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“Why, anybody can have a brain. That’s a very mediocre
commodity. Every pusillanimous creature that crawls on the
earth – or slinks through slimy seas has a brain! Back where I
come from we have universities, seats of great learning – where
men go to become great thinkers. And when they come out,
they think deep thoughts – and with no more brains than you
have... But! They have one thing you haven’t got! A diploma!”

The Wizard to the Scarecrow (The Wizard of Oz 1939 film)
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Introduction

Group cohomology originates, along with homological algebra, from algebraic topol-
ogy and the study of cohomology groups of certain topological spaces. Given a finite
group G, we can associate to it a classifying space BG, which satisfies that its first
homotopy group is isomorphic to G, and its higher order homotopy groups are triv-
ial. We can then define the cohomology groups Hn(G, V ) of G with coefficients on
an RG-module V , where R is a commutative ring, to be the cohomology groups of
its classifying space BG, see [Hat02]. It is also possible to give a purely algebraic
definition of the cohomology groups of G in terms of derived functors, and in fact
this is the approach that we will follow throughout this thesis.

Subsequently, the study of group cohomology has developed into a deep and vibrant
area of research in its own right. If we take the direct sum H•(G,R) of all cohomology
groups of the finite group G with coefficients on the trivial module R equipped with
the so-called cup product, we obtain a finitely generated graded-commutative ring
[Eve91, Chapter 3]. This shows that group cohomology possesses a rich algebraic
structure that may be exploited to glean a substantial amount of information, such
as the minimal number of generators and relations in a presentation of the group. It
also has countless applications outside group theory, in areas such as number theory
and algebraic geometry, see [Gui18] and [Sil13].

An important feature of group cohomology is the fact that it admits multiple char-
acterizations, all of them contributing to giving us a fuller picture of the subject.
Indeed, cohomology can be described in terms of extensions of both modules and
groups. On the one hand, the characterization of the Ext functor in terms of exten-
sions of modules, originally due to Yoneda [Yon92], allows us to describe the elements
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of Hn(G, V ) as equivalence classes of extensions of RG-modules of the form

0 V Mn · · · M1 R 0.

On the other hand, it is well known that the second cohomology group H2(G, V )
classifies, up to equivalence, the group extensions of the form

0 V E G 1.

This can be generalized as in [Hol79] to higher degree cohomology groups, so that the
elements of Hn(G, V ) can be seen as equivalence classes of crossed extensions of the
form

0 V Mn · · · M1 G 1.

Both of these characterizations of group cohomology share many of their fundamental
features. When studied side by side, they provide a much more natural, rather than
computational, description of not only the cohomology groups themselves, but also
their functorial properties, connecting homomorphisms and the cup product. Fur-
thermore, these characterizations also help us construct explicit cohomology classes
with specific properties that would otherwise be very difficult to find.

We will be most interested in mod-p cohomology rings of finite p-groups, as the
computation of cohomology rings of finite groups can actually be reduced to that
setting. Indeed, cohomology is in general easier to compute when working with coef-
ficients over a field K due to results such as the Künneth Formula and the Universal
Coefficient Theorem, see [Eve91, Section 2.5]. Moreover, we can use Maschke’s The-
orem [Ben91, Corollary 3.6.12] to show that the cohomology of G is trivial unless the
characteristic of K divides the order of G. It is then possible to assume that K = Fp,
with p a prime factor of the order of G, using the Universal Coefficient Theorem.
Finally, it can be shown that the mod-p cohomology of G embeds into the mod-p
cohomology of any of its Sylow p-subgroups [Bro82, Section III.10].

In general, it is not possible to determine if two given finite groups are isomorphic
just by looking at their cohomology rings, i.e. the family of finite groups does not
possess the property of cohomological uniqueness. Indeed, if p is an odd prime and
G is a finite abelian p-group, the isomorphism type of the mod-p cohomology ring of
G only depends on the minimal number of generators of G, see [Eve91, Section 3.5].
In particular, any two non-isomorphic cyclic p-groups will have isomorphic mod-p
cohomology rings.

We may nevertheless restrict our attention to specific families of finite p-groups,
and study whether the groups in these families can be distinguished by their mod-
p cohomologies. We then ask the following questions: Is a given family of groups
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cohomologically unique? And conversely, which families of groups cannot be distin-
guished cohomologically, because their cohomology rings are only finitely many up
to isomorphism? As we have already explained, the answer to the first question is
positive for the family of finite elementary abelian p-groups. On the other hand, if
we take all finite abelian p-groups of a fixed rank, then all the groups in this family
have the same mod-p cohomology ring.

In our quest to determine the cohomological uniqueness of certain families of groups,
we encounter one major challenge. In general, it is extremely difficult to compute the
cohomology ring of a given group, let alone a family of groups. In fact, there are
very few examples, outside of the ones already mentioned, of explicit computations
of cohomology rings in the literature. It is for this reason that we may choose, on a
related note, to focus our attention on computing certain invariants of the cohomology,
rather than trying to determine the full structure of the ring.

It is then interesting to study the algebraic invariants of the cohomology ring of G,
and how these relate to the group theoretic structure of G. For example, the Krull
dimension of the mod-p cohomology of G can be easily computed, thanks to a result
by Quillen [CTVZ03, Corollary 8.4.7], as the rank of a maximal elementary abelian
p-subgroup of G. This remarkable result completely determines the Krull dimension
of the cohomology in terms of the subgroup structure of the group.

Attempts to do the same for another algebraic invariant, the depth, have so far
proven much less successful. Although closely related to the Krull dimension, the
depth is considerably harder to compute. So far, only upper [CTVZ03, Proposition
12.2.5] and lower bounds [Duf81] have been found. Nevertheless, Carlson stated in
[Car95] a conjecture characterizing the depth of the mod-p cohomology of G by look-
ing at how well said cohomology can be detected by restricting to the cohomologies
of certain subgroups of G.

The main obstacle in the study of this conjecture is that, typically, we would need to
first compute the cohomology ring and then use computational methods to determine
the depth. The lack of examples in the literature, nonetheless, makes this approach
futile for the study of the depth in infinite families of p-groups. For p odd, we consider
the pro-p group of maximal nilpotency class G, which has a unique finite quotient Gr

of order pr+1 for each integer r ≥ 2. Using the aforementioned bounds on the depth
of H•(Gr,Fp), we are able to determine that its value is either 1 or 2, for every r ≥ 2.
It is now that we may employ the characterization of group cohomology in terms of
extensions. In order to compute the depth when r ≤ p−2, we construct a non-trivial
cohomology class in H3(Gr,Fp) as a product of a Yoneda extension in H1(Gr,Fp) and a
crossed extension in H2(Gr,Fp), and prove that it restricts trivially to every subgroup
in a particular family of subgroups of Gr. This allows us to use Carlson’s results from
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[Car95] to show that the depth of H•(Gr,Fp) is 1 for 2 ≤ r ≤ p − 2, meaning that
these groups satisfy Carlson’s depth conjecture. Crucially, we are able to compute the
value of the depth without first computing the cohomology rings themselves. These
results published in [GGG22], along with others by Garaialde Ocaña [Gar18], suggest
that the cohomology rings of the finite quotients of G are either identical or extremely
similar.

We now turn our attention to the matter of computing the cohomology rings them-
selves. Doing so for infinite families of groups is only possible through a detailed study
of the specific groups under consideration. Spectral sequences have proven to be an
extraordinarily powerful tool in the computation of cohomology of finite groups, and
have become one of the main techniques employed with this goal. They appear mainly
in the shape of the Lyndon-Hochschild-Serre (LHS) spectral sequence [Eve91, Section
7.2], which allows us to somehow approximate the cohomology of a group G that can
be obtained as a group extension

1 N G Q 1

starting with the cohomologies of the quotient Q and the normal subgroup N , and re-
peatedly computing cohomology groups. The main drawback of this approach is that
it relies on the computation of certain differentials, of which we usually possess little
to no information. This problem can be solved under certain circumstances, when it
is possible to find explicit formulas that will aid us in computing said differentials.
Such is the case when G is a split extension of Q by N , as shown by Charlap and
Vasquez [CV69] and later adapted by Siegel in [Sie96] to the specific case when Q is
a cyclic p-group of order p. In [GG23], we generalize this result of Siegel for when Q
is a cyclic p-group of any order.

Also in [Sie96], Siegel uses his results about differentials in the computation of the
LHS spectral sequence of the Heisenberg group Heis(p) modulo p for p ≥ 3. We
are able to follow the same argument as Siegel in order to compute the LHS spectral
sequences of the Heisenberg groups Heis(pn) modulo pn for p ≥ 5 and n ≥ 2, and show
that they are all isomorphic starting with the second page. This implies that, in this
infinite family of groups, only a finite number of isomorphism classes of cohomology
rings appear. The previous results have been published in [GG23].

The structure of the thesis is as follows:
In Chapter 1, we introduce the main concepts and results from homological alge-

bra that we will be using throughout this thesis. We begin by introducing chain and
cochain complexes of modules, as well as projective modules and projective resolu-
tions, which we use to define the Tor and Ext functors. Afterwards, we define the
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cohomology groups of finite groups and review some of its basic properties. We con-
struct the bar resolution of a finite group and compute the lower degree cohomology
groups with it. Then, we recall the structure of cohomology as a graded-commutative
ring given by the cup product. Furthermore, we give a detailed description of the
Bockstein homomorphisms, which we later use to classify the central extensions of
elementary abelian p-groups of rank two with cyclic kernel of order p. We conclude
the chapter with an introduction to spectral sequences, focusing in particular on the
Lyndon-Hochschild-Serre spectral sequence and its main properties.

In Chapter 2, we describe the cohomology of a finite group in terms of extensions.
First, we give the classical description of Ext using Yoneda extensions. Afterwards,
we introduce crossed extensions in order to describe cohomology groups. We then
define a product of Yoneda extensions with crossed extensions that coincides with
the usual cup product in cohomology.

In Chapter 3, we introduce the concept of depth for the mod-p cohomology ring of a
finite group and state Carlson’s depth conjecture. Afterwards, we compute the depth
of the mod-p cohomology rings of certain quotients of the pro-p group of maximal
class that, moreover, satisfy Carlson’s depth conjecture.

In Chapter 4, we state a theorem by Charlap and Vasquez regarding the compu-
tation of the second differential of the Lyndon-Hochschild-Serre spectral sequence
associated to a split extension of finite groups. Afterwards, we introduce a general-
ization of a result by Siegel that can be used to compute the differentials appearing
in the spectral sequence associated to a split extension of finite groups with cyclic
quotient of prime power order.

In Chapter 5, we compute the Lyndon-Hochschild-Serre spectral sequence of a
family of finite Heisenberg groups of prime power order, up to the infinity page. We
begin by computing the second page of the spectral sequence and its structure as an
algebra, before putting the results from the last chapter to use in the computation of
the second differential. Afterwards, we determine the third page and show that it is
at this point that the spectral sequence collapses. In so doing, we provide one of the
first infinite families of groups of prime power order whose associated LHS spectral
sequences collapse in the same page and are isomorphic. Finally, we compute the
Poincaré series of the cohomology rings.
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1
Review of group cohomology

In this chapter, we will introduce the main concepts and results from homological
algebra that we will be using throughout this thesis. These notions are standard, and
the chapter is mainly intended as a brief introduction in order to fix notation. We
begin by introducing chain and cochain complexes of modules, as well as projective
modules and projective resolutions, which we use to define the Tor and Ext functors.
Afterwards, we define the cohomology groups of finite groups and review some of its
basic properties. We construct the bar resolution of a finite group and compute the
lower degree cohomology groups with it. Then, we recall the structure of cohomology
as a graded-commutative ring given by the cup product. Furthermore, we give a
detailed description of the Bockstein homomorphisms, which we later use to classify
the central extensions of elementary abelian p-groups of rank two with cyclic kernel
of order p. We conclude the chapter with an introduction to spectral sequences,
focusing in particular on the Lyndon-Hochschild-Serre spectral sequence and its main
properties. For a detailed overview of the concepts exposed in this chapter, see
[Bro82], [Eve91] and [Wei94].

1.1 Basic homological algebra

Throughout this chapter, R will denote a commutative ring with unity. Let G be
a finite group. We consider the group algebra RG as the free R-module with basis
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G with the product induced by the product in G. The group algebra RG is an
augmented R-algebra, i.e. there is an R-algebra homomorphism ε : RG −→ R, called
the augmentation, which is defined by ε(g) = 1 for g ∈ G.

All the modules we consider will be left modules unless otherwise stated. In general,
we will not need to make the distinction because every right RG-module V can be
turned into a left RG-module by setting gv = vg−1 for g ∈ G and v ∈ V .

1.1.1 Chain and cochain complexes

Definition 1.1. A chain complex of RG-modules is a sequence of RG-modules of the
form

· · · Cn+1 Cn Cn−1 · · ·∂n+1 ∂n

with RG-module homomorphisms ∂n : Cn −→ Cn−1 such that ∂n ◦ ∂n+1 = 0 for all
n ∈ Z. We denote this chain complex by C•. Analogously, a cochain complex of
RG-modules is a sequence of RG-modules of the form

· · · Cn+1 Cn Cn−1 · · ·∂n ∂n−1

with RG-module homomorphisms ∂n : Cn −→ Cn+1 such that ∂n+1 ◦ ∂n = 0 for all
n ∈ Z. We denote this cochain complex by C•.

Definition 1.2. Given a chain complex of RG-modules C•, we define for each n ∈ Z
the n-th homology group of C• as

Hn(C•) =
Ker ∂n
Im ∂n+1

.

Analogously, given a cochain complex of RG-modules C•, we define the n-th coho-
mology group of C• as

Hn(C•) =
Ker ∂n

Im ∂n−1
.

Definition 1.3. Let A• and B• be chain complexes of RG-modules. A chain mor-
phism f : A• −→ B• is a collection of RG-module homomorphisms fn : An −→ Bn

such that
∂Bn+1 ◦ fn+1 = fn ◦ ∂An+1

for all n ∈ Z.

Whenever we have a chain morphism f : A• −→ B•, it is easy to see that it induces
an RG-module homomorphism fn∗ : Hn(A•) −→ Hn(B•).
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Definition 1.4. Given chain morphisms f, g : A• −→ B•, a chain homotopy from f
to g is a collection of RG-module homomorphisms h : An −→ Bn+1 such that

fn − gn = hn−1 ◦ ∂An + ∂Bn+1 ◦ hn

for every n ∈ Z. If there is a chain homotopy from f to g, we say that f and g are
chain homotopic.

The importance of chain homotopies lies in the fact that homotopic chain maps
induce the same morphisms in homology, see [Wei94, Lemma 1.4.5].

It is possible to construct new chain complexes from old chain complexes by taking
tensor products and Hom functors. Given RG-modules V and W , the tensor product
V ⊗RW is also an RG-module, with the action of G given by

g(v ⊗ w) = gv ⊗ gw

for g ∈ G, v ∈ V and w ∈ W . We can also define an RG-module structure on
HomR(V,W ) by setting

(gφ)(v) = gφ(g−1v)

for g ∈ G, v ∈ V and φ ∈ HomR(V,W ). Now, if A• and B• are chain complexes
of RG-modules with differentials ∂A and ∂B, respectively, we can define the chain
complex of RG-modules A• ⊗R B• with

(A• ⊗R B•)n =
⊕
r+s=n

Ar ⊗R Bs

and differential ∂n : (A• ⊗R B•)n −→ (A• ⊗R B•)n−1 given by

∂n(a⊗ b) = ∂Ar (a)⊗ b+ (−1)ra⊗ ∂Bs (b) (1.1)

for a ∈ Ar and b ∈ Bs with r + s = n. We can also define the chain complex of
RG-modules HomR(A•, B•) with

HomR(A•, B•)n =
∏
s−r=n

HomR(Ar, Bs)

and differential ∂n : HomR(A•, B•)n −→ HomR(A•, B•)n−1 given by

(∂nf)(a) = ∂Bs
(
f(a)

)
− (−1)nf

(
∂Ar+1(a)

)
for f ∈ HomR(Ar, Bs) with s− r = n and a ∈ Ar+1.
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1.1.2 Projective modules and resolutions

In this section, we will recall the concepts of projective and injective modules, after
which we introduce projective resolutions and some of their properties.

Definition 1.5. Let P be an RG-module. We say that P is projective if, given a
surjective RG-module homomorphism g : V −→ W , any RG-module homomorphism
f : P −→ W can be lifted to an RG-module homomorphism h : P −→ V making the
following diagram commute:

P

V W 0

h f

g

It is easily checked that free modules are projective, although the converse need
not be true in general. Dual to the concept of projective module, we have that of
injective module.

Definition 1.6. Let I be an RG-module. We say that I is injective if, given an
injective RG-module homomorphism g : V −→ W , any RG-module homomorphism
f : V −→ W can be extended to an RG-module homomorphism h : W −→ I making
the following diagram commute:

0 V W

I

g

f
h

We can now define resolutions of modules and their main properties.

Definition 1.7. Given an RG-module V , we refer to an exact sequence of the form

· · · P2 P1 P0 V 0

as a resolution of V , and we denote this resolution by P• −→ V . We say that P• −→ V
is a projective resolution if Pn is a projective RG-module for every n ≥ 0.

It is well known that every RG-module V admits a projective resolution (see [Wei94,
Lemma 2.2.5]). The following result, which can be found in [Wei94, Theorem 2.2.6],
shows that projective resolutions are unique up to homotopy equivalence.
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Theorem 1.8 (Comparison Theorem). Let V and W be RG-modules, P• −→ V be a
chain complex of projective RG-modules and Q• −→ W be a resolution of W . Given
an RG-module homomorphism α : V −→ W , there is a chain morphism f : P• −→ Q•
such that the following diagram commutes:

· · · P1 P0 V 0

· · · Q1 Q0 W 0

f1 f0 α

Furthermore, f is unique up to chain homotopy.

Definition 1.9. A projective resolution X• −→ V is said to be minimal if we have
that Ker ∂n ⊆ JXn for all n ≥ 0. Here, J denotes the Jacobson radical of RG, i.e.
the intersection of all maximal left ideals of RG.

Given a projective resolution P• −→ V and a minimal resolution X• −→ V , we
have that P• = X•⊕Q•, where Q• −→ 0 is a projective resolution of the zero module.
Furthermore, if V is a simple RG-module, then both X• ⊗RG V and HomRG(X•, V )
have zero differential, see [Eve91, Section 2.4].

1.1.3 Ext and Tor functors

We will now define the Tor and Ext functors.

Definition 1.10. Let V and W be RG-modules and P• −→ V be a projective
resolution. For each n ≥ 0, we can define the n-th Tor group

TorRGn (V,W ) = Hn(P• ⊗RGW ).

Similarly, we define the n-th Ext group

ExtnR(V,W ) = Hn
(
HomRG(P•,W )

)
.

We have that TorRGn (−,−) is a bifunctor covariant in both arguments, whereas
ExtnRG(−,−) is a bifunctor contravariant in the first argument and covariant in the
second.

We will focus on studying the Ext functor. One of the main properties of Ext
is that it can be applied to short exact sequences of modules in order to obtain
long exact sequences of Ext groups. In order to state this fact more precisely, we
will introduce a new concept that will be useful in the next chapter when studying
different characterizations of Ext.
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Definition 1.11. Let E• be a family of covariant functors En : ModRG −→ Ab for
n ≥ 0 such that, given a short exact sequence of RG-modules

0 V1 V2 V3 0

we obtain a long exact sequence

E0(V1) E0(V2) E0(V3)

En(V1) En(V2) En(V3)

En+1(V1) En+1(V2) En+1(V3) · · ·

δ

such that given a morphism of short exact sequences of RG-modules of the form

0 V1 V2 V3 0

0 V ′
1 V ′

2 V ′
3 0

we have a commutative diagram as follows:

En(V3) En+1(V1)

En(V ′
3) En+1(V ′

1)

We say that (E•, δ) is a cohomological δ-functor, and the homomorphism δ is the
connecting morphism. Furthermore, if for every injective RG-module I and integer
n > 0 we have that En(I) = 0, then (E•, δ) is a universal δ-functor.

If (E•, δ) is a universal δ-functor, given any other universal δ-functor (E•
0, δ0) with

a natural isomorphism of functors E0
0
∼= E0, we have natural isomorphisms En0

∼= En

of functors that commute with the connecting morphisms for all n ≥ 0, see [Bro82,
Theorem III.7.5].

Theorem 1.12 ([Mac63, Theorem 10.2]). For a fixed RG-module B, the functor
Ext•RG(B,−) is a universal δ-functor.
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1.2 Group cohomology

In this section, we will introduce group cohomology and some of its main properties.

Definition 1.13. Let G be a finite group and V be an RG-module. For every integer
n ≥ 0 we define the n-th homology group of G with coefficients in V by

Hn(G, V ) = TorRGn (R, V ),

and the n-th cohomology group of G with coefficients in V by

Hn(G, V ) = ExtnRG(R, V ).

Definition 1.14. Let R be a commutative ring. We say that an R-module V is graded
if there are R-submodules V n ≤ V for all integers n ≥ 0 such that V =

⊕∞
n=0 V

n.
The elements of V n for some n ≥ 0 are called homogeneous and, given v ∈ V n \ {0},
we write deg v = n and say that v has degree n.

An R-algebra A is graded if it is graded as an R-module and AnAm ⊆ An+m for all
n,m ≥ 0.

Every cohomology group Hn(G, V ) is actually an R-module. We can thus consider
the direct sum of cohomology groups

H•(G, V ) =
∞⊕
n=0

Hn(G, V ),

which is a graded R-module. We will be particularly interested in the case when
G is a finite p-group and R = Fp, and we usually refer to H•(G,Fp) as the mod-p
cohomology of G.

Remark 1.15. In principle, the ring R on which we take the coefficients matters,
but as can be seen in [Eve91, Section 1], if V is an RG-module we have isomorphisms

Hn(G, V ) = ExtnRG(R, V ) ∼= ExtnZG(Z, V ).

Thus, there is no ambiguity when we write Hn(G, V ) without specifying the base ring.

When the ring of coefficients is a field, homology is the dual of cohomology (see
[Eve91, Section 2.5] for more details).

Theorem 1.16 (Universal Coefficient Theorems). Let G be a finite group, K be a
field and V be a trivial KG-module. Then, there are natural isomorphisms of graded
K-vector spaces

H•(G, V ) ∼= H•(G,K)⊗K V ∼= HomK

(
H•(G,K), V

)
.
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Cohomology is functorial on the group. Indeed, given a group homomorphism
α : G1 −→ G2, for any RG2-module V , we can turn V into an RG1-module with
action given by gv = α(g)v for g ∈ G1 and v ∈ V . Thus, there is an induced graded
R-module homomorphism α• : H•(G2, V ) −→ H•(G1, V ). We will be particularly
interested in the morphisms induced by subgroup inclusions and quotient projections.
If H ≤ G, the homomorphism ι• : H•(G, V ) −→ H•(H, V ) induced by the inclusion
ι : H −→ G is called the restriction from G to H, and is denoted by resG→H . If
N ⊴ G and Q = G/N , the homomorphism π• : H•(Q, V ) −→ H•(G, V ) induced by
the projection π : G −→ Q is called the inflation from Q to G, and is denoted by
infQ→G.

Examples 1.17. (i) For finite cyclic groups, there is a particularly simple free
resolution of the trivial module. Let Cn = ⟨σ⟩ denote the finite cyclic group
of order n ≥ 1. Consider SkCn = RCnek for any k ≥ 0, where ek is the basis
element of SkCn as a free RCn-module, and ∂k : SkCn −→ Sk−1Cn given by

∂k(ek) =

{
(σ − 1)ek−1, if k is odd,
T (σ)ek−1, if k is even,

where T (σ) = 1+σ+ · · ·+σn−1 ∈ RCn. It is easy to see that S•Cn −→ R is an
RCn-projective resolution [Eve91, Section 2.1]. We refer to S•Cn as the special
resolution of Cn. Using this resolution, we can easily compute the homology and
cohomology groups of Cn with coefficients in any module. For any RCn-module
V and any element α ∈ RCn, consider the α-torsion submodule

V [α] = {v ∈ V | αv = 0}.

