session per day in the early morning (8am). In the first three

sessions, there were a total of eight fMRI runs. These runs had a duration of approximately 6.5 minutes each

and consisted of 18 trials per run, with each trial lasting approximately 19 seconds. In the final session, only

two fMRI runs were carried out, both of the same duration as those in the earlier sessions. Subsequently,

a visual search task was performed within the MRI scanner to serve as a behavioral assessment for DecNef

training. A 2-minute rest period followed the completion of each run.

During the DecNef training sessions, participants encountered one of two gray Japanese hiragana

characters (の or せ), with the presentation of each character being counter-balanced across participants

to ensure equal distribution. Since the participants were not familiar with the Japanese language, these

characters had no inherent meaning for them. Our goal was to establish a novel unconscious association

between the perceptual representation of dogs and these neutral hiragana characters through reinforcement

and associative learning.

Considering that distinct stimulus categories, such as living and non-living entities, are associated

to distinct multivoxel patterns and neural substrates (Pitcher et al., 2009), attempting to counterbalance

the target classes (i.e., dogs and scissors) would have led to the formation of two smaller groups, each

comprising only nine subjects. In such circumstances, it becomes notably more difficult to derive meaningful

conclusions or discern significant effects, largely due to the limited statistical power associated with smaller

sample sizes. Opting to concentrate on a single category across all participants, would ensure a more robust

evaluation of DecNef’s neural effects. Additionally, this approach would contribute to reducing potential

sources of variability in participants’ behavioral responses. This approach has been utilized in previous

associative DecNef studies (Amano et al., 2016; Knotts et al., 2019). Due to these considerations and the

known responsiveness of the bilateral fusiform gyrus ROI to living entities (Connolly et al., 2012; Downing,

Chan, Peelen, Dodds, & Kanwisher, 2006; Sha et al., 2015), indicating that targeting dogs representations

might be more effective in inducing neural changes, we chose to assign dogs as the target category for all

participants.

The entire experimental procedures were carried out implicitly. Participants were aware that they

were participating in a neurofeedback study aimed at self-regulation of brain activity, but they were kept

entirely unaware of the true purpose of the intervention, which included the existence of a target category.

To prevent participants from associating the prior fMRI session used for the decoder construction with the
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subsequent DecNef training sessions, a new experimenter was assigned, and they were explicitly informed

that they were taking part in a different experiment. Additionally, participants were asked to complete

different consent forms and were given separate information sheets.

We instructed participants to engage in self-regulation of their brain activity with the goal of maxi-

mizing their monetary rewards by enlarging the size of a red circle displayed as feedback. At the beggining

of the DecNef training, participants were told that they would receive a fixed compensation of 85€ for

their participation in the experiment. Additionally, they had a chance to receive a performance-based bonus

of €25, with the potential to earn up to €0.10 for each trial. Participants were explicitly encouraged to

freely explore various mental strategies and choose those that proved most effective in achieving their goal.

Nonetheless, we emphasized the importance of avoiding strategies that could introduce potential artifacts to

the fMRI analysis, such as changes in breathing or body movements. After each session, participants were

given an estimated report of their earnings designed to maintain their motivation. During the final DecNef

session, participants engaged in only two fMRI runs and were encouraged to employ their most effective

mental strategies from previous sessions to maximize the size of the red circle. However, in order to fulfill

potential ethical considerations, all participants were given a fixed amount of 110€ at the end of the study,

which included the 85€ compensation for their participation and the 25€ bonus reward.

At the outset of each trial (Figure 1B), the hiragana character was displayed on a black background

for 6 seconds, subtending a visual angle of 1.29 ◦. During its presentation, participants were directed to

modulate their brain activity to enlarge a feedback disk that was to be presented subsequently. No further

specific guidance or instructions were provided. Next, participants were given a 6-second relaxation period

during which they were presented with a white fixation mark (.37 ◦) while awaiting feedback. The feedback

was then displayed as a red circle for one second. The circle’s size reflected the decoder’s probability

of the target class, ranging from 0 to 1. This probability represented the similarity between the brain

representations evoked during hiragana presentation and the brain activity patterns associated with dogs

according to the previously trained decoder. We informed participants that their monetary reward would

increase proportionally to the size of the red circle displayed as feedback. The maximum reward per trial

(i.e., .1€) was indicated by a white border (3.67 ◦ of visual angle) enclosing the red circle, signifying 100%

similarity between the participant’s brain activity and the decoder’s perceptual representations of dogs.

Additionally, a yellow circumference was used to set a threshold below which no reward would be given

for that trial. This threshold was set at 50% similarity. If participants reached a point where they were

no longer making progress or their performance had plateaued, we encouraged them to assess their current

mental strategies and experiment with new ones to achieve better outcomes. Each trial concluded with a

fixed inter-trial interval of 6 seconds, during which a red fixation mark was displayed (.37 ◦).

The fMRI scans during DecNef training were co-registered with the functional reference volume

acquired during the decoder construction session, using the same preprocessing pipeline utilized for training

the decoder. To ensure timely processing in real-time and prevent delays in analyzing incoming volumes, it

was crucial that the co-registration times were consistently shorter than the fMRI TR. Here, co-registration

of each volume took approximately 0.7 seconds (vs. TR = 2 seconds). Then, we applied the functional

mask of the bilateral fusiform ROI extracted for each participant. Spatial smoothing was not performed.

Linear detrending was applied to the ROI data, encompassing all scans available from a particular run up

to the current volume, and including an extra set of 20 baseline scans collected at the onset of each run.

