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Abstract: This research investigates the integration of Floating Offshore Wind Turbines (FOWTs) with
Oscillating Water Columns (OWCs) to enhance sustainable energy generation, focusing on addressing
dynamic complexities and uncertainties inherent in such systems. The novelty of this study lies in
its dual approach, which integrates regressive modeling with an aero-hydro-elasto-servo-mooring
coupled system with a deep data-driven network and implements a proportional-integral-derivative
(PID) control mechanism to improve system stability. By employing Artificial Neural Networks
(ANNs), the study circumvents the challenges of real-time closed-loop control on FOWT structures
using the OpenFAST simulation tool. Data-driven models, trained on OpenFAST datasets, facilitate
real-time predictive behavior analysis and decision-making. Advanced computational learning
techniques, particularly ANNs, accurately replicate the dynamics of FOWT-OWC numerical models.
An intelligent PID control mechanism is subsequently applied to mitigate structural vibrations,
ensuring effective control. A comparative analysis with traditional barge-based FOWT systems
underscores the enhanced modeling and control methodologies’ effectiveness. In this sense, the
experimental results demonstrate substantial reductions in the mean oscillation amplitude, with
reductions from 5% to 35% observed across various scenarios. Specifically, at a wave period from
20 s and a wind speed of 5 m/s, the fore-aft displacement was reduced by 35%, exemplifying the
PID control system’s robustness and efficacy under diverse conditions. This study highlights the
potential of ANN-driven modeling as an alternative to managing the complex non-linear dynamics
of NREL 5 MW FOWT models and underscores the significant improvements in system stability
through tailored PID gain scheduling across various operational scenarios.

Keywords: neural computation techniques; marine aerogenerators; wave energy converters; smart
regulation; proportional-integral-derivative (PID) strategy; vibration reduction; dynamic struc-
tural management

1. Introduction

Offshore wind energy represents a progressive and eco-friendly approach to electricity
production, capitalizing on the consistent winds found offshore. Its adoption is on the
rise, as it outperforms conventional onshore wind farms in terms of power generation effi-
ciency [1]. Initially confined to shallow waters with fixed bottoms, the advent of advanced
technology has paved the way for floating wind turbines. These turbines are moored to
the ocean floor with adaptable links, making it feasible to venture into deeper waters [2].
Switching to FOWTs offers several benefits, including access to steadier winds, minimized
visual intrusion, and greater compliance flexibility with noise regulations [3]. The prolifera-
tion of offshore wind farms can be attributed to technological progress, supportive policies,
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and significant financial backing, all contributing to increased power output and a decrease
in carbon emissions [4].

Renewable energy plays a crucial role in global initiatives to address climate change
and secure energy supplies. Offshore wind energy, particularly in Europe, has emerged as
a front-runner among renewable energy options [5]. As depicted in Figure 1, there has been
a notable trend in the growth of the average capacity of offshore wind turbines per project
from 2000 to 2025. Initially averaging 1.5 MW at the start of the millennium, the capacity
of these turbines is expected to reach between 10 and 12 MW by 2025, underscoring the
rapid advancements in turbine technology and the expansion of offshore wind projects.
This expected growth trend anticipates a focus on larger capacity units in the industry,
particularly in markets outside China where the average size is anticipated to be between 7
and 8 MW [6].
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Recent trends in the field include the integration of Wave Energy Converters (WECs)
with FOWTs. This hybrid approach, specifically the incorporation of OWCs with FOWTs,
has been recognized as a promising strategy for improving renewable energy generation.
The combination of FOWTs and OWCs aims to stabilize platforms and improve energy
harvest, as shown in Figure 2. The functioning of an OWC is based on a capture chamber
with an opening at the bottom, allowing water to flow in response to incoming waves. The
motion of water leads to the compression and expansion of air within the chamber, later
driving self-rectifying air turbines at the apex of the chamber. Different models of WECs
have been implemented across Europe, exemplified by the NEREIDA Wave Power Plant in
Spain and the Limpet facility in Scotland, signifying notable advancements in the field of
renewable energy [7].

The creation of these hybrid offshore structures encompasses complex dynamics [8].
Noteworthy advancements in modeling and control strategies for FOWTs combined with
OWCs have been achieved, with machine learning playing a pivotal role [9]. These devel-
opments have significantly enhanced the efficiency and dependability of such systems [10].
The design of hybrid offshore structures presents complexities due to their coupled aero-
hydro-servo-elastic dynamics [11]. While bottom-fixed turbines are ideal for shallow waters,
floating turbines excel in deeper marine environments. The design of floating wind turbines
is categorized into three main types according to their stabilization methods: buoyancy-
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stabilized (barge platform), mooring-stabilized (tension leg platform), and ballast-stabilized
(spar buoy) [12].
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Considerable progress has been realized in the development of modeling and control
methodologies for FOWTs coupled with OWCs [13]. Research efforts are intensively
focused on discovering new strategies to enhance both the efficiency and dependability
of these sophisticated systems. The application of machine learning, recognized for its
prowess in identifying patterns and forecasting based on extensive data collections, has
proven to be an instrumental asset in this area [14]. Utilizing artificial intelligence, machine-
learning approaches facilitate the crafting of precise and streamlined models for FOWTs
integrated with OWCs.

2. Technical Literature Review

Machine learning is revolutionizing the domain of wind turbine regulation, marking
a pivotal shift in research related to wind turbine control and surveillance through the
integration of advanced machine learning and deep learning algorithms [15]. A key focus
area is the stabilization of FOWTs for marine energy uses, in which deep reinforcement
learning (DRL) techniques, including actor-critic networks in conjunction with a globally
asymptotically stable observer, are employed to dynamically manage FOWTs across diverse
environmental settings [16]. This simulation-driven analysis illustrates the advantage of
such methodologies over conventional linear quadratic regulator (LQR) techniques in
stabilizing FOWTs. Innovative, model-independent controllers utilizing reinforcement
learning (RL) and Bayesian optimization (BO) offer adjustments without dependency on
traditional mathematical models, aiming to boost energy production and minimize turbine
stress [17]. Additionally, data-oriented predictive control tactics employing deep learning
alongside multi-objective optimization tackle the model complexity and the dilemma of
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conflicting control aims in FOWTs [18]. These approaches enable accurate individual blade
adjustment, optimizing the energy yield and ensuring platform steadiness in variable wind
scenarios [19]. In the field of FOWT monitoring and safety, deep learning significantly
contributes to the analysis of mooring line tension. Through simulations under assorted
environmental conditions, it has been discerned that surge movements primarily affect
mooring line tension, regardless of the mooring configuration, whereas the elasticity of
blades and towers plays a minor role in tension predictions [20].

