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TITLE : SPECTRAL PROPERTIES OF DIRAC OPERATORS ON CERTAIN DOMAINS.

Abstract

This thesis mainly focused on the spectral analysis of perturbation models of the free Dirac operator,
in 2-D and 3-D space. More precisely, this thesis is divided into two parts : Dirac operator with MIT bag
conditions (Chapters 2, 3) and Dirac operator coupled with delta shell interactions (Chapters 4, 5). Most of
these studies are conducted through the analysis of the resolvents of these operators.

The first chapter of this thesis examines perturbation of the Dirac operator by a large mass M, supported
on a domain. Our main objective is to establish, under the condition of sufficiently large mass M, the
convergence of the perturbed operator, towards the Dirac operator with the MIT bag condition, in the norm
resolvent sense. To this end, we introduce what we refer to the Poincaré-Steklov (PS) operators (as an analogue
of the Dirichlet-to-Neumann operators for the Laplace operator) and analyze them from the microlocal point
of view, in order to understand precisely the convergence rate of the resolvent. On one hand, we show that
the PS operators fit into the framework of pseudodifferential operators and we determine their principal
symbols. On the other hand, since we are mainly concerned with large masses, we treat our problem from
the semiclassical point of view, where the semiclassical parameter is h = M ~!. Finally, by establishing a
Krein formula relating the resolvent of the perturbed operator to that of the MIT bag operator, and using
the pseudodifferential properties of the PS operators combined with the matrix structures of the principal
symbols, we establish the required convergence with a convergence rate of O(M ~1).

In the second chapter, we define a tubular neighborhood of the boundary of a given regular domain. We
consider perturbation of the free Dirac operator by a large mass M, within this neighborhood of thickness
e := M~'. Our primary objective is to study the convergence of the perturbed Dirac operator when M
tends to +o00. Comparing with the first part, we get here two MIT bag limit operators, which act outside the
boundary. It’s worth noting that the decoupling of these two MIT bag operators can be considered as the
confining version of the Lorentz scalar delta interaction of Dirac operator, supported on a closed surface.
The methodology followed, as in the previous problem study the pseudodifferential properties of Poincaré-
Steklov operators. However, the novelty in this problem lies in the control of these operators by tracking the
dependence on the parameter €, and consequently, in the convergence as € goes to 0 and M goes to +oo.
With these ingredients, we prove that the perturbed operator converges in the norm resolvent sense to the
Dirac operator coupled with Lorentz scalar §-shell interaction.

In the third chapter, we investigate the generalization of an approximation of the three-dimensional Dirac
operator coupled with a singular combination of electrostatic and Lorentz scalar §-interactions supported on
a closed surface, by a Dirac operator with a regular potential localized in a thin layer containing the surface.
In the non-critical and non-confining cases, we show that the regular perturbed Dirac operator converges in
the strong resolvent sense to the singular §-interaction of the Dirac operator. Moreover, we deduce that the
coupling constants of the limit operator depend nonlinearly on those of the potential under consideration.

In the last chapter, our study focuses on the two-dimensional Dirac operator coupled with the electrostatic
and Lorentz scalar d-interactions. We treat in low regularity Sobolev spaces (H 1/2) the self-adjointness of
certain realizations of these operators in various curve settings. The most important case in this chapter arises
when the curves under consideration are curvilinear polygons, with smooth, differentiable edges and without
cusps. Under certain conditions on the coupling constants, using the Fredholm property of certain boundary
integral operators, and exploiting the explicit form of the Cauchy transform on non-smooth curves, we achieve
the self-adjointness of the perturbed operator.

Keywords ¢ Spectral analysis, Dirac operators, self-adjoint extensions, d-shell interactions, quantum
confinement, Poincaré-Steklov operators, the MIT bag model, h-Pseudodifferential operators, large coupling
limits.






TITRE : PROPRIETES SPECTRALES DES OPERATEURS DE DIRAC SUR CERTAINS
DOMAINES.

Résumé

Cette these se focalise sur I’étude spectrale des modeles de perturbations de I'opérateur de Dirac libre
en dimensions 2 et 3. Plus précisément, cette thése est divisée en deux parties : opérateur de Dirac avec
conditions aux bords MIT bag (Chapitres 2, 3) et opérateur de Dirac couplé a une delta interaction (Chapitres
4,5). La plupart de ces études sont réalisées a travers 1’analyse des résolvantes de ces opérateurs.

Le premier chapitre de cette these étudie la perturbation de I’opérateur de Dirac par une grande masse
M, supportée sur un domaine. Notre objectif principal est d’établir, sous la condition d’'une masse M
suffisamment grande, la convergence de 1’opérateur perturbé vers 1’opérateur de Dirac avec la condition
au bord MIT bag, au sens de la norme de la résolvante. Pour se faire, nous introduisons ce que nous
appelons les opérateurs Poincaré-Steklov (PS) (comme un analogue des opérateurs Dirichlet-to-Neumann
pour 'opérateur de Laplace) et les analysons d’un point de vue microlocal, afin de comprendre précisément
le taux de convergence de la résolvante. D’une part, nous montrons que les opérateurs PS s’integrent dans
le cadre des opérateurs pseudodifférentiels et nous déterminons leurs symboles principaux. D’autre part,
comme nous nous intéressons principalement aux grandes masses, nous traitons notre probléme du point
de vue semiclassique, ot le paramétre semiclassique est . = M ~!. Enfin, en établissant une formule de
Krein reliant la résolvante de 1’opérateur perturbé a celle de I’opérateur MIT bag, et en utilisant les propriétés
pseudodifférentielles des opérateurs PS combinées aux structures matricielles des symboles principaux, nous
établissons la convergence requise avec un taux de convergence de O(M 1),

Dans le deuxieme chapitre, nous définissons un voisinage tubulaire de la frontiere d’un domaine régulier
donné. Nous considérons la perturbation de I’opérateur de Dirac libre par une grande masse M, supportée
dans ce voisinage d’épaisseur € := M ~!. Notre objectif principal est d’étudier la convergence de I’opérateur
de Dirac perturbé lorsque M tend vers 4+oco. En comparaison avec la premiére partie, nous obtenons ici deux
opérateurs limites MIT bag, qui agissent en dehors de la frontiere. Il est intéressant de noter que le découplage
de ces deux opérateurs MIT bag peut étre considéré comme la version confinée de d-interaction scalaire
de Lorentz de I'opérateur de Dirac, supportée sur une surface fermée. La méthodologie suivie, comme au
probléme précédent, porte sur I’étude des propriétés pseudodifférentielles des opérateurs de Poincaré-Steklov.
Cependant, la nouveauté de ce probleme réside dans le contrdle de ces opérateurs en suivant la dépendance
du paramétre ¢, et par conséquent, dans la convergence lorsque ¢ tend vers 0 et M tend vers +oo. Avec
ces ingrédients, nous prouvons que 1’opérateur perturbé converge au sens de la norme de la résolvante vers
I’opérateur de Dirac couplé a une d-interaction scalaire de Lorentz.

Dans le troisieme chapitre, nous généralisation une approximation de I’opérateur de Dirac tridimensionnel
couplé a une combinaison singuliére de J-interactions €lectrostatiques et scalaires de Lorentz supportée sur
une surface fermée, par un opérateur de Dirac avec un potentiel régulier localisé dans une couche mince
contenant la surface. Dans les cas non-critiques et non-confinants, nous montrons que I’opérateur de Dirac
perturbé régulier converge au sens de la résolvante forte vers la d-interaction singuliere de 1’opérateur de
Dirac. De plus, nous déduisons que les constantes de couplage de I'opérateur limite dépendent de maniere
non-linéaire de celles du potentiel considéré.

Dans le dernier chapitre de cette these, notre étude porte sur I’opérateur de Dirac bidimensionnel couplé
a une d-interaction électrostatique et scalaire de Lorentz. Nous traitons dans des espaces de Sobolev de
faible régularité (H'/?) I’auto-adjonction de certaines réalisations de ces opérateurs dans divers contextes
de courbes. Le cas le plus important dans ce chapitre se présente lorsque les courbes considérées sont des
polygones curvilignes, avec des bords lisses et différentiables et sans cuspides. Sous certaines conditions sur
les constantes de couplage, en utilisant la propriété de Fredholm de certains opérateurs intégraux de frontiere,
et en exploitant la forme explicite de la transformée de Cauchy sur des courbes non lisses, nous établissons
I’auto-adjonction de I’opérateur perturbé.

Mots-clés : Analyse spectrale, opérateurs de Dirac, extensions auto-adjointes, ¢-shell interactions, opé-
rateurs de Poincaré-Steklov, le modele MIT bag, opérateurs h-Pseudodifferentiel, couplage fort.






TITULO : PROPIEDADES ESPECTRALES DE OPERADORES DE DIRAC EN ALGUNOS
DOMINIOS.

Resumen

Esta tesis aborda el andlisis espectral de modelos de perturbacién del operador libre de Dirac en dimen-
siones 2 y 3. Mds concretamente, esta tesis se divide en dos partes : Operador de Dirac con condiciones
de borde MIT bag (Capitulo 2, 3) y Operador de Dirac acoplado a delta interacciones (Capitulo 4, 5). La
mayoria de estos estudios se realizan mediante el andlisis de los resolventes de estos operadores.

El primer capitulo de esta tesis estudia la perturbacién del operador de Dirac por una masa grande
M, soportada en un dominio. Nuestro principal objetivo es establecer, bajo la condiciéon de una masa M
suficientemente grande, la convergencia del operador perturbado al operador de Dirac con la condicién de
borde MIT bag, en el sentido de la norma del resolvente. Para ello, introducimos lo que llamamos los ope-
radores de Poincaré-Steklov (PS) (es decir, un andlogo al mapa de Dirichlet-Neumann para el operador de
Laplace) y los analizamos desde un punto de vista microlocal, con el fin de comprender con precision la
tasa de convergencia del resolvente. Por un lado, mostramos que los operadores PS encajan en el marco de
los operadores pseudodiferenciales y determinamos sus simbolos principales. En segundo lugar, como nos
interesan principalmente las masas grandes, tratamos nuestro problema desde el punto de vista semicldsicos,
donde el parametro semicldsicos es h = M ~!. Finalmente, estableciendo una férmula de Krein que relaciona
el resolvente del operador perturbado con el del operador MIT bag, y utilizando las propiedades pseudo-
diferenciales de los operadores PS combinadas con las estructuras matriciales de los simbolos principales,
establecemos la convergencia requerida con una tasa de convergencia de O(M —1).

En el segundo capitulo, definimos una vecindad tubular de la frontera de un dominio regular dado.
Consideramos la perturbacién del operador de Dirac por una gran masa M, soportada en esta vecindad de
espesor € := M 1. Nuestro principal objetivo es estudiar la convergencia del operador de Dirac perturbado
cuando M tiende a +o0o. En comparacién con la primera parte, obtenemos aqui dos operadores limite
MIT bag, que actian fuera de la frontera. Curiosamente, el desacoplamiento de estos dos operadores MIT
bag puede verse como la version de ¢ interaccién escalar de Lorentz confinada del operador de Dirac,
apoyado en una superficie cerrada. La metodologia seguida en este problema en realidad entra en contacto
con el problema anterior tratado por analogia con el estudio de las propiedades pseudodiferenciales de los
operadores de Poincaré-Steklov. Sin embargo, la novedad de este problema radica en el control de estos
operadores siguiendo la dependencia del pardmetro €, y en consecuencia, en la convergencia cuando ¢ tiende
a0y M tiende a +o00. Con estos ingredientes, demostramos que el operador perturbado converge en el sentido
de la norma del resolvente al operador de Dirac acoplado con la J-interaccion de shell escalar de Lorentz.

En el tercer capitulo, generalizamos una aproximacién del operador de Dirac tridimensional acoplado
a una combinacién singular de J-interacciones electrostdticas y escalares de Lorentz soportadas sobre una
superficie cerrada, por un operador de Dirac con un potencial regular localizado en una capa delgada que
contiene la superficie. En los casos no criticos y no finitos, mostramos que el operador de Dirac perturbado
regular converge euertemente en el sentido del resolvente a la d-interaccion singular del operador de Dirac.
Ademds, deducimos que las constantes de acoplamiento del operador limite dependen no linealmente de las
del potencial considerado.

En el dltimo capitulo de esta tesis, estudiamos el operador de Dirac bidimensional acoplado con las d-
interacciones electrostatica y escalar de Lorentz. Tratamos en espacios de Sobolev de baja regularidad (H'/?)
la autounion de ciertas realizaciones de estos operadores en varios contextos de curvas. El caso mds impor-
tante de este capitulo surge cuando las curvas consideradas son poligonos curvilineos, con bordes suaves,
diferenciables y sin cdspides. Bajo ciertas condiciones sobre las constantes de acoplamiento, utilizando la
propiedad de Fredholm de ciertos operadores integrales de frontera, y explotando la forma explicita de la
transformada de Cauchy en curvas no suaves, establecemos la auto-unién del operador perturbado.

Palabras clave : Anilisis espectral, operadores de Dirac, extensiones autoadjuntas, d-shell inter-
acciones, operadores de Poincaré-Steklov, el modelo del MIT bag, acoplamiento fuerte, operadores h-
Pseudodiferenciales.
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INDEX OF NOTATIONS

dist(x, )
Re(z) or R(p)
O

mod

The identity.

The 2 x 2 resp. 4 x 4 identity matrix.

The adjoint of the operator A.

The domain of an operator A.

Spectrum of the operator A.

Point spectrum of the operator A.

Essential spectrum of the operator A.

Discrete spectrum of the operator A.

Continuous spectrum of the operator A.

Transpose of a function vector or a matrix.

There is a constant C' > 0 such that A < C'B.

Scalar product on a Hilbert space.

The usual commutator bracket.

The usual anticommutator bracket.

The space of C*°-functions with compact support in R,

The space of distribution on R¢ which is the dual space of C§°(R?).
The Schwartz space.

The space of tempered distribution which is the dual of .7 (R%).
The space of bounded linear operators defined everywhere in a Hilbert space H.
The distance between x and a point y belongs to the surface ..
The real part of a complex number z or a function p.

C\ {0}.

Modulo.

The convolution product of f and g.

The direct sum of f and g.

f and g are equivalent.

f is almost equal to g.

SI={ a;x;, forall z € RY.

There is a constant C' > 0 such that || f||pa) < C M.

The space of bounded linear operators from H to itself.

Is equal to the quantity (1 + [£]?)Y/2.

The space of k£ x k complex matrices.

The restriction of a function f € R on the open set ().

The restriction operator on the open set €.

The extension operator (by 0) outside of €2, which is the adjoint of rg,.
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Chapter

General Introduction

1.1 Physical and mathematical motivations

The Dirac equation is of profound and multifaceted importance in both physics and mathematics.
Its introduction by Paul Dirac in the 1920s marked a decisive moment in the development of theoretical
physics, as it successfully reconciled the principles of quantum mechanics and special relativity. The
mathematical formalism of the Dirac’s equation, based on the theory of matrices and spinors, not only pro-
vided a comprehensive framework for describing the behavior of relativistic electrons, but also stimulated
profound mathematical investigations and advances. In many applications in science and technology, it is
not possible to solve the underlying mathematical models exactly. Therefore, suitable parameters in these
mathematical models are replaced by idealized ones. The parameters should be chosen in such a way
that the idealized model is more accessible from a mathematical point of view and still reflects physical
reality to a reasonable degree of accuracy. To verify that the idealized models have similar properties
as the original ones coming from applications is a difficult mathematical problem which is unsolved in
many cases.

The free Dirac equation

0
0¥ (t,x) =DVU(t,z), forall ({,z) € RxR", withod;= Er (1.1)
The equation introduced a set of mathematical operators known as free Dirac operators, which are
denoted by ©. The free Dirac operators are represented by matrices acting on wave functions ¥ (¢, x),
which depending on time ¢ and a position x. The n-dimensional Dirac operator ® acts on a vector
n+1
function f : Q — CV (where Q C R™ is an open set and N := 2[%]) as

= af
Df = _Z;akﬁ_xk + apt1f,

with some special N x N matrices oy (the so-called Dirac-Pauli matrices), so that one formally has
D2 = —A + 1, where A is the n-dimensional Laplacian, and I, is the 4 x 4 identity matrix. These
operators play a crucial role in describing the behavior of spin-1/2 particles, such as electrons. In the
context of free Dirac operators, the term "free" implies that the particles under consideration are not
subject to external forces or interactions. This simplification allows physicists and mathematicians to
focus on understanding the intrinsic properties and characteristics of the Dirac operators. Studying free

15



Chapter 1 — General Introduction

Dirac operators provides valuable insights into the fundamental nature of relativistic quantum systems
and serves as a foundation for more complex quantum field theories.

In mathematical physics, researchers delve into the spectral analysis of free Dirac operators, exam-
ining the eigenvalues and eigenvectors associated with these operators. This analysis provides a deeper
understanding of the mathematical structure underlying relativistic quantum systems and contributes to
the development of mathematical tools applicable in various branches of physics.

The motivation behind the study of free Dirac operators lies at the intersection of quantum mechanics,
quantum field theory, and mathematical physics. This motivation can be explored through several key
aspects, e.g., Integration of relativity into quantum mechanics, Introduction of Spinors and Clifford
Algebras, etc. On one hand, the primary motivation for the Dirac equation arises from the need to
formulate a relativistically correct description of quantum-mechanical systems, particularly electrons.
The Schrodinger equation, which successfully describes non-relativistic quantum mechanics, fails to
account for effects associated with high speeds and energies. The Dirac equation, combining quantum
mechanics with special relativity, emerged as a solution to this limitation, providing a more accurate
description of the behavior of relativistic electrons moving at speeds close to the speed of light. Moreover,
free Dirac operators have applications beyond particle physics, extending into areas such as condensed
matter physics and materials science. The study of Dirac materials, which exhibit unique electronic
properties governed by the principles of relativistic quantum mechanics, has gained significant attention.
Graphene, for instance, is a well-known example of a material where the behavior of charge carriers
can be effectively described by the Dirac equation in the absence of external forces. On the other hand,
unlike the Schrodinger equation, the Dirac equation involves spinors, mathematical entities that extend
the notion of vectors to include intrinsic angular momentum or spin. The need to account for intrinsic
angular momentum and the observed magnetic properties of electrons led to the development of spinors
and the utilization of Clifford algebras. The study of Clifford algebras and spinors became a rich area of
mathematical investigation with applications in geometry and representation theory.

1.2 Dirac’s approach to deriving the equation (1.1) in R?

Let m be the positive mass of a free particle and denote by p the momentum of this particle. We
consider the classical relativistic energy-momentum relation E = \/c?p? + ¢*m? (with ¢ the velocity of
light). Then, the operators associated with the energy and the momentum, i.e.,

E — ihdy, p— —ihV, with i = Planck’s constant and V the gradient in R3 (1.2)
yield the Klein-Gordon equation
—R2O2U(t,z) = (—RPA + 'mA)U(t,x), teR, xR,

where A is the Laplace operator and W is the wave function. However, the Klein-Gordon equation
lacks consistency with a quantum mechanical interpretation due to the inclusion of a second order time
derivative and the absence of an L?-conservation law. To do so, it is necessary to establish an equation
that conserves the L? norm of the solution, ensuring that the wave function at time ¢t = 0 determines
the wave function at all subsequent times. In response to this challenge, Paul Dirac sought to modify
the Klein-Gordon equation to derive an equation that incorporated a first-order time derivative, similar
to the Schrodinger equation, while adhering to the principles of covariance in the context of special

16



1.2. Dirac’s approach to deriving the equation (1.1) in R3

relativity. The initial step in his approach is to reexamine the energy-momentum relation £ and, before to
its translation into the language of quantum mechanics using (1.2), he linearized the expression through
a written formulation. Taking these factors into account, the resulting equation takes the following form

ihoyU(t, x) = —ihc(a10py + 20s, + 30,,) U (t, 1) + Bmc*U(t, x)

0
= —ihca - VU(t,z) + Bmc*¥(t,x), with Oz, = D teR, zeR3
Ly

where V is the gradient in R3, and B, a = (a1, ag, a3) have to be determined from the energy-momentum
relation E. The quantities « and § are anticommuting which are most naturally represented by 4 x 4-
Hermitian and unitary matrices, called "Dirac matrices". More precisely, o; and 3 are satisfying the
following anticommutation relationship

{ajvak’} = 25jk]147 {OZJ»B} = 047 62 = ]145 ja ke {17273}7 (13)

where, {-, -} denotes the anticommutator bracket, d,;, denotes the Kronecker symbol (0, = 1 if j = k;
djr = 0if j # k), and I resp. 04 are the 4-dimensional unit and zero matrices.

Paul Dirac introduced the standard representation

B—<02 —]I2>’ oz]—<0j 0 forj =1,2,3, (1.4)

with o = (01, 092, 03) the 2 x 2-Hermitian Pauli matrices defined by

1 —1 1 1
al—<(1) 0>, Uz‘(? OZ>, 03_<0 _01>, H2—<0 (1’) (1.5)

The anticommutation relations
{0j,0} = 0jor, + oroj = 20;,1s forall j, k € {1,2,3} (1.6)

are well known. Using the above matrices o, s, a3 and 3, for m be the mass of a relativistic particle,
Dirac proposed the equation known as the Dirac equation given by

10U (t,z) = D, U(t,z), forall (t,z) € R x R?,

with Dy, (from now on, we use the units ¢ = i = 1) the three-dimensional free Dirac operators having
the following matrix form

3
Dy, =—ta-V+mpB = —iZajaj—i—mﬁ

7=1
m 0 —103 —101 — Ob (1.7)
B 0 m —i01 + O 103
o 483 *’L'a1 — 82 —m 0
—i01 + O 103 0 —-m

D, acts on C*-valued functions of z € R?, which are denoted by 1 (z) = (1 (), ¥2(z), 13(z), ¢4(m))t,
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and belong to the following first order Sobolev space
H'(R*) o H'(R*) o H'(R*) @ H'(R?) = H'(R®)* = H'(R?,C*) = H'(R*) ® C".
Thus, we define the free Dirac operator by
D) i= (—icc- V +mf)p, forallyp € Dom(D,,) := H'(R?)™.
The free Dirac operator is essentially self-adjoint on the dense domain C§°(R3\{0})* and self-adjoint
on his domain Dom(D,,,) = H! (R3)4 .
Its spectrum is purely continuous and given by
SP(Dim) = SPeont(Dim) = (—00, —m] U [m, +00).

Since in this thesis we are concerned with analyzing perturbations of Dirac operators, we gather be-
low some spectral contributions regarding of the self-adjointness and the spectrum of a perturbed operator.

We mention that this manuscript is devoted to the analysis of self-adjoint Dirac operators. It is
important to point out that several spectral studies have been carried out on non-self-adjoint Dirac
operators (including discrete Dirac operators), see for example [ , , , ].

Definition 1.2.1. Let 7" be self-adjoint operator. We say that V' is T'-bounded (or relatively bounded with
respect to 7', if Dom(V') D Dom(7’) and 3 a, b > 0 such that

IVEN < all T+ b€l V€ € Dom(T).

We denote by N (V') the infimum of such an a.

Theorem 1.2.2. (Kato-Rellich Theorem). Let T be self-adjoint operator, and V' is symmetric. If V is
T-bounded such that N7 (V') < 1, then the operator (T +V )u := Tu+ Vu is self-adjoint in the domain
Dom(T).

Remark 1.2.1. If we take a multiplication operator V with a hermitian 4 X 4 matrix such that each
component V. is a function satisfying the estimate

[Vit(z)] < a=— +b, Yz € R3\{0}, i,k =1,2,3,4,

c
2|x|
for some constant b > 0, a < 1. Then, for the free Dirac operator, we have the same result as in the
previous theorem, see [ , Theorem 4.2].

Theorem 1.2.3. (Weyl’s essential spectrum theorem). Let A be a self-adjoint operator and let B be a
closed operator with Dom(A) = Dom(B), so that:
1) For some (and hence all) z € p(A) N p(B), (A — 2)~' — (B — 2)~! is compact.
and let
2) Sp(A) # R and p(B) # 0.
Then Spess (A) = Spess(B)'

Definition 1.2.4. (Relatively compact.) Let A be self-adjoint. An operator C' with Dom(A) C Dom(C)
is called relatively compact with respect to A if and only if C'(A +4)~! is compact.
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Corollary 1.2.5. Let A be a self-adjoint operator and let C be a relatively compact perturbation of A.
Let B = A+ C, then Spyy(B) = Spegs(A4).

1.3 Sobolev and Dirac-Sobolev spaces

Definition 1.3.1 (Function space). Let 2 be a non-empty open subset of R?. For an integer k > 0, we let

C*(Q) == {u: Q — C : 9%u exists and is continuous in  for |a| < k},
CH(Q) := {u e C*(Q) : supp(u) € K C Q, for a compact set K},

where,

d
olely
o, : _2: . _ d d
aU—W,WIth’a’— a]andx—m1-~-md,x€R,a€N.
Ty Y2 Zd j=1

We denote by

C*(Q) = ﬂ C*(Q) the usual space of infinitely differentiable functions.
k>0

Definition 1.3.2 (Lipschitz domain). A open connected set 2 C R? is a x-Lipschitz domain if for every
x € § there exist > 0 and an isometric coordinate system with origin x = x( such that

CNQ=Cn{@t):9eR and g(3) < t},

for C = {y € R? : |z — y|oo < 7}, and for a Lipschitz continuous function g : R9~! — R, with
g(x0) = xg and ||¢'||oo < k. Then, we say a domain is a Lipschitz domain if it is a x-Lipschitz domain
for some k > 0.

Definition 1.3.3 (Holder space). Let O C R? be a open bounded domain, & > 0 be an integer, and
w € (0,1]. For u € C*(Q) define the Holder norm

o o o 0%u(x) — 0%u
HuHck,w(Q) = Z [[0%ul|coq) + Z [0%u],, with [0%u], := sup | (z) (y)|

lal<k la=k] z,yEQ Y |z —yl|v
The function space
CP(Q) = {u € CH(Q) : ||ul|grwq) < oo}

is called the Holder space with exponent w.

For a bounded or unbounded Lipschitz domain  C R3, we write 99 for its boundary and we
denote by n and o the outward pointing normal to €2 and the surface measure on 0f2, respectively. By
L2(R3)* := L%(R3;C*) (resp. L%(Q)* := L?(Q, C*)) we denote the usual L2-space over R? (resp. ),
and we let ro : L?(R?)* — L2(Q)* be the restriction operator on 2 and eq : L2(Q)* — L2(R3)* its
adjoint operator, i.e., the extension by 0 outside of 2.
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We define the unitary Fourier transform . : .7 (R%) — .7 (R%) as follows:

8() = F[u(§) = 2m) 2 [ e ulada, VE R,
R
and by .# ~! we denote the inverse Fourier transform .% ~! : .7 (R%) — .7 (R%), given by
6] (z) = FVul(z) = (27) 2 / dEu()de, Vo e R
R

The Fourier transform defines a continuous linear operator from the Schwartz class . (R?) into itself. By
duality, we can also extend .# to the space of tempered distributions .7 ' (R%). In particular, the Fourier
transform can be extended into an isometry in L?(R%).

For s € [0, 1], we define the usual Sobolev space H*(R%)* as
H*(RY)* = {u € L2(RI)*: /d(l + [€1%)* [a(€)* dé < oo},
R

and we shall designate by H*(Q2)* the standard L?-based Sobolev space of order s. By H°(R%)* =
L2(0Q)* := L?(09,do)* we denote the usual L2-space over OS2 If Q is a C2-smooth domain with
a compact boundary OS2, then the Sobolev space of order s € (0, 1] along the boundary, H*(9Q), is
defined using local coordinates representation on the surface 9). As usual, we use the symbol H~%(9§2)*
to denote the dual space of H*(99)*. In particular, the first order Sobolev space is

HY Q)Y = {p € L*(Q)* : there exists p € H*(R3)? such that ¢|q = ¢}.

The Sobolev space of order 1/2 along the boundary, H'/2(9€)*, consists of all functions g € L?(9£2)*
for which

) — 2
9oy = [ o Pdote) + [ [ D=0 d0()i0(0) < o,

and H~1/2(90)* is the dual space of H'/2(X)*. We denote by tgq : H(Q)* — H'/2(0Q)* the classical
trace operator, and by Eq : H'/2(9Q)* — H'(Q)* the extension operator, that is

tolalfl = f, Vf e HY?0)".
Throughout the current manuscript, we denote by Py the orthogonal projections defined by

Py = %(h +iB(a-n(x), «cdQ. (1.8)

We use the symbol H («, 2) for the Dirac-Sobolev space on a smooth domain €2 defined as
H(o,Q) = {p € L*(Q)*: (a- V)p € L*(Q)*}, 1.9
which is a Hilbert space (see [ , Section 2.3]) endowed with the following scalar product

(s V) H(a,0) = (@) 2t + ((a- V), (- V)P) o)t 5% € H(a, Q).
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We also recall that the trace operator t5q extends into a continuous map taq : H(a, Q) — H~1/2(9Q)*.
Moreover, if v € H(a, Q) and tgqu € HY2(0Q)%, then v € HY(Q)4, cf. [ , Proposition 2.1 &
Proposition 2.16].

Proposition 1.3.4. Let Q be a Lipschitz domain. Then, for all ¢, yp € H'(Q)*, we have the Green’s
Sformula

((—ia - V), ) 2y — (p, (=i - V)Y) p2qya = (=i - n)taap, taat) 12a0)-

1.4 The resolvent kernel of the free Dirac operator

Let us denote by R,,(z) the resolvent of the free Dirac operator. From [ , Section 1.E], it is
known that

(Ru()) (@) = (Do = 2) (@) i= [ 670 = 1) (9) dy, V2 € C\Sp(Dy),

where,

ih(2)lal
o7 (z) = <z +mB A+ (1 —ik(2)|z|)ia - #) . VzeR3\ {0}, (1.10)

47 |x|

is the kernel of the free Dirac operator.

Let us recall how we obtain this integral kernel. On one hand, we have
(Dm = 2)7 = (D + 2)(Dp, = )7
= (D + 2)(—A +m? — 2*)~!
= (D + 2)(p* — (2% — mQ))_l.

On the other hand, if we let u(z) = (p? — l{:Q(z))_lf(x), with k(z) = /22 — m? the branch of the
square root fixed by the condition Imv/\ > 0, then by Fourier transform, we get that

F(f)(€) = (€ = (2* = m?)) F (u) ()

1
_ —1
= u(x) =F <—£2 — kz(z)> * f ().
From the well known formula %~ 1 el btai
t - _ = s t
rom c we nown irormuia (52 — k2(2)> 47'(":U| we obtain

47|z

ikl
= ((—ia-v+ﬁm+z) ( pE )) * f(x).
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Chapter 1 — General Introduction

In addition, for x # 0, we have

; ik(z)|z L1 ik(2)|x
o [ ekl ik(z)|z|e* @l g — me k()|
o\ Ja ) FE
— k() eR@lel EL L ik(2)|a]
T o fop
- L T ik(2)|a
k
(#6155 = )
Consequently,
z x ; a-x a-z\ ekl
a-V=aoa- (zk(z)— - —) etk(2)lz] — (z k(z) — >
ol el 2] ERVANE
yields that

@)= [ dne—v ).

ik(z)|z| =7, (-)*f ()

((Dm = 2)7f) (2) = ((—m -V + Bm + 2)

N——

47| x|

By comparing the two quantities, we deduce (1.10).

1.5 Boundary integral operators associated with the free Dirac operators

The aim of this part is to introduce boundary integral operators associated with the fundamental
solution of the free Dirac operator D,, and to summarize some of their well-known properties.

For z € p(D,,) (i.e., the resolvent set of D,,), with the convention that Imv/22 — m? > 0, the
fundamental solution of (D,, — z) is given by

ei\/zz—mz\ﬂ

47|z

oz (z) = (z+m5+(1—i\/z2—m2|x])ia- i >, vz e R?\ {0}. (1.11)

ER

We define the potential operator &, : L?(09)* — L*(Q)* by

02, [gl(x) = | dila—ylgly)do(y), forallz e, (112
o0

and the Cauchy operators € ., : L2(9Q)* — L?(0Q)* as the singular integral operator acting as

C.m|fl(x) = lim ¢z (x —y)f(y)do(y), foro-ae. z€dQ, fe L*(0Q)*L  (1.13)
PNO J|z—y|>p

Finally, we define the following operator CF ,,, : L*(£)* — L*(X)* as follows:

CLmlf](x) == Tlim &7, [f](y),

Q13y gt T
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1.5. Boundary integral operators associated with the free Dirac operators

where Q1 > y ™ 2 means that y tends to x non-tangentially from 2, and _, respectively, i.e.,
fory € Qu, we get |z — y| < (1 + a)dist(y,X) for a > 0 and x € ¥. Moreover, the following
Plemelj-Sokhotski jump formula holds:

Cip= jF%(Oé “n) + Com. (1.14)

It is well known that @2,”, ¢ m» and CF , are bounded and everywhere defined (see, for instance,
[ , Section. 2]), and that

((a ’ n)%z,m)2 = ((gz,m(a : n))2 = _1/47 Vz € p(Dm)a (1.15)

holds in L2(09)%, cf. [ , Lemma 2.2]. In particular, the inverse €5, = —4( - n)Cz (o - n)
exists and is bounded and everywhere defined. Since we have ¢Z, (y—x)* = ¢Z,(z—y) forall z € p(D,,),
it follows that €7, = @, as operators in L2(0Q)*. In particular, €, ,, is self-adjoint in L?(0)* for
all z € (—m,m).

Next, recall that the trace of the single layer operator (1.12), .S,, associated with the Helmholtz
operator (—A + m? — 22) I is defined, for every f € L?(0Q)* and z € p(D,,), by

ei\/mmfy\
S [f](x) = / iy)doly), forz e I

o0 Arlr —y|

It is well-known that S, is bounded from L?(9Q)* into H'/2(9Q)*, and it is a positive operator in
L2(0Q)* forall z € (—m,m), cf. [ , Lemma 4.2]. Now we define the operator A?, by

1
AZ, = §ﬁ + €., forall z € p(Dy,),
which is clearly a bounded operator from L?(92)% into itself.

. . Q
In the next lemma we collect the main properties of the operators ®3', ., €, ,, and A7,.

Lemma 1.5.1. Assume that Q2 is C%-smooth. Given z € p(D,y,) and let ¢2m, C>.m and A%, be as above.
Then the following hold true:

(i) The operator @Qm is bounded from H'/?(9Q)* to H'(Q)*, and extends into a bounded operator
from H=Y2(0Q)* 10 H(a, Q). Moreover, it holds that

002,11 = (=5 ) + @ ) U], VS € HY200)" (1.16)

(ii) The operator €, p, gives rise to a bounded operator €, p, : H1/2(89)4 — Hl/z(aQ)4.
(iii) The operator Az, - H'/?(0Q)* — HY/?(9Q)* is bounded invertible for all z € p(D,,).

