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Abstract

A generalization of the Exact Local Whittle estimator in Shimotsu and Phillips (2005)

is proposed for jointly estimating all the memory parameters in general long memory time

series that possibly display standard, seasonal and/or other cyclical strong persistence.

Consistency and asymptotic normality are proven for stationary, non-stationary and non-

invertible series, permitting straightforward standard inference of interesting hypotheses

such as the existence of unit roots and equality of memory parameters at some or all seasonal

frequencies, which can be used as a prior test for the application of seasonal differencing

filters. The effects of unknown deterministic terms are also discussed. Finally, the finite

sample performance is analysed in an extensive Monte Carlo exercise and an application to

an U.S. Industrial Production index.

Running head: Multiple Exact Local Whittle Estimation



1 Introduction

Strong persistence is a common characteristic in many economic series and a great many

papers have been devoted to analysing it, with special attention being paid to stochastic

trends entailing spectral divergences at frequency zero (standard long memory). However,

much less attention has been paid to the analysis of strong persistent cycles frequently

found in economics, which generate spectral divergences at non-zero frequencies. In fact

the typical spectral shape of (seasonally unadjusted) economic variables revealed in the

seminal paper by Granger (1966) often show spectral poles not only at the origin but also

at seasonal frequencies 2πh/S, h = 1, 2, .., ⌊S⌋ where S is the number of observations per

basic period of time (S = 12 for monthly series, S = 4 for quarterly, etc.) and ⌊·⌋ denotes

“the integer part of”. More recently, Abadir et al. (2013) show that the autocorrelation

function of macroeconomic series have a hyperbolic and sinusoidal decay that arises from

the dynamics of a general equilibrium model with heterogeneous firms, which is consistent

with the presence of spectral poles at non-null frequencies.

Conventionally, the most popular tool for modelling this behaviour is the seasonal dif-

ference operator (1 − LS) (see for example the popular Box-Jenkins airline model), which

implies unit roots at the origin and at every seasonal frequency. These restrictions are

relaxed in Hosking (1984), Porter-Hudak (1990) and Ray (1993) by using the seasonal frac-

tional difference operator (1−LS)d, where the memory parameter d can be any real number,

though the same degree of persistence is still imposed at every seasonal frequency and at

the origin. This constraint is further relaxed in the fractional ARUMA model proposed

by Giraitis and Leipus (1995) defined as
∏H

h=1(1 − 2 coswhL + L2)dhXt = ut where ut is

a stationary and invertible ARMA process and the different wh are frequencies in [0, π].

See also Chan and Wei (1988), Robinson (1994), Chan and Terrin (1995), Woodward et al.

(1998) and Nielsen (2004).

The existence of several different memory parameters is thus a possibility to be con-

sidered. Equality of all memory parameters at the origin and seasonal frequencies should

therefore be checked before using the seasonal fractional difference operator, and the equal-

ity of all of them to 1 should be tested before the traditional seasonal difference operator
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(1− LS) is applied. Statistical inference on these situations has generated a large body of

research and several techniques have been proposed for testing for fractional seasonal roots,

most of them based on Lagrange multiplier statistics that avoid the need to estimate the

memory parameters. See for example Robinson (1994), Arteche (2002), Nielsen (2004) and

Hassler et al. (2009), and the references therein. Estimation of memory parameters has

however drawn less attention and efforts have been concentrated mainly on the standard

long memory case at frequency zero. In that context, Whittle estimation has proven to be

a valuable strategy in either its parametric (from Fox and Taqqu, 1986 to Shao, 2010) or

semiparametric versions (see Robinson, 1995, Velasco, 1999, Shimotsu and Phillips, 2005,

Shao and Wu, 2007, Abadir et al., 2007 and Shimotsu, 2010 among others). The latter

make use of the fact that the spectral (pseudospectral in the nonstationary case) density

function satisfies f(λ) ∼ C|λ|−2d as λ → 0, for C a positive constant, and thus only fre-

quencies around zero are used to estimate d, which avoids the need to specify short memory

components. All these papers have developed an extensive asymptotic theory on Whittle

estimation in standard long memory series, covering non-invertible, invertible, stationary

and non stationary series. However, the case of seasonal or cyclical long memory has been

less analysed. The few relevant papers include Giraitis and Leipus (1995), who prove the

consistency of the parametric Whittle estimator in stationary ARUMA processes with pos-

itive memory parameters (but give no results on the asymptotic distribution) and Arteche

(2000) and Arteche and Robinson (2000), who extend the local Whittle criterion to estimate

the memory parameter around a single stationary and invertible spectral pole, proving its

consistency and asymptotic normality. Values of d 6∈ (−1/2, 1/2) are however not covered

by either of these proposals.

This paper complements those mentioned above by proposing a general semiparametric

estimation technique for a finite number of memory parameters with different locations,

allowing d to take any real value and thus covering not only stationary and invertible pro-

cesses but also non-stationary and non-invertible ones. The novelty of the proposal is thus

of interest for two main reasons: first, it permits joint estimation of all the memory parame-

ters corresponding to persistent trends, cycles or seasonality in a local Whittle context, with
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no need to consider or specify any short memory component. Second, it permits estimation

of non-stationary and non-invertible cycles, which has not been considered before, unlike

the estimation at frequency zero. As a consequence, the proposed estimation technique

permits simple implementation of Wald type tests of interesting hypothesis such as sta-

tionarity (memory parameters lower than 1/2) or unit roots at certain cyclical or seasonal

frequencies.

The proposed estimator is an extension of the Exact Local Whittle estimator of Shimotsu

and Phillips (2005) to cover long memory at non-zero frequencies, which requires three

new challenges to be met with respect to the standard long memory case: first, spectral

symmetry does not need to hold around a frequency w ∈ (0, π), giving rise to some terms

that entail the use of frequencies closer to w to avoid biasing effects. In other words, the

bandwidth should increase at a lower rate with the sample size, so the optimal convergence

rate is slower. This negative effect is however offset in finite samples by the use of frequencies

on both sides of the location of the pole, thus taking advantage of the lack of symmetry

of the periodogram. Second, for w ∈ (0, π), f(w + λ) ∼ C(d)|λ|−2d as λ → 0, where C(d)

may depend not only on w but also on d such that it should be considered in the loss

function for estimation of d. Otherwise a significant bias arises. Finally, the extension to

positive frequencies opens up the possibility of multiple spectral poles (as with seasonal

strong persistence) and a joint estimation of several memory parameters is called for.

The rest of the paper is organised as follows. Section 2 describes the kind of processes

dealt with. They allow for spectral poles at any frequency between 0 and π inclusive. Section

3 introduces the estimator proposed for locally estimating all the memory parameters in

those processes. Consistency and asymptotic normality are shown. Section 4 discusses

the effects of unknown deterministic cycles, including an unknown mean as a particular

case. Section 5 introduces an extensive Monte Carlo analysis showing the competitive

finite sample performance and its applicability for unit roots testing. Section 6 shows an

application to a U.S. Industrial Production Index. To save space, the proofs of the theorems

and all the lemmas required for those proofs are relegated to the supplementary material,

together with further results of the Monte Carlo analysis.

3



2 Multiple Generalised Fractionally Integrated Processes

We consider processes of the form

∆H(L, d)Xt = utI(t ≥ 1), t = 0, 1, ..., (1)

where I(·) is the indicator function, d = (d1, ..., dH)′, ∆H(L, d) =
∏H

h=1∆h(L, dh) for

∆h(L, dh) = (1 − 2 coswhL + L2)δhdh with δh = 0.5 if wh = 0, π and δh = 1 in any

other case and ut is stationary with zero mean and spectral density fu(wh + λ) ∼ Gh as

λ → 0 for h = 1, 2, ..., H. Note that ∆h(L, dh) = (1 − 2 coswhL + L2)dh if wh ∈ (0, π),

∆h(L, dh) = (1 − L)dh if wh = 0 and ∆h(L, dh) = (1 + L)dh if wh = π. This model has

been considered before by Chan and Wei (1988), Robinson (1994), Chan and Terrin (1995),

Nielsen (2004) and Giraitis and Leipus (1995), who use the term “fractional ARUMA” to

refer to the model in (1) with ut a stationary and invertible ARMA. However, the model

in (1) is much more general because it does not restrict ut parametrically but it can be

any short memory process or even stationary long memory with spectral poles at some

frequencies other than the wh (see Assumptions A.1 and A.3 below).

The definition of Xt in (1) places it in Type II long memory processes, which differ from

Type I in the pre-sample treatment. Type II processes are based on a truncated application

of the expansion of ∆H(L,−d) up to t = 0, when the process is assumed to be initialised.

In (1) the initial value X0 is assumed to be known, specifically X0 = 0. Such processes are

then non-stationary and only asymptotically stationary for dh < 1/2. Type I processes can

be defined as weighted partial sums of stationary processes Yt =
∏H

h=1∆h(L, kh− dh)ut for

integer kh such that|kh − dh| < 1/2. For kh = 1 and H = 1 the weighted partial sum is

implemented as Xt = X0 +
∑t−1

j=0 bjYt−j for b0 = 1, b1 = 2 coswh, bj = 2 coswhbj−1 − bj−2

for j > 1 where the weights come from the expansion of (1− 2 coswhL+L2)−1. For H > 1

such a weighted sum is applied for every h = 1, ..., H and successive applications apply for

larger values of kh. For standard long memory, these two definitions could lead to different

asymptotics. See for example Robinson (2005) and Shimotsu and Phillips (2006). Similar

effects are expected here, though further analysis is necessary before rigorous conclusions

can be offered.
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The multiple generalised fractional difference operator ∆H(L, d) is a product of a finite

number of generalised fractional difference operators ∆h(L, dh), which can be expanded as

∆h(L, dh) =
∑∞

k=0 ck(wh, dh)L
k for

ck(wh, dh) =

⌊k/2⌋
∑

j=0

(−1)jΓ(k − j − dh)(2 coswh)
k−2j

Γ(j + 1)Γ(k − 2j + 1)Γ(−dh)
for wh ∈ (0, π),

ck(0, dh) =
Γ(k − dh)

Γ(k + 1)Γ(−d)

ck(π, dh) = (−1)kck(0, dh)

where Γ() is the gamma function. Using this result, ∆H(L, d) =
∑∞

k=0 dk(d)L
k where the co-

efficients dk(d) can be derived as functions of different ck(wh, dh), h = 1, ..., H from the rela-

tion ∆H(L, d) =
∏H

h=1∆h(L, dh). For example, forH = 2, dk(d) =
∑k

k1=0 ck1(w1, d1)ck−k1(w2, d2).