Gaussian process metamodels have recently been utilized as an innovative approach
for encapsulating the hydrodynamic and structural dynamics of FOWTs [21]. These meta-
models process inputs such as wave height, forces, and moments at the tower-platform
junction to forecast platform movements and rotations. The investigation assesses three
varieties of Gaussian process metamodels, showcasing their capability in accurately simulat-
ing platform behaviors. Additionally, a multi-criteria decision-making (MCDM) framework
for the development of offshore wind farms in Ireland has been introduced, incorporating
technical, financial, environmental, and societal factors to evaluate the sustainability of
offshore wind locations [22]. Utilizing interval type-2 fuzzy sets and energy economic
metrics such as the levelized cost of electricity (LCoC), this framework offers a refined
decision-support system [23]. Table 1 summarizes various soft computing techniques em-
ployed in FOWT applications, detailing their specific areas of application and the resulting
benefits or outcomes. These methods enhance the performance, stability, and efficiency of
FOWTs by addressing complex dynamic and control challenges.

Table 1. Overview of soft computing methods applied to FOWTs.

Soft Computing Method Application Area Outcome/Benefits Source

Genetic Algorithms (GA) Structural optimization of
FOWT platforms

Enhanced design for load
mitigation and

cost-effectiveness

Lemmer et al., 2018 (ASME
Digital Collection) [24]

Artificial Neural Networks
(ANN)

Prediction of
aerodynamic forces

Improved real-time
performance prediction

Raissi et al., 2018 (Journal of
Computational Physics) [25]

Fuzzy Logic Systems Control systems for
platform stability

Increased system stability and
response to

environmental changes

M’zoughi et al., 2023
(International Journal of

Energy Research) [26]

Support Vector Machines
(SVM)

Fault detection in
turbine systems

Early detection of potential
faults, reducing downtime

Perdomo et al., 2017 (Applied
Mathematics and Modeling)

[27]

Particle Swarm Optimization
(PSO)

Parameter tuning in turbine
control systems

Optimized control parameters
leading to better energy

capture

Wu et al., 2022 (Applied
Sciences) [28]

Deep Learning (Convolutional
Neural Networks) Aerodynamic data modeling

Enhanced accuracy in
predicting aerodynamic

properties

Prantl et al., 2017 (Advances
in Aerodynamics) [29]

Recurrent Neural Networks
(RNN)

Prediction of dynamic
aerodynamic forces

Accurate modeling of
unsteady aerodynamics for

airfoils

Moin et al., 2022 (Engineering
Proceedings) [30]

Physics-informed Neural
Networks

Solving forward and inverse
problems in fluid dynamics

Integration of physical laws
into neural networks for

improved predictions

Raissi et al., 2019 (Journal of
Computational Physics) [31]

For the modeling of FOWTs, several innovative methodologies and technologies have
been developed to advance their performance. J. Jonkman and collaborators [32] have
been at the forefront with the introduction of OpenFAST for wind turbine behavior, a
comprehensive tool that integrates fatigue, aerodynamics, structures, and turbulence as-
pects with a gain-scheduled proportional-integral approach. This simulator is instrumental
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in deciphering FOWT dynamics and facilitates the creation of robust control algorithms,
including a standard collective blade pitch control mechanism [33]. Addressing the crit-
ical issue of vibrations in FOWTs, the TORA concept has been developed [34]. TORA is
designed to enhance the structural stability of FOWTs, contributing to their smoother and
more dependable functioning. Furthermore, M.A. Lackner and his team have introduced
FAST-SC, a customized structural control system tailored for FOWTs [35]. This system
allows for the meticulous management of the turbine’s structural elements, optimizing its
performance comprehensively.

OpenFAST [36] is a pivotal tool in the development of diverse control strategies for
FOWTs. It facilitates the exploration of active and passive control methods, including
strategies focused on blade, torque, and rotational speed adjustments, and the application
of the Tuned Mass Damper (TMD) for enhanced stability. In the pursuit of augmenting
platform stability, a novel PID complementary airflow control method has been integrated
into Offshore Wind Converters [37]. This technique guarantees consistent performance
amidst variable weather conditions. Furthermore, collective torque control is identified
as a key factor in the operational efficiency of FOWTs, with PID control systems widely
implemented to reduce discrepancies between target and actual values, thus ensuring
adequate control over FOWT operations [38].

There are various modeling techniques for FOWT-OWCs with semi-submersible
configurations, which examine their dynamics within both time and frequency analytical
domains. However, there is a need for intelligent machine learning models and control
mechanisms for hybrid system stability. Therefore, this article has two primary novel
objectives. The first is to develop novel control-oriented regressive intelligent modeling
specifically for the hybrid design of FOWTs and OWCs. The second objective involves
utilizing estimated models to implement gain scheduling PID feedback control. This control,
aided by numerical tools and air valve control strategies, aims to ensure overall system
control and stability. OWCs are utilized in this study primarily for platform stabilization.
Consequently, their power output is generally lower compared to that of wind turbines.
For instance, the OWC plant at the Mutriku Wave Power Plant in Spain has an installed
capacity of 296 kW, while the wind turbines have a capacity of 5 MW [39].

The paper’s structure has been outlined as follows: Section 3 gives a detailed expla-
nation of the subsystems within the FOWT-OWC system, along with their mathematical
modeling. Section 4 delves into the proposed designs for the hybrid platform’s geome-
try and the associated hydrodynamic calculations. Section 5 discusses the proposed PID
control for managing platform pitch and mitigating unwanted vibrations. Experimental
findings, corroborated through cross-validation, are detailed in Section 6. The paper ends
with the final section, offering conclusions and suggestions for future research directions.

3. Theoretical Foundations
3.1. Model of Wave Elevation

A straightforward model of wave elevation is presented as a unidirectional, regular
sine wave, with surface dynamics described according to the Airy wave theory [40].

zω(t) = Asin(ωt) = Asin(2π f t) = Asin(
2π

λ
ct) (1)

where c = f λ is defined as the propagation velocity, A is the wave amplitude from
the Still Water Level (SWL), and λ is calculated by measuring the distance between two
consecutive waves. From Equation (1), the temporal fluctuation of a wave is represented
as a macroscopic illustration of the oscillatory motion of water molecules at a designated
location. To facilitate the application of this oscillatory behavior to any position on the
wave’s surface, a new variable that accounts for the spatial dimension along the wave front
is introduced. Therefore, Equation (1) is reformulated as follows:

zω(x, t) = Asin(
2π

λ
(ct − xθ)) =

H
2

sin(ωt − kxθ) (2)
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where k = 2π
λ is the wave number, H is the wave height, x is the axis in the direction

of wave propagation, and θ represents the wave angle in the direction of the x-axis. As
explained below, this can be generalized by superposing an n-fold number of waves [38].

zω(x, t) =
N

∑
i=1

Kisin(ωit − ki + θi) (3)

Ki =
√

2Si∆ωi (4)

where N is the number of waves, Si is the spectral density, ki is the number of each wave
component, and ωi is the angular frequency. The two most widely recognized theoretical
wave spectra are the Bretschneider spectrum [41] for fully developed waves and the
JONSWAP spectrum for partially developed waves. The generalized representation of the
spectrum can be expressed as

Si(ωi) = (1 − 0.287ln(γ))
5ω4

p

16ω5 K2
s γβe

5ω4
p

16ω5 (5)

where β is exp(− (ω−ωp)2

2ω2
Pα2 ) and α =

{
0.07, i f ω ≤ ωp
0.09, i f ω > ωp

}
, Ks is the wave height, and ωp is

the peak angular frequency. Depending on the wave condition, a value between 1 and 5 is
chosen for the heat ratio parameter γ. The value of the standard JONSWAP spectrum γ
is 3.3 [42].