Previous neurofeedback studies used z-scoring procedures based on run/session baselines or prior data from

the current run (Oblak, Sulzer, & Lewis-Peacock, 2019). In contrast, we utilized the mean and standard
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deviation parameters for each voxel obtained from the scans used in decoder construction, specifically the

perceptual data, for standardizing the volume data. This method does not impose any data leakage on

the information that is used for decoding, because this procedure does not use any information regarding

the classes. Moreover, the classification analysis is performed on the multivariate pattern across voxels and

the voxelwise standardization procedure is blind to these patterns. Using the mean and standard deviation

from the decoder construction data for voxel-wise standardization in the DecNef scans merely aligns the

distributions of the train and test sets at the single voxel level, providing several benefits. For example,

this approach enhances result interpretability by maintaining consistency across all runs and sessions with

a common reference data distribution. Additionally, it ensures that the test data scales to match the dis-

tribution of the training data, potentially enhancing the decoder’s performance during DecNef training (see

Margolles et al. 2023 for a comprehensive comparison of how different DecNef standardization techniques

affect decoding performance). Real-time decoding focused on volumes captured between 5 and 11 seconds

after the hiragana presentation, resulting in the decoding of three volumes per trial. In previous DecNef

research, a common practice involves utilizing volume averaging to improve the signal-to-noise ratio during

decoding (Taschereau-Dumouchel et al., 2018; Watanabe et al., 2017). However, as noted earlier, standard

and sparse logistic regression decoders tend to yield highly bimodal or overconfident category probabilities

when applied to single volumes in cross-domain classification. We reasoned that providing participants with

a more moderated and continuous feedback signal might enable them to refine their strategies and learn how

to self-regulate their brain activity more effectively. To illustrate, consider a scenario where a specific strat-

egy doesn’t accurately reflect the intended pattern (i.e., the probability of decoding the target class is only

marginally significant). However, if the classifier tends to provide extreme or overly confident predictions,

then this strategy would appear to be just correct for the participants. In our pilot studies, we investigated

the issue of standard and sparse decoders showing overly confident predictions for out-of-sample distribu-

tions. We conducted a specific analysis to evaluate the generalization from perception to imagery data used

in the decoder construction. Our goal was to assess whether the average decoding probability, computed by

independently decoding volumes and then averaging their probabilities, demonstrated reduced bimodality

compared to the probabilities obtained using the conventional method of averaging all volumes before decod-

ing in each trial. We elected to decode each volume and then compute the average probability as feedback

signal because the analysis indicated that the probability distributions were less binomial/overconfident in

this case (see Margolles et al., 2023 for a comparison of both averaging techniques).

Visual search task

After completing the final two DecNef training runs, we conducted a visual search task while the

participants were still inside the MRI scanner. The purpose was to evaluate the behavioural and neural

effects of DecNef training regarding the creation of new conceptual associations. The experiment involved

five fMRI runs, each with a duration of approximately 6 minutes and encompassing 56 trials per run.

Each trial started with a white fixation mark displayed on a black background for 500 ms (.37◦)

(Figure 1C). Subsequently, participants were randomly presented with either the targeted hiragana by DecNef

or a control hiragana they had not seen before for 1.5 seconds. The hiragana was presented at fixation and

subtended 1.29 ◦ of visual angle. Next, participants were briefly shown two images —an example of a dog

and an example of a scissor— each spanning 8.06 degrees of visual angle. These images appeared to the

left and right of the fixation point and were displayed for 150 ms. The search display was followed by the

presentation of a letter indicating the target image for participants to respond to: ’P’ for dogs (from the
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Spanish word ’Perros’ ) and ’T’ for scissors (from the Spanish word ’Tijeras’ ). The letter remained on the

screen for 1750 ms, which also served as the response deadline for participants. Participants were asked to use

their dominant hand (i.e., right) to indicate the location of the picture corresponding to the target category

on a MRI-compatible response pad as quickly and accurately as possible. Specifically, they were instructed

to press the button on the right or left side of the pad that corresponded to the location of the picture. To

align the orientation of the buttons with their left and right hand positions, they were advised to hold the

response pad horizontally. In addition, participants were instructed to use their index and middle fingers of

their dominant hand to press the response pad buttons. To ensure that all variables were counterbalanced in

the experiment, a total of 56 trials were conducted. These trials encompassed all eight potential combinations

of the three variables: hiragana (targeted vs. novel), picture position (dogs left - scissors right vs. scissors

right - dogs left), and Search target (dogs vs. scissors). Each combination was presented an equal number

of times (7 trials each). The order of presentation for each combination was randomized across runs and

participants. A jittered ITI ranging from 2.5 to 4.5 seconds with a pseudo-exponential distribution was used

between trials, with 50% of ITIs set to 2.5 seconds, 25% to 3 seconds, 11% to 3.5 seconds, 7% to 4 seconds,

and 7% to 4.5 seconds. This was done to help estimate BOLD responses across trials in univariate off-line

analyses (Ollinger, Corbetta, & Shulman, 2001). During the ITI, a red fixation point was displayed (.37◦).

Before the experimental session began, participants completed some practice trials without any hiragana

presentation, where a fixed ITI of one second was used.

The participants in the control group performed the same visual search task outside the fMRI

scanner, but we ensured that stimulus presentation and event timing were consistent with the experimental

conditions of the DecNef group. Also, we matched the exposure to the images in both experimental groups

prior to performing the search task. Accordingly, the control group was presented with a block-wise design

where images of dogs and scissors were shown, similar to the session in the DecNef group used to build

the classifier. Next, they practiced the visual search task without any hiragana presentation. Finally, they

completed the visual search task using the same timings and jitters as those used by the fMRI participants.

Additionally, they listened to scanner noise through headphones while carrying out the task. Previous studies

assessing the processing advantage for living items (i.e. animals) over non-living stimuli indicates that low-

level visual features, such as power spectrum, luminance, and contrast, cannot account for this processing

advantage (Wichmann, Braun, & Gegenfurtner, 2006; Wichmann, Drewes, Rosas, & Gegenfurtner, 2010)

and that higher-level semantic categorization processes are most critical (He & Cheung, 2019; Moon, He,

Ditta, Cheung, & Wu, 2022). However, Thorpe, Gegenfurtner, Fabre-Thorpe, and Buèlthoff (2001) showed

how the detection of animal items dropped with increasing eccentricity levels in peripheral vision. Hence we

controlled for the visual angles of the search stimuli across the DecNef and control groups.

Questionnaires

After completing the DecNef training but before the visual search task, participants responded

to a series of questions related to the effort required to maximize monetary rewards and their perceived

ability to manipulate the circle’s size. We used a Likert scale from 1 to 10, where the lowest value signified

minimal effort/control and the highest value represented significant effort/control. We also asked them about

the strategies they used during DecNef sessions and any hypotheses they had concerning the experimental

objectives.