Then, the cohomology groups of Cn with coefficients on V are

Hr(Cn, V ) =



V [σ − 1], if r = 0,

V
[
T (σ)

]
(σ − 1)V

, if r > 0 is odd,

V [σ − 1]

T (σ)V
, if r > 0 is even.

(1.2)

It is of particular interest to us the case when we have a cyclic group of prime
power order Cpn with n ≥ 1, and R = Fp. From (1.2), we can compute the
mod-p cohomology groups

Hr(Cpn ,Fp) = Fp

14



for all r ≥ 0. Furthermore, in this case the special resolution S•Cpn −→ Fp is
minimal and satisfies the properties described at the end of Section 1.1.2, a fact
that will become useful in Section 4.

(ii) Let G be a finite group and K be a field of characteristic p, such that p does not
divide |G|. Then, the group algebra KG is semisimple by Maschke’s Theorem
(see [Ben91, Corollary 3.6.12]), and so every KG-module is projective. In par-
ticular, the trivial KG-module K has a trivial projective resolution. Therefore,
for any KG-module V , we have that Hn(G, V ) = 0 for all n ≥ 1.

1.2.1 Bar resolution and low dimensional cohomology groups

The problem of computing cohomology of groups is reduced to finding projective
resolutions of modules, which is not a trivial matter in general. Nevertheless, there
is a certain resolution that we can always construct, namely the bar resolution that
we will now describe.

Let BnG be the free RG-module with basis

G(n) = {[g1| · · · |gn] | gi ∈ G}

and let ∂n : BnG −→ Bn−1G be the RG-module homomorphism defined by

∂n[g1| · · · |gn] =g1[g2| · · · |gn] +
n−1∑
i=1

(−1)i[g1| · · · |gi−1|gigi+1|gi+2| · · · |gn]

+ (−1)n[g1| · · · |gn−1].

It is possible to check that B•G −→ R is a free resolution of the trivial RG-module
[Eve91, Section 2.3], called the bar resolution of G. When applying the Hom functor
with an RG-module V , we obtain the cochain complex

Cn(G, V ) = HomRG(BnG, V ) = {maps f : G(n) −→ V }

with differential ∂n : Cn(G, V ) −→ Cn+1(G, V ) given by

∂nf [g1| · · · |gn+1] =g1f [g2| · · · |gn+1] +
n∑
i=1

(−1)if [g1| · · · |gi−1|gigi+1|gi+2| · · · |gn+1]

+ (−1)n+1[g1| · · · |gn].

The elements of Cn(G, V ) are called n-cochains of G with coefficients in V . Also
denote by Zn(G, V ) = Ker dn and Bn(G, V ) = Imdn−1 for n ≥ 1 and B0(G,M) = 0.
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The elements of Zn(G, V ) and Bn(G, V ) are called n-cocycles and n-coboundaries
of G with coefficients in V , respectively. Using the bar resolution to compute the
cohomology of G with coefficients on V , we obtain that

Hn(G, V ) =
Zn(G, V )

Bn(G, V )

for all n ≥ 0.
Sometimes, it is also useful to consider the normalized bar resolution of G, the chain

complex denoted by B̄•G with B̄nG the free RG-module with basis

{[g1| · · · |gn] | gi ̸= 1 for all 1 ≤ i ≤ n}

and the same differential as before. We have that B̄•G −→ R is also an RG-free
resolution. Also denote by C̄n(G, V ), Z̄n(G, V ) and B̄n(G, V ) the normalized n-
cochains, n-cocycles and n-coboundaries, respectively, defined analogously to the non-
normalized case.

Using the bar resolution, we can easily identify the low degree cohomology groups.
First, we have that

H0(G, V ) = V G = {v ∈ V | gv = v for all g ∈ G},

the submodule of invariant elements. If the module of coefficients V is trivial, we
have that

H1(G, V ) = Hom(G, V ).

When G is a p-group and V = Fp, a minimal generating set {g1, . . . , gk} ⊆ G projects
to an Fp-basis of G/Gp[G,G], and we can write

H1(G,Fp) = Hom

(
G

Gp[G,G]
,Fp
)

= ⟨g∗1, . . . , g∗k⟩, (1.3)

where g∗i : G −→ Fp is defined by g∗i (gi) = 1 and g∗i (gj) = 0 for j ̸= i.
The description of the second cohomology group is more involved. We will consider

group extensions of the form

0 V E G 1

with conjugation of V inside E induced by the action of G. We will say that two
extensions E1 and E2 are equivalent, and write E1 ≡ E2, if there exists a group
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homomorphism f : E1 −→ E2 making the following diagram commutative:

0 V E1 G 1

0 V E2 G 1

f

Note that, in this case, the homomorphism f must be an isomorphism. Nevertheless,
it is possible to have isomorphic extensions that are not equivalent. Define the set

XExt1R(G, V ) = {0 −→ V −→ E −→ G −→ 1}/ ≡

of equivalence classes of extensions of G by V . Then, it can be shown that there is a
one-to-one correspondence

H2(G,M) ∼= XExt1R(G, V ).

The correspondence between H2(G, V ) and XExt1R(G, V ) can be described using the
normalized bar resolution. We will explain how to obtain an extension from a 2-
cocycle, for a description of the inverse process see [Bro82, Section IV.3]. Given a
normalized 2-cocycle φ ∈ C̄2(G, V ), we can construct a group Eφ with underlying set
G× V and multiplication given by

(g, v)(h,w) =
(
gh, h−1v + w + φ(g, h)

)
for g, h ∈ G and v, w ∈M . The group Eφ fits into the extension

0 V Eφ G 1,

and cocycles in the same cohomology class give rise to isomorphic extensions. Note
that in his book, Brown uses conjugation on the left, whereas we write conjugation
on the right, explaining why we write the factors of G×V in that order, and why we
need to take the inverse when defining the product in Eφ. It is possible to describe
all higher degree cohomology groups in terms of group extensions, as we will do in
Chapter 2.

1.2.2 Cup product

The key feature of group cohomology distinguishing it from homology is the fact
that we can define a product of cohomology classes. Equipped with this product,
cohomology acquires the structure of a ring.
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Assume that A is an RG-module that is also an R-algebra, with the product in A
compatible with the action of G. Then, we have a product

Hn(G,A)⊗R Hm(G,A) −→ Hn+m(G,A)

called cup product, which for cohomology classes φ ∈ Hn(G,A) and ψ ∈ Hm(G,A)
is denoted by φ ⌣ ψ ∈ Hn+m(G,A), see [Eve91, Chapter 3] for the details. The cup
product turns H•(G,A) into a graded-commutative R-algebra, i.e. given homogeneous
elements φ, ψ ∈ H•(G,A), we have that φ ⌣ ψ = (−1)degφ degψψ ⌣ φ. Furthermore,
induced morphisms in cohomology are compatible with the cup product. When R is
a noetherian ring, H•(G,R) is a finitely generated R-algebra (see [Eve91, Corollary
7.4.6]).

Remark 1.18. Graded-commutative rings of characteristic 2 are commutative in
the classical sense. Otherwise, when the characteristic is not 2, every homogeneous
element of odd degree in a graded-commutative ring is nilpotent.

Examples 1.19. (i) When using the bar resolution, the cup product can be easily
computed. Let φ ∈ Zr(G,R) and ψ ∈ Zs(G,R) represent two cohomology
classes in H•(G,R). Their cup product is given by

(φ ⌣ ψ)[g1| · · · |gr+s] = φ[g1| · · · |gr]ψ[gr+1| · · · |gr+s].

(ii) Let Cn = ⟨σ⟩ be the finite cyclic group of order n ≥ 1 and A be an RCn-module
with a compatible product over R. After having computed the cohomology
groups of Cn in Example 1.17, following [Eve91, Section 3.2] we can compute
its cohomology ring. The cup product of cohomology classes φ̄ ∈ Hr(G,A) and
ψ̄ ∈ Hs(G,A), represented by elements φ, ψ ∈ A, is given by

φ̄ ⌣ ψ̄ =


φψ, if r or s is even,∑
0≤i≤j<n

(σiφ)(σjψ), if r, s are odd.

Assume that we have a cyclic group of prime power order Cpn with n ≥ 1,
and take R = Fp. From the previous discussion, we can compute the mod-p
cohomology algebra

H•(Cpn ,Fp) =

{
F2[x], if p = 2 and n = 1,

Λ(x)⊗Fp Fp[y], if p > 2 or n > 1,

where deg x = 1 and deg y = 2. Here, Λ(x) denotes the exterior Fp-algebra
generated by x.
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In the case when the base ring is a field, it is possible to compute the cohomology
of direct products in terms of the cohomologies of the factors. See [Eve91, Section
2.5] for a more general version of the following result.
Theorem 1.20 (Künneth Formula). Let G1 and G2 be finite groups and K be a field.
There is a natural isomorphism of graded K-algebras

H•(G1 ×G2, K) ∼= H•(G1, K)⊗K H•(G2, K).

We will now give some examples of mod-p cohomology rings of finite p-groups.
Examples 1.21. (i) Let G = Cpn1 × · · · × Cpnr be an abelian p-group of rank r,

and let s be the rank of G2. Using the description of the mod-p cohomology
ring of cyclic p-groups in Example 1.19(ii) and Theorem 1.20, we can see that
the mod-p cohomology ring of G is given by

H•(G,Fp) =

{
Λ(x1, . . . , xs)⊗ F2[y1, . . . , ys, xs+1, . . . , xr], if p = 2,

Λ(x1, . . . , xr)⊗ Fp[y1, . . . , yr], if p > 2,

with deg xi = 1 and deg yi = 2 for i = 1, . . . , r.

(ii) In [Wei00], Weigel gave a characterization, for p odd, of the finite p-groups that
have the same mod-p cohomology algebra as a finite abelian p-group. Those
are precisely the powerful p-central p-groups with the Ω-extension property.

(iii) Let D2n be the dihedral group of order 2n with n ≥ 3. Then, its mod-2 coho-
mology ring is given by

H•(D2n ,F2) =
F2[x, y, z]

(xy)

with deg x = deg y = 1 and deg z = 2, see [AM03, Theorem IV.2.7].

(iv) Let Q2n be the generalized quaternion group of order 2n with n ≥ 4. Then, its
mod-2 cohomology ring is given by

H•(Q2n ,F2) =
F2[x, y, z]

(xy, x3 + y3)

with deg x = deg y = 1 and deg z = 4, see [AM03, Theorem IV.2.11].

(v) Let G = C3 ⋉ (C3 × C3) be the extraspecial 3-group of order 27 and exponent
3. The explicit mod-3 cohomology ring of G was computed by Leary in [Lea92,
Theorem 7], where he gave a presentation of H•(G,F3) as a graded-commutative
F3-algebra consisting of 9 generators subject to 23 relations.
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1.2.3 Bockstein homomorphisms

Group cohomology is defined as an Ext functor and, as such, it possesses the ability
to turn short exact sequences of modules into long exact sequences of cohomology
groups. As a consequence of Theorem 1.12, given a finite group G and a short exact
sequence of RG-modules

0 V1 V2 V3 0,ι π

we obtain a long exact sequence

0 H0(G, V1) H0(G, V2) H0(G, V3)

Hn(G, V1) Hn(G, V2) Hn(G, V3)

Hn+1(G, V1) Hn+1(G, V2) Hn+1(G, V3) · · ·

ι∗ π∗

ι∗ π∗

δ

ι∗ π∗

where for each n ≥ 0, the connecting homomorphism δ : Hn(G, V3) −→ Hn(G, V1) is
obtained as follows (see [Wei94, Section 1.3]). Let P• −→ R be a projective resolution
of the trivial RG-module. Given a cohomology class in φ ∈ Hn(G, V3) represented by
a homomorphism φ : Pn −→ V3, we can lift it to a homomorphism φ̂ : Pn −→ V2 such
that π ◦ φ̂ = φ, although φ̂ need not represent a cohomology class in Hn(G, V2). Now,
we can define

δ(φ) = ι−1 ◦ d(φ̂). (1.4)
A family of important examples of connecting homomorphisms are the Bockstein

homomorphisms. Given n ≥ 1, consider the short exact sequence of ZG-modules

0 Fp Z/pn+1Z Z/pnZ 0.
·pn π

This induces a long exact sequence in cohomology with connecting homomorphism
βn : Hr(G,Z/pnZ) −→ Hr+1(G,Fp) called the n-th order Bockstein homomorphism.
If n = 1, the first Bockstein is simply refered to as the Bockstein homomorphism and
denoted by β. Observe that β : Hr(G,Fp) −→ Hr+1(G,Fp) is defined on the elements
of H•(G,Fp), and it is one of the Steenrod operations (see [CTVZ03, Chapter 7]). If
n ≥ 2, from the commutative diagram

0 Fp Z/pnZ Z/pn−1Z 0

0 Fp Z/pn+1Z Z/pnZ 0

·pn−1

·p ·p

·pn
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we obtain that

· · · Hr(G,Z/pnZ) Hr(G,Z/pn−1Z) Hr+1(G,Fp) · · ·

· · · Hr(G,Z/pn+1Z) Hr(G,Z/pnZ) Hr+1(G,Fp) · · ·

βn−1

βn

and an element φ ∈ Ker βn−1 can be lifted to an element φ̃ ∈ H•(G,Z/pnZ) such that
π∗(φ̂) = φ. In this case, we can define βn(φ) = βn(φ̂). Therefore, given an element
φ ∈ Hr(G,Fp), we can define inductively βn(φ) ∈ Hr+1(G,Fp) whenever βi(φ) is well
defined for all i = 1, . . . , n− 1 and φ ∈ Ker βn−1, in which case we can lift φ to some
element φ̃ ∈ Hr(G,Z/pnZ) such that π∗(φ̃) = φ, and write βr(φ) = βr(φ̃).

The Bockstein homomorphisms allow us to give a more explicit description of the
mod-p cohomology algebra of a cyclic p-group. Indeed, write Cpn = ⟨σ⟩ for n ≥ 1.
We have that H1(Cpn ,Fp) = ⟨x⟩, where x = σ∗. It is possible to lift x to some element
x̃ ∈ H1(Cpn ,Z/piZ) such that π ◦ x̃ = x if and only if i ≤ n. Therefore, βi(x) = 0 for
all i = 1, . . . , n−1 and βn(x) ̸= 0. Using the bar resolution, βn(x) can be represented
explicitly by the 2-cocycle given by

βn(x)(σ
i, σj) = p−n

(
i+ j − (i+ j mod pn)

)
.

Here, the exponents i, j ∈ {0, . . . , pn − 1} should be considered integers when doing
the computations. Thus, we have that H2(Cpn ,Fp) = ⟨βn(x)⟩ and, for p ≥ 3 and
n ≥ 1, or p = 2 and n ≥ 2, we can write

H•(Cpn ,Fp) = Λ(x)⊗Fp Fp
[
βn(x)

]
.

For p = 2 and n = 1, the first Bockstein is given by

β1(x) = x2.

1.2.4 Extensions of elementary abelian p-groups

We will now classify the extensions of an elementary abelian p-group with kernel
Fp using the knowledge we have obtained from its mod-p cohomology algebra. For
simplicity, we will restrict our attention to elementary abelian p-groups of rank two.

Let p be an odd prime and

G = Cp × Cp = ⟨a, b | ap = bp = [a, b] = 1⟩
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be an elementary abelian p-group of rank two. Then, if we take a∗, b∗ ∈ Hom(G,Fp)
as in (1.3), we have that

H2(G,Fp) = ⟨β(a∗), β(b∗), a∗ ⌣ b∗⟩.

We can classify the different types of extensions in XExt1Fp
(G,Fp) up to isomorphism.

We will use multiplicative notation for the trivial FpG-module V = Cp = ⟨c⟩. Con-
sider a cohomology class

φ = λβ(a∗) + µβ(b∗) + νa∗ ⌣ b∗ ∈ H2(G,Fp)

with λ, µ, ν ∈ Fp. As we discussed in Section 1.2.1, the extension Eφ has underlying
set G× V and, using multiplicative notation, the group operation is given by

(ai1bj1 , ck1)(ai2bj2 , ck2) = (ai1+i2bj1+j2 , ck1+k2+φ(a
i1bj1 ,ai2bj2 ))

for 0 ≤ i1, i2, j1, j2, k1, k2 ≤ p− 1. Consider the elements

ã = (a, 1), b̃ = (b, 1), c̃ = (1, c).

Firstly, it is clear that
c̃p = [ã, c̃] = [b̃, c̃] = 1.

Furthermore, for 0 ≤ i ≤ p− 1 we can compute

φ(ai, a) = λβ(a∗)(ai, a) =

{
0, if 0 ≤ i ≤ p− 2,

λ, if i = p− 1,

which allows us to show inductively that

ãi = (ai, 1), ãp = (1, cλ) = c̃λ.

We can analogously show that b̃p = c̃µ. Finally, we have that

ãb̃ = (a, 1)(b, 1) = (ab, cν) = (b, 1)(a, 1)(1, c) = b̃ãc̃ν ,

and hence [ã, b̃] = c̃ν . Consequently, we can write

Eφ = ⟨ã, b̃, c̃ | c̃p = [ã, c̃] = [b̃, c̃] = 1, ãp = c̃λ, b̃p = c̃µ, [ã, b̃] = c̃ν⟩. (1.5)

There are four possible isomorphism types for the group Eφ depending on the values
of the parameters λ, µ, ν ∈ Fp. This can be seen by comparing the presentation (1.5)
to the four different isomorphism types of p-groups of order p3 and exponent at most
p2, see [Bur11, Section VIII.112].
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(i) If λ = µ = ν = 0, then

Eφ ∼= Cp × Cp × Cp = ⟨x, y, z | xp = yp = zp = [x, y] = [x, z] = [y, z] = 1⟩.

(ii) If λ ̸= 0 or µ ̸= 0, and ν = 0, then

Eφ ∼= Cp2 × Cp = ⟨x, y | xp2 = y2 = [x, y] = 1⟩.

(iii) If λ = µ = 0 and ν ̸= 0, then

Eφ ∼= Cp ⋉ (Cp × Cp) = ⟨x, y, z | xp = yp = zp = [x, z] = [y, z] = 1, [x, y] = z⟩.

(iv) If λ ̸= 0 or µ ̸= 0, and ν ̸= 0, then

Eφ ∼= Cp ⋉ Cp2 = ⟨x, y | xp = yp
2

= 1, [x, y] = yp⟩.

1.3 Introduction to spectral sequences

We will end the chapter by briefly introducing spectral sequences, which constitute
extremely powerful computational tools from homological algebra with applications
in a multitude of areas throughout mathematics. As such, their definition and initial
properties can be rather generic and abstract. For this reason, after introducing the
most important notation and terminology, we will quickly move on to discussing the
Lyndon-Hochschild-Serre spectral sequence. This specific spectral sequence is one of
the main tools for computing group cohomology, and will take center stage during
Chapters 4 and 5. For a more detailed discussion of spectral sequences, see [McC01]
and [Eve91, Chapter 7].

Definition 1.22. We say that an R-module V is bigraded if there are R-submodules
V r,s ≤ V for all integers r, s ≥ 0 such that V =

⊕
r,s≥0 V

r,s. The elements of V r,s for
some r, s ≥ 0 are called homogeneous and, given v ∈ V r,s \{0}, we write deg v = r+s
and say that v has (total) degree r + s.

An R-algebra A is bigraded if it is bigraded as an R-module and we have that
Ar,sAr

′,s′ ⊆ Ar+r
′,s+s′ for all r, r′, s, s′ ≥ 0.

Definition 1.23. A (first quadrant) (cohomological) spectral sequence is a family of
bigraded R-modules {(Ek, dk) | k ≥ 0} where dk : E

r,s
k −→ Er+k,s−k+1

k satisfies that
dk ◦ dk = 0, and such that Ek+1 = H•(Ek, dk) for all k ≥ 0. For each k ≥ 0, we say
that Ek is the k-th page of the spectral sequence and dk is the k-th differential.
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We will usually omit the differentials, and simply write E instead of {(Ek, dk)} for
the spectral sequence. Our spectral sequence E is concentrated in the first quadrant,
i.e. Er,s

k ̸= 0 only if r, s ≥ 0. Thus, for each r, s ≥ 0 there is some kr,s ≥ 0 such that
Er,s
k = Er,s

kr,s
for all k ≥ kr,s. We will write Er,s

∞ = Er,s
kr,s

and say that E∞ is the infinity
page of E. Furthermore, we will say that E collapses if there is some k0 ≥ 0 such
that dk = 0 for all k ≥ 0, in which case Ek0 = E∞.

Definition 1.24. Let H• be a graded R-module. We say that the spectral sequence
E converges to H• if there is a filtration of graded R-submodules FH• of H• with

0 = F n+1Hn ⊆ F nHn ⊆ · · · ⊆ F 0Hn = Hn

for all n ≥ 0, such that
Er,s

∞ = F rHr+s/F r+1Hr+s (1.6)
for all r, s ≥ 0. We write

Er,s
2 =⇒ Hr+s.

In general terms, the fact that the spectral sequence E converges to H• means that
the infinity page E∞ is the graded object associated to some filtration of H•. The
philosophy of working with spectral sequences is that we want to compute a certain
object which is hard to compute, and we find a spectral sequence whose second page
is easy to compute, and that converges to the object in which we are interested. This
is nonetheless notoriously difficult, for two main reasons. Firstly, we usually have no
information on the differentials, nor how to compute them, making it a considerable
challenge to obtain the infinity page. Even after we have solved this problem, there
is still a lifting problem (going from the graded object to the filtered one) stemming
from (1.6). In principle, we might have multiple non-isomorphic filtered modules
whose associated graded object is the same. Nonetheless, if we are working over a
field K, this problem disappears, and we can completely recover the graded K-vector
space H• from the infinity page with

Hn ∼=
r⊕
r=0

Er,n−r
∞

for every n ≥ 0.

1.3.1 Lyndon-Hochschild-Serre spectral sequence

We are interested in computing group cohomology and, therefore, we will focus on the
Lyndon-Hochschild-Serre spectral sequence, which helps us compute the cohomology
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of a group that can be obtained as an extension. See [Eve91, Section 7.2] for a detailed
exposition. Let

1 N G Q 1 (1.7)

be an extension of finite groups.

Theorem 1.25. There is a spectral sequence associated to the extension (1.7) of the
form

Er,s
2 = Er,s

2 (G) = Hr
(
Q,Hs(N, V )

)
=⇒ Hr+s(G, V ).

The spectral sequence in Theorem 1.25 is called the Lyndon-Hochschild-Serre spec-
tral sequence (LHS spectral sequence for short) of the extension (1.8). Even though
we tend to start at the second page, the zeroth and first pages of E can be identified
as follows. Let Y• −→ R be a projective RQ-resolution and P• −→ R be a projective
RG-resolution. Then, we have that

Er,s
0 = HomRQ

(
Yr,HomRN(Ps, V )

)
,

Er,s
1 = HomRQ

(
Yr,H

s(N, V )
)
. (1.8)

Assume that V is a noetherian R-module. Then, Ek is a noetherian R-module for all
k ≥ 2 [Eve91, Lemma 7.4.3]. Furthermore, the spectral sequence E always collapses
[Eve91, Lemma 7.4.4].

