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A B S T R A C T

Large Language Models (LLMs) have the potential of facilitating the development of Artificial Intelligence
technology to assist medical experts for interactive decision support. This potential has been illustrated by the
state-of-the-art performance obtained by LLMs in Medical Question Answering, with striking results such as
passing marks in licensing medical exams. However, while impressive, the required quality bar for medical
applications remains far from being achieved. Currently, LLMs remain challenged by outdated knowledge
and by their tendency to generate hallucinated content. Furthermore, most benchmarks to assess medical
knowledge lack reference gold explanations which means that it is not possible to evaluate the reasoning of
LLMs predictions. Finally, the situation is particularly grim if we consider benchmarking LLMs for languages
other than English which remains, as far as we know, a totally neglected topic. In order to address these
shortcomings, in this paper we present MedExpQA, the first multilingual benchmark based on medical exams
to evaluate LLMs in Medical Question Answering. To the best of our knowledge, MedExpQA includes for
the first time reference gold explanations, written by medical doctors, of the correct and incorrect options
in the exams. Comprehensive multilingual experimentation using both the gold reference explanations and
Retrieval Augmented Generation (RAG) approaches show that performance of LLMs, with best results around
75 accuracy for English, still has large room for improvement, especially for languages other than English,
for which accuracy drops 10 points. Therefore, despite using state-of-the-art RAG methods, our results also
demonstrate the difficulty of obtaining and integrating readily available medical knowledge that may positively
impact results on downstream evaluations for Medical Question Answering. Data, code, and fine-tuned models
will be made publicly available.1
1. Introduction

We are currently seeing a dramatic increase in research on how to
apply Artificial Intelligence (AI) to the medical domain with the aim
of generating decision support tools to assist medical experts in their
everyday activities. This has been further motivated by rather strong
claims about Large Language Models (LLMs) in medical Question An-
swering (QA) tasks, such as that they obtain passing marks for medical
licensing exams like the United States Medical Licensing Examination
(USMLE) [1,2].

Assisting medical experts by answering their medical questions is a
natural way of articulating human-AI interaction as it is usually consid-
ered that Medical QA involves processing, acquiring and summarizing
relevant information and knowledge and then reasoning about how to
apply the available knowledge to the current context given by a clinical
case. For example, a resident medical doctor preparing for the licensing
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1 https://huggingface.co/datasets/HiTZ/MedExpQA.

exams may want to know what and why is the correct treatment or
diagnosis in the context of a clinical case [3,4]. This means that a LLM
should be able to automatically identify, access and correctly apply the
relevant medical knowledge, and that it will be capable of elucidating
between the variety of symptoms, each of which may be indicative of
multiple diseases. Finally, it is also assumed that the model will interact
with the resident medical doctor in a natural manner, ideally using
natural language. Therefore, developing the required AI technology to
help, for example, resident medical doctors to prepare their licensing
exams remains a far from trivial endeavour.

Nonetheless, and as a crucial first step to address this challenge,
the AI ecosystem has seen an explosion of LLMs (both general purpose
and specific to the medical domain) reporting high accuracy results on
Medical QA tasks thereby demonstrating that LLMs are somewhat capa-
ble of encoding clinical knowledge [1]. State-of-the-art models include
vailable online 31 July 2024
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Fig. 1. Graphical description of the MedExpQA benchmark in which various types of gold and external medical knowledge are added to Large Language Models in order to find
the correct answer in the CasiMedicos dataset.
publicly available ones such as LLaMA [5] and the medical-specific
PMC-LLaMA [6], Mistral [7] and its medical version BioMistral [8], and
proprietary models such as MedPaLM [9] and GPT-4 [2], among many
others.

While their published high-accuracy scores on Medical QA may
seem impressive, these LLMs still present a number of shortcom-
ings. First, LLMs usually generate factually inaccurate answers that
seem plausible enough for a non-medical expert (known as halluci-
nations) [10,11]. Second, their knowledge might be outdated as the
pre-training data used to train the LLMs may not include the latest
available medical knowledge. Third, the Medical QA benchmarks [1,
11] on which they are evaluated do not include gold reference explana-
tions generated by medical doctors that provide the required reasoning
to support the model’s predictions. Finally, and to the best of our
knowledge, evaluations have only been done for English, which makes
it impossible to know how well these LLMs fare for other languages.

Retrieval Augmented Generation (RAG) techniques have been
specifically proposed to address the first two issues, namely, the lack
of up-to-date medical knowledge and the tendency of these models
to hallucinate [11]. Their MedRAG approach obtains clear zero-shot
improvements for two of the five datasets on their MIRAGE bench-
mark, while for the rest the obtained gains are rather modest. Still,
MedRAG proves to be an effective technique to improve Medical QA by
incorporating external medical knowledge [11].

In this paper we present MedExpQA (Medical Explanation-based
Question Answering), which is, to the best of our knowledge, the
first multilingual benchmark for Medical QA. Furthermore, and un-
like previous work, our new benchmark also includes gold reference
explanations to justify why the correct answer is correct and also to
explain why the rest of the options are incorrect. Written by medical
doctors, these high-quality explanations help to assess the model’s deci-
sions based on complex medical reasoning. Moreover, our MedExpQA
benchmark leverages the reference explanations as gold knowledge to
establish various upperbounds for comparison with results obtained
when applying automatic MedRAG methods. By doing so, we aim to
address all four shortcomings of LLMs for Medical QA listed above.

Although by design independent of the specific source data used,
for this work we leverage the Antidote CasiMedicos dataset [4,12],
which consist of Resident Medical Exams or Médico Interno Residente
in Spanish, an exam similar to other licensing examinations such as
USMLE, to setup MedExpQA. In addition to a short clinical case, a
question and the multiple-choice options, CasiMedicos includes gold
reference explanations regarding both the correct and incorrect options.
Originally in Spanish, CasiMedicos was translated and annotated in
English, French and Italian [4].

Fig. 1 provides an overview of the MedExpQA benchmark. Taking
CasiMedicos as the data source, the basic input, without any additional
2

Fig. 2. Overview of averaged results in MedExpQA for gold and automatically knowl-
edge grounding based on Retrieval Augmented Generation (RAG). E : gold explanations
written by medical doctors; H : E with explicit references to the possible answers
hidden; and EI : gold explanations about the incorrect options; RAG-32: automatically
retrieved knowledge grounding (details in Section 5); no-grounding : baseline model with
no external knowledge.

knowledge, to the LLM consists of a clinical case and the multiple-
choice options. Furthermore, the model can also be provided with three
types of gold reference explanations (or gold knowledge grounding) ex-
tracted from the CasiMedicos explanations: (i) the full gold explanation
as written by the medical doctors; (ii) only the explanations regarding
the incorrect answers and, (iii) the full gold explanation with explicit
references to the possible answers hidden. Finally, we can also apply
automatic knowledge retrieval approaches such as MedRAG to provide
LLMs with automatically obtained up-to-date medical knowledge. Thus,
in MedExpQA it is possible to compare not only whether the MedRAG
methods improve over the basic input with no external knowledge
added, but also to establish the differences in performance of LLMs
(with or without RAG) with respect to results obtained when gold ref-
erence explanations are available. An additional benefit of MedExpQA
being multilingual is that we get to compare LLMs performance not
only for English, but also on popular languages such as Spanish, French
or Italian.