After the visual search task, we revisited the participants’ understanding of the experiment’s goals

and asked them to make a guess about the category targeted by DecNef, which could be either dogs or
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scissors. They were also asked to indicate their level of confidence in their answer using a 4-point Likert

Scale (0 - Chance; 1 - Not so sure; 2 - Sure; and 3 - Really sure). Lastly, participants were given a debriefing

regarding the true objectives of the experiment.

Off-line whole-brain searchlight analysis of DecNef training

We used searchlight analyses to examine the probability of detecting the target category throughout

the DecNef sessions. The goal of this analysis was to assess the role of the bilateral fusiform gyrus during

DecNef training, in addition to the involvement of other brain regions in representing the target class. Similar

to previous searchlight analyses, we utilized a standard logistic regression classifier with L2 regularization to

train on the perceptual data and calculate the probability of decoding the Dog class across all DecNef trials.

While our custom logistic regression classifier with Binary Cross-Entropy loss would have been the most

suitable option for this analysis, given that it was utilized during DecNef training in our ROI, we decided

against using it for searchlight analyses. This decision was based on the substantial computational expenses

and the extended training duration it would demand for each searchlight. The searchlight analysis was

conducted using the BrainIAK library (Kumar et al., 2021) for each participant. The resulting searchlight

maps were then registered from the functional to the participant’s T1-weighted structural space using epi_reg

FSL tool (Jenkinson, Beckmann, Behrens, Woolrich, & Smith, 2012), and from the structural space to the

Montreal Neurological Institute (MNI) standard space (MNI-152 template, 2 * 2 * 2 mm3) using FMRIB’s

Linear Image Registration Tool (Jenkinson, Bannister, Brady, & Smith, 2002; Jenkinson et al., 2012). A

non-parametric one-sample t-test was used to identify the brain regions where the average probabilities

were significantly above the chance level of 0.5 across participants. This contrast was calculated using

FSL Randomise with Threshold-Free Cluster Enhancement (TFCE cluster correction) and 10,000 random

permutations (S. M. Smith & Nichols, 2009). To increase the statistical power of the analyses, a spatial

FWHM Gaussian Kernel of 5 mm was used for variance smoothing. The Family-wise Error (FWE) correction

was applied to adjust for multiple comparisons. We obtained a whole-brain corrected statistical image, which

was then thresholded to display only statistically significant clusters (p < 0.05).

Linear Mixed Effects Modelling (LMM) analyses

Mixed effects modeling was used to examine participant’s learning effects throughout the DecNef

training, namely, whether participants could progressively enhance their ability to induce neural patterns

related to the target category over the course of training. The design involved repeated measures for each

participant and a hierarchical structure comprising 2 groups of hiraganas, 18 participants, 4 sessions, 8

runs and 18 trials. In cases of non-independence of the data, multilevel models, specifically Linear Mixed-

effects Models (LMMs), have gained popularity in psychological research. LMMs offer several advantages,

such as accounting for both within-subject and between-subject variability, handling missing data, and

examining relationships between variables at different hierarchical levels. Traditional analysis methods, such

as repeated-measures ANOVA, often aggregate data within a single condition or hierarchical level, assuming

data independence, which can lead to a loss of information and statistical power. In comparison, LMMs can

capture variability in the observations by leveraging all levels of data, using both fixed and random effects

modeling (Meteyard & Davies, 2020; Singmann & Kellen, 2019). To perform the linear mixed model analysis,

we used the lme4 package (Bates, Mächler, Bolker, & Walker, 2014) in the R programming language (R Core

Team, 2021). Further, we employed the lmerTest package (Kuznetsova, Brockhoff, Christensen, et al., 2015)

to determine the statistical significance of our results. This package estimated p-values for mixed models
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using Satterthwaite’s method to approximate the degrees of freedom for t and F tests.

LMM analysis of DecNef induction probabilities

Here we used the decoding probability of each trial as the dependent variable and the global trial

index (1 to 468) as a fixed effect predictor. This independent variable captures the progression of performance

across trials and is critical for assessing the learning effects. We also sought to account for the potential

variability in the data arising from the hierarchical structure of our study. To achieve this, we introduced a

random intercept for every distinct combination of the hiragana group, participant (1 - 18), session (1 - 4),

and run (1 - 8) levels. Incorporating additional time-dependent information from the run or session serve as a

broader contextual factor to partial out learning contributions that are trial specific from those that develop

more gradually, including fatigue effects unrelated to the trial-wise learning trend. Specifically, we used the

LMM formula: ‘lmer(trial_probability ∼ global_trial_index + (1 | hiragana group / participant / session /

run))’, to conduct our analyses in R. The dependent variable was ‘trial_probability ’, the independent variable

was ‘global_trial_index ’, and the term ‘(1 | hiragana group / subject_nr / session / run)’ represented the

random intercepts. Importantly, the global trial index variable was treated as a continuous numeric variable,

while the hiragana group, participant, session and run variables were categorical variables with discrete

levels.

LMM analysis of behavioral data from the visual search task

To examine the effects of the DecNef training on the visual search task, a second LMM was utilized

to analyze the reaction times (RTs) of the correct responses. RTs outside of 3 standard deviations from

each participant’s average RT were excluded. The factors hiragana (targeted vs. control), search target

(dogs vs. scissors) and their interaction were set as fixed effects. Additionally, we included each participant

in the DecNef group as a random effect to account for inter-subject variability with the following formula:

lmer(RTs ∼ hiragana + search target + hiragana * search target + (1 | participant)). In this model, the

control hiragana level was used as the reference level for the hiragana factor, while the scissors level was used

as the reference level for the search target factor.

Moreover, in order to compare the RTs between the DecNef and control groups, we combined the

RTs across the levels of the hiragana factor (targeted vs. novel), as this factor did not apply to the control

group. Then, we conducted a similar LMM using the following formula: lmer(decision RTs ∼ search target

+ experimental group + search target * experimental group + (1 | participant)). In this model, the scissors

level was used as the reference level for the search target factor, while the control group level was used as

the reference level for the experimental group factor.