When taking coefficients on the trivial module, the LHS spectral sequence not only
preserves the structure as an R-module of H•(G,R), but also the cup product. Indeed,
for every k ≥ 2, the page Ek is a bigraded R-algebra, the differential dk satisfies that

dk(xy) = dk(x)y + (−1)deg xx dk(y)

for all homogeneous x, y ∈ Ek, and the product on Ek+1 is induced by the one on
Ek. This in turn induces a product on E∞ that coincides with the one coming from
the filtration on the ring H•(G,R), which also preserves the product. Moreover, the
product Er,s

2 ⊗Er′,s′

2 −→ Er+r′,s+s′

2 on the second page is given by φφ′ = (−1)r
′sφ ⌣ φ′,

where ⌣ denotes the ordinary cup product in cohomology.
As mentioned earlier, if K is a field, we can recover the graded K-vector space

H•(G,K) from just E∞. It is in general not possible to compute the cup product on
H•(G,K) just from the spectral sequence, without additional information. Neverthe-
less if K is a finite field, then the ring structure of H•(G,K) is determined by that of
E∞ within a finite number of possibilities [Car05, Theorem 2.1].

We will focus on the problem of computing the differentials in the LHS spectral
sequence in Chapters 4 and 5, where we will see some results that give us explicit
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ways to compute the second differential of some specific types of group extensions.
Nonetheless, we will finish by mentioning some general properties of the LHS spectral
sequence that can be exploited to compute the differentials of some specific elements.
The differential d0,1

2 : E0,1
2 −→ E2,0

2 can be computed explicitly from the class of the
extension (1.7), see [Eve91, Lemma 7.3.1] for details. In particular, if the extension is
split then d0,1

2 = 0. Another property that will be useful when computing differentials
is the fact that the LHS spectral sequence is functorial, in the following sense: given
a morphism of group extensions of the form

1 N1 G1 Q1 1

1 N2 G2 Q2 1

and an RG2-module V , for every k ≥ 2 there are induced homomorphisms of bi-
graded R-algebras Ek(G2) −→ Ek(G1) that commute with the differentials. These
homomorphisms coincide with the corresponding induced morphisms on cohomology.
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2
Cohomology via extensions

In this chapter, we will describe the cohomology of a finite group in terms of exten-
sions. First, we will give the classical description of Ext using Yoneda extensions.
Afterwards, we will introduce crossed extensions in order to describe cohomology
groups. We will then combine both concepts by defining a product of Yoneda exten-
sions with crossed extensions that coincides with the usual cup product in cohomol-
ogy. For a more detailed account of these topics, we refer to [Mac63, Chapter III] and
[Niw92] for information about Yoneda extensions; and [Hol79], [Hue80] and [Niw92]
for a discussion of crossed extensions.

2.1 Yoneda extensions

Let G be a finite group and R be a commutative ring with unity. In this section,
we will describe the classical characterization of the Ext functor using extensions of
modules, originaly due to Yoneda [Yon92].
Definition 2.1. Let V and W be RG-modules. For every integer n ≥ 1, a Yoneda
n-fold extension φ of W by V is an exact sequence of RG-modules of the form

φ : 0 V Mn · · · M1 W 0.

We can define an equivalence relation between Yoneda extensions as follows. Let V
and W be RG-modules and n ≥ 1 be an integer. Given two n-fold Yoneda extensions
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φ and φ′ of W by V , we write φ =⇒ φ′ if there is morphism of Yoneda n-fold
extensions φ −→ φ′ of the following form:

φ : 0 V Mn · · · M1 W 0

φ′ : 0 V M ′
n · · · M ′

1 W 0

More generally, we say that φ is equivalent to φ′, and write φ ≡ φ′, if there is a chain
of Yoneda n-fold extensions of W by V and morphisms of the form

φ =⇒ φ1 ⇐= φ2 =⇒ · · · ⇐= φr−1 =⇒ φr ⇐= φ′.

It is not difficult to see that this does indeed define an equivalence relation on the set
of Yoneda n-fold extensions of W by V , and the set of all Yoneda n-fold extensions
of W by V up to equivalence will be denoted by YExtnRG(W,V ).

In fact, the equivalence between two extensions can be described in a simpler way.

Proposition 2.2. Let V and W be RG-modules and n ≥ 1 be an integer. Given two
Yoneda n-fold extensions φ and φ′ of V by W , we have that φ ≡ φ′ if and only if
there is a Yoneda n-fold extension φ1 of V by W such that φ ⇐= φ1 =⇒ φ′.

Proof. We only need to show that given Yoneda n-fold extensions φ, φ′, φ′′, φ1, φ2 of
W by V such that φ ⇐= φ1 =⇒ φ′ and φ′ ⇐= φ2 =⇒ φ′′, there is another
Yoneda n-fold extension φ3 of W by V such that φ ⇐= φ3 =⇒ φ′′. Suppose then
that we have φ ⇐= φ1 =⇒ φ′ and φ′ ⇐= φ2 =⇒ φ′′, which is summarised in
the following commutative diagram:

0 V Mn · · · M1 W 0

0 V Xn · · · X1 W 0

0 V Nn · · · N1 W 0

0 V Yn · · · Y1 W 0

0 V Ln · · · L1 W 0

ρn ρ0

χn

µn

λn

χ0

µ1

λ1

τn τ0

σn

νn

ηn

σ0

ν1

η1

κn κ0
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Consider, for each i = 1, . . . , n, the RG-module

Zi =
{
(xi, yi) ∈ Xi ⊕ Yi | µi(xi) = ηi(yi)

}
.

Then, can write the following commutative diagram:

0 V Mn · · · M1 W 0

0 V Zn · · · Z1 W 0

0 V Ln · · · L1 W 0

ρn ρ0

χn×σn

νn

λn

χ0

ν1

λ1

κn κ0

We have thus constructed a Yoneda n-fold extension φ3 of W by V with morphisms
φ ⇐= φ3 =⇒ φ′′.

Remark 2.3. It is well known that YExtnRG(W,V ) ∼= ExtnRG(W,V ), but we will use
the notation YExt to emphasize that we are considering the description of Ext in
terms of Yoneda extensions.

We can see that YExtRG(−,−) is functorial on both components. Let V , V ′, W and
W ′ be RG-modules and n ≥ 1 be an integer. Consider the n-fold Yoneda extension
φ ∈ YExtnRG(W,V ) represented by

0 V Mn · · · M2 M1 W 0.
ρn ρ1 ρ0

On the one hand, given an RG-module homomorphism α : V −→ V ′, we say that
φ′ ∈ YExtnRG(W,V

′) is a pushout of φ via α if there is a morphism φ −→ φ′ of the
following form:

φ : 0 V Mn · · · M1 W 0

φ′ : 0 V ′ M ′
n · · · M ′

1 W 0

α

We can always construct the pushout α∗φ ∈ YExtnRG(W,V
′) represented by the ex-

tension

0 V ′ N Mn−1 · · · M1 W 0,

29



where
N =

Mn × V ′{(
ρn(v),−α(v)

)
| v ∈ V

} .
On the other hand, given an RG-module homomorphism ζ : W ′ −→ W , we say

that φ′ ∈ YExtnRG(W
′, V ) is a pullback of φ via ζ if there is a morphism φ −→ φ′ of

the following form:

φ : 0 V M ′
n · · · M ′

1 W ′ 0

φ′ : 0 V Mn · · · M1 W 0

ζ

We can always take the pullback ζ∗φ ∈ YExtnRG(W
′, V ) represented by the extension

0 V Mn · · · M2 N W ′ 0,

where
N =

{
(x,w′) ∈M1 ×W ′ | ρ0(x) = ζ(w′)

}
.

Pushouts and pullbacks always exist as we have already mentioned, and are unique
up to equivalence of extensions, see [Mac63, Lemmas 1.2 and 1.4, and Section III.5].
Therefore, given α : V −→ V ′, we can define a morphism α∗ : YExt•RG(W,V ) −→
YExt•RG(W,V

′) via the pushout construction. Analogously, given ζ : W ′ −→ W ,
there is a morphism ζ∗ : YExt•RG(W,V ) −→ YExt•RG(W

′, V ) defined via the pullback
construction.

Additionally, given RG-modules V and W , the set YExtnRG(W,V ) can be given
the structure of an abelian group for every n ≥ 1. Suppose that we have two n-fold
Yoneda extensions φ, φ′ ∈ YExtnRG(W,V ). Then, we can construct its direct product
φ × φ′ ∈ YExtnRG(W ×W,V × V ) in the obvious way. Now, consider the diagonal
homomorphism ∆W : W −→ W ×W defined by

∆W (w) = (w,w)

for b ∈ W , and the codiagonal homomorphism ∇V : V × V −→ V defined by

∇V (v1, v2) = v1 + v2

for v1, v2 ∈ V . We define the Baer sum of φ and φ′ to be the Yoneda extension

φ+ φ′ = (∇V )∗(∆W )∗(φ× φ′) ∈ YExtnRG(W,V ).

30



Equipped with the Baer sum, the set YExtnRG(W,V ) acquires the structure of an
abelian group for every n ≥ 1 [Mac63, Theorem 5.3]. Furthermore, the zero element
0 ∈ YExtnRG(W,V ) is the Yoneda extension

0 V V ×W W 0

for n = 1, and

0 V V 0 · · · 0 W W 0

for n > 1. If φ ∈ YExtnRG(W,V ) is the Yoneda extension

0 V Mn Mn−1 · · · M1 W 0,
ρn ρn−1 ρ0

then its opposite −φ ∈ YExtnRG(W,V ) is the extension

0 V Mn Mn−1 · · · M1 W 0.
−ρn ρn−1 ρ0

Theorem 2.4 ([Mac63, Theorem 6.4]). Let V and W be RG-modules. Then, for
every n ≥ 1 there is a group isomorphism ExtnRG(W,V ) ∼= YExtnRG(W,V ) that is
natural in both V and W .

Remark 2.5. We can describe the isomorphism Ψ: ExtnRG(W,V ) −→ YExtnRG(W,V )
explicitly. Let P• −→ W be a projective resolution of W , and consider the RG-module

Ωn =
Pn

Ker ∂n
∼= Im ∂n. (2.1)

An element ξ ∈ ExtnRG(W,V ) can thus be represented by an RG-module homomor-
phism ξ : Ωn −→ V . Consider the n-fold Yoneda extension ψ ∈ YExtnRG(W,Ωn)
represented by

0 Ωn Pn−1 · · · P0 W 0. (2.2)

Then, we define Ψ(ξ) = ξ∗(ψ).

We can use Theorem 2.4 to give an alternative characterization of the cohomology
of a finite group.

Corollary 2.6. Let G be a finite group and V be an RG-module. Then, for every
n ≥ 1 there is a group isomorphism Hn(G, V ) ∼= YExtnRG(R, V ) that is natural in V .
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As an example, we can describe explicitly how to construct the 1-fold Yoneda
extension in YExt1RG(R,R) associated to a cohomology class in H1(G,R).
Example 2.7. Let G be a finite group, and take φ ∈ H1(G,R) = Hom(G,R). Let
Ψ: Ext1RG(R,R) −→ YExt1RG(R,R) be the isomorphism in Remark 2.5. The 1-fold
Yoneda extension Ψ(ξ) is of the form

0 yR M1 xR 0, (2.3)

where x and y are the R-basis elements in the corresponding modules. As an R-
module, M1 is free of rank two, and we can write M1 = xR ⊕R yR. In order to
determine the structure of M1 as an RG-module, the only thing left to do is to
compute the action of G on x, y ∈M1. Because G acts trivial on both xR =M1/yR
and yR ≤M1, the action of g ∈ G on M1 is given by

g · x = x+ λy, g · y = y

with λ ∈ R. Now, consider the bar resolution B•G −→ R as defined in Section 1.2.1.
Then, P0 = RG and the RG-module Ω1 defined as in (2.1) is nothing more than the
augmentation ideal (G − 1)RG ≤ RG. Thus, the pushout of the extension (2.2) by
φ is given by the following diagram:

0 Ω1 RG R 0

0 yR M1 xR 0

φ

ε

φ⊕ε

From this, we can easily deduce that λ = φ(g), and so the action of g ∈ G on M1 is
given by

g · x = x+ φ(g)y, g · y = y.

We will now see how to define a product of Yoneda extensions. Let V , W and U
be RG-modules and n,m ≥ 1. Take φ ∈ YExtnRG(W,V ) and φ′ ∈ YExtmRG(U,W ).
Then, if φ ∈ YExtnRG(W,V ) is of the form

0 V Nn · · · N1 W 0

and φ′ ∈ YExtmRG(U,W ) is of the form

0 W Mm · · · M1 U 0,

we define their Yoneda product φ ⌣ φ′ ∈ YExtn+mRG (U, V ) as the extension

0 V Nn · · · N1 Mm · · · M1 U 0.
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Proposition 2.8. Let V , W and U be RG-modules and n,m ≥ 1. Then, the Yoneda
product gives a bilinear pairing

YExtnRG(W,V )⊗ YExtmRG(U,W ) YExtn+mRG (U, V ).

In particular, given an RG-module V then YExt•RG(V, V ) has the structure of a
graded ring with unity when equipped with the Yoneda product.

Remark 2.9. It is easy to see that any Yoneda n-fold extension can be decomposed
in a unique way as a Yoneda product of n Yoneda 1-fold extensions.

We thus have two different products defined on H•(G,R), the Yoneda product and
the cup product. These two products are actually the same, see [Ben91, Proposition
3.2.1].

Theorem 2.10. Let G be a finite group and n,m ≥ 1. Then, the Yoneda product

YExtnRG(R,R)⊗ YExtmRG(R,R) YExtn+mRG (R,R)

coincides with the cup product

Hn(G,R)⊗ Hm(G,R) Hn+m(G,R).

Moreover, for a fixed RG-module W , the Yoneda product turns YExt•RG(W,−)
into a δ-functor, where the connecting homomorphism associated to a short exact
sequence is nothing more than multiplying by said short exact sequence on the left
[Mac63, Theorem 9.1].

2.2 Crossed extensions

In Section 1.2.1, we saw how to identify the elements of the second cohomology group
as group extensions. In this section, we will see how to generalize this characteriza-
tion for higher degree cohomology groups, using the concept of crossed extensions.
We remark that most of the properties and constructions of crossed extensions are
analogues to those of Yoneda extensions.

Definition 2.11. Let M1 and M2 be groups with M1 acting on M2. A crossed mod-
ule is an M1-invariant group homomorphism ρ : M2 −→ M1 satisfying the following
properties:
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(i) ρ(y2)x2 = x
y−1
2

2 for all x2, y2 ∈M2, and

(ii) ρ(x1x2) = ρ(x2)
x−1
1 for all x1 ∈M1 and x2 ∈M2.

Definition 2.12. Let G be a finite group, V be an RG-module and n ≥ 2 be an
integer. A crossed n-fold extension of G by V is an exact sequence of groups ψ of the
form

ψ : 0 V Mn · · · M2 M1 G 1,
ρn ρ1

satisfying the following conditions:

(i) ρ1 : M2 −→M1 is a crossed module,

(ii) Mi is an RG-module for every i = 3, . . . , n, and

(iii) ρi is an RG-module homomorphism for every i = 2, . . . , n.

A crossed 1-fold extension of G by V is a group extension

ψ : 0 V M G 1.

Example 2.13. LetG be a finite group with center Z(G) and group of automorphisms
Aut(G). If we denote by Out(G) the quotient of Aut(G) by the subgroup Inn(G) of
inner automorphisms, i.e. the automorphisms induced by conjugation by elements of
G. Then, we have a crossed 2-fold extension of Out(G) by Z(G) of the form

1 Z(G) G Aut(G) Out(G) 1.

We can define an equivalence relation between crossed extensions as for Yoneda
extensions. Firstly, a morphism of crossed n-fold extensions is a morphism of exact
sequences of groups

0 V Mn · · · M2 M1 G 1

0 V ′ M ′
n · · · M ′

2 M ′
1 G′ 1

fn+1 fn f2 f1 f0

such that fi is an RG-module homomorphism for every i = 3, . . . , n + 1, and f1 and
f2 are compatible with the actions of M1 and M ′

1 on M2 and M ′
2, respectively. Now,
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let ψ and ψ′ be crossed n-fold extensions of G by V . If we have a morphism of crossed
extensions ψ −→ ψ′ of the form

ψ : 0 V Mn · · · M1 G 1

ψ′ : 0 V M ′
n · · · M ′

1 G 1

we write ψ′ =⇒ ψ′. In general, we say that ψ is equivalent to ψ′, and write ψ ≡ ψ′,
if there is a chain of crossed n-fold extensions of G by V and morphisms of the form

ψ =⇒ ψ1 ⇐= ψ2 =⇒ · · · ⇐= ψr−1 =⇒ ψr ⇐= ψ′.

This defines an equivalence relation. We will denote by XExtnR(G, V ) the set of all
crossed n-fold extensions of G by V up to equivalence.

For the case n = 2, we can use the following characterization of equivalent crossed
extensions.

Proposition 2.14 ([Hol79, Lemma 2.5]). Let G be a finite group and V be an RG-
module. Then, two crossed 2-fold extensions of G by V of the form

ψ : 0 V M2 M1 G 1
ρ2 ρ1 ρ0

ψ′ : 0 V N2 N1 G 1
τ2 τ1 τ0

are equivalent if and only if there exists a group X fitting into a commutative diagram
of the form

1 1

M2 M1

0 V X G 1

N2 N1

1 1

µ1

ρ1

ρ0ρ2

−τ2

ν1

ν2µ2

τ1

τ0

(2.4)

satisfying the following properties:
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(a) −τ2 : V −→ N2 is given by (−τ2)(a) = τ2(−a) for a ∈ V ,

(b) the diagonals are short exact sequences,

(c) µ1 ◦ ρ2(V ) = µ1(M2) ∩ µ2(N2), and

(d) conjugation in X coincides with the actions of both M1 on M2 and N1 on N2.

Remark 2.15. The previous theorem can be generalized for crossed n-fold extensions
with n ≥ 2, see [Hol79, Lemma 3.3]. The proof of these results can be used to prove
an analogue of Proposition 2.2 for crossed extensions.

Proposition 2.16. Let G be a finite group, V be an RG-module and n ≥ 2 be
an integer. Then, every element in XExtnR(G, V ) can be represented by a crossed
extension of the form

ψ : 0 V Mn · · · M2 M1 G 1,

with M2 abelian.

Analogous to the case of Yoneda extensions, XExtR(−,−) is functorial on both
components. Let G and G′ be finite groups, V and V ′ be RG-modules and n ≥ 1 be
an integer. Consider the n-fold crossed extension ψ ∈ XExtnR(G, V ) represented by

0 V Mn · · · M1 G 1.
ρn ρ0

On the one hand, given an RG-module homomorphism α : V −→ V ′, we say that
ψ′ ∈ XExtnR(G, V

′) is a pushout of ψ via α if there is a morphism ψ −→ ψ′ of the
following form:

0 V Mn · · · M1 G 1

0 V ′ M ′
n · · · M ′

1 G 1

α

We can always construct the pushout α∗ψ ∈ XExtnR(G, V
′) represented by the exten-

sion

0 V ′ N Mn−1 · · · M1 G 1,
ρ0

where
N =

Mn ⋉ V ′{(
ρn(v),−α(v)

)
| v ∈ V

}
36



with the action of Mn on V ′ being the one induced by ρ0 if n = 1, or trivial otherwise.
On the other hand, given a group homomorphism ζ : G′ −→ G, we say that ψ′ ∈

XExtnR(G
′, V ) is a pullback of ψ via ζ if there is a morphism ψ −→ ψ′ of the following

form:
0 V M ′

n · · · M ′
1 G′ 1

0 V Mn · · · M1 G 1

ζ

We can always take the pullback ζ∗ψ ∈ XExtnR(G
′, V ) represented by the extension

0 V Mn · · · M2 N G′ 1,

where
N =

{
(x, g′) ∈M1 ×G′ | ρ0(x) = ζ(g′)

}
.

As for Yoneda extensions, pushouts and pullbacks of crossed extensions are unique,
see [Hol79, Proposition 4.1]. Therefore, given α : V −→ V ′, we can define a morphism
α∗ : XExt•R(G, V ) −→ XExt•R(G, V

′) via the pushout construction. Analogously,
given ζ : G′ −→ G, there is a morphism ζ∗ : XExt•R(G, V ) −→ XExt•R(G

′, V ) defined
via the pullback construction.

Given an RG-module V , the set XExtnRG(G, V ) can be given the structure of an
abelian group for every n ≥ 1.

Suppose that we have two crossed extensions ψ, ψ′ ∈ XExtnR(G, V ). Then, we can
construct its direct product ψ×ψ′ ∈ XExtnR(G×G, V ×V ) in the obvious way. Now,
consider the diagonal homomorphism ∆G : G −→ G×G defined by

∆G(g) = (g, g)

for g ∈ G, and the codiagonal homomorphism ∇V : V × V −→ V defined by

∇V (v1, v2) = v1 + v2

for (v1, v2) ∈ V ×V . We define the Baer sum of ψ and ψ′ to be the crossed extension

ψ + ψ′ = (∇V )∗(∆G)
∗(ψ × ψ′) ∈ XExtnR(G, V ).

Equipped with the Baer sum, the set XExtnR(G, V ) acquires the structure of an abelian
group for every n ≥ 1 [Hol79]. The zero element 0 ∈ XExtnR(G, V ) is the crossed
extension

0 V G⋉ V G 1
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for n = 1, and

0 V V 0 · · · 0 G G 1

for n > 1. If ψ ∈ XExtnR(G, V ) is the crossed extension

0 V Mn Mn−1 · · · M1 G 1,
ρn ρn−1 ρ0

then its opposite −ψ ∈ XExtnR(G, V ) is the extension

0 V Mn Mn−1 · · · M1 G 1.
−ρn ρn−1 ρ0

Combining Theorem 2.4 with [Hol79, Theorem 4.5], we finally obtain that the
cohomology of a finite group can be expressed in terms of both Yoneda and crossed
extensions.

Theorem 2.17. Let G be a finite group. For every RG-module V and every integer
n ≥ 1, there are group isomorphisms

Hn+1(G, V ) ∼= YExtn+1
RG (R, V ) ∼= XExtnR(G, V )

that are natural in both G and V .

2.3 Product of Yoneda extensions and crossed extensions

We proceed now to define the analogous to the Yoneda product of two Yoneda exten-
sions, this time for a Yoneda extension with a crossed extension.

Definition 2.18. Let G be a finite group, V and W be RG-modules and n,m ≥ 1
be integers. Given a Yoneda n-fold extension φ ∈ YExtnRG(V,W ) represented by

0 W Nn · · · N1 V 0,

and a crossed m-fold extension ψ ∈ XExtmR (G, V ) represented by

0 V Mm · · · M1 G 1,

we define their Yoneda product φ ⌣ ψ as the extension

0 W Nn · · · N1 Mm · · · M1 G 1.
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Remark 2.19. It can be readily checked that the Yoneda product gives a well defined
bilinear pairing

⌣ : YExtnRG(V,W )⊗ XExtmR (G, V ) XExtn+mR (G,W )

by following the analogous proofs for the Yoneda product of two Yoneda extensions,
compare [Mac63, Section III.5] and [Hol79].

In order to show that the Yoneda product of Yoneda extensions with crossed ex-
tensions coincides with the usual cup product, we will use the universality of Ext as
a δ-functor.

For a fixed finite group G, we have that the functor XExt•R(G,−) is a universal
δ-functor with connecting homomorphism given by the Yoneda product, and starting
with XExt1R(G,−) = Ext2RG(R,−) [Hol79, Section 4]. Then, we apply Theorem 1.12
to obtain that(

XExt•R(G,−),⌣
) ∼= (Ext•+1

RG (R,−), δ
) ∼= (YExt•+1

RG (R,−),⌣
)
.

Because both Yoneda products coincide with the connecting homomorphism, they
must be the same, see also Remark 2.9.

Theorem 2.20. Let G be a finite group, V and W be RG-modules, and n,m ≥ 1.
Then, the Yoneda product

YExtnRG(V,W )⊗ XExtmR (G, V ) XExtn+mR (G,W )

coincides with the Yoneda product

YExtnRG(V,W )⊗ YExtmRG(R, V ) YExtn+mRG (R,W ).