Fig. 2 shows that comprehensive multilingual experimentation on
MedExpQA using four state-of-the-art LLMs including LLaMA [5] PMC-
LLaMA [6], Mistral [7] and BioMistral [8], demonstrate that LLMs per-
formance, even when improved with external knowledge from MedRAG
(corresponding to RAG-32 in Fig. 2), still has a long way to go to get
closer to the performance obtained when the external knowledge avail-
able to the LLM is based on gold reference explanations (E and H in
Fig. 2). Another interesting point is that fine-tuning results in huge per-
formance increases across settings and models but at the cost of making
MedRAG redundant. In other words, MedRAG only has a positive impact
in zero-shot settings. We believe that this illustrates the difficulty of
automatically retrieving and integrating readily available knowledge in
a way that may positively impact final downstream results on Medical
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QA. Finally, results are substantially lower for French, Italian and
Spanish, which suggests that more work is needed to improve LLMs
performance for languages different to English. Summarizing, the main
contributions of our work are the following:

1. MedExpQA: the first multilingual benchmark for MedicalQA
including gold reference explanations.

2. Comprehensive study on the role of medical knowledge to an-
swer medical exams by leveraging gold reference explanations
written by medical doctors as upper bound with respect to
automatically retrieved knowledge using state-of-the-art RAG
techniques.

3. Experimental results demonstrate that fine-tuning clearly out-
performs querying the LLMs in zero-shot, making redundant the
external knowledge obtained via RAG.

4. Overall performance of LLMs with or without RAG still has large
room for improvement when compared with any of the results
obtained using gold reference explanations.

5. Performance for French, Italian and Spanish substantially lower
for every LLM in every evaluation setting, which stresses the
urgent need of advancing the state-of-the-art for Medical QA in
languages different to English.

6. Data, code and fine-tuned models available to facilitate repro-
ducibility of results and benchmarking of LLMs in the medical
domain2.

In the rest of the paper we first discuss the related work and then
in Section 3 we describe the Large Language Models (LLM) and the
Retrieval Augmented Generation method used for experimentation.
Section 4 provides a description of the MedExpQA benchmark, in-
cluding the Antidote CasiMedicos dataset. The experimental setup is
explained in Section 5 and results are reported in Section 6. Section 7
offers a discussion of the main issues raised by the empirical results
obtained. We finish with some concluding remarks and future work in
Section 8.

2. Related work

We are currently seeing a vertiginous rhythm in the development
of Large Language Models (LLMs) which is having a great impact on
Natural Language Processing for the medical domain. This is partic-
ularly true on Medical Question Answering tasks where LLMs have
been successfully applied to generate answers to highly specialized
medical questions. Thus, the performance improvements on Abstractive
Medical Question Answering of general purpose LLMs such GPT-4 [2]
and GPT-3 [13], PaLM [14], LLaMa [5] or Mistral [7], has resulted in a
huge interest to adapt or to generate LLMs specialized for medical text
processing.

Some of these models are based on the encoder–decoder archi-
tecture, such as SciFive [15], and English T5 model adapted to the
scientific domain, or Medical-mT5, a multilingual model built by fine-
tuning mT5 on a multilingual corpus of 3B tokens [16]. However,
the large majority of the LLMs specially generated for medical ap-
plications are autorregresive decoder models such as BioGPT [17],
ClinicalGPT [18], Med-PaLM [1], MedPaLM-2 [9], PMC-LLaMA [6],
and more recently, BioMistral [8].

These models have been reporting high-accuracy scores on var-
ious medical QA benchmarks, which generally consist of exams or
general medical questions. Several of the most popular Medical QA
datasets [19–24] have been grouped into two multi-task English bench-
marks, namely, MultiMedQA [1] and MIRAGE [11] with the aim of
providing an easier comprehensive experimental evaluation benchmark
of LLMs for Medical QA.

2 https://huggingface.co/datasets/HiTZ/MedExpQA
3

Despite recent improvements on these benchmarks that had led to
claims about the capacity of LLMs to encode clinical knowledge [1],
these models remain hindered by well known issues related to: (i) their
tendency to generate plausible-looking but factually inaccurate answers
and, (ii) working with outdated knowledge as their pre-training data
may not be up-to-date to the latest available medical progress; (iii)
the large majority of these benchmarks do not include gold reference
explanations to help evaluate the reasoning capacity of LLMs to predict
the correct answers; (iv) they have mostly been developed for English,
which leaves a huge gap regarding the evaluation of the abilities of
LLMs for other languages.

Regarding the first issue listed above, it should be considered that
these LLMs are not restricted to the input context to generate the
answer as they are able to produce word by word output by using their
entire vocabulary in an auto-regressive manner [25]. This often results
in answers that are apparently plausible and factually correct, when in
fact they are not always factually reliable. With respect point (ii), while
LLMs are pre-trained with large amounts of texts, they may still lack the
specific knowledge required to answer highly specialized questions or
it may simply be in need of an update.

Recent work [26] has proposed Retrieval Augmented Generation
(RAG) [27] to mitigate these limitations. This method involves incor-
porating relevant external knowledge into the input of these LLMs with
the aim of improving the final generation. By doing so, it increases the
probability of generated responses being grounded in the automatically
retrieved evidence, thereby enhancing the accuracy and quality of the
output. Some of the most common retrieval methods employed include
TF-IDF, BM25 [28], and others more specific to the medical domain
such as MedCPT [29]. With the aim of providing an exhaustive evalua-
tion of RAG methods for the medical domain, the MIRAGE benchmarch
includes 5 well-known English Medical QA datasets which are used
to compare zero-shot performance of various LLMs whenever auto-
matically retrieved knowledge is available via their MedRAG method
or in the absence of it. According to the authors, MedRAG not only
helps to address the problem of hallucinated content by grounding the
generation on specific contexts, but it also provides relevant up-to-date
knowledge that may not be encoded in the LLM [11]. By employing
MedRAG they are able to clearly improve the zero-shot results of some
of the LLMs tested, although for others results are rather mixed.