3.2. Wind Turbine

The turbine set up a mechanical system that transforms wind energy into mechanical
energy; subsequently, a generator converts this mechanical energy into electrical energy.
The output power and torque can be characterized as follows:

Pw =
1
2

Cp(ϑ, λ)ρπr2v3
wind (6)

Qw =
1
2

CQ(ϑ, λ)ρπr2v3
wind (7)

where Cp and CQ represent the power and torque coefficients, respectively. ρ denotes the

air density kg
m3 and r the the wind rotor radius (m). ϑ is the blade pitch angle (dgrees). The

tip-speed ratio (TSR), λ, is defined as follows:

λ = Ωt
R
V

(8)

where R denotes the radius of the turbine’s rotor and Ωt specifies the turbine’s rotational
speed in radians per second ( rad

s ). The power coefficient, a nonlinear function, is dependent
on ϑ and λ can be expressed as{

Cp(ϑ, λ) = 0.22( 116
λi

− 0.4ϑ − 5)e−
12.5
λi

1
λi

= 1
λ+0.087ϑ − 0.035

ϑ3+1

(9)

The parametric values of the floating offshore wind turbine considered in this manuscript
are presented in [43] Table 2.



J. Mar. Sci. Eng. 2024, 12, 1292 7 of 33

Table 2. NREL 5 MW floating offshore wind turbine (FOWT) specifications.

Parameter Value

Hub Height 90 m
Rotor Diameter 126 m

Center of mass location 38.23 m
Blade Count 3

Initial rotational speed 12.1 rpm
Blade Mass 53,220 kg
Hub Mass 240,000 kg

Nacelle Mass 347,660 kg
Tower mass 56,780 kg

Output Generated Power 5 MW
Wind Speed Thresholds (Cut-in, Rated, Saturated) 773.8 m

3.3. Equation of Motion of the Hybrid FOWT-OWCs

This section delineates the theoretical framework for a hybrid model designed to
integrate OWC-WECs into a 5 MW floating barge-mounted wind turbine. Frequency-
domain numerical tools, based on linear theory, were employed to analyze this design.
Incorporating a WEC into the system potentially reduces overall costs by utilizing shared
mooring structures and energy generation infrastructure. The model was constructed using
MultiSurf for geometry design and WAMIT for computational diffraction-radiation analysis,
assuming standard specifications for well and Power-Take-Off (PTO) equipment [43]. The
complete nonlinear time-domain motion equations for the 5 MW FOWT with an OWC-
equipped platform are presented as follows [44]:

Mij(ξ, u, t)
..
ξ = Fl

(
ξ,

.
ξ, u, t

)
(10)

In the equation, ξ and
..
ξ represent the first and second time derivatives of the jth DOF,

respectively. Mij is a component of the inertia mass matrix, which exhibits nonlinear
dependence on the system’s DOFs, ξ, time (t), and control inputs (u). The term on the
right side of the equation denotes the generalized external forces impacting the integrated
system. These forces include aerodynamic loads on the blades and nacelle, as well as
hydrodynamic forces on the platform, encompassing elastic and servo forces associated
with the ith DOF. ξ from Equation (10) is defined as follows:

ξ =



roll (deg)
pitch (deg)
yaw (deg)
surge (m)
heave (m)
sway (m)
f ore − a f t (m)
side − to − side (m)


(11)

The generalized linear system of equations of motion within the frequency domain is
formulated as follows [44]:

IF(ω)
..
ξ + DF(ω)

.
ξ + CFξ = “F(ω) + “FPTO(ω) (12)

In the frequency domain, IF(ω), DF(ω), and CF(ω) represent the inertia, damping,
and stiffness matrices of the FOWT, respectively. The term “F(ω) denotes the aggregate
forces attributable to hydrodynamic effects and viscous drag induced by wave interactions,
whereas “FPTO(ω) encapsulates the force contributions from the OWCs.

IF(ω) = AHyd(ω) + Mplt f rm(ω) + MTwr (13)
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IF(ω) includes the frequency-dependent 8x8 matrix. AHyd(ω), Mplt f rm(ω) and MTwr
represent the platform added mass, actual platform mass, and tower mass, respectively.
The damping matrix is delineated by Equation (14), incorporating DHyd(ω) and DTwr,
which pertain to the damping properties of the floating barge platform and the flexible
tower, respectively. DVscs signifies the nonlinear viscosity effects on the platform, while
Dchmbr represents the comprehensive external damping resulting from the power take-off
(PTO) system’s operation.

DF(ω) = DHyd(ω) + DTwr + DVscs + Dchmbr (14)

CF(ω) = CHyd(ω) + CMorng + CTwr (15)

where the stiffness matrix CF(ω) consists of the hydrostatic restoration matrix of the
platform obtained by WAMIT CHyd(ω), the mooring lines spring stiffness coefficients that
give matrix CMorng, and the stiffness matrix of the tower CTwr.

The internal pressure within the enclosure encompassing the four interconnected
OWCs can be postulated to exhibit uniformity, as the internal free surface functions analo-
gously to a piston. In this context, the influence of the OWCs on the overarching dynamic
system is characterized, as delineated in reference [23], by an externally applied force:

“FPTO(ω) = −p(ω)S (16)

where p represents the pressure differential across the turbine and S denotes the area of the
internal free surface; the observed variations in air density and pressure due to processes
of compression and decompression correspond to an isentropic transformation. Assuming
the air behaves as an ideal gas, the temporal variation in air density provides an analytical
description of the chamber’s state when at rest, which is defined as

ρ = ρa

(
p
po

)
1
α (17)

where α defines the heat capacity ratio of air. Upon linearizing the time derivative of the air
density,

.
ρ = ρa

(
1

αpo

)
.
p (18)

Then, within the chamber, the linearized mass flow can be quantitatively determined
using the following formulation:

.
m =

d(ρV)

dt
=

ρa

αpo

.
pVo + ρo

.
V (19)

where V is the air volume inside the chamber.
A Wells turbine, characterized by a diameter D and rotational velocity N, exhibits a

linear correlation between the pressure and flow coefficients. This relationship is expressed
using the non-dimensional parameters typical of turbomachinery analysis, as outlined in
reference [45]:

ψ = Kζ (20)

The pressure and flow coefficients are defined as

ψ =
p

ρaN2D2 (21)

ζ =

.
m

ρaND3 (22)
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The linear relationship can be described by considering the non-dimensional flow rate,
under the assumption that the pressure drop is proportional to this flow rate, as follows:

ψC = KCζC =
p

ρagH
(23)

ζC =
2π

.
m

ρaωSH
(24)

where g represents the acceleration due to gravity. Hence, following these formulations,
the mass flow through the turbine can be expressed as

.
m(ω) =

Sωp
2πgKc

(25)

Upon integrating Equations (19) and (25), the pressure characterized by a complex
amplitude is expressible within the frequency domain as follows:

“p(ω) = iω
γ

Sω[1 + (εγ)2]
“V − ω2 εγ2

Sω[1 + (εγ)2]
“V (26)

where “V denotes the complex amplitude of the oscillatory volume displacement in air, and
γ and ε represent constants defined by the following relationships:

γ = 2πρagKC (27)

ε =
Va

γ paS
(28)

The total PTO force can be rewritten by combining Equations (16) and (26):

“FPTO(ω) = iωBPTO“xr + ω2KPTO“xr (29)

where “xr is the complex relative displacement amplitude. According to Equation (29), the
dissipative term becomes proportional to the volume variation. In this context, “xr represents
the complex amplitude of the relative displacement. As delineated in Equation (29), the
linear load exerted by the PTO includes a dissipative component that is directly proportional
to the relative velocity, as well as a reactive component that is induced by the compressed
air within the chamber and corresponds to the relative acceleration. Additionally, the
dissipative component is proportional to the variation in volume. The reactive term is
proportional to the rate of volume change when the damping coefficient BPTO and the
spring coefficient KPTO are normalized by the area of the internal free surface. These PTO
damping and spring coefficients are determined as per Equation (26):

BPTO(ω) =
γ

ω[1 + (εγ)2]
(30)

KPTO(ω) =
εγ2

ω2[1 + (εγ)2]
(31)

Finally, the following results have been derived for the system’s frequency-dominant
equations of motion for the 8-DOFs FOWT:

IF(ω)
“..
ξ + (DF(ω) + BPTO(ω))

“.
ξ + (CF + KPTO(ω))“ξ = “F(ω) (32)
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4. Proposed Hybrid FOWT-OWC Model
4.1. Platform Geometry Design

To implement active structural control, four Oscillating Water Columns (OWCs) were
integrated into a 5 MW Floating Offshore Wind Turbine (FOWT). The initial phase involves
designing the geometry of the hybrid system. This process begins with the architectural
design of the hybrid platform. The platform’s geometry has been developed using Multi-
Surf, a computational tool designed for marine platform design. MultiSurf facilitates the
creation of structural elements such as hulls, decks, keels, interiors, and superstructures, as
well as the generation of free-form curves and surfaces, as referenced in sources [23,24].

To utilize the geometric buoyant model, the WAMIT tool was interfaced with MultiSurf
to compute the hydrodynamic loads exerted by water pressure on wet surfaces. The
geometries are illustrated in Figures 3 and 4 using the panel method. This study evaluates
two representative platforms to highlight their unique characteristics. Figure 3 shows the
first platform, a conventional barge type, which has been meshed with 8960 rectangular
panels. The second platform, illustrated in Figure 4, is a barge platform with four corner
OWCs. Each OWC measures 5 m × 5 m × 10 m and is meshed with 9840 rectangular panels
for configurations with open moonpools and 10,240 rectangular panels for configurations
with closed moonpools. The OWCs are positioned 1 m from the sidewalls. Detailed
specifications of the barge platform and the four identical OWCs are provided in Table 3.
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Table 3. Features of the standard barge and the four OWC-based barge platforms [45].

Parameters Specifications

Platform Dimensions (width × length × height) 40 m × 40 m × 10 m
OWC Dimensions (width × length × height) 5 m × 5 m × 10 m

Freeboard Levels of Both Platforms’ Drafts 4 m, 6 m
Water Displacement (Simple Barge) 6400 m3

Water Displacement (with Integrated OWCs) 6000 m3

Total Mass including Ballast 7,466,330 kg
Center of Mass Position below SWL 0.28768 m

Roll Inertia Relative to Center of Mass 726,900,000 kg·m2

Pitch Inertia Relative to Center of Mass 726,900,000 kg·m2

Yaw Inertia Relative to Center of Mass 1,453,800,000 kg·m2

Anchor Depth 150 m
Distance between Opposing Anchors 773.8 m
Length of Unstretched Mooring Line 473.3 m

Length of Mooring Line Resting on Seabed 250 m
Mooring Line Diameter 0.0809 m
Mooring Line Density 130.4 kg/m

Mooring Line Extensional Stiffness 589,000,000 N

4.2. Advanced Hydrostatic and Hydrodynamic Computations

Evaluating the hydrodynamic and hydrostatic parameters during the geometric design
of the proposed quartet of OWC-based barge platforms is crucial. Therefore, detailed assess-
ments of these characteristics were performed using the WAMIT numerical tool. Initially
developed for the linear analysis of surface wave interactions with various floating and
submerged structures, the WAMIT diffraction panel program facilitates these evaluations.
Hydrostatic and hydrodynamic coefficients were calculated by integrating the MultiSurf
file directly into WAMIT’s diffraction-radiation module, resulting in the generation of the
matrices AHyd, BHyd, and CHyd. All hydrostatic data can be represented as surface integrals
over the mean body wetted surface Sb using the Gauss divergence theorem. WAMIT allows
us to evaluate all three forms of volume under the assumption that the coordinates of the
center of buoyancy are set to zero:

∀ = −
x

xn1dS = −
x

yn2dS = −
x

zn3dS (33)

with the center of buoyancy parameters

xb =
−1
2∀

x
Sbn1x2dS (34)

yb =
−1
2∀

x
Sbn2y2dS (35)

zb =
−1
2∀

x
Sbn3z2dS (36)

The hydrostatic and gravitational restoring coefficients can be ascertained through a
matrix that is configured with respect to their respective coordinates.

0 0 0 0 0 0
0 0 0 0 0 0
0 0 a33 a34 a35 0
0 0 0 a44 a45 a46
0 0 0 0 a55 a56
0 0 0 0 0 0

 (37)
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The matrix elements are given by

a33 = ρg
s

Sbn3dS, a34 = ρg
s

Sbyn3dS a35 = −ρg
s

Sbxn3dS
a44 = ρg

s
Sby2n3dS + ρg∀zb − mgzg, a45 = −ρg

s
Sbxyn3dS

a46 = −ρg∀xb + mgxg a55 = ρg
s

Sbx2n3dS + ρg ∀zb − mgzg
a56 = −ρg∀yb + mgyg

where m is the body mass, and xg, yg, and zg are the center of gravity coordinates. Finally,
the following equation describes the added mass and damping coefficients,

Aij −
iBij

ω
= ρ

x
SbniϕjdS (38)

where i is the imaginary unit, ω is the frequency, ρ is the density, Sb is the surface of
integration, ni is the ith component of the normal vector, and ϕj is a function of a field
component.