Univariate fMRI analyses performed on the visual search task

Although the bilateral fusiform gyrus was our a priori ROI, it is possible that DecNef-related neural

changes might also occur in various regions within the ventral visual pathway. Hence, our initial approach

involved conducting whole-brain analyses to explore group effects during the visual search task.

The FSL suite tools were used for conducting univariate analyses (FMRIB Software Library v6.0

available at fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL) (Jenkinson et al., 2002; S. M. Smith et al., 2004). First,

the T1-weighted structural image was cropped by employing the FSL Robust Field of View (FOV) method

to remove the neck and lower head slices. The resulting image was then skull-stripped using the Brain

Extraction Tool. Next, RAW functional data in NifTi format was preprocessed using fMRI Expert Analysis
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Tool (FEAT) (Woolrich, Behrens, Beckmann, Jenkinson, & Smith, 2004; Woolrich, Ripley, Brady, & Smith,

2001). To ensure signal stabilization, the first five volumes of each functional run were discarded and the

MCFLIRT algorithm was applied to correct for head-motion (Jenkinson et al., 2002). Non-brain voxels

were removed through functional brain extraction, and the data was smoothed with a 5 mm full-width-half

maximum (FWHM) gaussian kernel. Additionally, high-pass temporal filtering was performed with sigma =

60s. Finally, the functional data was linearly registered to the high-resolution structural brain image using a

Boundary Based Registration (BBR) cost function. Then, linear affine transformations with 12 parameters

were used to transform the data into the standard MNI-152 space (2*2*2 mm3).

Following the preprocessing of the data, we carried out hierarchical general linear modeling using

FMRIB’s Improved Linear Modelling (FILM). For each visual search run, the first level analysis modeled the

time-series of each voxel by incorporating four regressors (Woolrich et al., 2001): targeted hiragana - dogs

target, targeted hiragana - scissors target, control hiragana - dogs target, and control hiragana - scissors

target. Explanatory variables in the GLM were specified based on the onset of hiragana in each trial across

the different experimental conditions. These onset times were adjusted to account for the 5 heat-up volumes

that were discarded in the preprocessing stage. A double-gamma canonical hemodynamic response function

was used to model each trial in the GLM beginning with the onset of the hiragana. To address motion-related

confounding factors, the standard and extended motion parameters estimated by MCFLIRT were included

as covariates. Additionally, to account for temporal autocorrelation in the voxel time-series, prewhitening

was performed on the data. To improve the model, we incorporated temporal derivatives and filtering to

the design matrix, which helped to reduce the effects of lags in the onset of the H.R.F and minimize the

presence of low-frequency noise over time. Four regressors were used: control hiragana - dogs target, control

hiragana - scissors target, targeted hiragana - dogs target, targeted hiragana - scissors target. For each run,

we calculated 4 contrasts of parameter estimates (COPES), namely, control hiragana > targeted hiragana

(i.e., 1, 1, -1, -1); control hiragana < targeted hiragana (i.e., -1, -1, 1, 1); control hiragana - dogs target >

targeted hiragana - dogs target & control hiragana - scissors target < targeted hiragana - scissors target (i.e.,

1, -1, -1, 1); control hiragana - dogs target < targeted hiragana - dogs target & control hiragana - scissors

target > targeted hiragana - scissors target (i.e., -1, 1, 1, -1). Then, we combined the first-level COPEs

files into a second-level fixed-effects model. Finally, group-based, third-level analyses (Woolrich, Behrens,

Beckmann, et al., 2004; Woolrich, Behrens, & Smith, 2004) were performed using the second-level COPEs

files obtained in the previous step for each individual. To address inter-subject variability within each group,

a mixed-effects analysis was conducted using the FMRIB Local Analysis of Mixed Effects (FLAME) 1 + 2

algorithm. Group-based analyses used cluster based thresholding, with a voxel-wise threshold of Z = 3.1

and a cluster significance threshold of P = 0.05, corrected for multiple comparisons using Gaussian Random

Field Theory. The uncorrected contrast of parameter estimates and zstats for the different contrasts are

available at: https://pedromargolles.github.io/pyDecNef/.

After completing the whole-brain analyses, we narrowed our focus to the bilateral fusiform gyrus as

our target ROI. This was achieved by applying the GLM to binary masks of the fusiform gyrus in MNI space.

These masks were generated based on the off-line searchlight analyses discussed earlier, which identified the

precise areas surrounding the fusiform gyrus that demonstrated increased probabilities of the dogs category

across the DecNef sessions. Additionally, we assessed the activation levels within each individual’s fusiform

masks employed during DecNef training. For each participant, we calculated the mean activation within

these fusiform masks across the four different conditions (control hiragana - dogs target, control hiragana -

scissors target, targeted hiragana - dogs target, and targeted hiragana - scissors target). We then analyzed
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these averages using a repeated measures ANOVA.

Results

First, we report the results of the searchlight analyses carried out on perception as well as on the

the cross-domain generalization from perception to imagery data to draw an individual mask involving the

fusiform cortex for DecNef training (see Methods). The stimulus class (dogs vs. scissors) could be reliably

decoded through the entire ventral visual pathway and beyond during the perceptual scans (see Figure 2A).

The cross-domain searchlight analysis revealed significant decoding clusters in the bilateral fusiform gyrus,

calcarine cortex, precuneus, supramarginal gyrus, and neighboring regions (Figure 2B).

Figure 2: (A) Searchlight decoding results during perception. (B) Cross-domain searchlight decoding results from
perception to mental imagery. The average AUC across participants is illustrated in MNI space.

Then, we assessed the participants’ ability during DecNef training to induce brain activity patterns

in the target bilateral fusiform ROIs corresponding to a living world referent, which unbeknownst to them

referred to the dogs pictures. A LMM analysis demonstrated significant learning effects across DecNef

sessions regarding the induction of the target pattern in the fusiform cortex (Figure 3) [β = 7.833e−05, SE

= 3.281e−05, 95% CI Lower = 1.338e−05, 95% CI Upper = 1.428e−04 (units: proportion points), p = .019].

This and subsequent analyses were repeated by excluding the three subjects who did not have a bilateral

fusiform ROI, and the main experimental results were replicated (see ’Control analyses’ section for more

details).