Thus, for t = 1, 2, ..., n, Xt in (1) can be written as

Dn(L, d)Xt = utI(t ≥ 1) for Dn(L, d) =
n
∑

k=0

dk(d)L
k

and, by inversion of (1) Xt = Dn(L,−d)utI(t ≥ 1) = Dt−1(L,−d)ut.

Using Lemmas 2 and 3 in the supplement, the (pseudo)spectral density function of Xt

can be approximated as

fx(wh + λ) ∼ Ch(d)|λ|−2dh (2)

as λ → 0, where

Ch(d) = fu(wh)|2gh|−2dh

H
∏

l=1
l 6=h

A−2dlδl
l,h (3)

for δl = 0.5 if wl = 0, π and δl = 1 in any other case, Al,h = |4 sin(0.5[wh+wl]) sin(0.5[wh−

wl])| and gh = g(sinwh) where g() is a function in [0, 1] defined as g(x) = x if x ∈ (0, 1] and

g(0) = 0.5. Thus, the term |2 sinwh|−2dh only appears if wh 6= 0, π. In the case of a single

long memory component at such wh then Ch(d) = Ch(dh) = fu(wh)|2 sinwh|−2dh (see also

Giraitis et al. 2001 for the stationary and invertible case). However, with more than one

long memory components the term
∏H

l=1
l 6=h

A−2dlδl
l,h arises and thus fx(wh + λ) depends not

only on the memory parameter at frequency wh but also on the rest of memory parameters

through the dependence of Ch(d) on d = (d1, ..., dH)′. This behaviour has been noted before

by Giraitis and Leipus (1995) and Giraitis et al. (2001) in stationary series but it has never
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been extended to non-stationarity or used for semiparametric estimation of d. In fact, the

constant Ch(d) contains relevant information on the H memory parameters, not only on

dh, and ignoring that dependence may induce severe biasing effects.

3 Multiple Exact Local Whittle estimation

Consider first the case of a single pole (H = 1 in equation (1)) at a known frequency w1.

Extensions of the Local Whittle estimator in Robinson (1995) to the w1 6= 0 case have

been proposed by Arteche (2000), Arteche and Robinson (2000) and Arteche and Velasco

(2005) for invertible and stationary series with −0.5 < d1 < 0.5. They deal with spectral

density functions satisfying fx(w1 + λ) ∼ C|λ|−2d1 as λ → 0 for C a positive constant,

without considering its possible dependence on d. Taking that dependence into account

fx(w1 + λ) ∼ G1|2g1|−2d1 |λ|−2d1 as λ → 0 (see (2) and (3)) for G1 = fu(w1) and thus the

Local Whittle contrast function becomes

∑

j

{

log(G1|2g1|−2d1 |λj |−2d1) +
Ix(w1 + λj)

G1|2g1|−2d1 |λj |−2d1

}

,

for Fourier frequencies λj = 2πj/n, j = 1, ...,m, with m being the bandwidth, and
∑

j =

∑±mh

j=±1 if wh 6= 0, π,
∑

j =
∑mh

j=1 if wh = 0 and
∑

j =
∑−mh

j=−1 if wh = π (accounting

for spectral symmetry at 0 and π) and for a general series at, t = 1, 2, ..., n, Ia(λ) is the

periodogram evaluated at frequency λ defined as

Ia(λ) = |Wa(λ)|2 for Wa(λ) =
1√
2πn

n
∑

t=1

ate
itλ,

where Wa() is the discrete Fourier transform (DFT) of at.

Concentrating the constant G1 out of the objective function the term |2g1|−2d1 cancels

out and the Local Whittle (LW) estimator of d1 is obtained by minimising the function

log





1

2δ1m

∑

j

Ix(w1 + λj)

|λj |2d1



− d1
δ1m

∑

j

log |λj | (4)

which for w1 = 0 is the standard Local Whittle estimator and for w1 6= 0 is actually

the estimator considered in Arteche (2000), Arteche and Robinson (2000) and Arteche

and Velasco (2005). The consistency and asymptotic normality postulated in those papers
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remain valid because only constancy of C(d) with λ is required. Note also that the estimator

of d1 based on the log periodogram regression proposed by Arteche and Robinson (2000) is

similarly unaffected by the absence of |2g1|−2d1 because its inclusion only implies adding a

constant to the regressor such that it shifts from −2 log |λj | to −2 log |λj | − 2 log |2g1| and

therefore does not affect the least squares estimation of d.

In order to extend the range of values of d to cover highly non-stationary and non-

invertible series, Shimotsu and Phillips (2005) propose the Exact Local Whittle estimator

for w1 = 0. We extend it now to cover the w1 6= 0 case. It starts from the local (around

w1) Whittle approximation of the negative Gaussian log likelihood of the innovations ut

(omitting constants), defined as

1

2δ1m

∑

j

{

logG1 +
Iu(w1 + λj)

G1

}

. (5)

In contrast to the original proposal in Shimotsu and Phillips (2005), this expression takes

note of the lack of symmetry of the periodogram at w1 6= 0, π and considers frequencies

on both sides of such a w1. For the sake of simplicity, the same number of frequencies m

are considered on both sides of an w1 6= 0. Different bandwidths are also possible but that

extension only complicates notation without affecting the results obtained hereafter.

The basic resource of the Exact Local Whittle estimation is to transform (5) to express

it in terms of the observable data. To that end, an exact relationship between Wx and Wu

is used such that, for any value of d, Iu(λ) = |Dn(e
iλ, d1)|2|vx(λ)|2 where

vx(λ) = Wx(λ)−
1√
2πn

Dn(e
iλ, d)−1X̃n(d)

for

X̃n(d) =
n−1
∑

p=0

c̃p(λ, d)e
−iλpXn−p , c̃p(λ, d) =

n
∑

k=p+1

dk(d)e
ikλ

(see Lemma 4 in the supplement). Thus, replacing Iu(w1+λj) in (5) with |Dn(e
i(w1+λj), d1)|2

|vx(w1 + λj)|2 and adding the Jacobian
∑

j log |Dn(e
i(w1+λj), d1)|−2 , the loss function be-

comes

1

2δ1m

∑

j

{

log
(

G1|Dn(e
i(w1+λj), d1)|−2

)

+
I
∆

d1
1

x
(w1 + λj)

G1

}

,

where I
∆

d1
1

x
(λ) is the periodogram of Dt−1(L, d1)Xt at frequency λ. Concentrating G1 out

of the objective function and using the approximation of |Dn(e
i(w1+λj), d1)|−2 in Lemma
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3 in the supplement (for a single w1), the Exact Local Whittle (ELW) estimator of d1 is

defined as d̂1 = argmind1∈[∆11,∆12]R1(d1) for −∞ < ∆11 < ∆12 < ∞ for

R1(d1) = log Ĝ1(d1)−
d1
δ1m

∑

j

log |λj | with Ĝ1(d1) =
1

2δ1m

∑

j

I∆d
1
x(w1 + λj)

|2g1|2d1
(6)

where the dependence on |2g1|−2d1 remains relevant. The term |2g1|2d1 actually repre-

sents the main difference from the ELW estimator at frequency zero in Shimotsu and

Phillips (2005). Note that the power transfer function of the generalised fractional dif-

ference operator at frequency w1 + λ is equal to |1 − 2 cosw1e
i(w1+λ) + e2i(w1+λ)|−2δ1d1 =

|1− ei(2w1+λ)|−2δ1d1 |1− eiλ|−2δ1d1 . The last term in the product is the power transfer func-

tion of the standard fractional difference operator at frequency λ, (1 − L)−δ1d1 , and thus

approaches λ−2δ1d1 as λ → 0, while the first approaches |2 sinw1|2d1 if w1 ∈ (0, π) or λ−d1

for w1 = 0 . Thus, the (pseudo) spectral density function of Xt satisfies fx(w1 + λ) ∼

fu(w1)|2 sinw1|−2d1 |λ|−2d1 as λ → 0 for w1 ∈ (0, π), whereas in the standard case w1 = 0

and fx(λ) ∼ fu(w1)|λ|−2d1 .

Now consider Xt in (1) with possible spectral poles or valleys at H known frequencies

satisfying 0 ≤ w1 < ... < wh < .. < wH ≤ π and |wh − wh−1| > δ for a constant δ > 0

and h = 2, ..., H. This last restriction implies that the poles are distinguishable and the

distance between two consecutive poles is not affected by the sample size n. For example,

in the persistent seasonal case wh = 2πh/S and |wh−wh−1| = 2π/S. Start once more with

the local Whittle approximation of the negative log likelihood of the innovations ut around

the H spectral poles, which in this case is

H
∑

h=1

1

2δhmh

∑

j

{

logGh +
Iuhj
Gh

}

(7)

where Iuhj = Iu(wh+λj) and mh are possibly different bandwidths. As before, the different

values of δh account for the spectral symmetry at 0 and π (δh = 0.5) such that only one side

of the spectral pole is used in the construction of the likelihood function, whereas in the rest

of cases both sides are informative (δh = 1). To make (7) data dependent consider again the

exact relationship between Wx and Wu such that Iu(λ) = |Dn(e
iλ, d)|2|vx(λ)|2 (see Lemma

4 in the supplement). Replacing Iuhj in (7) with |Dn(e
i(wh+λj), d)|2|vx(wh + λj)|2 and

adding the Jacobian
∑H

h=1

∑

j log |Dn(e
i(wh+λj), d)|−2 , the Multiple Exact Local Whittle
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estimator of d0 = (d10, d20, ..., dH0) is obtained by minimising

H
∑

h=1

1

2δhmh

∑

j

{

logGh|Dn(e
i(wh+λj), d)|−2 +

I∆d
H
x(wh + λj)

Gh

}

,

where I∆d
H
x(λ) is the periodogram at λ of Dt−1(L, d)Xt. Concentrating Gh, h = 1, ..., H,

out of the objective function, and using the approximation of |Dn(e
i(wh+λj), d)|−2 in Lemma

3, the Multiple Exact Local Whittle (MELW) estimator is defined as

d̂ = (d̂1, d̂2, ..., d̂H) = arg min
d∈

∏H
h=1

[∆h1,∆h2]
RH(d)

for −∞ < ∆h1 < ∆h2 < ∞, h = 1, ..., H, and

RH(d) =
H
∑

h=1







log Ĝh(d)−
dh

δhmh

∑

j

log |λj |







, (8)

Ĝh(d) =
1

2δhmh

∑

j

I∆d
H
x(wh + λj)

|2gh|2dh
H
∏

l=1
l 6=h

A−2δldl
l,h .