Proof. (i) The proof of the boundedness of ®,, from H'/2(9)* into H'(2)* is contained in [ ,
Proposition 4.2], and the jump formula (1.16) is proved in [ , Lemma 3.3] in terms of non-
tangential limit which coincides (almost everywhere in 0f)) with the trace operator for functions in
H'(Q)*. The boundedness of (IJ?’m from H=1/2(0Q)* to H(a, ) is established in [ , Theorem
2.2].
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Since n is smooth, it is clear from (i) that €, ,,, is bounded from H'/2(9Q)* into itself, which proves
(ii). As consequence we also obtain that A, is bounded from H'/2(9Q)* into itself. Now, the invertibility
of Az, in H'/2(9Q)* for z € C\ R is shown in [ , Lemma 3.3 (iii)], see also [ , Lemma
3.12]. To complete the proof of (iii), note that if f € L?(9)* is such that A?,[f] € HY/?(9Q)%, then a
simple computation shows that

HY(09)" 5 (A3)%[f] = (1/4+ (€on)? + (m + 25)S.) [£],

which means that f € H'/?(9Q)* From the above computation we see that AZ, is invertible from
HY2(9Q)* into itself for all z € (—m,m), since ((€,.m)? + (m + 2)S.) is a positive operator. This
completes the proof of the lemma. |

Remark 1.5.1. Note that if Q) is a Lipschitz domain with a compact boundary, then for all z € p(D,,)

the operators ¢, and A7, are bounded from L? (89)4 into itself (see, e.g, [ , Lemma 3.3]), and
since A%, is an injective Fredholm operator (see the proof of [ , Theorem 4.5]) it follows that it is
also invertible in L2(6Q)4. Note also that, thanks to [ , Lemma 5.1 and Lemma 5.2], we know

that the mapping ®%, . defined by (1.12) is bounded from L*(0Q)* to HY/2(Q)%, tgq®%,,[g] € L*(9Q)*
and the formula (1.16) still holds true for all g € L*(09)™.

At the end of this section, we recall a definition of geometrical quantities on the surface ¥ := 0f2,
with Q C R? a bounded domain:

Definition 1.5.2. [Weingarten map]. Let ¥ be parametrized by the family {¢;,U;,V}, }jcs wich J is a
finite set, U; C R?, V; C R?, ¥ C U, Vjand ¢5(U;) = V;NX forall j € J. Forz = ¢;(u) € XNV
withu € Uj, one defines the Weingarten map (arising from the second fundamental form) as the following
linear operator

Wy =W(x): T, — Ty

Bipi(u) — W(x)[0:;)(u) := —Bin(pj(u)), (1.17)

where T, denotes the tangent space of ¥ on  and {0;¢;(u) }i—1,2 is a basis vector of T,.
The eigenvalues k1 (z), ...., k,(x) of the Weingarten map W, are called principal curvatures of ¥ at z.
Then, we have the following proposition:

Proposition 1.5.3. [/ ], Chapter 9 (Theorem 2), 12 (Theorem 2)]. Let ¥ be an n—surface in R"t1,
oriented by the unit normal vector field n, and let x € 3. The principal curvatures are uniformly bounded
on ..

In quantum mechanics, one is usually concerned with the study of operators D,,, + V in the Hilbert
space L?(R™, CY), where V is a potential perturbation, or, more recently, in L?(2, C") with various
boundary conditions. The main attention is paid to the most physically interesting cases n = 2 and n = 3.
In many cases, the potential V' depends on some parameters, so one is interested in the study of spectra
(in particular, eigenvalues) under various variations of parameters in V' as well their dependence on the
parameter m (mass) and the underlying geometric object 2.

In order to provide more context, the paragraphs below contain a brief presentation of my scientific
papers. These paragraphs come as a summary of our results, as well as some ingredients of their proofs.
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1.6. Chapter summaries

1.6 Chapter summaries

My doctoral research is mainly focused on the spectral analysis of Dirac operators. A large part of
my thesis deals with an approximation for the Dirac operator on a domain (with boundary conditions) or
coupled with d-shell interactions. More precisely, the current manuscript studies two types of perturbation
for Dirac operators: The three-dimensional Dirac operators with large mass limits and the Dirac operators
coupled with singular delta interactions of electrostatic and Lorentz scalar. On one hand, the majority
of the studies carried out in this thesis are established through the study of their resolvents. Then, in the
first part of this thesis, we introduce the Poincaré-Steklov (PS) operators, which appear naturally in the
study of Dirac operators with MIT bag boundary conditions (Chapters 2 and 3), and analyze them from
a microlocal point of view (classical and semiclassical). On the other hand, our study focuses on Dirac
operators coupled with a singular combination of electrostatic and Lorentz scalar delta interactions
(Chapters 4 and 5). In three-dimension, we generalize an approximation of this operator with regular
local interaction. Besides, in two-dimension, we develop a new technique that allows us to prove, for
combinations of interactions, the self-adjointness of the realization of the operator under consideration,
in low-regularity Sobolev spaces.

1.6.1 Dirac operator with MIT bag boundary conditions

The MIT bag Dirac operator was introduced by Bogoliubov in the 1970s as a simplified model
of confinement of quarks in hadrons. Moreover, as far as we know, the MIT bag Dirac operators are
considered as a model of general relativity, see e.g., [ , ]. For a bounded smooth domain
Q C R, the MIT bag operator Hyrr(m) is the realization of D,, in L?(2)* corresponding to the
boundary conditions P_tgnv = 0 on 952 with some explicit matrices P_ (1.18) depending on the outer
unit normal n and t5 being the Dirichlet trace operator (restriction to the boundary). Several researchers
(e.g., [ , 1), have found that the eigenvalues of Hyrp(m) are the limit (in the sense of
resolvent) of the eigenvalues of the Dirac operator in the whole space R™ when the mass becomes large
outside of €2 (so that the MIT bag boundary condition represents a kind of relativistic hard wall at the
boundary). Moreover, various resolvent convergence results were established as well see, for example

[ 1.
For a bounded smooth domain Q2 C R3, the MIT bag operator is defined on the domain
Dom(Hyyrr(m)) :== {v € HY(Q,C*) : P_tsqu = 0 on 9Q},

by Hyir(m)v = Dpo, for all v € Dom(Hyyr(m)), and where the boundary condition holds in
H'Y2(5Q, C*). Here taq : H'(Q,C*) — HY2(99Q,C*) denotes the classical trace operator.

It is well known [ ] that the spectrum of Hyyr is purely discrete and is contained in R \ [—m, m].
Also, it is known that Hyyr(m) arises as the limit (in the sense of resolvent) of the self-adjoint Dirac
operator Dy := Dy, + M ﬁ]le\ﬁ when M tends to oo.

In the following two parts of this introduction, we will describe our main results from Chapters 2 and

3 on the study of Dirac operators with MIT bag boundary conditions, which correspond to the results
obtained in [ ] and [ ], respectively.
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1.6.1.1 Summary of Chapter 2: A Poincaré-Steklov map for the MIT bag model

Boundary integral operators have played a key role in the study of many boundary value problems
for partial differential equations arising in various areas of mathematical physics, such as electromag-
netism, elasticity, and potential theory. In particular, they are used as a tool for proving the exis-
tence of solutions as well as for their construction by means of integral equation methods, see, e.g.,

[ b ki b ]'

The study of boundary integral operators has also been the motivation for the development of various
tools and branches of mathematics, e.g., Fredholm theory, Singular integral and Pseudodifferential
operators. Moreover, it turned out that functional analytic and spectral properties of some of these
operators are strongly related to the regularity and geometric properties of surfaces, see for example
[ , ]. A typical and well-known example which occurs in many applications is the
Dirichlet-to-Neumann (DtN) operator. In the classical setting of a bounded domain Q C R? with a
smooth boundary, the DtN operator, N, is defined by

N HY?20Q) — HY2(0Q), g— Ng=TnU(g),

where U(g) is the harmonic extension of g (i.e., AU(g) = 0in Q and I'pU = g on 9f?). Here I'p and
I"' vy denote the Dirichlet and the Neumann traces, respectively. In this setting, it is well known that the
DtN operator fits into the framework of pseudodifferential operators, see e.g., [ ]. Moreover, from
the viewpoint of the spectral theory, several geometric properties of the eigenvalue problem for the DtN
operator (such as isoperimetric inequalities, spectral asymptotics and geometric invariants) are closely
related to the theory of minimal surfaces [ ], as well as the problem of determining a complete
Riemannian manifold with boundary from the Cauchy data of harmonic functions, see [ ] (see also
the survey [ ] for further details).

A motivation of this chapter is to introduce a Poincaré-Steklov map for the Dirac operator (i.e., an
analogue of the DtN map for the Laplace operator) and to study its pseudodifferential properties. Our
main motivation for considering this operator is that it arises naturally in the study of the well-known
Dirac operator with the MIT bag boundary condition, Hyyr(m), which will be rigorously defined in
(1.21). Let 2 C R3 be a domain with a compact smooth boundary 952, let n be the outward unit normal
to €2, and let ' and Py be the trace mappings and the orthogonal projections, respectively, defined by

Iy =Pilp: HY(Q)* — PLHY?(0Q)* and Py := % (Iy Fip(a-n(x))), =€ (1.18)

In Chapter 2, we investigate the specific case of the Poincaré-Steklov (PS for short) operator, .¢7,,, defined
for z € p(HMIT(m)) by

Ay : P_HY2(0Q)" — PLHY2(0Q), g+ din(g) =T, U,
where U, € H'(Q)* is the unique solution to the following elliptic boundary problem:

{(Dm —2)U, =0, inQ,
(1.19)

r.v,=g9, onof.

We point out that in the R-matrix theory and the embedding method for the Dirac equation, similar
operators linking on 0f2 values of the upper and lower components of the spinor wave functions have

26



1.6. Chapter summaries

been studied in [ , s , ]. It corresponds to a different boundary condition (the trace
of the upper/lower components) which is not necessarily elliptic. As far as we know, such operators for
the MIT bag boundary condition have not been studied yet.

Our results are mainly concerned with the pseudodifferential properties of .o7,, and their applications.
Thus, our first goal is to show that o7, fits into the framework of pseudodifferential operators. In Section
2.3, we show that when the mass m is fixed and z € p(D,,), then the Poincaré-Steklov operator .27, is a
classical homogeneous pseudodifferential operator of order 0, and that

Voo An

V—As0

where S = i(a A «)/2 is the spin angular momentum, Vg and Ayq are, respectively, the surface
gradient and the Laplace-Beltrami operator on 02 (equipped with the Riemann metric induced by the
euclidian one in R?) and OpS~! is the classical class of pseudodifferential operators of order —1 (see
Theorem 2.3.3 for details). For Dygq, the extrinsically defined Dirac operator introduced in Section 2.1.2,
we also have:

Ay = S - ( > P_ mod OpS™1(89),

A = Dy, (~Apa) 2 P- mod 0pS~1(99).

The proof of the above result is based on the fact that we have an explicit solution of the system (1.19)
for any z € p(D,,), and in this case the PS operator takes the following layer potential form:

Ay = =P B(B)2+ Con) " P-, (1.20)

where €, is the Cauchy operator associated with (D,, — z) defined on 0f2 in the principal value
sense (see Subsection 1.5 for the precise definition). So the starting point of the proof is to analyze the
pseudodifterential properties of the Cauchy operator. In this sense, we show that 2%, ,, is equal, modulo
OpS=H(09Q), to o - (Vaa(—Apa)~/?). Using this, the explicit layer potential description of .27, and
the symbol calculus, we then prove that <7, is a pseudodifferential operator and catch its principal symbol
(see Theorem 2.3.3).

While the above strategy allows us to capture the pseudodifferential character of .o7,,,, but unfortunately
it does not allow us to trace the dependence on the parameter m, and it also imposes a restriction on the
spectral parameter z (i.e., z € p(D,,)), whereas .27, is well-defined for any z € p(Hwmir(m)). In Section
2.4, we address the m-dependence of the pseudodifferential properties of <7, for any z € p(Hyyr(m)).
Since we are mainly concerned with large masses m in our application, we treat this problem from the
semiclassical point of view, where h = 1/m € (0, 1] is the semiclassical parameter. In fact, we show the
following result:

The proof of the following result is presented in Theorem 2.4.1 in Chapter 2.

Theorem 1.6.1. Let h € (0,1] and z € p(Hyyr(m)), and let /" = <y, with m = h™1. Then for
any N € N, there exists a h-pseudodifferential operator of order 0, ﬂ/f\} € OphSO(E) such that for h
sufficiently small, and any 0 < 1 < N + %

1
™ = 3, = (N,

3
HZ(S)—HY 27 4(D)
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and

:Q%N -
V=h2Ax +T1+1
The main idea of the proof is to use the system (1.19) instead of the explicit formula (1.20), and it

is based on the following two steps. The first step is to construct a local approximate solution for the
pushforward of the system (1.19) of the form

P mod hOp"S™(%).

UM (@, 25) = OB (A", 2))g = - | AN@ R w)e S g()de,  (3,a3) € R x [0, 00),

where A" belongs to a specific symbol class and has the following asymptotic expansion

Ah(i"£, 1'3) ~ Z h]AJ(£7§>$3)
j=0

The second step is to show that when applying the trace mapping I, to the pull-back of U"(-,0) it
coincides locally with <7 /;, modulo a regularizing and negligible operator. At this point, the properties
of the MIT bag operator become crucial, in particular, the regularization property of its resolvent which
allows us to achieve this second step, as we will see in Section 2.4. The MIT bag operator on {2 is the
Dirac operator on L?(Q2)* defined by

Hyir(m) = Dytp, V9 € Dom(Hyr(m)) == {p € H'(Q)*: Ty =00n00}.  (1.21)

In Section 2.2, we briefly discuss the basic spectral properties of Hyr(m) when €2 is a domain with
compact Lipschitz boundary (see Theorem 2.2.1). We mention that direct proofs of the self-adjointness
of Hyr(m) have been established in [ s ]. Moreover, in Theorem 2.2.2 we establish
regularity results concerning the regularization property of the resolvent and the Sobolev regularity of
the eigenfunctions of Hyyr. In particular, we prove that (Hyyr(m) — 2)~! is bounded from H™(2)* into
H"1(Q)* N Dom(Hmr(m)), for all n > 1. Indeed, we prove the following result:

Theorem 1.6.2. Let k > 1 be an integer and assume that U is C**-smooth. Then the following
statements hold true:

(i) The mapping (Hyyr(m) —2)~t : HXU)* — H*1(U)* N Dom(Hyyr(m)) is well-defined and
bounded for all m > 0 and all z € p(Hpyyr(m)). Moreover, for any compact set K C C there
exist mg, C > 0 such that for all m > mg and z € K, there holds

I(Hprr(m) = 2) | s ays—s e ays < CmP1
(ii) If ¢ is an eigenfunction associated with an eigenvalue z € Sp(Hyyr(m)), i.e., (Hyr(m)—z)¢ =
0, then ¢ € H¥(U)*. In particular, if U is C*°-smooth, then ¢ € C™(U)*.

Motivated by the natural way in which the PS operator is related to the MIT bag operator, and to
illustrate its usefulness, we consider in Section 2.5 the large mass problem for the self-adjoint Dirac
operator Hyy = D,,, + M (1, where U = R3 \ﬁ Indeed, it is known that, in the limit M — oo,
every eigenvalue of Hyyr(m) is a limit of eigenvalues of Hyy, cf. [ , ] (see also
[ , , ] for the two-dimensional setting). Moreover, it is shown in [ , ]
that the two-dimensional analogue of H); convergences to the two-dimensional analogue of Hyyr(m)
in the norm resolvent sense with a convergence rate of O(M~1/2). It is worth noting that we have the
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following easy consequence contribution of Kato-Rellich theorem and Weyl theorem: By Kato-Rellich
theorem, we have that H ), is self-adjoint on Dom(H}y,) := H'(R?)#, and by Weyl theorem we have that

Spess(HM) = (—OO, _(m + M)] U [m + M, —I—OO),
Sp(Hp) N (—(m + M), m + M) is purely discrete.

In [ , ], it was shown that any eigenvalue of Hyyr(m) is a limit of eigenvalues
of Hp;, when M — +4oc0. Moreover, in the two-dimensional setting, the authors of [ ] have
shown, in the norm resolvent sense, that the bidimensional analogue of Hj; converges to the bidimen-
sional Hyyrr(0), with a convergence rate of O (M ~1/2).

For the physists, it is well known that for M = +o0, we recover that Hy; = Hyr(m). Then, before
M = 400, it seems reasonable to ask some questions about the intermediate values of M. In Section
2.5 we address the following question:

Let My > 0 be large enough and fix M > My and 2 € p(Hyyr(m)) N p(Hy). Given f € L*(R3)4
such that f = 0in R3\ O, and U € H'(R3)*, what is the boundary value problem on ) whose
solutions closely approximate those of (D,, + M ﬁ]lR3\§ —2)U = f?

It is worth noting that the answer to this question becomes trivial if one establishes an explicit formula for
the resolvent of Hj;. Having in mind the connection between the Dirac operators Hy; and Hyyr(m), this
leads us to address the following question: for M sufficiently large, is it possible to relate the resolvents
of Hy; and Hypir via a Krein-type resolvent formula? In Theorem 2.5.2, which is the main result of
Section 2.5, we establish a Krein-type resolvent formula for H ), in terms of the resolvent of Hyyr(m).

The key point to establish this result is to treat the elliptic problem (Hy; — 2)U = f € L*(R3)*
as a transmission problem (where I' 1 Ujq = I'+Ugs\ are the transmission conditions) and to use the
semiclassical properties of the Poincaré-Steklov operators in order to invert an auxiliary operator W, (z)
acting on the boundary OS2 (see Theorem 2.5.2 for the precise definition). In addition, we prove an
adapted Birman-Schwinger principle relating the eigenvalues of Hj; in the gap (—(m + M), m + M)
with a spectral property of W, (z). With their help, we show in Corollary 2.5.4 that the restriction of U
on (2 satisfies the elliptic problem

(D —2)Ujg = f in Q,

I U= Pul'+Ryir(2)f on 052,

F+U|Q =T Ryr(2)f + v on 09,
where %), is a semiclassical pseudodifferential operators of order 0. Here, the semiclassical parameter
is 1/M. Moreover, we show that the convergence of Hj; to Hyyr in the norm-resolvent sense indeed

holds with a convergence rate of O(M ~1), which improves previous works. Then, the result reads as
follows:

The proof of this result is presented in Proposition [Chapter 2, 2.5.6].

Theorem 1.6.3. Let rq be the restriction operator on () and eq be the extension operator by 0 outside of
Q. For any compact set K C p(Hwirr(m)) there is Mo > 0 such that for all M > My: K C p(Hy),
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and for all z € K the resolvent Ry admits an asymptotic expansion in L(L?*(R3®)*) of the form:
(Hy = )™ = ea(Hrr(m) — 2)'ra + = (K (2) + Lu(2)),
where K(2), Ly (2) @ L2(R3)* — L2(R3)* are uniformly bounded with respect to M and satisfy
roLy(z)eq =0 =1y Ky (2)ey.

In particular, it holds that

|(Hu = 2)7! = eq(Hur(m) — 2)7'rq|

1
L2(R3)4—L2(R3)4 =0 (M) :

The most important ingredient in proving these results is the use of the Krein formula relating the
resolvents of Hj; and Hyyr(m), as well as regularity estimates for the PS operators (see Theorem 2.5.3)
and layer potential operators (see Lemma 2.5.7 for details).

* * * * * *
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1.6.1.2 Summary of Chapter 3: On the approximation of the Dirac operator coupled
with confining Lorentz scalar §-shell interactions

The aim of this chapter is to study the behavior of a perturbed Dirac operator, defined within a
tubular neighborhood of thickness € > 0, as € and the mass tends to 0 and oo, respectively. We consider
perturbations of the free Dirac operator D,, in the whole space by a large mass M term living in an
e-neighborhood U¢ of a surface ¥ := 9, with 0 a bounded set in R3. Working with this type of
massive potential leads to the appearance of what we’ve seen in Chapter 2, called Dirac operators with
MIT bag boundary conditions, when the mass M becomes large. Indeed, in this chapter we interested in
establishing the convergence (for suitable relation between € and M: ¢ = M ~1) of such perturbations to
a direct sum of two MIT bag operators, which we denote by Df\)ﬁT(m) and D?A}T(m), acting in 4 and
Q_ :=R3\ Q, respectively. This decoupling of these MIT bag Dirac operators can be linked (as ¢ goes
to 0) to the confining version (i.e., when n = 0 and ¢ = %2 in (1.25), below, for y instead of 7) of the
Dirac operator coupled with purely Lorentz scalar delta interaction supported on the surface >, which
will be discussed briefly in the second part of this introduction, Section 1.6.2.

Our main goal in this part of the thesis is to establish an approximation of the Dirac operator
coupled with Lorentz scalar §-shell interactions by the perturbed Dirac operator, which we denote by
Y = Dm + M 31y-. We would like to point out that the convergence of D5, to the MIT bag operator
was established in the previous chapter, in the norm resolvent sense, when M tends to 400, and ¢ fixed.
However, in that previous chapter, the mass M is supported on an unbounded domain, which has only one
boundary. Whereas, in the present chapter, M is supported on a bounded domain with two boundaries,
whose distance between them is the thickness €, as shown in Figure 1.1. Thus, it is then natural to address
the following question in this chapter:

Let M be a large mass supported on a tubular vicinity of surface >.. What happens when the
thickness of the tubular tends to zero with )/ ~'?

The methodology followed, as in the previous problem (of Chapter 2) study the pseudodifferential
properties of the Poincaré-Steklov (PS) operators. The complexity in the current problem is that these
operators take a pair of functions with respect to OU® := 3 U X° such that for all zx; € 3, we have
Y¥ 3 & = oy + en(xy), where n is the unit normal to the surface ¥ pointing outside 2. So, we will
control these operators by tracking the dependence on the parameter €, and consequently, the convergence
when ¢ goes to 0 and M goes to +oc.

Now, to give a rigorous definition of the operator we are dealing within this chapter and to go into
more details, we need to introduce some notations. Let 2, be a bounded smooth domain in R3. For
(n, ) € R2, the three-dimensional Dirac operator coupled with delta interactions is defined formally by
(1.25), with p instead of 7. If n = 0, physicists in particular have been aware of this phenomenon since

the 1970s, when they considered confinement in hadrons with a model (see [ ] and [ 1. The
mathematical model describing this using the Dirac operator with MIT boundary conditions has been
extensively studied in mathematical papers such as those mentioned in [ ]. At the end of this

paragraph, the Dirac operator coupled with purely Lorentz scalar delta shell interaction, is the operator
Dy,;, defined in (1.25). Besides, Dy 42 is called the Dirac operator coupled with confining Lorentz scalar
0-shell interactions, and in this chapter, this operator is the direct sum of both MIT bag Dirac operators,
i.e., Do 4o = Dyt @ Dy
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In this chapter, Q2 is a open bounded set in R?® with a compact smooth boundary ¥ := 9§, and n
is the outward unit normal to ;. We denote by Q° = R3\ Q, U, Q5 =0, UQ°, and by N°
the outward unit normal with respect to Q¢ . More precisely, for ¢ sufficiently small, we assume that X,
QF , ¥¢ and U°¢ satisfied

Y= {x €R3 2 =uax+en(zy): zx € L},
Q°F = {z € R, dist(x,%) > ¢},
U ={zeR® s=xx+tn(zg): zx € B and t € (0,¢)}, withe € (0,¢).

In other words, the Euclidean space is divided as follows:

R =0Q° USSUUUZUQ,.

Figure 1.1 — Domain

Description of main results.

The perturbed Dirac operator we are interesting on is ©5, := D,, + M 31y, where 1. is the
characteristic function of &/°. The results of the present chapter are presented as follows:
To establish the main result outlined in Theorem 1.6.6, we will show the following approximations given
by Propositions 1.6.4 and 1.6.5:

The following propositions are Propositions 3.1.3 and 3.1.4 of Chapter 3.

Proposition 1.6.4. We consider the confining version of the Dirac operator coupled with a purely Lorentz
scalar d-shell interaction, denoted by 91, := Dy, + 280x. Then, for any z € p(Zr) and € sufficiently
small, the following estimate holds:

eqs (Dyiir — Z)Ami, —(2p—2)7! =0O() ase—0. (1.22)

L2(R3)4*>L2 (R3)4

QL. . . . + Q.
where D\[7 is the direct sum of both MIT bag operators, acting in DI{Z/HT and Dy, refer to

Dgﬁ? (m) == DIS\]/ET (m) ® D?/ET (m), (see Section 3.1.1 for the exact notations).
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Proposition 1.6.5. Ler K C C\ R be a compact set. Then, there is My > 0 such that for all M > M,
ande = M~': K C p(D5,) and for all z € K, the following estimate holds on the whole space

- Q5 -1 -
(@5 —2)7" ~ ea;_(Dyir — 2) TQLHL2(R3)4_>L2(R3)4 =O(M™).

The latter proposition means that the Dirac operator %, is approximated, in the norm resolvent
sense, by both MIT bag Dirac operators, acting in 0, and Q° with a rate of O(M ~1) when M tends to
00.

By combining Propositions 1.6.4 and 1.6.5, we arrive at the following main result:

Theorem 1.6.6. Let z € p(Z1), then for M sufficiently large, z € p(D%,), and e = ML, the following
holds:

@5 =2 = (2L -]

L2(R3)4 =0 (M_l) '

Proof ideas

The most important ingredient in proving these results is the use of the Krein formula relating the
resolvents of ©%, and the MIT bag operators (dependent on M or/and €), examining the convergence of
the terms dependent on € and independent of M, in order to connect them with the fixed boundary surface
> (namely, Propositions 1.6.4 and 1.6.5). Moreover, the methodology followed in this MIT problem
treated in analogy with the study of the pseudodifferential properties (classical and semiclassical) of the
Poincaré-Steklov operators. Indeed, we prove in Corollary 3.2.9 that <7, is a zero-order pseudodifferential
operator, and that

VEE VAN Na(l')
o =g, Y20
VA

where Ve is the surface gradient along 3¢, —Ay is the Laplace-Beltrami operator, and bfj(zy, §) :=

t
bo (p(l‘z)), (Vp(l‘g)71> §> (similarly for b” ), with b} resp. b” ; the symbols of order 0 resp. —1, and

PZ + 2 0p(bh(xx,8)) + Op(t” (xx,8)),

Y3 zy — play) = xy + en(ry) := x € X a diffeomorphism.

Since, we are interested in large mass coupling, we verify in Proposition 3.2.7 that the PS operator,
AP, fits well within the framework of h-pseudodifferential operators, where h = ¢ = M~ is the
semiclassical parameter. Moreover, we obtain the following estimate:

1
| A" — Al = O(h?*2), forany! € [0, 5l NeN.

H1/2(59)—»H3 71 (5¢)

Now, Proposition 1.6.4 can be proved as follows: using the Krein formula of the resolvents of Z;, and both

MIT bag operators, DMIT and DMIT (see Section 3.3.2), acting in L?(Q)* and L?(022)*, respectively.
Besides, we prove in Section 3.4 that following proposition:

Proposition 1.6.7. Let co > 0 be small enough, and let z € C\R. We set by Q_ := R3\ Q. the exterior
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fixed domain and by ¥ = 02— = 0S4 its boundary. Then, for any € € (0, e¢) the following holds:

€

Heﬂi (Dt — 2)

L2(R3)4— L2(R3)4 = (’)(5), (1.23)

ros —eq_ (Dijr —2) " 'ro_|

where Dlg\l/ﬁT is the MIT bag Dirac operator acting in the fixed domain €)_.

By combining the above pr0p0s1t10n Wlth Lemma 3.4.2, we then obtain, in the norm resolvent sense,

the convergence of DMIT = DMIT & DMIT to 91, = Dlg\)/HT @ DMIT

In order to prove Proposition 1.6.5, we need to use the following ingredients:

On one hand, the key point to establish this result is to treat the elliptic problem (D5, — 2){ = f €
L?(R?)* as a transmission problem with the transmission conditions

(Dy, — z)ilm+ =f in )y,
(Dm — 2)th,. = f in Q|
(Dm+M - Z)LHME = f in ua,
Pitgil|9+ = Pitgﬂ‘us on X,

P;:tzeu‘gs_ = Pitzeﬂms on X°.

Here P4 from (1.18) are the orthogonal projections with respect to n and P§ are the orthogonal projections
with respect to N¢, defined by

Ps = (I F ifo - N°)/2. (1.24)

Then in Section 3.3.2, we establish a Krein resolvent formula that relates the resolvent of the perturbed

QE
Dirac operator, ©5,, in terms of those of the MIT operators bag, Dyt (m) and D (m + M), acting
in L2(Q._)* and L?(U°)*, respectively.

On the other hand, we use the semiclassical properties of the Poincaré-Steklov operators in order
to invert the auxiliary operator 15, (z) acting on the boundary OU* = ¥ U X¢, and which appears in
Krein’s formula (see (3.57) for the exact notation). Unlike the application of Chapter 2, we remark that
in this problem the operator Y5, (which is constructed by the Poincaré-Steklov operators) takes a pair
of functions with respect to OU¢. With the semiclassical properties verified by the Poincaré-Steklov
operators, and subsequently by 15 ,, as well as regularity estimates for the PS operators (see Corollary
3.3.1) and layer potential operators (see Lemma 3.4.3 for more details), we prove the convergence of
Proposition 1.6.5. Consequently, using these ingredients, a kind of convergence can be established in
Theorem 1.6.6 for e = M 1.

* * * * * *
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1.6.2 Dirac operator coupled with delta shell interactions

A delta shell (-shell) interaction, or delta potential, is a mathematical construction used to model a
potential energy that acts as an infinitely narrow and infinitely high "spike" at a hypersurface (e.g., curve
or surface). The Dirac operators coupled with §-shell interactions have been studied in detail recently.
Mathematically, the Hamiltonian is formally written as

Dnﬂ' := Dy + Bn,'réaﬂ = Dy, + (77]14 + 75)5697 (1.25)

where 2 C R? is a bounded smooth open set, 3 is the Dirac matrix, and B,, ; is a bounded invertible,
self-adjoint operator in L2(92)*. Namely, Dy, is called the Dirac operator with a combination of
electrostatic (strength 1) and Lorentz scalar (strength 7) d-shell interactions, with 7, 7 € R.

The initial direct study on the spectral analysis of these Hamiltonian can be traced back to Ref.
[ ] and [ ], in which the authors of [ ] treated the case that the surface is a sphere,
assuming 1> — 72 = —4. This specific phenomenon, known as the confinement case in physics, signifies
the stability of a particle (for example, an electron) in its initial region during time evolution. In other
words, if the particle is confined to a region £ C R? at time ¢ = 0, it remains unable to cross the surface
0 and enter the region R? \ € for all subsequent times ¢ > 0. Mathematically, this implies that the Dirac
operator under consideration can be decomposed into a direct sum of two Dirac operators acting on {2 and
R3\ Q, respectively, each with appropriate boundary conditions, as we have already seen in the previous
chapter. Subsequently, spectral analyses involving Schrédinger operators coupled to §-shell interactions
have developed considerably [ , , , , , , , , ], while
research into the spectral aspects of d-shell interactions associated with Dirac operators were compara-
tively inactive. However, Dirac operators with J-interactions supported on general hypersurfaces have
been actively studied since the appearance of the paper [ ]. In 2014, a resurgence in the spec-
tral study of these Hamiltonian occurred by N. Arrizabalaga, A. Mas and L. Vega in [ ], where
the authors developed a new technique to characterize the self-adjointness of the free Dirac operator
coupled to a d-shell potential. In a special case, they treated pure electrostatic §-shell interactions (i.e.,
7 = 0) supported on the boundary of a bounded regular domain and proved that the perturbed operator is
self-adjoint. The same authors continued their investigation into the spectral analysis of the electrostatic
case, exploring the existence of a point spectrum and associated issues in works such as [ ] and

[ I

Due to the presence of distribution coeflicients, the self-adjointness of such operators continues to at-
tract special attention, and it was seen by many authors (primarily for the three-dimensional case) that the
self-adjointness domain can be dependent on the coupling constants and the smoothness properties of the
hypersurface and that it may lead to unusual spectral properties [ , , , 1.
Furthermore, J. Behrndt, P. Exner, M. Holzmann and V. Lotoreichik proposed in [ ] the quasi
boundary triples theory and their Weyl functions in order to study the spectral properties of the Dirac
operators with purely electrostatic §-shell interactions. Indeed, they were able to confirm the results
of [ ] about the self-adjointness of D, o for all 7 # +2 (called as the non-critical interaction
strengths). In the two-dimensional case, the paper [ ] initiated the study of the Dirac operator
coupled with delta shell interactions, and for the case of smooth curves a very complete spectral picture
could be found, which was extended in [ ] to a more general class of interactions. Much less
attention was given to the case of non-smooth surfaces and curves.
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Apart from the self-adjointness of these operators, another area of interest that has been enriched
by the contributions of several authors is the approximation of Dirac operators coupled with a singular
combination electrostatic and Lorentz scalar, by a Dirac operator coupled with a regular potential. Several
progresses have been made in this area, and we present them in the following. The approximation of the
Dirac operator ID,, - by Dirac operators with regular potentials with shrinking support (i.e., of the form
(1.26)) provides a justification of the considered idealized model. In the one-dimensional framework, the
analysis is carried out in [S89], where Seba showed that convergence in the sense of norm resolvent is
true. Subsequently, Hughes and Tusek established strong resolvent convergence and norm resolvent con-
vergence for Dirac operators with general point interactions in [ s ]and [ ], respectively.
In the two-dimensional case, [ , Section 8] considered the approximation of Dirac operators with
electrostatic, Lorentz scalar, and anomalous magnetic d-shell potentials on closed and bounded curves,
in the non-critical and non-confinement cases. Additionally, in [ ] the authors examined a similar
question to [ ], but on a straight line. More precisely, taking parameters (1, 7) € R? in (1.25)
and a regular potential B%, that converges to dx; when ¢ tends to 0 (in the sense of distributions), then
D,,, + B, +BS; converges to the Dirac operator D » with different coupling constants (7,7) € R2. In
particular, these constants depend nonlinearly on the potential 55,.

In the three-dimensional case, the situation seems to be even more complex, as recently shown in
[ ]. There, too, the authors were able to show convergence in the norm resolvent sense in the
non-confining case, however, a smallness assumption on the potential B%, was required to achieve such
a result. On the other hand, this assumption unfortunately prevents us from obtaining an approximation
of the operator D, ~ with the physically or mathematically more relevant parameters 7 and 7. Recogniz-
ing this limitation, the authors of the recent paper [ ] delved into and verified the approximation
problem for two- and three-dimensional Dirac operators with delta-shell potential in the norm resolvent
sense. Without the smallness assumption of the potential ‘BS, no results could be obtained here either.

In the following two parts of this introduction, we will describe our main results from Chapters 4 and
5 on the study of Dirac operators with MIT bag conditions, which correspond to the results obtained in
[ ]and [ ], respectively.
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1.6.2.1 Summary of Chapter 4: On the approximation of the J-shell interaction for the
3-D Dirac operator

Intuitively, the d-potential on 9€) corresponds to a potential localized in a small vicinity of 0€). The
aim of this chapter is to make this intuition rigorous.

The primary goal of this part is to extend the approximation result explored in [ , Section
8] to the three-dimensional case. We seek to verify whether the methodologies employed in the two-
dimensional context allow us to establish a comparable approximation in terms of strong resolvent.
Specifically, we aim to achieve this in the non-critical and non-confinement cases (i.e., when n? —72 # +4)
without relying on the smallness assumption as stipulated in [ ]. Mathematically, the Hamiltonian
we are interested in is formally written as (1.25). Physically, the Hamiltonian ID;, ; is used as an idealized
model for Dirac operators with strongly localized electric and massive potential near the interface ¥ (e.g.,
an annulus), i.e., it replaces a Hamiltonian of the form

@(0777775 = Dm + V’VLT,&’ (1.26)

where V), ; . are a regular potential localized in a thin layer containing the interface > and explicitly
defined below.

This chapter answers the following question:

Given the regular approximation achieved in the two-dimensional case in [ ], can we
extend this approximation to the three-dimensional case and obtain information on the coupling
constant?