Figure 3: Learning effects throughout DecNef training. The figure represents the average decoding probability of dogs
category in the bilateral fusiform at the run level across participants. * p = 0.019. Error bars represent 95% CIs,
calculated using the Cousineau–Morey method (Cousineau et al., 2005; Cousineau & O’Brien, 2014).

We also investigated whether brain regions beyond the bilateral fusiform played a role in the induc-

tion of the relevant target category during DecNef. We performed an off-line searchlight decoding analysis
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using the entire brain dataset collected during the DecNef sessions. The findings revealed the involvement

of additional brain regions in inducing the target pattern, including the early visual cortex (specifically, the

lingual and calcarine sulcus), the precuneus, and the posterior cingulate gyrus (see Figure 4). These brain

regions overlap with the areas showing better cross-domain searchlight generalization from perception to

imagery during the construction of the classifier.

Figure 4: (A) Searchlight maps in MNI space where the probability of inducing the target category (i.e., dogs) across
DecNef sessions exceeded the nominal 0.5 chance-level. (B) The heatmap illustrates the intersection of ROIs targeted
across participants, calculated in MNI space.

Visual search task: behavioural results

To assess the impact of DecNef training on the visual search task, we conducted a LMM model

on the search RTs of the correct responses (see Methods). On average, 2.53% of trials were removed across

participants due to response errors (SD = 1.9%). We also excluded outlier RTs that fell outside of 3 standard

deviations from the each participant average RT (mean: 1.17% of trials; SD = 0.71%). The results showed

that search RTs were significantly longer for dogs items compared to scissors [β = 22.053, SE = 5.650, 95%

CI Lower = 10.981, 95% CI Upper = 33.126 (units: miliseconds), p < .001]. However, the main effect of the

hiragana (targeted vs neutral) on search RTs was not significant [β = 4.795, SE = 5.647, 95% CI Lower =

-6.272, 95% CI Upper = 15.863 (units: miliseconds), p = .396]. The interaction between the factors hiragana

and search target was also not significant [β = -10.836, 95% CI Lower = -26.501, 95% CI Upper = 4.829

(units: miliseconds), p = .175], although, numerically, search for dogs was faster when cued by the targeted

hiragana. Figure 5A depicts these results.

The slower search RTs for dogs items in DecNef participants is surprising, since previous research

has demonstrated the faster recognition of living categories compared to non-living counterparts (He &

Cheung, 2019; Moon et al., 2022; New, Cosmides, & Tooby, 2007; Wang, Tsuchiya, New, Hurlemann, &

Adolphs, 2015). This prior evidence provides a critical baseline to assess and interpret the behavioral effects

of DecNef on the visual search task. In line with this, a control group (N=36) that did not undergo DecNef

but performed the same task under matching conditions (see Methods), showed the opposit search bias.

Namely, faster search for living (i.e., dogs) compared to non-living targets (i.e., scissors). This dissociation

indicates that the effect of DecNef is selective to the target class.

Data analyses for the control group followed the same pipeline. RTs of correct search responses were

analysed (Mean error = 1.82%, SD = 1.61%). Similar to the DecNef group, outlier RTs beyond 3 standard

deviations from the each participant average RT were removed (Mean = 1.23%, SD = .53%). In order to

compare the search RTs across DecNef and control groups, the RT data were collapsed across the levels of the
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hiragana factor, since this factor was not applicable to the control group. The results of the LMM analysis

showed no significant differences in search RTs across the DecNef and control groups [β = 40.029, SE =

30.423; 95% CI Lower = -13.534, 95% CI Upper = 105.594 (units: miliseconds), p = .136]. Crucially there

was a robust interaction between group and the search target factor [β = 24.058, SE = 4.563; 95% CI Lower

= 15.115, 95% CI Upper = 33.001 (units: miliseconds), p < .001]. Simple effect analyses indicating that

participants in the control group showed significantly faster RTs to pictures of dogs compared to scissors

[Contrast: scissors - dogs, β = 7.42, SE = 2.60 (units: miliseconds), p = .004], while the DecNef group

showed the opposite pattern [Contrast: scissors - dogs, β = -16.64, SE = 3.75 (units: miliseconds), p < .001]

(Figure 5B). Additionally, we observed that the DecNef participants displayed slower search RTs for dogs

compared to the control group [Contrast: control - DecNef, β = -70.1, SE = 30.4 (units: miliseconds), p <

.021] but no differences in search RTs for scissors [Contrast: control - DecNef, β = -46.0, SE = 30.4 (units:

miliseconds), p = .130].

We also analyzed the search error rate in the DecNef group by means of a repeated measures ANOVA

in JASP (JASP Team, 2023) with hiragana and search target as factors. No significant effects of DecNef

were observed on the error rate of the search responses, namely for the hiragana [F(1, 17) = .029, p = .868;

η2p = .002] or the search target factor [F(1, 17) = .022, p = .883; η2p = .001]. There was no significant

interaction between the two factors [F(1, 17) = .471, p = .502, η2p = .027]. Further, no significant differences

in error rate as a function the search target were found in the control group [t = -0.695, p = .492]. Finally,

to compare the error rates between the two experimental groups, another ANOVA was conducted with the

search target as a within-subjects factor and experimental group as a between-subjects factor. No significant

effects were observed for the search target [F(1, 52) = .265, p = .609, η2p = .005], Experimental Group [F(1,

52) = 1.972, p = .166, η2p = .037], or the interaction between the two factors [F(1, 52) = .061, p = .805, η2p

= .001].

Lastly, we run a correlation analysis between the individual mean probability of inducing the target

category during DecNef training (Amano et al., 2016; Cortese et al., 2016) and the individual effect of DecNef

on visual search performance (RT for Dog targets - RT for Scissor targets). We run 3 different analyses: (1)

A correlation involving the mean probability across all DecNef training runs [Pearson: r = .004, p = .984;

Spearman: ρ = .091, p = .717]; (2) A correlation utilizing the mean likelihood from the last two sessions

[Pearson: r = -.079, p = .753; Spearman: ρ = -.077, p = .760]; (3) A correlation based on the mean likelihood

from the final session [Pearson: r = -.086, p = .734; Spearman: ρ = -.007, p = .977]. All these analyses

resulted in non-significant correlations.