Finally, and to the best of our knowledge, no Medical QA bench-
mark currently addresses the last two shortcomings, namely, the lack of
gold reference explanations and multilinguality. Motivated by this, we
propose MedExpQA, a multilingual benchmark including gold reference
explanations written by medical doctors that can be leveraged to setup
various upperbound results to be compared with the performance of
LLMs enhanced by automatic RAG methods.

3. Materials and methods

In this section we describe the main resources used in our ex-
perimentation with MedExpQA, namely, the Large Language Models
(LLMs) tested on our benchmark and MedRAG, the Retrieval Aug-
mented Generation method proposed by Xiong et al. [11] to automati-
cally retrieve medical knowledge.

3.1. Models

We selected two open source state-of-the-art LLMs in the MedicalQA
domain at the time of writing: PMC-LLaMA [6] and BioMistral [8].

PMC-LLaMA is based on LLaMA [5], one of the most popular LLMs
currently available. PMC-LLaMA is an open-source language model
specifically designed for medical applications. This model was first pre-
trained on a combination of PubMed-related English academic papers
from the S2ORC corpus [30] and from medical textbooks. It was then
further fine-tuned on a dataset of instruction-based medical texts. For
our experiments we pick the 13B parameter variant of this model which

https://huggingface.co/datasets/HiTZ/MedExpQA
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outperforms LLaMA-2 [5], Med-Alpaca [31], and Chat-Doctor [32] in
various Medical QA tasks including MedQA [23], MedMCQA [24], and
PubMedQA [19].

BioMistral [8] is a suite of open-source models based on Mistral [7]
further pre-trained using English textual data from PubMed Central
Open Access3. They released a set of 7b parameter models following

erging techniques like TIES [33], DARE [34], and SLERP [35]. In this
aper we use the DARE variant of BioMistral as it is the best performing
odel on the MedQA benchmark, outscoring other state-of-the-art

LMs on Medical QA evaluations, including PMC-LLaMA.
Additionally, and in order to contrast their performance against

heir general purpose counterparts, we also test LLaMA-2 and Mistral.
hus, for both PMC-LLaMa and LLaMA-based models we use the 13
illion parameter variants. As BioMistral is only available in the 7b
ersion, we also pick the Mistral model of 7b parameters.

Every zero-shot and fine-tuning experiment with LLMs are per-
ormed via the HuggingFace API [36].

.2. Retrieval-augmented generation (RAG)

We apply MedRAG as the Retrieval-Augmented Generation (RAG)
tate-of-the-art technique especially developed for the medical do-
ain [11]. RAG approaches are mostly composed of three components:

he LLM, the retrieval method and the data source from which to
etrieve the knowledge. MedRAG includes four retrievers and four
ifferent corpora as data sources.

With respect the retrievers, we use both BM25 [28] and Med-
PT [29] to perform the retrieval and fuse the retrieved candidate lists

nto one using Reciprocal Rank Fusion (RRF) [37]. BM25 is a ranking
unction used in Information Retrieval to rank documents based on
heir relevance to a given query. It combines Term Frequency (TF) and
nverse Document Frequency (IDF) to calculate the relevance score of

document to a query taking into account the document length for
ormalization. MedCPT is a Contrastive Pre-trained Transformer model
rained with PubMed search logs for zero-shot biomedical information
etrieval. This model retrieves the relevant documents in the knowledge
ase considering relationships between different medical entities and
oncepts in the query.

Regarding the data sources, we use MedCorp, a combination of
the four corpora available in MedRAG: PubMed, Textbooks [23] for
omain-specific knowledge, StatPearls4 for clinical decision support,
nd Wikipedia for general knowledge. According to the MIRAGE re-
ults [11], using MedCorp was the only realistic option for MedRAG to
ystematically improve results over the baseline for most of the LLMs
nd retriever methods evaluated.

. MedExpQA: A new multilingual benchmark for medical QA

Although independently designed with respect to any specific
ataset, in this paper we setup MedExpQA, introduced in Section 4.2,
n the Antidote CasiMedicos dataset [4,12], which is described in
etailed in Section 4.1.

.1. Antidote CasiMedicos dataset

Every year the Spanish Ministry of Health releases the previous
ear’s Resident Medical exams or Médico Interno Residente (MIR) which,

as depicted in Table 1, include a clinical case (C), the multiple choice
options (O), and the correct answer (A). The MIR exams are then
commented every year by the CasiMedicos MIR Project 2.05 which

3 PMC Open Access Subset. Available from https://www.ncbi.nlm.nih.gov/
mc/tools/openftlist/

4 https://www.statpearls.com/
5

4

https://www.casimedicos.com/mir-2-0/
means that CasiMedicos medical doctors voluntarily write gold refer-
ence explanations (full gold explanation E in Table 1) providing reasons
for both correct (EC) and incorrect options (EI).

The Antidote CasiMedicos dataset [4,12] consists of the original
Spanish commented exams which were cleaned, structured and man-
ually annotated to link the relevant textual parts in the gold reference
explanation (E) with the correct (EC) or incorrect options (EI). Once
the Spanish version of the dataset was created, parallel translated
annotated versions were generated for English, French, and Italian.

A quantitative description of the multilingual Antidote CasiMedicos
dataset is given in Table 2. The average number of tokens in the clinical
cases is 137, being quite similar for Spanish and Italian (140.3 and
142.2 respectively), while for English the average is smaller (115.4
tokens) while the French one is the largest (150.1 tokens). The average
length in tokens of the multiple choice options (79.6 tokens in average)
is quite high but with a high variability. The multiple choice options
may consist of short drug names (the minimum number of words is
around 15–17) to long descriptions of treatments or medical claims as
illustrated by the example shown in Table 3. The full gold reference
explanations that professional medical doctors write can be quite long
(170.25 tokens in average) but it should be noted that some documents
lack the explanation about the correct answer.

The complexity of some of the clinical case questions can be ap-
preciated in the example shown in Table 3 where the possible answers
(section O) describe disorders (option (1)), treatments (options (2) and
(3)) or medical statements (options (4) and (5)). Furthermore, while
in the majority of the cases the question is about the correct answer,
sometimes the required option is the incorrect one, as shown in Tables 1
and 3.

The final Antidote CasiMedicos Dataset consists of 622 documents
per language [4,12]. The dataset official distribution already provide
train, validation and test splits6 (depicted in Table 4), which we use
for the all the experiments presented in Section 6.

Finally, we examined the distribution of correct answers in each of
the three splits (train, validation and test) to consider the possibility
that an unbalanced distribution might condition the results of the tested
models. Fig. 3 shows that, although most of the exams have the option
3 as the correct answer, the distribution among the correct answers in
the three subsets is quite balanced. This suggests that this particular
issue should not influence the final experimental results.