In order to answer to this question, we will introduce some additional notations. For a smooth bounded
domain €2 C R3, we consider an interaction supported on the boundary ¥ := 99 of 2. The surface
divides the Euclidean space into disjoint union R? = Q, UXUQ_, where Q0 := Qis a bounded domain
and Q_ = R3\ Q. We denote by n the unit outward pointing normal to {2. We construct a regular
symmetric potential V,, . € L™ (R3; C**4) supported on a tubular e-neighbourhood of ¥ and such that

Ve — (nly 4+ 78)dy  in the sense of distributions.
e—

Now, for v > 0, we define X, := {z € R3, dist(x,X) < ~} a tubular neighborhood of ¥ with width 1.
And for v > 0 small enough, >, is parametrized as

Yy ={zy +pn(zy), zx € X and pe (—,7)}

1
For 0 < e < 7, let he(p) := —h (E>, for all p € R, with the function & verifying the following
e \e
1
h e L*(R,R), supph C (—1,1) and / h(t)dt = 1.
-1

€
Thus, we have: supp h. C (—¢,¢), he(t)dt =1, and lir% he = dp in the sense of the distributions,
E—r

—&

where 0 is the Dirac J-function supported at the origin. Finally, for any ¢ € (0,), we define the
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symmetric approximate potentials V;, ;. € L (R3, C**%), as follows:

By - he(p), if ==uxn+pn(zy) e,

v x) =
1) {0, if zeR%\%,

with B, - = (nl4 + 7/3). Itis easy to see that lim._,o V;) -« = By ; dx, in D’ (R3)2. Then, for e € (0,7),
we define the family of Dirac operator {&, - - }- as follows:

Epret) = D) + V7 b, forallyp € Dom(&, ,.) := Dom(D,,) = H*(R)*. (1.27)
Then, in [Chapter 4, Section 4.3] we prove the following result:

Theorem 1.6.8. Let (1, 7) € R?, and denote by d = n*> — 72. Let (), 7) € R? be defined as follows:

. . .. tanh(v/—d/2)
oifd <0, then (i}, 7) = W(ﬂﬂ'),
eifd =0, then (7,7) = (n,7),
e ifd > 0 such that d # (2k + 1)?7%, k € NU {0}, then (7,7) = —ta(n\(/_j/i/)z) (n,7).

Let &, 7 be defined as in (1.27) and Dy, + as in (1.25) for (1), 7). Then,

Enre g Dy 7 in the strong resolvent sense.

The proof of this result is to establish the above convergence in the strong graph limit sense. More
precisely, the self-adjointness of the limiting operators and the limit operator gives the equivalence
between convergence in the strong resolvent and convergence in the strong graph limit sense. The latter
means that, for all ¢» € Dom(Dy 7 ), there exists a family of vectors {1): }.¢(0,y) C Dom(&; . c) such that

limye =4 and  lim &, -ote =Dys00 in L*(R3,CY).

* * * * * *
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1.6.2.2 Summary of Chapter 5: On the self-adjointness of two-dimensional relativistic
shell interactions

This chapter is devoted to presenting the results of the article [ ]. First and only in this chapter
of the thesis, we mention that D,, is the free Dirac operator in R?, and that our studies are therefore
carried out in 2-D space. Let m € R. The two-dimensional Dirac operator with mass m is the formally
self-adjoint differential expression

Dyt CP(RYC?) 3 f = —i(0101f + 020af) + mosf € C3°(R?,C?),

and it naturally extends to a continuous linear map in the space of distributions D’((2, C?) for any open
Q) C R2. Here 01, 09, and o3 are the family of Pauli matrices from (1.5). It is well known that the free
two-dimensional Dirac operator

A:f— D,f, Dom(A)=H(R?C?, (1.28)
is self-adjoint in L?(R?, C?) and has the absolutely continuous spectrum

Sp(A4) = (= o0, =|m|] U [[m],+00).

We will be interested in the study of some special perturbations of A. Namely, let 2, C R? be a
non-empty bounded open set with Lipschitz boundary. Denote

Yi=00,, Q- :=R?\Q,.

For (g, 1) € R?, we would like to discuss self-adjoint realizations in L?(R?, C2) of operators given
formally by
fe=Dyf+ (5]12 + /LUg)(Szf. (1.29)

More specially, we have developed a new technique to prove self-adjointness in low-regularity Sobolev
spaces (i.e., domain contained in H 1/ 2) namely for general curvilinear polygons 3. The last sum (1.29)
can be considered as an idealized model of a relativistic potential concentrated on X, and the constant €
resp. p measures the strength of the electrostatic resp. Lorentz scalar part of the interaction.

The formal expression (1.29) can be given a more rigorous meaning as follows. First, for any non-
empty open set 2 C R? consider the two-dimensional Dirac-Sobolev space (i.e., an analogue of the
Dirac-Sobolev space in three-dimension (1.9))

H(o,Q) = {f € L2(Q,C2): Dpf € LQ(Q,(CQ)},

which is just the domain of the maximal realization of D, in L?(£2, C?) and becomes a Hilbert space if
equipped with the scalar product

(fsDu06.0 = {9 2@c2) + (Dnfs Dmg) r2(0,c2)-

For s > 0, let H*(2, C?) be the usual fractional Sobolev spaces of order s on {2 (consisting of C2-valued

functions), and we set
H%(0,Q) := H(o,Q) N H(Q,C?),
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which is a Hilbert space with the scalar product

<f7 >HSO'Q <f7 > <f7 >HSQ(C2)

For what follows it will be convenient to use the identification

H(o,R*\ %) ~ H(o, Q) @ H(0, ), f = (f4,[-),

with f4 being the restriction of f on §)., as well as the analogous identifications for H*(R?\ ¥, C?) and
H*(0,R?\ ¥). We will also use the shorthand notation

2
0T = 1x101 + 202, x = (x1,12) € R%;

from the anticommutation relations (1.6) one easily obtains (o - z)? = |z|?I; for all x € R2.

It is known that for any f € H(o,R? \ ¥) the boundary traces (o - v) f+ on ¥ are well-defined as

functions in H~3 (3); remark that we keep the same symbols for the boundary traces for better readability.
Denote by dx. f the distribution

5Zfa / f+ + f_ dS, Y e CSO(RQ)v

where ds means the integration with respect to the arclength. An application of the jump formula
(distributional derivative for functions with discontinuities along ) for a function fshows the identity

D f = Dmf+) ® (Dmf-) +ilo-v)(f+ — f-)dx,

where v = (v, 1/2) is the unit normal on ¥ pointing to 2_. Then it follows that the right-hand side of
(1.29) belongs to L?(R?, C?) if and only if f satisfies the transmission condition

f++ /-

(ely + po3) 5

+i(o-v)(fy— f-) =0 on 3. (1.30)

Therefore, as a first attempt, it is natural to consider the following operator realizations of the
expression (1.29) in L?(R?, C?):
— the maximal realization B),,x With the domain

Dom(Buax) := {f € H(o,R?\ X) : f satisfies (1.30)},
— the minimal realization B,;, with the domain

Dom (Buin) := Dom(Buax) N H'(R?\ 2, C?)
={fec H' (R*\ %,C?) : f satisfies (1.30)}.

It is standard to see that B,y is symmetric with B} = Bmnax, therefore, By, C B C Bpax for any
self-adjoint realization B of (1.29). Nevertheless, an explicit description of the self-adjoint realizations
turns out to be an involved problem depending on both (g, ;1) and the regularity of X.

The most attention was given to the case of C?-smooth X, see [ ] and references therein.
Namely, if g2 — uQ # 4, then By = Bmax =: B, and the spectrum of B consists of the spectrum of the
free Dirac operator A and at most finitely many discrete eigenvalues in (—|m|, |m|). For e — p? = 4
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the operator By, is not closed, but Buin = Bmax, S0 Bmin is at least essentially self-adjoint (so there
is a unique self-adjoint realization), but the loss of regularity leads to peculiar spectral effects (e.g., new
pieces of the essential spectrum), see [ , , ]. Remark that [ , ]
actually consider more general interactions by admitting so-called anomalous magnetic couplings which
are not covered by the above framework.

If 3 has corners, one has, in general, Buin C Bpax, which means that there are infinitely many
self-adjoint realizations [ ]. The work [ ] suggested that the H 3 regularity should be more
natural for the case of non-smooth X.. Namely, let

B =B,
be the restriction of Bpax to Dom(Bpax) N H3 (R2\ %, C?), ie.,

B: fr: (f-‘r?f—) = (Dmf+7Dmf—)7

1 9 ) (1.31)
Dom(B) := {f € H?(0,R?\ %) : f satisfies (1.30)}.

Due to the standard Sobolev traces theorem, the one-sided traces of functions from Dom(B) on ¥
belong to L?(X, C?), so the integration by parts shows that B is a symmetric operator. The main result
of [ ] reads as follows: if ¥ is a curvilinear polygon (a piecewise C'?-smooth closed curve, with
finitely many corners and without cusps), ¢ = 0 and |u| < 2, then B is self-adjoint. The recent work
[ ] presents an extensive study of the case of general compact Lipschitz curves 3 by reducing the
self-adjointness to the Fredholmness of some boundary integral operator (see also [ , ] for
the three-dimensional case): we summarize the essential components of the constructions in Section 5.2.
Nevertheless, the self-adjoint conditions obtained in [ ] for our case are quite implicit as they
depend on the (unknown) spectra of some boundary integral operators.

Presentation of results

Our results in this chapter complement those obtained in the recent papers [ Jand [ ]
by providing new very explicit conditions for the self-adjointness of B in terms of the parameters (e, )
and the geometry of X. The results on the self-adjointness of B are established in several cases, and can
be read as follows:

(A) In the case where the curve X is Lipschitz, we obtain the following results:

Theorem 1.6.9. ([Chapter 5, Theorems 5.3.1, 5.4.2, and Corollary 5.4.3]). The operator B is
self-adjoint for any (e, ) with |e| < |p|.

(B) In the case where the curve ¥ is C''-smooth, we have that
Theorem 1.6.10. If e — 1% + 4, then B is self-adjoint. ([Chapter 5, Theorem 5.4.4])
(C) In the case where the curve X is a curvilinear polygon (with C''-smooth edges and without

cusps), we prove the following:
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Theorem 1.6.11. Denote by w the smallest angle of 3., defined by

w:= min min{f;, 27 —8;} € (0, n).
min min{6;.27 -6} € (0.7)
If
1
2yt <—— or & —p?>16mw), (1.32)
m(w)

then the operator B is self-adjoint. ([Chapter 5, Theorem 5.5.3])
Here the constant m(w) only depends on the sharpest corner w of ¥. Moreover, the value of m(w) is not
known explicitly for all w, but some bounds can be obtained (see Proposition 5.5.2 for more details), and
each of the conditions

(i) €% — ,u2 <2ore?— uQ > 8 (without additional geometric assumptions),
(i) €2 — p? # 4 if each angle 6 of > (measured inside €2 ) satisfies

3T

<h< =,
- T 2

N

guarantees the self-adjointness of B ([Chapter 5, Corollary 5.5.4]).

Proof ideas

The proofs of these results, all rely on Fredholm properties of boundary integral operators. In fact, we
employ two new technical ingredients: The explicit use of the Cauchy transform on non-smooth curves
and a characterization of the Fredholmness for boundary integral operators using the approach of [ 1.

We would like to describe certain details to demonstrate the results in cases (A), (B) and (C) .

For the results of case (A):

Since the operator B is symmetric, to prove Theorem 1.6.9, it is sufficient to show that ran(B — z) =
L?(R?,C?) for any z € C \ R. To do so, in Section 5.3 we construct an explicit inverse of (B — z) by
exploiting the Fredholm property of the boundary integral operator, A, defined below.

To describe the proof of Theorem 1.6.9, we need to add some notations. Let A, be defined by

A, =

1
m(dz — po3) + Cs,

with C, : L?(X,C?) — L?(X, C?) the singular integral operator given by
C.g(x) =p. v./ ¢.(xr —y)g(y)ds(y), forallz € C\ Sp(A) and for any x € X,
)

where A is the 2D free Dirac operator defined in (1.28), and ¢, : R? — A2(C) is the function given by

b, (z) == %Ko(\/ m? — 22|z]) (mog + zI) + iﬂlﬁ(\/ m? — 22|z|)(o - x),

27 |x|
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with K; the modified Bessel functions of order j.

We also define the layer potentials &, for D,, — z (with z € C\ Sp(A))
®, : L*(%,C?*) — L*(R?, C?),

D.g(c) = [ 0ue —p)gl) ds(y). =€ B\,

where we recall that ds means the integration with respect to the arclength.
For z € (C\ Sp(A)) U {m}, consider the bounded linear operator

0, =T+ (el + po3)C, : L*(2,C?) — L*(%,C?),
which is closely related to the operator B from (1.31) as follows:
Lemma 1.6.12. Forany z € C\ Sp(A) there holds ker(B — z) = ®, ker O, in particular, dim ker(B —
z) = dimker ©.
Thanks to the latter and the following relation between ©, and A,
O, = (ely + pos)A,. (1.33)

We observe that the self-adjointness of the operator B can be established if the Fredholmness of A, is
confirmed.

Since B is symmetric, then we get that ker(B — z) = {0}, for any non-real z. Then, for |¢| # |u|
such that the operator A, is Fredholm for some a € (C\ Sp(A)) U{m}, Lemma 1.6.12 and (1.33) imply
ker A, = {0}, and we deduce that A is surjective and ran A, = L2(X, C2). Thanks to this surjectivity,
we can construct the inverse of (B — z) as follows:

(B—2)t=(A-2)"1-®,A'0%: [*(R? C?) — L*(R?C?

gives the surjectivity of B — z for any non-real z, and then we get ran(B — z) = L?(R?,C?). This
complete Theorem 1.6.9.

It is worth noting that if we introduce the tangent vector field

T=(11,72) = (—1o,11) =V

on X and denote
t := the operator of multiplcation by 7 + i72 in LQ(E),

the operator (2 — 1i2)A,,, can then be represented as the following:
(€% = p*) A = (el — pos) + (€* — p*)Crm
o _ 2 2 0 Cz;t*
- (E]IQ MO-?)) + (E K ) (tcg 0 )
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where Cx; : L?(X) — L?(X) is the Cauchy transform on 3, defined through the complex line integration

1
Cxg(x) == Py p.v./Z xg(_y)y dy, geL*X), z€%,

and understood in the Cauchy principal value sense.

For the results of case (B):

In the scenario where the curve ¥ is C''-smooth, to do the self-adjointness in the non-critical
combinations of coupling constants (i.e., if €2 — u? # 4), we adopt for the second time the same strategy
as employed in the proof of Theorem 1.6.9. Thus, we prove Theorem 1.6.10.

For the results of case (C):

At the end of this chapter, we prove in Section 5.5 the most important result on the self-adjointness
of the operator B when the curve X is a curvilinear polygon with C''-smooth edges and without cusps.
Similarly to the preceding cases, under specific assumptions of combination 2 — p? # 4, we establish
the self-adjointness of B relying on the Fredholmness of the integral operator (¢lly 4+ po3)A,,. However,
the methodology of the proof is inspired by an algorithm employed by Shelepov [ ] to prove the
Fredholmness of a bounded integral operator defined on what is known as a Radon curve. Besides, this
methodology requires the introduction of the following concepts:

The bounded integral operator ©,,, = (elly + po3)Ay, =1+ (ely + po3)Cp = L*(X,C?) — L(3,C?)
can be written as follows:

Omg(x) 29—/ !

g HG(:L‘, y,v(z),v(y) ﬂ)g(y)ds(y)

MERET

with g € L%(X, C?) and the 2 x 2 matrix function G defined by

’ 0 (e + ) | ??j|
T — i
G(:r,y, v(z),v(y), _y> =—— (1.34)
|z — y| 27 z—y
(6 —p)—-? 0
|z =yl
for z,y € 3, where the integral representations in (5.13) were used. Following [ ], we define a

function ¢ : R — R and matrix-valued functions

HY) : R+ % — My, j€{1,2}, with.#; the space of k x k complex matrices.
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by
ct) = (672 cosf — e2)T — ve 2 sinf
Vet + et —2cosb ’
00 (i€+1/2)t
M) = c Crsinf — _
HV (&) = /_OO =y G(a,a,y, 7sinf — vcos @, (( t))dt,
00 (i€+1/2)t
(2)(¢) — € i) _
Hy7(§) = /_Oo T e T = 200300 G(a, a,—T7sinf — v cosb, v, C(t))dt.
Set
A(€) = det (I — HV(©) HP(©)). ¢eR+ .
The following result was shown in [ , Theorem 2]:

Proposition 1.6.13. The operator ©,,, is Fredholm in L*>(%, C?) if and only if

Ay, (§) #0forall§ € R+ % and corners ay, ..., a, of X.

Now, for our matrix function GG (1.34), we obtain that
2
Do) = (1= (2 = ) Mp(21))

where My is the following function

cosh ((m — 0) )
2(1 + cosh(mz))’

My(z) = forall x € R.

Applying Proposition 1.6.13, we deduce that the condition A, (&) # 0 for all £ is equivalent to

Mp(x) #

5 5 for all x € R. (1.35)
€ —

Here 6 be the non-oriented interior angle of ¥ at the point ¢ measured inside €2,. Remark that for any
6 € (0,2m) one has
My(x) > 0forallz € R, lim My(z) =0,

r—Fo0

then the condition (1.35) is satisfied if any only if
2 -2 <0 or ——— >m(0) :=sup My(x),
which can be summarized in the single condition €2 — ;12 < ﬁ.

Under these conditions on £2 — ;ﬂ, we deduce that O, is Fredhom. This means that A, is Fredholm and
B therefore is self-adjoint.

* * * * * *
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In the following sections, we discuss the different perspectives and questions raised by this thesis.

1.7 Perspectives

1.7.1 Extensions to other dimensions.

The results of Chapters 2-5 are established for specific dimensions only. It is natural to understand
the problems for arbitrary dimensions (and at least cover all problems setting for the dimensions two
and three). It is clear that a language of Clifford algebras can be used. The analysis of singular integral
operators on curves in Chapter 5 could be extended to some rotationally invariant surfaces in R? using a
separation of variables and the analysis in lower dimensions.

1.7.2 Scattering properties of Dirac operator.

The aim of this section is to study the spectral properties of the Dirac operator in the context of the
Spectral Shift Function (SSF). The SSF was introduced by Lifshits and Krein as a generalization of the
eigenvalues counting function, and it provides a spectral quantity which makes it possible to compare a
self-adjoint perturbed operator to the reference one and it can often be related to physical quantities like
the Scattering Phase and the Average Time Delay. Let (H, Hp) be a pair of two bounded self-adjoint
operators on a Hilbert space H such that H — Hj belongs to the trace class. Then, the general definition
of the SSF which I denoted by £(H, Hy; -) is the following integral

To(f(H) - f(H) = [ €0 Hos )i (X, with f € CF(R).

However, since the perturbations considered in our study are not in trace class, some adaptations are
needed, and it reasonable to start with the difference of the resolvents. If one manages to show that

(Hyu +2)7" = (D + 2) ™" € S1(H)

holds for some & > 0 and z € p(Hp ) Np(Dyy, ), then there is a SSF, {(H ys, Dy ; -) of the pair (Hpy, Dyy).
As was observed in the application of the Poincaré-Steklov operators in Chapter 2, we was able to prove
the convergence of the perturbed Dirac operator H, in the norm resolvent sense to the MIT bag operator
Hyr when M goes to oo, and with a convergence rate of O(M ~1). The main objective we can study is
therefore as follows:

o Investigate the convergence of {(H )y, D,y; ) to £(Hyir, D -) when M tends to co.

We note that it is possible to study the same questions again for the convergence results (in the
strong/norm resolvent sense) obtained in Chapters 3 and 4. It is also worth noting that to the best of our
knowledge, there is no result dealing with the study of the SSF for Dirac operators in the limit of large
coupling constants. In this sense, we have to start from scratch and develop several technical tools to
tackle the problem we will consider. Another question that can be studied in the context of the scattering
phase is to find a high-energy asymptotic (i.e., A — oo) of the spectral shift function &(Hyrr, Dim; A)
where the operator Hyrr in this case, acts in an unbounded domain. In our case, we can do the following:
For the MIT bag Dirac operator presented in the first part of the summary acting in R? \ Q, where Q is a
bounded domain, we can set up an asymptotic expansion for the scattering phase (spectral shift function)
E(Hyirr, D A) when A tends to infinity. We note that the geometry of the domain can play a role
in the evolution of the asymptotic behavior of the scattering phase. We also mention that, in a tubular
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neighborhood (as in Chapter 3), it is possible to study other kinds of approximations for any dimension,
for example, the approximation of the Dirac operator with a magnetic potential, as has already been done
for the magnetic Laplacian in [ ].

1.7.3 SSF, Resonances, and non-self-adjoint problems.

When working in the SSF framework, it is important to keep in mind the connection to resonances.
In general, a resonance w is a complex number v + v that describes an unstable quantum state oscillating
with a frequency u and a lifetime proportional to 1/v. In particular, the knowledge that the presence
of positive resonances significantly influences the asymptotic completeness of wave operators. The
connection between the SSF and the resonance is known as the Breit-Wigner approximation, which
states that when A is close to the real part of resonance w, then an approximation of the derivative of
the SSF, 5'(/\) can be found when A tends to u, the real part of the resonance w. Thanks to the latter,
another question can be investigated: Establishing the Breit-Wigner approximation between the SSF
and the resonances of the Dirac operators and then to study the existence/presence of the resonances as
well as their distribution in the complex plane and the asymptotics in certain regimes, for example, the
(semiclassical) Dirac operator with MIT bag boundary conditions on unbounded smooth domains and the
Dirac operators with electrostatic and Lorentz scalar §-shell interactions. We mention that, as resonances
are strongly related to non-self-adjoint operators, we find it interesting to study the spectral properties of
non-self-adjoint Dirac operators.

1.7.4 Inverse Problems.

The introduction of the Poincaré-Steklov map for the Dirac operator (i.e., an analogue of the Dirichlet-
to-Neumann application for the Laplace operator) naturally raises questions about solving Inverse Prob-
lems. In the case of Schrodinger, the inverse (boundary value or scattering) problem is whether knowledge
of the Dirichlet-to-Neumann map on a particular subset of the boundary determines a potential V' uniquely.
Indeed, the inverse problems of determining the potential V' from the Dirichlet-to-Neumann map have
been studied extensively, e.g., for electromagnetic and time-dependent electromagnetic potentials (see,
[ , , ]). From a physical point of view, the inverse problem consists in determining
the properties, e.g., a dispersion term of an inhomogeneous medium by probing it with perturbations
generated on the boundary. Our goal here is to investigate the inverse problem of determining a potential
of the Dirac operator from finite measurements on the boundary, via the Poincaré-Steklov map. We
remark that some results for analytic domains can be expected from the computation of the complete
symbol on the Poincaré-Steklov map similarly to the known studies for the Dirichlet-to-Neumann maps
[ I

* * * * * *

1.8 How to read this thesis

Chapter 1 contains a complete introduction to the boundary integral operators associated with the
free Dirac operator, which are used throughout this thesis.

The body of this thesis is then organised into two parts:

Part 1.6.1 (Chapters 2 and 3) contains our results on three-dimensional Dirac operators with the MIT
bag boundary conditions, leading to the introduction of the Poincaré-Steklov (PS) operators. This part
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corresponds to our papers [ , 1.
Part 1.6.2 (Chapters 4 and 5) deals with Dirac operators coupled with a singular combination of

electrostatic and Lorentz scalar delta interactions in three- and two-dimensional setting, respectively,
which corresponds to both papers [ Jand [ ].

* * * * * *
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Chapter

A Poincaré-Steklov map for the MIT bag model.

In this chapter, we describe the results obtained in article [ | in collaboration with
Badreddine Benhellal and Vincent Bruneau.

Abstract

The purpose of this chapter is to introduce and study Poincaré-Steklov (PS) operators associ-
ated to the Dirac operator D,,, with the so-called MIT bag boundary condition. In a domain
Q) C R3, for a complex number z and for U, a solution of (D,,, — 2)U, = 0, the associated
PS operator maps the value of I'_U,, the MIT bag boundary value of U, to I' U, where
Iy are projections along the boundary 92 and (I'_ 4+ ') = tyq is the trace operator on
0€). Firstly, we show that the PS operator is a zero-order pseudodifferential operator and
give its principal symbol. Subsequently, we study the PS operator when the mass m is
large, and we prove that it fits into the framework of 1/m-pseudodifferential operators, and
we derive some important properties, especially its semiclassical principal symbol. Then,
we apply these results to establish a Krein-type resolvent formula for the Dirac operator
Hy=Dn+M ﬂle\ﬁ for large masses M > 0, in terms of the resolvent of the MIT bag
operator on ). With its help, the large coupling convergence with a convergence rate of
O(M~1) is shown.

Résumé

Le but de cet chapitre est d’introduire et d’étudier les opérateurs de Poincaré-Steklov (PS)
associés a I’opérateur de Dirac D,, avec la condition frontiere dite "MIT bag". Dans un
domaine © C R3, pour un nombre complexe z et pour U, une solution de (D,,, — 2)U, = 0,
I’opérateur PS associé fait correspondre la valeur de I'_U,, la condition au bord MIT de
U,, al'LU,, ou I'y sont des projections le long de la frontiere 90 et (I'_ + ') = tyq
est ’opérateur de trace sur 2. Premiérement, nous montrons que I’opérateur PS est un
opérateur pseudodifférentiel d’ordre zéro et nous donnons son symbole principal. Par la
suite, nous étudions 'opérateur PS lorsque la masse m est grande, et nous prouvons qu’il
s’intégre dans le cadre des opérateurs 1 /m-pseudodifférentiels, et nous en déduisons quelques
propriétés importantes, en particulier son symbole principal semiclassique. Ensuite, nous
appliquons ces résultats pour établir une formule de résolvant de type Krein pour I’opérateur
de Dirac Hyy = Dy + M ﬁ]le\ﬁ pour les grandes masses M > 0, en termes de résolvant
de 'opérateur MIT bag sur §2. Avec son aide, la convergence des grands couplages avec un
taux de convergence de O(M ~1) est démontrée.
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2.1 Introduction

The main goal of this Chapter is to introduce a Poincaré-Steklov map for the Dirac operator (i.e., an
analogue of the Dirichlet-to-Neumann map for the Laplace operator) and to study its pseudodifferential
properties. Our main motivation for considering this operator is that it arises naturally in the study of the
well-known Dirac operator with the MIT bag boundary condition, Hyyr(m), which will be rigorously
defined below.

For a bounded smooth domain 2 C R3, the MIT bag operator Hyjr(m) is the realization of D, in
L?(£2,C*) corresponding to the boundary conditions P_tsov = 0 on 9 with some explicit matrices
P_ depending on the outer unit normal v and ¢5q being the Dirichlet trace operator (restriction to the
boundary). Several researchers, e.g., [ ], have found that the eigenvalues of Hyp(m) arises
as the limit (in the sense of resolvent) of the eigenvalues of the Dirac operator in the whole space R?
when the mass becomes large outside of €2 (so that the MIT bag boundary condition represents a kind of
relativistic hard wall at the boundary). Moreover, various resolvent convergence results were established
as well.

The main motivation for the current chapter is to understand the precise rate of the resolvent con-
vergence. For that, we introduce the Poincaré-Steklov operators (PS) <) for the Dirac operator with
mass M (as an analogue of the Dirichlet-to-Neumann application for the Laplace operator) and studied
its microlocal properties. This operator appears naturally in the study of the MIT bag Dirac operator. We
show that .27, fits into the framework of h-pseudodifferential operators (with A = M ~!) and computed
its principal semiclassical symbol.

In the application of this chapter (Section 2.5), based on the pseudodifferential properties of PS, we
study the following problem in order to better understand the convergence of Hp; to Hyrr.

For large M and z € p(Dyrr(m)) N p(Dyy), given f € L*(R3,C*) such that f = 0 outside (2, we
ask ourselves, what is the boundary condition on €2 that models the solutions U for (Hy; — z)U = f in
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the whole space? We show that the boundary condition takes the form
P_tpat = By Prtoo Ryt (2) f, on 09,

where matrix function P_ are explicitly given, By, a semiclassical (with respect to 1/M) pseudodiffer-
ential operators of order 0 on 92, and Ryt is the resolvent of the MIT bag operator Hygrr(m). This
implies the resolvent convergence of Dy, to Hyyr(m) with the rate O(M ~1).

The proof of the above results involves many techniques including the resolvent analysis, pseudodiffer-
ential properties of boundary layer potentials, and the construction of a parametrix (i.e., pseudodifferential
calculus on 01?) for an inside-outside boundary problem.

In the following section, we recall some properties of symbol classes and their associated pseudodif-
ferential operators.

2.1.1 Symbol classes and Pseudodifferential operators

We recall here the basic facts concerning the classes of pseudodifferential operators that will serve in
the rest of the chapter.

Let.#4(C) be the set of 4 x 4 matrices over C. For d € N* we let S (R? x R?) be the standard symbol
class of order m € R whose elements are matrix-valued functions a in the space C™°(R? x R?;.,4(C))
such that

0207 a(x,€)| < Cap(1+ €)™ ¥(z,6) e RT x R?, Vo € N, v3 € N°.

Let . (RY) be the Schwartz class of functions. Then, for each a € S™(R? x R?) and any h € (0, 1],
we associate a semiclassical pseudodifferential operator Op(a) : .7 (R%)* — .7 (R%)* via the standard
formula

1 .
O (@u(e) = 5 | e ala, i), Vu e @Y
(2m)? Jpa
If a € S°(RY x RY), then Calderén-Vaillancourt theorem’s (see, e.g., [ 1) yields that Op"(a) extends

to a bounded operator from L?(R%)? into itself, and there exists C, N¢ > 0 such that

v @)

. <C \ai%?ch H@?(‘?EBQHLOO . (2.1

By definition, a semiclassical pseudodifferential operator Op"(a), with a € S°(R? x R?), can also be
considered as a classical pseudodifferential operator Op! (ay) with aj, = a(x, h&) which is bounded with
respect to i € (0, hg), where hg > 0 is fixed. Thus the Calderén-Vaillancourt theorem also provides the
boundedness of these operators in Sobolev spaces H*(R%)* = (D,)~*L?*(R%)* where (D,) = v—A + L.
Indeed, we have

Hozjl(ah)HHS—)Hs - H<D$>Sop1(ah)<Da:>is

1212’ (2.2)
and since (D;)*Op*(ay)(D,)~* is a classical pseudodifferential operator with a uniformly bounded
symbol in S?, we deduce that Op”(a) is uniformly bounded with respect to h from H* into itself.

Given a C'*°-smooth domain © C R? with a compact boundary > = 9. Then ¥ is a 2-dimensional
parameterized surface, which in the sense of differential geometry, can also be viewed as a smooth
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2-dimensional manifold immersed into R3. Thus, 3 can be covered by an atlas A = {(U;, V;, ¢;)|j €

{1,---,N}} (i.e., a collection of smooth charts) where N € N*. That is
N
>= U,
j=1
and for each j € {1,--- ,N}, U; is an open set of ¥, V; C R? is an open set of the parametric space

R?, and p; : U; — V; is a C*°- diffeormorphism. Moreover, by definition of a smooth manifold, if
U; N Uy # () then

oo ()7 € O (;(U; N UL); o4(U; N Ty)).

As usual, the pull-back (gojfl)* and the pushforward ¢} are defined by

(gpj_l)*u =wuo gpj_l and v =vo gy,

for u and v functions on U; and V}, respectively. We also recall that a function « on X is said to be in the
class C*(X) if for every chart the pushforward has the property (gojfl)*u e CH(V;).

Following Zworski [ , Part 4.], we define pseudodifferential operators on the boundary 3 as
follows:

Definition 2.1.1. Let o : C>®(X)* — C°°(X)* be a continuous linear operator. Then 7 is said to be a
h-pseudodifferential operator of order m € R on ¥, and we write &7 € Op"S™ (%), if
(1) for every chart (Uj, Vj, ¢;) there exists a symbol a € 8" such that

1 (Vau) = 1} Op"(a) (0] )" (You),

for any 11,12 € C§°(U;) and u € C=(X)4
(2) forall 11,19 € C°°(X) such that supp(¢1) N supp(vp2) = () and for all N € N we have

”wléz{wQHH—N(Zy*}HN(Z)AL = O(hoo)
For h fixed (for example h = 1), 7 is called a pseudodifferential operator.

Since the study of a given pseudodifferential operator on X reduces to a local study on local charts,
we will recall below the specific local coordinates and surface geometry notations we will use in the rest
of the chapter.

We always fix an open set U C X, and we let x : V' — R to be a C'>°-function (where V C R? is
open) such that its graph coincides with U. Here and in the following, we omit the possible composition
with a rotation that allows this, since changes of variables take h-pseudodifferential operators to h-
pseudodifferential operators modulo smoothing operators, and leave the principal symbol invariant. Set
o(Z) = (&, x(Z)), then for x € U we write x = (&) with £ € V. Here and also in what follows, 0; x
and Oz stand for the partial derivatives 0z, x and 0z, X, respectively. Recall that the first fundamental
form, I, and the metric tensor G(Z) = (g;x(Z)), have the following forms:

I = g11d#} + 2g12d31dis + goodi3,

s . s ax?  Oixdax \ -
C(7) = (a. _ (911 912 _ [+ 10X 1X02 ‘
(:E) (g]k(l‘)) <921 g2 (:Z:) 81X82X 1+ |82X|2 (:E)
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As G(Z) is symmetric, it follows that it is diagonalizable by an orthogonal matrix. Indeed, let

Q&) := _gl)%c%%xl T%llﬂ' X (0 9_1/2> (%). (2.3)
2 X[V X x|’

where ¢ stands for the determinant of GG. Then, it is straightforward to check that

Q'GQE) =T, QQ'(F) =GE) " = (¢*@), det(Q) = det(Q") = g1/2. (2.4)

2.1.2 Operators on the boundary > = 0f)

As above, we consider > = 0f2 the boundary of a smooth bounded domain 2. On ¥ equipped with
the Riemann metric induced by the Euclidian one in R?, we consider the Laplace-Beltrami operator — Ay,
and the surface gradient Vy, = V — n(n - V) where n is the unit normal to the surface pointing outside
Q. Note that for (ej, e2) an orthonormal basis of the tangent space, Vy, = €1V, + €2V,,, where Ve,
stands for the tangential derivative in the direction e;. With the notation of the previous section, in local
coordinates, —Ay and Vy are pseudodifferential operators with respective principal symbols

€)= (GlE) NN GO
p—AZ(xvé) - <G($) 1€7§>a sz}(xag) =c = (<VX(§3),G(£)_1§>> . 2.5)

Let us now introduce Dy, the extrinsically defined Dirac operator. To any = € R? we associate the
matrix a(x) = « -z, where a« = (aq, g, ag). For Hy the mean curvature of X2, Dy, is given by (for more
details see Appendix B of [ D:

Dy = —a(n) a(Vy) + %

It is a pseudodifferential operator with principal symbol:

pox(7,§) = —ia(n®(Z)) a(a),

where n¥ = ¢*n. We now define the spin angular momentum .S as follows

S-X=—-p(a-X), VXE€ R3,  where 75 := —iajasas = (HO %) . (2.6)
2

Using the properties (1.3) and (2.74) and the fact that n - £ = 0, we then have:

Ppy(E,§) = —ia-n?(T) - £g = 5 - (§g An”(Z)).

Moreover for £ := § , we have: & = a+ £ -n¥)n¥. Thus, in local coordinates, the principal symbol
0 p palsy

of Ds; is also: B
Py (%,8) = 5 - (£ An7(T)). 2.7

Let us also point out the relationship between the principal symbols of Ay, and Dy::
€ Anf (@) = (G(2) '€, €). (2.8)
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2.2 Basic properties of the MIT bag model

In this section, we give a brief review of the basic spectral properties of the Dirac operator with the
MIT bag boundary condition on Lipschitz domains. Then, we establish some results concerning the
regularization properties of the resolvent and the Sobolev regularity of the eigenfunctions in the case of
smooth domains.