Remark 2.21. In [Con85], Conrad defines an explicit correspondence between crossed
extensions and Yoneda extensions. In fact, starting with a crossed n-fold extension
ψ ∈ XExtnR(G, V ) written in the form of Proposition 2.16, he is able to construct a
(n+ 1)-fold Yoneda extension Υ(ψ) ∈ YExtn+1

RG (R, V ) in such a way that the map

Υ: XExtnR(G, V ) −→ YExtn+1
RG (R, V )

thus defined is an isomorphism for all n ≥ 2. It is possible to use this isomorphism
to give an alternative proof of Theorem 2.20, sidestepping the use of the machinery
of δ-functors. Indeed, this is the approach taken in [GGG22, Section 3.2].
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3
Carlson’s depth conjecture

In order to better understand the mod-p cohomology ring of a finite group G, we
can study its algebraic invariants, such as the Krull dimension or its more exotic
cousin, the depth. It is well known, from a result by Quillen, that the Krull dimen-
sion of the mod-p cohomology ring of G is simply the largest rank of an elementary
abelian p-subgroup of G. As such, the Krull dimension is completely determined by
the subgroup structure of the group G, and its computation does not require any
prior knowledge of the cohomology ring. The same cannot be said of the depth, the
computation of which usually requires determining the structure of the cohomology
ring beforehand. The lack of examples of computations of such rings in the literature
has thus proved a huge hurdle to the study of this invariant. While it is true that
some partial results exist bounding its value, so far no complete characterization of
the depth has been found. In [Car95], Carlson stated a conjecture that links the
computation of the depth of the cohomology ring of G to its detection by certain
families of subgroups of G. So far, the conjecture remains open. In this chapter, we
will introduce the concept of depth for the mod-p cohomology ring of a finite group
and state Carlson’s depth conjecture. Afterwards, we will compute the depth of the
mod-p cohomology rings of certain quotients of the pro-p group of maximal class that,
moreover, satisfy Carlson’s depth conjecture, using techniques from Chapter 2 and
without first computing the cohomology rings. This chapter is based on [GGG22].
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3.1 Depth detection in cohomology

In this section, we will give some background on the depth of mod-p cohomology
rings of finite groups and introduce Carlson’s depth conjecture. For a more thorough
introduction to the topic, see [CTVZ03, Chapter 12]. Let G be a finite group, n ≥ 1 be
an integer and x1, . . . , xn ∈ H•(G,Fp) \H0(G,Fp). We say that x1, . . . , xn is a regular
sequence if the element x1 is not a zero divisor in H•(G,Fp) and, for every i = 2, . . . , n,
the element xi is not a zero divisor in the quotient H•(G,Fp)/(x1, . . . , xi−1)H

•(G,Fp).

Definition 3.1. The depth of H•(G,Fp), denoted by depthH•(G,Fp), is the maximal
length of a regular sequence of elements of H•(G,Fp).

The computation of the depth of the graded-commutative ring can be reduced to
the computation of the depth of a (classical) commutative ring, so that all the classical
results about depth from commutative algebra hold (see for example [Eis95, Chapters
17 and 18]) and, in particular, every regular sequence can be extended to a regular
sequence of maximal length and the depth is well defined. Indeed, for p = 2 the ring
H•(G,F2) is commutative, so we can assume that p > 2. It is not difficult to see that,
in Definition 3.1, we can consider only sequences of homogeneous elements. Now,
since every element of odd degree is nilpotent, our regular sequences will consist only
of elements of even degree, and so

depthH•(G,Fp) = depth
∞⊕
r=0

H2r(G,Fp).

As we have already mentioned, the depth is related to the Krull dimension, but
while the Krull dimension can be computed simply by studying the structure of the
group, the same cannot be said about the depth, which is considerably more difficult
to compute. In general, this can only be achieved by first computing the cohomology
ring explicitly. Let us state Quillen’s classical result giving us the value of the Krull
dimension of the mod-p cohomology of a finite group, the proof of which can be found
in [CTVZ03, Corollary 8.4.7].

Theorem 3.2 (Quillen). Let G be a finite group and denote by r = rkpG the largest
integer such that G has an elementary abelian p-subgroup of rank r. Then, we have
that

dimH•(G,Fp) = r.

We will now see some examples of the value of the depth of the mod-p cohomology
rings of the p-groups in Example 1.21, and compare it to the Krull dimension.

42



Examples 3.3. (i) Let G be an abelian p-group with rkpG = r. Then, its mod-p
cohomology is given by

H•(G,Fp) =

{
Λ(x1, . . . , xs)⊗ F2[y1, . . . , yr], if p = 2,

Λ(x1, . . . , xr)⊗ Fp[y1, . . . , yr], if p > 2,

where s = rk2G
2. It is clear that y1, . . . , yr is a maximal regular sequence in

H•(G,Fp), and so depthH•(G,Fp) = r, which is equal to dimH•(G,Fp) = r.

(ii) Let D2n be the dihedral group of order 2n with n ≥ 3. Then, its mod-2 coho-
mology ring is given by

H•(D2n ,F2) =
F2[x, y, z]

(xy)

with deg x = deg y = 1 and deg z = 2. We can see that z constitutes a maximal
regular sequence, and so depthH•(D2n ,F2) = 1, whereas dimH•(D2n ,F2) = 2.

(iii) Let Q2n be the generalized quaternion group of order 2n with n ≥ 4. Then, its
mod-2 cohomology ring is given by

H•(Q2n ,F2) =
F2[x, y, z]

(xy, x3 + y3)

with deg x = deg y = 1 and deg z = 4. We can see that z constitutes a
maximal regular sequence, and so depthH•(Q2n ,F2) = 1, which is equal to
dimH•(Q2n ,F2) = 1.

(iv) Let G = C3 ⋉ (C3 × C3) be the extraspecial 3-group of order 27 and exponent
3. It is known (compare [Lea92] and [Min01]) that depthH•(G,F3) = 2, which
is equal to dimH•(G,F3) = 2.

We will now state some results that give upper and lower bounds on the value of
the depth of a mod-p cohomology ring of a finite group G. First, recall that a prime
ideal p ⊆ H•(G,Fp) is an associated prime of H•(G,Fp) if it is the annihilator of some
φ ∈ H•(G,Fp), i.e. it is of the form

p =
{
ψ ∈ H•(G,Fp) | φ ⌣ ψ = 0

}
.

The set of all associated primes of H•(G,Fp) is denoted by AssH•(G,Fp). We can
obtain an upper bound on the depth as follows (see [CTVZ03, Proposition 12.2.5]).
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Proposition 3.4. Let G be a finite group and p ∈ AssH•(G,Fp). Then, the following
inequality holds:

depthH•(G,Fp) ≤ dimH•(G,Fp)/p.

In particular, we have that

depthH•(G,Fp) ≤ dimH•(G,Fp).

There is also a lower bound on the depth, obtained by Duflot in [Duf81].

Proposition 3.5. Let G be a finite group such that p divides |G|. Given a Sylow
p-subgroup S ≤ G with center Z(S) ≤ S, we have that

1 ≤ rkp Z(S) ≤ depthH•(G,Fp).

In order to state Carlson’s depth conjecture, we need to introduce the concept of
detection in cohomology.

Definition 3.6. Let G be a finite group and let H be a collection of subgroups of G.
We say that H•(G,Fp) is detected by H if⋂

H∈H

Ker resG→H = 0.

The computation of the depth is intimately linked to detection on certain families
of subgroups. Given a finite group G and a subgroup E ≤ G, let CG(E) denote the
centralizer of E in G. For s ≥ 1, define the following:

Hs(G) =
{
CG(E) | E is an elementary abelian p-subgroup of G, rkpE = s

}
,

ωa(G) = min
{
dimH•(G,Fp)/p | p ∈ AssH•(G,Fp)

}
,

ωd(G) = max
{
s ≥ 1 | H•(G,Fp) is detected by Hs(G)

}
.

Theorem 3.7 ([Car95, Theorem 2.3]). Let G be a finite group. Then, the following
inequalities hold:

depthH•(G,Fp) ≤ ωa(G) ≤ ωd(G).

In fact, in the same article, Carlson conjectured that the previous inequalities are
actually equalities.

Conjecture 3.8 (Carlson). Let G be a finite group. Then, we have that

depthH•(G,Fp) = ωa(G) = ωd(G).
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Remark 3.9. The equality ωa(G) = ωd(G) always holds. This follows from combin-
ing Theorem 3.7 with [Car95, Remark 3.5(a)].

A particular case of Conjecture 3.8 was proven by Green in [Gre03, Theorem 0.1],
and Theorem 3.7 was generalized in the context of compact Lie groups (see [Kuh13,
Theorem 2.30] and [Kuh07, Theorem 2.13]) and saturated fusion systems (see [Hea20,
Theorem 4.16]).

3.2 Finite p-groups of mod-p cohomology depth at most 2

In this section, we will introduce the family of p-groups under study and provide an
initial bound on the depth of their mod-p cohomology. Let p be an odd prime number,
let Zp denote the ring of p-adic integers and let ζ be a primitive p-th root of unity.
Consider the cyclotomic extension Zp[ζ] of degree p − 1 and note that its additive
group is isomorphic to Zp−1

p . The cyclic group Cp = ⟨σ⟩ acts (on the right) on Zp[ζ]
via multiplication by ζ, i.e., for any x ∈ Zp, the action is given as xσ = ζx. Using the
ordered basis 1, ζ, . . . , ζp−2 in Zp[ζ] ∼= Zp−1

p , this action is given by multiplication by
the matrix 

0 1 0 . . . 0
0 0 1 . . . 0
... ... ... . . . ...
0 0 0 . . . 1
−1 −1 −1 . . . −1

 .

We form the semidirect product S = Cp ⋉ Zp−1
p , which is the unique pro-p group of

maximal nilpotency class. Note that this is the analogue of the infinite dihedral pro-2
group for the p odd case. Moreover, S is a uniserial p-adic space group with cyclic
point group Cp (compare [LM02, Section 7.4]). We write [x,k σ] = [x, σ, k. . . , σ] for the
iterated group commutator and γk for the k-th term of the lower central series. Set
N0 = Zp[ζ] and define, for each integer i ≥ 1, the subgroup

Ni = (ζ − 1)iZp[ζ] = [N0,i σ] = γi+1(S).

These are all the Cp-invariant subgroups of N0, and all successive quotients satisfy
that

Ni

Ni+1

∼=
Zp[ζ]

(ζ − 1)Zp[ζ]
∼= Cp.

Hence, |N0 : Ni| = pi for every i ≥ 0. For each integer r > 0, consider the quotient
N0/Nr = Zp[ζ]/(ζ − 1)rZp[ζ]. Since the subgroups Nr are Cp-invariant, we can form

45



the semidirect product
Gr = Cp ⋉

N0

Nr

. (3.1)

For each integer r with 1 < r < p, we can choose a minimal generating set for
N0/Nr as follows. Consider the elements

a1 = 1 +Nr, a2 = (ζ − 1) +Nr, . . . , ar = (ζ − 1)r−1 +Nr.

Using multiplicative notation, we obtain that

N0

Nr

= ⟨a1, . . . , ar⟩ ∼= Cp ×
r· · · × Cp,

and thus,
Gr = Cp ⋉

N0

Nr

∼= Cp ⋉ (Cp ×
r· · · × Cp),

generated by the elements σ, a1, . . . , ar satisfying the following relations:

• σp = api = [ai, aj] = [ar, σ] = 1, for all i = 1, . . . , r and j = 1, . . . , r − 1,

• [aj, σ] = aj+1 for all j = 1, . . . , r − 1.

The finite p-group Gr has size pr+1 and exponent p. Note that in particular, G2 is the
extraspecial group of size p3 and exponent p. In general, if we write r = (p−1) ·n+m
with n,m ≥ 0 integers such that m < p− 1, then Gr can be described as a semidirect
product

Gr = Cp ⋉ (Cpn+1 × m. . .× Cpn+1 × Cpn × p−m−1. . . × Cpn) = Cp ⋉
N0

Nr

,

where N0/Nr is the maximal abelian p-subgroup of Gr. Hence, if r > p− 1, then Gr

has size pr+1 and exponent bigger than p.
We can easily bound the depth of the mod-p cohomology of Gr using the results

from Section 3.1.

Proposition 3.10. For every integer r > 1, the following inequalities hold:

1 ≤ depthH•(Gr,Fp) ≤ 2.

Proof. The inequality 1 ≤ depthH•(Gr,Fp) holds by Proposition 3.5. Let us prove
that H•(Gr,Fp) ≤ 2. First, suppose that p = 3. Then, for every r > 1, we have that

rkp(Gr) = 2 = dimH•(Gr,Fp),
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and by Proposition 3.4, we conclude that depthH•(Gr,Fp) ≤ 2.
Now, suppose that p ≥ 5. It can be readily checked that, for any r > 1, every

elementary abelian p-subgroup E of Gr with rkp(E) = 3 satisfies that E ≤ N0/Nr,
and the centralizer is CGr(E) = N0/Nr. Therefore, for every such E, its centralizer
CGr(E) is contained in the maximal subgroup N0/Nr of Gr and the cohomology
class σ∗ ∈ H1(Gr,Fp) restricts to zero on every CGr(E). Hence, by Theorem 3.4, we
conclude that depthH•(Gr,Fp) < 3.

3.3 Finite p-groups of depth one mod-p cohomology

Until the end of Section 3.3, we assume that p > 3 is a prime number, that r is an
arbitrary but fixed integer satisfying 1 < r < p− 1, and that Gr is the finite p-group
described in (3.1). The aim of this section is to prove that depthH•(Gr,Fp) = 1.
To show the result, we construct a non-trivial mod-p cohomology class in H•(Gr,Fp)
that restricts trivially to the mod-p cohomologies of the centralizers of all rank 2
elementary abelian subgroups of Gr. Then, ωd(Gr) = 1 and Theorem 3.7 yields that
depthH•(Gr,Fp) = 1.

We begin by constructing a cohomology class θr ∈ H3(Gr,Fp) that is a cup product
of a Yoneda 1-fold extension and a crossed 1-fold extension. We will use multiplicative
notation and write Cp instead of Fp when seen as a subgroup rather than as a module.

We start by defining a cohomology class in H1(Gr,Fp) = Hom(Gr,Fp). To that
aim, consider the homomorphism σ∗ : Gr −→ Fp. Following Example 2.7, the class
σ∗ ∈ H1(Gr,Fp) can be represented by the Yoneda extension

1 Cp = ⟨ar+2⟩ Cp × Cp Cp = ⟨ar+1⟩ 1,

where the action of Gr on Cp × Cp = ⟨ar+1, ar+2⟩ is described by

for g ∈ Gr, set agr+1 = ar+1a
σ∗(g)
r+2 , agr+2 = ar+2.

We continue by defining a crossed 1-fold extension ηr ∈ H2(Gr,Fp) as follows. Let

λr :
N0

Nr+1

× N0

Nr+1

N0

Nr+1

be the alternating bilinear map satisfying

λr(ar−1, ar) = ar+1 and λr(ai, aj) = 0, for all i < j with (i, j) ̸= (r − 1, r).
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Now, define (N0/Nr+1)λr to be the group with underlying set N0/Nr+1 and with group
operation given by

x ·λr y = xyλr(x, y)
1/2

for x, y ∈ N0/Nr+1.

Remark 3.11. The group (N0/Nr+1)λr is an extension of the elementary abelian
group N0/Nr of rank r by Cp that, by following Section 1.2.4, can be identified with
the extension class a∗r−1 ⌣ a∗r ∈ H2(N0/Nr,Fp). Consequently, we can write

(N0/Nr+1)λr = ⟨a1, . . . , ar+1⟩

with the generators subject to the following relations:

• api = [aj, ak] = [ai, ar+1] = 1, for every i = 1, . . . , r + 1, j = 1, . . . , r and
k = 1, . . . , r − 2, and

• [ar−1, ar] = ar+1.

Finally, define the p-group Ĝr = Cp⋉(N0/Nr+1)λr of size |Ĝr| = pr+2 and exponent
p. Let ηr ∈ H2(Gr,Fp) be the cohomology class represented by the crossed 1-fold
extension

1 Cp = ⟨ar+1⟩ Ĝr Gr 1. (3.2)

Then, we define the cohomology class θr = σ∗ ⌣ ηr ∈ H3(Gr,Fp), which is represented
by the crossed 2-fold extension

1 Cp Cp × Cp Ĝr Gr 1. (3.3)

After constructing θr, we need to show that it is not trivial.

Proposition 3.12. The cohomology class θr constructed in (3.3) is non-trivial.

Proof. Assume by contradiction that θr = 0. Then, by Proposition 2.14 there exists
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a group X such that the following diagram commutes:

1 1

Cp × Cp Ĝr

1 Cp X Gr 1

Cp Gr

1 1.

µ ν

We have that X = ⟨σ̄, ā1, . . . , ār+2⟩ with elements σ̄, ā1, . . . , ār+1, ār+2 ∈ X that
satisfy

ār+2 = µ(ar+2), ν(σ̄) = σ and ν(āi) = ai for all i = 1, . . . , r + 1,

and we have that Z(X) = ⟨ār+2⟩ and γr(X) = ⟨ār, ār+1, ār+2⟩. Consider the normal
subgroup

Y = ⟨ār−1, ār, ār+1, ār+2⟩⊴X,

which fits into the following commutative diagram:

1 1

⟨ar+1, ar+2⟩ ⟨ar−1, ar, ar+1⟩

1 ⟨ar+2⟩ Y ⟨ar−1, ar⟩ 1

⟨ar+2⟩ ⟨ar−1, ar⟩

1 1
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Then, we have that Z(Y ) = ⟨ār+1, ār+2⟩, and moreover,[
σ̄, Y, γr(X)

]
=
[
γr(X), γr(X)

]
= 1 and

[
γr(X), σ̄, Y

]
=
[
Z(Y ), Y

]
= 1.

Therefore, the Three Subgroup Lemma (see [Rob96, 5.1.10]) leads us to the conclusion
that

[
Y, γr(X), σ̄

]
= 1. Nevertheless, using that [ār−1, ār] = ār+1, we can show that[

Y, γr(X), σ̄
]
=
[
Z(Y ), σ̄

]
= Z(X) ̸= 1,

which gives a contradiction. Hence, we have that θr ̸= 0.

Now that we know that θr ̸= 0, we show that for every elementary abelian subgroup
E of Gr of p-rank rkpE = 2, the image of θr via the restriction map,

resCGr (E)→Gr : H3(Gr,Fp) −→ H3
(
CGr(E),Fp

)
,

is trivial, i.e., resCGr (E)→Gr θr = 0. This will imply that the cohomology class θr is
not detected by H2(Gr).

Proposition 3.13. Let E ≤ Gr be an elementary abelian subgroup with rkpE = 2.
Then, resCGr (E)→Gr θr = 0. Consequently, ωd(G) = 1.

Proof. We can distinguish two types of elementary abelian subgroups E ≤ Gr, either
E ≤ ⟨a1, . . . , ar⟩ or E ̸≤ ⟨a1, . . . , ar⟩. Assume first that E ≤ ⟨a1, . . . , ar⟩. Then, we
have that CGr(E) = ⟨a1, . . . , ar⟩ and resCGr (E)→Gr σ

∗ = 0. Therefore, we obtain that

resCGr (E)→Gr θr = (resCGr (E)→Gr σ
∗) ⌣ (resCGr (E)→Gr ηr) = 0.

Assume now that E ̸≤ ⟨a1, . . . , ar⟩. Then, E = ⟨b, ar⟩ with b = σx for some
x ∈ ⟨a1, . . . , ar−1⟩, and CGr(E) = E. Moreover, resCGr (E)→Gr ηr is represented by the
extension that is obtained by taking the pullback of ηr via the inclusion E −→ Gr,
as illustrated in the following diagram:

1 ⟨ar+1⟩ Ê = ⟨b, ar, ar+1⟩ E 1

1 ⟨ar+1⟩ Ĝr Gr 1

Observe that Ê ∼= Cp ⋉ (Cp ×Cp) is the extraspecial group of order p3 and exponent
p. Hence, resCGr (E)→Gr ηr is represented by the extension

1 Cp = ⟨ar+1⟩ Ê = Cp ⋉ (Cp × Cp) Cp × Cp = ⟨b, ar⟩ 1.

(3.4)
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Consider a∗r, b∗ ∈ Hom(Gr,Fp). As discussed in Section 1.2.4, the extension class
of (3.4) coincides with the cup product b∗ ⌣ a∗r, and so resCGr (E)→Gr ηr = b∗ ⌣ a∗r.
Consequently, we obtain that

resCGr (E)→Gr θr = (resCGr (E)→Gr σ
∗) ⌣ b∗ ⌣ a∗r = 0,

as the product of any three elements of degree one is trivial in H3(E,Fp). In particular,
this means that H•(Gr,Fp) is not detected by H2(Gr), and so ωd(Gr) = 1.

We are finally ready to compute the depth of the mod-p cohomology ring of Gr for
1 ≤ r ≤ p− 1.

Theorem 3.14. Let p > 3 be a prime number, let r be an integer with 1 < r < p− 1
and let Gr be given as in (3.1). Then, depthH•(Gr,Fp) = ωd(Gr) = 1.

Proof. By Proposition 3.10, we know that 1 ≤ depthH•(Gr,Fp), and Proposition 3.13
yields that ωd(G) = 1. Then, by Theorem 3.7, we conclude that

depthH•(Gr,Fp) = ωd(Gr) = 1.

3.4 Conclusion and further work

We have managed to compute the depth of the cohomology rings H•(Gr,Fp) for
1 ≤ r ≤ p− 2 without first computing the rings themselves.

In particular, by Proposition 3.10 we obtain that, for p ≥ 3 and r ≥ p − 1, the
inequality depthH•(Gr,Fp) ≤ 2 holds. We observed that if we mimic the construction
of the mod-p cohomology class θr in (3.3) for such p-groups, it is no longer true that
its restriction in the mod-p cohomology of the centralizer of all elementary abelian
subgroups of Gr of rank 2 vanishes. Moreover, for the p = 3 and r = 2 case, G2 is the
extraspecial 3-group of order 27 and exponent 3, and it is known that the depth of
its mod-3 cohomology ring is 2 (compare [Lea92] and [Min01]). We believe that this
phenomena will occur with more generality and we propose the following conjecture.

Conjecture 3.15. Let p be an odd prime, let r ≥ p− 1 be an integer, and let

Gr = Cp ⋉
N0

Nr

be as in (3.1). Then H•(Gr,Fp) has depth 2.
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The above conjecture is known to be true for the particular cases where p = 3 and
r = 2 or r = 3. In these two cases the mod-p cohomology rings have been calculated
using computational tools (see [Kin15]). Another argument supporting the validity
of the conjecture is that, for a fixed prime p and r ≥ p − 1, the groups Gr have
isomorphic mod-p cohomology groups; not as rings, but as Fp-modules (see [Gar18]).
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4
Computing differentials in spectral

sequences

One of the most powerful tools for computing the cohomology of a group is the
Lyndon-Hochschild-Serre spectral sequence, which allows us to compute the cohomol-
ogy of a group in terms of the cohomologies of its normal subgroups and quotients.
The main difficulty in using spectral sequences lies in the fact that there are no general
methods for computing the differentials that appear. In this chapter, we will state
a theorem by Charlap and Vasquez [CV69] regarding the computation of the second
differential of the Lyndon-Hochschild-Serre (LHS) spectral sequence associated to a
split extension of finite groups. Afterwards, we will introduce a generalization of a
result by Siegel [Sie96, Corollary 2] that can be used to compute the differentials ap-
pearing in the spectral sequence associated to a split extension of finite groups with
cyclic quotient of prime power order. This chapter is based on [GG23].