Note that the MELW estimator for H = 1 is the individual ELW estimator obtained by

minimising (6) and for w1 = 0 is the ELW proposed by Shinotsu and Phillips (2005).

Consider the following set of conditions required for consistency of the MELW estimator.

In what follows the subindex 0 is used as usual to represent the true values of the parameters.

Assumptions for consistency:

A1: For h = 1, ..., H, fu(wh + λ) ∼ Gh0 ∈ (0,∞) as λ → 0.

A.2: In a neighbourhood (−δ, 0) ∪ (0, δ) of wh, fu(λ) is differentiable and, as λ → 0+,

d

dλ
log fu(wh + λ) = O(|λ|−1)

for h = 1, ..., H.

A.3: ut = B(L)ǫt =
∑∞

j=0 bjǫt−j and
∑∞

j=0 b
2
j < ∞ where E[ǫt|Ft−1] = 0, E[ǫ2t |Ft−1] =

1 a.s. for t = 0,±1,±2, ..., Ft is the σ-field generated by ǫs, s ≤ t, and there is a random

variable ǫ such that Eǫ2 < ∞ and for all η > 0 and some κ < 1, P (|ǫt| > η) ≤ κP (|ǫ| > η).

A.4: For h = 1, ..., H and any γ > 0, as n → ∞,

1

mh
+

mh(logmh)
1/2

n
+

log n

mγ
h

→ 0.

A.5: For h = 1, ..., H, ∆h2 −∆h1 ≤ 9
2 .
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Assumptions A.1 to A.3 are direct extensions of Assumptions 1 to 3 in Shimotsu and

Phillips (2005) to the process defined in (1) (see also assumptions A.1-A.3 in Arteche, 2000).

In particular, A.1 requires the spectral density function of ut to be bounded and bounded

away from zero at wh, h = 1, ..., H, which is needed for identifiability of d1, ..., dH . A.3

imposes stationarity of ut allowing for long memory such that there can be spectral poles

in fx(λ) at frequencies other than the wh in ∆H(L, d). This makes for greater robustness in

the MELW estimator because there is no need to consider the estimation of all the spectral

poles as long as ut is stationary. However, non-stationary poles are not allowed in ut and

if there are any the MELW is subject to a large bias and variance inflation suggesting

inconsistency (see the Monte Carlo in Section 5). Finally, assumptions A.4 and A.5 are the

same as in Shimotsu and Phillips (2005) but for every h = 1, ..., H. Note that the elements

in d0 can take any value and the only restriction is that they must belong to the set defined

by Assumption A.5, which is broad enough to cover all the cases of interest in economic

time series.

Theorem 1 Let Xt be generated as in equation (1) with d0 = (d10, d20, ..., dH0) ∈
∏H

h=1[∆h1,∆h2].

Let assumptions A.1-A.5 be satisfied. Then d̂
p→ d0 as n → ∞.

The proof of Theorem 1 can be found in the supplementary material. It is based

on proving the convergence in probability for different subsets of the parameter space as

established in Assumption A.5 and the successive application of ∆h(L, 1), ∆h(L,−1) and

Lemma 4 in the supplement to get exact relations between the periodograms of filtered and

unfiltered series.

To obtain the asymptotic distribution, the required assumptions need to be strengthened

as follows:

Assumptions for asymptotic normality:

B.1: For h = 1, ..., H and βh ∈ (0, 1] (if wh ∈ (0, π)), βh ∈ (0, 2] (if wh = {0, π}),

fu(wh + λ) = Gh0(1 +O(|λ|βh) as λ → 0, Gh0 ∈ (0,∞).

B.2: For h = 1, ..., H, in a neighbourhood (−δ, 0)
⋃

(0, δ) of wh, B(eiλ) is differentiable
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and

d

dλ
B(ei(wh+λ)) = O(|λ|−1) as λ → 0.

B.3: Assumption A.3 holds and for finite constants µ3 and µ4,

E(ǫ3t |Ft−1) = µ3 and E(ǫ4t |Ft−1) = µ4, a.s., t = 0,±1, ...

B.4: As n → ∞ and for h = 1, ..., H,

1

mh
+

m1+2βh

h log2mh

n2βh
+

log n

mγ
h

→ 0 for any γ > 0

and for any q, r ∈ {1, 2, ..., H}, mqm
−1
r = O(1).

B.5: If wh ∈ (0, π) for h = 1, 2, ..., H, then 0 < w1 − λm1
< w1 + λm1

< w2 − λm2
<

w2 + λm2
< ... < wH − λmH

< wH + λmH
< π. If w1 = 0, λm1

< w2 − λm2
and if wH = π,

wH−1 + λmH−1
< π − λmH

.

Assumptions B.1-B.3 are analogous to Assumptions 1’-3’ in Shimotsu and Phillips

(2005). Assumption B.4 includes proportionality of bandwidths at different frequencies.

It basically implies that no single band of frequencies around a spectral pole dominates the

others. Assumption B.5 is imposed to avoid correlation between the bands of periodogram

ordinates used in estimating memory parameters at different frequencies. If the estimation

involves overlapping intervals of frequencies, that correlation will affect the variance in the

asymptotic distribution in Theorem 2.

Theorem 2 If Xt is generated by (1) with d0 ∈
∏H

h=1(∆h1,∆h2) and assumptions B.1-B.5

and A.5 are satisfied, then as n → ∞

Λm(d̂− d0)
d→ NH

(

0,
1

4
IH

)

where Λm = diag(
√
2δ1m1, ...,

√
2δHmH) and IH is the identity matrix.

Remark 1: The asymptotic distribution in Theorem 2 implies that the estimators of

the different memory parameters at different frequencies are asymptotically independent.

However, a joint estimation is needed to guarantee fulfilment of assumption A.3, which

excludes the existence of non-stationary poles in the spectral density function of the filtered

series Dn(L, d0)Xt. As shown in the Monte Carlo in Section 5, ignoring the existence of
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other non-stationary spectral poles generates a significant bias and variance inflation that

suggest inconsistency. However the filtered series ut can include stationary long memory at

some frequencies w 6= wh, h = 1, ..., H.

Remark 2: Theorem 2 permits a very simple implementation of asymptotic inference

to test for relations of interest between memory parameters at different frequencies. For

example, the hypothesis of unit roots at frequencies wij , for j = 1, ..., k can be tested using

the Wald statistic

4(Rd̂− r)′[RΛ−2
m R′]−1(Rd̂− r)

d,H0→ χ2
k

where R is a k×H matrix of zeros except for ones in the elements j × ij , j = 1, ..., k and r

is a k × 1 vector of ones. See Section 5 for a finite sample analysis of this testing strategy.

Remark 3: As in other semiparametric estimators based on Whittle estimation, the

variance in the asymptotic distribution tends to underestimate the true variance in finite

samples (see the Monte Carlo analysis in Section 5). We propose instead a Hessian-based

approximation of 4−1Λ−2
m defined as an H ×H diagonal matrix with (s, s)-th element:







4δ2s
∑

j

[

Re{J̄nj(ws, ws)} −
1

2δsms

∑

k

Re{J̄nk(ws, ws)}
]2







−1

(9)

for J̄nj(wr, ws) = Jn(e
i(wr+λj), ws)+Jn(e

i(wr+λj),−ws) and Jn(L,w) =
∑n

k=1
eikw

k Lk. Con-

sistency of this approximation can be deduced from formula (43) in the proof of Theorem 2

in the supplementary material. The Monte Carlo in Section 5 shows that this is a much bet-

ter approximation of the true finite sample variance than the expression in the asymptotic

distribution, leading to more reliable inference.

Remark 4: The locations wh of the poles are assumed to be known, as occurs for

example in series with strong seasonality. In other cyclical contexts, they can be estimated

as suggested by Hidalgo and Soulier (2004) or Hidalgo (2005). Hidalgo and Soulier (2004)

propose to maximize the periodogram and show that the limiting distribution of a log-

periodogram-based estimator of the memory parameter remains the same irrespective of

whether the location of the pole is known or estimated. Hidalgo (2005) proposes instead to

estimate wh by maximizing an estimation of the memory parameter over a grid of locations.

His simulations show that some semiparametric estimators of d can be significantly affected
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by replacing the unknown location of the pole by an estimated one.

It is not clear how a prior estimation of the wh will affect the asymptotic properties

of the MELW in our local estimation set up, because not only is the band of frequencies

affected but also the filtered series Dn(L, d)Xt would be defined with the wh replaced by

their estimates. Some light is shed via simulations in Section 5. Note however that the

MELW estimator remains consistent and asymptotically normal with no need to account for

all the (stationary) spectral poles and includes the case dh = 0. The number and location

of the poles can then be deduced by testing the hypothesis dh = 0 for all the wh where a

spectral pole is expected a priori (seasonal frequencies, business cycles, trends, etc.).

Remark 5: A significant bias arises if the dependence of the constant C(d) on d is

ignored and RH(d) is naively defined as a shifted version of the ELW loss function proposed

in Shimotsu and Phillips (2005). In that case d is estimated by minimising the function

RH(d) in (8) with Ĝh(d) replaced by Ĝh(d) = (2δhmh)
−1

∑

j I∆d
H
x(wh + λj). In view of

(26), (28) and the convergence of the score in the proof of Theorem 2 in the supplementary

material, the bias can be approximated by E(d̂ − d0) ≈ B, where B is an H × 1 vector

with s-th element defined as [B]s = −0.5
(

log |2gs|+
∑

h 6=s δh logAs,h

)

. The Monte Carlo

analysis in Section 5 shows that this is an accurate approximation of the true bias for large

values of the bandwidth and can thus be used to adjust the estimates for bias reduction.

However, this bias-adjusted estimator performs worse than the MELW, especially for small

bandwidths, when this approximation of the bias fails.

Remark 6: The traditional local Whittle estimator can be similarly extended to cover

estimation of multiple poles in stationary and invertible long memory series. In this context

the contrast function is

H
∑

h=1

1

2δhmh

∑

j















log









Gh|2gh|−2dh

H
∏

l=1
l 6=h

A−2δldl
l,h









− 2dh log |λj |+
Ix(wh + λj)

Gh|2gh|−2dh
∏H

l=1
l 6=h

A−2δldl
l,h |λj |−2dh















.