Let 4 C R? be a Lipschitz domain with a compact boundary 0U/. Then, for m > 0, the Dirac
operator with the MIT bag boundary condition on U, (Hyyr(m), Dom(Hyyr(m))), or simply the MIT
bag operator, is defined on the domain

Dom (Hyr(m)) == {w e H'2W)* : (- V) € L*(U)* and P_tg) = 0 on au} :

by Hyur(m)y = Dy, for all v € Dom(Hyr(m)), and where the boundary condition holds in
L2(dU)*. Here Py are the orthogonal projections defined in (1.8).

The following theorem gathers the basic properties of the MIT bag operator. We mention that some
of these properties are well-known in the case of smooth domains, see, e.g., [ , ,

’ > ]'

Theorem 2.2.1. The operator (Hpyyr(m), Dom(Hpyr(m))) is self-adjoint and we have
(Hyir(m) — 2) " = ry(Dy, — 2) ey — Y4, (AZ) Mtou(Dim — 2) ey, Vz € p(D).  (2.9)

Moreover, the following statements hold true:
(i) IfU is bounded, then Sp(Hpr(m)) = Spgise(Hyr(m)) C R\ [-m, m].
(ii) IfU is unbounded, then Sp(Hpr(m)) = Spess(Hyurr(m)) = (—o0, —m]U[m, +00). Moreover,
if U is connected then Sp(Hyyr(m)) is purely continuous.
(iii) Let z € p(Hyyr(m)) be such that 2|z| < m, then for all f € L*(U)* it holds that

H(Hmr(m) - Z)flf‘

s S o Iz
Proof. Let ¢, € Dom(Hyyr(m)), then by density arguments we get the Green’s formula
(=i - V)@, ) 2 — (o, (—ice - V)Y) p2eoye = (=i n)tousp, toutd) r2 o (2.10)
Since P_tgyp = P_toyy = 0 and Py(a - n) = (o - n) Py (see Lemma 2.6.3), it follows that
((=ia - V), ) 2ya — () (=i - V)P) pouys = (Pi(—ia - n) Pytouw, Pitoud) 2@y = 0.
Consequently, we obtain

<HMIT(m)9071/1>L2(u)4 - <‘P7HMIT(m)w>L2(L{)4 = (Dm¢7¢>L2(u)4 — (s Dm¢>L2(u)4
= ((—ia - V)o, ) 23 — (@, (—ia - V)ih) 243 = 0.

Therefore (Hr(m), Dom(Hyar(m))) is symmetric. Now, thanks to [ , Proposition 4.3] we
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2.2. Basic properties of the MIT bag model

know that the MIT bag operator defined on the domain
9 = {w —u+ Y, g, ue H'U)*, g € L*(0U)* : P_tgyb = 0 on au} , 2.11)

by Hyir(m)(u+ @, [9]) = Dpu, for all (u+ @4, [g]) € 2. is a self-adjoint operator. As Hyyrr(m)
is symmetric on Dom(Hwyr(m)) we deduce that Dom(Hyr(m)) € 2. Now, by Remark 1.5.1
we also get that 2 C Dom(Hwr(m)) which proves the equality 2 = Dom(Hwnr(m)), and thus
(Hyir(m), Dom(Hwmir(m))) is self-adjoint. Next, we check the resolvent formula (2.9). So let f €
L2(U)*, 2 € p(D,y,) and set

U =1y (D, — z)_leuf - @Zm(Afn)_ltau(Dm - z)_leuf.
Since (D,, — z)'ey is bounded from L2(U)* into H'(R®)* and (AZ,)~! is well-defined by Remark
1.5.1, it follows that
— -1 17 0\4 . z -1 -1 2 4
u:=1y(Dm—2) eyf € HU)" and g:= —(AL,) tou(Dm — 2)" ey f € L*(OU)",

which entails that b € H'/2(14)* and that (a- V)1 € L*(U)*. Next, using Lemma 1.5.1-(i) and Remark
1.5.1 we easily get

7

_ 1 _ _
tau¢ = taM(Dm - Z) 1€Z/If + (2(05 ’ n) - ng,m)(éﬁ + (gz,m) 1t8M(Dm - Z) leL{f
= PyB(AS)  tou(Dp — 2) " euf,
thus P_ta1) = 0 on OU, which means that ¢» € Dom(Hwmrr(m)). Since (Dy, — 2)®Y, [g] = 0 holds
in U, it follows that (Hyyr(m) — z)y = f and the formula (2.9) is proved.

Now, we are going to prove assertions (i) and (ii). First, note that for v € Dom(Hyyr(m)) a
straightforward application of the Green formula (2.10) yields that

v (m)v 72 gy = 1 V)0l 72y + mP 19172 @aps + 1 Prtoud | 7 oueys - (2.12)

Thus || Hyar (m)e| 72 g1 = m? 9] 3244 which yields that Sp(Hyir(m)) C (=00, —m] U [m, +00).
Note that this fact can be seen immediately from the formula (2.9). Next, we show that {—m,m} ¢
SPaisc(Hwmrr(m)). Assume that there is 0 # ¢ € Dom(Hpyr(m)) such that (Hygr(m) — m)y = 0 in
U. Then, from (2.12) we have that

I(=ic- V)@l 72 00 + m || Prtond | 7o = 0.

Since m > 0 it follows that P, {51 = 0, and thus ¢5,% = 0. Using this and the above equation, an
integration by parts (using density arguments) gives

VYl 2@y = (=i V)Pl 2 e = 0.
(v) (v)

From this we conclude that 1) vanishes identically, which contradicts the fact that ¢ # 0, and thus
m ¢ Spaisc(Hmit(m)). Following the same lines as above we also get that —m ¢ Spgiec(Hwmrr(m)).
Thus, if 2/ is bounded, then the above considerations and the fact that Dom(Hygr(m)) € HY2(U)* is
compactly embedded in L?(U/)* yield that Sp(Hmir(m)) = Spgisc (Hwmrr(m)) C R\ [=m, m], which
shows the assertion (i).
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Let us now complete the proof of (ii), so suppose that ¢/ is unbounded. We first show that (—oo, —m] U
[m, +00) C Spess(Hmir(m)) by constructing Weyl sequences as in the case of half-space, see [ ,
Theorem 4.1]. As U is unbounded it follows that there is R; > 0 such that the half-space {x =
(z1, 79, 23) € R® : 23 > Ry} is strictly contained in &/ and R? \ U/ C B(0, R). Fix A € (—o0, —m) U
(m, +00) and let £ = (£1,&>) be such that |€]? = A2 — m?2. We define the function ¢ : R> — C* by

& — &

A—m

t
o(T,x3) = < ,0,0, 1> e with T = (21, x2).

Clearly we have (D,, — A\)p = 0. Now, fix Ry > R; and let € C§°(R% R) and x € C5°(R,R) be
such that supp(x) C [R1, Rz]. For n € N*, we define the sequences of functions

on(T, x3) = n_%go(f, z3)n(T/n)x(x3/n), for (T,z3) € U.

Then, it is easy to check that ¢, € H} () C Dom(Hmyr(m)), (¢n)nen+ converges weakly to zero, and
that

2) | (D = A) enll 2wy
2 2 2
H%’n”L?(u)4 N m”nHLQ(RQ)HX”L?(R) >0, lonll 22 oo 0,
for more details see the proof of [ , Theorem 4.1]. Therefore, Weyl’s criterion yields that

(=00, —m) U (m, +00) C Spess(Hmrr(m)).

Since the spectrum of a self-adjoint operator is closed, we then get the first statement of (ii). Now, if
we assume in addition that ¢/ is connected, then using the same arguments as in the proof of [ ,
Theorem 3.7] (i.e., using Rellich’s lemma and the unique continuation property) one can verify that
Hyr(m) has no eigenvalues in R\ [—m, m|. As {—m, m} ¢ Spgis.(Hmir(m)) it follows that Hyyp(m)
has a purely continuous spectrum.

Now, we prove (iii). Let ¢y € Dom(Hwmr(m)), then (2.12) yields that HHMIT(m)szLz(Q)4 =
m? HwH2L2(Q)49 and thus

m [P p2@yr < [Hmir(m)$] 22 < [ (Hmir(m) = 2)00 2 + 2181 22001 -

Therefore, for 22| < mwithz € p(Hwrr(m)), we get that [|9|| 24 < 2m = || (Hyrr(m) — 2V L2 00)a-

Thus, (iii) follows by taking 1) = (Hyyr(m) — 2) "L f. [ |
Remark 2.2.1. We mention that the above statement on the self-adjointness can also be deduced from
[ , Theorem 5.4]. We also mention that the MIT bag operator defined on the domain & given by
(2.11) is still self-adjoint for less regular domains, cf. [ ] for more details.

Remark 2.2.2. Note that ifU is in the class of Holder’s domains C1¥, with w € (1/2,1), then Hyyr(m)
is self-adjoint and Dom(Hyyr(m)) = {¢p € HY(U)* : P_toy) = 00n U}, see [ , Theorem
4.3] for example.

Now we establish regularity results concerning the regularization property of the resolvent and the
Sobolev regularity of the eigenfunctions of Hyyr(m). The first statement of the following theorem will
be crucial in Section 2.4 when studying the semiclassical pseudodifferential properties of the Poincaré-
Steklov operator.
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Theorem 2.2.2. Let k > 1 be an integer and assume that U is C**-smooth. Then the following
statements hold true:
(i) The mapping (Hyyr(m) —2)~t : HFU)* — H*1(U)* N Dom(Hyyr(m)) is well-defined and
bounded for all m > 0 and all z € p(Hpyyr(m)). Moreover, for any compact set K C C there
exist mg, C > 0 such that for all m > mg and z € K, there holds

I(Hprr(m) = 2) | i ays—s e ays < CmP1

(ii) If ¢ is an eigenfunction associated with an eigenvalue z € Sp(Hyyr(m)), i.e., (Hyr(m)—z)¢ =
0, then ¢ € H'Y¥(U)*. In particular, if U is C*°-smooth, then ¢ € C>(U)*.
To prove this theorem we need the following classical regularity result.
Proposition 2.2.3. Let k be a nonnegative integer. Assume that U is C*+*-smooth and u € H' U). Ifu
solves the Neumann problem

—Au=feH'U) and dyu=ge H'/* ),

then w € H* k().

Proof. First, assume that k = 0. As I is C3-smooth we know that the Neumann trace 9,, : H>(U) —
HY2(0U) is surjective. Thus, there is G € H?(U) such that 9,G' = g in OU. Note that the function
@ = u — G satisfies the homogeneous Neumann problem

—Att=f+AG ind and O,u =0 ondlU.

Therefore, @ € H?(U) by [ , Theorem 5, p. 217], which implies that v € H?(1{) and this proves
the result for £ = 0. If k£ > 1, then the result follows by [ , Theorem 2.5.1.1]. |

Proof of Theorem 2.2.2. The theorem will be proved by induction on k. First, we show (i), so
fix z € p(Hwir(m)) and assume that k = 1. Let ¢ = (¢1,¢2)" € Dom(Hyr(m)) be such that
(D — 2)¢ = finlU, with f = (f1, f2)7 € H'(U)*. By assumption we have (A + m? — 22)¢ =
(Dyn + 2) f in D' (U)*, and then in L*(U)*. We next prove that 8,,¢ € H/2(0U)*. To this end, consider
U, := {z € R3 : dist(x, 0U) < €} for € > 0. Then, for § > 0 small enough and 0 < ¢ < & the mapping
U OU x (—e,€) = U, defined by

U(zay,t) = zay + tn(zoy), Tou € OU, t € (—¢,¢€) (2.13)
is a C2-diffeomorphism and U, := {z + tn(z) : * € U, t € (—¢,€)}.
Let P_ : L2(U NU)* — L2(U: NU)* be the bounded operator defined by
~ 1
Pop(¥(z,t)) = S (A +ib(a-n(@))e(Y(z,1), (z,t) €U NU.

Let 2, be an arbitrary point on the boundary U, fix 0 < r < €/2, and let ¢ : R® — [0,1] be a C°°-
smooth and compactly supported function such that ( = 1 on B(2%,,,7) and ¢ = 0 on R?\ B(29,,,2r).
We claim that P_(¢ satisfies the elliptic problem

—~A(P_(¢) =g inl,
tou(P_Co) =0 ondlU,
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with g € L*(U)*. Indeed, set B(z) = i3(ca - n(x)) for z € OU, and observe that

(D = 2)(P-68) = (P-Cf + 51D 16) + 3 (D, CBI6 = 1(6.1) + 5D, Bl

Since n is C2-smooth, ¢ is an infinitely differentiable scalar function and ¢, f € H'(14)*, it is clear that
I(¢, f) € H'(U)* and [D,,, (B¢ € L*(U)*. Now, applying (D, + 2) to the above equation yields that

—A(P_(¢) = g with

—~ z 1
g:= (22 =m*)P-(o+ (D + 2)1(6, [) + 5 [Din; (Bl + 5 D[ D, (Bl
As before, it is clear that the first three terms are square integrable. Next, observe that

DO[D07 CB]¢ = {D07 [Dov CB]}(b - [D()v CB]DO¢
= [=A,¢B]¢ — [Do, CBI((Dm — 2)¢ — (mB — 2)¢),
where {A, B} =: AB + BA is the anticommutator bracket. Using this, the smoothness assumption on
n, the fact that (D, — 2)¢ = f € H'(U)* and that [Dy,(B] and [-A, (B are first order differential
operators, we easily see that Do[Do, (B¢ € L?(U)*. Hence, Dy, Dy, (B]¢ is square integrable, which

means that g € L2(U)*. As P_toyg = 0 and toy(P-(¢) = tay(P-tau¢ = 0 on U, by [ ,
Theorem 8.12 ] it follows that P_(¢ € H?*(U. NU)*, which implies that

(91 +i(o-n)po) € HA(B(ahy,2r) NU)? and  ((=i(o-n)é1 + ¢2) € H*(B(agy, 2r) NU)?.
Consequently, we get
b1 +i(o-n)ps € HX(B(xdy,7) NU)? and  —i(o-n)pr + ¢po € H*(B(2Yy,7) NU)%.  (2.14)

Since —i(0 - V)¢ = (z —m)p1 + f1 and —i(0 - V)1 = (2 +m)g2 + f2 hold in H(U)?, it follows
from (2.14) that

(0-V)oj € H'(Blady,r)?> and (0-V)(0-n)d; € H' (B(afy,r)? =12
Using this and the fact that n is C2-smooth, we easily get that
(0-n)(0-V)gj+ (0-V)(0-n)p; = (n-V)¢; + Fj € H' (B(xy,r))?,

with F; € HY(B(z29,,r) NU)?. As a consequence, we get that (n - V)¢; € H'(B(2Y,,r) NU)>.
Since this holds true for all 2,, € U, using the compactness of O it follows that 0,,¢ € H'/2(0U)*.
Therefore, Propositions 2.2.3 yields that ¢ € H2(U)*.

Next, assume k > 2, U is C**F-smooth and ¢, f € H*(U)*. Since n is C'**-smooth and ¥
defined by (2.13) is a C''**-diffeomorphism, following the same arguments as above we then conclude
that 0,¢ € H*Y/2(0U)*. Note also that —A¢p = (22 — m?)¢ + (Dy,, — 2)f € H*1(U)*. Therefore,
thanks to Proposition 2.2.3, we conclude that ¢ € H**1(2/)*, which proves the first statement of (i).

Now, the second statement of (i) is a consequence of the first one, Theorem 2.2.1-(iii) and the
following Gérding-type inequality

H()O||§{k+l(u)4 = H‘PH%{k(u)zl + ||D0<P”§{k(u)47 (2.15)
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which holds for any ¢ € Dom(Hyyr(m)) N H*1(U)*, k € N. Indeed, suppose for instance that (2.15)
holds true. Fix a compact set K C Cand let z € K. Note that if z € p(Hyyr(m)) then for ¢ € H*(U)*,
k > 0, we have

1Do(Haarr(m) = 2) ™' | eays < I8l s + (m+ 2D | (Harr(m) = 2) 7l grggs- (2.16)

Let us also remark that Theorem 2.2.1-(iii) entails that there is mo > 0 such that z € p(Hmyr(m)) for
any m > my, and for any ¢ € H¥(U)*, k > 0, there holds

1 Do(Hnrr(m) — 2) "l r2ans S 1901 2os < 101 e gaye- (2.17)
Hence, by iterating the Garding inequality and taking into account (2.16) and (2.17) we get that
1Do(Hirr(m) = 2) "'l e s S mE 19| e oy

and the conclusion follows by applying again Garding inequality. We now return to the proof of (2.15).

So let ¢ € Dom(Hwr(m)), then [ , Theorem 1.5] yields

D0l = IVl + [, Hiltaueldo, 2.18)

where we recall that H; () is the mean curvature at x € U, and ¢ is the surface measure on OU. Recall
that for any € > 0 there is C. > 0 such that

ltoupll 2oy < el VellZags + Celleliaqns, Yo € HIU)Y,

see [ , Remark 1]. Using this inequality with ¢ sufficiently small and estimating equation (2.18)
we get, for all ¢ € H'(U)*,

||90H%{1(u)4 = ||80H2L2(u)4 + ||V80H2L2(u)4 S ||<P||2L2(u)4 + HD080||2L2(L{)4

which shows (2.15) for k = 0. Note that by local arguments one has HgoHHkH uyp S HQDHLZ e +
>, 10512 e @) and since [0}, Dg] = 0, (2.15) easily follows by induction for any k >

Finally, the proof of the first statement of (ii) follows the same lines as the one of (i). In particular, if &/
is C°°-smooth, we then get ) € H**1(1/)* for any k > 0, which implies that ¢ is infinitely differentiable
in U, and the theorem is proved. |

Remark 2.2.3. Note that the estimate in Theorem 2.2.2-(i) is certainly not sharp but it will be enough
for our purposes.

2.3 Poincaré-Steklov operators as pseudodifferential operators

The main purpose of this section is to introduce the Poincaré-Steklov operator .7, associated with
the MIT bag operator and to prove that it fits into the framework of pseudodifferential operators.

Throughout this section, let {2 be a smooth domain with a compact boundary ., and let Py be as in
(1.8). Let us start by giving the rigorous definition of the Poincaré-Steklov operator, which is the main
subject of this chapter.
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Chapter 2 — A Poincaré-Steklov map for the MIT bag model.

Definition 2.3.1. (PS operator) Let z € p(Hyr(m)) and g € P_HY?(X)%. We denote by Ef(2) :
P_H'Y2($)* — H'(Q)* the lifting operator associated with the elliptic problem

{(Dm —2)U,=0 inQ,
(2.19)

P_txU, =g on.

That is, Ef}(z)g is the unique function in H'(Q)* satisfying (D,, — 2)ES}(z)g = 0 in €, and
P_txES}(2)g = g on ¥. Then, the Poincaré-Steklov (PS) operator 7, : P_ H'/?(%)* — P, H'/?(%)*
associated with the system (2.19) is defined by

S (g) = PytsESL(2)g,

Recall the definitions of (I)?,m and AZ, from Subsection 1.5. Then, the following proposition justifies
the existence and the uniqueness of the solution to the elliptic problem (2.19), and gives in particular
the explicit formula of the PS operator in terms of the operator (AZ )~ when 2 € p(D,,). The second
assertion of the proposition will be particularly important in Section 2.4 when studying the PS operator
from the semiclassical point of view. In the last statement, we use the notations .27, (z) to highlight the
dependence on the parameter z € p(Hyr(m)).

Proposition 2.3.2. For any z € p(Hyr(m)) and g € P_H'Y2(X)4, the elliptic problem (2.19) has a
unique solution ESL(2)[g] € H'(Q)*. Moreover, the following hold true:

(i) (BS(2)) = —BPuts(Hyrr(m) — 7).
(ii) For any compact set K C C, there is mg > 0 such that for all m > mg it holds that
K C p(Huir(m)), and for all z € K we have

HE,%(z)g] Vg € P_HY2(D),

< 1
2@ ﬁ ||9||L2(2)4 )
(iii) If z € p(Dyy,), then ES}(2) and <y, are explicitly given by
EX(2) =02, (A2)'P- and o, = —PyB(AL) T P, (2.20)

where the boundary integral operators, @?m and A%, are introduced in Section 1.5.

(iv) Let z € p(Hyyr(m)) and let ES}(2) be as above. Then, for any & € p(Hyyr(m)), the operator
ESY (&) has the following representation

E (&) = (I + (£ = 2)(Hyr(m) — &)™ Ep (2). 2.21)
In particular, we have
D(€) = F(2) = (2= )8 (EL @) B (2). (2.22)

(v) Foranyz € p(Hyyr(m)) the operator ES}(2) extends into a bounded operator from P_ H~/?(%)*
to H(a, Q).

Proof. We first show that the boundary value problem (2.19) has a unique solution. For this, assume that
u; and ug are both solutions of (2.19), then (D, — z)(u1 —uz) = 0in €, and P_tx(u; —u2) = 0 on X.
Thus, (u; — u2) € Dom(Hwr(m)) holds by Remark 2.2.2, and since Hyr(m) is injective by Theorem
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2.3. Poincaré-Steklov operators as pseudodifferential operators

2.2.1 it follows that u; = wug, which proves the uniqueness. Next, observe that the function
vy = Ea(P-g) — (Hwrr(m) — 2) (D — 2)€a(P-g)

is a solution to (2.19). Indeed, we have Eq(P-g) € H'(Q)* and thus v, € H'(2)%, moreover, we clearly
have that P_ty,v, = g and (D,, — z)vgy = 0. Since we already know that the solution to (2.19) is unique,
it follows that v, is independent of the extension operator £, and hence there is a unique solution in
H'(Q)* to the elliptic problem (2.19).

Let us show the assertion (i). Let¢) € P_ H'/?(X)*and f € L?(Q)*, then using the Green’s formula

and the fact that P, (—icv - n) = (—ia - n)P— = —[P_ we get that
(En (209, ) r2()s = (Em(2)%, (Hwrr(m) — 2) (Hwrr(m) — 2) 7" f) 12()s
= (B ()¢, (D — 2) (Hyir(m) — 2) ' f) 12
= <(Dm — 2)Ep(2)¢, (Hyvir(m) — 2) 7" f) 12 ()
+ ((—ia - n)tsEp (2)9, ts(Hyvrr(m) — 2) 7 f) 25y
= ((—ia- n) P_ty Ep(2), Pyts(Hwir(m) — 2) 7" f) 2(s)s
= (¢, —BPyt=(Hwrr(m) —2) ' f) 12(s)s

which entails that — 3P, tx.(Hyrr(m) — Z)~! is the adjoint of E}(z) and proves (i).

Now we are going to show the assertion (ii). So, let K be a compact set of C, and note that for all
m > sup{|Re(z)| : z € K} it holds that K C p(D,,) C p(Hmr(m)). Hence, v := Ef}(2)g is well
defined for any z € K and g € P_H'/?(X)*. Then a straightforward application of the Green’s formula
yields that

0= [|(Dm = 2)0l| 720y = ll(ia - V = 2)v[[T2(q)s + m? [[0][ 720 023
+m (( i(a - n)tsv, Btsv) po(sys — 2Re(z)<v,ﬁv)Lz(Q)4) . '
Observe that
(=i(a-n)tsv, Btsv) p2nys = ((Py — Po)tsv, tsv) 2y = \|P+tzv|’%2(z)4 - \|PJEUH2L2(2)4
Since P_tyv = g and Pytyv = 4, (g) hold by definition, and that

—Re(2)(v, Bv) j2()s > —|Re(2)] |[v]]72 (0

holds by Cauchy-Schwarz inequality, it follows from (2.23) that

1911Z2sys = mllolZ2 gy — 2IRe()] [[0]l72(qps + [[%m(9)IZ2s)s

Thus, if we take my > 4sup{|Re(z)| : z € K}, then
2 m 2 2
(D22 + 5 10lz2(0)s < lgllz2 (s
holds for any m > my, which proves the desired estimate for E(2).
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Chapter 2 — A Poincaré-Steklov map for the MIT bag model.

Let us now show the assertion (iii), so let z € p(D,,) and recall that (Iﬁm(/\il)_l CHY2(2)t —
H'(Q)*is well defined and bounded by Lemma 1.5.1. Since ¢Z, is a fundamental solution of (D, — z),
it holds that

(Din = 2)8,, (A7) gl = 0 in L2(Q)*, Vg e H*(D).

Now, observe that if g € P_H'/ 2(¥)4, then a direct application of the identity (1.16) yields that

_ i 2\ z\—
159, (05l = (=50 n) + o) (A7) gl = 9 — PoB(AZ) Tl
Consequently, we get
Pots®,, (A7) gl =g and Pits®2, (A7) gl = —PyA(AL) '[9,

which means that £ (2)[g] = (I>Qm(Afn)_1[g] is the unique solution to the boundary value problem
(2.19), and proves the identity <, = — P, B(AZ,) "1 P_.

We are going to prove assertion (iv), so fix z,& € p(Hyyr(m)) and let g € P_ H'/?(X)*. Then, by
definition of E5}(z) we have that

(D — §)(1+(€ — 2)(Hwir(m) — &)1 Ep (2)g
= (D — 2)EfL(2)g — (€ — 2) EX(2)g + (€ — 2) (D — ) (Hnir(m) — &) T ES(2)g,
= (E—2)Ep(2)g — (£ —2)Ef(2)g = 0.

Since (Hyr(m) — €)1 ESL(2)g € Dom(Hyyr(m)), and hence P_ts(Hyar(m) — &) ESL(2)g = 0, it
follows that P_tx;(1+ (€ — 2)(Hyrr(m) — €)1 ESt(2)g = P_ts Ef}(2)g = g, which prove the identity
(2.21). Now, (2.22) follows by applying P, ty, to the representation (2.21) and using assertion (i).

It remains to prove item (v). We first consider the case z € p(D,,), then the claim for z €
p(Hyur(m)) \ p(Dy,) follows by the representation formula (2.21). Fix z € p(D,,) and recall that
the operators %, and AZ, are bounded invertible in H'/?(X)* by Lemma 1.5.1(ii)-(iii) and (1.15).
Since 67, = ¢z m, by duality it follows that A7, admits a bounded and everywhere defined inverse in
H~1/2(X)*. This together with Lemma 1.5.1(i) and item (iii) of this proposition show that E<} (z) admits
a continuous extension from P_ H~/2(%)* to H(«, ). This completes the proof of the proposition. l

Remark 2.3.1. The proof above gives more, namely that for all mg > 0, K C p(Dy,,) a compact set
and z € K, there is m1 > 1 such that

sup "JZ{WHP,HUZ(E)‘}*)PJFIF(E)‘L S
m>=2mi
Remark 2.3.2. Thanks to Theorem 2.2.1 and Remark 1.5.1, if Q is a Lipschitz domain, then ES}(2) is
the unique solution in H'/*(Q)* to the system (2.19) for datum in L>(X)*. Moreover, the PS operator
Ay = — Py B(AZ,) "L P_ is well-defined and bounded as an operator from P_L*(¥)* to P, L*(%)*.

In the rest of this section, we will only address the case z € p(D,,) and we show that the Poincaré-
Steklov operator .27, from Definition 2.3.1 is a homogeneous pseudodifferential operators of order 0
and capture its principal symbol in local coordinates. To this end, we first study the pseudodifferential

62



2.3. Poincaré-Steklov operators as pseudodifferential operators

properties of the Cauchy operator € ,,. Once this is done, we use the explicit formula of .«7,, given by
(2.20) and the symbol calculus to obtain the principal symbol of .o7,,.

Recall the definition of ¢7, from (1.11), and observe that

bt (x —y) = k*(z —y) + w(z —y),

where
ivVz2—m2|z—y| _ iV22—m2|z—y| _ 1
kz(a:—y):e—(z+mﬁ+\/z2—m2a-x y>+ie - (z—y),
dm|z —y| |z =y Ar|z —y|
)
w(z —y) = mw(w—y).
Using this, it follows that
Coom|fl(z) =lim wm—yfyday—i—/k:za:—yfydoy
[]()p\o\a:—y|>p( ) (y)do(y) + | k(@ —y)f(y)do(y) 224

=W[fl(z) + K[f](x).

As |k*(z — y)| = O(|z — y|~!) when |z — y| — 0, using the standard layer potential techniques (see,
eg. | , Chap. 3, Sec. 4] and [ , Chap. 7, Sec. 11]) it is not hard to prove that the integral
operator K gives rise to a pseudodifferential operator of order —1, i.e. K € OpS~—!(X). Thus, we can
(formally) write

Com =W mod OpS™ (%), (2.25)

which means that the operator W encodes the main contribution in the pseudodifferential character of
©,m- So we only need to focus on the study of the pseudodifferential properties of W. The following
theorem makes this heuristic more rigorous. Its proof follows similar arguments as in [ , ,

1.

Theorem 2.3.3. Let €.y, be as (1.13), W as in (2.24) and <, as in Definition 2.3.1. Then €, y,, W
and oy, are homogeneous pseudodifferential operators of order 0, and we have

— mod OpS~(%),

I\l

1 Dy, 1
P_ mod OpS™ (%),
\% _AE vV _AE ( )

where S™1 is the symbol class of order —1 given in Section 2.1.1.

Ay, = S- (Vg An)P_ mod OpS™(%) =

Proof. We first deal with the operator W. So, let ¢, : ¥ — R, k = 1,2, be a ("*°-smooth function.
Clearly, if supp(t2) Nsupp(v1) = 0, then 1o W1y gives rise to a bounded operator from H 7 (X)* into
HI ()4, for all j > 0.

Now, fix a local chart (U, V, ¢) as in Subsection 2.1.1 and recall the definition of the first fundamental
form I and the metric tensor G/(Z). That is, up to a rotation, for all x € U we have x = ¢(z) = (Z, x(Z))
with € V, and where the graph of x : V' — R coincides with U. Notice that if we assume that 1)y, is
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Chapter 2 — A Poincaré-Steklov map for the MIT bag model.

compactly supported with supp(¢;) C U, then, in this setting, the operator ¢2W 1)1 has the form

bl fa@pv. [ i AL (o3 ) 2.26)

where ¢ is the determinant of the metric tensor G. Since g(-) is smooth, it follows that

WVa@) —Je@)| S 1z - gl.

Therefore, the last integral operator on the right-hand side of (2.26) has a non singular kernel and does
not require to write it as an integral operator in the principal value sense. Thus, a simple computation
using Taylor’s formula shows that

& —y* = (&) — (@)* = ( — 5, G(@)(Z — §))(1 + Ol — g]),
where the definition of I was used in the last equality. It follows from the above computations that

1
(& —9,G@)(& - 9))?

where the kernel k; satisfies |k1(Z, §)| = O(]# — §|~2), when |# — | — 0. Consequently, we get that

|:E_y|_3 +k1(j7g)7

Ti—Yj - - . .
vy, @—%d>d->wf“%—wh@w7b”:Ll

(T — 7, G(j-)(j — g)>3/2 + ko(2,9), forj =3,

)= O(% — §|7'), when |Z — §j| — 0. Note that this implies

r-y \_,. _@-5xT-7) R
Q'Qw—ma‘””<x—%a<xx—@wm+fmw—m1»

Combining the above computations and (2.26), we deduce that

(-7, (VXx.Z - 7))
y,G(7)

with |]€2(

&
<

VoW1 f](a) = va(a)ya(@)p.v. [ iar 573 £ ()i + o) L[t f] ),

(T —9,G(@)(T - 9))
(2.27)
where L is an integral operator with a kernel I(z, y) satisfying
[z, )| = O]z —y[~") when |z —y| - 0.
Thus, similar arguments as the ones in [ , Chap. 7, Sec. 11] yield that L is a pseudodifferential
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2.3. Poincaré-Steklov operators as pseudodifferential operators

operator of order —1. Now, for h € L?(R?) and k = 1, 2, observe that if we set

ivg(2)

Ry[h)(2) = =~ »

&(%, 2 — §)h(§)d(D),

where for (7, 7) € R? x R?\ {0},

Tk

(r, G(&)T)%*

Tk (.%', 7—) -
Then the standard formula connecting a pseudodifferential operator and its symbol yields

Ry[h](7) @2 /R2/R2”??qu§)()d§dgj,

where

W= [ st s

Recall the definition of @) from (2.3) and set w = Q(Z)7. Also recall that
/ e~ 5—3dw — omilE o 1,2. (2.28)
R? ] €1’

Thus, the above change of variables together with the properties (2.4) and (2.28) yield that

BT T AT @O T AT @69

which means that ¢x (%, £) is homogeneous of degree 0 in . Therefore, Ry, is a homogeneous pseudodif-
ferential operators of degree 0. From the above observation and (2.27) if follows that

qx(Z,€) = ﬁ/ﬂ@ e~ HQD)T)€ (Q(":C)T)kd _ (GTN@®Ok  gm& Fgebe

PYoWihr = aa- (R, R2, 01x(%) R1 + Oax (%) Ra) 11 + 2Ly

Since L is a pseudodifferential operator of order —1, we deduce that W is a homogeneous pseudodiffer-
ential operators of order 0, and exploiting (2.5), we obtain that

1

W = e mod OpS~1(%). (2.29)

Vy
V—Ax
Thanks to (2.25) and (2.29), we deduce that the Cauchy operator &, ,, has the same principal symbol as
the operator V.

Now we are going to deal with the operator .o7,,. Note that we have

3 (a2 )2—11 (230)
2 VA T '

and as .27, is given by the formula

-1

1
= ~P1B (56 +%m) P,
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using (2.30) and the standard mollification arguments, it follows from the product formula for calculus of
pseudodifferential operators that, in local coordinates, the symbol of .7,, denoted by ¢, has the form

e,
(G1E, )12

where p € S71(X) and &g defined in (2.5) is the principal symbol of V. Therefore, we get

s, (3.6) = P18 (5o )) P+ (2.0,

Qo (2,6) = =Py Ba - € (GTHE,E)TV2 P+ p(,€).

Hence, using the fact that Py are projectors, and Lemma 2.6.3, we obtain

q(dm(j7€) = —ia- ncp(j) « - éG <G_1£a£>_1/2 P +p(3~37§)

Finally, from results of Section 2.1.2 we deduce

0, (8.6 = 5 (S P al@0)
and
Ay = D> p o od OpS™HE) = L _s. (Vs An)P_ mod OpS~ ().

V=53 Vs

It justifies that <7, is a homogeneous pseudodifferential operators of order 0 and completes the proof of
the theorem. u

2.4 Approximation of the Poincaré-Steklov operators for large masses

The technique used in the last section allows us to treat the layer potential operator 7, as pseu-
dodifferential operator and to derive its principal symbol. However, it does not allow us to capture the
dependence on m. The main goal of this section is to study the Poincaré-Steklov operator, 7, as a m-
dependent pseudodifferential operator when m is large enough. For this purpose, we consider h = 1/m
as a semiclassical parameter (for m > 1) and use the system (2.19) instead of the layer potential formula
of 7,,. Roughly speaking, we will look for a local approximate formula for the solution of (2.19). Once
this is done, we use the regularization property of the resolvent of the MIT bag operator to catch the
semiclassical principal symbol of .7,,.

Throughout this section, we assume that m > 1, z € p(Hyr(m)) and that Q is smooth with a
compact boundary ¥ := 92. Next, we introduce the semiclassical parameter h = m~! € (0, 1], and we
set o/ .= of,,. Then, the following theorem is the main result of this section, it ensures that </ his a
h-pseudodifterential operator of order 0 and gives its semiclassical principal symbol.