4.1 A formula for the second differential of a split extension

Consider the extension of groups

1 N G Q 1
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and its LHS spectral sequence E = E(G). From the properties in Section 1.3.1,
for each k ≥ 2 it is only necessary to compute the differential of a finite number of
elements of Ek, namely the generators of Ek as an R-algebra. However, there are
no general methods for computing these differentials. In this section, we will state
a theorem by Charlap and Vasquez [CV69] regarding the computation of the second
differential of the LHS spectral sequence associated to a split extension of finite groups
and then provide a generalization of [Sie96, Corollary 2] for split extensions of cyclic
p-groups of any order.

We start by introducing the necessary definitions and notation to state the afore-
mentioned result by Charlap and Vasquez. Let p denote an odd prime number and
assume that G = Q⋉N is a split extension of Q by the finite group N and let V be
an FpG-module with trivial N -action.

Let X• −→ Fp be a projective FpG-resolution, let B•Q −→ Fp be the FpQ-bar
resolution from Section 1.2.1 and let P• −→ Fp be the minimal FpN -resolution. Note
that H•(N, V ) ∼= HomFpN(P•, V ) due to the resolution being minimal, as noted in
Section 1.1.3. Then, we can identify the zeroth and first pages of the LHS spectral
sequence E = E(G) associated to the split extension of Q by N following (1.8) as

E0 = HomFpQ

(
B•Q,HomFpN(X•, V )

)
,

E1 = HomFpQ

(
B•Q,HomFpN(P•, V )

)
. (4.1)

For each g ∈ Q, we write P g
• for the FpN -complex with underlying Fp-complex P•

and N -action given by

for h ∈ N and x ∈ P•, set h · x = hg
−1

x.

It is clear that P g
• −→ Fp is a projective FpN -resolution for every g ∈ Q. Also,

recall that, for i ≥ 0, we write HomFpN(P•, P
g
• )i to denote

∏∞
k=0 HomFpN(Pk, P

g
k+i).

Then, for each g, g′ ∈ Q the Comparison Theorem guarantees (see [Ben91, Theorem
2.4.2 ] and subsequent remark) the existence of maps A(g) ∈ HomFpN(P•, P

g
• )0 and

U(g, g′) ∈ HomFpN(P•, P
gg′
• )1 satisfying the following conditions:

(i) ∂ ◦ A(g)− A(g) ◦ ∂ = 0 and ε ◦ A(g)− ε = 0, and

(ii) ∂ ◦ U(g, g′) + U(g, g′) ◦ ∂ = A(gg′)− A(g) ◦ A(g′).

Theorem 4.1 ([Sie96, Theorem 1]). Let A and U be as above. Let r ≥ 0, s ≥ 1 and
suppose that ζ ∈ Er,s

2 is represented by f ∈ HomFpQ(BrQ,HomFpN(Ps, V )). Then,
d2(ζ) is represented by (−1)rD2(f), where

D2(f)[g1| · · · |gr+2] = g1g2 ◦ f [g3| · · · |gr+2] ◦ U(g−1
2 , g−1

1 ).

54



4.2 Comparing resolutions for cyclic groups

Although the previous result is for a split extension of a general finite group Q, it
requires the use of the FpQ-bar resolution of Fp. In [Sie96], the previous result was
extended for the minimal resolution of a cyclic group Q of size p. We generalise
Siegel’s result to the case where Q = Cpn is a cyclic p-group of size pn, with n ≥ 1.

In order to use Theorem 4.1 for this situation, we need explicit chain maps between
the bar resolution B•Q −→ Fp and the special resolution S•Q −→ Fp that we defined
in Example 1.17. We will abuse notation and denote the differentials of both reso-
lutions in the same way, as the notation of the elements to which we are applying
them makes it clear which differential we are using at each moment. Let us recall the
definitions of the differentials of both resolutions. For k ≥ 0, the differential of the
special resolution ∂k : SkQ −→ Sk−1Q is given by

∂k(ek) =

{
(σ − 1)ek−1, if k is odd,
T (σ)ek−1, if k is even,

and the differential of the bar resolution ∂k : BkQ −→ Bk−1Q is given by

∂k[σ
i1 | · · · |σik ] =σi1 [σi2 | · · · |σik ] +

k−1∑
j=1

(−1)j[σi1 | · · · |σij−1 |σij+ij+1 |σij+2 | · · · |σik ]

+ (−1)k[σi1 | · · · |σik−1 ].

We will now define a pair of chain maps between the special and bar resolutions
resolutions. These maps were originally defined by Siegel in [Sie96] for n = 1.

Proposition 4.2. The FpQ-module homomorphism θ : B•Q −→ S•Q defined by

θ[] = e0,

θ[σi1 ] = Ti1(σ)e1,

θ[σi1 | · · · |σi2k ] =

{
e2k, if i2j−1 + i2j ≥ pn for all 1 ≤ j ≤ k,

0, otherwise,

θ[σi1 | · · · |σi2k+1 ] =


i1−1∑
i=0

σie2k+1 = Ti1(σ)e2k+1, if i2j + i2j+1 ≥ pn for all 1 ≤ j ≤ k,

0, otherwise,

for k ≥ 1 and 0 ≤ i1, . . . , i2k+1 < pn, is a chain map.
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Proof. Let us show that θ is a chain map. To that aim, we need to prove, for all
k ≥ 1, the equalities

(∂ ◦ θ − θ ◦ ∂)(B2kQ) = (∂ ◦ θ − θ ◦ ∂)(B2k+1Q) = 0.

We will begin by showing that (∂ ◦ θ − θ ◦ ∂)(B2kQ) = 0. Observe that, for every
1 ≤ j ≤ k − 1 such that i2j + i2j+1 ≥ pn and i2j+1 + i2j+2 ≥ pn, we have that

(i2j + i2j+1 mod pn)+ i2j+2 = i2j + i2j+1− pn+ i2j+2 = i2j +(i2j+1+ i2j+2 mod pn),

and thus

θ[σi1 | · · · |σi2j+i2j+1 |σi2j+2 | · · · |σi2k ] = θ[σi1 | · · · |σi2j |σi2j+1+i2j+2 | · · · |σi2k ]. (4.2)

Also note that, by definition, if there is some 1 ≤ l ≤ k− 1 such that i2l + i2l+1 < pn,
then

θ[σi1 | · · · |σi2l | · · · |σij+ij+1 | · · · |σi2k ] = 0, (4.3)
for every 2l + 2 ≤ j ≤ 2k − 1. Likewise, the existence of some 1 ≤ m ≤ k such that
i2m−1 + i2m < pn implies that

θ[σi1 | · · · |σij+ij+1 | · · · |σi2m | · · · |σi2k ] = 0, (4.4)

for every 1 ≤ j ≤ 2m− 3.
In order to show that ∂ ◦ θ(B2kQ) = θ ◦ ∂(B2kQ), we need to distinguish four

different cases:

(i) There are a smallest 1 ≤ l ≤ k − 1 such that i2l + i2l+1 < pn, and a largest
1 ≤ m ≤ k such that i2m−1 + i2m < pn.
On the one hand, we can easily see that

∂ ◦ θ[σi1 | · · · |σi2k ] = 0.

On the other hand, for m > l + 1, it is clear that

θ ◦ ∂[σi1 | · · · |σi2k ] = 0.

Furthermore, (4.3) and (4.4) yield that, for 2 ≤ m ≤ l + 1,

θ ◦ ∂[σi1 | · · · |σi2k ] =
2l+1∑

j=2m−2

(−1)jθ[σi1 | · · · |σij+ij+1 | · · · |σi2k ]. (4.5)
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If 2 ≤ m ≤ l, using (4.2), the expression (4.5) is reduced to

θ ◦ ∂[σi1 | · · · |σi2k ] =
l∑

t=m−1

(
θ[σi1 | · · · |σi2t+i2t+1 | · · · |σi2k ]

− θ[σi1 | · · · |σi2t+1+i2t+2 | · · · |σi2k ]
)

= θ[σi1 | · · · |σi2m−2+i2m−1 | · · · |σi2k ]
− θ[σi1 | · · · |σi2m−1+i2m | · · · |σi2k ]
+ θ[σi1 | · · · |σi2l+i2l+1 | · · · |σi2k ]
− θ[σi1 | · · · |σi2l+1+i2l+2 | · · · |σi2k ]

= 0− Ti1(σ)e2k−1 + Ti1(σ)e2k−1 − 0

= 0.

Likewise, if m = l + 1 we obtain that

θ ◦ ∂[σi1 | · · · |σi2k ] = θ[σi1 | · · · |σi2m−2+i2m−1 | · · · |σi2k ]
− θ[σi1 | · · · |σi2m−1+i2m | · · · |σi2k ]

= Ti1(σ)e2k−1 − Ti1(σ)e2k−1

= 0.

Finally, if m = 1 then

θ ◦ ∂[σi1 | · · · |σi2k ] = θ
(
σi1 [σi2 | · · · |σi2k ]

)
+

2l+1∑
j=1

(−1)jθ[σi1 | · · · |σij+ij+1 | · · · |σi2k ]

= θ
(
σi1 [σi2 | · · · |σi2k ]

)
− θ[σi1+i2 | · · · |σi2k ]

+ θ[σi1 | · · · |σi2l+i2l+1 | · · · |σi2k ]
− θ[σi1 | · · · |σi2l+1+i2l+2 | · · · |σi2k ]

= σi1Ti2(σ)e2k−1 − Ti1+i2(σ)e2k−1 + Ti1(σ)e2k−1 − 0

= 0.

(ii) There is a largest 1 ≤ m ≤ k such that i2m−1 + i2m < pn, but i2j + i2j+1 ≥ pn

for every 1 ≤ j ≤ k − 1. On the one hand, we can easily see that

∂ ◦ θ[σi1 | · · · |σi2k ] = 0.
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On the other hand, for m > 1, using (4.2) and (4.4) we obtain that

θ ◦ ∂[σi1 | · · · |σi2k ] =
2k−1∑

j=2m−2

(−1)jθ[σi1 | · · · |σij+ij+1 | · · · |σi2k ] + θ[σi1 | · · · |σi2k−1 ]

= θ[σi1 | · · · |σi2m−2+i2m−1 | · · · |σi2k ]
− θ[σi1 | · · · |σi2m−1+i2m | · · · |σi2k ] + θ[σi1 | · · · |σi2k−1 ]

= 0− Ti1(σ)e2k−1 + Ti1(σ)e2k−1

= 0.

Likewise, for m = 1, (4.2) and (4.4) yield that

θ ◦ ∂[σi1 | · · · |σi2k ] = θ
(
σi1 [σi2 | · · · |σi2k ]

)
− θ[σi1+i2 | · · · |σi2k ] + θ[σi1 | · · · |σi2k−1 ]

= σi1Ti2(σ)e2k−1 − Ti1+i2(σ)e2k−1 + Ti1(σ)e2k−1 − 0

= 0.

(iii) There is a smallest 1 ≤ l ≤ k− 1 such that i2l + i2l+1 < pn, but i2j−1 + i2j ≥ pn

for every 1 ≤ j ≤ k. On the one hand, we can easily see that

∂ ◦ θ[σi1 | · · · |σi2k ] = T (σ)e2k−1.

On the other hand, (4.2) and (4.3) yield that

θ ◦ ∂[σi1 | · · · |σi2k ] = θ
(
σi1 [σi2 | · · · |σi2k ]

)
+

2l+1∑
j=1

(−1)jθ[σi1 | · · · |σij+ij+1 | · · · |σi2k ]

= θ
(
σi1 [σi2 | · · · |σi2k ]

)
− θ[σi1+i2 | · · · |σi2k ]

+ θ[σi1 | · · · |σi2l+i2l+1 | · · · |σi2k ]
− θ[σi1 | · · · |σi2l+1+i2l+2 | · · · |σi2k ]

= σi1Ti2(σ)e2k−1 − Ti1+i2−pn(σ)e2k−1 + Ti1(σ)e2k−1 − 0

= T (σ)e2k−1.

(iv) For every 1 ≤ j ≤ k, we have that i2j−1+ i2j ≥ pn, and for every 1 ≤ j′ ≤ k−1,
we have that i2j′ + i2j′+1 ≥ pn. On the one hand, we can easily see that

∂ ◦ θ[σi1 | · · · |σi2k ] = T (σ)e2k−1.
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On the other hand, (4.2) yields that

θ ◦ ∂[σi1 | · · · |σi2k ] = θ
(
σi1 [σi2 | · · · |σi2k ]

)
+

2k∑
j=1

(−1)jθ[σi1 | · · · |σij+ij+1 | · · · |σi2k ]

+ θ[σi1 | · · · |σi2k−1 ]

= σi1Ti2(σ)e2k−1 − Ti1+i2−pn(σ)e2k−1 + 0 + Ti1(σ)e2k−1

= T (σ)e2k−1.

Now, we will see that (∂ ◦θ−θ◦∂)(B2k+1Q) = 0. Observe that, for every 1 ≤ j ≤ k
such that i2j + i2j+1 ≥ pn and i2j−1 + i2j ≥ pn, we have that

(i2j−1+ i2j mod pn)+ i2j+1 = i2j−1+ i2j− pn+ i2j+1 = i2j−1+(i2j + i2j+1 mod pn),

and thus

θ[σi1 | · · · |σi2j−1+i2j |σi2j+1 | · · · |σi2k+1 ] = θ[σi1 | · · · |σi2j−1 |σi2j+i2j+1 | · · · |σi2k+1 ]. (4.6)

Also note that, if there is some 1 ≤ l ≤ k such that i2l + i2l+1 < pn, then

θ[σi1 | · · · |σij+ij+1 | · · · |σi2l | · · · |σi2k+1 ] = 0, (4.7)

for every 1 ≤ j ≤ 2l − 2. Likewise, the existence of some 1 ≤ m ≤ k such that
i2m−1 + i2m < pn implies that

θ[σi1 | · · · |σi2m | · · · |σij+ij+1 | · · · |σi2k+1 ] = 0, (4.8)

for every 2m+ 1 ≤ j ≤ 2k.
In order to show that ∂ ◦ θ(B2k+1Q) = θ ◦ ∂(B2k+1Q), we need to distinguish four

different cases:

(i) There are a largest 1 ≤ l ≤ k such that i2l+i2l+1 < pn, and a smallest 1 ≤ m ≤ k
such that i2m−1 + i2m < pn. On the one hand, we can easily see that

∂ ◦ θ[σi1 | · · · |σi2k+1 ] = 0.

On the other hand, for m < l it is clear that

θ ◦ ∂[σi1 | · · · |σi2k+1 ] = 0.
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Furthermore, (4.7) and (4.8) yield that, for m ≥ l,

θ ◦ ∂[σi1 | · · · |σi2k+1 ] =
2m∑

j=2l−1

(−1)jθ[σi1 | · · · |σij+ij+1 | · · · |σi2k+1 ]. (4.9)

If m > l, using using (4.6), the expression (4.9) is reduced to

θ ◦ ∂[σi1 | · · · |σi2k+1 ] = −θ[σi1 | · · · |σi2l−1+i2l | · · · |σi2k+1 ]

+ θ[σi1 | · · · |σi2l+i2l+1 | · · · |σi2k+1 ]

− θ[σi1 | · · · |σi2m−1+i2m | · · · |σi2k+1 ]

+ θ[σi1 | · · · |σi2m+i2m+1 | · · · |σi2k+1 ]

= 0 + e2k − e2k + 0

= 0.

Likewise, if m = l we obtain that

θ ◦ ∂[σi1 | · · · |σi2k+1 ] = −θ[σi1 | · · · |σi2m−1+i2m | · · · |σi2k+1 ]

+ θ[σi1 | · · · |σi2m+i2m+1 | · · · |σi2k+1 ]

= 0.

(ii) There is a largest 1 ≤ l ≤ k such that i2l + i2l+1 < pn, but i2j−1 + i2j ≥ pn for
every 1 ≤ j ≤ k. On the one hand, we can easily see that

∂ ◦ θ[σi1 | · · · |σi2k+1 ] = 0.

On the other hand, (4.6) and (4.7) yield that

θ ◦ ∂[σi1 | · · · |σi2k+1 ] =
2k∑

j=2l−1

(−1)jθ[σi1 | · · · |σij+ij+1 | · · · |σi2k+1 ]− θ[σi1 | · · · |σi2k ]

= −θ[σi1 | · · · |σi2l−1+i2l | · · · |σi2k+1 ]

+ θ[σi1 | · · · |σi2l+i2l+1 | · · · |σi2k+1 ]− θ[σi1 | · · · |σi2k ]
= 0 + e2k − e2k

= 0.

(iii) There is a smallest 1 ≤ m ≤ k such that i2m−1 + i2m < pn, but i2j + i2j+1 ≥ pn

for every 1 ≤ j ≤ k. On the one hand, we can easily see that

∂ ◦ θ[σi1 | · · · |σi2k+1 ] = (σi1 − 1)e2k.
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On the other hand, (4.6) and (4.8) yield that

θ ◦ ∂[σi1 | · · · |σi2k+1 ] = θ
(
σi1 [σi2 | · · · |σi2k+1 ]

)
+

2m∑
j=1

(−1)jθ[σi1 | · · · |σij+ij+1 | · · · |σi2k+1 ]

= θ
(
σi1 [σi2 | · · · |σi2k+1 ]

)
− θ[σi1 | · · · |σi2m−1+i2m | · · · |σi2k+1 ]

+ θ[σi1 | · · · |σi2m+i2m+1 | · · · |σi2k+1 ]

= σi1e2k − e2k + 0

= (σi1 − 1)e2k.

(iv) For every 1 ≤ j ≤ k, we have that i2j−1 + i2j ≥ pn and i2j + i2j+1 ≥ pn. On the
one hand, we can easily see that

∂ ◦ θ[σi1 | · · · |σi2k+1 ] = (σi1 − 1)e2k.

On the other hand, (4.6) yields that

θ ◦ ∂[σi1 | · · · |σi2k+1 ] = θ
(
σi1 [σi2 | · · · |σi2k+1 ]

)
+

2k∑
j=1

(−1)jθ[σi1 | · · · |σij+ij+1 | · · · |σi2k+1 ]

− θ[σi1 | · · · |σi2k ]
= σi1e2k + 0− e2k

= (σi1 − 1)e2k.

Finally, we can easily check that (ε ◦ θ − ε)(e0) = 0 and (∂ ◦ θ − θ ◦ ∂)(e1) = 0,
allowing us to conclude that θ is a chain map.
Proposition 4.3. The FpQ-module homomorphism η : S•Q −→ B•Q defined by

η(e0) = [],

η(e1) = [σ],

η(e2k) =
∑

0≤i1,...,ik<pn
[σi1 |σ| · · · |σik |σ],

η(e2k+1) =
∑

0≤i1,...,ik<pn
[σ|σi1 | · · · |σ|σik |σ],

for k ≥ 1, is a chain map.
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Proof. Let us show that η is a chain map. To that aim, we need to prove, for all
k ≥ 1, the equalities

(∂ ◦ η − η ◦ ∂)(S2kQ) = (∂ ◦ η − η ◦ ∂)(S2k+1Q) = 0.

We will first show that (∂ ◦ η− η ◦∂)(e2k) = 0 for k ≥ 1. On the one hand, because
the initial sum covers all possible exponents 0 ≤ i1, . . . , ik < pn, it is easy to see that

∑
0≤i1,...,ik<pn

k−1∑
j=1

[σi1 | · · · |σ|σij |σij+1+1|σ| · · · |σik |σ] =
∑

0≤i1,...,ik<pn

k−1∑
j=1

[σi1 | · · · |σ|σij+1|σij+1 |σ| · · · |σik |σ],∑
0≤i1,...,ik<pn

[σi1 | · · · |σ|σik ] =
∑

0≤i1,...,ik<pn
[σi1 | · · · |σ|σik+1],

and so we have that

∂ ◦ η(e2k) = ∂

( ∑
0≤i1,...,ik<pn

[σi1 |σ| · · · |σik |σ]
)

=
∑

0≤i1,...,ik<pn

(
σi1 [σ|σi2 | · · · |σik |σ]

−
k−1∑
j=1

[σi1 | · · · |σ|σij+1|σij+1 |σ| · · · |σik |σ]− [σi1 | · · · |σ|σik+1]

+
k−1∑
j=1

[σi1 | · · · |σ|σij |σij+1+1|σ| · · · |σik |σ] + [σi1 | · · · |σ|σik ]
)

=
∑

0≤i1,...,ik<pn
σi1 [σ|σi2 | · · · |σik |σ].

On the other hand,

η ◦ ∂(e2k) = η

( pn−1∑
i=0

σie2k−1

)
=

∑
0≤i,i1,...,ik−1<pn

σi[σ|σi1 | · · · |σ|σik−1 |σ].

Therefore, (∂ ◦ η − η ◦ ∂)(e2k) = 0.
Now, we will show that (∂ ◦ η − η ◦ ∂)(e2k+1) = 0 for k ≥ 1. On the one hand,

because the initial sum covers all possible exponents 0 ≤ i1, . . . , ik < pn, it is easy to
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see that∑
0≤i1,...,ik<pn

k−1∑
j=1

[σ|σi1 | · · · |σ|σij+1|σij+1 |σ| · · · |σik ] =
∑

0≤i1,...,ik<pn

k−1∑
j=1

[σ|σi1 | · · · |σ|σij |σij+1+1|σ| · · · |σik ],∑
0≤i1,...,ik<pn

[σi1 | · · · |σ|σik |σ] =
∑

0≤i1,...,ik<pn
[σi1 | · · · |σ|σik+1|σ],

and so we have that

∂ ◦ η(e2k+1) = ∂

( ∑
0≤i1,...,ik<pn

[σ|σi1 | · · · |σ|σik |σ]
)

=
∑

0≤i1,...,ik<pn

(
σ[σi1 |σ|σi2 | · · · |σik |σ]− [σi1+1|σ|σi2 | · · · |σik |σ]

−
k∑
j=2

[σ|σi1 | · · · |σ|σij−1 |σij+1|σ| · · · |σ|σik ]

+
k−1∑
j=1

[σ|σi1 | · · · |σ|σij+1|σij+1 |σ| · · · |σ|σik ]

+ [σ|σi1 | · · · |σ|σik+1]− [σ|σi1 | · · · |σ|σik ]
)

=
∑

0≤i1,...,ik<pn

(
σ[σi1 |σ|σi2 | · · · |σik |σ]− [σi1+1|σ|σi2 | · · · |σik |σ]

)
=

∑
0≤i1,...,ik<pn

(σ − 1)[σi1 |σ|σi2 | · · · |σik |σ].

On the other hand,
η ◦ ∂(e2k+1) = η

(
(σ − 1)e2k

)
= (σ − 1)

∑
0≤i1,...,ik<pn

σi[σi1 | · · · |σ|σik−1 |σ].

Therefore, (∂ ◦ η − η ◦ ∂)(e2k+1) = 0.
Finally, we can easily check that (ε ◦ η − ε)(e0) = 0 and (∂ ◦ η − η ◦ ∂)(e1) = 0,

allowing us to conclude that η is a chain map.

4.3 Application to split extensions with cyclic quotient

Let Q = Cpn with n ≥ 1 an integer, and G = Q⋉N be a semidirect product of Q by
a finite group N . Under these hypotheses, if we consider the special FpQ-resolution

63



S•Q −→ Fp, the first page of the LHS spectral sequence of the extension

1 N G Q 1

can be identified with

E1 = HomFpQ

(
S•Q,HomFpN(P•, V )

)
.

Furthermore, since SrQ ∼= FpQ, we have, for r, s ≥ 0, that

Er,s
1

∼= HomFpN(Ps, V ).

Using the chain maps θ and η in Proposition 4.2 and Proposition 4.3, we can prove
the following generalization of a theorem by Siegel [Sie96, Corollary 2].