Concentrating Gh out of the objective function, the local Whittle estimator of d is obtained

by minimising

H
∑

h=1







log





1

2δhmh

∑

j

Ix(wh + λj)|λj |2dh


− 2dh
2δhmh

∑

j

log |λj |







,
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where all the dependence of the constant on d cancels out. Using the results in Robinson

(1995) and Arteche (2000) it can be shown that this estimator is consistent with the same

asymptotic distribution as that in Theorem 2 but only for stationary and invertible pro-

cesses, which means that no gain is obtained over individual local Whittle estimation as long

as disjoint sets of frequencies are used in the estimation of the different dh, h = 1, 2, ..., H.

4 Unknown deterministic components

One important limitation of ELW estimation is the assumption of known mean or initial

value. Shimotsu (2010) deals with this limitation in standard long memory series by esti-

mating an unknown mean with the sample mean (if d ∈ (−1/2, 3/4)), the first observation

(for d > 0) or a linear combination of both. When the range of frequencies considered

is broadened from zero to the interval [0, π], deterministic cycles are also a possibility.

Consider for example a deterministic cycle at frequency w̄

Yt = µ cos (w̄t) +Xt , ∆H(L, d0)Xt = utI(t ≥ 1), t = 0, 1, ..., n. (10)

where µ is an unknown constant. Note that more general deterministic cyclical behaviours,

in the form for example of deterministic seasonal dummies, can be expressed as linear

combinations of cosine terms (see Arteche and Robinson, 1999). Note also that w̄ = 0

implies that the deterministic component is an unknown mean µ as analysed in Shimotsu

(2010).

If the unknown µ is ignored, the unadjusted MELW estimator is obtained by minimis-

ing the objective function in (8) with I∆d
H
x replaced by I∆d

H
y. The effects of the deter-

ministic components can be analysed from the relation between DFTs: W∆d
H
y(wh + λj) =

µWz(wh + λj) +W∆d
H
x(wh + λj) for zt(d) = ∆H(L, d) cos (w̄t) I(t ≥ 1). By Lemma 10 in

the supplementary material Wz(wh + λj) = O
(

n1/2j−1
[

λdh
j + n−d logn

])

if wh = w̄ and

O
(

n−1/2
[

λdh
j + n−d logn

])

if wh 6= w̄ for d = min(d1, ..., dH). This result suggests that

the deterministic component has a larger effect on the estimation of the memory parameter

at the frequency of the deterministic cycle than at the rest of frequencies. It also suggests

that the effect of the deterministic component is less adverse for d > 0, which implies con-

sideration of only positive memory at every frequency w1, .., wH . In fact, Shimotsu (2010)
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showed that the standard ELW estimator maintains its asymptotic properties when the

unknown mean µ is replaced by any Op(1) term if d > 0 and the bandwidth increases fast

enough (see Theorems 2a, 2b and his Remark 2), which implies asymptotic robustness of

the ELW estimator to an unknown mean. A similar property is expected in the MELW

estimator as long as the bandwidth is selected such that the DFT of ∆H(L, d)Xt dominates

the DFT of zt(d). However the finite sample performance is significantly affected by the

selection of that Op(1) term. In order to reduce this effect, Shimotsu (2010) suggests to use

Y1 as an estimator of the unknown mean. In the multiple long memory processes considered

here we suggest to deseasonalise by subtracting the first S observations, where S = 2π/w̄

is the period of the deterministic cycle. The MELW estimator is then implemented in the

deseasonalised series YSk+s − Ys for s = 1, 2, ..., S and k = 0, 1, ..., n/S − 1.

Alternatively µ can be estimated by ordinary least squares as

µ̂ =

∑n
t=1 cos (w̄t)Yt

∑n
t=1 cos

2 (w̄t)
.

Note that µ̂ is the sample mean if w̄ = 0, as analysed in Shimotsu (2010). Consider for

simplicity that w̄ is a Fourier frequency. Then
∑n

t=1 cos
2 (w̄t) = n/2 and thus

µ̂ =
1

n

n
∑

t=1

2 cos (w̄t)Yt = µ+
1

n

n
∑

t=1

2 cos (w̄t)Xt.

Lemma 1 Consider Yt in (10) and denote d̄0 = max{dh0 + I(wh = w̄)}Hh=1 where I(wh =

w̄) = 1 if wh = w̄ and zero otherwise. If d̄0 > 1/2 then V ar(µ̂) = O(n2d̄0−3). Therefore µ̂

converges in mean square to µ as n → ∞ if 1/2 < d̄0 < 3/2.

Note that if w̄ = 0 and H = 1 Lemma 1 implies the usual consistency of the sample

mean because in that case d̄0 = d10+1 and then µ̂ converges at the usual rate Op(n
d10−1/2).

However, when H > 1 and some other persistent cycle exists, the memory parameter at

those other frequencies can affect the convergence of the sample mean if they are larger than

the memory parameter at the origin plus one. In general, for w̄ ∈ [0, π] the convergence of

µ̂ not only depends on the persistence at w̄ but it may also depend on the rest of memory

parameters if they are large enough. Note also that consistency of µ̂ does not restrict Xt

to be stationary as long as the source of non-stationarity is not at frequency w̄.
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Lemma 1 suggests that the MELW estimator with ∆d
HXt replaced by ∆d

H(Yt−µ̂ cos(w̄t))

in the objective function (8) is a good option for dealing with unknown deterministic terms

as long as 1/2 < d̄0 < 3/2, which implies that the memory parameter at w̄ is in (−1/2, 1/2).

Considering the standard long memory case (H = 1, w̄ = 0), Shimotsu (2010) shows that

the ELW with µ estimated by the sample mean is consistent for d10 ∈ (−1/2, 1) and

asymptotically normal if d10 ∈ (−1/2, 3/4). The Monte Carlo in next section suggests that

the MELW estimator can also retain the same properties as long as d̄0 < 2, except in the

estimation of a negative memory parameter at w̄ much lower than the largest one. Note

that ∆d
H(Yt − µ̂ cos(w̄t)) = ∆d

HXt − (µ̂− µ) cos(w̄t)) with DFT equal to W∆d
H
X(λ)− (µ̂−

µ)Wcos(w̄t)(λ). Lemmas 1 and 10 in the supplement suggest that the second term will be

negligible if the distance between highest and lowest memory parameter is controlled. For

example, the Monte Carlo with two memory components shows that the performance of

the estimation of d at w̄ becomes significantly worse when it takes the value −0.4 and the

other memory parameter is at least 1.5.

All things considered, an option for MELW estimation that deals with deterministic

cycles always exists if all the memory parameters are positive (subtracting the first obser-

vations) or if d̄0 ∈ (1/2, 2) (using µ̂). This implies that if there are some negative memory

parameters and some others are larger than 2 then neither of these adjustments are valid

options for MELW estimation (see also Tables 9 and 10 in next section). Note also that,

attending to the poor performance of the tapered LW estimator in Section 5, a two step

strategy as suggested by Shimotsu (2010) is not a possibility either.

5 Finite sample behaviour

This section provides a Monte Carlo analysis of the finite sample behaviour of the MELW

estimator. It starts with the individual estimation of a single spectral pole where the

performance of the ELW estimator is compared with other local estimators such as tapered

versions of the LW and the naive extension of the ELW of Shimotsu and Phillips (2005)

discussed in Remark 5. The case of unknown location of the spectral pole is also discussed.

We deal next with the joint estimation of several memory parameters and the effects of
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deterministic terms. Finally, the use of the MELW estimator and its asymptotic distribution

to test for common unit roots is analysed.

5.1 Single pole

Consider processes of the form

Φ(L)(1− 2 cosw1L+ L2)dXt = utI(t ≥ 1), t = 0, 1, ..., n

where the ut are independent standard normal and w1 = π/4. Six different values of d are

considered d ∈ {−3.0,−1.5, 0.4, 0.8, 1.5, 3.0} and two different polynomials Φ(L) = 1 and

Φ(L) = 1 + 1.06L − 0.6L2. The second of these corresponds to a stationary AR(2) with

a spectral peak at π/4, which coincides with the location of the long memory pole and

induces a positive bias in the estimation of d if a large bandwidth is used. The results with

the AR(2) are relegated to the supplementary material to save space.

The ELW estimator is obtained by minimising (6) with w1 = π/4. Its performance is

compared with four different competitors:

• The original LW estimator as proposed by Arteche and Robinson (2000) obtained

by minimising the objective function in equation (4). This estimator has the same

asymptotic properties as the ELW for −0.5 < d < 0.5, and is expected to be consistent

for d ≤ 1.

• The misspecified ELW obtained by minimising (6) with Ĝh(dh) =
∑±m

j=±1 I∆d
h
x(π/4 +

λj)(2mh)
−1. This is a naive extension of the ELW at frequency zero in Shimotsu

and Phillips (2005) ignoring the term |2 sinw1|−2d. It coincides with the ELW only if

w1 = {π/6, 5π/6}, when sinw1 = 0.5.

• A tapered version of the LW estimator as suggested by Hurvich and Chen (2000)

obtained by minimising (4) with the raw periodogram replaced by the tapered peri-

odogram defined as

IT (λ) =
1

2π
∑n

t=1 |ht|2

∣

∣

∣

∣

∣

n
∑

t=1

htxte
itλ

∣

∣

∣

∣

∣

2

,

for ht = 0.5 ∗ [1 − exp{i2π(t − 0.5)/n}]. Consistency and asymptotic normality are

proved in Hurvich and Chen (2000) for −1.5 < d < 0.5 and w1 = 0.
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• A tapered LW estimator as suggested by Velasco (1999) obtained as above but with

the triangular Bartlett taper, ht = 1− |n− 2t|/n. Velasco shows its consistency and

asymptotic normality for −0.5 < d < 2 and w1 = 0.