Theorem 2.4.1. Leth € (0,1] and 2z € p(Hyyr(m)), and let </" be as above. Then forany N € N, there
exists a h-pseudodifferential operator of order 0, &f]’\} € OphSO(Z) such that for h sufficiently small, and
any 0 < I <N+ %

1
™ = 3, = (N,

3
HZ(S)—HY 27 4(D)
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and WD
b= > P_ mod hOp"S™H(D).

ah =
N V=h2Ax +T1+1

Let us consider A = {(U,;, V,;,¢5) : j € {1,---, N}} an atlas of ¥ and (U, V,,,») € A. Asin
Section 2.2 we consider the case where U, is the graph of a smooth function X, and we assume that )
corresponds locally to the side x3 > x(x1, z2). Then, for

Up ={(z1, 22, x(71,72)); (z1,22) € Vi) (1, 22, X (71, 22)) = (71, 22)
Ve ={(y1,y2,y3 + x(y1,92)); (y1,92,93) € Vp, x (0,6)} C Q,
with ¢ sufficiently small, we have the following homeomorphism:
¢ Ve — Vi, x(0,¢)
(w1, 22, 23) = (21,22, 23 — x (21, 2)).

Then the pull-back is

¢": C®(V, x (0,e)) — C® (Vo)
v Pt i=vo .

We write the change of variables as y = ¢(x) and we assume it is of the form, possibly after a rotation,
translation and relabeling:

e F=1.2
{yJ Tin J= 4 2.31)
Yz = T3 — X($1,$2)-

Proposition 2.4.2. By the well-known change of coordinates formula, we can transform the differential
operator Dy, restricted on V,, . into the following operator on V,, x (0,¢):

DY, : = (") Dm(0)"
= —i(010y, + @20y, — (10p, X + 202, X — a3)0y;) +mp3

= —i(a10y, + a20y,) + /1 + VX[ (ia - n¥)(§)Dys +mb,

where §j = (y1,y2) and n? = (o~')*n is the pull-back of the outward pointing normal to ) restricted
on Vy:
1 Oz, X

———— | Oux | (y1,92).
Tx vy | 722 '
1+ |VX| -1

n?(g) =

Proof. Noted by

f(x) = f(o(x) = fy) = f($1(a1, 2, 23), po(1, 22, x3), d3(21, 72, 3)) .
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S0, we get
y= (?/17y27l/3) = ¢(3317332,$3) = ($1,$2,$3 - X(i’l,ﬂfz))

= (¢1(x1, 22, 23), P2(1, T2, 23), P3(T1, T2, 73)) ,

< ¢ (Y1, Y2, ¥3) = (Y1, Y2, ¥3 — X(Y1,92))-

Now, we have

01 _ . O¢1 _  Od1 _
81‘1 - 1, aZUQ N 0’ 81’3 N 0’
by _  Oda _ . Od3 _
8111 N 07 8:r2 N 1’ 8$3 N 0’
Ops _ _Ox(x1,22) _ o O3 _ Ox(x1,22) _ 5 = O3
8561 8331 LG 81‘2 8562 20 8x3 '
then, we obtain ~
of _of 4 9f
or, oy oy
of _of _, of
dry Oy dys’
or _of
ory Oy
Hence, for all f € L?(R3)*
D¢ f = —ia-Vf+mpf
- 3_f_-@_f-<3_>< o _ )3_f ;
20418 X zagayQ +1 al(‘)xl + 281:2 o3 315 +mpf.
This achieves the proof of the proposition. |

For the projectors P, we have:
[ —1\* * 1 . ©(~
Pf = (7" Pelp)” = 5 (LiF iBa-n?(y)).
Thus, in the variable y € V,, x (0, €), the equation (2.19) becomes:

N _
{ (Df, — z)u=0, inV,x(0,¢), 2.32)

Mu=g?=gop ', onV,x{0},

where I'Y = Pftg,. o).
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ys =10
Figure 2.1 — Change of coordinates
By isolating the derivative with respect to y3, and using that (ic - n¥)~! = —ia - n?, the system
(2.32) becomes:
Oyt = M(—mla — a0 —i—mﬁ—z)u inV, x (0,¢)
S VI V@) s v ’ e AR (2.33)

I'Yu=g% onV, x{0}.
Let us now introduce the matrices-valued symbols

—iza - n?(y)

_ io - n?(7) _
Lo(5,€) = s (@ €+ B); L)) = ———=—s, (2.34)
N Ea 4107/ SR vies ol
with £ = (&1, &2) identified with (£1,£2,0). Then (2.33) is equivalent to
h8y3u = Lo(:lj, hDg)u + hLl(g])u, in V@ X (0, 6), (2 35)
I?u=g% onV,x{0}. '

Before constructing an approximate solution of the system (2.35), let us give some properties of L.

2.4.1 Properties of L

The following proposition will be used in the sequel, it gathers some useful spectral properties of the
matrix-valued symbol Lo (7, §) introduced in (2.34). The spectral properties of lo(n, £) = i(a-n)(a-E+05)
given in Proposition 2.6.2 (from Appendix 2.6) provides the following properties for

1

Lo(9,§) = W%(”%@):f)
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Proposition 2.4.3. Let Lo(y,&) be as in (2.34), then we have

L0(36) = mrom (16 07(0) + 8- (17() A €) — iBlor - 7 (7).
=i 77(0) + 1 (7,6) - S (.0
where
Wo NP+ 1= \IGE) 168 +1
() = an@)a (2.36)
147} (12 018 Bl @)y,

with G the induced metric defined in Section 2.1.1.

In particular, the symbol Lo(, &) is elliptic in S* and it admits two eigenvalues p+(-,-) € S* of
multiplicity 2 which are given by

_ in?(g) - £ AG,8)

g, &) = , 2.37
and for which there exists ¢ > 0 such that
e 200 vy (5.6 > ele), @39

uniformly with respect to . Moreover, I1.(y, §), the projections onto Kr(Ly (7, &) — p+ (7, &)1y), belong
to the symbol class S° and satisfy:

PETLL(g,8) PL = kE(9,§)PL and PLTI(,€) PE = 76%(5,§) P%, (2.39)
with
1 1 1
6.0 =5 (1450g) @60 5mg S 0" @A, @40

That is, k¥ is a positive function of S°, (k%)™' € 8° and ©% € S°.

Remark 2.4.1. Thanks to the property (2.39) a 4 x 4-matrix A is uniquely determined by P¥ A and I1; A

and we have:

PYIIL
kSO

Py

“EI0, A
A

1
A=PPA+ PfA=PPA+ P PEA = (1-

7 )P“’A

Proof of Proposition 2.4.3. By definition it is clear that Lo(7, &) belongs to the symbol class S*,
and all the formulas follows for whose for ly(n, £) proved in the Appendix 2.6 (see Proposition 2.6.2 and
Lemma 2.6.3 ), mainly taking n = n¥(g) and multiplying by ———— 1+|Vx( T Next, using (2.8) we get for
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some ¢ > 0 independent of ¢ that

Rpy(g.6) = VAT VG GO+ ey

V14 [Vx[? V1+|Vx[?

which gives (2.38) and shows that p are elliptic in S'. Consequently, we also get that Lo(, £) is elliptic
in S* and that the functions ITy, k¥, (k¥)~! and ©¥ belong to the symbol class S°. [ ]

2.4.2 Semiclassical parametrix for the boundary problem

In this section, we construct the approximate solution of the system (1.19) mentioned in the introduc-
tion. For simplicity of notation, in the sequel we will use y and Py instead of j and P{, respectively.
We are going to construct a local approximate solution of the following first order system:

ho,u" = Lo(y, hDy)u" 4+ hL;(y)u", in R? x (0, +00),
P_ul = f, on R? x {0}.

To be precise, we will look for a solution " in the following form:

1

u(y,7) = Op"(A"(-, -, 7)) f = (27)2

[, A he, e e, @41)

with A"(-,-,7) € S® for any 7 > 0 constructed inductively in the form:

Ah(yv 57 7_) ~ Z thj (y) 57 T)‘

Jj=0

The action of hd; — Lo(y, hD,) — hL1(y) on A*(y, hD,, 7)f is given by T"(y, hD,, 7) f, with

T"(y,6,7) = h(0: A)(y,&,7) — Lo(y, Ay, &, 7) = h(Li(w) Ay, & 7) — iDe Lo(y, €) - 9, A(y, €, 7).
Here we exploited the particular form of L (independent of &) and of Lg (first order polynomial in &).

Then we look for Ag satisfying:

{ h6TAO(y7£7T) = LO(yag)AO(yvfa 7—)7 (2 42)

P*(y)AO(yvgvT) = P,(y),

and for j > 1,

{ haTAj (yv 57 7-) = LO(yv g)AJ (y7 ga T) + Ll(y)Aj—l(y7 67 T) - ZaﬁLO(yv g) : 8ij—1(y7 57 T)7
P

- (y)A;(y,€,7) =0.
(2.43)

Let us introduce a class of parametrized symbols, in which we will construct the family A;:

Pm={b(-,-,7) € S™; V(k,1) € N2, 7%dLb(-, ., 7) € RFTIST™ R ez

More precisely, b € P means that for all (k,1) € N2, the function (7, h) — (h=17)*(hd,)lb(-, -, 7) is
uniformly bounded with respect to (7, k) € (0, 4+00) x (0,1) in S™~k+,
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Proposition 2.4.4. There exists Ay € Py solution of (2.42) given by:

Ao(y7 §7 T) = W @hilTp— (Z/ﬂf).

Proof. The solutions of the differential system hd, Ag = LoAg are Ag(y, &, 7) = " 7208 4 (y, £, 0).
By definition of p+ and 111, we have:

ehflTLo(y,{) _ ehflTp_ (y,{)H_ (y’ 5) 4 eh717P+(yvf)H+(y, 5) (2.44)

It follows from (2.38) that Ag belongs to S° for any 7 > 0 if and only if IT, (y, &) Ag(y, &,0) = 0.
Moreover, the boundary condition P_ Ay = P_ implies P_(y)Ao(y,£,0) = P_(y). Thus, thanks to
Remark 2.4.1, we deduce that

P P
K2

PII_P_ ( g)_H,P,
G

Ao(y,€,0) = P_(y) (y,6) = P_(y) + (y,€).

The properties of p_, II_, P_ and k- given in Proposition 2.4.3, imply that (k%) 'II_P_ € S and that
eh ' T-() ¢ 772 . This concludes the proof of Proposition 2.4.4. |

For the other terms A;, j > 1, we have:

Proposition 2.4.5. Let Ag be defined by Proposition 2.4.4. Then for any j > 1, there exists A; € h? P, J
solution of (2.43) which has the form:

27
Aj(y,&,1) = PO N (L (€))F By (y, ©), (2.45)
k=0
with Bjj, € WS

Proof. Let us prove the result by induction. Thanks to Proposition 2.4.4, the claimed property holds
for j = 0. Now, assume that there exists A; € hi P, 7 solution of (2.43) satisfying the above property
and let us prove that the same holds for A;;. In order to be a solution of the differential system
h@TAjH = LUAj+1 + LlAj — zang . Bij, for Aj+1 we have:

— — T —
Aj+1 = eh 1TL0AJ'+1|7_:0 + eh ‘Lo / e_h ‘sLo (LlAj — ’ia,gLo . aij)dS, (2.46)
0

where L1 A; has still the form (2.45), and we have
2j

OyA; = et iTe- (h,lTayp— + 8y) Z(h717—<§>)k3jvk‘
k=0

Thus, thanks to the properties p_ and Bj ;,, the quantity (L1 A; — i0¢ Lo - 9yA;)(y, &, s) has the form:
. 2j+1 )
o=y T (T s(€) By, €). (247)

k=0

with Ej,k € hiS877. So, by using the decomposition (2.44), for the second term of the r.h.s. of (2.46) we
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2.4. Approximation of the Poincaré-Steklov operators for large masses

have:

eh Lo /O eSO (Ly Ay —ide Lo - 0,A;)ds = b TP-TL_ I (r) + € TPHIL I (1), (2.48)

with
A T 2j+1 N
[(r) = / eh (o= =rs) 3 (R s(€))F B s
0 k=0
For I | the exponential term is equal to 1 and by integration of s*, we obtain:
) = S (et MO 5
r = h™ B, g. 2.49
() I;)( TN ST Bl (2.49)

For I i, let us introduce P, the polynomial of degree & such that

T 1
/ eMshds = S (e Py(TA) — P(0)), forany A € C*.
0

With this notation in hand, we easily see that the term 7P+ I, I i (7) has the following form:

2j+1 k
. h -
PHILI (r) = 1L Y #Bm (7" 7= Pi(r"(p— = p)) — P+ P(0)),  (2:50)
k=0 -

where 7 := h=17.
Thus, combining (2.49) and (2.50) with (2.46), (2.48) and (2.44), yields that

_1T —17_ _ _ —
Ajy1 = e T <H+Aj+l|T:0 - B;‘Srl) +eTr (H—Aj+1|T:0 + Z (h 17'<5>)kBj+1,k>,
k=0

where
e Y 13 5 pitlgil
B, =1,y — L p(0)B, € hitlsI!,
s ,;0 (p— — ps)FH1 !

and B\, € hIT1S=7~1 as a linear combination of products of II_ € S°, h(¢)~! (or h(&)F(p_ —

p+)"F1) belonging to hS™, and of B;;, € WS,

Now, in order to have A1 € SO, we let the contribution of the exponentially growing term vanish
by choosing

H+Aj+1(y7 ’Ea O) = Bj—}—l (y7 5)
Then, thanks to Remark 2.4.1, the boundary condition P_(y)A;11(y,§,0) = 0 gives

Aj(y,€,0) = k—chfH(y,é)-
+
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Finally, we have

2(j+1)

MM_P,I1,
Aj+1(y,§77') = et -l (k;—<pB;_+1 )+ Z h™ T ]+1 k(y f))
and Proposition 2.4.5 is proven with
n_pP 10y = -
Bjt10= A By, + B]+1 0’

—

andfork > 1, Bj 1 = B

1k u

Remark 2.4.2. The computation of each term B; o can be done recursively, but this leads to complicated
calculations. For example B o has the following form

BLO(y,f) =h H+CLO + ) H—Ao(y,f),

II_P Il a9 ((z + i - Oy) n ior - Oyp—
kY 2\ 42

with ap(y) = ia - n?(g).

Thanks to the relation (2.41), to any A" € PY we associate a bounded operator from L?(R?)
into L?(R? x (0,400)). The boundedness in the variable y € R? is a consequence of the Calderon-
Vaillancourt theorem (see (2.1)), and in the variable 7 € (0, +00) it is essentially the multiplication by
an L°°-function. Moreover, for A; of the form (2.45), we have the following mapping property which
captures the Sobolev space regularity.

Proposition 2.4.6. Let Aj, j > 0, be of the form (2.45). Then, for any s > —j — %, the operator A;
defined by

Ay £ (A w38) = oz [ i h e € f(e)ae

gives rise to a bounded operator from H*(R?) into Hs+j+%(R2 x (0,+00)). Moreover, for any | €
[0, 7 + 3] we have:
451 = O(h'™). (2.51)

Hs—s HS+J+——Z
Proof. First, let us prove the result for s = k — j — %, k € N, between the semiclassical Sobolev spaces

u(R?) := (hDy) " L*(R?),

scl

HY(R? x (0, +00)) := {u € L% (hD,)* (hdy,)*2u € L? for (ki ko) € N? ky + ko = k},

N

where (hD,) = \/—h2Ag2 + I. Then, for f € H*(R?)%, we have:

”Aij?{gﬁl(RQX(O,—&—oo)) = Z H(hD >k1(hay3)k2~’4 JCHL2 (R2x(0,+00))
‘ k1+ko=

-y / [(AD) (B, ) (A ) y3) 2 s
k1+ko=

(2.52)
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Thanks to the ellipticity property (2.38), for A; given by Proposition 2.4.5 we have:
A 1 e »
(hOyy)* Aj(y, €, y3) = WIbj(y, & yg)e™ w30 (g) ke,
with b; satisfying, for any (a, 3) € N? x N? there exists C, 5 > 0 such that:
1000, b;(y, & y3)| < Capy Y(y, & 3) € R? x R? x (0, +00),
Consequently, thanks to the Calderén-Vaillancourt theorem (see (2.1)), we can write:
(hDy)" (hy,)*2 Aj = BB (y3) (D) 1+ e a3 (D),

with (B;(y3))ys>0 a family of bounded operators on L?(IR?), and uniformly bounded with respect to
y3 > 0. Then, for f € H*(R?)*, we have:

[{hDy )Y (hdys ) (A £) (93172 ey S B[ (RDy ) TR =3 e s 5D f[3, o
and from (2.52) we deduce that

. il j
|‘Ajf||?{s’zl(]]§2><(07+oo)) < REH (D, )R 2f||2L2(]R2) = hQ]HHfH?{k;jf%(RQ),

_1
where we used that forany [ € N, f € ji (R?),

scl

[(hDy) e 50D f|3, o) = (7 <MD (hD ) (WD) f) 1
_ho
c 3y3

<67h_1y30<hDy><hDy>l71f7 <hDy>lf>L2'

By interpolation arguments we thus deduce that forany j € N, s > —j — % it holds that

i+ L
Iy = ORT9).

scl scl

This means that for 7 := (y, y3)
[{h D) * 72 Aj(hDy) ™ || 12(R2)— L2(R2 x (0,400)) = O(KT2). (2.53)

In order to prove (2.51) (in classical Sobolev spaces) let us estimate (D)5 +3- A;(D,)~* from L?(R?)
into L2(R? x (0, 4+00)). The inequalities, for all ¢ € R%, d = 2,3 and h € (0,1),

L@ <h i ne);, (O <) (O <
imply for j + 3 > [, s; = max(s,0) and s_ = s — s, the estimates:
(T S hTITE T () (7 <R ()
We deduce

42— —s —j—1 —S4 15— s+j+i -5
D) A (D) oy S B3 =5 b= (ADg) ™5 A (D) | o o
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Then the estimate (2.51) follows from (2.53) using that sy — s_ = |s|.

Proposition 2.4.7. Let f € H*(R?) and A;, j > 0, be as in Propositions 2.4.4 and 2.4.5. Then for any

N> —s— %, the function u}fv = §V:0 thjf satisfies:

hoyuly — Lo(y, hDy)uly — hLy(y)uly = BN PRE £, inR2 x (0, +00), .50

P_uly = f, on R? x {0}, '
with

h . — : W& F
RYy: £ oz [, (1w = idcLo - 0,Ax ) (. hE, 7)€ ().
a bounded operator from H*(R?) into HoHN+3 (R? x (0, +00)) satisfying for any 1 € [0, N + 3]:
IR, eeneg 1 = OB P (2.55)

Proof. By construction of the sequence (Aj);eqo,..., n—13 We have the system (2.54) with RE =
op" (i (-, 7)),
r%(yvfa T) = _(LIAN - ZagLO : ayAN) (yagv T):

(see the beginning of Section 2.4.2). As in the proof of Proposition 2.4.5, r?\, has the form (2.47) (with
J = N). Then, as in the proof of Proposition 2.4.6 we obtain the estimate (2.55). |

2.4.3 Proof of Theorem 2.4.1

In this section, we apply the above construction in order to prove Theorem 2.4.1.

Let g € P_H'Y2(8Q)%, (U,,V,, ) a chart of the atlas A and vy,1s € C$°(U,). Then f :=
(o~1)* (¢2g) is a function of H'/2(V,)* which can be extended by 0 to a function of H'/2(R?)*. Then
for h = 1/m and any N € N, the previous construction provides a function u}](, € HY(R? x (0, 4+00))*
satisfying N

(Dg, — 2)uly =h"T'RE £, inR? x (0,¢),
r_uf =f, on R? x {0},
withufy = Y2V 1 A; f (see Proposition 2.4.6) and R%, f € HNH(R? x (0,¢)) with norm in HN+1-1,
lel0,N+ %], bounded by O(hlfé). Consequently, v% := ¢*ul;, defined on V,, ., satisfies:

(Dm — Z)U]]%/ :hN+1¢*(R%f)a inV,e,
F_vf{, =1ag, onU,.

Now, let B} (2)[12g] € H'(2)* be as in Definition 2.3.1. Since T_v%, = T'_ ES}(2)[th2g] = 1b2g, then
the following equality holds in V,, .:

vk = Ban(2)lag] = BV (Hirr (m) = 2) 716" (R (07)" (t29) )
From this, we deduce that

b1miba(g) == 1T By (2)[th2g] = 1T vy — KN Ty (Har — 2) ' 9" (737\7@_1)*(1#29))-
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Since ¢ |y, = ¢, for any u € H*(V,, x (0,¢))*, we have that

L™ (u) = 0" (Pau v, xq0p), 1T+l = 19 Op"(al) (9™ !) oy,
with

N
Zh”ﬂ (4,600 =Y _ W P Bjo(y,£),
j=0
where Bjo € hiS~7 are introduced in Proposition 2.4.5. Thus, from Proposition 2.4.4, in local coordi-

nates, the principal semiclassical symbol of .27, is given by

P IT_P_
P+BO,0<y7£) = PJrAO(y?g’O) = +k—<p(y7£)
+

Thanks to the property (2.39) it is equal to

S-(EAn?(y))
VG TTEE +1+1
We conclude the proof of Theorem 2.4.1 from results of Section 2.1.2 and by proving the following

Lemma which is a consequence of the above considerations, the regularity estimates from Theorem
2.2.1-(iii), Theorem 2.2.2-(i) and Proposition 2.3.2.

—0YP_(y,§) =

P_(y,€).

Lemma 2.4.8. Let Y, 19 € C°(X) such that supp(¢1) Nsupp(v2) = 0. Then, for mg > 0 sufficiently
large, m = my, and for any (k, N) € N* x N* it holds that

|91 Fmib2 || p_ HY/2(S)4 Py HF ()4 = O(m_N).
Proof. Let 1,19 € C°°(X) with disjoint supports. Thanks to Theorem 2.2.1-(iii) and Theorem 2.2.2-

(i), to prove the lemma it suffices to show that for any (N7, N2) € N2, there exists Cy, n, such that for
g€ P_HY?(%)4,

CnNy Ny

|1 iia)g] <= U (M%) (Har(m) = ) s oyisrees )

PLEN2TE (28 (2.56)
X || (Hwrr(m) — z)_1||g21(g)4_>L2(Q)4||9||P_H1/2(2)4'

For this, let us introduce ®; € C§°(€) such that ®; = 1 near supp (1) and ®; = 0 near supp(¢z).
Thus for g € P_HY2(2)* and Ef}(2)[tbag] € H'(R) as in Definition 2.3.1, the function u; 5 :=
®1 ES (2)[1)ag] satisfies:

(D — 2)ur 2 =[Do , ®1]Ejp (2)[thag], in €,
F,ul’z _q)1[2¢29 = 0, on X.

Then, u12 = (Hwir(m) — 2)~ Dy, 4)E ( )[t29], and for any </I>V1 € C{)’O(ﬁ) equals to 1 near
supp(#1) we have:

1o (g) = 104 @1 (Hwrr(m) — 2) "Dy, ®1]E(2)[1bag].

Moreover, by choosing CITl such that CITl < ®q, that is ®; = 1 on supp(g}i), both functions CITl and
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[Dy , ®1] have disjoint supports, and we can then apply the following telescopic formula:

®1 (Hyir(m) — 2) (1 — x1) =1 (Hwir(m) — 2) " [Do, x4+ - (Hwrr(m) — 2) ™! [Do, x2]
(Hyir(m) — 2) =1 (1 = x1),
for (xi)1<i<s a family of compactly supported smooth functions such that :ﬂ < XJ < XJj-1 <=

x1 < ®1, J = N1 + Ns. Since [Dg, ®1] = (1 — x1)[Do, 1], the above telescopic formula allows us
to write 1)1.9%,12(g) as a product of J cutoff resolvents of Hyyr(m). Now, by Proposition 2.3.2 we have

| B (2) e

< 1
By S U gl 2 (xya -

Thus, using the continuity of 'y from H™2T1(Q) to HNQJF%(Z), we then get the estimation (2.56),
finishing the proof of the lemma taking No = k and N; such that for Ny > N + Ny(Ny —1)/2. |

Remark 2.4.3. Note that for any m > 0 and z € p(Hpyr(m)), the parametrix we have constructed for
Sy, is valid from the classical pseudodifferentiel point of view. Actually, Lemma 2.4.8 is the only result
where the assumption that m is big enough has been assumed, and it is exclusively required to ensures
that away from the diagonal the operator <, is negligible in 1/m. In the same vein, if m is fixed then
the proof of Lemma 2.4.8 still ensures that away from the diagonal <, is regularizing. Consequently, we
deduce that for any m > 0 and z € p(Hpyyr(m)), the operator <y, is a homogeneous pseudodifferential
operator of order 0, and that
Ds,

Ly, = P_ mod OpS~1(%),
Vi .

which is in accordance with Theorem 2.3.3.

iag(a-§—2)

&) = e m

2.5 Resolvent convergence to the MIT bag model

In the whole section, 2 C R? denotes a bounded smooth domain, we set
Q=9 Q=R\Q and ¥ =09,

and we let n be the outward (with respect to €2;) unit normal vector field on ..
Fix m > 0 and let M > 0. Consider the perturbed Dirac operator

Hyo = (D + MBlg,)p, Vo € Dom(Hy) := H'(R?)*,

where 1q_ is the characteristic function of €2.. Using Kato-Rellich theorem and Weyl’s theorem, it is
easy to see that (H s, Dom(H}y)) is self-adjoint and that

Spess(HM) = (—OO, _(m + M)] U [m + M, —i—OO),
Sp(Hpr) N (—=(m + M), m + M) is purely discrete.
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Now, let Hyr(m) be the MIT bag operator acting on L?(£2;)4, that is
HMIT(m)v = Dmv, Vv € Dom(HMIT(m)) = {1) S Hl (Qz)4 : P_tz'l) =0on 2} ,
where ty; and Py are the trace operator and the orthogonal projection from Section 1.3.

The aim of this section is to use the properties of the Poincaré-Steklov operators carried out in the
previous sections to study the resolvent of Hj; when M is large enough. Namely, we give a Krein-type
resolvent formula in terms of the resolvent of Hyyr(1m), and we show that the convergence of H}; toward
Hyir(m) holds in the norm resolvent sense with a convergence rate of O(1/M ), which improves the
result of [ ].

Before stating the main results of this section, we need to introduce some notations and definitions.
First, we introduce the following Dirac auxiliary operator

Hpu = Dyypgu,  Vu € Dom(Hyy) == {u € HY(Q.)*: Pitsu=0o0n Z} :

Notice that H; is the MIT bag operator on {2, (the boundary condition is with P, because the normal
n is incoming for €2). Since €2 is unbounded, Theorem 2.2.1 together with Remark 2.2.1 imply that
(Hpr,Dom(Hjyy)) is self-adjoint and that

Sp(ﬁM) - Spess(ﬁM) = (_007 _<m + M)] U [m + M, +OO>

In particular, p(Hy;) C p(Hp)). Let z € p(Hwir(m)) N p(Hy), g € P_HY2(X)* and b €
P, HY?(2)*. We denote by Ef%i(z) : P_HY?(X)* — H'(€;)* the unique solution of the bound-
ary value problem:

{(Dm —2)v=0, inQ;
(2.57)

P_tyv =g, in.

Similarly, we denote by E5¥, ,/(2) : Py HY/?(£)* — H'(2)* the unique solution of the boundary value
problem:

Dm - :()7 in QE7
{( M = 2)u ! (2.58)

Pityu=~h, in.

Define the Poincaré-Steklov operators associated to the above problems by
o), = Pits ES(2)P- and oS, = P_ts B, (2)Py.

Notation 2.5.1. In the sequel we shall denote by Ry (z), Ry (z) and Ryprr () the resolvent of Hyy, Hyy
and Hyyr(m), respectively. We also use the notations:

o I'y = PityandI' =I'yrg, + I'_rq_, with rq the restriction operator in e.
o Ey(z) = eq, B (2)P_ + eq, EﬁiM(z)P+, with e, the extension by 0 outside of e.

o Ruir(2) = eq, Rair(2)ra, + eq, Ry (2)ra, .

With these notations in hand, we can state the main results of this section. The following theorem is
the main tool to show the large coupling convergence with a rate of convergence of O(1/M).

Theorem 2.5.2. There is Mo > 0 such that for all M > My and all z € p(Hpyr(m)) N p(Hp), the
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operator Vs (z) := (]I A M£+M) is bounded invertible in H'/?(X)%, and the inverse is given by

. -1 .
Ui (2) = (L= St = S ) (L4 s+ s
and the following resolvent formula holds:
Ry (Z) = EMIT(Z> + EM(Z)\I/]TJ(Z)FEMIT(Z) (2.59)

Remark 2.5.1. By Proposition 2.3.2 (i) we have that

*

(B2 (=) = AUy Ruin(2) and (B, (2)) = —AU_Ru(2),
forany z € p(Hyyr(m)) N p(Hpy). Thus, the resolvent formula (2.59) can be written in the form
Ry(2) = Rarr(2) — (BT Rare(2)) "0 (2)T Ruarr (2).

Before going through the proof of Theorem 2.5.2 we first establish a regularity result that will play a
crucial role in the rest of this section. It concerns the dependence on the parameter M of the norm of an
auxiliary operator which involves the composition of the operators <7}, and 7 , ;.

Proposition 2.5.3. Let </, and </ 1 be as above. Then, there is My > 0 such that for every M > M
and all z € p(Hyyr(m)) N p(Har) the following hold true:
(i) Forany s € R the operator Zp;(z) : H*(X)* — H*(X)* defined by

. N —1
En(2) = (o= Fpooins — S ) (2.60)

is everywhere defined and uniformly bounded with respect to M.
(ii) The Poincaré-Steklov operator, <7, M satisfies the estimate
-1
HW;%JrM!‘P+Hs+1(2)4—>P,Hs(z)4 SM™, VseR
Proof. (i) Set 7 := (m + M), then the result essentially follows from the fact that =,,(z) is a 1/7-
pseudodifferential operator of order 0. Indeed, fix z € p(Hyyr(m)) N p(Hy) and set h = 7~ 1. Then,
from Theorem 2.3.3 and Remark 2.4.3 we know that .27, is a homogeneous pseudodifferential operator

of order 0. Thus 27! can also be viewed as a h-pseudodifferential operators of order 0. That is,
7! € OphSO(X), and in local coordinates, its semiclassical principal symbol is given by

S-(ENnn(z))P-
EAn(x)]
where we identify ¢ € R? with £ = (£1,&,0)! € R3, and for z = (%) € %, n(z) stands for n¥(&).

Similarly, thanks to Theorem 2.4.1, we also know that for hq sufficiently small (and hence M big enough)
and all h < hg, &, is a h-pseudodifferential operator and that

Ph i, ($, ‘S) =

S (EAn(x)) Py

CVEAn@PEF1+1

Therefore, the symbol calculus yields for all h < hg that <H4 — LA — A M;a%) isal/r-

LASSYES 0ph50(2)7 Ph,ore

m

iy (‘T7€> =
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pseudodifferential operator of order 0. Now, Lemmas 2.6.3 and 2.6.1 yield

S (EAn(@)PeS- (EAn@)Py _ |e An(a)|Ps
EAn@)|(VEAR@PE+I+D)  VEAR@PE+I+1

Thus
| B € An(z)]
o (& E)Phar (2,6) = Ta + [EAR@)P+1+1
_ VEAR@PAT+ 14 [EAn()] o
Ern@P+1+1

From this, we deduce that (]I4 — A A — fsafniJrM,;zf%) is elliptic in Op"S°(X). Thus, Z(2) €

OphSO(Z), and in local coordinates, its semiclassical principal symbol is given by

Ly — ph,eri, (@, S)Ph,ﬂfgw (,8) — Ph,ae

EAn(x)2+1+1

Phan()(:8) = e T T 1T e An@)]

As Zj(2) is a h-pseudodifferential operators of order 0, it follows from the Calderén-Vaillancourt theo-
rem (see (2.2)), that Zp/(2) : H3(X)* — H*(X)* is well-defined and uniformly bounded with respect to
M, for any s € R, proving the statement (i) of the theorem.

The proof of the statement (ii) exploits also the Calderén-Vaillancourt theorem which shows that for
any s € R, any operator in h Op"S° (%) is uniformly bounded by O(h), with respectto h = 71 € (0, 1),
from H5+1(X)* into H5+1(X)* — H*(X)* (see (2.2)). Thus for any s € R,

1 /
H&Z{Te— ;DZ( —T_2AE+H+]I)_1 P+

uniformly with respect to 7 large enough.

Sl
Ho (D)4 H3 (S)4

)

Then we conclude the proof of the statement (ii) by using that (v/—7-2Ayx, + I+ I)~! is uniformly
bounded from H**1(%)% into itself and that Dy is bounded from H**1(X)% into H*(X)* (as a first order
differential operator). |

We can now give the proof of Theorem 2.5.2.

Proof of Theorem 2.5.2. Let My be as in Proposition 2.5.3 and M > My, fix z € p(Hyr(m)) N
p(Hy ) and let f € L?(R3)%. We set

v=ro,Ry(2)f and uw=rq Ry(z)f.

Then u and v satisfy the following system

(Dp, —2z)v=f in Q;,
(Dpenr — 2)u=f in Q,,
P_tsv = P_txu on Y,

Pitsv = Pytyu on X.
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Chapter 2 — A Poincaré-Steklov map for the MIT bag model.

Since Ef%(z) (resp. E%

ol (%)) gives the unique solution to the boundary value problem (2.57) (resp.
(2.58)), and

I Ryur(2)r,f =0 and Ty Ry(2)rq,f =0,
if we let
p=T_u and ¢ =T,v,

then it is easy to check that

{v = Rair(2)ra, f + Epi(2)¢, (2.61)

u= Ry (2)ra, f + Ep, 0 (2)0.

Hence, to get an explicit formula for Rj;(z) it remains to find the unknowns ¢ and 1. For this, note that
from (2.61) we have

{1/’ =Tyro,Ru(2)f = Ty Rurr(2)ra, f + T Eyi(2)[), (2.62)

¢ =T_rq,Ry(2)f =T_Ry(2)ra,f +T_Eye , (2)[¢)].
Substituting the values of ¥ and ¢ (from (2.62)) into the system (2.61), we obtain
Ry (2) =eq, Ry (2)r, + eQeﬁiM (z)ra,
+ (eq, B ()T _ra, + eq, By ()0 7q, ) R (2) (2.63)
ZEMIT(Z’) + EM(Z)FRM (Z)

Note that, by definition of the Poincaré-Steklov operators, (2.62) is equivalent to

{¢ =T R (2)ra, f + “(9),
¢ =T_Ru(2)ro.f + 25 0 ().

Thus, applying I" to the identity (2.63) yields that

(2.64)

FEMIT(Z) = (]I — 42772 — niJrM) FRM(Z) = \I/M(Z)FRM(Z).
Now, we apply (I + <7} + /¢ ,,) to the last identity and we get
(14 i, + s ) DRy (2) = (L = Sy tyynt = s @) DRM (2) =2 (B (2)) TR (2),
where =)/(2) is given by (2.60). Then, thanks to Proposition 2.5.3 we know that for M > M the
operator (Z)7(z)) ! is bounded invertible from H'/?(X)* into itself, which actually means that ¥ y; is
bounded invertible from H'/2(X)* into itself, and that
Uit =En() (T+ S+ S

From this, it follows that N
TRy (2) = U3} (2)T Ryirr (2).
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2.5. Resolvent convergence to the MIT bag model

Substituting this into formula (2.63) yields that
Ry (z) = EMIT (2) + Em (Z)\IJ]Tj (Z)FRMIT(Z),

which achieves the proof of the theorem. |

As an immediate consequence of Theorem 2.5.2 and Proposition 2.5.3 we have:

Corollary 2.5.4. There is My > 0 such that for every M > My and all z € p(Hpyyr(m)) O p(Hyy), the
operators Z3,(z) : PLH*(X)* — Py H*(X)* defined by
A -1 N -1
=5 (2) = (]I— A TfLJrM) and Z,(z) = (H—;zfrfLJrMM;L) ,
are everywhere defined and bounded for any s € R, and it holds that

=+t
‘ :M(Z)H

<
PyLHS(S)AoPLHs (D)2 ™~ 7

uniformly with respect to M > M.