4.2. The MedExpQA benchmark

MexExpQA is a multilingual benchmark to evaluate LLMs in Med-
ical Question Answering. Unlike previous work, MedExpQA includes
reference gold explanations written by medical doctors which are
leveraged to setup a benchmark with three types of gold knowledge:
(i) the full gold reference explanation (part E in Table 1); (ii) the full
gold reference explanation corresponding to the incorrect options only
(EI) and (iii), the full gold reference explanation masking the explicit
references in the text to the multiple-choice options.

In other words, and as illustrated in Fig. 1, we use these three types
of high-quality explanations written by medical doctors as a proxy of
relevant gold knowledge that may be used by LLMs to answer medical
questions. Thus, the results obtained by LLMs with each type of gold
knowledge can be seen as the upperbound results provided by our
benchmark to establish how well LLMs can perform according to the
different types of specialized gold knowledge readily available. In the
following we describe in detail each of the three types of gold reference
explanations that we generate to setup our benchmark.

6 https://huggingface.co/datasets/HiTZ/casimedicos-exp

https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/
https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/
https://www.statpearls.com/
https://www.casimedicos.com/mir-2-0/
https://huggingface.co/datasets/HiTZ/casimedicos-exp
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Table 1
Document in the Antidote CasiMedicos dataset with the correct and incorrect explanations manually
annotated. C: Clinical case and question; O: Multiple-choice options; A: Correct answer; E: Full gold reference
explanation written by medical doctors; EC: Explanation about the correct answer; EI: Explanation about
the incorrect answers.
C 30-year-old man with no past history of interest. He comes for consultation due to

the presence of small erythematous-violaceous lesions that on palpation appear to be
raised in the pretibial region. The analytical study shows a complete blood count and
coagulation study without alterations, and in the biochemistry, creatinine and ions
are also within the normal range. The urinary sediment study shows hematuria, for
which the patient had already been studied on other occasions, without obtaining a
definitive diagnosis. Regarding the entity you suspect in this case, it is FALSE that

O (1) In 20 to 50% of cases there is elevation of serum IgA concentration.
(2) In the renal biopsy the mesangial deposits of IgA are characteristic.
(3) It is frequent the existence of proteinuria in nephrotic range.
(4) It is considered a benign entity since less than 1/3 of patients progress to renal
failure.
(5) The cutaneous biopsy allows to establish the diagnosis in up to half of the cases.

A 3

E They are talking to us with high probability of a mesangial IgA glomerulonephritis
or Berger’s disease. Therefore, we are going to discard options one by one: 1: True.
Serum IgA elevation is found in up to 50% of cases. 2: True. Mesangial IgA deposits
are present in almost 100% of cases. 3: This option is false, because this
glomerulonephritis is classically manifested with nephritic and not nephrotic
syndrome (although in some rare cases proteinuria in nephrotic range does appear,
but in the MIR they do not ask about these rare cases). 4: At the beginning this
option generated doubts in me, but looking in the literature, it is true that the
evolution to renal failure (according to last series) occurs in about 25% of the cases,
so this option is true. 5: Skin biopsy, because it is easier to perform than renal
biopsy, is the diagnostic technique of choice (the skin lesions that constitute
Schonlein-Henoch purpura, so frequently associated with this entity and which the
patient in the case presents, are biopsied).

EC 3: This option is false, because this glomerulonephritis is classically manifested with
nephritic and not nephrotic syndrome (although in some rare cases proteinuria in
nephrotic range does appear, but in the MIR they do not ask about these rare cases).

EI 1: True. Serum IgA elevation is found in up to 50% of cases. 2: True. Mesangial IgA
deposits are present in almost 100% of cases. 4: At the beginning this option
generated doubts in me, but looking in the literature, it is true that the evolution to
renal failure (according to last series) occurs in about 25% of the cases, so this
option is true. 5: Skin biopsy, because it is easier to perform than renal biopsy, is
the diagnostic technique of choice (the skin lesions that constitute Schonlein-Henoch
purpura, so frequently associated with this entity and which the patient in the case
presents, are biopsied).
Table 2
Quantitative description of the multilingual CasiMedicos dataset. Number of tokens in the clinical case including: the question
(C), the multiple-choice options (O), the explanation about the correct answer (EC) and the full gold reference explanation
(E) including argumentation about the correct and incorrect answers.

Number of tokens Average Min Max

Spanish

Clinical Case (C) 140.3 ± 62.4 41 504
Multiple choice options (O) 77.0 ± 47.0 15 297
Explanation about the correct (EC) 58.9 ± 37.7 0 483
Full explanation (E) 174.1 ± 147.8 9 982

English

Clinical Case (C) 115.4 ± 52.8 34 419
Multiple choice options (O) 64.7 ± 37.1 15 217
Explanation about the correct (EC) 47.3 ± 30.4 0 382
Full explanation (E) 139.1 ± 117.7 4 784

Italian

Clinical Case (C) 142.2 ± 64.5 35 539
Multiple choice options (O) 79.0 ± 50.1 17 284
Explanation about the correct (EC) 60.6 ± 38.4 0 500
Full explanation (E) 179.1 ± 150.6 8 1013

French

Clinical Case (C) 150.1 ± 68.6 39 586
Multiple choice options (O) 83.0 ± 52.8 16 319
Explanation about the correct (EC) 63.9 ± 41.2 0 535
Full explanation (E) 188.7 ± 158.9 8 1076

Avg. ALL

Clinical Case (C) 137
Multiple choice options (O) 79.6
Explanation about the correct (EC) 57.6
Full explanation (E) 170.25
5
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Table 3
Example of a document in the CasiMedicos dataset with very different types of response options. (1)
diagnosis; (2) and (3) treatments; and (4) and (5) correspond to medical statements.

Example of a document from the CasiMedicos Dataset

C A 63-year-old woman comes to the emergency department reporting severe headache
with signs of meningeal irritation, bilateral visual disturbances and ophthalmoplegia.
A CT scan showed a 2 cm space-occupying lesion in the sella turcica compatible
with pituitary adenoma with signs of intratumoral hemorrhage, with deviation of the
pituitary stalk and compression of the glandular tissue. Mark which of the following
answers is WRONG:

O (1) Diagnostic suspicion is pituitary apoplexy.
(2) Treatment with high-dose corticosteroids should be initiated and the evolution
observed, since this treatment could reduce the volume of the lesion and avoid
intervention.
(3) Treatment with glucocorticoids should be considered to avoid secondary adrenal
insufficiency that would compromise the patient’s vital prognosis.
(4) The presence of ophthalmoplegia and visual defects are indications for prompt
intervention by urgent surgical decompression.
(5) After resolution of the acute picture, the development of panhypopituitarism is
frequent.