Theorem 4.4. Let α : P• −→ P σ−1

• be an FpN-chain map commuting with the aug-
mentation, and τ ∈ HomFpN(P•, P•)1 such that ∂τ + τ∂ = 1 − αp

n. Suppose that
ζ ∈ Er,s

2 with r ≥ 0, s ≥ 1 is represented by f ∈ HomFpN(Ps, V ). Then, d2(ζ) is
represented by (−1)rf ◦ τ .

Proof. The proof of this result can be done by following that of [Sie96, Corollary
2], using the chain maps from Proposition 4.2 and Proposition 4.3, and writing pn

instead of p where appropriate.
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5
A spectral sequence for Heisenberg groups

Computing the cohomology ring of a group explicitly is generally a daunting task,
and it is for this reason that not many examples of computations of such rings for
individual groups, let alone families of groups, exist in the literature. It is interesting
to know which types of graded rings can occur as cohomology rings of finite groups
and how many of them are distinct (compare [Car05], [DGG17], [Sym21]). In this
chapter, we will compute the Lyndon-Hochschild-Serre (LHS) spectral sequence of a
family of finite Heisenberg groups of prime power order, up to the infinity page. We
will begin by computing the second page of the spectral sequence and its structure as
an algebra, before putting the results from the last chapter to use in the computation
of the second differential. Afterwards, we will determine the third page and show that
it is at this point that the spectral sequence collapses. In so doing, we provide one of
the first infinite families of groups of prime power order whose associated LHS spectral
sequences collapse in the same page and are isomorphic. Finally, we will compute the
Poincaré series of the cohomology rings. This chapter is based on [GG23].

5.1 Heisenberg groups of prime power order

Throughout, let n ≥ 1 be an integer. We write

G = Heis(pn) = Cpn ⋉ (Cpn × Cpn)
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for the Heisenberg group modulo pn. Note that G is just a finite quotient of the
infinite Heisenberg group Ĝ = Z ⋉ (Z × Z). We set N = Cpn × Cpn = ⟨a, b⟩ and
Q = Cpn = ⟨σ⟩. Then, we have that

G = Q⋉N = ⟨σ, a, b | σpn = ap
n

= bp
n

= [σ, b] = [a, b] = 1, [σ, a] = b⟩.

Note that the element σ ∈ Q acts (on the right) on N via aσ = ab and bσ = b.
The cohomology ring of N with coefficients in Fp is

H•(N,Fp) = Λ(x1, y1)⊗Fp Fp[x2, y2] = Λ(x1, y1)⊗ Fp[x2, y2],

with |xi| = |yi| = i, for i = 1, 2. We can take

x1 = a∗, y1 = b∗,

x2 = βn(x1), y2 = βn(y1).

The (left) action of σ on H•(N,Fp) can be shown to be given by

σ · x1 = x1, σ · y1 = x1 + y1, (5.1)
σ · x2 = x2, σ · y2 = x2 + y2.

We will denote by E the LHS spectral sequence associated to the split extension

1 N G Q 1, (5.2)

which takes the form

Er,s
2 = Hr

(
Q,Hs(N,Fp)

)
=⇒ Hr+s(G,Fp),

for r, s ≥ 0.

5.2 Description of the second page of the spectral sequence

We follow the notation in the previous section and unless otherwise stated, we addi-
tionally assume until the end of the chapter that n ≥ 2. We compute the cohomology
groups Er,s

2 as in (1.2). Take T (σ) =
∑pn−1

i=0 σi ∈ FpN and, as n ≥ 2, it can be readily
checked that, for all φ ∈ H•(N,Fp), the identities σp · φ = φ and T (σ) · φ = 0 hold.
Indeed, that σp · φ = φ follows from the description of the action of σ in (5.1), and
this can in turn be used to compute

T (σ) · φ =

pn−1−1∑
k=0

p−1∑
i=0

σi+kp · φ =

pn−1−1∑
k=0

p−1∑
i=0

σi · φ = pn−1 (p
n−1 − 1)

2

p−1∑
i=0

σi · φ = 0.
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The second page of the spectral sequence then takes the following form:

Er,s
2 = Hr

(
Q,Hs(N,Fp)

) ∼=

Hs(N,Fp)Q, if r is even,

Hs(N,Fp)
(σ − 1) · Hs(N,Fp)

, if r is odd.

Let now

z2p =

p−1∏
i=0

σi · y2 =
p−1∏
i=0

(ix2 + y2) ∈ H2p(N,Fp),

and observe that the element z2p is invariant under the action of σ. Furthermore, if
we write

W = Λ[x1, y1]⊗ ⟨xi2y
j
2 | i ≥ 0, 0 ≤ j < p⟩,

Dr,•
2 =


WQ, if r is even,

W

(σ − 1) ·W
, if r is odd,

we have that H•(N,Fp) = Fp[z2p]⊗W , and so

Er,•
2 = Fp[z2p]⊗Dr,•

2 =


Fp[z2p]⊗WQ, if r is even,

Fp[z2p]⊗
W

(σ − 1) ·W
, if r is odd.

(5.3)

Consequently, it suffices to study the structure of D2 so that the structure of E2 may
be determined.

5.2.1 Structure as a vector space

The first step will be determining a basis of the Fp-vector space Dr,s
2 for each r, s ≥ 0.

Proposition 5.1.
(i) For s ≥ 0, the basis elements of (W s)Q are the following:

s (W s)Q

0 1

1 x1

2i ≥ 2 xi2, x1y1x
i−1
2

2i+ 1 ≥ 3 x1x
i
2, (x1y2 − y1x2)x

i−1
2
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(ii) For s ≥ 1, the basis elements of (σ − 1)W s are the following:

s (σ − 1)W s

1 x1

2i ≥ 2 xj2y
k
2 , with j ≥ 1, 0 ≤ k ≤ p− 2, j + k = i

x1y1x
j
2y
k
2 , with j ≥ 1, 0 ≤ k ≤ p− 2, j + k + 1 = i

2i+ 1 ≥ 3 x1x
j
2y
k
2 , with j ≥ 1, 0 ≤ k ≤ p− 2, j + k = i

y1x
j
2y
k
2 , with j ≥ 2, 0 ≤ k ≤ p− 3, j + k = i

x1y
k
2 + ky1x2y

k−1
2 , with 1 ≤ k ≤ p− 1, k = i

x1x
j
2y
p−1
2 − y1x

j+1
2 yp−2

2 , with j ≥ 0, j + p− 1 = i

(iii) For s ≥ 0, the basis elements of W s/(σ − 1)W s are the following:

s W s/(σ − 1)W s

0 1̄

1 y1

2i ≥ 2 (x1y1)εyk2 , with ε = 0, 1, 0 ≤ k ≤ p− 1, ε+ k = i

(x1y1)εx
j
2y
p−1
2 , with ε = 0, 1, j ≥ 1, ε+ j + p− 1 = i

2i+ 1 ≥ 3 xε1y
1−ε
1 yk2 , with ε = 0, 1, 0 ≤ k ≤ p− 1, k = i

xε1y
1−ε
1 xj2y

p−1
2 , with ε = 0, 1, j ≥ 1, j + p− 1 = i

Proof. The proof follows verbatim that of [Sie96, Proposition 3].

Using this result, we can write a table with the basis elements of Dr,s
2 :
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2i+ 1 ≥ 2p+ 1 x1x
i
2, (x1y2 − y1x2)x

i−1
2 x1x

i−p+1
2 yp−1

2 , y1x
i−p+1
2 yp−1

2

2i ≥ 2p xi2, x1y1x
i−1
2 x1y1x

i−p
2 yp−1

2 , xi−p+1
2 yp−1

2

2i+ 1 ≤ 2p− 1 x1x
i
2, (x1y2 − y1x2)x

i−1
2 x1yi2, y1y

i
2

2i ≤ 2p− 2 xi2, x1y1x
i−1
2 x1y1y

i−1
2 , yi2

1 x1 y1

0 1 1̄

s D2j,s
2 = (W s)Q D2j+1,s

2 = W s/(σ − 1)W s

Figure 5.1: Basis of Dr,s
2 for r, s ≥ 0, with j ≥ 0.

5.2.2 Structure as an algebra

Following Example 1.17 and Section 1.3.1 (see also [Sie96, Section 4]), we describe
the structure of E2 as a bigraded Fp-algebra. For r, s, r′, s′ ≥ 0, let φ ∈ Hs(N,Fp) and
φ′ ∈ Hs′(N,Fp) represent the elements φ̄ ∈ Er,s

2 and φ̄′ ∈ Er′,s′

2 , respectively. Then,
their product in E2 is the element φ̄φ̄′ ∈ Er+r′,s+s′

2 with

(−1)r
′sφ̄φ̄′ =


φ ⌣ φ′, if r or r′ is even,∑
0≤i<j<pn

σi · φ ⌣ σj · φ′, if r and r′ are odd.

Lemma 5.2. Let φ̄ ∈ Er,s
2 and φ̄′ ∈ Er′,s′

2 be as above with r and r′ odd. Then,
φ̄φ̄′ = 0.

Proof. For simplicity, write

T0(σ) = 0, and for k ≥ 1, Tk(σ) =
k−1∑
i=0

σi.

In particular, we have that T (σ) = Tpn(σ). Furthermore, note that, for 0 ≤ i ≤ p− 1
and k ≥ 1, using that σp · φ = φ we obtain that

σi+kp · φ = σi · φ and Ti+kp(σ) · φ = Ti(σ) · φ+ kTp(σ) · φ.
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Then, we compute

∑
0≤i<j<pn

σi · φ ⌣ σj · φ′ =

pn−1∑
j=0

Tj(σ) · φ ⌣ σj · φ′

=

p−1∑
j=0

(
pn−1−1∑
k=0

Tj+kp(σ)

)
· φ ⌣ σj · φ′

=

p−1∑
j=0

(
pn−1−1∑
k=0

Tj(σ) + kTp(σ)

)
· φ ⌣ σj · φ′

=

p−1∑
j=0

(
pn−1Tj(σ) + pn−1 (p

n−1 − 1)

2
Tp(σ)

)
· φ ⌣ σj · φ′ = 0.

As a consequence, φ̄φ̄′ = 0 in E2.

In what follows, we fix the following notation:

λ1 = x1 ∈ E0,1
2 , λ2 = x2 ∈ E0,2

2 ,

ν2 = x1y1 ∈ E0,2
2 , ν3 = x1y2 − y1x2 ∈ E0,3

2 , ν2p = z2p ∈ E0,2p
2 ,

γ1 = 1̄ ∈ E1,0
2 , γ2 = 1̄ ∈ E2,0

2 , (5.4)
for 1 ≤ i ≤ p, µ2i = y1y

i−1
2 ∈ E1,2i−1

2 ,

for 1 ≤ i ≤ p− 1, µ2i+1 = yi2 ∈ E1,2i
2 .

Proposition 5.3. Multiplication by the elements ν2p, γ2, λ2 induces vector space ho-
momorphisms as follows:

(i) Multiplication ·ν2p : Er,s
2 −→ Er,s+2p

2 is injective for all r, s ≥ 0.

(ii) Multiplication ·γ2 : Er,s
2 −→ Er+2,s

2 is an isomorphism for all r, s ≥ 0.

(iii) Multiplication ·λ2 : Dr,s
2 −→ Dr,s+2

2 is an isomorphism for all s ≥ 2p− 1.

Proof. The first claim follows from Equation (5.3). Using the identifications in Propo-
sition 5.1, note that multiplication by γ2 = 1̄ is simply the identity homomorphism
and so, the second item holds. The last statement is clear by the description of the
bases in Proposition 5.1

Using the previous results, we can deduce the structure of the second page E2 as a
graded-commutative Fp-algebra.
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Theorem 5.4. to start a new line

(i) The graded-commutative Fp-algebra structure of the zeroth column is given by
the following tensor product:

E0,•
2 = Fp[ν2p]⊗

Fp[λ1, λ2, ν2, ν3]
(ν22 , λ1ν2, ν2ν3, λ1ν3 + λ2ν2)

.

(ii) For r = 0, 1 and s ≥ 0, the basis elements of Dr,s
2 are the following:

2i+ 1 ≥ 2p+ 1 λ1λ
i
2, λi−1

2 ν3 λi−p+1
2 µ2p, λ1λ

i−p+1
2 µ2p−1

2i ≥ 2p λi2, λi−1
2 ν2 λ1λ

i−p
2 µ2p, λi−p+1

2 µ2p−1

3 ≤ 2i+ 1 < 2p λ1λ
i
2, λi−1

2 ν3 µs+1, λ1µs

3 ≤ 2i < 2p λi2, λi−1
2 ν2 µs+1, λ1µs

1 λ1 µ2

0 1 γ1

s D0,s
2 D1,s

2

For r ≥ 2 and s ≥ 0, we have that Dr,s
2 = Dr−2,s

2 γ2.

(iii) We can write E2 = Fp[ν2p]⊗D2. Furthermore, E2 is generated by the elements

λ1, λ2, ν2, ν3, ν2p, γ1, γ2, µ2, . . . , µ2p.

Proof. The first statement can be obtained as in [Sie96, Corollary 4 (iii)] and the
remaining assertions follow from Propositions 5.1 and 5.3.

We encapsulate the previous result in the following table:
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2p ν2p λp2 λp−1
2 ν2 ν2pγ1 λ1µ2p λ2µ2p−1 ν2pγ2 λp2γ2 λp−1

2 ν2γ2

2p− 1 λ1λ
p−1
2 λp−2

2 ν3 µ2p λ1µ2p−1 λ1λ
p−1
2 γ2 λp−2

2 ν3γ2

2p− 2 λp−1
2 λp−2

2 ν2 µ2p−1 λ1µ2p−2 λp−1
2 γ2 λp−2

2 ν2γ2

... ... ... ...

4 λ22 λ2ν2 µ5 λ1µ4 λ22γ2 λ2ν2γ2

3 ν3 λ1λ2 µ4 λ1µ3 ν3γ2 λ1λ2γ2

2 λ2 ν2 µ3 λ1µ2 λ2γ2 ν2γ2

1 λ1 µ2 λ1γ2

0 1 γ1 γ2

0 1 2

Figure 5.2: Basis elements of Er,s
2 for 0 ≤ r ≤ 2 and 0 ≤ s ≤ 2p, with the Fp-algebra

generators highlighted.

Remark 5.5. In [Sie96, Corollary 4], using notation analogous to ours, Siegel obtains
that the Fp-algebra generators of E2(Heis(p)) are

λ1, λ2, ν2, ν3, ν2p, γ1, γ2, µ2, . . . , µ2p−3.

5.3 Indirect second differential computations

In this section, we use restriction, inflation and the norm maps to determine some of
the bigraded Fp-algebra generators of E2 that survive to the infinity page E∞.

Proposition 5.6. The elements λ1, λ2, ν2, ν2p, γ1, γ2, µ2, µ3 survive to E∞.

Proof. It is clear that γ1, γ2 ∈ E∞. Since the extension (5.2) splits, the image of the
second differential on E•,0

2 is trivial. Consequently, λ1, µ2 ∈ E∞.
For λ2 ∈ E0,2

2 = H2(N,Fp)Q, consider the map π : H1(G,Z/pnZ) −→ H1(G,Fp)
and let λ̃1 ∈ H1(G,Z/pnZ) be such that π(λ̃1) = λ1. It can be readily checked
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that λ1 = resG→N ◦ π(λ̃1). Furthermore, let βNn : H1(N,Fp) −→ H2(N,Fp) denotes
the n-th Bockstein homomorphism on the cohomology of N . Then, we have that
λ2 = βNn (λ1) and thus,

λ2 = (βNn ◦ resG→N ◦ π)(λ̃1) = resG→N ◦ βGn (λ̃1).

This yields that λ2 ∈ Im(resG→N) = E0,2
∞ .

For ν2, consider the inflation homomorphism infHeis(p)→G : E2(Heis(p)) −→ E2. In
particular, for ν̃2 ∈ E0,2

2 (Heis(p)) defined analogously to ν2 (see [Sie96, Corollary 4],
where Siegel uses y2), we have that ν2 = infHeis(p)→G(ν̃2). By [Sie96, Theorem 5], we
have that ν̃2 ∈ E∞(Heis(p)), and since the inflation map commutes with differentials,
we conclude that ν2 ∈ E∞.

For µ3, consider the subgroup H = Q⋉ (Cp
pn × Cpn) of G. The action of σ on

H•(Cp
pn × Cpn ,Fp) = Λ(w1, ỹ1)⊗ Fp[w2, ỹ2]

can be computed in the same way as the action on H•(N,Fp) to obtain that it is
trivial, and so

E2(H) = H•(Q,Fp)⊗ H•(Cp
pn × Cpn ,Fp) = E∞(H).

The restriction homomorphism resG→H : E2 −→ E2(H) then sends µ3 = ȳ2 to

resG→H(µ3) = ỹ2γ1 ̸= 0.

Furthermore, d2(µ3) ∈ ⟨µ2γ2⟩ and resG→H(µ2γ2) = ỹ1γ1γ2 ̸= 0. Nevertheless, we have
that d2(ỹ2γ1) = 0 and, as a consequence, d2(µ3) = 0. Hence, µ3 ∈ E∞.

Finally, we will study the generator ν2p. The subgroup M = Cp
pn ⋉ N of G is

normal, and so we have that M\G/N = G/MN = G/M . For k ≥ 0 even, let
NM→G : Hk(M,Fp) −→ Hkp(G,Fp) be the Evens norm map as defined in [Eve91,
Section 6.1]. Applying the properties in [Eve91, Theorem 6.1.1], we obtain, for any
φ ∈ Hk(N,Fp) with k ≥ 0 even, that

resG→N

(
NM→G(φ)

)
=

∏
g∈G/M

NN→N

(
resM→N(g · φ)

)
=

∏
g∈G/M

resM→N(g · φ)

=
∏

g∈G/M

g · resM→N(φ).

Moreover, since the action of σp on H•(N,Fp) = Λ(x̃1, ỹ1) ⊗ Fp[x̃2, ỹ2] is once again
trivial, we have that

E2(M) = H•(Cp
pn ,Fp)⊗ H•(N,Fp) = E∞(M),
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and we can write y2 = resM→N(ỹ2). Therefore,

ν2p = z2p =
∏
g∈Cp

g · y2 = resG→N

(
NM→G(ỹ2)

)
and we deduce that ν2p ∈ E∞.

5.4 Direct second differential computations

In this section, we explicitly compute the image of the second differential on the
remaining bigraded Fp-algebra generators of E2. To that aim, we employ Theorem
4.4 following the same strategy as Siegel in the proof of [Sie96, Theorem 5].

The problem of computing d2 is reduced to finding appropriate maps α and τ
satisfying the hypotheses in Theorem 4.4. We start by defining such maps.

Denote by P ′
• −→ Fp and P ′′

• −→ Fp the special resolutions of Fp as a module
over Fp⟨a⟩ and Fp⟨b⟩, respectively. Both of these resolutions are minimal. For each
k ≥ 0, let e′k and e′′k be the basis elements of P ′

k and P ′′
k , respectively. We can then

write P ′
k = Fp⟨a⟩e′k and P ′′

k = Fp⟨b⟩e′′k, and so P• = P ′
• ⊗ P ′′

• −→ Fp is the minimal
projective FpN -resolution of Fp. If we set

eij =

{
e′i−j ⊗ e′′j , if 0 ≤ j ≤ i,

0, otherwise,
(5.5)

then, for each k ≥ 0, the elements ek0, . . . , ekk constitute a basis of Pk as an FpN -
module. Using the duality H•(N,Fp) ∼= HomFp(H•(N,Fp)) from Theorem 1.16 and
the fact that H•(N,Fp) = P• ⊗FpN Fp is a quotient of P• via the canonical map
P• −→ P• ⊗FpN Fp, with a slight abuse of notation we can identify the elements of
H•(N,Fp) as follows:

for i1, i2, j1, j2 ≥ 0, xi11 y
j1
1 x

i2
2 y

j2
2 = (ei1+j1+2i2+2j2

j1+2j2
)∗. (5.6)

Consider the elements ρ, κ ∈ FpN given by

ρ =
∑

0≤j≤i<pn
aibj, κ =

pn−1∑
i=0

(i+ 1)ai,
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and define the maps α ∈ HomFpN(P•, P
σ−1

• )0 and τ ∈ HomFpN(P•, P•)1 as the homo-
morphisms that for 0 ≤ j ≤ i < pn satisfy the following equalities:

α(e2i2j) =
∑
j≤k≤i

(
k

j

)
(e2i2k − ρe2i2k+1), τ(e2i2j) = −(j + 1)κe2i+1

2j+2,

α(e2i2j+1) =
∑
j≤k≤i

(
k

j

)
be2i2k+1, τ(e2i2j+1) = −(j + 1)e2i+1

2j+3,

α(e2i+1
2j ) =

∑
j≤k≤i

(
k

j

)
(be2i+1

2k + e2i+1
2k+1), τ(e2i+1

2j ) = −(j + 1)e2i+2
2j+2,

α(e2i+1
2j+1) =

∑
j≤k≤i

(
k

j

)
e2i+1
2k+1, τ(e2i+1

2j+1) = −(j + 1)κe2i+2
2j+3.

We will now prove that these maps satisfy the hypotheses in Theorem 4.4.
The first step is proving that α is a chain map, for which we will make use of the

following result.

Lemma 5.7. Let eij be as in (5.5).

(i) The following identities hold:

ρ(b− 1) = bT (ab)− T (a), ρ(a− 1) = T (b)− T (ab),

ρ(ab− 1) = T (b)− T (a), κ(a− 1) = −T (a).

(ii) The differential of the element eij is as follows:

∂(e2i2j) = T (a)e2i−1
2j + T (b)e2i−1

2j−1, ∂(e2i2j+1) = (a− 1)e2i−1
2j+1 − (b− 1)e2i−1

2j ,

∂(e2i+1
2j ) = (a− 1)e2i2j − T (b)e2i2j−1, ∂(e2i+1

2j+1) = T (a)e2i2j+1 + (b− 1)e2i2j.

Proof. (i) We give the proof of the first identity, as all the others follow similarly.
We can compute

ρ(b− 1) =

pn−1∑
i=0

i∑
j=0

ai(bj+1 − bj) =

pn−1∑
i=0

ai(bi+1 − 1) = bT (ab)− T (a).

(ii) Once again, we prove the first identity. Using the definition of the differential
of a tensor product in (1.1) and the differential in Examples 1.17(i), we can
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compute

∂(e2i2j) = ∂(e′2i−2j)⊗ e′′2j + e′2i−2j ⊗ ∂(e′′2j)

= T (a)e′2i−2j−1 ⊗ e′′2j + T (b)e′2i−2j ⊗ e′′2j−1

= T (a)e2i−1
2j + T (b)e2i−1

2j−1.

Proposition 5.8. The map α is a chain map, i.e. ∂ ◦ α− α ◦ ∂ = 0.

Proof. We will use Lemma 5.7 during the computations. We need to consider four
cases:

(i) Let us show that (∂ ◦ α− α ◦ ∂)(e2i2j) = 0. On the one hand,

∂ ◦ α(e2i2j) =
∑
j≤k≤i

(
k

j

)
∂(e2i2k − ρe2i2k+1)

=
∑
j≤k≤i

(
k

j

)((
T (a) + ρ(b− 1)

)
e2i−1
2k + T (b)e2i−1

2k−1 − ρ(a− 1)e2i−1
2k+1

)
=
∑
j≤k≤i

(
k

j

)(
bT (ab)e2i−1

2k + T (b)e2i−1
2k−1 +

(
T (ab)− T (b)

)
e2i−1
2k+1

)
=
∑
j≤k≤i

(
k

j

)(
bT (ab)e2i−1

2k + T (ab)e2i−1
2k+1

)
+

∑
j≤k+1≤i

[(
k + 1

j

)
−
(
k

j

)]
T (b)e2i−1

2k+1

=
∑
j≤k≤i

(
k

j

)(
bT (ab)e2i−1

2k + T (ab)e2i−1
2k+1

)
+

∑
j≤k+1≤i

(
k

j − 1

)
T (b)e2i−1

2k+1.