Moreover, ifv € HY(R3) solves (D, + MBlq, — z)v = eq, f, for some f € L*>()% Then, ro,v
satisfies the following boundary value problem

(D, — 2)ro,v=f in Q;,
I'_v=2=)%m yI'+Rwir(2)f on X, (2.65)
Iyv =T, Rwr(2)f + T v on .

Proof. We first note that Z1,(z) = P+Zp/(z)Px. Thus, the first statement follows immediately from
Proposition 2.5.3 . Now, let f € L?(£2;)%, and suppose that v € H'(R3)* solves (D,,, + M 1q, — z)v =
eq, f. Thus (D, — 2)rq,v = f in Q;, and if we set

p=P_tsyv and 1 = Pityv,
then, from (2.64) we easily get
o =Ey2).  yT+Rvir(2)f  and o = Dy Rair(2) f + b

which means that rq, v satisfies (2.65), and this completes the proof of the corollary. |

Remark 2.5.2. Notice that from (2.64) and Corollary 2.5.4 we have that

TirgRu(2)f) _ (Ey(z) 0 L )\ (TR (2)re, f
F,TQ(iRM(Z)f 0 E]T/I(Z) drferM I, F,RM(Z)TQef ’
With this observation, we remark that the resolvent formula (2.59) can also be written in the following
matrix form

(mRM<z>> _ (Rmz)mi) .\ <E%i<z>EM<z>M£+M B8 (2)E5 (2 > (nRMlT(z)mi) |

ro.Ru(2)) — \ Ru(2)ra, Epi v (2B (2)  Epin(2)Ei(2)7 ) \ T-Ru(2)ra,
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An inspection of the proof of Theorem 2.5.2 shows that, for any M > 0, z € p(Hwmr(m)) N p(Hpr)
and f € L?(R3)4, one has

IRyt (2)f = U (2)T Ry (2) £ (2.66)

When f runs through the whole space L?(R®)%, then the values of T Ryyr(z)f and TRy (2)f cover
the whole space H'/?(X)*, which means that Rn(Wy,(z)) = HY?(X)%. Hence, if one proves that
Kr(¥y(2)) = {0}, then Wy, (z) would be boundedly invertible in H'/?(X)%, and thus (2.59) holds
without restriction on M > 0. The following theorem provides a Birman-Schwinger-type principle
relating Kr(Hjy; — z) with Kr(Wj(z)) and allows us to recover the resolvent formula (2.59) for any
M > 0.

Theorem 2.5.5. Let M > 0 and let Uy be as in Theorem 2.5.2. Then, the following hold:
(i) Foranya € (—(m+ M), m+ M) N p(Hyr(m)) we have a € Spp(Hyr) < 0 € Spp(¥Yas(a)),
and it holds that

Kr(Hy —a) ={Em(a)g: g € Kr(¥p(a))}.

In particular, dimKr(Hy; — a) = dimKr(Wy;(a)) holds for all a € (—(m + M), m + M) N
p(Hyr(m)).

(ii) The operator W y;(2) is boundedly invertible in H'/?(X)* for all z € p(Hpur(m)) N p(Hpy),
and the following resolvent formula holds:

Ryi(2) = Rt (2) + En (2) %3, (2)T Ryirr (2). (2.67)

Proof. (i) Let us first prove the implication (=>). Let a € (—(m + M), m + M) N p(Hwir(m)) be
such that (Hy — a)e = 0 for some 0 # ¢ € H'(R?)%. Set ¢} = ¢, and ¢ = ¢|q_. Then, it is
clear that ¢ solves the system (2.57) for z = a with g = I'_¢, and (_ solves the system (2.58) with
h=Ty¢. Thus, p, = E%(a)T_pand p_ = EﬁiM(a)Fthp. Hence, ¢ = Ep(a)tsp and 'y # 0,
as otherwise ¢ would be zero. Using this and the definition of the Poincaré-Steklov operators, we obtain
that

(s + )T = tspy = tnp = tsp = Iy + Frsp )Ty 0,
and since tx # 0 it follows that
Uy (a)tse = (ly — oy, — Sy )tse = 0,

which means that 0 € Sp,(¥y(a)) and proves the inclusion Kr(Hy — a) C {Em(a)g : g €
Kr(¥y(a))}

Now, we turn to the proof of the implication (<=). Leta € (—(m + M), m + M) N p(Hyrr(m))
and assume that 0 is an eigenvalue of Wy, (a). Then, there is g € H'/2(2)*\ {0} such that ¥, (a)g = 0
on Y. Note that this is equivalent to

(P-+ )9 = (Pr + g )g. (2.68)

Since a € (—(m + M), m + M) N p(Hyrr(m)), the operators ES¥ (a) : P- HY/?(£)* — H'(€;)* and

EﬁjM(a) . Py HY?2(2)* — H'(Q.)* are well-defined and bounded. Thus, if we let ¢ = Ej;(a)g =
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2.5. Resolvent convergence to the MIT bag model

(ESYi(a)P_g, Eﬁ‘er(a)PJFg), then ¢ # 0 and we have that (D,,, — a)y = 0in ;, and that (Dy,+n —

a)yp = 0in Q.. Hence, it remains to show that ¢ € H*(R3)%. For this, observe that by (2.68) we have
ts B (a)Pog = (P- + ) g = (Py + A5, 0y)g = ts ES< 1, (a) Pyg.

Thanks to the boundedness properties of E' (a) and E%jr 1 (@), it follows from the above computations
that p = Ey(a)g € HY(R?)*\ {0} and satisfies the equation (H; —a)¢ = 0. Therefore, a € Sp,(Hy)
and the inclusion {Eys(a)g : g € Kr(Vp(a))} C Kr(Hy — a) holds, which completes the proof of (i).

(ii): Let z € p(Hwmrr(m)) N p(Hpr) and note that the self-adjointness of Hj; together with assertion
(i) imply that Kr(¥y,(2)) = {0}, as otherwise Kr(Hy; — z) # {0}. Since Rn(¥y;(2)) = HY/?(%)*
holds for all z € p(Hwmr(m)) N p(Hay), it follows that U (z) admits a bounded and everywhere defined
inverse in H'/2(2)%. Therefore, (2.66) yields that TRy (2) = ¥} (2)T Ryt (2), and the resolvent
formula (2.67) follows from this and (2.63). |

Remark 2.5.3. Note the different nature of Theorems 2.5.2 and 2.5.5, since the second one ensures the
invertibility of V y; and yields the resolvent formula (2.67) without assumption, while the first one is based
on a largeness assumption that allows us (thanks to the semiclassical properties of the PS operators) to
obtain the explicit formula of the operator (V¥ ;). Besides, note that in Theorem 2.5.5 we do not know
a priori whether (U y;)~1 is uniformly bounded when M is large, and hence (2.67) is not suitable for
studying the large coupling convergence.

In the next proposition we prove the norm convergence of Ry, (z) toward Ryr(z) and estimate the
rate of convergence.

Proposition 2.5.6. For any compact set K C p(Hyyr(m)) there is Mo > 0 such that for all M > My:
K C p(Hyy), and for all z € K the resolvent Ry admits an asymptotic expansion in L(L*(R3)*) of the
form:

Rt (2) = eo, e (=)ro, + % (K (2) + Lt (2)) (2.69)

where Kp(2), Ly (2) : L*(R3)* — L?(R3)* are uniformly bounded with respect to M and satisfy
ro,Lyv(z)eq, =0 =rq, Ku(2)eq,.

In particular, it holds that

1

[ Rai(2) — e, Baire(2)ra, |l 2oy ooyt = O (M) . (2.70)

Before giving the proof, we need the following estimates.

Lemma 2.5.7. Let K C C be a compact set. Then, there is My > 0 such that for all M > My:
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Chapter 2 — A Poincaré-Steklov map for the MIT bag model.

K C p(ﬁ M) and for every z € K the following estimates hold:

Hflle yis Vfe L)

+ \/—M HILEM(Z)JC‘

L2(2)4N
[T S Sl Y € Q)
B 2)9) LQ(QE)45¢—_||¢||L224, v € PyIA(S)Y,
1B @9 gys S 37 Wiy V6 € PLHVAEN,

Proof. Fix a compact set K C C, and note that for M; > sup,cx{|Re(z)| — m} it holds that
K C p(Dptary ), and hence K C p(Hyy) for all M > M;.

We next show the claimed estimates for Ry (z) and T_ Ry (z). For this, let z € K and assume that
M > M;. Let ¢ € Dom(H}y), then a straightforward application of the Green’s formula yields that

1Eyell72 0.0 =l (e V)elTe, + (m+ M) ol 2 + (m + M) || P-tspl |72
Using this and the Cauchy-Schwarz inequality we obtain that
I(Hy = 2)ellEa0,00 =IHm el 20,0 + 2P0 720, — 2Re(2)(Hue, ) 121
~ 1. ~
>\ Hu el 000 + 12191172000 = 51 HM L2001 = 2ARe(2) Pl @l72(0,

> ((m—l—M)2

M
5 +m(z)]” - IRe(Z)\2> 122t + 5 1P-toellZz(mys -

Therefore, taking Ry (2)f = ¢ and M > My > sup,c i {+/[Re(2)Z — |Im(2)]2 — m} we obtain the
inequality

[ R (2)f]

2y N R VALAUZICAY

@t T \/LM HREM(Z)JC‘

Since I'_ is bounded from L?(Q.)* into H~1/2(X)%, it follows from the above inequality that

1
IVALANZIGRLE

PRty Iz sy 2 S

for any f € L%()*, which gives the second inequality.

Let us now turn to the proof of the claimed estimates for E* (2). Lety € Py L*(X)4, then from

m+M
the proof of Proposition 2.3.2 we have

, — 2|Re(z |H

\|¢|’2L2(2)4 = (m+ M) H i (2 ¢’ L2(Q0)*

Thus, for any M > Mz > sup,c i {4|Re(2)| — m}, we get that

M| B a0 < 2 Wy

L2(Q0)4
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and this proves the first estimate for £, ¢ M( z). Finally, the last inequality is a consequence of the first

one and Proposition 2.3.2. Indeed, from Proposition 2.3.2 (ii) we know that ST'_ Ry (%) is the adjoint of
the operator E', , (z) : Py H'/?(£)* — L(Q)*. Using this and the estimate fulfilled by I'_ Ry (%)
we obtain that

(. B (200

= (DRt ()£, BY) -vr2sys, 2y
HF R (2 Ml

‘H 1/2(x)4

S 2= Il aas 1l

Since this is true for all f € L?(Q)*, by duality arguments it follows that

1B a0 a0 S 37 Wlliriayes V0 € PLE(D)E

which proves the last inequality. Hence, the lemma follows by taking My = max{M;, M2, Ms}. |

Proof of Proposition 2.5.6. We first show (2.70) for some M/, > 0 and any z € C \ R. So, let us fix
such a z and let f € L?(R3)*. Then, it is clear that z € p(Hyyr(m)) N p(Hyy), and from Theorem 2.5.2
and Remark 2.5.2 we know that there is M/, > 0 such that for all M > M) it holds that

1(Rar (=) = ea Rarr(2)ra) Sl pagesys < || B ()20 () i D Raarr (2o || o g,
Qi \=— D
R @B T -BuGra.f]| .
By (ZH (T Ranre (2o f|

E;LM() 11 ()i DRy (2)

R (2)

+ o+ o+

(@) = Ji+Jo+ I3+ Js+ J5.

From Lemma 2.5.7 we immediately get that J5 < M1 ||f||. Next, notice that 'y Rypr(2) @ L2(€4)* —
HY2(D)4, & - HY2(2)* — HY2(2)* and B (2) : HV/2(2)* — H(a, ) C L*(;)* (where
H (o, €);) is defined by (1.9)) are bounded operators and do not depend on M. Moreover, thanks to
Corollary 2.5.4 we know that for all s € R there is C' > 0 independent of M such that

)|

(1]

<
PLHs(S)4Py Hs (D)4

Using this and the above observation, for j € {1,2, 3,4}, we can estimate .J, as follows

Ji g Egi(z)"p,H*1/2(2)4—>L2(Qi)4 HdrreLJrM‘|H1/2(2)4—>H_1/2(Z)4 "F-&-RMIT(Z)TQifHHlﬂ(EM s
(2)
I Ry (2 )TQifHH1/2(2)4 ;

(2)

Q;
R (Z)H H-1/2()i— 12(0,)4

J3 S ESL;M( )’

H-1/2(5)4’

Hl/z( )4~>L2 Qe )4
i
M L2(2)4—L2(n)4

i S || BR (2)]

L2(2)4—L2(Qe)4
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Chapter 2 — A Poincaré-Steklov map for the MIT bag model.

Therefore, Proposition 2.5.3-(ii) together with Lemma 2.5.7 yield that

1 .
i S 37 W lliaoys forany j € {1,2,3,4},

Thus, we obtain the estimate

C
H(RM (z> - eQiRMIT(Z)TQi>f‘|L2(R3)4 < M HfHLQ(R3)4 . 2.71)

Moreover, the asymptotic expansion (2.69) holds with

La(z) =M (eq, Ry (2)ra, + eq, B ()2, (2) 28 T Ry (2) 7,

+ en. En 1 ()28 (2) - Ru (2)ra, ),
and
Kni(2) = M (eq, B (2)Z 5, (=)0 Bai(2)ra, + ea, B,y (2)24 ()04 Rarr (2)ra, )

and we clearly see that rq, Ky (2)eq, = 0 = ro, Kyp(2)eq, .

Finally, since (2.71) holds true for every z € C \ R, for any fixed compact subset K C p(Hmar(m)),
one can show by arguments similar to those in the proof of [ , Lemma A.1] that there is My > M,
such that K C p(Hjy). Therefore, the proposition follows with the same arguments as before. |

2.5.1 Comments and further remarks at the end of this chapter

In this part we discuss possible generalizations of our results and comment on the usefulness of the
pseudodifferential properties of the Poincaré-Steklov operators.

(1) First note that all the results in this article which are proved without the use of the (semi)
classical properties of the Poincaré-Steklov operator are valid when X is just C'*-smooth with
w € (1/2,1), and can also be generalized without difficulty to the case of local deformation
of the plane R? x {0} (see [ ] where the self-adjointness of Hyyr(m) and the regularity
properties of ®2m, ©.m and A7, were shown for this case). We mention, however, that in the
latter case the spectrum of the MIT bag operator is equal to that of the free Dirac operator, cf.
[ , Theorem 4.1].

(2) It should also be noted that there are several boundary conditions that lead to self-adjoint re-
alizations of the Dirac operator on domains (see, e.g., [ , , 1) and for
which the associated PS operators can be analyzed in a similar way as for the MIT bag model. In
particular, one can consider the PS operator %,,(z) associated with the self-adjoint Dirac operator

ﬁIM]T(m)U =Dpv, Y€ Dom(ﬁMIT(m)) = {v € Hl(Qi)4 : Pytsv =0o0n E} .

According to the previous considerations, this operator can be viewed as an analogue of the
Neumann-to-Dirichlet map for the Dirac operator. Moreover, the same arguments as in the proof
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of Theorem 2.3.3 show that

— 1 -1 _ Ds
%‘m(z)—\/—_AZS (Ve An)Py mod OpS (Z)—\/__AE

forall z € p(Dp) N p(Hprrr(m)).

P, mod OpS™1(%),

(3) Asalready mentioned in the introduction, in [ ]it was shown that (in the two-dimensional
massless case) the norm resolvent convergence of Hy; to Hyyr(m) holds with a convergence rate
of M~1/2. Their proof is based on two main ingredients: The first is a resolvent identity (see
[ , Lemma 2.2] for the exact formula), and the second is the following inequality

TR (2) fll 2sys S \/— 11 22 greya (2.72)
which is a consequence of the lower bound
V9120 + M2 |8l 72(0,)1 = (M = O) |Itstl 2y

which holds forall ¢ € H 1 (R3)4 and M large enough (see [ , Lemma 4] for the proof in the
2D-case and [ , Proposition 2.1 (i)] for the 3D-case). Note that the resolvent formula
(2.63) together with (2.72) yield the same result. Indeed, from (2.62) and (2.72) we easily get the
inequality

T+ Rt (2) fll p2sya S Sl 2 (msya
This together with (2.63) and Lemma 2.5.7 yield

[1(Rar(2) = eo, Rarr(2)ra, ) 1| 2 eoys < HE&@) -

+HRM

+HEQ+M )r+m Ry (2)/]

L2(Qe)4 L2(Qe)4

S \/_M f1] 22 (s )s

(4) Finally, let us point out that a first order asymptotic expansion of the eigenvalues of H; in terms
of the eigenvalues of Hyyr(m) was established in [ ] when M — oo. In their proof
the authors used the min-max characterization and optimization techniques. Note that it is also
possible to obtain such a result using the properties of the PS operator, the Krein formula from
Theorem 2.5.2 and the finite-dimensional perturbation theory (cf. Kato [ ] for example),
see, e.g., [ , ] for similar arguments.

Note also that the asymptotic expansion of the eigenvalues of Hj; depends only on the term
Ef,zli(z)EM(z)de+MF+RMIT(z)rQi. Indeed, let Ap;77 be an eigenvalue of Hyyr(m) with

m

multiplicity 7, and let (f1,- - , f;) be an L?(€2;)*-orthonormal basis of Kr( Hyir(m) — Aysr7ls).
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Then, using the explicit resolvent formula from Remark 2.5.2 we see that

(R (2)eq, fr e, fi) 2 ey = (B (2)23; (2) gy D Rarr (2) fios £7) 12 (0

= (4 (2) Dy T+ Barr (2) fies =BT Bvre (2) £5) 12 ()
1

- m<5& (Z)JZ{,%+MF+fk, _BF+fj>L2(E)47

which means that ES (2)Z,;(2) S T+ Ry (2)rg, is the only term that intervenes in the
asymptotic expansion of the eigenvalues of Hj;. Besides, recall that the principal symbol of

En (2) s gy is given by

_ S - (€ An(a) Py
VIEAR(Z)[Z 4 (m + M)2 + [€ An(z)| + (m + M)’

qm(z,§) =

and for M > 0 large enough one has

1 =1
m(2,8) = =708 - (EAn(2)) Py > @, )Py, pr € S
=1

Using this, we formally deduce that for sufficiently large M, Hp; has exactly [ eigenval-
ues (/\kM)Kkgl counted according to their multiplicities (in B(Apsrr, 1) with B(Aprr, 1) N
Sp(Hwmir(m)) = {A\mr7}) and these eigenvalues admit an asymptotic expansion of the form

1 No1o ~
A = e+ o+ 22 S+ 0 (M=v0) . (2.73)
]:

where (11 )1<k<; are the eigenvalues of the matrix M with coeflicients:

My = %(ﬁOp(S- (EAn(@))T 4 fr, T f5) £2(m)s-

* * * * * *
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2.6 Appendix A: Dirac algebra and applications

In this appendix, we recall the anticommutation relations of Dirac matrices and give formulas used
in the current manuscript. Let us consider the 4 x 4-Hermitian Dirac matrices o, j = 1,2, 3, and 3,
whose possible representation is given at the beginning of this thesis, see (1.4).

Recall the definition of the spin angular momentum S and the matrix 5 (see (2.6)), and note that by
(1.3) we have S = (ieag, —iaias, ia1as).

Using the anticommutation relations (1.3) we easily get the following identities, for all X,Y € R3,

ila- X)(a- Y)=iX-Y+5-(XAY), [vs5, - X] =0,

{S-X,a-Y}=-2(X Y)ns, 1S X, 6] =0. (2.74)

Let us now give some relations we have used for n a normal vector field to a smooth domain €2 C R3,
and for 7, a tangent vector, in particular for 7 = n A &, where £ is a Fourier variable.

Lemma 2.6.1. Let n € R3 and let T € R? such that 7 L n. Then the following identity holds:
(S-7+i(a-n)B)? = (|T!2 + \n\Q) Iy.
Proof. Using the relations (1.3) and (2.74) we get
(S-7)* =s(a-m)s(a-1) = (15)(a - 7)? = |7 °Ls.
Then we have
(-7 +ila-n)B)? = |rPL— ((a-m)B? +i{S -7, (a-m)8} = (Il +|n/)L+i{S - 7, (a - n)B},
and since 7 - n = 0, by (2.74) we obtain
{S-7m,(a-n)p}={S -1,a-n}+a-nlS 1,5 =0,

and the conclusion follows. |

Proposition 2.6.2. Given n € R? such that |n| = 1, let ¢ € R®, and define the matrix-valued function

lo(n,§) =i(a-n)(a-&+F).

Then ly(n, &) has two eigenvalues given by

pi(nag) zznéi)\(n,ﬁ), with )\(nvf) Y. |7’L/\§|2+1

The associated eigenprojections (onto Kr(lg(n, &) — p+(n,&)1y)) are given by

5'(nA§)+i(a'n)5>
A(n, §) '

Hi(n,§) = % (H4 +
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Proof. By applying (2.74) for (X,Y) = (n,£), we get
lo(n,§) =in -4+ 5 - (nAE) +i(a-n)p.
Thanks to Lemma 2.6.1, the Hermitian matrix h(n,§) := S - (n A§) + i(a - n) 3 satisfies:
h(n,€)? = (In AEJ? + DIy = A(n, €)214.
Therefore, h(n, £) has the eigenvalues +A(n, §) and the associated eigenprojections are given by

g

which proves the claimed results since lg(n,§) = in - {1y + h(n,§). [ |

Len§) = 5 (Lt

Lemma 2.6.3. Given n € R3 such that |n| = 1, let Py = 14 (n,0) = (L4 £ i(o - n)B) be the
eigenprojections onto Kr(i(« - n) F 1y). The following properties hold true.
(i) Forany T € R3 such that T L n, we have

Pi(S-7)=(S-7)Pg . Pila-n)=(a-n)Pr and Piff =[Pz

(ii) Forany & € R3, the projections 114 (n, €) defined in Proposition 2.6.2 satisfy

PillL Py =k P. ,Pplly Py =k_P. and Pill; Py = FOP;, (2.75)
with
k(@—l@i ! ) O(n,6) =~ 5 (nne) 2.76
s =5 xma ) PV T gt MY (2.76)

Proof. The relations of (i) follow from (2.74). For the proof of (ii), let us write [T (n, £) as

S-(nANEPr £

1 1
B s oY)

Then, using item (i) if this lemma (with 7 = n A §) and the fact that Py i(« - n)8 = £ Py, we get

sama(

1 1/1
PiHi_PiﬂIﬁS‘(n/\f)Pzp+§(X—1>Pi—k+Pi:t@P:F,
1 1/1

with k4 and O as in (2.76). Hence, (2.75) directly follows from the above formulas and the fact that Py
are orthogonal projections. |

2.7 Appendix B: Poincaré-Steklov operators in half-space

This appendix focuses on the examination of the Poincaré-Steklov operators introduced in this chapter,
where we simplify the perturbation domain of the Dirac operator. On a smooth bar C*° of infinite size
dividing space into two parts {2_ and €);, we consider the perturbation of the Dirac operator with a
potential that affects the lower zone of the bar, Hy; = D,,, + M S1q_. The simplicity of the domain in
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this problem allows us to derive an explicit form of the Poincaré-Steklov operators and their symbolic

formulas. Moreover, Poincaré-Steklov operators are simply zeroth-order Fourier multipliers. Let N be
the outward unit normal with respect to {2

Q+
2

Q
%
N(0, 0, -1)

Figure 2.2 — Half-plane domain
Proposition 2.7.1. Let the projection operators given by
1 de
I1%.(¢) ::§<]I4:I:)\ Eg), with e =mork:=(m+ M). (2.77)

Let ¢ € P_HY?(X)* and 1) € Py HY?(X)*. We consider the system (2.57) resp. (2.58). Then, the
solution of this system is respectively given by:

0 (517 §2a %’3) = 6*/\m(5)13 HT(E) <]I4 + w> é(élv ‘52) in Q+ (7“'6'7 T3 > O)a

Am(€) +
(2.78)
(€ aa) = Om () (L~ 20D dg ) e (i, <o)
where do(§) = —iaz(a - &€ + o — z) and Ao (€) = /[€]2 + 02 — 22, with a - € = a1&; + azés.
Proof. We consider the system
{(Dm—Z)U (‘Tl,IQ,.’Eg) :07 in Q+7 (279)
P_tsv (21,22, 23) = ¢, on X,
{(DH — 2)u(z1,z2,23) =0, inQ_, (2.80)
Pitsu(zy, x0,23) = 1, on X.

Recall that, the unique solution of the boundary value problem (2.79) resp. (2.80) is v = E,%*qb resp.
u = Ex~ 1, bounded from P_HY?(%)* resp. Py H'/2(L)* into H'(Q)* resp. H'(Q_)*.

By Fourier, ﬁ(mm)ﬁ(& &) We get
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8&83& (517627'7;3) = _ia3(a‘€+/€6 ) (617527563) in Q—a

s (81,62, 73) :A—iag(a 4+ mpB —2)0 (61,62, 73),  inQy, 2.81)
PLa(61,€2,0) = (61, &2), on X, '
P_9 (€1)€250> = ¢(£17§2)5 on Ea
Then, the solution of the system (2.81) is the following:
ﬁ(£17£27$3) _e f) (5175270)7 in Q*a
B (61,89, m3) = e O35 (£1,62,0),  inQy (2.82)
P+U (617€27 ) (51752)7 on E?
D (517527 (51752)7 on X.
Now, we can write e (€)73 by
ede ()73 _ e/\-(E)xSHl(g) + e Ae(©zse (©),
thus, we obtain the following
(0 (gla 627 1‘3) = <€)\(£)x3H’—T—(£) + ei/\ x3HK ) P+ + P gla 627 ) s in 977
0 (61,60, 23) = (ORI (E) 4 e A OBI()) (Py + PL)o (€1,6,0), inQy, (2.83)
P+a(§17§270) :1/;(6-1752)’ on 27
P_9 (5175270) :¢(§17£2)7 on X.
Now, calculate the expression of P, 0 (£1,&2,0) and P_4 (&1, &2,0).
InQ_, e &3 ¢ [2({z3 < 0}),
= Hlj (é)ﬁ (617 627 0) =0«& Hi(g)@ (617 {27 0) =1 (617 €27 O) (2 84)
& Poi(6,6,0) — P-IITP-a(€1,6,0) = P-IIT P (61, 6). '
InQy, M@ ¢ [2({z3 > 0}),
= HT(&){} (élv 527 0) =0& HT(&)@ (517 527 O) =10 (517 €27 0) (285)

& P (€1,6,0) — PLIIM P 0 (€1,62,0) = PLIT™P_g(&1, o).

Using Lemma 2.6.3-(ii), we express (2.84) and (2.85) in terms of P, II"*(£) and P_II" () as follows:

From (2.84), we get
iag(a-§ — 2)

WG V(&1,&2).

P*a(£17£2a0) ==

From (2.85), we get
iaz(a- € — z)

)\m(é) +m ¢(’£17£2)

P9 (&1,6,0) =
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Combining the above formulas with system (2.83), we deduce that

m3<a-f—z>> X

B (&1, &, 13) = e Am(OTIIm(€) <H4 + b(&1,&), inQy,

. Am(§) +m (2.86)
i (&1, &, w3) = MO (€) (h - %) D(€,&), Q.
|

Theorem 2.7.2. We denote by <y, resp. <, the Poincaré-Steklov operators associated with (2.79) resp.
(2.80). Then, we can write the operator <y, resp. <, (in which a,, () resp. a,(§) is the symbols of </,
resp. ;) as the following

_ g-1 ia?’(a‘f_z)
Ay P_p = F <P+—)\m(§) g

am(§)

P‘) s (2.87)

and
—iag(a-§ —2)
)\H(‘E) + K

ar(€)

. P :5‘_1<P P>0“ .
=7 ) FY (2.88)

Proof. Recall that, for all z € p(D,,), we have the following explicit formula for 7, (z) and .27 (z):
i = PitnEnt (2)P- = =Py (A},) 7 P-,

Ay = P_tsES-(2)Py = —P_B(A2)"' Py,

Now, we consider the system (2.79) resp. (2.80), we get

DP-§ = Povy, ) F () = (P+%P> Zé

_ -1 2'013(04'5—2) T

et = Py, & F(chth) = (P_Mfﬁ_z)m) T

= dp=F ! (P_
|

Corollary 2.7.3. The operator Vy(z) = (I — o, — ;) (associated with the current Appendix)
introduced in Theorem 2.5.2 is bounded invertible in H'/?(X), and has the following inverse:

U (2) = (4 — Ay — At) (14 i, + )
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=gz1

7Y
|
Y
|
.
Q
w
o
Q
7ax%
|
X
N———
| |

<H4%_ €% — 22 ) (H4_iasf’(a-
(Am (&) +m)(A(§) + K) Am(€) +m Ax(§) + 5
Consequently, the resolvent formula (2.59) becomes

€7 — 2*

-1
MMQ+WMAO+@> -

Ry (z) = Rair(2) + Bm(2) 77! <H4 +

iazP_(a- & —z) dagPy(a-&— z)) ~
I — FTR .
( (&) +m Ae(©) + 5 (2
(2.89)
Proof. Firstly, we will calculate the symbols of 7,27, and <7, <7,,. We have
Ay = F Lagman T, (2.90)
Ay, = F LapamF, (2.91)
It is easy to check that, for a,, (&) resp. ax (&) as in (2.87) resp. (2.88),
(I€]* = =) P
am (S ) Ak = - )
(S)an(é) @) £ T+
—z°)P_
ax(§)am(§) = — .
Qam(®) =5 F M + )
Using the above quantities, we get that
Uy (2) = F 7 (I = am(€)an(§) = an(©)am(€) ™" [+ am(§) + ax(§)) 1.7,
and then we get the explicit formula of resolvent (2.89). |

Proposition 2.7.4. Let the Poincaré-Steklov operators 42772 t = F+Ef721+ (2)P_ and JZ%HQ_ = F_E,? “(2)Py.
Then, we easily obtain that t;zfn? * and JZ%,.?‘ are a Fourier multiplier with symbols
iaz(a- & — z)

P_  and a,.i(f) = )\—HPJ’_

_iozg(a & —2)

am(&) = Am +m
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Chapter e

On the approximation of the Dirac operator coupled
with confining Lorentz scalar )-shell interactions.

In this chapter, we present the results obtained in article [ ] I

Abstract

Let Q. C IR3 be a fixed bounded domain with boundary ¥ = 9€)... We consider /€ a tubular
neighborhood of the surface > with a thickness parameter € > 0, and we define the perturbed
Dirac operator D5, = D,, + M S1y, with D,, the free Dirac operator, M > 0, and T
the characteristic function of ¢/°. Then, in the norm resolvent sense, the Dirac operator D5,
converges to the Dirac operator coupled with Lorentz scalar d-shell interactions as ¢ = M ~*
tends to 0, with a convergence rate of O(M ~1).

Résumé

Soit Q. C R? un domaine borné fixe, et désignons sa frontiere par ¥ = 9Q,. Nous
considérons U° comme un voisinage tubulaire de la surface ¥ avec un paramétre d’épaisseur
€ > 0, et nous définissons I’opérateur de Dirac perturbé 95, = D,, + M 51y, avec D,,
I’opérateur de Dirac libre, M > 0, et 14 la fonction caractéristique de U/*. Alors, au sens
de la norme de la résolvante, I'opérateur de Dirac D9, converge vers I'opérateur de Dirac
couplé aux interactions scalaires de Lorentz §-shell lorsque ¢ = M~ tend vers 0, avec un
taux de convergence de O(M ~1).
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3.1 Introduction

The aim of this chapter is to approximate the Dirac operator coupled with a singular é-interactions,
supported on a closed surface. More precisely, our main goal in this chapter is to approximate the Dirac
operator coupled with confining Lorentz scalar d-shell interactions (i.e., when = 0 and p = +2 in
(3.1)) by a perturbed Dirac operator ®5, = D,, + M [31;e, where M is a large mass supported on a
tubular neighborhood, I/¢, with thickness € > 0.

Let Q0 be a bounded smooth domain in R3, and ¥ := 9, for its boundary. For (1, 1) € R?, the
three-dimensional Dirac operator coupled with delta interactions is defined formally by

]D)n,,u : f = Dmf + ‘/77,;162]0 = Dmf + (7]]14 + Mﬁ)(SEfy (31)

where Jy; is the Dirac delta distribution supported on 32, and the constant 7 (resp. i) measures the strength
of the electrostatic (resp. Lorentz scalar) part of the interaction. In this case, the operator in (3.1) is
called by Dirac operator coupled with electrostatic and Lorentz scalar §-shell interactions.

Definition 3.1.1. Let © € R\ {0}. The Dirac operator coupled with purely Lorentz scalar ¢-shell
interaction of strength f, is the operator Dy ,, := D,, + V[, (i.e., when 7 = 0in (3.1)), acting in L?(R3)*
and defined on the following domain

Dom(Do,) == {p =u+ ®},[g], u€ H(R®)?, g € L*(£)*, tyu=—A7 ,[gonX},  (3.2)

where

Vile) = (os o )0n with o = tnu+ CLlg)

Hence, Dy ,, acts in the sense of distributions as Do , () = Dpu, for all ¢ = u + @7 [g] € Dom(Dy ;).
Consequently, we can identify Dy , as

Q- Q
Doup =Dy 90— ® Dy 0+ = Dimp— & D,
Dom(Dy,,) = {ws + P, 4[g], we € H'(Qx)", g € LX(E)%,
Py(tswy +C% ,[g]) = 0, withtgwy = —A% , [g] on T},
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where ®7 . [g] : L*(X)* — L*(Q)* is the operator defined by ®7, [g](x) = ®7,]a. [g](z), for
g € L*(X)* and x € Q. Here ®7,, A7, and C% ,,, are defined in Section 1.5.

Moreover, recall that Dy , is self-adjoint operator on H L(R3) for all i1 € R (see, [ , Section
5.1]), and for all z € C \ R the following resolvent formula holds [ , Proposition 4.1]

Doy —2) = (Dm — Z)il - (I)zz(Ai,m)iltE(Dm - Z)il‘

Finally, we recall that the version of Dy, for u = =£2 is called by the confining version of the
Dirac operator coupled with Lorentz scalar d-shell interactions. Throughout the current chapter, €2 is
a bounded smooth domain in R? with a compact smooth boundary ¥ := 9, and let n resp. do is
the outward unit normal to €2, resp. the surface measure on X. We shall work on the Hilbert space
L2(R3)* (resp. L2(Q5)* with Q5 = Q4 UU® and Q¢ = R3\ QF, where U* is an e-neighborhood of the
surface ) with respect to the Lebesgue measure, and we will make use of the orthogonal decomposition
LA(R3)* = L2(Q°)* @ L?*(Q5.)*. We denote by N°¢ the outward unit normal with respect to €2°. More
precisely, for £g sufficiently small, we assume that X, 2 , 3¢ and U/€ satisfied

¥ :={r €R3 v =uxg +en(rs): zx € T},
Q°F = {z € R? dist(x,X) > ¢}, (3.3)
U ={zcR® s=ax+tn(zs): zx € Y and t € (0,¢)}, withe € (0,g).