Visual search task: fMRI results

Univariate analysis

Potential changes in brain activity driven by DecNef training were assessed through univariate

analyses of the fMRI data acquired while participants performed the visual search task. It is well established

that perceptual expectations or implicit memory templates have a strong effect on neural responses during

perceptual decisions and visual search tasks (Soto et al., 2008; Soto et al., 2007; Summerfield, Trittschuh,

Monti, Mesulam, & Egner, 2008). These effects have been linked to the phenomenon of neural repetition

suppression, whereby neural responses decrease following the presentation of an expected item or following the

presentation of an item that matches an implicit memory trace. Accordingly, based on prior studies assessing

the interplay between memory and visual selection (Soto, Greene, Chaudhary, & Rotshtein, 2012; Soto et al.,
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Figure 5: Results of the behavioral assessment in the visual search task. (A) DecNef group: visual search reaction
times (RTs) as a function of the hiragana and search target factors. (B) Search RTs based on the search target across
DecNef and control groups. Error bars represent 95% CIs, calculated using the Cousineau–Morey method (Cousineau
et al., 2005; Cousineau & O’Brien, 2014). ** p < 0.005, *** p < 0.001.

2007), here we hypothesized that if the hiragana was incepted with the perceptual representations of the

dogs class, then a neural repetition suppression response would be triggered by the subsequent presentation

of the dogs image in the search task, relative to when a neutral (non-incepted) hiragana preceded the search

display. Nonetheless, we did not observe any statistically significant clusters of activity that aligned with

our hypothesis, both in terms of whole-brain analysis and within a bilateral fusiform region ROI in MNI

space, as determined by the off-line searchlight analyses of DecNef training data. Further, we computed the

average activity in the bilateral fusiform ROI for each participant in native space and performed a repeated

measures ANOVA with the following factors: hiragana (targeted vs. control) and search target (dogs vs.

scissors). There were no significant main effects of the factors associated with the hiragana [F(1, 17) = .181,

p = .676, η2p = .011] or the search target [F(1, 17) = .019, p = .893, η2p = .001] and no significant interaction

[F(1, 17) = .312, p = .584, η2p = .018].

Multivariate analysis

We further conducted a decoding analysis on the visual search fMRI data. We employed the previ-

ously trained perceptual classifiers to predict the probability of the dogs class for each individual trial in the

search task. This process involved calculating the probability of the volume aligning with the correspond-

ing hemodynamic peak during each presentation of hiragana, specifically within the temporal range of 4 to

6 seconds after the hiraganas’ onset. The fundamental premise underlying this analysis is that successful

conditioning through DecNef should enhance the probability of categorizing a trial as dogs when presented

with the targeted hiragana cue, as opposed to the control hiragana cue. To quantify this, we computed

the average probability of dogs across runs per participant, and conducted a paired t-test to compare these

probabilities between the targeted and control hiragana conditions. We observed no significant differences
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between the targeted hiragana (Mean = .769, SE = .011) and the control hiragana (Mean = .773 SE = .012)

[t(17) = 1.082, p = .294].

PCA analysis

So far, the results indicate that DecNef training did not result in associative knowledge between the

hiragana and the perceptual content represented in the decoded multivoxel activity pattern in the fusiform.

However, the behavioural results indicate that the representation of the target concept changed following

DecNef training. We then further examined representational changes induced by DecNef training by means

of a Principal Component Analysis (PCA) of the fusiform activity patterns across DecNef runs (Tipping

& Bishop, 1999). This approach has been previously used to characterize the brain representation of both

sensory (Deitch, Rubin, & Ziv, 2021; Mazor & Laurent, 2005), and motor information (Ahrens et al., 2012;

Churchland, Cunningham, Kaufman, Ryu, & Shenoy, 2010) in cortex.

The analysis was performed in Scikit-learn (Pedregosa et al., 2011) on an individual basis. Specifi-

cally, Principal Components (PCs) were identified from the dogs perceptual samples used to train the decoder.

Prior to performing the PCA, trial examples were standardized by subtracting the mean and dividing by

the standard deviation. Subsequently, the DecNef data were projected onto the space identified by the PCs.

Then, a linear Support Vector Regression (SVR) was used to test for linear trends in the representation

defined by the PCs across the runs of DecNef training for each participant. The linear SVR used the PCs

of the DecNef data to predict the indices of the DecNef training runs. The SVR was cross-validated using a

100-fold cross-validation procedure before deriving the average variance explained across folds. We run the

analysis with 25 PCs based on prior analysis of DecNef induction dataset (Shibata et al., 2019) and also

with 10 and 3 PCs in order to estimate the robustness of the results.

The results of the PCA/SVR analysis in the fusiform ROI targeted by DecNef showed significant

changes in the representation of the PCs across DecNef runs. This result was consistent across different

analyses performed with different numbers of PCs [25 PCs: t(17) = 2.953, p = .004; 10 PCs: t(17) = 2.34,

p = .016; 3 PCs: t(17) = 1.758, p = .048].

The same PCA/SVR analysis was performed in four control ROIs. The inferior frontal and inferior

parietal ROIs were selected as control regions because their activity patterns did not significantly predict

the target class in the searchlight analysis Figure 4. We also included a second pair of control regions from

the searchlight analysis, namely, posterior cingulate and precuneus, that showed above chance probability of

decoding the target class.