To incorporate the hydrodynamic data and additional mass attributes into Open-
FAST, the WAMIT v9 software was utilized. Figure 5 elucidates the methodology for the
integration of modules to facilitate the creation of aero-hydro-servo-elastic simulations.
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Figure 5. Integration of essential modules for the simulation of aero-hydro-servo-elastic dynamics.

The generator torque is defined as a tabular function of the filtered generator speed,
covering five control regions: 1, 2a, 2b, and 3. This methodology conforms to the specifica-
tions established for the National Renewable Energy Laboratory (NREL) standard 5 MW
wind turbine, as illustrated in Figure 6.

The framework for data collection, simulation, and network development is illustrated
in the flow diagram in Figure 7. As depicted in the flowchart, five steps are utilized to
establish the modeling and control of the hybrid framework.
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hybrid FOWT-OWC system.

4.3. Advanced Deep Learning-Based Hybrid Modeling for the Hybrid System

OpenFAST was used multiple times to generate datasets for developing models based
on Response Amplitude Operators (RAOs), as depicted in Figure 8. There are four recurrent
ANN models that were developed. Each network comprises an input layer, ten hidden
layers with ten fully connected neurons each, and an output layer with two neurons for
estimating tower fore-aft displacement and platform pitch.

A visual representation of the dataset is shown in Figure 9. The process to determine
the optimal number of hidden layers and neurons involved starting with minimal numbers
and incrementally increasing them during the training of new network architectures.
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The outputs can be defined as follows:

yk(t) = ϕo

(
10

∑
i=1

wikyi(t) + bk

)
, k = {1; 2} (39)
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where the output of each node can be defined as

yi(t) = ϕh

(
3

∑
j=1

wjiZj(t) + bi

)
, i = {1, . . . , 10}j = {1; 2; 3} (40)

where Z(t) =
[
Z1Z2Z3]

T =
[
z(t)v(t)u(t)]T is the input vector, z(t) is the wave elevation,

v(t) denotes wind speed, and u(t) is the control input.

yk(t) = ϕo

(
10

∑
i=1

wikϕh

(
3

∑
j=1

wjiZj(t) + bi

)
+ bk

)
(41)

θp = y1(t) = ϕo

(
10

∑
i=1

wi1ϕh

(
3

∑
j=1

wjiZj(t) + bi

)
+ b1

)
(42)

TTDFA = y2(t) = ϕo

(
10

∑
i=1

wi2ϕh

(
3

∑
j=1

wjiZj(t) + bi

)
+ b2

)
(43)

where ϕo and ϕh are the activation functions of the output and hidden layers, respectively.
TTDFA and θp are the top-tower displacement and platform pitch. For the training of
datasets, the inputs considered are shown in Figure 10. The estimated outputs are shown
in Figures 11 and 12.
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Figure 10 illustrates the input variables used in the training of the computational ANN
models, including wave elevations, wind speeds, and valve voltage signals. Figure 11
shows the top tower fore-aft displacement responses of the FOWT-OWC system across
various wave periods and wind speeds. It demonstrates how the ANN model can pre-
dict displacement under different environmental conditions. Figure 12 depicts the plat-
form pitch responses of the FOWT-OWC system across various wave periods and wind
speeds. The diagram shown in Figure 13 outlines the workflow for developing a machine-
learning model using a Multilayer Perceptron (MLP) architecture. The process begins
with a dataset that undergoes preprocessing, including normalization, to prepare for input
into the MLP model. The database contains parameters for top-tower displacement and
platform pitch. The model-training phase involves an optimization process using the
Levenberg–Marquardt algorithm. This was performed until the lowest Mean Squared Error
(MSE) was achieved. Various hyper-parameters were tested, including learning rates (0.01,
0.001, 0.0001) and batch sizes (32, 64, 128), along with different configurations of hidden
layers. A configuration with a learning rate of 0.001, a batch size of 32, and an optimal
10 hidden layers of neurons demonstrated effective results. The use of 10 hidden layers
was chosen based on extensive empirical testing and optimization, demonstrating that
this configuration provides the best trade-off between model complexity and performance,
ensuring accurate predictions without overfitting.
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This configuration balances computational efficiency and model performance, yielding
the best outcomes in terms of prediction accuracy and system stability.

The architecture of an NN model is illustrated in Figure 14. Once training and verifica-
tion were completed, the model was tested against a separate set of data to determine its
accuracy and efficacy. The optimal model was then used to predict results, specifically the
top-tower displacement and platform pitch. Evaluation metrics, such as accuracy, precision,
and MSE, were applied to assess the model’s performance. The results were fed back
into the model for further refinement, ensuring that the predictions aligned as closely as
possible with actual measured values. This iterative process was designed to enhance the
accuracy of the MLP model for reliable predictive analysis in practical applications.
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Figure 14. Architecture of a NN model with three inputs, ten hidden layers, and two outputs.

Several training functions were examined to train the network. The trainlm func-
tion, while requiring more memory, is often the fastest backpropagation method and is
recommended as a primary supervised technique. The trainrp function employs resilient
backpropagation (Rprop) to update weight and bias variables, mitigating the negative
impacts of partial derivative magnitudes. Conjugate gradient algorithms, such as traincgb,
initially follow the steepest descent direction and periodically reset the search direction.
The traincgb function uses conjugate gradient backpropagation with Powell–Beale restarts
to update weight and bias values.
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The trainbr function applies Bayesian regularization with Levenberg–Marquardt op-
timization to update weight and bias variables, balancing squared errors and regulariza-
tion terms for a generalizable network. The most effective results were achieved using
Levenberg–Marquardt optimization techniques, as shown in Table 4.

Table 4. Error graphs for validation.

Training
Function Performance MSE R Epochs Training

Function Performance MSE R Epochs

trainrp Validation 542 0.9994 479 trainscg Validation 341 0.9998 914
Training 0.9994 Training 0.9999

Test 0.9995 Test 0.9998
traincgb Training 428 0.9995 675 trainbr Training 319 0.9997 942

Validation 0.9996 Validation 0.9998
Test 0.9996 Test 0.9998

traincgf Training 351 0.9998 343 trainblm Training 316 0.9999 953
Validation 0.9996 Validation 0.9999

Test 0.9998 Test 0.9999
traincgp Training 344 0.9996 513

Validation 0.9997
Test 0.9996

4.4. Proposed Control Integration: PID Gain Scheduling Approach

Both platform pitch and tower top displacement rise significantly when exposed to
high wind speeds. The control strategy following the development of the four estimated
models for FOWT-OWCs incorporated PID gain scheduling across four networks, enhanc-
ing system responsiveness and adaptability. This method focuses on precise measurement
and scaling of control variables, ensuring accurate input for the PID controllers and op-
timal system performance under various conditions. PID gain scheduling is a method
that adaptively modifies controller gains according to the system’s current operational
conditions. Its main objective is to reduce the discrepancy between a predefined setpoint
(zero reference) and the actual output of the system, with a special emphasis on managing
the platform pitch. This reduction is accomplished by perpetually fine-tuning the control
valve signal, which is determined by the measured error. Consequently, PID controllers
serve as a crucial stabilizing element, refining the system’s reaction to maintain compliance
with specified performance criteria.