Table 1: ELW, finite sample results, Φ(L) = 1, n = 512

d = −3

m = 8 m = 32 m = 63

bias s.d. MSE bias s.d. MSE bias s.d. MSE

LW 2.9990 0.0060 8.9942 2.9225 0.1132 8.5541 2.6926 0.1601 7.2760

ELW -0.0179 0.2100 0.0444 0.0071 0.0767 0.0059 0.0393 0.0514 0.0042

ELW-sine -0.3270 0.2029 0.1481 -0.1975 0.0822 0.0458 -0.1555 0.0555 0.0273

TLW (HC) 2.5744 0.2905 6.7119 1.4860 0.2053 2.2503 1.3175 0.1717 1.7654

TLW (V) 2.8763 0.1951 8.3110 1.8367 0.2103 3.4178 1.6120 0.1785 2.6304

d = −1.5

m = 8 m = 32 m = 63

bias s.d. MSE bias s.d. MSE bias s.d. MSE

LW 1.3410 0.2134 1.8438 0.8916 0.2440 0.8546 0.7396 0.2035 0.5884

ELW -0.0140 0.1934 0.0376 0.0077 0.0743 0.0056 0.0401 0.0499 0.0041

ELW-sine -0.3251 0.1911 0.1422 -0.1968 0.0793 0.0450 -0.1546 0.0535 0.0267

TLW (HC) 0.1214 0.2337 0.0693 0.0889 0.0991 0.0177 0.1384 0.0696 0.0240

TLW (V) 0.1581 0.2395 0.0824 0.0744 0.0981 0.0151 0.1100 0.0703 0.0170

d = 0.4

m = 8 m = 32 m = 63

bias s.d. MSE bias s.d. MSE bias s.d. MSE

LW -0.0165 0.2152 0.0466 -0.0084 0.0807 0.0066 -0.0213 0.0524 0.0032

ELW -0.0228 0.2012 0.0410 0.0031 0.0801 0.0064 0.0391 0.0520 0.0042

ELW-sine -0.3322 0.1899 0.1464 -0.2024 0.0824 0.0478 -0.1581 0.0563 0.0282

TLW (HC) 0.0714 0.2222 0.0545 0.0205 0.0940 0.0093 -0.0013 0.0631 0.0040

TLW (V) 0.0558 0.2352 0.0584 0.0088 0.0981 0.0097 -0.0110 0.0661 0.0045

Note: Results for (1− 2 cos π

4
L+ L2)d0Xt = utI(t ≥ 1), ut ∼ N(0, 1). LW, ELW, ELW-sine, TLW

(HC), TLW (V) denote the original Local Whittle estimator (Arteche and Robinson, 2000), the

Exact Local Whittle, the misspecified ELW without the sine term and tapered versions of the

Local Whittle estimator with the “efficient” taper in Hurvich and Chen (2000) and the triangular

Barlett taper (p = 2 in Velasco, 1999) respectively.

Tables 1 and 2 show the Monte Carlo biases, standard deviations and mean square errors

(MSE) of the five different estimators obtained with 1000 replications of series of length
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n = 512 for Φ(L) = 1. The sensitivity of the results to the selection of the bandwidth is

analysed by considering three different values of m = 8, 32 and 63. The different objective

functions are minimised by a grid search over the interval [−6, 6] using the optimise function

in R, so no initial value is needed for the optimisation procedure. As in Shimotsu and

Phillips (2005), Assumption A.5 is violated, but this does not seem to affect the performance

of the ELW estimator.

Table 2: ELW, finite sample results, Φ(L) = 1, n = 512

d = 0.8

m = 8 m = 32 m = 63

bias s.d. MSE bias s.d. MSE bias s.d. MSE

LW 0.0048 0.2098 0.0441 0.0183 0.0769 0.0062 -0.0141 0.0532 0.0030

ELW -0.0304 0.2017 0.0416 0.0099 0.0744 0.0056 0.0423 0.0503 0.0043

ELW-sine -0.3387 0.1894 0.1505 -0.1979 0.0793 0.0455 -0.1543 0.0531 0.0266

TLW (HC) 0.1821 0.2432 0.0923 0.0821 0.0947 0.0157 0.0344 0.0677 0.0058

TLW (V) 0.1658 0.2393 0.0848 0.0559 0.0935 0.0119 0.0063 0.0651 0.0043

d = 1.5

m = 8 m = 32 m = 63

bias s.d. MSE bias s.d. MSE bias s.d. MSE

LW -0.3985 0.1316 0.1762 -0.4397 0.0723 0.1985 -0.4659 0.0742 0.2225

ELW -0.0268 0.2063 0.0433 0.0065 0.0778 0.0061 0.0396 0.0526 0.0043

ELW-sine -0.3398 0.1969 0.1543 -0.2001 0.0830 0.0469 -0.1562 0.0557 0.0275

TLW (HC) 0.3587 0.2279 0.1806 0.2272 0.1172 0.0654 0.1476 0.0981 0.0314

TLW (V) 0.3527 0.2289 0.1768 0.1681 0.1068 0.0397 0.0736 0.0852 0.0127

d = 3

m = 8 m = 32 m = 63

bias s.d. MSE bias s.d. MSE bias s.d. MSE

LW -1.9781 0.0639 3.9169 -1.9908 0.0341 3.9645 -1.9953 0.0699 3.9862

ELW -0.0248 0.1985 0.0400 0.0060 0.0768 0.0059 0.0414 0.0521 0.0044

ELW-sine -0.3317 0.1901 0.1462 -0.2004 0.0811 0.0467 -0.1554 0.0554 0.0272

TLW (HC) -0.9242 0.1252 0.8698 -0.9190 0.0655 0.8489 -0.9435 0.0791 0.8965

TLW (V) -0.8870 0.0914 0.7952 -0.9667 0.0404 0.9361 -1.0051 0.0820 1.0169

Note: Results for (1− 2 cos π

4
L+ L2)d0Xt = utI(t ≥ 1), ut ∼ N(0, 1). LW, ELW, ELW-sine, TLW

(HC), TLW (V) denote the original Local Whittle estimator (Arteche and Robinson, 2000), the

Exact Local Whittle, the misspecified ELW without the sine term and tapered versions of the

Local Whittle estimator with the “efficient” taper in Hurvich and Chen (2000) and the triangular

Barlett taper (p = 2 in Velasco, 1999) respectively.
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The lowest MSE is that of the ELW estimator in 16 out of the 18 cases considered. Only

in two cases: d = 0.4 and d = 0.8 with m = 63, does the LW offers the lowest MSE, which

are the cases where the LW is expected to perform best. But even for d = 0.4 and d = 0.8

the ELW has lower MSE for small values of m = 8, 32. When the AR(2) component is

included, the supplement shows that its biasing effect is stronger for the ELW than for the

LW, making the bias and MSE of the latter lower than those of the ELW. However, with

m = 8 the ELW shows a significantly lower bias than the LW estimator even for d = 0.4 and

d = 0.8 (see Tables I and II in the supplement). It is also noteworthy the bad performance

of the tapered LW. The use of tapering for estimation of memory parameters in cyclical

long memory process was suggested by Arteche and Velasco (2005) to avoid trimming in

the asymmetric long memory case. We include them in this Monte Carlo to analyse its use

in nonstationary cyclical long memory. Note however that their validity has been proven

only for standard (at frequency zero) type I long memory processes and for certain values

of d (d ∈ (−1.5, 0.5) for Hurvich and Chen’s and d ∈ (−0.5, 2) for Velascos’s proposal).

Figure 1: Bias of the misspecified ELW

(a) d = −1.5
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(b) d = 1.5
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The misspecified ELW shows a negative bias that seems to remain stable with the values

of d. To shed more light on this issue, Figure 1 shows its Monte Carlo bias as a function of

the frequency w for d = −1.5, 1.5, Φ(L) = 1 and n = 512. The bandwidth on each side of w

is set as the minimum value between 32 and the number of Fourier frequencies between w

and 0 (for the left interval) or π (for the right interval). The asymptotic approximation of the

bias in Remark 5 is also plotted for the sake of comparison. In this case the approximate
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bias is −0.5 log |2 sinw|. Figure 1 shows that this is a good approximation, positive for

w /∈ (π/6, 5π/5) and negative for w ∈ (π/6, 5π/5), and illustrates the constancy of the bias

with respect to d. The bias disappears for w = {0, π} because there is no misspecification

in those cases, and also for w = {π/6, 5π/6} when sin(w) = 0.5. In the cases considered

in Tables 1 and 2, −0.5 log |2 sin(π/4)| = −0.1733 and a bias-corrected estimation can be

defined by subtracting this value from the misspecified ELW estimator. As expected, this

strategy is mainly beneficial with large values of m but for lower values it underestimates

the true bias, which remains significant. In any case the ELW performs better.

More information on the performance of the estimators considered is offered in Figure 2,

which shows Monte Carlo kernel estimates of the probability density functions of the ELW

estimator and possible competitors: the misspecified ELW and the tapered LW estimators.

They are all obtained with m = 32. The constant bias of the misspecified ELW is clearly

apparent. The large bias of the tapered estimators for large (in magnitude) values of d is

also noteworthy.

As mentioned in Remark 3, the variance obtained from the asymptotic distribution

underestimates the true variance. The standard deviation in the asymptotic distribution in

Theorem 2 is (8m)−0.5, which for m = 8, 32 and 63, is 0.125, 0.062 and 0.044, clearly lower

than the values obtained in Tables 1-2. For the same values of m, the standard deviations

based on the Hessian-based approximation in (9) are 0.188, 0.071 and 0.046, which are

closer to the true values as obtained in the Monte Carlo analysis. The benefits of this

approximation can be observed in Table 3, which shows coverage frequencies and average

widths of 95% confidence intervals of the form d̂ ± 1.96
√
vari for var1 = 1/8m and var2

obtained as described in equation (9). The use of the Hessian based approximation leads

to coverage frequencies that are significantly closer to the nominal 95% confidence level,

especially for low values of m.

Finally, the effect of an estimated w1 is analysed by considering the maximizer of the

periodogram, as proposed by Hidalgo (2005), and the maximizer of a log-periodogram

based estimator of the memory parameter, as proposed by Hidalgo and Soulier (2004),

over Fourier frequencies λj = 2πj/n, j = 1, ..., [n/2]. Figure 3 shows the Monte Carlo
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Figure 2: Monte Carlo probability density functions, m = 32, Φ(L) = 1
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probability density functions obtained with 1000 replications of the ELW estimator with

the true location w1 = π/4, the location estimated by the maximizer of the periodogram

and by the maximizer of the estimation of d. The estimation of w1 using the proposal by

Hidalgo (2005) has a distorting effect as advocated by Hidalgo, but this effect decreases as
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Table 3: Coverage frequencies, Φ(L) = 1, n = 512

d = −3.0 d = −1.5 d = 0.4 d = 0.8 d = 1.5 d = 3.0

m Asy. Hess. Asy. Hess. Asy. Hess. Asy. Hess. Asy. Hess. Asy. Hess.