A 4
Fig. 3. Distribution of correct answers in the train, validation and test splits. The percentage in blue indicates the proportion of exams with the first option, number 1, as correct
answer; orange corresponds to option 2; yellow to option 3; green to option 4; and brown to option 5. Note that not every document includes 5 possible options. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 4
Number of documents in CasiMedicos train, validation and test splits.

Train Validation Test

Clinical cases 434 63 125

Total 622

4.2.1. Full reference gold explanations
The full explanation (E) about the correct and incorrect answers is

given as context to the LLM, in what we assume to be gold specific
knowledge for the model to answer the medical questions of CasiMedi-
cos. Being the full gold reference explanation, we consider this to be the
best possible form of gold knowledge that we can provide the LLM with.
In other words, the performance obtained in MedExpQA using this type
of knowledge will mark the upperbound for this particular benchmark.
Table 5 provides an example of the full gold reference explanation for
the same document already discussed in Table 1.

4.2.2. Explanation of the incorrect options
As shown in Table 6, for this particular type of gold knowledge we

only use the part of the full gold reference explanation corresponding
to the explanations about the incorrect options (EI). This type gold
knowledge aims to test the capacity of LLMs to correctly answer the
medical question by knowing which options are incorrect.

Depending on the nature of the question, sometimes medical doctors
consider sufficient to only explain the correct answer. Thus, it should
be noted that not every document in CasiMedicos includes the gold
6

reference explanations about the incorrect options. On average, 20.5%
of the explanations correspond in their entirety to the correct answer
(17.7% in the train set, and 22.2% and 21.6% in the validation and test,
respectively), while 26.7 include the explanations for all the possible
options. Obviously, as CasiMedicos is a multilingual parallel dataset,
this phenomenon occurs across the four languages: English, French,
Italian and Spanish.

4.2.3. Full gold explanation with explicit references hidden
As it can be appreciated in the full gold reference explanations

discussed above, most of the time medical doctors provide explicit
textual references regarding the correct or incorrect options. In order
to analyze the impact of these explicit signals or patterns on the LLMs
performance, we decided to mask those explicit references to establish
how well LLMs could answer with actual gold knowledge but without
the easy clues in the text pointing to the correct or incorrect answers.

In order to avoid the manual annotation of 2488 documents, we
prompt GPT-47 [38] with a set of rules and in-context-learning exam-
ples to automatically mask the specific areas of text that may point the
model at the correct or incorrect answer without any further reasoning.
The prompt can be found in A, Fig. A.10.

A small manual analysis of a subset of GPT-4-generated texts re-
vealed a strong correlation with human annotations. To further validate
the efficacy of our method, we randomly selected 80 documents (20 per

7 gpt-4-1106-preview
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Table 5
Full explanation (E) of the example in Table 1. The explanation about the correct answer is marked in blue and the remaining
4 explanations for the incorrect options in green.
E They are talking to us with high probability of a mesangial IgA glomerulonephritis or Berger’s

disease. Therefore, we are going to discard options one by one: 1: True. Serum IgA elevation is found
in up to 50% of cases. 2: True. Mesangial IgA deposits are present in almost 100% of cases. 3: This
option is false, because this glomerulonephritis is classically manifested with nephritic and not
nephrotic syndrome (although in some rare cases proteinuria in nephrotic range does appear, but in
the MIR they do not ask about these rare cases). 4: At the beginning this option generated doubts in
me, but looking in the literature, it is true that the evolution to renal failure (according to last series)
occurs in about 25% of the cases, so this option is true. 5: Skin biopsy, because it is easier to
perform than renal biopsy, is the diagnostic technique of choice (the skin lesions that constitute
Schonlein-Henoch purpura, so frequently associated with this entity and which the patient in the case
presents, are biopsied).
Table 6
Explanation of the Incorrect Options (EI) which corresponds to the full explanation (E) of the example in
Table 1 with the explanation of the correct answer removed.
EI They are talking to us with high probability of a mesangial IgA glomerulonephritis

or Berger’s disease. Therefore, we are going to discard options one by one: 1: True.
Serum IgA elevation is found in up to 50% of cases. 2: True. Mesangial IgA deposits
are present in almost 100% of cases. 5: Skin biopsy, because it is easier to perform
than renal biopsy, is the diagnostic technique of choice (the skin lesions that
constitute Schonlein-Henoch purpura, so frequently associated with this entity and
which the patient in the case presents, are biopsied).
Table 7
Full gold reference explanation with explicit references hidden (H). Process performed by GPT-4 with the
prompt in A Fig. A.10. In this example the segments ‘This option is false’, ‘so this option is true’ and ‘is the
diagnostic technique of choice’ are hidden.
H They are talking to us with high probability of a mesangial IgA glomerulonephritis or

Berger’s disease. Therefore, we are going to discard options one by one: 1: True. Serum
IgA elevation is found in up to 50% of cases. 2: True. Mesangial IgA deposits are present
in almost 100% of cases. 3: [HIDDEN], because this glomerulonephritis is classically
manifested with nephritic and not nephrotic syndrome (although in some rare cases
proteinuria in nephrotic range does appear, but in the MIR they do not ask about these
rare cases). 4: At the beginning this option generated doubts in me, but looking in the
literature, it is true that the evolution to renal failure (according to last series) occurs in
about 25% of the cases, [HIDDEN]. 5: Skin biopsy, because it is easier to perform than
renal biopsy, is the [HIDDEN] (the skin lesions that constitute Schonlein-Henoch purpura,
so frequently associated with this entity and which the patient in the case presents, are
biopsied).
language) and measured performance across the four languages. This
resulted in an average F1 score of 0.85 with a standard deviation of
0.02.

Thus, this method allowed us to perform this rather precise mul-
tilingual redacting process over the 2488 documents in a fast and
cost effective manner. Table 7 shows how every explicit reference to
the correct or incorrect answers discussed previously now appear as
[hidden].

The results obtained by LLMs in MedExpQA using the three types of
old knowledge described above can then be compared with other auto-
atic knowledge retrieval approaches based, for example, on Retrieval-
ugmented Generation techniques for the medical domain such as
edRAG, introduced in the previous section. Furthermore, we should

tress that MedExpQA as a benchmark is independent of any dataset,
s the only requirement is for it to include gold reference explanations
f the possible answers.

. Experimental setup

For our experiments we selected top performing state-of-the-art
odels for Medical Question Answering described in Section 3.1,
amely, PMC-LLaMA, LLaMA-2, BioMistral, and Mistral.