In other words, the Euclidean space is divided as follows: R = Q° UX UL U X U Q..

Figure 3.1 — Domain

Definition 3.1.2. [Transformation operator]. Let ¥, ¢ C R? be as above. We define the diffeomorphism
p: X — X suchthatforall zy, € ¥, we get p(zy) := rx+en(xy), € € (0,ep). Then for ¢ sufficiently
small, we define the transformation operator as an unitary and invertible operator as follows

To: LA() —  L*(Z9)4,

v = T !

- det(l — eW(xy))

Wop(z), z=p(zs), (3.4)
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with W (xy,) the Weingarten defined in Definition 1.5.2. Its inverse, 7.~!, is given by

T L2t - LA(D)Y
¢ = T el(rs) = det(l — eW (zx))(@ o p)(@s).

We consider perturbations of the free Dirac operator D,, in the whole space by a large mass M

term living in an e-neighborhood U/* of 3. The perturbed Dirac operator where interesting on is

S = Dm + M 1y, where 1y is the characteristic function of /* and ¢ is the thickness of the tubular
region U¢. The results of this chapter are the following:

Proposition 3.1.3. We consider the confining version of the Dirac operator coupled with a purely Lorentz
scalar 6-shell interaction, denoted by 91, == D yo. Then, for any z € p(Z1,) and ¢ sufficiently small,
the following estimate holds:

QE
eos Ryyr(2)ras  — Ri(z) =0(e), ase—0, (3.5
L2(R3)4— [2(R3)4
QE QE
where R\[iT is the resolvent of the direct sum of both MIT bag operators, refer to D1 (m) and which

will be defined rigorously in Section 3.1.1, Ry, is the resolvent of the Dirac operator coupled with purely
Lorentz scalar §-shell interactions, 91, and TQs _ resp. eqs is the restriction operator in Q)5 _ resp. its
adjoint operator, i.e., the extension by 0 outside of Q% _.

Remark 3.1.1. We mention that the proof of Proposition 3.1.3 is not difficult to realize. Indeed, we
establish the above approximation by tracking the dependence on the thickness ¢, when ¢ goes to .
However, what is important to achieve is the proof of the following proposition, for which studies and
estimates are required by tracking the dependence on the parameters € and M, in order to establish such
a relationship between the parameters, and prove therefore the main result of Theorem 3.1.5.

Proposition 3.1.4. Ler K C C\ R be a compact set. Then, there is My > 0 such that for all M > M,
ande = M~': K C p(D5,) and for all z € K, the following estimate holds on the whole space
Q° _
‘|R§\4(Z) - eﬂi_RMYT (Z)Tﬂi_||L2(R3)4HL2(R3)4 =O0(M 1)~

The latter proposition means that the Dirac operator ©5, is approximated, in the norm resolvent
sense, by both MIT Dirac operators, acting in Q. and Q° with a rate of O(M ~1) when M tends to oo
and ¢ € (0,¢p).

By combining Propositions 3.1.3, 3.1.4, we arrive at the following main result:

Theorem 3.1.5. Let z € p(Z1), then for M sufficiently large, z € p(D3,), and e = ML, the following
holds:

||R§\/l(z) - RL(Z)||L2(R3)4 =0 (M_1> .

The methodology followed, as in the previous problem of [Chapter 2, Section 2.5] study the pseu-
dodifferential properties of Poincaré-Steklov (PS) operators. The complexity in the current problem is
that these operators take a pair of functions with respect to OU¢ := ¥ U X¢ such that for all zx; € X,
we have X 2 x = xy + e n(zy), where n is the unit normal to the surface 3 pointing outside 2 (see
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Figure 3.1). However, this complication becomes trivial if we fix the parameter €, and consequently, the
results of this chapter become equivalent to those of Chapter 2.

The most important ingredient in proving Proposition 3.1.3 is the use of the Krein formula of the
resolvents of &, and both MIT bag operators, DI{ZA{T and Dg}T (see Section 3.3.2), acting in L?(Q)*
and L?(° )%, respectively. Then, in Proposition 3.4.1, we establish that the convergence (Df\l/&T —2z)7t
toward (Df\l/ﬁT — 2)7! holds for any non-real z, when & goes to 0, and we then obtain, in the norm

Qs Q Qe Q Q_
+—- . + — +
resolvent sense, the convergence of Dy = Dy @ Dygp to 21, = Dygp © Dy

The key point to establish the result of Proposition 3.1.4 is to treat the elliptic problem (D5, — 2)U =
f € L?(R3)* as a transmission problem (where Pitsily, = Pitsil,. and Pitsefl . = Pitseily,.

are the transmission conditions) and to use the semiclassical properties of the auxiliary operator Y9, (z)
acting on the boundary 0U€ = ¥ U ¢, which is constructed by the Poincaré-Steklov operators (see (3.57)
for the exact notation). Indeed, in Section 3.4, we show convergence of the Dirac operator, ©5,, to both

QE
MIT bag operators, DilﬁT and Dy, with a convergence rate of O(M 1) for M = ¢! sufficiently
large. Consequently, using these ingredients, a kind of convergence can be established in Theorem 3.1.5
fore = M1,

Unlike the application in [Chapter 2, Theorem 2.5.2], we mention that in this problem the operator
19, (which is constructed by the Poincaré-Steklov operators) takes a pair of functions with respect to
oue.

We recall, P{ and P, are the orthogonal projections with respect to N* and n, respectively, defined
by

P; .= (IyFifa-N®)/2 and Py := (IyFifa-n)/2. (3.6)

We end this part with the following remark on the projections P+ and P{:

Remark 3.1.2. We define the diffeomorphism p : ¥ — X° such that for all x5, € ¥, we get p(zx) 1=
xy, +en(xy) = x. Then, we have

Ne(z) = —(nop )(z) = —n(zx),
with

P (z) = % (Iy Fifo - N (x)) = % (I4 +ifa - n(zs)) := Py op (z) = Pr(zx).

3.1.1 Definition and some properties of the MIT bag operator.

Recall the definition of the perturbed Dirac operator 5, := D,, + M 1y, where 1 is the

characteristic function of Z/°. Then, we consider the MIT bag operator, D&I’T(m) and D, p(m), acting
in 2 and ¢ , respectively, and defined on the following domains

Dﬁﬁ(m)m = Dpvy, Yoy € Dom(DizﬁT(m)) = {vy € HY(Q,)', P_tyv; =0onX},
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Dy (m)v® = Dy, Vo € Dom(Dygp(m)) = {v° € HY(QF),  Ptsev® = 0on S¢}.

o5 Qs
Then, let the MIT Dirac operator, D\f1 = Df\zﬁT @ Dyjp» acts in Q5 := Q, U QS , and defined
on the following domain

Dom(Dyii7) = {v5 = (07, vy) € HY(Q ) @ H ()Y, Pitger® = 0= P_tyv,},

Qs Q5
with Dyfpv® = (Dy & D_)v° ; Dy = D_ = Dy, for all v* € Dom(D, ;1 ), and where the boundary
condition holds in H'/2(%¢)* and H'Y/2(%)4, respectively. Here Py and P% are the projections given in
(3.6).

Finally, on /¢, we introduce the following Dirac auxiliary operator

Dfrr(m + M)u® = Dy i,
u® € dom(D¥yp(m + M)) = {u® € H'(U)*, Pitgu® = 0 = Pyitgufon U := X U X},

with Dy gy = Dy + MB = —ia- V + (m + M) 3. We note that D, is the MIT bag operator on .

€

05 Q
Theorem 3.1.6. The operators (DIS\)/I-‘I—T7 Dom(DI{}ffT)) (resp. (Dyfip> Dom(Dy 1)) and

(DY, Dom(DZI(’/fIT))) are self-adjoint and we have

(D?ﬁT —2) =1, (Dm —2) " eq, — @ﬁl#(Ai’m)_ltg(Dm —2)teq,, Vz€ p(Dp).

Moreover, the following statements hold true:
(i) Sp(D MIT) SPaisc (D f\lﬂT) C R\ [-m,m]. (Similarlyfor D{p for (m + M) instead 0fm>.

QF Q°
(i)) Sp(Dyrr) = SPess(Dyir) = (=00, =m] U [m, +00). Moreover, if )5 is connected then
Sp(Dyyr) is purely continuous.

(iii) Let z € p(Df\Z/ﬁT) be such that 2|z| < (m + M), then for all f € L*>(U)* it holds that

H(DZﬂI/IEIT 1f‘

71
ey S 11 L2 @eya

uniformly with respect to €.

Proof. The proof of this theorem follows the same arguments as the proof of [Chapter 2, Theorem 2.2.1],
where the estimates are valid uniformly with respect to . |

Definition 3.1.7. Let z € p(D,,) N p(D¥1)), ¢° € PEHY2(29)4, g, € P_HY?(X)* and (h®, hy) €
P HY2(9)* o Py HY?(2)4. We denote by Ep,(2) : P-HY?(2)* — H'(QF)4, respectively, E5,(z) :
Pe H'Y/2(x5)* — H'(QF)* the unique solution of the boundary value problem:

(Dm - Z)UJr =0, in Q+’ (3.7)
P,tE’U+ =09+, on E) ‘

(D — 2)0° =0,  inQ°, »
Pty v® = ¢°, on X°. (3.8)
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3.2. Parametrix for the Poincaré-Steklov operators (large mass limit)

Similarly, we denote by &, 5, (2) : PEHY2(x%) @ Py HY?(Z)* — H'(U)* the unique solution of
the boundary value problem:
(Dm+M - Z)UE =0, in Z/{E,
Pltyeu® =h®, onX°, 3.9
P+tE’LL€ = h+, on Y.

Define the Poincaré-Steklov operators associated with the above problems by

i (2) : PLHY2(2)* — P HY/?(%D)*

9+ = Dm(2)94 = PitsEp(2)P-gy,
A5 (2): PEHY2(S9)Y — PLHY?(%e)!

9= = 5 (2)g° = PitsEny(2)PE g8,

A o(2) s PLHY2 (D) @ PEHY2(39)* — PLHY2(2) @ PEHY?(29)*,  with
Aoy (e ) o= (Potn€5,y () Py Potse€ly iy (2)P5).
In particular, for z € p(D,,) we have the following explicit formulas
G (2) = =PyB(B/2+ Con) ' P-, 5 (2) = —P5B(B/2+C5,,)  P°.
where €, ,, resp. ¢ ,,, are the Cauchy operators associated with X resp. 3.

Remark 3.1.3. We define the Poincaré-Steklov operator, AY, | 4, as a part of the operator A;, . ,,, which
is only associated with 3¢ as follows:

men (2) : PLHY2(29) — PeHY2(39)!
R = AL a(2)h° o= Pltse&r () P

In particular, A, , will be used to establish the approximation in Section 3.2.

3.2 Parametrix for the Poincaré-Steklov operators (large mass limit)

Set £ := (M + m). This section is devoted to study the (classical and semiclassical) pseudodif-
ferential properties of the Poincaré-Steklov operator, \AZ, in order to use it in the application of Section
3.3. The main goal of this section is to study the Poincaré-Steklov operator, A%, as a x-dependent
pseudodifferential operator when « is large enough. Roughly speaking, we will look for a local approxi-
mate formula for the solution of (3.9). The approximation in this section follows the steps of the one in
[Chapter 2, Section 2.4], but since our elliptic problem (3.9), defined on the domain /¢, has two different
boundary (0U® = ¥ U X¢), and we have to take into account the dependence in ¢, so we prefer to study
rigorously the construction of the approximation. Once this is done, we use the regularization property
of the resolvent of the MIT bag operator to catch the semiclassical principal symbol of .AZ,. Throughout
this section, we assume that z € p(D¥;1(k)).

We see that U/° has two boundaries, > and X°. Since the approximation with respect to 3 has already

been established in [ , Section 4], and we therefore have this result in the present problem, it is
then sufficient to establish the approximation of A%, just with respect to ¥.°. For this purpose, and for
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Chapter 3 — On the approximation of the Dirac operator coupled with confining Lorentz scalar §-shell interactions.

simplicity of notation, we set A" := A% with ¢ = h := k! € (0, 1] as the semiclassical parameter,
where A, is defined in Remark 3.1.3.

3.2.1 Reduction to local coordinates

Let us consider A = {(Uy;, Vy,, ;) : j € {1,--+,N}} an atlas of ¥ and (Uy, V,,, 0) € A. We
consider also the case where U, is the graph of a smooth function x, and we assume that {2 corresponds
locally to the side x5 > x(z1, z2). Then, for

Up ={(z5, 2%, x(r5,2%)); (23,2%) € Vo ks o((wg, 2%, x(ag, 28)) = (23, 2%),
Vou =11, 2, y3 + x(W1,%2)); (1,92,3) € Vi, x (0,1m)} C Qy,

with 7 sufficiently small, we have the following homeomorphism:

¢ Vonm — Vo x (e,m)
(‘/1"1271"227‘%%) = (xlEaa'jﬁax% - X(J’JE?:U%))?
and the pull-back
" CF(Vy x (g,m)) — C (V)
v @fv = o .

Now, using the coordinates in (3.3), we let the diffeomorphism ¢. : C*°(V,,,) — (V) defined by
follows:

be (21, T, 73) = d(x, 23, 23) + en(o(zx)) = (xlz +eny, 2% 4 eng, 13 + eng — X(azlz,x%)),

with § = (y1,%2) and n the outward pointing normal to £2,. Now, let n¥ = (¢ ~!)* n be the pull-back
of the outward pointing normal to €2 restricted on V,:

1 _62?1)( nf

@
1y

n?(§) = —=—==5 | “Onx | (y1,12) =
1+ [Vy[? 12 ng

Then, the pull-back (42 !)* transforms the differential operator D,,, restricted on V,,,, into the following
operator on V,, x (0,7):

D, = (¢2")" Din(¢2)"
= —i(a10y, + a20y, — (—103, X — @20z, X + 3)0y, ) + mfB —ic [c10y, + 20y, + €30y,]

= —i( 0y, + a20y,) + /1 + |Vx|2(icc - n¥)(§)0y, — i€ [c10y, + 20y, + €30y,] + mp,

where c, are 4 x 4 matrices having the form ce = (19,, + @20,,) n, for e = 1,2,3.

Thus, in the variable y € V, x (g,n) for 0 < e < 7, the system (3.9) becomes:

<, _ .
{(D,_i 2)u =0, inV, x (g, +00), (3.10)

MPu=g?=gop™,  onV,x{c},
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3.2. Parametrix for the Poincaré-Steklov operators (large mass limit)

where 'Y = Pftg,. ..

By isolating the derivative with respect to 3, and using that (icc - n¥)~1 = —ia - n%, we get

-1
. n¥ o - ne (i
Oyt = <H4 — M) %( — 1010y, — 1020y, + mfP — z —icc10y, — iacQ8y2)u.

V1I+|Vx[? 1L+ |Vx(g
(a- n¥es)

V14 [Vx[?

following Neumann series converges

1+ [V = 1+ [Vx(7)|

Since, is a bounded linear operator, then for £ € (0,e() with ¢( sufficiently small, the

and we obtain

+00 o nPe k+1
Oyl = b 58 —ia10y, — 10y, + KB — ieC10y, — 1€C20y, — 2 |,
Y3 kgo ( 1 ¥ |vx(g)|2> ( Y1 Y2 Y1 Y2 )

in V, x (g, 400),

IPu = g%, onV, x {e}.

Let us now introduce the matrices-valued symbols

Lo(3€) == (¢4 5), and Ll(g):_%(c-g—z), (3.11)

V1I+[Vx(9)]? V1I+[Vx(9))?

with ¢ = (&1,&) € R? identified with (£1,&2,0) € R3 and ¢ = (c1,¢2). Then for ¢ = h := 1/m, the
system (3.10) becomes:

hdy,ul = Lo(§, hDg)u™ + hLy (3, hDg)u"

“+oo © k
g (o n¥es) - ook . ~ h 2
+k§_:1h AT (Lo(@, hDy)u" + hLy (3, hDy)) ", inR? x (e, +00), (3.12)
Pft{w:a}uh = g%, onR? x {e}.

Remark 3.2.1. In this remark, we clarify the first difference in the approximation of this section compared
to that of [ , Section 5]. Indeed, according to the formula of L1 from (3.11), we observe that the
term c - € appears in our case, whereas it was absent in the case of [ |. Moreover, we mention that
this difference plays an important role in the subsequent progression of this approximation, exerting a

significant impact on the symbol class of the solution u".

Before constructing an approximate solution of the system (3.12), let us give some properties of L.
Besides, we mention that L also verifies these properties.
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Lemma 3.2.1. Recall the projections P := (Iy Fif - n?(§))/2, and set

V5 1= —tayaag = G)? %) and S-X = —y5(a-X), VXe¢ R3. (3.13)

Using the anticommutation relations of the Dirac’s matrices we easily get the following identities

ila- X)(a- Y)=iX-Y+S5 - (XAY),
{S-X,a-Y}=—(X-Y)y, [S-X,8/=0, VX,V R

Let n? and € be as above. Then, for any z € C and any T € R3 such that T L n¥, the following identities
hold:

(S -7 —imBla- n?(§))* = (Ir* +m?) L,

PE(S-71)=(S-7)Pf and Pf(ia- n¥) = (ia- n¥)P5.
The next proposition gathers the main properties of the operator L.

Proposition 3.2.2. [ , Proposition 5.1]. Let Lo(y, &) be as in (3.11), then we have

Lo(§,€) = —— |2(zz n?(5) + 5 - (n9(5) A€) - iB(a- n?(7)))

1+[Vx(9)
RO RO

S 71 (0,6) - T (3,6),
TR GE JTEIVGIE
where
¢MW YAE2+1,
R '_W”%’ -
M (5,) = (1ot 27O Bl D))

In particular, the symbol Lo(7, &) is elliptic in symbol class S' (defined in Section 2.1.1) and it admits
two eigenvalues o+ (-,-) € S' of multiplicity 2 which are given by

in?(y) - £ £ AG,¢)

O+ (y7 6) = W )
and for which there exists ¢ > 0 such that
+Ro+(7,£) > (), (3.15)

uniformly with respect to §. Moreover, 11..(7, &) are the projections onto Kr(Lo(7,&) — 0+ (9, &)1a),
belong to the symbol class S° and satisfy:

PETIL(7,8) PE = k5(9,§)PL  and PL14(5,€) PE = ¥O%(7,6) PZ, (3.16)
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3.2. Parametrix for the Poincaré-Steklov operators (large mass limit)

with

6.0 =5 (14 555) 0760 = g5 (5 (070 1 9).

Now, using Lemma 3.2.1 and the properties (3.14), a simple computation shows that
1
Pwﬂi__k@PW:t§X(S-(n¢@)A£D<Pf

L (s (n#(5) 1 €)) PE

PPIL. = k2 P¥ + —
+ 2\

That is, k¥ is a positive function of SO, (k‘ﬁ)*l € 8% and 6% € S° where SU is zero-order symbol class
defined in Section 2.1.1.

3.2.2 Semiclassical parametrix for the boundary problem

In this section, we construct the approximate solution of the system (3.12). For simplicity of notation,
in the sequel we will use y, 7, and Py instead of 7, y3, and P{, respectively. We are going to construct a
local approximate solution of the following first order system:

h8y3uh = Lo(y, hDy)u" + hLy(y, hDy)u"

S kw (Loly.hD,u + hLi(y, kD)) b, in B2 x (¢, +x)
= (L [VxP)R2 Y Y ’ ’ ’

P+t{T:€}uh = g%, on R? x {e}.
This system is equivalent to

p (a mPeg)Ft - R
hayBu _LO(y7hD u +Zh —“Ll(yahD) > in R X(57+OO)7

= (1+|Vx]?) = (3.17)
P—i—t{T:s}uh = g%f” on R? x {5}’

with Ly (y,€) = Li(y, &) + (a - 2es)Lo(y, €).

To be precise, we will look for a solution " in the following form:
W(y.7) = Op (A" = [ ANk, T e

with A"(, - 7) € SY for any 7 > 0 constructed inductively in the form:

My, &) ~ > Ay, € 7).

3=0

. nPea )1
The action of h0y, — Lo — zzo‘i hkw[/ on A"(y,hD,,T)f is given by T"(y, hD,, 7) f,

(1+[Vx?)
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with
T"(y,&,7) = W(0-A")(y, €, 7) — Lo(y, ) A" (,&,7)
—h(Li(y, ) A"y, &,7) — 0 Loy, €) - 9y A"(y,€,7))
— h? (LoAh + Li(y, ) A" + 9 Lo - 9, A" — ide Ly - 9,A" 4 (a - P¥e3)La(y, g)Ah) + ...

Then, by identifications of the coefficients of j, j > 0, we look for Ag satisfying:

{ h&—Ao(y,f,T) = Lo(y,f)Ao(y,f,T),

3.18
Py (y) Aoy, €.€) = Pa(y), G-18)

and for j > 1,

ho Aj(y, €, 7) = Lo(y, ©)A4; (0, &, 7) + (L1(y,€) — i0Lo(y,€) - 9y ) Aj-1(9,6,7)
I=j

+ Z(O‘ : thS)j_l((O‘ : h@03)f/1(y,f) - iagL(y,f) : ay>Al—2(y’£vT)’ (3.19)

122

Pi(y)A4;(y,§,€) = 0.

Let us introduce a class of parametrized symbols, in which we will construct the family A;:
Pr={b(-,-,7) € S™; V(k,1) € N® 7%0Lb(, -, 7) € BFTIST™TRHL € 7.

Proposition 3.2.3. There exists Ay € 772 solution of (3.18) given by:

=)o (ye) U=, Py (y)Ao(y, € €)
AO(y7§7T) =e e k?f (y,f)
eh_l(Tfs)g_ (y,€) 1 (ya €)P+ (y)
k2 (y, €)

_ e (11 _ %) P,

k?

Proof. The proof follows the same argument as [ , Proposition 5.2]. The solution of the differential
system ho; Ay = LoAg is Ag(y, &, 7) = ehil(T*E)LoAg(y, &, ). By definition of o+ and I, we have:

e = MO (y, €) 4 T T (y, ). (3.20)

It follows from (3.15) that Ay belongs to S for any 7 > ¢ if and only if II, (y, &) Ao(y,&,€) = 0.
Moreover, the boundary condition Py Ay = P, implies P (y)Ao(y,&,e) = Py (y). Thus, we deduce

that
Ao(y:6,) = Pyy) — T (1,6) = Prly) + — (0, 6) = (3, 6)

The properties of o_, II_, P_ and k. given in Proposition 3.2.2, imply that (k%) 'II_P_ € S and that
eh ™' Te-() ¢ 772. This concludes the proof of Proposition 3.2.3. |
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3.2. Parametrix for the Poincaré-Steklov operators (large mass limit)

Proposition 3.2.4. Let Aq be defined by Proposition 3.2.3. Then for any j > 1, there exists A; solution
of (3.19) which has the form:

27
Ay, &,7) = e T NN (7Y (r — e)(€))E By (y,€), with By € hS%. (3.21)
k=0

Remark 3.2.2. An important difference in the approximation between the solution A; resulting from this
work and the solution presented in the work [ , Proposition 5.3] lies in the order of the standard
symbol class S™. Indeed, by referring to the form of As (see (3.76) from Appendix 3.5) one can deduce

Py
k¥

that the optimal order of the term I1_aqy (P+ — + H+a0) in Bogisinh SO, and this property is

reflected in the construction of Aj for j > 3. However, in [ , Proposition 5.3], it was possible to
obtain all A; in hiS~I. This discrepancy leads us to deduce the following propositions concerning the
solutions A;.

Remark 3.2.3. We mention that this difference in the symbol class of terms Bjy with that obtained in
[ ] is mainly due to the difference discussed in Remark 3.2.1, i.e., to the influence of c-€ as presented
in the formula of Ly in system (3.12), and subsequently to that mentioned in Remark 3.2.2.

Proof of Proposition 3.2.4. For initialization and calculation of A; and A,, see Appendix 3.5. So,
for A; with j > 1, it is sufficient to prove the induction step. Thus, assume that the A; solution of (3.19)
satisfies the above property and let us prove that the same holds for A, . In order to be a solution to the
differential system

hor Aja (4,6, 7) = Lo(y, ) Ay (v, €, 7) + (L1(y,€) — i0eLo(y, €) - 9y ) A5 (9. €, 7)
I=j+1

+ Y (o 0Peg) T (- APes) Ly, §) — i0eLn(y, §) - 0,) Ay, €, 7),
=2

then, for A; 1 we have:

T ~
Aj+1 = ehilLO(T_E)AjJrl‘T:E + €h71TL0 / 6_h718LO (Ll — 28§L0 . Oy)Aj (y, g, T) dS
€

(a)
-1 T -1 A j T L
o [t S e (o e 0 A7)
€ =2

(0)

— — T —
— eh 1[,0(7—75)/1],_’_1“:6 + eh LrLo / eh 1sLg ((a) + (b))ds.
g
(3.22)
In order to know the form of (a) and (b), let us consider the formula (3.74). Then for the quantity (a),

we have 9
J

ayA] = eh_l(T_6)97 (h_l(T - 5)81/@7 + ay) Z (h’_l(T - 6)<£>)kB]:k
k=0
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Now, applying (131 — Q¢ Lo - 9y) to A;(y, &, 7):

27 k

(Ly —ideLo - 8,)Aj = ap(y)( — z + ¢ - € —icgLy — icx - Gy)ehil(T_E)Q* Z (h_l(T - 5)<£>) Bj
k=0
. 2 k
= (T_E)Q*ag(y)( —z+cza- PP —io- 8y) > (h_l(T - 6)(§>) Bjk
k=0
)
. 2J k
+ el (T’E)Q—ao(y) (c + c3a - h“"a) . fz (hil(r — 5)(§>) B,
k=0
(i)
. 2J k
et e ag(y) (=i~ e = e By ) D (hHT —2)(8) Bia-
k=0
(iii)
Thanks to the properties of o and Bj , (i), (ii) and (iii) have respectively the form:
—1 2j ’
()= " T S (7 = ) (€) By, €, (3.23)
k=0
1 2J _—
(i) = " T ST T = e)(€)F (©) By, €), (3.24)
k=0
2
(i) = e 0D S (s — ) ) LB (1, 6), (3.25)
k=0

with B}, and B, verifying the properties of B, and (¢) Bjx € hS'. Therefore, toghether (3.23),
(3.24) and (3.25) give that

2j+1
(a) = e N (T — ) (€) By (v, €), (3.26)
k=0
where Ej,k: verifies

Bjj € hS' fork=0,...,2j, and Bjoj 1 € hS°.

Similarly, to calculate (b), applying ( — id¢L1 - 8, + (o - 1¥c3)Ly) (see (3.74)) to the identity (3.21)
yields that

(= i0¢Ly -0y + (a- ife;) L) Ay =
h~1 1 2j 1 F
e (T—E)Q—ao(y) (d +e-&—ih (ys—e)f - 8y9_> Z (hi (T —¢) (§>) Bj g,

k=0
(3.27)
with d, e and f defined in (3.75). Let us decompose (b) as the following
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3.2. Parametrix for the Poincaré-Steklov operators (large mass limit)

I=j+1 N _
> (o #fes) (= ideLy - Oy + (- WPes)Lr) Ay a(y,€,7)) 1=
=2

(o nSOCg)j 1(—285[/1 (9 + (a- 71@03) ) 0(y,€))

(m1)
+ > (a- WC?,)JH_Z( —i0¢ Ly - Oy + (o - ﬁSOCZS)Ll)Ale(yag,T))-
>3
(m2)
Since Ay € SY, this gives that
(ml) =& Bog+ Bop + (—ih Y7 — &) f - d,0-)Boy, (3.28)
. an 0 . . . H—P+
where By, Boo € S are respectively the constants obtained by applying d and e to e and
f-0yo— € S'. Thus, (m1) € S1,Vj > 1
In the other hand, and for all | > 3 (i.e., I — 2 > 1), A;_5 has the form
2(1-2)
—1 _ _
Aoy, &) = 790 37 (W (T = )(€) Bz (v, €), (3.29)
k=0
with B;_o, € h 8. Applying (3.27) to the identity (3.29) we get
I=j+12(1—2) +1 )
(m2) =et 790 37 Z (1= )€)" Bir(y. ), (3.30)

=23

with Bj,k € hS! and Bj72(172)+1 € hS°. Therefore, fori = (I —2) > 1and j > 2, toghether (3.28),
(3.30) with (3.26) give that

2j+1 I=j+12(1-2) +1 i}
(a) + (b) = " (7790~ < Y (h (T —e) Bk + > Z (T —e)(€)F Biay + ml)
k=0 >3
. 25+1 1=j—12i+1 .
= b (T—e)e- < Z (h_l(T —¢€) ]7].3 + Z Z (t—¢) >) B;j + ml)
k=0 i>1 =
. 2i+1 _ z:j—l .
=M (T < Yo (W —e)e)t (Bi,k: + ), Bz‘,k) +m1>,
k=0 i>1
Ci gk
(3.31)
with C; j, € hS',and C; ;1 € hS® for k =2i+ 1.
So, using the decomposition (3.20), for the second term of the r.h.s. of (3.22) we have:
T . _ .
- Tho e " s ((a) +(b))ds =€ "I (1) +e I I, (1), 3.32
eh Lrr h=1sL, h= 110 J h~ 170 N i
13
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with

2i+1

T, (1) = e " e /T et sle-—es) ( (W (s =)&) Cijr  + m1> ds.

k=0
For IV | the exponential term is equal to 1 and by integration of s*, we obtain:
2i41 -1
j —hleg_ -1 k1 1{E)
V(r) = et ( > (07 = O T

+((r =o€~ Bog + Boo) —in(r - e>2MTyQ‘Bo,o>

Eax pp BE)

=t Y (T - 2))

k=0

i7j7k

k+1
et <<h1<v =€) (h€) '€ Boo + (&)™ Boo)

then "' 7¢~TI_I7 (7) has the following form:

2i+1 -1
TN (r) = e Pl Y (W (7 - £>)k+1—h<£> Cijp +
Pt k+1
el (Tee-1_ <(h_1(7' —€){€)) (h<§>_15 - Boo + h<§>_1§0,0) (3.33)

2
- i<h_1(7' - 5)<§>) wBo,o)

For ]Ii, let us introduce Py, the polynomial of degree k& such that

T 1 N
/E eMskds = P (e Py(TA) — e**Py(0)), forany A € C*.

Using the above formula, then we obtain:

. B T 2i+1
H{,_(T) — e h leo_ / ol 15(9—Q+)< Z (h_l(s . 5)<§>)k0i,j,k + ml) ds
€ k=0
2j+1 k
— o—h7leo- h{€) h='7(0-—o4) -1
=e ——|e P.(h™ (T —¢)(o- —
kZ:% = Q+)k+1( k(hH T —e)(o- — o+))

_ b tele- —@+)pk(0)) Ciin
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4 oo h Mo —or)r (5 BOOJFBOO)H (¢ F 0,0 Boo
0— — 0+ 0— — 0+
eh
- i—— f-9,0_B
!B

hteo hi(oo—pp)e |y (6 Boo + Booy eh 50 B
e e i————f - 0yo—Boyo]|-
[ ( o0— — 0+ ) (Q——Q+)2f Y 00

With this notation in hand, we easily see that the term eh™ ot H+Hi(7) has the following form:

eh_lT“H_i_]Iﬂ_(T) =

2i+1 k
h - —€ — i (T—e

1, Z _<§> - Cisk (eh Yr )Q‘Pk(h Y —e)(o- — 0+)) — o )Q+Pk(0))

k=0 (Q— Q+)
+ ehfl(T*E)Q—H_‘_ h(éBO’O—_’—BO’O) + 4 (T _ 8) f- ayQ—BO,O — zLQf . 8yQ_B()70

o- — o+ 0- — oy (- —o+)
e (6 Boot Booy . eh o
e 2 — .
+[ ( o- — o+ ) (o——or! ve-Poo

(3.34)
Thus, combining (3.33) and (3.34) with (3.22), (3.32) and (3.20), yield that

2i+1

Ajpy = b2 [HAJ+1TQ +I- Y (h‘l(f - 6)(€>)k+1 ey
k=0

k + 1 i7j7k

2 _
+ 1 ((h_l(T —e)(£)) <h<f>_lf - Boo + h(&)_lffo,o) - i<h_1(7' - 5)(5)) MBOp)

2i41 > k

+HZ

by, [h(—g Boot Buoy -1, _ ey MO TS Bue- B

k+1c,]k(Pk(h (T —¢e)(o- — Q+)))]

o- — o+ o=
eh
—f— f.0,0_B
(- — Q+)2f ve 0’0]
2i+1 k
L h(¢
4 res [HJFA].HlT:E — I, Z %Cm,k (Pk(0)>1
=0 \@— — 0+
_i_eh—l(rfs)ngH_i_ h(M) — i%f‘ayQ—Bﬂ,o :

(3.35)
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We set

2141 h<£>k

- Boo + B
= Z o= oryrrt Gk Pr(0) — Il <h(w)

00— — 0+
ch

_ i _r.90.B
Mo —arp! e 0’0)
(3.36)

belongs to 1 S as a linear combination of products of 1 € SO, h{¢)*(o_ — o4) %1 € hS™!, and of
C;,j, which verify the properties as in (3.31).