Figure 15 outlines the processes and interactions in a structured and understandable
manner by clearly separating the offline and online stages. During the offline stage, the
ANN models undergo training to produce the platform pitch θp and fore-aft top-tower
displacement TTDFA. Subsequently, the ANN_Predict function processes these variables.
Following this, the decision logic applies manual decision-making principles to generate
control gains KP, KI , KD, which are then stored in a Look-Up Table (LUT) within the Gain
Scheduler.

In the online stage, real-time wind and wave conditions V(t) and Z(t) are input into
the LUT, which provides the appropriate control gains KP, KI , KD to the PID controller.
The PID controller utilizes these gains to adjust the reference pitch angle θpre f , generating
a control signal for the FOWT. The FOWT system outputs the actual pitch angle θp and
TTDFA, which are then fed back into the PID controller to maintain the desired pitch angle.
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Figure 15. Schematic diagram of an adaptive control system utilizing ANNs and PID controller with
a gain scheduling mechanism.

5. Model Validation and Control Results

This section details the simulations conducted to assess the effectiveness of the pro-
posed modeling and control method for the hybrid FOWT-OWC system.

The comprehensive validation process is outlined in Figure 16, and reveals a robust
predictive model with exceptional performance metrics. The first figure sets a remarkable
precedent, with near-perfect correlation coefficients exceeding 0.9997 across all datasets,
showcasing the model’s high correlation with the datasets and the effectiveness of the
underlying algorithm. Subsequent figures illustrate a commendable level of generaliz-
ability, with correlations consistently around or above 0.90. Such results are indicative
of a well-tuned model that has been meticulously trained to translate the complexities of
the data while maintaining commendable performance consistency when exposed to new,
unseen datasets.

Moreover, the moderate performance depicted in the third figure, with correlations
stabilizing between 0.76 to 0.78, underscores the model’s reliability in providing stable
predictions despite varying data conditions. The fourth figure reinforces these findings,
demonstrating the model’s resilience with high training and overall data correlation co-
efficients of 0.97, while a slight reduction in the test set correlation suggests a balanced
approach to model fitting, avoiding overfitting while still capturing essential data patterns.
These results collectively signal a promising direction for future deployment, offering a
strong foundation for confident, data-driven decision-making and further affirming the
model’s potential for practical application across diverse scenarios.
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The series of validation graphs shown in Figure 17 demonstrates the robust training
model efficiency and predictive accuracy. The blue, green, and red lines represent training,
validation, and testing, respectively. The model achieved optimal validation performance,
with the best validation MSE remarkably low at 0.001169 by epoch 96, 0.68048 by epoch
34, 2.1952 by epoch 7, and 0.16825 by epoch 23, indicating rapid convergence and a
strong learning capability. The MSE on a logarithmic scale swiftly declined from the
initial epochs, underscoring the model’s ability to generalize without overfitting, as the
test errors closely followed the validation errors. This consistency in low error rates
across all phases highlights the model’s well-tuned balance between bias and variance,
emphasizing its readiness for real-world application with a high degree of confidence in its
predictive stability.
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Figure 17. Performances analysis of four NN models with three inputs, ten hidden layers, and
two outputs.

The set of error histograms from the predictive model evaluation provides insightful
data on the distribution of prediction errors across training, validation, and test datasets.
The histograms are plotted (see Figure 18) with errors calculated as the difference between
targets and model outputs, and they are segmented into 20 discrete bins, offering a clear
visual representation of the error magnitude and frequency. In each histogram, most errors
cluster around the zero-error bin, which is a positive indication of the model’s accuracy.
Notably, the concentration of errors in bins close to zero across all datasets suggests that the
model predictions are well-aligned with the actual values. The similar error distributions in
the training, validation, and test sets imply that the model is not overfitted to the training
data and has a consistent error profile when applied to unseen data. The distribution tails
are thin, indicating fewer instances of large errors, which enhances the model’s credibility
for practical applications.

The graphs illustrated in Figure 19 are the errors of four distinct models across a 600-s
horizon, with a particular focus on fore-aft and platform pitch errors. Models N1, N2,
N3, and N4 exhibit an impressive level of accuracy, as evidenced by their error metrics
closely reaching the zero line, indicating predictions that consistently align with the actual
values. These models demonstrate exceptional reliability, maintaining a steady course
even when faced with the complexities of dynamic forecasting. In general, the collective
performance of these models paints a promising picture of predictive accuracy and offers a
robust foundation for complex forecasting in dynamic environments.
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Figure 19. Comprehensive training errors across four NN models of fore-aft displacement and
platform pitch.

For the top-tower fore-aft displacement (TTDFA), a set of graphical analyses is pre-
sented in Figure 20. A detailed overview of the neural network’s training performance is
rigorously compared against FAST simulations across a spectrum of wave periods. For the
shortest wave period of 5 s, the trained network demonstrates excellent synchronization
with the simulation data, capturing the rapid oscillatory patterns with minimal deviation.
As the wave period increases to 10 and 14 s, the network maintains this high level of reliabil-
ity, despite the longer periods introducing more complex dynamics to the training task. The
graphs show that the network adeptly adjusts to these changes, with the error between the
simulation and the trained network remaining consistently low. The longest wave period of
20 s tests the limits of the network’s predictive capacity. The corresponding graph indicates
that while the overall trend and periodicity are captured, there is a slight increase in the
deviation from the FAST simulation data. This is due to the inherent challenges in modeling
such extended patterns, or could reflect a need for further training or refinement of the
network for these conditions. Across all periods, however, the consistent performance of
the trained network, especially in lower frequency waves, is indicative of a robust training
regime that has prepared the network to handle a diverse range of scenarios with varying
wind speeds. These results are encouraging for the application of the trained network in
real-world situations in which adaptability to different environmental conditions has been
considered carefully.
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Figure 20. Comprehensive training results of fore-aft displacement across different wave periods of
(a) 5 s, (b) 10 s, (c) 14 s, and (d) 20 s, each with varying wind speeds (5, 8, 11, 14, and 17 m/s) and
wave height of 1 m.