On the other hand,

α ◦ ∂(e2i2j) = α
(
T (a)e2i−1

2j + T (b)e2i−1
2j−1

)
=
∑
j≤k≤i

(
k

j

)
T (ab)(be2i−1

2k + e2i−1
2k+1) +

∑
j≤k≤i

(
k

j − 1

)
T (b)e2i−1

2k+1

=
∑
j≤k≤i

(
k

j

)
T (ab)(be2i−1

2k + e2i−1
2k+1) +

∑
j≤k+1≤i

(
k

j − 1

)
T (b)e2i−1

2k+1.

Therefore, (∂ ◦ α− α ◦ ∂)(e2i2j) = 0.
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(ii) Let us show that (∂ ◦ α− α ◦ ∂)(e2i2j+1) = 0. On the one hand,

∂ ◦ α(e2i2j+1) =
∑
j≤k≤i

(
k

j

)
∂(be2i2k+1)

=
∑
j≤k≤i

(
k

j

)(
b(a− 1)e2i−1

2k+1 − b(b− 1)e2i−1
2k

)
.

On the other hand,

α ◦ ∂(e2i2j+1) = α
(
(a− 1)e2i−1

2j+1 − (b− 1)e2i−1
2j

)
=
∑
j≤k≤i

(
k

j

)(
(ab− 1)e2i−1

2k+1 − (b− 1)(be2i−1
2k + e2i−1

2k+1)
)

=
∑
j≤k≤i

(
k

j

)(
b(a− 1)e2i−1

2k+1 − b(b− 1)e2i−1
2k

)
.

Therefore, (∂ ◦ α− α ◦ ∂)(e2i2j+1) = 0.

(iii) Let us show that (∂ ◦ α− α ◦ ∂)(e2i+1
2j ) = 0. On the one hand,

∂ ◦ α(e2i+1
2j ) =

∑
j≤k≤i

(
k

j

)
∂(be2i+1

2k + e2i+1
2k+1)

=
∑
j≤k≤i

(
k

j

)((
b(a− 1) + (b− 1)

)
e2i2k − bT (b)e2i2k−1 + T (a)e2i2k+1

)
=
∑
j≤k≤i

(
k

j

)(
(ab− 1)e2i2k + T (a)e2i2k+1

)
−

∑
j≤k+1≤i

(
k + 1

j

)
T (b)e2i2k+1.
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On the other hand,

α ◦ ∂(e2i+1
2j ) = α

(
(a− 1)e2i2j − T (b)e2i2j−1

)
=
∑
j≤k≤i

(
k

j

)
(ab− 1)(e2i2k − ρe2i2k+1)−

∑
j≤k+1≤i

(
k

j − 1

)
bT (b)e2i2k+1

=
∑
j≤k≤i

(
k

j

)(
(ab− 1)e2i2k + T (a)e2i2k+1

)
−
∑
j≤k≤i

[(
k

j

)
+

(
k

j − 1

)]
T (b)e2i2k+1

=
∑
j≤k≤i

(
k

j

)(
(ab− 1)e2i2k + T (a)e2i2k+1

)
−

∑
j≤k+1≤i

(
k + 1

j

)
T (b)e2i2k+1.

Therefore, (∂ ◦ α− α ◦ ∂)(e2i+1
2j ) = 0.

(iv) Let us show that (∂ ◦ α− α ◦ ∂)(e2i+1
2j+1) = 0. On the one hand,

∂ ◦ α(e2i+1
2j+1) =

∑
j≤k≤i

(
k

j

)
∂(e2i+1

2k+1)

=
∑
j≤k≤i

(
k

j

)(
T (a)e2i2k+1 + (b− 1)e2i2k

)
=
∑
j≤k≤i

(
k

j

)((
bT (ab)− ρ(b− 1)

)
e2i2k+1 + (b− 1)e2i2k

)
.

On the other hand,

α ◦ ∂(e2i+1
2j+1) = α

(
T (a)e2i2j+1 + (b− 1)e2i2j

)
=
∑
j≤k≤i

(
k

j

)(
T (ab)be2i2k+1 + (b− 1)(e2i2k − ρe2i2k+1)

)
.

Therefore, (∂ ◦ α− α ◦ ∂)(e2i+1
2j+1) = 0.
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We are left to prove that the identity ∂ ◦ τ + τ ◦ ∂ = 1− αp
n holds. In order to do

that, we first list the identities that will be used throughout the proof.

Lemma 5.9.

(i) We have that
pn−1∑
r=0

ρσ
r

br = κT (b).

(ii) For any i, j ≥ 0 and m ≥ 1, we have that

∑
j≤k≤l≤i

mk−j
(
l

k

)(
k

j

)
=

i∑
l=j

(m+ 1)l−j
(
l

j

)
.

Proof. (i) If p does not divide i+ 1, then T (bi+1) = T (b). Otherwise, i+ 1 = 0 in
Fp. Note that

ρσ
r

=
∑

0≤j≤i<pn
aibri+j

for every r ≥ 0. Hence,

pn−1∑
r=0

αr(ρ)br =

pn−1∑
i=0

i∑
j=0

aibj
pn−1∑
r=0

br(i+1) =

pn−1∑
i=0

i∑
j=0

aibjT (bi+1)

=

pn−1∑
i=0

(i+ 1)aiT (b) = κT (b).

(ii) Using standard identities of binomial coefficients, we compute

∑
j≤k≤l≤i

mk−j
(
l

k

)(
k

j

)
=

i∑
l=j

l∑
k=j

mk−j
(
l

j

)(
l − j

k − j

)

=
i∑
l=j

(
l

j

) l−j∑
k=0

mk−j
(
l − j

k − j

)
=

i∑
l=j

(m+ 1)l−j
(
l

j

)
.

Proposition 5.10. The maps α and τ satisfy the identity ∂ ◦ τ + τ ◦ ∂ = 1− αp
n.
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Proof. We will use Lemma 5.7 during the computations. We need to consider four
cases:

(i) Let us show that (∂ ◦ τ + τ ◦ ∂)(e2i2j) = (1 − αp
n
)(e2i2j). First, we will compute

(∂ ◦ τ + τ ◦ ∂)(e2i2j). On the one hand,

∂ ◦ τ(e2i2j) = ∂
(
− (j + 1)κe2i+1

2j+2

)
= −(j + 1)κ(a− 1)e2i2j+2 + (j + 1)κT (b)e2i+1

2j+1

= (j + 1)T (a)e2i2j+2 + (j + 1)κT (b)e2i+1
2j+1.

On the other hand,

τ ◦ ∂(e2i2j) = τ
(
T (a)e2i−1

2j + T (b)e2i−1
2j−1

)
= −(j + 1)T (a)e2i2j+2 − jT (b)κe2i2j+1.

As a consequence,
(∂ ◦ τ + τ ◦ ∂)(e2i2j) = κT (b)e2i2j+1.

Now, we compute (∂ ◦ τ + τ ◦ ∂)(e2i2j). Applying α repeatedly to e2i2j, we obtain
that

αm(e2i2j) =
∑
j≤k≤i

mk−j
(
k

j

)(
e2i2k −

m−1∑
r=0

ρσ
r

bre2i2k+1

)
for any 1 ≤ m ≤ pn. Therefore,

αp
n

(e2i2j) =
∑
j≤k≤i

pn(k−j)
(
k

j

)(
e2i2k − κT (b)e2i2k+1

)
= e2i2j − κT (b)e2i2j+1,

and thus (∂ ◦ τ + τ ◦ ∂)(e2i2j) = (1− αp
n
)(e2i2j).

(ii) Let us show that (∂ ◦τ+τ ◦∂)(e2i2j+1) = (1−αpn)(e2i2j+1). First, we will compute
(∂ ◦ τ + τ ◦ ∂)(e2i2j+1). On the one hand,

∂ ◦ τ(e2i2j+1) = ∂
(
− (j + 1)e2i+1

2j+3

)
= −(j + 1)T (a)e2i2j+3 − (j + 1)(b− 1)e2i2j+2.

On the other hand,

τ ◦ ∂(e2i2j+1) = τ
(
(a− 1)e2i−1

2j+1 − (b− 1)e2i−1
2j

)
= −(j + 1)(a− 1)κe2i2j+3 + (j + 1)(b− 1)e2i2j+2

= (j + 1)T (a)e2i2j+3 + (j + 1)(b− 1)e2i2j+2.
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As a consequence,
(∂ ◦ τ + τ ◦ ∂)(e2i2j+1) = 0.

Now, applying α repeatedly to e2i2j+1, we obtain that

αm(e2i2j+1) =
∑
j≤k≤i

mk−j
(
k

j

)
bme2i2k+1.

Therefore,
αp

n

(e2i2j+1) =
∑
j≤k≤i

pn(k−j)
(
k

j

)
bp

n

e2i2k+1 = e2i2j+1,

and thus (∂ ◦ τ + τ ◦ ∂)(e2i2j+1) = (1− αp
n
)(e2i2j+1).

(iii) Let us show that (∂ ◦ τ + τ ◦∂)(e2i+1
2j ) = (1−αpn)(e2i+1

2j ). First, we will compute
(∂ ◦ τ + τ ◦ ∂)(e2i+1

2j ). On the one hand,

∂ ◦ τ(e2i+1
2j ) = ∂

(
− (j + 1)e2i+2

2j+2

)
= −(j + 1)T (a)e2i+1

2j+2 − (j + 1)T (b)e2i+1
2j+1.

On the other hand,

τ ◦ ∂(e2i+1
2j ) = τ

(
(a− 1)e2i2j − T (b)e2i2j−1

)
= −(j + 1)(a− 1)κe2i+1

2j+2 + jT (b)e2i+1
2j+1

= (j + 1)T (a)e2i+1
2j+2 + jT (b)e2i+1

2j+1.

As a consequence,

(∂ ◦ τ + τ ◦ ∂)(e2i+1
2j ) = −T (b)e2i+1

2j+1.

Now, applying α repeatedly to e2i+1
2j , we obtain that

αm(e2i+1
2j ) =

∑
j≤k≤i

mk−j
(
k

j

)(
bme2i+1

2k +
m−1∑
r=0

bre2i+1
2k+1

)
.

Therefore,

αp
n

(e2i+1
2j ) =

∑
j≤k≤i

pn(k−j)
(
k

j

)(
bp

n

e2i+1
2k + T (b)e2i+1

2k+1

)
= e2i+1

2j + T (b)e2i+1
2j+1,

and thus (∂ ◦ τ + τ ◦ ∂)(e2i+1
2j ) = (1− αp

n
)(e2i+1

2j ).
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(iv) Let us show that (∂ ◦τ+τ ◦∂)(e2i+1
2j+1) = (1−αpn)(e2i+1

2j+1). First, we will compute
(∂ ◦ τ + τ ◦ ∂)(e2i+1

2j+1). On the one hand,

∂ ◦ τ(e2i+1
2j+1) = ∂

(
− (j + 1)κe2i+2

2j+3

)
= −(j + 1)(a− 1)κe2i+1

2j+3 + (j + 1)(b− 1)κe2i+1
2j+2

= (j + 1)T (a)e2i+1
2j+3 + (j + 1)(b− 1)κe2i+1

2j+2.

On the other hand,

τ ◦ ∂(e2i+1
2j+1) = τ

(
T (a)e2i2j+1 + (b− 1)e2i2j

)
= −(j + 1)T (a)e2i+1

2j+3 − (j + 1)(b− 1)κe2i+1
2j+2.

As a consequence,
(∂ ◦ τ + τ ◦ ∂)(e2i+1

2j+1) = 0.

Now, applying α repeatedly to e2i+1
2j+1, we obtain that

αm(e2i+1
2j+1) =

∑
j≤k≤i

mk−j
(
k

j

)
e2i+1
2k+1.

Therefore,

αp
n

(e2i+1
2j+1) =

∑
j≤k≤i

pn(k−j)
(
k

j

)
e2i+1
2k+1 = e2i+1

2j+1,

and thus (∂ ◦ τ + τ ◦ ∂)(e2i+1
2j+1) = (1− αp

n
)(e2i+1

2j+1).

We can now combine Proposition 5.8 and Proposition 5.10 into the following result.

Lemma 5.11. The maps α and τ defined as before satisfy ∂ ◦ α − α ◦ ∂ = 0 and
∂ ◦ τ − τ ◦ ∂ = 1− αp

n.

Using Theorem 4.4 and the maps α and τ in Lemma 5.11, we can now compute
the second differential of the remaining bigraded Fp-algebra generators. We will need
to use the explicit definition of the generators in (5.2.2) and the duality between
H•(N,Fp) and H•(N,Fp) in (5.6).

Proposition 5.12. The second differential of the elements µ4, . . . , µ2p is as follows:
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(i) For 2 ≤ i ≤ p, we have that

d2(µ2i) = −(i− 1)λ1µ2i−2γ2.

(ii) For 2 ≤ i ≤ p− 1, we have that

d2(µ2i+1) = −iλ1µ2i−1γ2.

Proof. Consider µ2i+2 = y1yi2 ∈ E1,2i+1
2 with 1 ≤ i ≤ p − 1, which, by (5.6), is

represented by the map f : P2i+1 −→ Fp with f = (e2i+1
2i+1)

∗. We can easily compute
f ◦ τ to obtain that, for 0 ≤ j ≤ k < pn, we have that

(f ◦ τ)(e2k+1
2j ) = 0, (f ◦ τ)(e2k+1

2j+1) = 0, (f ◦ τ)(e2k2j ) = 0,

(f ◦ τ)(e2k2j+1) =

{
−i, if k = i and j = i− 1,

0, otherwise.

Hence, −(f ◦ τ) = i(e2i2i−1)
∗, which represents −iλ1µ2iγ2 = ix1y1y

i−1
2 . Consequently,

d2(µ2i+2) = −iλ1µ2iγ2.

Take now µ2i+1 = yi2 ∈ E1,2i
2 with 2 ≤ i ≤ p − 1, which is represented by the map

f : P2i −→ Fp with f = (e2i2i)
∗. We compute f ◦ τ to obtain that

(f ◦ τ)(e2k2j ) = 0, (f ◦ τ)(e2k2j+1) = 0, (f ◦ τ)(e2k+1
2j+1) = 0,

(f ◦ τ)(e2k+1
2j ) =

{
−i, if k = i− 1 and j = i− 1,

0, otherwise.

Hence, −(f ◦ τ) = i(e2i−1
2i−2)

∗, which represents −iλ1µ2i−1γ2 = ix1y
i−1
2 . Consequently,

d2(µ2i+1) = −iλ1µ2i−1γ2.

The proof of the next result is verbatim to the previous one.

Proposition 5.13. The second differential of the element ν3 is trivial.

Proof. Consider ν3 = x1y2 − y1x2 ∈ E0,3
2 which, by (5.6), is represented by the map

f : P3 −→ Fp with f = (e32)
∗ − (e31)

∗. We can easily compute f ◦ τ = 0, and so
d2(ν3) = 0.
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5.5 Third page of the spectral sequence

Using the results in Sections 5.3 and 5.4, we can now determine the bigraded Fp-vector
space E3. First, write D3 = E3/⟨ν2p⟩, and define the elements

for 4 ≤ i ≤ 2p+ 1, ωi = −λ1µi−1 ∈ E1,i−1
2 ,

ω2p+2 = λ2µ2p ∈ E1,2p+1
2 ,

ξ2p+1 = λ2µ2p−1 ∈ E1,2p
2 .

One can easily verify that these elements have trivial second differential, and so they
are in fact elements of E3. For example, we can compute

d2(ω2p+2) = d2(λ2µ2p) = d2(λ2)µ2p + λ2 d2(µ2p) = λ1λ2µ2p−2 = x1y1x2y
p−2
2 = 0.

Proposition 5.14. Multiplication by the elements ν2p, γ2, λ2 induces vector space
homomorphisms as follows:

(i) Multiplication ·ν2p : Er,s
3 −→ Er,s+2p

3 is injective for all r, s ≥ 0. As a conse-
quence, E3 = Fp[ν2p]⊗D3.

(ii) Multiplication ·γ2 : Er,s
3 −→ Er+2,s

3 is surjective for all r, s ≥ 0, and an isomor-
phism for all r ̸= 1, as is ·γ2 : D1,s

3 −→ D3,s
3 for s ≥ 2p− 1.

(iii) Multiplication ·λ2 : Dr,s
3 −→ Dr,s+2

3 is an isomorphism for all s ≥ 2p.

Proof. The proofs of (i) and (ii) are based on the proof of [Sie96, Corollary 6].
We start with the first statement. For r, s ≥ 0, let φ ∈ Er,s

2 be such that d2(φ) = 0,
and suppose that φν2p is a trivial element in E3, i.e. there exists ψ ∈ Er−2,s+2p+1

2 such
that φν2p = d2(ψ). Then, since ⟨ν2p⟩∩d2(E2\⟨ν2p⟩) = 0, there exists υ ∈ Er−2,s+1

2 such
that ψ = υν2p. Consequently, φν2p = d2(υ)ν2p and, because ·ν2p : Er,s

2 −→ Er,s+2p
2 is

injective (see Proposition 5.3(i)), we have that φ = d2(υ), i.e. φ = 0 in E3.
For the next claim, we first show that multiplication by γ2 is surjective. Take

φ ∈ Er+2,s
2 with r, s ≥ 0 such that d2(φ) = 0. By Proposition 5.3(ii), there is some

ψ ∈ Er,s
2 such that φ = ψγ2 in E2. Then, we have that d2(ψ)γ2 = d2(φ) = 0 and,

because the product ·γ2 : Er+2,s−1
2 −→ Er+4,s−1

2 is injective, we deduce that d2(ψ) = 0,
i.e. ψ survives to E3 and φ = ψγ2 in E3.

We will now study the injectivity of the multiplication by γ2. Let φ ∈ Er,s
2 with

r ̸= 1 or s ≥ 2p − 1 such that d2(φ) = 0. Suppose that there exists ψ ∈ Er,s+1
2 such

that φγ2 = d2(ψ) and we want to deduce that φ = 0. If r = 0, or if φ ∈ Dr,s
2 with

s ≥ 2p − 1, then d2(ψ) = 0, and by the injectivity of ·γ2 : Er,s
2 −→ Er+2,s

2 we obtain
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that φ = 0. Otherwise, if r ≥ 2 we have that ψ = υγ2 with υ ∈ Er−2,s+1
2 . Hence,

φγ2 = d2(υ)γ2 and, because ·γ2 : Er,s
2 −→ Er+2,s

2 is injective, we have that φ = d2(υ),
i.e. φ = 0 in E3.

Now, let us show that multiplication by λ2 is surjective for s ≥ 2p. Take φ ∈ Er,s+2
2

with s ≥ 2p such that d2(φ) = 0. By Proposition 5.3(iii), there is some ψ ∈ Er,s
2

such that φ = ψλ2 in E2. Then, we have that d2(ψ)λ2 = d2(φ) = 0 and, because
the product ·λ2 : Er+2,s−1

2 −→ Er+2,s+1
2 is injective, we deduce that d2(ψ) = 0, i.e. ψ

survives to E3 and φ = ψλ2 in E3.
Finally, we show that multiplication by λ2 is injective for s ≥ 2p. Let φ ∈ Er,s

2 with
g ≥ 2p such that d2(φ) = 0. Suppose that φλ2 = d2(ψ) for some ψ ∈ Er−2,s+3

2 . Then,
as ⟨λ2⟩ ∩ d2(E2 \ ⟨λ2⟩) = 0, there exists υ ∈ Er−2,s+1

2 such that ψ = υλ2. Therefore,
φλ2 = d2(υ)λ2 and, because ·λ2 : Er,s

2 −→ Er,s+2
2 is injective, we have that φ = d2(υ),

i.e. φ = 0 in E3.

We can now fully determine the structure of the bigraded Fp-vector space E3.

Theorem 5.15. to start in a new line
(i) For r ≥ 0 even, we have that Er,•

3 = Er,•
2 . For r ≥ 5 odd, we have that

Dr,s
3 = Dr−2,s

3 γ2. For r = 1, 3, the basis elements of Dr,s
3 are the following:

2i+ 1 ≥ 2p+ 1 λi−p+1
2 ω2p, λi−p2 ω2p+2 λi−p+1

2 ω2pγ2, λi−p2 ω2p+2γ2

2i ≥ 2p λi−p2 ω2p+1, λi−p2 ξ2p+1 λi−p2 ω2p+1γ2, λi−p2 ξ2p+1γ2

2p− 1 ω2p ω2pγ2

6 ≤ s < 2p− 2 ωs+1 ∅

5 ω6 ∅

4 µ2ν3 ∅

3 λ1µ3 ∅

2 µ3 µ3γ2

1 µ2 µ2γ2

0 γ1 γ1γ2

s D1,s
3 D3,s

3

Additionally, if p ≥ 5 we have that ω6 =
2
3
µ3ν3, and so D1,5

3 = ⟨µ3ν3⟩.
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(ii) We can write E3 = Fp[ν2p] ⊗D3. Furthermore, for p = 3, the third page E3 is
generated by the elements

λ1, λ2, ν2, ν3, ν6, γ1, γ2, µ2, µ3, ω6, ω7, ω8, ξ7,

and for p ≥ 5, by the elements

λ1, λ2, ν2, ν3, ν2p, γ1, γ2, µ2, µ3, ω7, . . . , ω2p+2, ξ2p+1.

Proof. We can deduce from Theorem 5.4 that E1,s
3 = ⟨ωs+1⟩ for 3 ≤ s ≤ 2p − 1.

Nevertheless, we can easily compute

−ω4 = λ1µ3, −ω5 = µ2ν3,
3

2
ω6 = µ3ν3.

For example, using Proposition 5.1(ii) we obtain that x1y22 = −2y1x2y2, and so

µ3ν3 = ȳ2 · (x1y2 − y1x2) = y1x2y2 − x1y22 =
3

2
x1y22 = −3

2
λ1µ5 =

3

2
ω6.

Everything else follows from Propositions 5.12 and 5.14.

5.6 To infinity and beyond

Our objective in this section is to show that if p ≥ 5 the spectral sequence E collapses
at the third page, i.e. E3 = E∞. In order to achieve our goal, we will define two
group automorphisms that will help us show that all the differentials starting with
d3 are trivial. Let u ∈ U(Z/pnZ) be a generator, i.e. upn−1(p−1) = 1 but ui ̸= 1 for
any 1 ≤ i < pn−1(p− 1). For 0 ≤ i, j, k ≤ pn− 1, we define the group automorphisms
Φ: G −→ G and Ψ: G −→ G by

Φ(σkaibj) = σukaibuj, and Ψ(σkaibj) = σkauibuj.

Because Φ(N),Ψ(N) ≤ N , for every m ≥ 2, there are induced automorphisms
Φ∗ : Em −→ Em and Ψ∗ : Em −→ Em. These automorphisms act on the genera-
tors of D3 by multiplying each of them by a power of u as described in the following
table:

λi γi ν2 ν3 µ2i µ2i+1 ω2i ω2i+1 ξ2p+1

Φ 1 u u u ui+1 ui+1 ui ui+1 up

Ψ u 1 u2 u2 ui ui ui ui+1 up

86



Proposition 5.16. For p ≥ 5, the element ξ2p+1 ∈ E3 survives to E∞.

Proof. Assume by induction that, for m ≥ 3, ξ2p+1 ∈ Em, and we will show that
ξ2p+1 ∈ Em+1. Consider first the case m = 2j + 1 with j ≥ 1. We have that

d2j+1(ξ2p+1) = t1λ
p−j
2 γj+1

2 + t2λ
p−j−1
2 ν2γ

j+1
2 (5.7)

with t1, t2 ∈ Fp. Applying Ψ, we obtain that

up d2j+1(ξ2p+1) = t1u
p−jλp−j2 γj+1

2 + t2u
p−j+1λp−j−1

2 ν2γ
j+1
2

and, equating coefficients with those in (5.7), we get the conditions{
t1(1− uj) = 0,

t2(1− uj−1) = 0.