8 0.770 0.918 0.822 0.943 0.787 0.935 0.790 0.930 0.778 0.931 0.807 0.941

(0.490) (0.752) (0.490) (0.752) (0.490) (0.752) (0.490) (0.752) (0.490) (0.752) (0.490) (0.752)

32 0.879 0.941 0.902 0.953 0.884 0.945 0.905 0.950 0.891 0.937 0.876 0.943

(0.245) (0.293) (0.245) (0.293) (0.245) (0.293) (0.245) (0.293) (0.245) (0.293) (0.245) (0.293)

63 0.804 0.863 0.830 0.880 0.805 0.867 0.806 0.866 0.814 0.863 0.809 0.862

(0.175) (0.197) (0.175) (0.197) (0.175) (0.197) (0.175) (0.197) (0.175) (0.197) (0.175) (0.197)

Note: Coverage frequencies and widths (in brackets) obtained with 95 % confidence intervals

based on the asymptotic normal distribution (Asy.) of the ELW estimator and the Hessian-based

approximation of the variance (Hess.). Results for (1− 2 cos π

4
L+ L2)d0Xt = utI(t ≥ 1),

ut ∼ N(0, 1).

d gets larger. This is also the case with the maximizer of the periodogram, although here

the performance is much better not only for large values of d, but also for lower values. In

any case, it should be considered that consistency of both estimators of the location has

only been proven for d < 0.5.

5.2 Multiple poles

Now consider the process

Φ(L)(1− L)d1(1 + L2)d2Xt = utI(t ≥ 1), t = 0, 1, ..., n

where the ut are independent standard normal. Five different values of the memory parame-

ters are considered d1, d2 ∈ {−1.5, 0.4, 0.8, 1.5, 3.0} and two different polynomials Φ(L) = 1

and Φ(L) = 1 − 0.6L2, the latter showing a spectral peak at π/2. Models of this kind

are suitable for quarterly series with strong seasonality and stochastic trends. MELW es-

timates of d1 and d2 are obtained by minimising (8) for H = 2, w1 = 0, w2 = π/2 and

[∆h1,∆h2] = [−6, 6], h = 1, 2, as before, using the sbplx routine of the nloptr package in R.

Table 4 shows the Monte Carlo bias, standard deviation and MSE of the MELW estima-

tion of d1 obtained with 1000 replications of series of n = 512 observations with Φ(L) = 1.

For the sake of comparison the results obtained with the individual ELW of Shimotsu and
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Figure 3: ELW pdf (estimated locations), m = 32, n = 512, Φ(L) = 1
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Note: Pdfs of ELW with known w1 (continuous line), estimated by the maximizer of the

periodogram (dashed line) and a la Hidalgo (2005) (dotted line). Results for

(1− 2 cos π

4
L+ L2)d0Xt = utI(t ≥ 1), ut ∼ N(0, 1).

Phillips (2005) are also included. The MELW has lower bias and standard deviation in

every case. The performance of the ELW gets significantly worse as d2 increases, especially

when d2 > 0.5, such that Assumption 3 in Shimotsu and Phillips (2005) is not satisfied.

These results indicate that such an assumption may be necessary for consistency of the

ELW and supports the use of the MELW estimator for joint estimation of all the memory

parameters if strong seasonality is apparent.

A similar situation arises in the estimation of d2 shown in Table 5. For the sake of com-

parison, the results obtained with the individual ELW estimator analysed in the previous
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Table 4: MELW finite sample results for d1, Φ(L) = 1, n = 512, m = 32

MELW ELW

d1\d2 −1.5 0.4 0.8 1.5 3.0 −1.5 0.4 0.8 1.5 3.0

−1.5 0.0020 -0.0036 0.0052 0.0040 0.0032 0.0263 -0.0274 -0.0931 -0.6955 -2.1937

(0.1106) (0.1096) (0.1102) (0.1076) (0.1055) (0.1132) (0.1113) (0.1163) (0.3357) (0.2854)

[0.0122] [0.0120] [0.0122] [0.0116] [0.0111] [0.0135] [0.0131] [0.0222] [0.5964] [4.8939]

0.4 0.0013 -0.0004 0.0036 0.0019 0.0053 0.0262 -0.0249 -0.0909 -0.7493 -2.2018

(0.1072) (0.1081) (0.1104) (0.1109) (0.1107) (0.1083) (0.1095) (0.1195) (0.2380) (0.2728)

[0.0115] [0.0117] [0.0122] [0.0123] [0.0123] [0.0124] [0.0126] [0.0226] [0.6181] [4.9224]

0.8 0.0021 0.0030 0.0041 0.0015 0.0006 0.0273 -0.0205 -0.0935 -0.7543 -2.2222

(0.1087) (0.1024) (0.1045) (0.1088) (0.1113) (0.1125) (0.1034) (0.1164) (0.2481) (0.2637)

[0.0118] [0.0105] [0.0109] [0.0118] [0.0124] [0.0134] [0.0111] [0.0223] [0.6306] [5.0076]

1.5 -0.0011 0.0031 0.0050 0.0003 0.0027 0.0232 -0.0211 -0.0879 -0.7240 -2.2173

(0.1088) (0.1117) (0.1051) (0.1087) (0.1120) (0.1110) (0.1126) (0.1187) (0.2797) (0.2510)

[0.0118] [0.0125] [0.0111] [0.0118] [0.0126] [0.0129] [0.0131] [0.0218] [0.6024] [4.9795]

3.0 0.0009 0.0081 -0.0061 0.0006 0.0002 0.0255 -0.0162 -0.0991 -0.6874 -2.2059

(0.1094) (0.1045) (0.1110) (0.1092) (0.1088) (0.1113) (0.1053) (0.1194) (0.3502) (0.2798)

[0.0120] [0.0110] [0.0124] [0.0119] [0.0118] [0.0130] [0.0114] [0.0241] [0.5952] [4.9442]

Note: Results for (1−L)d1(1− 2 cos π

2
L+L2)d2Xt = utI(t ≥ 1), ut ∼ N(0, 1). The first number in

each cell is the bias, the second is the standard deviation (in round brackets) and the third is the

MSE (in square brackets).

subsection are also included. The performance of the MELW estimator is again significantly

better, especially as d1 gets larger and Assumption A.3 is not satisfied for the individual

ELW.

Tables 6-7 show the results of the MELW estimation of d2 when an AR(2) component

with a spectral peak at π/2 is included (the estimation of d1 is not affected by the AR(2)

and the results are thus similar to those with Φ(L) = 1) . Table 6 shows that a significant

bias arises with m = 32. In fact, for low values of d1 the individual ELW estimation

performs better than the MELW estimator because the positive bias caused by the AR(2)

is offset by the negative bias induced by the spectral pole at the origin. However, for large

values of d1 the effect of that spectral pole predominates and the individual ELW behaves

much worse than the MELW. The bias is controlled by reducing the bandwidth, as can be

observed in Table 7, which shows the results with a lower m = 8.
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Table 5: MELW finite sample results for d2, Φ(L) = 1, n = 512, m = 32

MELW ELW

d1\d2 −1.5 0.4 0.8 1.5 3.0 −1.5 0.4 0.8 1.5 3.0

−1.5 0.0240 0.0237 0.0202 0.0235 0.0217 -0.0059 -0.0050 -0.0094 -0.0056 -0.0079

(0.0767) (0.0770) (0.0738) (0.0722) (0.0748) (0.0784) (0.0786) (0.0765) (0.0748) (0.0777)

[0.0065] [0.0065] [0.0059] [0.0058] [0.0061] [0.0062] [0.0062] [0.0059] [0.0056] [0.0061]

0.4 0.0216 0.0233 0.0288 0.0204 0.0200 -0.0087 -0.0071 -0.0014 -0.0098 -0.0106

(0.0796) (0.0730) (0.0744) (0.0769) (0.0756) (0.0793) (0.0721) (0.0740) (0.0769) (0.0750)

[0.0068] [0.0059] [0.0064] [0.0063] [0.0061] [0.0064] [0.0053] [0.0055] [0.0060] [0.0057]

0.8 0.0214 0.0207 0.0260 0.0222 0.0225 -0.0803 -0.0766 -0.0715 -0.0758 -0.0743

(0.0789) (0.0750) (0.0770) (0.0754) (0.0776) (0.0929) (0.0883) (0.0924) (0.0904) (0.0918)

[0.0067] [0.0061] [0.0066] [0.0062] [0.0065] [0.0151] [0.0137] [0.0136] [0.0139] [0.0139]

1.5 0.0219 0.0255 0.0256 0.0259 0.0217 -0.8251 -0.8151 -0.8256 -0.8255 -0.8117

(0.0763) (0.0787) (0.0778) (0.0797) (0.0735) (0.2281) (0.2276) (0.2192) (0.2211) (0.2202)

[0.0063] [0.0068] [0.0067] [0.0070] [0.0059] [0.7328] [0.7162] [0.7296] [0.7303] [0.7073]

3.0 0.0204 0.0216 0.0237 0.0201 0.0201 -2.4546 -2.4370 -2.4529 -2.4608 -2.4374

(0.0748) (0.0774) (0.0741) (0.0810) (0.0752) (0.2332) (0.2415) (0.2428) (0.2279) (0.2402)

[0.0060] [0.0065] [0.0061] [0.0070] [0.0061] [6.0792] [5.9975] [6.0758] [6.1075] [5.9988]

Note: Results for (1−L)d1(1− 2 cos π

2
L+L2)d2Xt = utI(t ≥ 1), ut ∼ N(0, 1). The first number in

each cell is the bias, the second is the standard deviation (in round brackets) and the third is the

MSE (in square brackets).

5.3 Deterministic components

In order to analyse the effects of deterministic components consider processes of the form

Yt = µ cos
(π

2
t
)

+Xt , (1− L)d1(1 + L2)d2Xt = utI(t ≥ 1), t = 0, 1, ..., n

where µ = 100 and the ut are independent standard normal such that Yt contains stochastic

persistence at frequencies 0 and π/2, together with a deterministic cycle of frequency π/2

or period 4. Table 8 shows that the presence of the deterministic cycle has an adverse effect

especially on the estimation of the memory parameter d2 at frequency π/2, which coincides

with the frequency of the deterministic component. This is theoretically explained by

Lemma 10 in the supplement, which shows a stronger effect of the DFT of the deterministic

cycle at π/2. In fact, the estimation of d1 seems to be unaffected when the value of d1 is

positive and much larger than d2.