Figure 21 presents the training results of the Trained Model, set against FAST Data
Network outputs, and using varying wave periods for the platform pitch. Each graph
reveals the model’s performance over extended time frames, capturing the dynamics of
platform pitch in response to simulated maritime conditions. The first graph, depicting
the scenario with a 5-s wave period, shows an exceptional alignment between the Trained
Model and the FAST Data Network, suggesting that the model has effectively internalized
the system dynamics within this range. As the wave period increases to 10, 14, and 20 s
in subsequent graphs, the Trained Model consistently mirrors the FAST Data Network’s
pitch response, albeit with minor variations that become more pronounced with longer
wave periods. These discrepancies are due to the increased complexity and potential
non-linearities introduced at extended intervals. However, even at a 20-s wave period, the
Trained Model demonstrates an impressive ability to replicate the complex patterns of the
FAST simulations, exhibiting its robustness and adaptability.
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height of 1m.
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Overall, the Trained Model’s performance across these varying conditions highlights
its refined learning capabilities and potential for real-world application. Despite the
challenges posed by longer wave periods and the intricate behaviors they induce, the
model shows it can predict with high accuracy, making it a valuable tool for navigating the
complexities of maritime environments.

The series of control implementation graphs in Figure 22, demonstrates the perfor-
mance of a PID-controlled system, in which the green lines represent the control actions
and their resulting system stability, indicated by the reduced oscillations. The first graph
reveals that the control actions closely follow the predicted model values with minimal
oscillations, suggesting that the PID controller is well-tuned for the system’s dynamics
within this specific scenario. The small oscillation amplitude indicates a finely adjusted
control response that quickly stabilizes the platform pitch. Moving to the second graph,
as the system is subjected to what may be a different set of conditions or a longer wave
period, there is a slight increase in the oscillation magnitude. Despite this, the control
action remains effective, keeping the platform pitch oscillations within a narrow band,
indicative of a robust control system that compensates for the increased complexity of the
input signal.

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 26 of 33 
 

 

Overall, the Trained Model’s performance across these varying conditions highlights 

its refined learning capabilities and potential for real-world application. Despite the chal-

lenges posed by longer wave periods and the intricate behaviors they induce, the model 

shows it can predict with high accuracy, making it a valuable tool for navigating the com-

plexities of maritime environments. 

The series of control implementation graphs in Figure 22, demonstrates the perfor-

mance of a PID-controlled system, in which the green lines represent the control actions 

and their resulting system stability, indicated by the reduced oscillations. The first graph 

reveals that the control actions closely follow the predicted model values with minimal 

oscillations, suggesting that the PID controller is well-tuned for the system’s dynamics 

within this specific scenario. The small oscillation amplitude indicates a finely adjusted 

control response that quickly stabilizes the platform pitch. Moving to the second graph, 

as the system is subjected to what may be a different set of conditions or a longer wave 

period, there is a slight increase in the oscillation magnitude. Despite this, the control ac-

tion remains effective, keeping the platform pitch oscillations within a narrow band, in-

dicative of a robust control system that compensates for the increased complexity of the 

input signal. 

 

 

Figure 22. Cont.



J. Mar. Sci. Eng. 2024, 12, 1292 27 of 33
J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 27 of 33 
 

 

 

 

Figure 22. PID control design for platform pitch across several wave periods (5 s, 10 s, 14 s, and 20 

s), each with varying wind speeds (5, 8, 11, 14, and 17 m/s) and wave height of 1 m. 

The third graph shows the response of the system to yet another set of conditions, 

potentially with even longer wave periods. Here, the control action successfully dampens 

oscillations, although there is a noticeable transient deviation after each significant change 

in the platform pitch. The transient peaks suggest the system may be approaching the 

limits of its design parameters, yet it still manages to return to a stable state quickly with-

out prolonged or escalating oscillations. In the fourth graph, despite further complexity 

due to extended intervals or increased environmental challenges, the PID controller, im-

proved by gain scheduling, demonstrates a commendable job of maintaining stability. The 

control actions result in bounded oscillations, indicating that the system has a good tran-

sient response and can settle within an acceptable range after being subjected to disturb-

ances. 

The effectiveness of the PID control system in reducing oscillations across different 

wave periods is presented in Table 5. The data reveal that the mean oscillation amplitude 

is significantly reduced when the control system is applied, demonstrating significant re-

ductions in oscillation amplitudes across different conditions. For instance, at a wave pe-

riod of 20 s and a wind speed of 5 m/s, the fore-aft displacement is reduced by 35%, indi-

cating the control system’s robustness. The consistent reduction in oscillation percentage, 

ranging from 5% to 35%, underscores the PID system’s capability to enhance stability and 

control in FOWT-OWC integrated systems under diverse operational scenarios. These 

Figure 22. PID control design for platform pitch across several wave periods (5 s, 10 s, 14 s, and 20 s),
each with varying wind speeds (5, 8, 11, 14, and 17 m/s) and wave height of 1 m.

The third graph shows the response of the system to yet another set of conditions,
potentially with even longer wave periods. Here, the control action successfully dampens
oscillations, although there is a noticeable transient deviation after each significant change
in the platform pitch. The transient peaks suggest the system may be approaching the
limits of its design parameters, yet it still manages to return to a stable state quickly without
prolonged or escalating oscillations. In the fourth graph, despite further complexity due to
extended intervals or increased environmental challenges, the PID controller, improved by
gain scheduling, demonstrates a commendable job of maintaining stability. The control
actions result in bounded oscillations, indicating that the system has a good transient
response and can settle within an acceptable range after being subjected to disturbances.

The effectiveness of the PID control system in reducing oscillations across different
wave periods is presented in Table 5. The data reveal that the mean oscillation amplitude is
significantly reduced when the control system is applied, demonstrating significant reduc-
tions in oscillation amplitudes across different conditions. For instance, at a wave period of
20 s and a wind speed of 5 m/s, the fore-aft displacement is reduced by 35%, indicating the
control system’s robustness. The consistent reduction in oscillation percentage, ranging
from 5% to 35%, underscores the PID system’s capability to enhance stability and control
in FOWT-OWC integrated systems under diverse operational scenarios. These findings
highlight the potential of the PID control system in practical applications requiring precise
oscillation control.
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Table 5. Impact of wave periods, wind speeds, and wave elevations on fore-aft displacement, pitch
response, and oscillation reduction with PID control.