From these, we deduce that t1 = 0 for all j ≥ 1, and t2 = 0 for all j > 1. If j = 1,
applying Φ to (5.7) we deduce that t2(1− up−3) = 0 and t2 = 0 for p ≥ 5. Therefore,
ξ2p+1 ∈ E2j+1 survives to E2j+2.

If m = 2j with j ≥ 2, the only case in which the differential might be non-trivial
is j = p. We have that

d2p(ξ2p+1) = tµ2γ
p
2

with t ∈ Fp. Applying Φ, we obtain that

up d2p(ξ2p+1) = tup+2µ2γ
p
2 ,

which implies that t(1 − u2) = 0, and so t = 0. Therefore, ξ2p+1 ∈ E2j survives to
E2j+1.

Remark 5.17. For p = 3, following the proof of Proposition 5.16, we are only able
to show that d3(ξ7) = tλ2ν2γ

2
2 for some t ∈ Fp. If t = 0, then E3 = E∞. Otherwise,

the spectral sequence does not collapse until at least the fourth page. This stands in
contrast with [Sie96, Theorem 5], where it is shown that E2(Heis(3)) = E∞(Heis(3)).

Proposition 5.18. For p ≥ 3, the element ν3 ∈ E3 survives to E∞.

Proof. Observe that, for some t ∈ Fp, we have that d3(ν3) = tµ2γ2 ∈ ⟨µ2γ2⟩. Applying
Φ we obtain that Φ(d3(ν3)) = tu2µ2γ2. Then, t(u2 − 1)µ2γ2 = 0 implies that t = 0,
as desired.

Proposition 5.19. For p ≥ 3, the elements ω6, ω7, . . . , ω2p+2 ∈ E3 survive to E∞.
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Proof. The proof for the elements ω7, . . . , ω2p+2 ∈ E3 with any p ≥ 3, and for ω6 with
p = 3, is analogous to the proof of Proposition 5.16, and can be done following the
proof of [Sie96, Theorem 7]. For p ≥ 5, the element ω6 =

2
3
ν3µ3 also survives to E∞,

for degree reasons.

Therefore, Propositions 5.16, 5.18 and 5.19 prove the following result.
Theorem 5.20. Let n ≥ 2 and let p ≥ 5. Then, the LHS spectral sequence E
associated to G collapses in the third page, i.e. E3 = E∞.
Remark 5.21. For p ≥ 5, combining our result with [Sie96, Theorem 7], we obtain
that E3(Heis(p

n)) = E∞(Heis(pn)) for all n ≥ 1.

5.7 Poincaré series

In this section, we will compute the Poincaré series of H•(G,Fp), i.e. the power series

P (t) =
∞∑
k=0

(
dimHk(G)

)
tk =

∞∑
k=0

k∑
r=0

(dimEr,k−r
∞ )tk.

Let D∞ = E∞/⟨ν2p⟩ = D3, which is the subring of E∞ generated by all the generators
except for ν2p. Given that E∞ = Fp[ν2p]⊗D∞, in order to obtain the Poincaré series
of E∞ we only need to compute the Poincaré series of D∞ and multiply it by the
Poincaré series of Fp[ν2p]. For k ≥ 0, write

Dk
∞ =

⊕
r+s=k

Dr,s
∞ , so that dimDk

∞ =
k∑
r=0

dimDr,k−r
∞ .

Then, the Poincaré series of D∞ is given by the power series

PD(t) =
∞∑
k=0

(dimDk
∞)tk,

and so we first need to obtain the values dimDk
∞ for each k ≥ 0. Note that, for every

r, s ≥ 0, the number dimDr,s
∞ is computed in Theorem 5.15. Indeed, for i ≥ 0, we

have that

dimD1,s
∞ =

{
1, if 0 ≤ s ≤ 2p− 1,

2, if s ≥ 2p,
dimD2i,s

∞ =

{
1, if s = 0, 1,

2, if s ≥ 2,

dimD2i+3,s
∞ =


1, if s = 0, 1, 2, 2p− 1,

0, if 3 ≤ s ≤ 2p− 2,

2, if s ≥ 2p.
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This information can be showcased in the following table:

2p+ 1 2 2 2 2 2 2 2

2p 2 2 2 2 2 2 2

2p− 1 2 1 2 1 2 1 2

2p− 2 2 1 2 0 2 0 2
... ... ... ... ... ... ... ...

3 2 1 2 0 2 0 2

2 2 1 2 1 2 1 2

1 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1

0 1 2 3 4 5 6

Figure 5.3: Dimension of Dr,s
∞ for 0 ≤ r ≤ 6 and 0 ≤ s ≤ 2p+ 1.

Lemma 5.22. For k ≥ 0, we have that

dimDk
∞ =


k + 1, if k = 0, 1,

k + 2, if k = 2, 3,

k + 3, if 4 ≤ k ≤ 2p,

2k − 2p+ 3, if k ≥ 2p+ 1.

Proof. The values dimDk
∞ for 0 ≤ k ≤ 3 can be easily computed from the table in

Figure 5.3. Let 4 ≤ k ≤ 2p and write k = 2i+ ε with ε = 0, 1. Then, we can compute
k−3∑
r=2

dimDr,k−r
∞ = 2(i− 2 + ε) = k − 4 + ε,

dimDk−2,2
∞ = 2− ε.

Therefore, we obtain that

dimDk
∞ =

k−3∑
r=2

dimDr,k−r
∞ + dimDk−2,2

∞ + 5 = (k − 4 + ε) + (2− ε) + 5 = k + 3.
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Let now k ≥ 2p + 1 and write k = 2i + ε with ε = 0, 1. Then, we can compute the
following values:

k−2p∑
r=0

dimDr,k−r
∞ = 2(k − 2p+ 1) = 2k − 4p+ 2, dimDk−2p+1,2p−1

∞ = 1 + ε,

k−3∑
r=k−2p+2

dimDr,k−r
∞ = 2(p− 2) = 2p− 4, dimDk−2,2

∞ = 2− ε.

Therefore, we obtain that

dimDk
∞ =

k−2p∑
r=0

dimDr,k−r
∞ + dimDk−2p+1,2p−1

∞

+
k−3∑

r=k−2p+2

dimDr,k−r
∞ + dimDk−2,2

∞ + 2

= (2k − 4p+ 2) + (2p− 4) + (1 + ε) + (2− ε) + 2

= 2k − 2p+ 3.

As a result, we can compute the Poincaré series of H•(G,Fp).
Theorem 5.23. The Poincaré series of H•(G,Fp) is

P (t) =
1 + t2 − t3 + t4 − t5 + t2p+1

(1− t)2(1− t2p)
.

Proof. Using Lemma 5.22, we can compute the Poincaré series for D∞ as follows:

PD(t) =
∞∑
k=0

(dimDk
∞)tk

= 1 + 2t+ 4t2 + 5t3 +

2p∑
k=4

(k + 3)tk +
∞∑

k=2p+1

(2k − 2p+ 3)tk

=
1 + t2 − t3 + t4 − t5 + t2p+1

(1− t)2
.

Therefore, because E∞ = Fp[ν2p]⊗D∞, we have that

P (t) =
PD(t)

(1− t2p)
=

1 + t2 − t3 + t4 − t5 + t2p+1

(1− t)2(1− t2p)
.
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5.8 Conclusion and further work

As a consequence of Theorem 5.20, we obtain that, for a prime number p ≥ 5, the
LHS spectral sequences E of G are isomorphic from the second page on as bigraded
Fp-algebras. We have not, however, determined the ring structure of H•(Heis(pn),Fp).
Now, as we discussed in Section 1.3.1, by [Car05, Theorem 2.1], there are finitely many
liftings of E∞(Heis(pn)) to the cohomology ring H•(Heis(pn),Fp). This in particular
yields the following result.

Corollary 5.24. Let p ≥ 5 be a prime number. Then, there are only finitely
many isomorphism types of graded-commutative Fp-algebras in the infinite collection
{H•(Heis(pn),Fp) | n ≥ 1}.

The above result is in slight analogy with the previously obtained results in the
area [Car05], [DGG17], [DGG18], [GG19], [Sym21]. Let G(−) denote an affine group
scheme over a ring. For example, the Heisenberg group Ĝ = Z⋉(Z×Z) and the group
G are obtained by applying such a functor G(−) to Z and to Z/pnZ, respectively. The
presentations of the cohomology rings of such groups are intrinsically hard to obtain.
For instance, in [Qui72], Quillen described the cohomology rings of the general linear
groups GLn(L) over a field L of characteristic p with coefficients in a field K of
characteristic coprime to p and with trivial GLn(L)-action. However, the case where
L and K have the same characteristic is widely open. Based on Corollary 5.24, we
state the following conjecture.

Conjecture 5.25. Let p be a prime number and let G(−) be an affine group scheme
over the p-adic integers Zp. Then, there exists a natural number f = f(p,G) that
depends only on p and on G such that, for each p and for all n ≥ f , the graded-
commutative Fp-algebras H•(G(Zp/pnZp),Fp) are isomorphic, where Fp has trivial
G(Zp/pnZp)-action.

The first reason to support the previous conjecture is that the Quillen categories
of the groups G(Zp/pnZp) are isomorphic, equivalently H•(G(Zp/pnZp),Fp) are F -
isomorphic (see [Qui71a], [Qui71b]). Secondly, observe that for each n ≥ 2, there is
an extension

G1(Zp/pnZp) → G(Zp/pnZp) → G(Zp/pZp),

where G1(Zp/pnZp) denotes the first congruence subgroup of G(Zp/pnZp). It is known
that G1(Zp/pnZp) is a powerful p-central group with the Ω-extension property and
thus, for every n ≥ 2, the graded-commutative Fp-algebras H•(G1(Zp/pnZp),Fp) are
isomorphic [Wei00]. Moreover, the actions of G(Zp/pZp) on H•(G1(Zp/pnZp),Fp)
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are isomorphic, in the sense of [DGG17, Definition 5.5]. In turn, the second pages
E2(G(Zp/pnZp)) are isomorphic as bigraded Fp-algebras. Therefore, based on [DGG17,
Conjecture 6.1], we would expect that the above conjecture holds by taking f to be
equal to 2.
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Resumen en castellano

La cohomología de grupos surge, junto con el álgebra homológica, de la topología
algebraica y el estudio de los grupos de cohomología de ciertos espacios topológicos.
Dado un grupo finito G, podemos asociarle un espacio clasificador BG, el cual satis-
face que su primer grupo de homotopía es isomorfo a G, y sus grupos de homotopía de
órdenes superiores son triviales. Podemos definir los grupos de cohomología Hn(G, V )
de G con coeficientes en un RG-módulo V , donde R es un anillo conmutativo, como
los grupos de cohomología de su espacio clasificador BG, véase [Hat02]. También es
posible dar una definición puramente algebraica de los grupos de cohomología de G
en términos de functores derivados, y de hecho este es enfoque que seguiremos a lo
largo de esta tesis.

Posteriormente, el estudio de la cohomología de grupos se ha convertido en un
área de investigación importante por derecho propio. Si tomamos la suma directa
H•(G,R) de todos los grupos de cohomología del grupo finito G con coeficientes en
el módulo trivial R equipada con el así llamado producto cup, obtenemos un anillo
conmutativo-graduado finitamente generado [Eve91, Capítulo 3]. Esto demuestra
que la cohomología de grupos posee una rica estructura algebraica que puede ser
explotada para obtener una gran cantidad de información, como el número mínimo de
generadores y relaciones en una presentación del grupo. También tiene innumerables
aplicaciones fuera de la teoría de grupos, en áreas como la teoría de números y la
geometría algebraica, véanse [Gui18] y [Sil13].

Una característica importante de la cohomología de grupos es que admite múlti-
ples caracterizaciones, las cuales contribuyen a darnos una visión más completa de
la materia. De hecho, la cohomología puede describirse en términos de extensiones
tanto de módulos como de grupos. Por un lado, la caracterización del functor Ext en
términos de extensiones de módulos, debida originalmente a Yoneda [Yon92], nos per-
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mite describir los elementos de Hn(G, V ) como clases de equivalencia de extensiones
de RG-módulos de la forma

0 V Mn · · · M1 R 0.

Por otra parte, es bien sabido que el segundo grupo de cohomología H2(G, V ) clasifica,
salvo equivalencia, las extensiones de grupos de la forma

0 V E G 1.

Esto puede generalizarse, tal y como se hace en [Hol79], a grupos de cohomología de
grado superior, de modo que los elementos de Hn(G, V ) puedan verse como clases de
equivalencia de extensiones cruzadas de la forma

0 V Mn · · · M1 G 1.

Estas dos caracterizaciones de la cohomología de grupos comparten muchas de sus
características fundamentales. Cuando se estudian una junto a la otra, proporcionan
una descripción mucho más natural, aunque menos computacional, no sólo de los
propios grupos de cohomología, sino también de sus propiedades functoriales, homo-
morfismos conectores y el producto cup. Además, estas caracterizaciones también nos
ayudan a construir explícitamente clases de cohomología con propiedades específicas
que, de otro modo, serían muy difíciles de encontrar.

Nos interesarán sobre todo los anillos de cohomología módulo p de p-grupos finitos,
ya que el cálculo de los anillos de cohomología de grupos finitos puede reducirse a
ese caso. De hecho, la cohomología es en general más fácil de calcular cuando se
trabaja con coeficientes sobre un cuerpo K debido a resultados como la fórmula de
Künneth y el teorema de coeficientes universales, véase [Eve91, Sección 2.5]. Además,
podemos utilizar el teorema de Maschke [Ben91, Corolario 3.6.12] para demostrar que
la cohomología de G es trivial siempre que la característica de K no divida el orden de
G. Entonces, es posible suponer que K = Fp, siendo p un factor primo del orden de G,
utilizando el teorema de coeficientes universales. Por último, puede demostrarse que
la cohomología módulo p de G se embebe en la cohomología módulo p de cualquiera
de sus p-subgrupos de Sylow [Bro82, Sección III.10].

En general, no es posible determinar si dos grupos finitos dados son isomorfos
simplemente mirando a sus anillos de cohomología, es decir, la familia de grupos finitos
no posee la propiedad de unicidad cohomológica. En efecto, si p es un primo impar
y G es un p-grupo abeliano finito, el tipo de isomorfismo del anillo de cohomología
módulo p de G depende únicamente del número mínimo de generadores de G, véase
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[Eve91, Sección 3.5]. En particular, dos p-grupos cíclicos no isomorfos cualesquiera
tienen anillos de cohomología módulo p isomorfos.

No obstante, podemos restringir nuestra atención a familias específicas de p-grupos
finitos y estudiar si los grupos de estas familias pueden ser distinguidos por sus co-
homologías módulo p. Nos planteamos entonces las siguientes preguntas: ¿Es una
familia dada de grupos cohomológicamente única? Y por el contrario, ¿qué familias
de grupos no pueden distinguirse cohomológicamente, porque sólo tienen un número
finito de anillos de cohomología salvo isomorfismo? Como ya hemos explicado, la
respuesta a la primera pregunta es afirmativa para la familia de p-grupos abelianos
elementales finitos. Por otra parte, si tomamos todos los p-grupos abelianos finitos
de un cierto rango, entonces todos los grupos de esta familia tienen el mismo anillo
de cohomología módulo p.

En nuestros intentos de determinar la unicidad cohomológica de ciertas familias
de grupos, nos encontramos con un reto importante. En general, es extremadamente
difícil calcular el anillo de cohomología de un grupo dado, no hablemos ya de una
familia de grupos. De hecho, hay muy pocos ejemplos, aparte de los ya mencionados,
de cálculos explícitos de anillos de cohomología en la literatura. Es por esta razón
que podemos optar por centrar nuestra atención en el cálculo de ciertos invariantes
de la cohomología, en lugar de tratar de determinar la estructura completa del anillo.

Así, es interesante estudiar los invariantes algebraicos del anillo de cohomología de
G, y cómo se relacionan con la estructura de grupo de G. Por ejemplo, la dimensión
de Krull de la cohomología módulo p de G se puede calcular fácilmente, gracias a
un resultado de Quillen [CTVZ03, Corolario 8.4.7], como el rango de cualquier p-
subgrupo abeliano elemental maximal de G. Este importante resultado determina
completamente la dimensión de Krull de la cohomología en términos de la estructura
de los subgrupos del grupo.

Los intentos de hacer lo mismo con otro invariante algebraico, la profundidad, han
sido hasta ahora mucho menos exitosos. A pesar de estar estrechamente relacionada
con la dimensión de Krull, la profundidad es considerablemente más difícil de calcular.
Hasta ahora, sólo se han encontrado cotas superiores [CTVZ03, Proposición 12.2.5]
e inferiores [Duf81]. No obstante, Carlson enunció en [Car95] una conjetura que
caracteriza la profundidad de la cohomología módulo p de G en términos de lo bien
que puede detectarse dicha cohomología al restringir a las cohomologías de ciertos
subgrupos de G.

El principal obstáculo en el estudio de esta conjetura es que, normalmente, nece-
sitaríamos calcular primero el anillo de cohomología y luego utilizar métodos com-
putacionales para determinar la profundidad. La falta de ejemplos en la literatura,
sin embargo, hace que este enfoque sea inútil para el estudio de la profundidad en
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familias infinitas de p-grupos. Para p impar, consideramos el grupo pro-p de clase
de nilpotencia máxima G, que tiene un único cociente finito Gr de orden pr+1 para
cada entero r ≥ 2. Utilizando las cotas antes mencionados para la profundidad de
H•(Gr,Fp), somos capaces de determinar que su valor es 1 o 2, para cada r ≥ 2. Es
ahora cuando podemos emplear la caracterización de la cohomología de grupos en
términos de extensiones. Para calcular la profundidad cuando r ≤ p− 2, construimos
una clase de cohomología no trivial en H3(Gr,Fp) como producto de una extensión
de Yoneda en H1(Gr,Fp) y una extensión cruzada en H2(Gr,Fp), y demostramos que
su restricción es trivial en cada subgrupo de una cierta familia de subgrupos de Gr.
Esto nos permite utilizar los resultados de Carlson en [Car95] para demostrar que la
profundidad de H•(Gr,Fp) es 1 para 2 ≤ r ≤ p− 2, lo cual significa que estos grupos
satisfacen la conjetura de profundidad de Carlson. Y lo que es más importante, hemos
sido capaces de calcular el valor de la profundidad sin tener que calcular primero los
anillos de cohomología. Estos resultados publicados en [GGG22], junto con otros de
Garaialde Ocaña [Gar18], sugieren que los anillos de cohomología de los cocientes
finitos de G son idénticos o extremadamente similares.

Pasamos ahora a centrarnos en el cálculo de los anillos de cohomología en sí. Hacerlo
para familias infinitas de grupos sólo es posible a través de un estudio detallado
de los grupos específicos considerados. Las sucesiones espectrales han demostrado
ser una herramienta extraordinariamente poderosa en el cálculo de la cohomología
de grupos finitos, y se han convertido en una de las principales técnicas empleadas
con este objetivo. Aparecen principalmente en la forma de la sucesión espectral de
Lyndon-Hochschild-Serre (LHS) [Eve91, Sección 7.2], que nos permite en cierto modo
aproximar la cohomología de un grupo G que puede obtenerse como una extensión
de grupos

1 N G Q 1

partiendo de las cohomologías del cociente Q y del subgrupo normal N , y calculando
repetidamente grupos de cohomología. El principal inconveniente de este enfoque es
que depende del cálculo de ciertas diferenciales, de las cuales normalmente poseemos
poca o ninguna información. Este problema puede resolverse en determinadas cir-
cunstancias, en las cuales es posible encontrar fórmulas explícitas que nos ayudan
a calcular dichas diferenciales. Tal es el caso cuando G es una extensión escindida
de Q por N , como demostraron Charlap y Vasquez [CV69] y posteriormente adaptó
Siegel en [Sie96] al caso concreto cuando Q es un p-grupo cíclico de orden p. En
[GG23], generalizamos este resultado de Siegel para cuando Q es un p-grupo cíclico
de cualquier orden.

También en [Sie96], Siegel utiliza sus resultados sobre diferenciales en el cálculo
de la sucesión espectral LHS del grupo de Heisenberg Heis(p) módulo p para p ≥ 3.
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Podemos seguir el mismo argumento que Siegel para calcular las sucesiones espectrales
LHS de los grupos de Heisenberg Heis(pn) módulo pn para p ≥ 5 y n ≥ 2, y demostrar
que son todas isomorfas empezando por la segunda página. Esto implica que, en esta
familia infinita de grupos, sólo aparece un número finito de clases de isomorfismo de
anillos de cohomología. Los resultados anteriores han sido publicados en [GG23].

La estructura de la tesis es la siguiente:
En el capítulo 1, introducimos los conceptos y resultados principales de álgebra

homológica que usaremos a lo largo de esta tesis. Comenzamos introduciendo comple-
jos de cadenas y cocadenas de módulos, así como módulos proyectivos y resoluciones
proyectivas, las cuales usamos para definir los functores Tor y Ext. A continuación,
definimos los grupos de cohomología de grupos finitos y revisamos algunas de sus
propiedades básicas. Construimos la resolución barra de un grupo finito y calculamos
con ella los grupos de cohomología de bajo grado. Después, recordamos la estruc-
tura de la cohomología como anillo conmutativo-graduado dada por el producto cup.
Además, damos una descripción detallada de los homomorfismos de Bockstein, los
cuales empleamos a continuación para clasificar las extensiones centrales de p-grupos
abelianos elementales de rango dos con núcleo cíclico de orden p. Concluímos el capí-
tulo con una introducción a las sucesiones espectrales, centrándonos en particular en
la sucesión espectral de Lyndon-Hochschild-Serre y sus propiedades principales.

En el capítulo 2, describimos la cohomología de un grupo finito en términos de
extensiones. En primer lugar, damos la descripción clásica de Ext usando extensiones
de Yoneda. Seguidamente, introducimos las extensiones cruzadas para describir gru-
pos de cohomología. Después, definimos un producto de extensiones de Yoneda con
extensiones cruzadas que coincide con el producto cup usual en cohomología.

En el capítulo 3, introducimos el concepto de profundidad para el anillo de coho-
mología módulo p de un grupo finito y formulamos la conjetura de profundidad de
Carlson. A continuación, calculamos la profundidad de los anillos de cohomología mó-
dulo p de ciertos cocientes del grupo pro-p de clase maximal que, además, satisfacen
la conjetura de profundidad de Carlson.

En el capítulo 4, formulamos un teorema de Charlap y Vasquez sobre el cálculo de
la segunda diferencial de la sucesión espectral de Lyndon-Hochschild-Serre asociada a
una extension escindida de grupos finitos. Después, introducimos una generalización
de un resultado de Siegel que puede ser utilizado para calcular las diferenciales que
aparecen en la sucesión espectral asociada a una sucesión escindida de grupos finitos
con cociente cíclico de orden potencia prima.

En el capítulo 5, calculamos la sucesión espectral de Lyndon-Hochschild-Serre de
una familia de grupos de Heisenberg finitos de orden potencia prima, hasta obtener
la página del infinito. Comenzamos calculando la segunda página de la sucesión
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espectral y su estructura como álgebra, antes de poner en uso los resultados del
capítulo anterior para calcular la segunda diferencial. Después, determinamos la
tercera página y mostramos que es en este punto cuando la sucesión espectral colapsa.
De este modo, proporcionamos una de las primeras familias infinitas de p-grupos cuyas
sucesiones espectrales de Lyndon-Hochschild-Serre colapsan en la misma página y son
isomorfas. Finalmente, calculamos la serie de Poincaré de los anillos de cohomología.
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