We directly compared the variance explained in the fusiform and the control ROIs by means of 5

(ROI) x 3 (number of PCs) repeated measures ANOVA using Greenhouse-Geisser for the sphericity correction

correction. There was a main effect of the ROI factor [F(4, 68) = 4.235, p < .025, η2p = .199]. There was no

main effect of number of PCs [F(2, 34) = 2.522, p = .126, η2p = .129] and no interaction between the number

of PCs and ROIs [F(8, 136) = 2.464, p = .105, η2p = .127]. Figure 6 depicts the pattern of results. Additional

post-hoc tests, using Holm correction for multiple comparisons, showed that the variance explained in the

fusiform was significantly higher compared to the other ROIs [i.e. inferior frontal: t = 3.421, p = .011;

inferior parietal: t = 3.381, p = .011; posterior cingulate: t = 3.166, p = .019] except the precuneus [t =

2.054, p = .307].
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Figure 6: Variance explained by the linear Support Vector Regression (SVR) analysis as a function of ROI and number
of Principal Components (PCs). The ROIs include: Fusiform, Inferior Frontal Gyrus (IFG), Inferior Parietal Lobe
(IPL), Paracingulate Gyrus (PCG), and Precuneus (PCUN). Error bars represent 95% CIs, calculated using the
Cousineau–Morey method (Cousineau et al., 2005; Cousineau & O’Brien, 2014). * p < 0.05, ** p < 0.005

Control analyses

We repeated a new set of LMM (Linear Mixed Models) analyses after excluding the three participants

who did not specifically engage the bilateral fusiform. Our analysis revealed significant learning effects

across DecNef sessions in terms of inducing the target patterns in the fusiform cortex [β = 8.150e−05, SE

= 3.750e−05, 95% CI Lower = 9.458e−06, 95% CI Upper = .000 (units: proportion points), p = .034]. In

the visual search task, we replicated too the main experimental results. The DecNef group was significantly

slower for dogs targets compared to scissors targets [β = 20.392, SE = 6.238; 95% CI Lower = 8.168, 95% CI

Upper = 32.617 (units: miliseconds), p = .001], but not significant main effects on RTs were found for the

hiragana [β = 1.702, SE = 6.236; 95% CI Lower = -10.519, 95% CI Upper = 13.923 (units: miliseconds), p =

.785] nor interaction effects between hiragana and search target factors [β = -9.435, SE = 8.833; 95% CI Lower

= -26.746, 95% CI Upper = 7.874 (units: miliseconds), p = .285]. Upon comparing the experimental groups,

we observed that there were no statistically significant differences in RTs between the DecNef and control

groups [β = 58.955, SE = 30.996; 95% CI Lower = -1.725, 95% CI Upper = 119.638 (units: miliseconds), p

= .063]. However, we found an interaction effect of search target and group factors [β = 23.104, SE = 4.840;

95% CI Lower = 13.617, 95% CI Upper = 32.591 (units: miliseconds), p < .001]. Analysis of the simple

effects revealed that control group participants respond faster to images of dogs than to scissors [Contrast:

scissors - dogs, β = 7.42, SE = 2.61 (units: miliseconds), p = .004]. In contrast, those in the DecNef

group exhibited the reverse trend [Contrast: scissors - dogs, β = -15.69, SE = 4.08 (units: miliseconds), p

< .001]. Moreover, the DecNef participants had slower RTs for dogs when compared to the control group

[Contrast: control - DecNef, β = -82.1, SE = 31 (units: miliseconds), p = .008]. However, there was no

significant difference in RTs for scissors between the two groups [Contrast: control - DecNef, β = -59.0,

SE = 31 (units: miliseconds), p = .057]. There were no significant differences in search accuracy between

the DecNef and control groups. The univariate and multivariate fMRI analyses also revealed no significant

activity differences as a function of the different trial types with the targeted vs neutral hiragana.

Participants’ subjective reports

Participants were queried about the techniques they employed to manipulate the size of the feedback

disk during DecNef training. Their responses included various strategies like mental humming, mathematical

calculations, visualizing different scenarios, evoking emotions, and more. Many participants indicated that
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they needed to adapt and employ a range of strategies to maintain their performance over time. They

expressed moderate to high levels of effort in enlarging the feedback disk, but the majority believed they

had gained a high degree of control throughout DecNef training. Moreover, participants reports indicate

that they were unaware of the specific research goals. Out of 18 participants, twelve participants guessed

that the target category was dogs, but a Chi-squared test showed the observed frequencies were consistent

with a uniform distribution and therefore unreliable identification of the target class [χ2(1) = 2, p = .157].

Confidence reports indicated low confidence levels in their guesses, even among those who guessed correctly.

Tables with details regarding the individual strategies and participants beliefs about experimental goals are

available at: https://pedromargolles.github.io/pyDecNef/.

Discussion

This study aimed to covertly manipulate conceptual representations using fMRI-DecNef, thereby

introducing a novel perceptual meaning into a neutral hiragana without participants’ awareness. Participants

progressively improved in their ability to induce neural patterns that were similar to the target concept (i.e.,

dogs). This observation is noteworthy because previous DecNef studies that used a similar amount of

training sessions as here (Amano et al., 2016; Cortese et al., 2016; Knotts et al., 2019; Koizumi et al., 2016;

Taschereau-Dumouchel et al., 2018), did not reliably observe significant learning effects, despite observing

DecNef effects on behavioral performance. Here we used an improved decoder to provide a better calibrated

and more fine-grained feedback to participants (Margolles et al., 2023). This improvement contrasts with the

logistic regression classifiers used in previous DecNef studies, which tended to produce overly confident and

highly binomial predictions as feedback (Bai et al., 2021). These improvements in the classifier could enhance

participants’ capacity to identify subtle neural changes through feedback, potentially resulting in improved

self-regulation during DecNef training. These improvements represent a step forward towards refining the

precision of DecNef. However, there were inter-individual differences in learning during DecNef, as commonly

observed in neurofeedback studies, due to differences in attention, motivation (Kadosh & Staunton, 2019)

or metacognitive abilities (Lubianiker, Paret, Dayan, & Hendler, 2022; Muñoz-Moldes & Cleeremans, 2020;

Stirner et al., 2022). Future DecNef studies would benefit from developing personalised training protocols

to enhance learning within each individual.

Despite the consistent learning effect detected during the DecNef training, which resulted in strong

non-conscious neural representations of the target perceptual content, the behavioral results do not support

the view that the hiragana was associated with the target concept. Search performance for the target category

(i.e., dogs) was similar when search was primed by the hiragana targeted by DecNef, or by a control hiragana.