We test these models in both zero-shot (see prompts in Figs. A.6–
.9) and fine-tuned settings to contrast their out-of-the-box perfor-
ance against a more adjusted performance to our dataset. The mod-

ls were fine-tuned using Low-Rank Adaptation (LoRA) [39], using
dapters with a rank of 8 and a scaling factor (alpha) of 16 across all
odels (details about parameters used with LoRA are provided in C).
7

The choice of hyperparameters was based on previous work using
the same LLMs we use in this papers. Moreover, satisfactory results
were confirmed in a preliminary round of experiments. Although these
models would benefit from an exhaustive grid search of hyperpa-
rameters tailored to each model and evaluation setting, the compute
required to do so exceeds the capacity of our lab. Full details of
hyperparameter settings are available in B. Each model was fine-tuned
for 10 epochs, with checkpoints saved at the end of each. Experiments
were undertaken in a NVIDIA A100 GPU (C offers information about
computation times). At the end of the fine-tuning process, the check-
point with the highest performance was selected. All models underwent
monolingual training using the dataset corresponding to each specific
language. We will measure the impact on MedExpQA of the different
types of knowledge that LLMs may use:

(i) Gold grounding knowledge:

(1) E: Full gold reference explanations as written by the
medical doctors.

(2) EI: Gold explanations about the Incorrect Options.
(3) H: Full gold explanations with [hidden] explicit references

to the multiple-choice options.

(ii) Automatically obtained grounding knowledge:

(1) None: Answering the medical question with no additional
external knowledge.

(2) RAG-7: Automatically obtained knowledge by applying
MedRAG to retrieve the k=7 most relevant documents.

(3) RAG-32: Automatically obtained knowledge by applying
MedRAG to retrieve the k=32 most relevant documents.
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Fig. 4. Distribution of retrieved documents across different context windows. Three
different histograms are shown that depict the maximum number of documents
that can be accommodated within various context windows across dataset examples:
2,048 tokens (PMC-LLaMA), 4,096 tokens (LLaMA2), and 8,192 tokens (Mistral and
BioMistral).

We use the entire clinical case, question, and multiple-choice op-
tions to generate the query for all 6 different evaluation settings.
Gold knowledge grounding is leveraged as explained in the previous
section. With respect to the methods to automatically obtained external
knowledge, we take into account the results obtained in the mirage
benchmark [11] and apply MedRAG by using the RRF-2 of two retrieval
algorithms, namely, BM25 and MedCPT, over the MedCorp corpus. We
use the entire clinical case, question, and multiple-choice options to
generate the query to retrieve the k = 7 most relevant documents.
We define k = 7 by computing the average token length of MedCorp
documents; if we consider that 85% of our prompts can be represented
under 400 tokens, this leaves 1648 tokens for knowledge grounding,
which amounts to 7 documents on average. This configuration is used
to define RAG-7.

Furthermore, as MedRAG obtained best results for most of the
benchmarks when retrieving at most 32 documents, we also experi-
mented with this setting. Nevertheless, it should be considered that
the context window of each model, namely, the maximum amount of
word tokens that each LLM can pay attention to in the input, will
determine how many of these documents are actually fed into the
LLM at each forward pass. Hence, when the combination of both the
retrieved documents and the prompt exceed the context window, then
we truncate the amount of documents to ensure that the prompt is not
affected. Fig. 4 illustrates the distribution of documents corresponding
to different context window sizes. Specifically, it shows the number of
examples in the dataset that align with varying numbers of retrieved
documents for context windows of 2048, 4096, and 8000 tokens. In
the results reported in the next section, RAG-32 for both zero-shot and
fine-tune settings helps us to evaluate the impact of retrieving more or
less relevant documents as external knowledge.

5.1. Evaluation

We ask LLMs to generate not only the index number of the predicted
correct option but also the full textual answer. However, accuracy is
calculated by comparing the first generated character after the prompt
following ‘‘The correct answer is: ’’8. We verify that this character always
corresponds to one of the options in the exams’ possible answers. A
provides an example of the prompts used for each language and for
every model.

8 And equivalent prompts for French, Italian and Spanish.
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6. Results

We report the main results of the experiments performed in the
MedExpQA benchmark in Table 8 for zero-shot while the fine-tuning
accuracy scores are presented in Table 9.

Zero-shot results. They show that Mistral consistently achieves the
highest accuracy across every evaluation setting and language, even
outscoring the medical specific BioMistral. Among the gold knowledge
results, we can see that removing the explanation of the correct answer
(EI) really hinders performance. However, using the full gold reference
answer helps LLMs to obtain excellent marks. Moreover, differences be-
tween using E and H are quite large, especially for languages different
to English.

It should be noted that the best automatic method still fares very
badly with respect to any of the gold knowledge results, which shows
that retrieval methods for the medical domain still have large room for
improvement. While the best automatic method corresponds to RAG-7,
differences in performance are not that great with respect to None or
RAG-32.

We hypothesize that the lack of substantial improvement when us-
ing 32 snippets for knowledge grounding may indicate that a saturation
point may be reached beyond which additional snippets do not provide
any additional benefit. To analyze this more precisely, we conducted an
evaluation of the zero-shot performance of the 4 LLMs when feeding
the model from 0 to up to 32 snippets, following a power of two
sequence of snippets. Thus, Fig. 5 illustrates that a positive trend exists
when increasing the number of snippets. However, we can see how this
improvement tanks at around 8 snippets in most of the models. This
result correlates to our findings in Tables 8 and 9.

Finally, performance on English was substantially higher for every
models and RAG configurations. This manifests the English-centric
focus of most LLMs while showcasing the urgent need of dedicating
resources and effort to developing multilingual LLMs which could then
compete across all languages included in multilingual benchmarks such
as MedExpQA.

Fine-tuning results. They show that fine-tuning the LLMs on the
CasiMedicos dataset help to greatly increase performance for every
evaluation setting, language and LLM. BioMistral seems to obtain the
best overall scores but that is due to its high scores on the full gold
reference explanation setting (E). Thus, if we look at the rest of the
evaluation settings, Mistral, as it happened in the zero-shot scenario,
remains the best performing LLM on the MedExpQA benchmark.

The superior results of None with respect to RAG scores demon-
strate that fine-tuning makes any external knowledge automatically re-
trieved using RAG methods redundant. Finally, while scores for French,
Italian and Spanish remain lower than those obtained for English,
performance for those languages greatly benefit from fine-tuning, es-
pecially if we compare them with their zero-shot counterpart results.

Overall results. Overall, results demonstrate that the gold reference
explanations leveraged as knowledge for Medical QA help LLMs to
obtain almost perfect scores, especially when fine-tuning the models.
Fine-tuning particularly benefits EI, which obtains as good results as H
applied in zero-shot settings.

Our results allow us to draw several more conclusions. First, that de-
spite using state-of-the-art RAG methods for the medical domain [11],
their results are rather disappointing. Both in zero-shot when com-
pared with the results based on any kind of gold knowledge, and in
fine-tuning in which RAG methods score worse than not using any
additional knowledge.