Tables 9 and 10 show the finite sample performance of the MELW estimation when
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Table 6: MELW finite sample results for d2, Φ(L) = 1− 0.6L2, n = 512, m = 32

MELW ELW

d1\d2 −1.5 0.4 0.8 1.5 3.0 −1.5 0.4 0.8 1.5 3.0

−1.5 0.2336 0.2335 0.2282 0.2299 0.2318 0.1960 0.1976 0.1913 0.1943 0.1949

(0.0812) (0.0819) (0.0793) (0.0773) (0.0828) (0.0819) (0.0828) (0.0810) (0.0790) (0.0850)

[0.0612] [0.0612] [0.0583] [0.0588] [0.0606] [0.0451] [0.0459] [0.0432] [0.0440] [0.0452]

0.4 0.2285 0.2356 0.2350 0.2320 0.2294 0.1925 0.1997 0.1987 0.1954 0.1939

(0.0827) (0.0778) (0.0772) (0.0802) (0.0772) (0.0819) (0.0767) (0.0757) (0.0785) (0.0751)

[0.0591] [0.0616] [0.0612] [0.0603] [0.0586] [0.0438] [0.0458] [0.0452] [0.0444] [0.0433]

0.8 0.2283 0.2342 0.2302 0.2321 0.2307 0.1622 0.1638 0.1632 0.1622 0.1599

(0.0763) (0.0781) (0.0775) (0.0799) (0.0819) (0.0761) (0.0808) (0.0779) (0.0803) (0.0830)

[0.0579] [0.0609] [0.0590] [0.0603] [0.0599] [0.0321] [0.0334] [0.0327] [0.0328] [0.0325]

1.5 0.2322 0.2337 0.2345 0.2309 0.2295 -0.5347 -0.5315 -0.5409 -0.5162 -0.5338

(0.0834) (0.0788) (0.0791) (0.0788) (0.0769) (0.2369) (0.2389) (0.2284) (0.2301) (0.2389)

[0.0609] [0.0608] [0.0613] [0.0595] [0.0586] [0.3420] [0.3396] [0.3448] [0.3194] [0.3420]

3.0 0.2304 0.2313 0.2269 0.2329 0.2353 -2.1849 -2.1777 -2.1725 -2.1720 -2.1849

(0.0834) (0.0767) (0.0804) (0.0798) (0.0762) (0.2382) (0.2311) (0.2427) (0.2344) (0.2289)

[0.0600] [0.0594] [0.0580] [0.0606] [0.0612] [4.8303] [4.7956] [4.7788] [4.7727] [4.8263]

Note: Results for (1− L)d1(1− 2 cos π

2
L+ L2)d2Xt = utI(t ≥ 1), (1− 0.6L2)ut = ǫt, ǫt ∼ N(0, 1).

The first number in each cell is the bias, the second is the standard deviation (in round brackets)

and the third is the MSE (in square brackets).

it is applied to the series filtered of deterministic components. Two different filters are

considered: First, the series is deseasonalised as Yt − µ̂ cos(0.5πt) with µ̂ obtained by least

squares of Yt on cos(0.5πt). Second the series is filtered by substracting the first four

observations (one cycle) as Y4k+s − Ys, s = 1, 2, 3, 4, k = 0, 1, ..., n/4 − 1. The first option

is comparable to the estimation of the mean and the second one to subtracting the first

observation as proposed by Shimotsu (2010) in ELW estimation in standard long memory.

Tables 9 shows results of the estimation of d1. Using µ̂ is a good option when max(d1, d2+

1) < 2, which is comparable with the results obtained by Shimotsu (2010) who showed that

the sample mean leads to a consistent and asymptotically normal ELW estimator of a mem-

ory parameter at the origin lower than one. On the other hand, subtracting the first four

observations seems to be a good option for positive values of d1. A similar situation can be

observed in Table 10, which shows the results for the estimation of d2. The only exception is
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Table 7: MELW finite sample results for d2, Φ(L) = 1− 0.6L2, n = 512, m = 8

MELW ELW

d1\d2 −1.5 0.4 0.8 1.5 3.0 −1.5 0.4 0.8 1.5 3.0

−1.5 0.0182 0.0138 0.0083 0.0251 0.0236 0.0065 0.0069 0.0019 0.0172 0.0167

(0.2038) (0.2084) (0.2138) (0.2131) (0.2047) (0.2019) (0.1998) (0.2062) (0.2084) (0.1981)

[0.0419] [0.0436] [0.0458] [0.0460] [0.0425] [0.0408] [0.0400] [0.0425] [0.0437] [0.0395]

0.4 0.0093 0.0256 0.0197 0.0173 0.0122 0.0005 0.0195 0.0070 0.0060 0.0077

(0.2008) (0.2015) (0.2069) (0.2120) (0.2135) (0.1989) (0.1941) (0.2008) (0.2114) (0.2081)

[0.0404] [0.0413] [0.0432] [0.0452] [0.0458] [0.0395] [0.0381] [0.0404] [0.0447] [0.0433]

0.8 0.0325 0.0082 0.0162 0.0176 0.0219 0.0057 -0.0165 -0.0016 -0.0130 -0.0043

(0.2153) (0.2044) (0.1984) (0.2141) (0.2110) (0.1966) (0.1886) (0.1892) (0.1996) (0.1971)

[0.0474] [0.0418] [0.0396] [0.0461] [0.0450] [0.0387] [0.0358] [0.0358] [0.0400] [0.0389]

1.5 0.0202 0.0240 0.0171 0.0179 0.0111 -0.5510 -0.5476 -0.5560 -0.5351 -0.5488

(0.2011) (0.2050) (0.2078) (0.2085) (0.2122) (0.2102) (0.2138) (0.2026) (0.1989) (0.2147)

[0.0408] [0.0426] [0.0435] [0.0438] [0.0451] [0.3478] [0.3456] [0.3502] [0.3258] [0.3473]

3.0 0.0053 0.0234 0.0124 0.0193 0.0250 -2.1433 -2.1355 -2.1307 -2.1299 -2.1432

(0.2045) (0.1999) (0.2041) (0.2218) (0.2152) (0.2398) (0.2318) (0.2442) (0.2353) (0.2304)

[0.0418] [0.0405] [0.0418] [0.0496] [0.0470] [4.6513] [4.6139] [4.5994] [4.5920] [4.6466]

Note: Results for (1− L)d1(1− 2 cos π

2
L+ L2)d2Xt = utI(t ≥ 1), (1− 0.6L2)ut = ǫt, ǫt ∼ N(0, 1).

The first number in each cell is the bias, the second is the standard deviation (in round brackets)

and the third is the MSE (in square brackets).

when d1 = 1.5 and d2 = −0.4, such that the difference between both parameters is so large

that the strong pole at the origin exerts a positive bias in the estimation of the negative d2.

5.4 Inference: Application for unit roots testing

The asymptotic distribution of the MELW estimator in Theorem 2 enables standard in-

ference techniques to be applied to test hypotheses of interest on the different memory

parameters. For example, the existence of common unit roots at seasonal frequencies and

the origin should be tested before the seasonal difference operator (1−LS) is applied. This

section analyses the performance of a Wald type test based on the MELW estimator and

its asymptotic distribution for such a hypothesis. Consider the process

(1− L)d1(1 + L2)d2(1 + L)d3Xt = utI(t ≥ 1), t = 0, 1, ..., (11)
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Table 8: MELW estimation of d1 and d2 with deterministic components, n = 512, m = 32

MELW of d1 MELW of d2

d1\d2 −0.4 0.4 0.8 1.5 3.0 −0.4 0.4 0.8 1.5 3.0

−0.4 0.3514 0.4029 0.1418 0.0184 0.4497 0.7033 -0.3103 -0.3441 -0.5440 -0.2471

(0.1926) (0.0163) (0.4420) (0.5005) (0.0116) (0.4616) (0.2875) (0.5012) (0.2762) (0.0713)

[0.1605] [0.1626] [0.2155] [0.2508] [0.2024] [0.7078] [0.1789] [0.3696] [0.3723] [0.0661]

0.4 -0.2814 -0.2624 -0.3706 -0.3698 -0.3386 0.7324 0.2983 -0.7225 -0.4189 -0.3325

(0.1646) (0.1272) (0.0805) (0.1996) (0.0310) (0.4791) (0.4747) (0.2636) (0.2008) (0.0766)

[0.1063] [0.0850] [0.1438] [0.1766] [0.1156] [0.7659] [0.3143] [0.5915] [0.2158] [0.1164]

0.8 -0.0830 -0.1875 -0.5928 -0.3718 -0.5934 1.4052 0.6162 -0.7382 -0.4404 -0.3738

(0.1408) (0.1090) (0.0908) (0.1040) (0.1045) (0.1486) (0.0990) (0.2346) (0.1895) (0.0781)

[0.0267] [0.0470] [0.3597] [0.1491] [0.3630] [1.9967] [0.3895] [0.6000] [0.2299] [0.1459]

1.5 -0.1152 -0.0688 -0.7063 -0.2073 -0.4689 1.2874 0.6155 -0.6744 -0.4241 -0.4406

(0.2982) (0.1133) (0.2594) (0.1052) (0.1093) (0.3359) (0.0111) (0.3265) (0.0695) (0.0731)

[0.1022] [0.0176] [0.5661] [0.0540] [0.2318] [1.7702] [0.3790] [0.5614] [0.1847] [0.1995]

3.0 -0.0094 -0.0333 -0.1297 -0.0751 -0.1311 0.9550 0.5131 -0.7060 -0.5149 -0.6352

(0.0858) (0.1035) (0.2116) (0.1103) (0.1116) (0.4671) (0.2081) (0.2573) (0.0907) (0.0864)

[0.0075] [0.0118] [0.0616] [0.0178] [0.0296] [1.1301] [0.3066] [0.5646] [0.2733] [0.4109]

Note: Results for Yt = µ cos
(

π

2
t
)

+Xt, µ = 100, (1− L)d1(1− 2 cos π

2
L+ L2)d2Xt = utI(t ≥ 1),

ut ∼ N(0, 1). The first number in each cell is the bias, the second is the standard deviation (in

round brackets) and the third is the MSE (in square brackets).

for w1 = 0, w2 = π/2 and w3 = π. Unit roots at w1, w2 and w3 imply d1 = d2 = d3 = 1

such that Xt in (11) can be written as (1 − L4)Xt = utI(t ≥ 1). To analyse the size and

power of the Wald tests described in Remark 2, 1000 series of 512 and 1024 observations

were generated with ut standard normal, d1 = 1 and d2, d3 ∈ {0.6, 0.8, 1.0, 1.2, 1.4}. Table

11 shows the rejection frequencies for a 5% significance level of the test in Remark 2 with

R = diag{1, 1, 1} and r = (1, 1, 1)′, using the variance in the asymptotic distribution and

the Hessian based approximation in Remark 3 with m = n/16. The use of the variance

in the asymptotic distribution leads to over-rejection, which is significantly corrected by

the use of the Hessian approximation, although there is still some oversize. Power increases

significantly with the sample size and is greater for positive departures from the null, mainly

in the d2 dimension.
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Table 9: MELW-corrected estimation of d1 with deterministic component n = 512 m = 32