Previous studies provided robust evidence that memory effects on visual search performance can occur when

the number of items in the search display is low, namely, even with two items (Pan, Cheng, & Luo, 2012;

Soto et al., 2012; Soto et al., 2007; Soto, Wriglesworth, Bahrami-Balani, & Humphreys, 2010). Thereby, it

is unlikely that the absence of effects of the incepted hiragana were due to the small set size of the search

display. Further, both univariate and multivariate fMRI analyses in the search task did not show any neural

modulation driven by the matching between the targeted hiragana and the target category. While some prior

studies indicated that associative learning can operate on visually masked and subliminal representations

(Pessiglione et al., 2008; Raio et al., 2012; Seitz et al., 2009), mounting evidence has indicated otherwise

(Field, 2000; Mertens & Engelhard, 2020; Shanks & John, 1994; Skora et al., 2021). Prior research supporting

unconscious associative learning faced methodological criticisms, particularly regarding experiment demand

characteristics and limitations in assessing participant awareness (Field, 2000; Shanks & Dickinson, 1990).
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Our findings indicate that while robust neural representations of the target perceptual content are induced,

forming associative knowledge between these patterns and a neutral stimulus likely requires conscious access

to the represented content. However, this does not necessarily exclude that others forms of associative

learning, namely, involving emotional content and fear conditioning (LeDoux & Pine, 2016) may occur

outside participants’ awareness (Lovibond & Shanks, 2002).

A previous study found evidence of orientation-color associations in early visual cortex induced by

DecNef (Amano et al., 2016). However, our current study investigated higher-order associative learning

involving an abstract symbol and a perceptual class, compared to the lower-order associations observed in

the previous study. More recently, Collin and colleagues (Collin, van den Broek, van Mourik, Desain, &

Doeller, 2022) showed that contextual representations of faces or houses could be induced through DecNef

in the visual cortex, while participants memorized a different set of objects. The implicit neural context

induced by DecNef (i.e., face or house) facilitated associative memories between the study items and the

specific encoding contexts. However, in Collin and colleagues’ study, participants were explicitly instructed

to think about either faces or houses during DecNef training, thereby likely implicating awareness of the

association between the feedback and the mental context (i.e., whether the feedback related to faces or

houses).

Notably, DecNef training significantly impacted the representation of the target category. In contrast

to the control group, the DecNef group exhibited impaired selection of the target category during the search.

While the control group showed a visual search advantage for living (i.e., dogs) over non-living targets (i.e.,

scissors), consistent with prior research (e.g., He and Cheung, 2019; Moon et al., 2022; New et al., 2007;

Wang et al., 2015), the DecNef group displayed the opposite pattern of results. Specifically, they showed

slower search performance for dogs compared to scissors. This dissociation suggests that DecNef’s influence is

specific to the targeted category. We propose that DecNef training can lead to a reconfiguration of the neural

template associated with the target category, which in turn affects search behavior. Importantly, previous

studies demonstrated that visual imagery, working memory and longer-term memory contents have positive

influences in the guidance of attention, enhancing selection and search performance for visual targets that

match the contents held in memory (Nobre & Stokes, 2019; Reinhart, McClenahan, & Woodman, 2015; Soto

et al., 2008; Tartaglia, Bamert, Mast, & Herzog, 2009). For instance, it has been shown that explicit imagery

training of a visual feature facilitates its subsequent selection in a visual search task (Nobre & Stokes, 2019;

Reinhart et al., 2015; Tartaglia et al., 2009). Therefore, the impairment in search performance observed

for the target representation of DecNef (i.e., dogs) is not predicted by an account based on participants

consciously rehearsing the target representations during DecNef.

One possible explanation is that DecNef induced representational drift of the target concept, causing

a shift in alignment of neural activity patterns within a high-dimensional space over time (Rule et al., 2019).

DecNef protocols require participants to explore a broad search space to find the target representation by

means of diverse cognitive strategies (Watanabe et al., 2017). These strategies are conceptually distinct

from the target and are also accompanied by various sources of interference, such as the presence of the

hiragana in this particular case. Hence, the brain is confronted with a many-to-one mapping problem

often encountered in machine learning, where a unique target can potentially be mapped from multiple

patterns in multidimensional space. The repeated induction of noisy neural patterns that partially overlap

with the neural representation of the target class, can consequently result in the corruption of the target

representation through Hebbian learning and operant conditioning (McClelland, Thomas, McCandliss, &

Fiez, 1999). The PCA analyses demonstrated that the fusiform activity patterns underwent changes in
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representation throughout the DecNef training runs compared with several control regions. This result

provides further evidence that effects of DecNef training were more pronounced and localized within the

specific targeted region, in keeping with a targeted neural plasticity model of DecNef effects (Shibata et al.,

2019).

Representational drift has been observed in the hippocampus (Ziv et al., 2013) and also in cortical

regions (Driscoll, Pettit, Minderer, Chettih, & Harvey, 2017), including sensory cortex (Aitken, Garrett,

Olsen, & Mihalas, 2022; Deitch et al., 2021), when observers are exposed to similar stimuli across sessions

and days. Representational drift is higher for more complex representations associated with naturalistic

stimuli relative to simple items (i.e. oriented gratings) (Marks & Goard, 2021). Importantly, representational

drift can occur despite sustained decoding accuracy of the target content from neural responses by a linear

classifier (Aitken et al., 2022), as we observed in the present study.

Previous theoretical work proposed that representational drift may afford computational benefits,

namely, for continual learning (Driscoll, Duncker, & Harvey, 2022). However, the causal effects of represen-

tational drift on behaviour remain to be elucidated (Sadeh & Clopath, 2022). The current findings suggest

that representational drift could potentially result in undesired behavioral outcomes. Specifically, represen-

tational drift may lead to a mismatch between internal representations held in memory and the perceptual

input from the external environment, thereby influencing visual selection and search behaviour.

In summary, this study elaborates on the impact of conscious awareness on different types of learn-

ing. It indicates that higher-order associative learning is more likely to depend on conscious awareness,

whereas lower-level forms of re-learning, modification, or plasticity in established representations can occur

without awareness, potentially through a mechanism involving neural representational drift. Additionally,

this research offers novel insights for the advancement of DecNef protocols, specifically aimed at manipulat-

ing conceptual representations. These findings pave the way for further research into the potential of DecNef

in personalized interventions, where the guidance provided can be used to target and improve maladaptive

mental representations.
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