Second, our MedExpQA benchmark suggests that overall perfor-
mance of even powerful LLMs such as Mistral still have a huge room
for improvement to reach scores comparable to those obtained when
gold knowledge is available.

We calculated a McNemar [40] test of statistical significance to
establish whether the RAG-7 and RAG-32 results were significantly
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Fig. 5. Performance of different models in a zero-shot setting with up to 0, 2, 4, 8, 16, and 32 retrieved snippets.
Table 8
Zero-shot results. E: Full gold explanation. EI: Gold Explanations of the Incorrect Options; H: Full gold explanation with Hidden explicit references to the correct/incorrect answer;
None: model without any additional external knowledge; RAG-7: Retrieval Augmented Generation with k = 7; RAG-32: Retrieval Augmented Generation with k = 32; underline:
best result per type of knowledge; bold: best result overall.

PMC-LLaMA LLaMA2 Mistral BioMistral Avg.
(13B) (13B) (7B) (7B)

EN ES IT FR EN ES IT FR EN ES IT FR EN ES IT FR ALL

E 83.2 77.6 76.8 80.0 81.6 77.6 77.6 75.2 89.6 88.0 87.2 88.0 88.8 83.2 80.8 80.8 82.2
EI 60.0 42.4 43.2 46.4 44.0 31.2 39.2 44.8 59.2 53.6 52.0 52.8 50.4 44.0 46.4 49.6 47.4
H 78.4 63.2 72.0 70.4 68.8 64.8 63.2 65.6 82.4 75.2 77.6 78.4 80.8 74.4 69.6 74.4 72.4

None 45.6 36.8 33.6 30.4 34.4 18.4 12.8 27.2 48.8 41.6 40.8 39.2 44.0 39.2 35.2 41.6 35.6
RAG-7 40.0 30.4 28.0 24.8 42.4 36.0* 30.4* 32.0 55.2 44.0 38.4 42.4 44.8 40.0 40.8 36.8 37.9
RAG-32 40.0 30.4 28.0 24.8 41.6 31.2* 32.8* 26.4 58.4* 41.6 41.6 42.4 54.4 37.6 31.2 39.2 37.6

Avg. 57.9 46.8 46.9 46.1 52.1 43.2 42.7 45.2 65.6 57.3 56.3 57.2 60.5 53.1 50.7 53.7 –

* Results that are statistically significant at 𝛼 = .05 wrt to their None baseline.
Table 9
Fine-tuning results. E: Full gold explanation. EI: Gold Explanations of the Incorrect Options; H: Full gold explanation with Hidden explicit references to the multiple choice options;
None: model without any additional external knowledge; RAG-7: Retrieval Augmented Generation with k = 7; RAG-32: Retrieval Augmented Generation with k = 32; underline:
best result per type of knowledge; bold: best result overall.

PMC-LLaMA LLaMA2 Mistral BioMistral Avg.
(13B) (13B) (7B) (7B)

EN ES IT FR EN ES IT FR EN ES IT FR EN ES IT FR ALL

E 92.0 89.6 89.6 88.8 90.4 90.4 89.6 92.0 94.4 92.8 91.2 92.8 94.4 93.6 92.0 93.6 91.7
EI 69.6 67.2 67.2 68.0 73.6 70.4 66.4 70.4 81.6 78.4 75.2 76.8 73.6 72.0 71.2 71.2 72.1
H 82.4 76.0 80.0 82.4 83.2 85.6 84.0 81.6 88.0 84.8 88.8 88.0 83.2 82.4 86.4 84.8 83.9

None 58.4 48.8 49.6 53.6 57.6 50.4 53.6 54.4 68.0 63.2 56.8 66.4 61.6 58.4 56.8 65.6 57.7
RAG-7 56.8 35.2 44.8 38.4 60.8 56.8 48.8 51.2 69.6 59.2 56.8 64.8 64.8 57.6 61.6 59.2 55.4
RAG-32 56.8 35.2 44.8 38.4 60.8 52.0 51.2 49.6 75.2 55.2 52.0 60.0 65.6 57.6 55.2 60.8 54.4

Avg. 69.3 58.7 62.7 61.6 71.1 67.6 65.6 66.5 79.5 72.3 70.1 74.8 73.9 70.3 70.5 72.5 –
better than their respective None baselines. As it can be seen in Tables 8
and 9, only five zero-shot scores (out of 64) marked with an asterisk
in Table 8 are statistically significant at 𝛼 = .05. Finally, performance
for languages different to English is much lower for every model and
evaluation setting. This points out to an urgent necessity to invest in
the development and research of LLMs which may be optimized not
only for English, but for other world languages too. Obviously, the
evaluation of such LLMs would in turn require multilingual evaluation
benchmarks which may be deployed to provide a comprehensive and
realistic overview of their performance. We hope that contributing
MedExpQA may serve as encouragement to the AI and medical research
communities to generate more benchmarks of its kind for many of the
world languages.

7. Discussion

The results discussed in the previous section show that even when
performing fine-tuning with the full gold reference explanations LLMs
still remain several points below perfect scores. Furthermore, the statis-
tical analysis of the obtained results indicates that, despite differences
compared to the None models, the performance gains (when that is the
case) of models using RAG-7 or RAG-32 are, in 61 out 64 cases, not
9

statistically significant. In contrast, the statistical analysis found out
that the results using gold knowledge (E, EI, H) were all statistically
significant at 𝛼 = .05

Apart from the evaluation results, and in order to better under-
stand the dataset on which the MedExpQA is setup, we performed
several analysis regarding the quality and quantity of the explanations
provided by the CasiMedicos medical doctors.

Regarding the quality of the explanations, we found several exam-
ples such as the one depicted in Table 10. Instead of directly answering
the question, the medical doctor (psychiatry resident) writing the ex-
planation gives information that is not relevant to explain the correct
answer (marked in red). We hypothesize that such explanations, which
lack any relevant medical information, may have a negative impact on
the final LLMs performance.

It should be noted that, despite CasiMedicos being a high-quality
dataset written voluntarily by medical doctors, sometimes (i) their
explanations may not follow a repetitive formal structure and, (ii) they
are not always subjected to a second review by an auditor as it usually
happens in specialized textual books.

Regarding the quantity of the explanations, around 5% of the full
gold reference explanations in the CasiMedicos dataset do not contain
any explicit explanation regarding the correct answer. Sometimes the
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Table 10
Example of a gold full explanation (E) with irrelevant and not medical comments.
E Another simple question with an immediate answer, which offers no doubt. It describes a

patient worried about a non-existent physical defect, whose concern distresses him and
prevents him from leaving the house. As a psychiatry resident, I wish the MIR questions
in my specialty were a bit more thought-provoking and in-depth, although I know that
the seconds you will have saved by marking the fourth one directly are very valuable.
medical doctor explains the incorrect options, hoping that the reader
may indirectly reach the correct conclusion, or sometimes they are
cases such as the one discussed above.