µ̂ cos
(

π
2
t
)

(Y1, Y2, Y3, Y4)

d1\d2 −0.4 0.4 0.8 1.5 3.0 −0.4 0.4 0.8 1.5 3.0

−0.4 0.0020 -0.0034 0.0252 0.0870 0.4084 0.2755 0.3013 0.3183 0.3756 0.6384

(0.1106) (0.1102) (0.1559) (0.4613) (0.0192) (0.0977) (0.0930) (0.0946) (0.1106) (0.4465)

[0.0122] [0.0122] [0.0250] [0.2204] [0.1671] [0.0854] [0.0994] [0.1103] [0.1533] [0.6069]

0.4 0.0014 -0.0003 0.0023 -0.2526 -1.0304 0.0080 -0.0024 0.0005 -0.0041 -0.0062

(0.1072) (0.1081) (0.1106) (0.2277) (0.4867) (0.1104) (0.1174) (0.1211) (0.1332) (0.3018)

[0.0115] [0.0117] [0.0122] [0.1157] [1.2987] [0.0123] [0.0138] [0.0147] [0.0178] [0.0911]

0.8 0.0029 0.0030 0.0033 -0.2110 -1.2669 0.0099 0.0022 0.0045 0.0012 -0.0282

(0.1087) (0.1024) (0.1046) (0.1877) (0.5041) (0.1088) (0.1028) (0.1044) (0.1076) (0.1472)

[0.0118] [0.0105] [0.0109] [0.0798] [1.8592] [0.0119] [0.0106] [0.0109] [0.0116] [0.0225]

1.5 0.0047 0.0028 0.0040 -0.0881 -1.7748 0.0039 0.0047 0.0052 -0.0020 -0.0792

(0.1084) (0.1121) (0.1051) (0.1309) (0.4818) (0.1113) (0.1116) (0.1046) (0.1073) (0.1247)

[0.0118] [0.0126] [0.0111] [0.0249] [3.3820] [0.0124] [0.0125] [0.0110] [0.0115] [0.0218]

3.0 -0.2743 -0.2659 -0.2927 -0.2943 -1.3173 -0.0510 -0.0437 -0.1114 -0.1344 -0.2016

(0.1924) (0.1885) (0.1910) (0.1823) (0.3342) (0.1108) (0.1023) (0.1202) (0.1284) (0.1510)

[0.1122] [0.1062] [0.1221] [0.1198] [1.8471] [0.0149] [0.0124] [0.0269] [0.0346] [0.0634]

Note: Results for Yt = µ cos
(

π

2
t
)

+Xt, µ = 100, (1− L)d1(1− 2 cos π

2
L+ L2)d2Xt = utI(t ≥ 1),

ut ∼ N(0, 1). The first number in each cell is the bias, the second is the standard deviation (in

round brackets) and the third is the MSE (in square brackets).

6 Empirical application: U.S. Industrial Production Index

Seasonality is a common characteristic in many economic time series of higher than yearly

frequency. Deterministic components, seasonal unit roots and weak dependent seasonal

models have often been used with no consensus as to their suitability (see for example

Beaulieu and Miron, 1993 or Hylleberg et al. 1993). This section analyses a quarterly

series of the Industrial Production Index for non-durable consumer goods in the USA with

base year 2012. We consider the growth rate obtained by first differencing the logarithm of

the index, thus avoiding the potential distorting effects at frequency zero of a deterministic

trend. The data, displayed in Figure 4, span the period from 1947Q3 to 2017Q2.
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Table 10: MELW-corrected estimation of d2 with deterministic component n = 512 m = 32

µ̂ cos
(

π
2
t
)

(Y1, Y2, Y3, Y4)

d1\d2 −0.4 0.4 0.8 1.5 3.0 −0.4 0.4 0.8 1.5 3.0

−0.4 0.0218 0.0251 0.0273 -0.3461 -1.6836 0.3094 0.0283 0.0247 0.0183 -0.0687

(0.0787) (0.0766) (0.0743) (0.2610) (0.2065) (0.0619) (0.0819) (0.0753) (0.0776) (0.1013)

[0.0067] [0.0065] [0.0063] [0.1879] [2.8773] [0.0995] [0.0075] [0.0063] [0.0064] [0.0150]

0.4 0.0209 0.0242 0.0376 -0.2281 -1.9956 0.3236 0.0230 0.0281 0.0196 -0.0252

(0.0792) (0.0726) (0.0733) (0.1421) (0.3902) (0.0568) (0.0780) (0.0749) (0.0769) (0.0842)

[0.0067] [0.0059] [0.0068] [0.0722] [4.1349] [0.1079] [0.0066] [0.0064] [0.0063] [0.0077]

0.8 0.0357 0.0218 0.0346 -0.2231 -1.9090 0.3380 0.0218 0.0260 0.0223 -0.0221

(0.0760) (0.0744) (0.0762) (0.1373) (0.3614) (0.0606) (0.0829) (0.0771) (0.0753) (0.0826)

[0.0070] [0.0060] [0.0070] [0.0686] [3.7750] [0.1179] [0.0073] [0.0066] [0.0062] [0.0073]

1.5 0.3387 0.0286 0.0337 -0.2265 -1.7538 0.3923 0.0276 0.0285 0.0222 -0.0597

(0.0868) (0.0821) (0.0763) (0.1401) (0.2641) (0.1138) (0.1122) (0.0777) (0.0782) (0.0961)

[0.1223] [0.0075] [0.0070] [0.0709] [3.1456] [0.1669] [0.0134] [0.0068] [0.0066] [0.0128]

3.0 1.3596 0.5814 0.1200 -0.5054 -1.6931 0.7369 -0.0107 0.0061 -0.1254 -0.2347

(0.1641) (0.0704) (0.2509) (0.0752) (0.2150) (0.3884) (0.2984) (0.1360) (0.1217) (0.1630)

[1.8755] [0.3430] [0.0773] [0.2611] [2.9128] [0.6938] [0.0892] [0.0185] [0.0305] [0.0816]

Note: Results for Yt = µ cos
(

π

2
t
)

+Xt, µ = 100, (1− L)d1(1− 2 cos π

2
L+ L2)d2Xt = utI(t ≥ 1),

ut ∼ N(0, 1). The first number in each cell is the bias, the second is the standard deviation (in

round brackets) and the third is the MSE (in square brackets).

Figure 4: IPI returns, 1947Q3 to 2017Q2
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We first test for the possibility of seasonal unit roots using conventional tools, in par-

ticular the HEGY test for unit roots (Hylleberg et al. 1990) and the test for seasonal

stability in Canova and Hansen (1995). Table 12 shows the test statistics and p values of

both strategies with the lags in HEGY selected by the BIC and including seasonal dum-
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Table 11: Rejection frequencies for H0 : (d1, d2, d3) = (0.5, 1.0, 0.5)

n = 512, m = 32 n = 1024, m = 64

d2\d3 0.6 0.8 1.0 1.2 1.4 0.6 0.8 1.0 1.2 1.4

0.6 Asy. 1.000 0.999 0.996 0.999 1.000 1.000 1.000 1.000 1.000 1.000

Hess. 1.000 0.986 0.978 0.996 1.000 1.000 1.000 1.000 1.000 1.000

0.8 Asy. 0.988 0.783 0.577 0.819 0.991 1.000 0.979 0.859 0.987 1.000

Hess. 0.957 0.615 0.379 0.692 0.969 1.000 0.949 0.775 0.970 1.000

1.0 Asy. 0.961 0.557 0.190 0.599 0.964 1.000 0.747 0.172 0.830 1.000

Hess. 0.909 0.358 0.087 0.400 0.913 0.999 0.650 0.102 0.747 0.999

1.2 Asy. 0.997 0.955 0.899 0.965 1.000 1.000 1.000 0.996 0.999 1.000

Hess. 0.989 0.909 0.806 0.917 0.995 1.000 0.996 0.987 0.999 1.000

1.4 Asy. 1.000 1.000 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Hess. 1.000 1.000 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Note: Rejection frequencies for H0 : (d1, d2, d3) = (1, 1, 1) using the variance in the asymptotic

distribution (Assy.) and the Hessian based approximation (Hess.). The generating process is

(1− L)(1 + L2)d2(1 + L)d3Xt = utI(t ≥ 1), for ut ∼ NID(0, 1).

mies. The Canova-Hansen test rejects stability at π and π/2, whereas HEGY rejects the

existence of unit roots at the origin and seasonal frequencies, suggesting the possibility of

seasonal long memory. Table 12 also shows MELW estimates of the memory parameters

at the origin, seasonal π/2 and Nyquist π frequencies together with the 95% confidence

intervals obtained with the Hessian approximation of the variance introduced in Remark 3.

Adjusted MELW estimation for deterministic cycles using the residuals from least squares

regression on cos(w̄t), w̄ = 0, π/2, π and subtracting the first four observations are also

included.

Focusing on the MELW estimator unadjusted for deterministic components, there is

clear evidence of a unit root at the yearly frequency π/2, long memory at the origin and

weak dependence at the Nyquist frequency. When the series is adjusted from deterministic

components, the main difference with the unadjusted MELW estimator is the larger estimate

obtained at π, implying strong persistence also at that frequency. Considering the possibil-

ity of a common unit root, the Wald statistic rejects the hypothesis (d1, d2, d3) = (1, 1, 1)

with large p− values, suggesting that the seasonal difference operator (1− L4) should not
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Table 12: Quarterly U.S. Industrial Production Index: 1947Q3 to 2017Q2

d1(w1 = 0) d2(w2 = π

2
) d3(w3 = π) Wald St.

m1 = m2 = m3 = 15

MELW 0.468 0.982 0.075 38.372

(0.131,0.805) (0.742, 1.222) (-0.262, 0.413)

MELW(µ̂) 0.371 0.789 0.403 28.315

MELW(Y1, ..., Y4) 0.259 0.924 0.379 31.846

Canova-Hansen

testst. 2.223 1.049

p− value 0.000 0.001

HEGY

testst. -5.528 16.987 -5.643

p− value 0.000 0.000 0.000

Note: MELW and ELW estimates, 95% confidence intervals (in round brackets) and Wald statistic

for the unit root hypothesis H0 : (d1, d2, d3) = (1, 1, 1).

be used. Note that the same asymptotic distribution is used here for the MELW adjusted

for deterministic components with no theoretical justification. Taking into account the

potential size and power distortions caused by short memory components in HEGY and

Canova-Hansen tests (see Canova and Hansen, 1995 or Ghysels et al., 1994) the results with

the MELW estimator can be considered as more reliable.
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