Scenario Wave
Period (s)

Wind
Speed
(m/s)

Wave
Elevation

(m)

Valve
Voltage (V)

Fore-Aft
Displace-
ment (m)

Pitch
Response

(deg)

% Reduction
in Oscillation

Mean Std
Deviation

1 5 5 1.2 25 0.3 1.5 20% 0.05
2 5 8 1.4 28 0.35 2.0 15% 0.08
3 5 11 1.5 30 0.4 2.5 10% 0.1
4 5 14 1.6 32 0.45 3.0 5% 0.12
5 10 5 1.3 26 0.32 1.6 25% 0.04
6 10 8 1.5 29 0.37 2.1 18% 0.07
7 10 11 1.7 31 0.43 2.6 12% 0.09
8 10 14 1.8 33 0.49 3.1 8% 0.11
9 14 5 1.4 27 0.34 1.7 30% 0.03

10 14 8 1.6 30 0.39 2.2 20% 0.05
11 14 11 1.8 32 0.46 2.7 15% 0.07
12 14 14 2.0 34 0.52 3.2 10% 0.1
13 20 5 1.5 28 0.36 1.8 35% 0.02
14 20 8 1.7 31 0.41 2.3 25% 0.04
15 20 11 1.9 33 0.48 2.8 18% 0.06
16 20 14 2.1 35 0.55 3.3 12% 0.08

Statistically, the lower oscillation amplitudes across all four scenarios suggest that the
PID gain scheduling is effectively calibrated. The control system appears to possess both a
high degree of precision and an ability to quickly adapt to varying conditions, maintaining
the platform pitch within tightly controlled limits. This is consistent with a well-designed
control system that can mitigate the risk of instability even when dealing with complex,
dynamic environmental inputs.

Figure 23 shows the PID controller’s voltage output over time for various wave periods
and wind speeds. Specifically, it includes wave periods of 5 s, 10 s, 14 s, and 20 s, each
plotted with their respective time scales: 600 s, 1200 s, 1800 s, and 2400 s. These time scales
correspond to the selected wave periods, ensuring a comprehensive representation of the
controller’s performance. The stepwise increase in voltage across all graphs indicates a
controlled and adaptive approach to system regulation, with the gain scheduling effectively
modulating the PID gains to manage the dynamic environment.
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height of 1 m.

In the first graph, the voltage response is moderate, reflecting proportional and deliber-
ate action to minor disturbances. The second graph shows a stronger response, suggesting
the controller’s compensation for more significant disturbances. The third and fourth
graphs extend this pattern, with the controller addressing sustained or evolving distur-
bances, maintaining system stability throughout. The consistent valve voltage increase
without abrupt fluctuations highlights the PID controller’s effectiveness in ensuring smooth
and stable system control over time.

The PID control tuning process was conducted using Simulink MATLAB to ensure
precise optimization of the PID parameters. The control design of the FOWT-OWC system
was modeled in Simulink, and initial PID parameters were estimated through theoretical
and empirical methods. Simulations were run to observe system responses, with iterative
adjustments made using Simulink PID Tuner for optimal performance. The tuning process
ensured the control system could handle various environmental conditions, maintain sta-
bility, and minimize overshoot and settling time. The final PID parameters were validated
through extensive testing, demonstrating the control strategy’s effectiveness and reliabil-
ity in practical applications, as shown in Table 6. These configurations are reflective of
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strategic adjustments made to ensure optimal system performance across varying maritime
conditions. For N1, which operates within a 5-m wave environment, the proportional
gain is set at 0.65, indicating a strong responsive action is favored in this scenario. This
is complemented by a derivative gain of 0.02, which moderates the rate of change in the
system’s response, providing a dampening effect to potential oscillations. N2, adapting
to a 10-m wave period, utilizes a slightly lower proportional gain of 0.565, demonstrating
a controlled and less aggressive approach to system error correction. The derivative gain
here is adjusted to 0.0164, fine-tuning the system’s responsiveness to changes over time. In
the case of N3, contending with a 14-m wave period, the proportional gain is increased to
0.89, reflecting a robust control strategy to swiftly address system deviations. The corre-
sponding derivative gain of 0.084 is indicative of a strategy designed to provide stability
and counteract the inertia that comes with larger wave impacts. Finally, parameters for N4,
a 20-m wave period, show a proportional gain of 0.73, balancing prompt corrective action
with the need for stability in more substantial wave conditions. The derivative gain is set
at 0.072, suggesting a tailored approach to maintain control without over-dampening the
response of system. The integral gains for all networks are notably negative; instead of
accumulating positive corrections, they accumulate negative corrections.

Table 6. Control parameters for four distinct networks.

Control parameters

P I D

N1 (5 m) 0.65 −0.035 0.02
N2 (10 m) 0.565 −0.28 0.0164
N3 (14 m) 0.89 −0.015 0.084
N4 (20 m) 0.73 −0.0156 0.072

This unique adjustment offers advantages in these specialized applications, as it
implies a reduction of the integral response, which could potentially be beneficial in
systems where over-integration of the error could lead to instability or performance issues.
Overall, the selection of PID parameters demonstrates a thoughtful approach to achieving
a balance between responsiveness and stability, ensuring that each network can effectively
cope with the dynamic challenges presented by its specific operational wave period.

The reliance on simulation data poses a challenge, as it may not capture all real-
world variabilities. Additionally, assumptions regarding environmental conditions and
system parameters can affect the generalizability of the findings. Consequently, there
is a necessity for field tests to validate the effectiveness of the proposed ANN models
and PID control strategies in practical applications. The authors plan to incorporate
Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) in
future comparative analyses to leverage their advanced spatial and temporal processing
capabilities. This strategic expansion is intended to enhance the modeling accuracy and
increase the predictive precision of their simulations, thereby broadening the scope and
depth of their methodology.

6. Conclusions

This study significantly contributes to offshore renewable energy by integrating
FOWTs with OWCs. The dynamic complexities and uncertainties inherent in these sys-
tems have been effectively addressed through the innovative application of ANNs for
regressive modeling and an advanced proportional-integral-derivative control mechanism.
This approach leverages data-driven models trained on OpenFAST datasets to facilitate
real-time predictive behavior analysis and decision-making. The results demonstrated a
substantial reduction in platform pitch motion across diverse operational conditions, which
is vital for improving system reliability and longevity. The deployment of the intelligent
control system, tailored for this application, was pivotal in achieving these outcomes. A
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comparative analysis with ITI-barge-based systems highlighted that the proposed modeling
and control approaches significantly enhanced system stability and efficiency, as evidenced
by the successful mitigation of platform pitch motion, directly correlating with increased
platform stability and overall system performance.

The findings underscore the efficacy of ANN-driven modeling and advanced control
strategies as viable alternatives to traditional methods, offering superior performance in
managing the intricate dynamics of these systems. This research not only advances the
current understanding and methodologies in the field but also sets a robust framework for
future innovations in feedback control for renewable energy systems. The introduction
of a feedback control mechanism was critical in achieving the observed improvements
in system stability, providing a closed-loop system that continuously adjusts based on
real-time data to maintain optimal performance. The methodologies and results presented
in this study pave the way for significant advancements in offshore renewable energy,
marking a critical step towards more sustainable energy solutions. By establishing a model
for feedback control and system stability, this research provides a foundation for future
work aimed at enhancing the efficiency and resilience of renewable energy technologies.
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