In any case, while it is possible to filter out such examples, we
thought it useful to leave them with the aim of analyzing in the
future the performance of LLMs and RAG methods for these specific
cases. After all, we would like LLMs to be able to also generalize
in situations in which the knowledge is provided in a non-standard
structured manner, as it is the case in the large majority of the full
gold reference explanations provided in CasiMedicos.

We would like to give a final word on multilinguality. Results
have shown that performance for French, Italian and Spanish is worse
across the board and we believe that this topic has a lot of interesting
questions for future research. Are these results a consequence of the
pre-training of the LLMs? For the RAG experiments, how much, positive
or negative, influence has the fact that the extracted knowledge from
MedCorp is in English? Would it be better to prompt the model only
in English and then translate the answers into each of the target
languages, in what is usually known as a translate-test approach? We
believe that a benchmark such as MedExpQA would help to investi-
gate these research questions which may be crucial to develop robust
multilingual medical QA approaches.

8. Concluding remarks

In this paper we present MedExpQA, the first multilingual bench-
mark for Medical QA. As a new feature, our new benchmark also
includes gold reference explanations to justify why the correct answer is
correct and also to explain why the rest of the options are incorrect. The
high-quality gold explanations have been written by medical doctors
and they allow to test the LLMs when different types of gold knowledge
is available. Comprehensive experimentation has demonstrated that
automatic state-of-the-art RAG methods still have a long way to go
to get near the scores obtained by LLMs when fed with gold knowl-
edge. Furthermore, our benchmark has made explicit the lower overall
performance of LLMs for languages other than English for Medical QA.

We think that MedExpQA may contribute to the development of AI
tools to assist medical experts in their everyday activities by providing
a robust multilingual benchmark to evaluate LLMs in Medical QA.
Future work may involve evaluating LLMs not only regarding their
accuracy in predicting the correct answer, but also on the quality of
the explanations generated to justify such prediction. Of course, these
approaches may pose new evaluation challenges that have not been yet
contemplated in this work.
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Appendix A. Prompts

In this appendix, we provide the specific prompts used to interact
with the Large Language Models of this work.

Appendix B. Hyperparameters

In this appendix we list some of the hyperparameters used in this
work (see Table B.11).

Appendix C. Efficiency metrics

In this work we only use or apply the LLMs to establish our bench-
mark, be that in zero-shot or fine-tuning. As such, we do not perform
any modification in the way the LLMs work. Therefore, for efficiency
and architectural issues the original papers of Llama2, PMC-Llama,
Mistral and BioMistral could be inspected. Our contributions are fo-
cused on (i) establishing a multilingual benchmark for Medical QA, (ii)
experimenting with state-of-the-art RAG methods and (iii) providing
gold reference explanations as a form of ‘‘gold’’ RAG that can be used
to compare the LLMs with. Having said that, below we offer detailed
information about some efficiency metrics. All the metrics have been
calculated using a NVIDIA A100 Graphics Processing Unit (GPU).

• The total number of parameters updated through Low Rank Adap-
tation (LoRA) during Parameter-Efficient Fine-Tuning (PEFT) are
the reported in Table C.12.

• Table C.13 shows the number of samples per second processed
when using Mistral (7B) and LLaMA2 (13B) in a NVIDIA A100
GPU. The performance in the other two models, BioMistral (7B)
and PMC-LLaMA (13B) is the same.

• Table C.14 shows the time in minutes and hours when pro-
cessing data with Mistral (7B) and LLaMA2 (13B). The other two
models, BioMistral (7B) and PMC-LLaMA (13B), showcase the
same times.
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Fig. A.6. Prompt used for models in English.

Fig. A.7. Prompt used for models in Spanish.

Fig. A.8. Prompt used for models in Italian.

Fig. A.9. Prompt used for models in French.
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Fig. A.10. Prompts to remove explicit references to the multiple-choice options.
Table B.11
Hyperparameters used in the configuration of the experiments.

Hyperparameter Value

Optimizer adamw_torch_fused
Learning rate 0.00015
Weight decay 0.0
ADAM 𝜖 1e−7
Epochs 10
Train batch size 16
Evaluation batch size 8
Floating Point 16-bit precision training False
Brain Float 16-bit precision training True

Maximum #tokens in input

PMCLLaMA 2048
LLaMA2 4096
Mistral 8000
BioMistral 8000

Maximum #tokens in generation

PMCLLaMA 2048
LLaMA2 4146
Mistral 8050
BioMistral 8050

Low-Rank Adaptation (LoRA)

R parameter 8
LoRA 𝛼 16
LoRA Dropout 0.05

Table C.12
Trainable parameters: Number of parameter in training using the LoRA model; All
parameters: total of parameters used in the LoRA model; Trainable %: number of
trainable parameters of the total number of parameters in the LoRA model.

7B parameter models

Trainable parameters All parameters Trainable %

Mistral and BioMistral 20,971,520 3,773,042,688 0.555825

13B parameter models

Trainable parameters All parameters Trainable %

LLaMA2 31,293,440 6,703,272,960 0.466838
PMC-LLaMa 31,293,440 6,703,283,200 0.466838
12
Table C.13
Samples processed by second in a NIVIDIA A100 GPU. E: Full gold explanation. H:
Full gold explanation with Hidden explicit references to the correct/incorrect answer;
None: model without any additional external knowledge; RAG-7: Retrieval Augmented
Generation with k = 7; RAG-32: Retrieval Augmented Generation with k = 32.

Samples per second Train Inference

7B 13B 7B 13B

E 1.981 1.270 7.681 4.757
H 1.998 1.282 7.676 4.76

None 3.248 2.116 11.375 6.956
RAG-7 1.031 0.629 3.637 2.081
RAG-32 0.191 0.281 0.744 1.013

Table C.14
Time in minutes (m) and hours (h) when processing data in a NIVIDIA A100 GPU.
E: Full gold explanation. H: Full gold explanation with Hidden explicit references to
the correct/incorrect answer; None: model without any additional external knowledge;
RAG-7: Retrieval Augmented Generation with k = 7; RAG-32: Retrieval Augmented
Generation with k = 32.

Time for training 7B 13B

E 1 h 4 m 2 h 1 m
H 1 h 9 m 2 h 9 m

None 47 m 1 h 39 m
RAG-7 1 h 42 m 3 h 2 m
RAG-32 7 h 34 m 5 h 31 m
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