Now, in order to have A1 € S, we let the contribution of the exponentially growing term vanish by
choosing

—

4 Aja(y, € 6) = By (4, €).

Then, we obtain

- 2ivl k+1 p(g) L
Ajpr = o [H—Ajﬂms +I Y (BN - 9)(9) k@—ll ik
k=0
2 -1
_ _ : h - Oyo—
+H_<(h Y7 —e)(€)) (&) € - Boo + hi€) ™ Boo) z(h Yr—¢) ) MBM)
2i+1 k
h{€) 1
+1I ————C ik (Pe(h (T —€)(0- — 0
* 2 T gy G Bl )
~1(r— - Boo+ Booy\ ., - h(&)~ 1f 9yo—Bo,o
4+ el Te)e-g h—§ : =) — (b N —¢ Y
(2, i = ) T
eh
—i————f-0y0-Boo]|,
=R
(3.37)
since the boundary condition Py (y)A;1+1(y,§,€) = 0, gives
H—Aj+1(3/7§75) = H—(P+ + P—)Aj+1(y,§75) = H—P—Aj+l(y7€75)g
using the formula of A;41(y, &, 7) above, we get that
P_1I1
P*AjJrl(yvgaE) k +BJ++1 ks
therefore
II_P_1I
M Aja(y. € €) = k—¢+Bf+1k (3.38)

In the other hand, regarding the following two series mentioned in (3.35)

2i+1 2i+1 k
- g(h-1<7—e><s>)k+lh,j§> ey G (B (- e )
(3.39)
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3.2. Parametrix for the Poincaré-Steklov operators (large mass limit)

by calculation, it is easy to verify that for all j > 2 (i.e., ¢ > 1), this quantity can be written as follows

2(j+1)

Y (b o))" B]H . (3.40)

k=0

such that B]Jr1 1+ as a linear combination, belong to h?S%fork =0, ...,25+1and BJJrl a(j+1) € € h?s1.
Finally, the fact that we have the other terms (first and last) of the equality (3.37) of order h S° and
admit the same structure as that of the terms in (3.39), then thanks to (3.38), and (3.36), (3.40), together

with (3.37) give that

o [_P_II 201 —
Ajpi(y, &, 1) = et 79e-(u:d) <T+Bj+1 ) + Z (r—¢) §>)kB;+l7k(y,§)>,

—

where B;Zrl(y, €): Bji14(y,&) belong to h S, and Proposition 3.2.4 is proven with

P11 _—
Bji1o = %Bﬁﬁfzﬁl o, andfork >1,B; 1, = B

1k u

Proposition 3.2.5. Let Aj, j > 0, be of the form (3.21). Then, for any s > —%, the operator A; defined
by

Ays £ (A w38) = o [ A h e € fle)ae

gives rise to a bounded operator from H*(R?) into H53 (R? x (g,+00)). Moreover, for anyl € [0, 5]
we have:

I—|s|+1
WAL, eyt = O,
Proof. The proof of this proposition follows exactly the arguments of [ , Proposition 5.4]. However,
this difference obtained at the rate level on h is because of the presence of a parameter / in the terms B j,
of the solution A;. |

Proposition 3.2.6. Let f ¢ H*(R?) and Aj, j = 0, be as in Propositions 3.2.3, 3.2.4. Then for any
N € N the function u?v = ;VZO hi A; f satisfies:

ANTIRE f =ho uly — Lo(y, hDy)uly

Cea)k—1
_ hth 0L Fuy D, in B x (e oc),
(1+[Vx[*)=
Pl = f, on R? x {e},
(3.41)
with
CE nfes)"l o~ a T : iy€ f
Rhf = / Z —1<h LyAy — 0Ly - 9, Ax ) — i0Lo - Oy Ay | V€ f(€)dE,
( = (1+|Vx[*)
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a bounded operator from H*(R?) into H5+s (R? x (g, 4+00)) satisfying for any | € [0, %}

IR

h = O(ht=lslH Yy, (3.42)

Hs— Hs+§ [
Proof. By construction of the sequence (A;);c{o,...,n—1} as in (3.17), we have the system (3.41) with
RE = Op"(rh(-,-, 7)), such that

k-1

ot (oo

(h'LiAn = i0cLy - 9,Aw ) — i Lo - 8yAN> (y, h&, 7).
=1 (14 |Vx[?) 2
As in the proof of Proposition 3.2.4, L1 Ay has the form (3.24), and agil - OyAn and O¢Lg - 0y Ay have
the form (3.25). Then, r}](, has the form (3.26) (with 5 = N). Therefore, as in the proof of Proposition
3.2.5, we obtain the estimate (3.42). |

Proposition 3.2.7. Let us consider the Poincaré-Steklov operator A" introduced at the beginning of
Section 3.2. For h = ¢ € (0,1] and for all N € N, there is a h-pseudodifferential operator of order 0,
.A’f\; such that for h sufficiently small, we have the following estimate:

ho_ _ An2i+d 1
[|.A NHHl/Q(EE)%H%#(ES) = O(h*"2), foranyl € |0, 2}. (3.43)
Proof. The proof of this proposition follows the same argument of [ , Theorem 5.1]. That is

a consequence of the above Proposition 3.2.5 and 3.2.6, combined with the regularity estimates from
Theorem 2.2.1-(iii). More precisely, let (U, V5, ¢°) achart of an atlas A® of ¥¢, and 1,92 € C§°(Ug).

Let also h° € P_H'/?(X%) be such that £ := (p-')*[th®] € H1/2(V;)4, which can be extended by
0 to a function of H'/2(R?)*. Then, fore = h = x~ ' and N € N, the previous construction provides a
function v, € H'(R? x (e, +00))* which verifies the following system

{(15,%’ —2)ufy = BNTIRE S, inR? x (g, 400),

PPtseul = f°, on R? x {e},

where u?v, Rfjﬁ, are defined in Proposition 3.2.6. Moreover, from the latter, we know that Rifv €
HNTHR? x (e, +00)) with normin H'~, [ € [0, 5], bounded by O(h”é). Consequently, v% = ¢*ult;,
defined on V;’n satisfies

(DH - Z)U]Q/ = hN+1(¢E_1)*(R}]§7fE)7 in VSEDW’
P_tsevly = hoh?, on Ug,.

Recall the definition of the lifting operator £2, given in Definition 3.1.7. We have for h* € P_ H'/2(%¢)%,
EE[bahf] € HY(UF)™. Since P_tsevh = P_ts:EE[1hah?] = 1hoh?, it follows that

v — Exltah] = BN (Digrr (k) = 1) M0 (RN (02 1) [v2h7]).

Thanks to the estimation of [ , Theorem 3.2-(i)], and also by continuing the steps of the proof
of Theorem 5.1 in [ ], we obtain that A?V € hOp"S°(%9) and the estimate (3.43) holds for any
L€ [0, 3]. [
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3.2. Parametrix for the Poincaré-Steklov operators (large mass limit)

At the end of this section, let’s give some pseudodifferential properties of the Poincaré-Steklov
operators, %, and <75, introduced in Definition 3.1.7, in order to use it in Section 3.3.

Remark 3.2.4. We mention that the fixed Poincaré-Steklov operator <y, have been introduced and studied
in details in [Chapter 2, Theorem 2.3.3]. Moreover, it is a pseudodifferential operator of order 0, which
can be considered as a h-pseudodifferential operator, and whose semiclassical principal symbol (in local
coordinate) is given by

S (&N n(zy))

Ph,it (T3, €) = €A n(zs)]

P_, foranyzy € 3.

For <7, we have the following results:

Theorem 3.2.8. Ler z € p(D,,) and xx, € X and recall the definition of Tz from Definition 3.1.2. We
define the Cauchy operator €%° : L*(%°)* — L2(X°)* as the singular integral operator acting as

@y l9)(2) = lim Oo(z —y)g(y)do(y), fordo-ae.z =uwx +en(zy) € X%, g€ L*(E9)".
PNO S |z—y|>p
Also, we consider the Poincaré-Steklov operator <75, given in Definition 3.1.7. Then, ’7:1%;77”7; and

7;_1.@77%7; are homogeneous pseudodifferential operators of order 0, and we have

TG T, = det(1 = W (a9)) 30— + < Oplbu(az, &) + Op(b-a(w. 9))].

Vy A n)

Tteri T = det(1 = W (as)) [ - 0L P2 42 0p( (0. ) + 090 (2,2

where Vy, =V — n(n - V) is the surface gradient along ¥, and — Ay, is the Laplace-Beltrami operator,
with by, blo, resp. b_1, bl_l the symbols of order O, resp. —1.

Proof. The proof follows similar arguments as in [ , Theorem 4.1]. Let f € L?(X)* and consider
the operator ’7;_1%;7“17; f. Using the explicit formula of <7, we have the following connection

—1
D) s T i T f = —PiB(B/2+ T 65, Tf) P

Now, fix a local chart (U, V,¢) of ¥ and let ¢, : ¥ — R, k = 1,2, be a C°°-smooth function with
supp (1) Nsupp(tp2) = 0. For 2y, € X,

(ﬁ‘l%jmﬁf) (z5) = det(1 — eW (zx)) p.v. /|z rentes) sl oz (zs + en(zs) — y)Tef(y)do(y)
= det(1 — W (zx)) p.v. /Im b b (zs +en(zs) —ys —en(ys)) f(y=)do(ys)

= det(1 —eW (zx)) /V O (7s — yz +e(n(zs) — nlys))) f(ys)do(ys).
(3.44)
Now, recall the definition of ¢Z, from (1.11), and observe that

b (x —y) = k(z —y) + alz — y),
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where
iVZZ—mZ|z—y| _ iV2Z—m2|z—y| _ 1
kz(z—y):e—(z+mﬁ+\/22—m2a-x y>+i6 - (z—vy),
|z — y| |z =yl Az — y|
1
a(z —y) = mw(ﬂﬂ—y)'
Using this, it follows that
%y [9)(z) =lim a(z —y)g(y)do(y) + | K (z—y)g(y)do(y)

PNO Sz—y|>p e
=Alg)(z) + K[g)(z).

As |k*(z — y)| = O(Jz — y|~!) when |z — y| — 0, using the standard layer potential techniques (see,
e.g. | , Chap. 3, Sec. 4] and [ , Chap. 7, Sec. 11]) it is not hard to prove that the integral
operator 7._1 K 7. gives rise to a pseudodifferential operator of order —1, i.e., T, ' KTz € OpS™(%).
Thus, we can (formally) write

T, Te = T. "AT.  mod OpS™ (%), (3.45)

which means that the operator A encodes the main contribution in the pseudodifferential character of
For ¥¢ > x = 2y + en(xy), y = ys + en(yx),
(x5 —ys +e(n(zs) — nlys)))
3
lzs — ys +e(n(zs) — n(ys))|

a(zs —ys +e(n(zs) — nlys))) = ia-

Set X = x5 — ys.. Then, |zs, — ys + e(n(xs) — n(ys))| = |X +enX|. And | X + enX |73 yields

X, nX)\-3/2
\XH?”XI*?’=(1+€2)’3/2\X\73<1+2s(1+62)71—< 7 >)
X[
By a series expansion (first order), we get
3 _ |yv|-3 _ 5 (X, nX)
X +enX |7 =X +¢( -3/X] S )

Forany X € U wehave X = (X, x(X)) with X € V and where the graph of  : V' — R coincides with
U. With the same argument in [ , Theorem 4.1] we get that, uniformly with respect to ¢ € (0, gg),
with ¢ sufficiently small

1
(X, G(@s)X)2?

X +enX| 3 = + k1 (X),

with |1 (X)| = O(|X|~2) when | X| — 0,

X, nX
X+ enX|5(X, nX) = 20 1X)

(X, G(ix)X)5/2 + (X, nX)ks(X),

with |k (X)| = O(|X|™*) when | X| — 0,
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3.3. Reduction to a MIT bag problem.

where G (Zy) is the metric tensor. We deduce that

Vo (T AT W1 f]) (ws) = ¥20p(ao (s, €)1 f(zs) + e ¥20p(bo(ws, )1 f (zs) + YLy,
(3.46)

with L a pseudodifferential operator of order —1. Thus, 7.~ ! AT; is a zero-order pseudodifferential opera-
tor. Furthermore, thanks to (3.45) and (3.46) we get that 7:1655557; is a homogeneous pseudodifterential
operator of order 0, with principal symbol given by

1 V
“lgE T.=det(l — eW —a - ——=— 4 ¢ Op(bo(zs:, Op(b_1(zs, .
T 65 Te = det(1 = eW (ws)) 50 —== += Oplbo(ws,€)) + Op(b-(w5,6))|

Consequently, thanks to the relation between €%° and <7, we have that 7.~ .7 7. is a homogeneous
pseudodifferential operators of order O

Tteri T = den(1 = W (as) 5 RN pe 2 0yt ) + Oplt (23,20

Corollary 3.2.9. The Poincaré-Steklov operator <7, is a homogeneous pseudodifferential operator of
order 0, and we have that

ot = 5. V2 h _N;(i(mZ)))Pi + e Op(Bh (5, €)) + Op(tP , (w5, <€)
_ g W An@m)) pe y o On 18, €)) + Op(t (w5, 26)),  with e € (0, 0),

V=D

where Ve is the surface gradient along Y.°, —Axe is the Laplace-Beltrami operator, and b? (rx, &) has
the following form

(s, &) = b (o). (Volas) ")'e). forj e -1}

t
with p(xs) = xx, + e n(xyx) the diffeomorphism from Definition 3.1.2, and (Vp(xg)_l)

1\t —
= ((1 —eW(xy)) 1) =(1—eW(zy)) ' where W (zx,) is the Weingarten matrix, symmetric, given
in Definition 1.5.2.

Proof. The proof of this corollary is a consequence of Theorem 3.2.8 and the arguments of [ ,
Theorem 9.3]. |

3.3 Reduction to a MIT bag problem.

Throughout the section, we denote €2, €2° and U/° the domains as in Figure 3.1 such that ¥ = 09,
¢ := 0QF and OU® = X U X, respectively, and we let N¢ be the outward pointing unit normal to 2° .
We set n the outward unit normal to the fixed domain Q, C R3. Fix m > 0 and let M > 0. Remember
our perturbed Dirac operator

¢ = (D + MBlys)p, Vo € dom(D5,) := H'(R®)*,
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Chapter 3 — On the approximation of the Dirac operator coupled with confining Lorentz scalar §-shell interactions.

where 1< is the characteristic function of /€.

Let us now recall the definition of the MIT bag operator from Section 3.1.1 by DMIT, DMET, and
D¥r, which act in L2(Q4 )4, L2(9Q2)*%, and L?(U4%)* repsectively. The aim of this section is to use the
properties of the Poincaré-Steklov operators carried out in the previous sections to study the resolvent
of ©9, when M is large enough. Namely, we give a Krein-type resolvent formula of the Dirac operator

. QE
57 in terms of the resolvent of the MIT bag operator D?ﬁT @ Dy > and we show that the convergence
of ©%, toward 27, holds in the norm resolvent sense when M and € converge to oo and 07, respectively.

QE
To set up Krein’s formula between the resolvent of D5, and the resolvent of Df\lﬁT @ Dyppp» we will fix
n the only normal acting in our domain. Throughout this section, the projections associated with the
surface X° (i.e., Pi(x), for z € X°) verify the properties of Remark 3.1.2.

3.3.1 Notations

Let z € p(D?ﬁT) N p(D5)- We recall 5 := Q+ U Q=.. We define the resolvents associated with
the operators 09, DMIT, and DMIT == DMIT &) DMIT, respectively, by
o R§(2) := (D5, —2)~ ! L*(R*)* — HY(R?)™%
. RMIT( )= (D%ET —2)7 1t L2 (U)* — dom(D¥ip). o
. f%ﬂ(gf) ) i= Dy =)™ s Q)0 LX) — dom(Dijip) @dom(Digiy) € (822

can be read as the following matrix:

Q% ng\zAJfTTQ+ 0 Q4 Q°
Ryiar = Qs =7z _eq, Ryppra, + 7oz _eqs Bygpros

0 Rygrros (3.47)

_ (S Q
= (RMITTQ+’ Ryprros ),

QE QE .
where R&YT(,Z), R, 1 (%) are the resolvents of Df\)ﬂT, Dy, respectively, and ros , eq:  are defined
below.

We define rQs and eqs _ as the restriction operator in 25 _ and its adjoint operator, i.e., the extension
by 0 outside of 25 _, respectively, by

ra. LR = LX(Q4)* @ L*(Q2)?
W= Tes wi= (ro,w @ ros w) = (ro, ,ros Jw
(3.48)
eos LA(Q2) @ LX(Q4)* — LA(RY)?
v=(v504) = egs (V5,v4) 1= eqs v +eq vy

Let us recall for z € p(D,,), the lifting operators associated with boundary value problems (3.7), (3.8)
and (3.9) are defined respectively, by

En(z): P_.HY2(2)Y — HY (Q.)*
g+ = Em(Z)g+ = q):rzn(Aj—,m)ilp—v
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3.3. Reduction to a MIT bag problem.

Ee (2): PLHY2(25)r — HY(Q)*
9 = En(2)g7 = @5 (AT, Py,

2 a(2) s PLHYA(S) @ PLEY(SR) - HYUe)Y,
with E7 4 g (2) (h, h%) = @F 0y (MG ) Pl + @073 (AT ) T PoRe.
In addition, we also recall the Poincaré-Steklov operators from Definition 3.1.7
A (2) : PLHY2(E) — P HY? (D)
9+ = Gm(2)gy = —PiB(AL )T Pogy,
AE(2): PLHY?(25)* - P_HY?(xe)*
G o a2 = —PBN) P,
Ao (2) s PLHY2(2) @ PLHYV?(39)* — P_HY?(2)* @ P, HYV*(2%)*,  with
Ay (h h®) = (= PoB(AZ ) Pihy, =Py BAY ) P-R7).
3.3.2 The Krein resolvent formula of 125,
Let f € L?(R?)* and set
u =ry=Ry(2)f and v=ros Ry(z)f:= (" ®vy).

Then u® and v satisfy the following system

(D= 2)os = f in 9y,
(D, —2)0° = f  inQ°,
(Dimaym — 2)u = f inlU®,

Pitsvy = Pitssu® on X,
P;::tzeve = Pitzsua on X°.

Using Lemma 1.5.1, it is straightforward to check that the following resolvent formulas hold:

953 _ _ _
Rypr(2) = ras (D — 2) leqs — @57 (AT5,) Htse (D — 2) eqe (3.49)

Q° _ _ _
Ryiir (2) =105 (D —2) ez —ras_eq, @5, 4 (AL ) s (D — 2) " 'ro, eos

—TQs_eQs (I)f;f— (Aj_’ism)_ltzs (Dm — Z)_ITQS_ eQs

R{p(2) = rue (D + MB — 2) leye — 55, (A% ins) Mtous (Do + MB — ) eye.

In the whole following sections, and for simplicity, we’ll use the following notation:

(o,0) := diag(e,e) = (6 ?) .
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Chapter 3 — On the approximation of the Dirac operator coupled with confining Lorentz scalar §-shell interactions.

Now, we set I'y := Pity and 'L := Pity-. Since Ep(2), By, (2) and &, ,(2) gives the unique
solution to the boundary value problem (3.7), (3.8) and (3.9), respectively, and the fact

{F—RI(\Z/ET(Z)TQMC =0, F+RL]\{4€MIT(Z)TUEf =0,
PSRy (2)res £ =0, T2 R (2mef =0,
Then, if we let

o =Tyro Ry(2), ¢ =TZro: Ry (2),

{1/) =T_rye Ry (2), " =T%ru=Ry(2),

it is easy to check that
ve = Ryjin(2)ra, f + Bn(2)0,
v = Ryr(2)res £ + B (2)9°, (350)
u® = R (2)rue £+ Ennn (2)(0, %)
Hence, to get an explicit formula for R5,(z) it remains to find the unknowns (¢, ¢°, 1, .). To do this,
from (3.50) we get
p=I1v; = F+R1S\2/ﬁrT7’Q+f + G (2)1,
¢ = T20° = T° Rypra. ] + o5 ()0
¥ =T u =T Rtr(2)ruef +T-Eo i (2)(9 %),
Y =T = DL R (2)rus f + T+ Ein (2) (00 ).

Using the restriction map 7, and the extension map e, given in (3.48), we get

(3.51)

{ v=eo:(Ryir(2), Rupr(2)ras_f+eas (Enm(2)Po, E5(2)Py ) (T, TS )ru Ry (2) f,
u = Rifer(2)rue f + E5yang (2)(Pr, P) (Do, T rge ) Ry (2) .

Thus, we obtain
e Q4 Q° e
RM (Z) = €Q+RMITTQ+ + €Qe RMITTQE_ + 6M£RMIT(Z)’I"M6
- <Q (B (2)P-, B2y (2) Py ) (D, T )rue + ey €t (2) (Do, Fiw)) R3y(2)

Q° €
= co: Ry (2)ros + eus R (2)rus + By (2)T° Ry (2),
(3.52)

with Ryibs (2) as in (3.47).
Here I'® and Ef;(z) are defined as follows:

Ie: Hl(Q+)4 D Hl(QE_)4 D Hl(ue)4 N H1/2(E)4 @H1/2(E€)4 @H1/2<2)4 @H1/2<25)4
(TQJr, rQe , Tus) — (F_|_’I“QJr FE_TQe_ F_Tus Fi_T‘ua)t7
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3.3. Reduction to a MIT bag problem.

and

£

Q
Bi() = er_ B (2) + e €y aa(2)(Pr, P),
with Eﬁi’ (2) =ros_eq, Em(2)P- +ros eqs B, ()P4 can be read as the following matrix:

Ent PLHY2(S) @ PLHV2(SE) = HY(QL) e HY(Q:)?

(3.53)

Now, applying I'* to the identity (3.52), it yields

I Ry (2) = (]1 — (D ()P, i (2) Py ) — ALy (2)(Pr Pf))FEwa(z) = T ()" Ry (2),
(3.54)

Qe <
with R{qyp(2) := e Ry (2) +eue R& 11 (2). Similarly, we mention that [#7,,(2), 7 (2)] means the
sum of both terms .o7,,, <7, and can be read as the following matrix

QE
Gy T =
(S, ) - P-HY2(2) @ PLHY?(25)* — P HY?(D)* @ HY?(x5)*

Gy P_
(wv ¢s) = («Q{myeg{é)(wa %) = < OP szg()P+> (;;i) .
(3.55)

Using the formula of A5/, the term (I'_, TS )& | 1, (2) is identified with (P_ A7, 5/, P+ AS, 3f) =
(P-, Pp)AG o (2) = (P, 0)AZ Ly (2) + (0, Py) ATy (2).

Now, applying also (H + ﬂﬁi’ (2) + (P, Pp)As, v (z)) to the identity (3.54) we get
QE
PERS (2) = 25 (2) (T + "~ (2) + (P, Py)AS 0 (2) )T Rigre (2),
with 25, (2) : HY2(2)* @ HY/?2(29)* — HY?(2)* @ H'/?(X*)* the following quantity
~1
_ Qs Qs
Zh0(2) = (Is = ™ )P, P i () = Ao (D) (P, P)An () . (356)
From which it follows that,
Ry (2) = Rigr(2) + B3y (2)[ T3 (2)] T Rypr (), (3.57)
with

054 712) = 250 (2) (T+ i (2) + (P, Po) A ().
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Remark 3.3.1. The identity (3.54) has the following matrix form

F+T’Q+ R?W

I'_ros Ry, _

F,TL{ER}GW

FiTUER;:M

I Ryjrro, 0 0 SPo 0\ [Tirg, R,
L Ryprros | o 0 0 0 5P| | Dorgs Ry,
F_R%{/[EITTus m+M (P, P-) m+M (P4, Po) 0 0 I'_ry- Ry,
Fi_R%{/[EITTua m+M (P-‘r’ ) m+M (P+7 ) 0 0 Fims R(]cw

Moreover, if we note by T _ = (Tyrq, T=rqs )t and T = (P_rye T5rye)". Then, using the

quantities of (3.51), we remark that the Krein resolvent formula 3.57 can be also written in the following
matrix

Qs Q. e Qs
ros Ry _ (Ryipres Em' E3 " 0 Anin It IS _Ryprros
r, ] T\ e )T e met— Q5 e pU

where @f ~ is the matrix in (3.55) and =5 i:F are given in the following corollary.

Corollary 3.3.1. Consider the operator =5 (z ) given in (3.56). Then, there is My > 0 such that for every

M > My, h=¢=1/M and forall z € p(DMIT) N p(D5,), the operator Z5,(2) is everywhere defined
and uniformly bounded with respect to M. Moreover, the operators E}:\’j_ (z) and Ej’[ﬂz) defined by

=0 (2): PLH () @ P_H*(X%)* — PyH*(X)'@® P_H(X°)*,

= (2): PLH(X)* @ PLHA (X5 — P_H(X)'@ PyH(X9)4,
which have the following formula

QE

=5 () = (L=t (2)(2) (Poy P Aoy (2) (P P))

=5t (2) = (1= (P, P Agyas () (P P (2))

are bounded for any s € R, and it holds that

—e, £
|| €, $( )‘|PiH*1/2(2)4@131H71/2(25)4*>PiH71/2(2)4@PIH71/2(25)4 S ]., (358)
uniformly with respect to M > M.

Moreover, the Poincaré-Steklov A, |, satisfies the following estimate

|“Ain-i-M’|P+H1/2(Z)4®P_H1/2(25)4—>P_H*1/2(E)469P+H*1/2(E€)4 S M (3.59)

Proof. Set K = m + M and h = xk~!'. The proof of this corollary follows a similar argument as
in [ , Proposition 6.1]. It is based on the pseudodifferential properties of the Poincaré-Steklov
operators <7, and A%.. Since o7, (resp. <7 are a pseudodifferential operators of order 0, see Remark
3.2.4 (resp. Corollary 3.2.9), we can consider it as an h-pseudodifferential operator of order 0 whose
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3.3. Reduction to a MIT bag problem.

principal symbol is given by:

S (€A n(zx))

yh,dm(l‘xag) = |§/\ n(l‘z)| P*a Ty € E)
— )1 o=z
f@h,yifz(m7€) - _ (1 EW( Z)) j (gA (p ( )))P-l-a Y5 g :p(l’E) =25 +€n(l‘z),
(1= eW (2s)) " [|€ A n(p~ ()

where S is the spin angular momentum given in Lemma 3.2.1, £ € R? can be identify with £ =
(€1,&2,0)" € R3, pis the diffeomorphism from Remark 3.1.2, and for x = (&) stands for n¥(%).

On the other hand, Proposition 3.2.7 follows that AZ is h-pseudodifferential operator of order 0 has
the following principal symbol

' S (€A n(p~ (2))) <_P+ 0 ) .
\/((1 —€W(x2))_1£/\ n(p_l(a:)))2+1+1 0 P

Phosas(2,6) = (1 —eW(zg))

Consequently, the symbol calculus yields for all A < hg that
= e e o
(I = 9 ()P P Ai2) — AL (P, P ()

is a ©~!-pseudodifferential operator of order 0.

Now, using the principal symbols of <7, <7, the principal symbol of szin? = can be written as the
following:

. _ | Pt (25,8) 0
e (r5,8) = < 0 Wh,@%,;(P(CUZ)af))

& 0

S (N n(zx)) (1—eW(a ))71
I e e T
Using Lemma 3.2.1, we obtain
z 7%;21, (xEvé)’@h,Ai(xaé) =
P, 0

. (1= W () €A nlos) (1 W)

\/<(1—6W(ch))1{/\n(p—1(3:)))2—|—1+1 ’ (1 —eW(as)) |

Then, it yields
Ig — Wh e (ws,8) Phoas (x,€) — yh,Ag(l’aé)yh o5 (rs,8) =

+

y<Im ryIm
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Chapter 3 — On the approximation of the Dirac operator coupled with confining Lorentz scalar §-shell interactions.

(1— W (zx)) " [€ A n(as)]

Y- ewten)ennpn) w101 " T awem) |

Is +

Thus, =9, is a zero-order pseudoddiferential operator.

Thanks to thej:[ following relationship: :i\fﬂ ) = (Px, P+)=5,(2)(Px, Px), it yields the same
properties for =7, (z) and therefore (3.58) is established.

Regarding the estimate of A2, exploits also the Calderdén-Vaillancourt theorem which shows that for
any operator in h Op"S®(9U*) is uniformly bounded by O(h), with respect to h = £~ € (0,1), from
HY2(0U%)* into HY?(0UF)* — H~Y2(0U%)*, see (2.2). Thus,

S (Vous A n(p~*(x)))
V—rk2Agye + 141
uniformly with respect to x big enough and £ € (0, (). Then we conclude the proof of the estimate by

—1
using that (\/ —Kk 2 Ay + 1+ ]I) is uniformly bounded from H'/2(dU4)* into itself and (Vaye A

HAi - (PJ” Pf)"H1/2(6u5)4ﬁH*1/2(8L{5)4 ’S H_l’

n(p~'(x))) is uniformly bounded from H'/2(814%)* into H—/2(aU%)*. [
Remark 3.3.2. Let Ey"~ from (3.53). Thanks to [BB737, Proposition 4.1 (ii) ], we have that

(Bni () = =B Rz (@) and (€ (=) = -T2 (gﬁg)

£

Q
forany z € p(Dyfit) N p(DY).

3.4 Resolvent convergence to the Dirac operator with Lorentz scalar.

In this section, we gather the necessary elements to prove the main result of this work. The components
of the proof for the main theorem (i.e., Theorem 3.1.5) are dedicated to examining the convergence of the
terms present in the resolvent formula (3.52). It is important to note that this resolvent formula includes
certain terms independent of M and e, namely E,,, <,, and RMITTQ +» which remain fixed and act
within 2. Consequently, our focus shifts to examining the convergence of terms dependent on € but

independent of M, namely RMITrQs and E7, (see, Proposition 3.1.3). Subsequently, we will proceed
to estimate the remaining terms in relation to M and ¢ (see, Proposition 3.1.4).

Proposition 3.4.1. Let ¢ > 0 be small enough, and let = € C\R. We set Q_ := R3\ Q0 the exterior
fixed domain and by 3 = 0Q_ = 084 its boundary. We denote by Riz/ﬁT the resolvent of the fixed MIT
bag operator, which we denote by Dil/ﬁT’ acts in Q_. Then, for any € € (0, g¢) the following holds:

2RI LR o). (60

Qs Q_
Heﬂi Rypr(2)ros —eq Rypgr(2)ra_ ’
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3.4. Resolvent convergence to the Dirac operator with Lorentz scalar.

QE
Proof. The Krein formula for the resolvent R, (from equality (3.49))

[958 _ P _
eq: Ryjp(2)ras = (D — 2) ™" = ez @7 (A75,) M se (D — 2)7,
eq Rijip(2)ra. = (Dm —2)"' —eq_ <I>m,_<AZ D) s (D — 2)7!

m,

yield that

Qe Q_
‘ ‘eﬂi Bypr(2)res — ea_ Byr(2)ra- ‘

LQ(R3)4—>L2(R3)4
- Heﬂ_ (I)fn,—(Ai,m)iltE(Dm - 2)71 — Qs (I)if— (Aifm)iltzg (Dm - Z)il’ L2(R3)4— [2(R3)4
p 2 —1 Z,€ zZ,€ 1 -1
< ”697 (I)m,—(A-hm) Iy, —eqs q)m,—(AJr, ) txe HHl (R3)4— L2 (R3)4 (Dm B Z) ‘ L2(R3)4— H'(R3)4
> . 1 z E Z,E 1
S Heﬂ O (Al m) e —eqe O (AL ) tee H1(R3)4— [2(R3)4
(3.61)

since (D,, — z)~! is bounded from L?(R3)* into H'(R3)%.

To obtain a rigorous estimate of the right-hand side of (3.61), we’ll use the unitary transformation
7: from Definition 3.1.2 and the explicit formula for A%, (resp. A77). Let f,g € L?(R?)%. Since

ts (D — 2) 71 = (®2,)* (resp. tse(Dp, — 2) 71 = (®ZF)* ) by duality and interpolation arguments, we
get that

’<[€§L (bfn,— (ﬁ/Q + %z,m)iltg —eqe (I)f)ff (,8/2 + €=

-1
z,m) tse]f, g>L2(R3)47L2(R3)4
= ‘<697 U (5/2 + ng,m> 71752]% g>

LZ(R3)4,L2(R3)4 o

<€QE (ﬁ/2 L >1tzsf’g>L2(R3)4,L2(R3)4
(824 €om) tnfts(Do— 2 Mra_g)

L2(2)4,L2(E)4_
<<ﬂ/2 + Cﬁim>_17;7;_1tgaf, tse (D, — z)_lrgig>
= ‘<(ﬁ/2 + Céz,m)_ltgf, ts(Dpy — Z)_17“979>

L2(25)4,L2(25)4

L2(E)47L2(E)4 -

((8/2+ TT, TT) T e ot (D — 2) v g)

— |((8/2+%.m) 15, t5(Din — =) Mra_g)

L2(25)47L2(25)4

12 (2)4 7LQ (2)4 o

((8/2+ 7;1%;,717;)_17;1@5 £, T e (D = 2) " 'ros )

L2(2)4, L2 (%) ’

-1
By adding and subtracting the term < (B/2+7;_1‘€Tf557;) T s frts(Dp—2) 71

rQ_g
in the last quantity, we obtain that >L2(E)47L2(2)4
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‘<[eg_¢;,_ (6/2+%em) 15— car 05 (5/2+65,.)  ts:]f.9)

L2(R3)4,L2(R3)4

(312 ) 5 (e ) T 1] st

2 (2)4

[tg(Dm — 2)_17‘97 — E_ltgs(Dm — Z)_IT‘QS_}Q

L2 (2)4

+ H(M TG T T e

12 (2)4 2 (2)4

=71+ Tro.

Now, let € ,,, and 7;_1%2 m Tz from (1.13) and (3.44) respectively. Then, for a fixed p, p > 0such
that p” = min{p, p/ }, the regularity of ¥ and ¢7,, and a combination of the mean value theorem give

|07, (x5, — ys + e(n(zx) — n(ys))) — ¢&(zx — ys)| < ]0¢%,| <eC, with C only depending on z.

We set f-(yx) := det(1 —en(zy))f(ys). On one hand, using the Cauchy-Schwarz inequality, we obtain
that:

Com(ws) = (T7CE, T ) (w5)

</
|zs—ys|>p

< [ |(65u(es = s+ e(nlas) = nlys)) = dhu(en = ) ) |do (o)
+ [ 165 os = ) (o) — S do ().

b (s —ys +e(n(zs) — n(yn))) f(ys) — 5 (2 — ys) f(ys)|do (ys)

On the other hand, Proposition 1.5.3 gives us
det(l — EW(ZL‘E)) =1- 8)\1(1‘2) — 5)\2(11?2) + 52)\1($2))\2($2),

where \1(xy), A2(xy) are the eigenvalues of the Weingarten map W (xy). Then, we get

[fe(ys) — fys)| = |det(1 —eW(ys)) — 1| f(ys)| S ellfllLz(mys-
We conclude that

|| ((gz,m - 7271%2577”7;) ||L2(E)4%L2(E)4 = O(E) (362)

Now, we are going to establish the estimate 7. First, we have that tx (D, — z)_lrQ_ is bounded from
L?(R?)* into L?(X)*. On the other hand, using triangular inequality, we get that

H Kg + Céz,m)_ltg — (g + ﬁ_lcgzmﬁ)_lﬁ_ltzs}f

L2 (2)4

<[l ) - G

L2(2)4

L ! e

L2(Z)4
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3.4. Resolvent convergence to the Dirac operator with Lorentz scalar.

-1
To prove the estimate g1, we let f € L?(X)* and we set h = g + ‘@”Zm) ts. f bounded from L?(X)*

into itself. Then, the Cauchy-Schwarz inequality and the following statement
-1 -1 -1 -1
(Goma) - (Gran) - Qo) () (o)
(3.63)

yields that

5 )

G = H <§ + 7;—1<€§m7;> B (€om — T €2 T)

L2(%)4

B

-1
(5 +7 12,7 1(@em = T Te) Bl gy

L2(D)A—L2(D)4

~

< (G = T 20T ) Bl 2y
5 H ((gz,m - ﬁil%;mﬁ) |‘L2(E)4~>L2(Z)4HhHLQ(E)4 5 H (gz,m - 7;71%27)17;) HL2(E)4~>L2(Z)4

since €., and ﬁ_l‘fj,m’]; are bounded from L?(X)* into itself. Thanks to the estimate (3.62), we get
that g1 = O(e).

To prove the estimate g2, we have for z € X%, the following estimate holds in L2(X)*

ts (D — z)_lrgf — ﬁ_ltga(Dm — z)_lrQs

= O(e). (3.64)

L2(R3)4— [2(D)4

Next, based on (3.44), we immediately get that ’7:1‘52 ., Tz is uniformly bounded from L?(X)* into itself.
Thus, together with (3.62), (3.64), we deduce that 79 has a convergence rate of O(¢).

Now, for the same reasons as those used to prove the estimate g2, subsequently, the fact that we have

—1 —1
we immediately deduce that (6 [2+T 16 m7}) = (5 /2+ ‘Kz,m) + O(e) (see the estimate ¢y for
more details), we obtain the estimate 7.

Thus, we conclude that the statement (3.60) is valid in L?(IR®)*. The proof of Proposition 3.4.1 is
complete. |

Lemma 3.4.2. Ifthe Lorentz scalar is . = 2 (confinement case). We can identify the domain (3.2) by the
Jollowing form

dom(Zr) == {(p1,¢-) € H'(Q)' @ H(Q)", g€ H*()!, Prp_ = Pp, =00on 3},

Q Q_ Q Q_ .. . . ...
and then, 71, = D1+ @® Dy, where Dyjjr resp. Dy iy is introduced in Section 3.1.1 resp. Proposition

34.1.

Proof. Using Plemelj-Sokhotski jump formula from Lemma 1.5.1-(i), and that o = tyu + Cfbm[g],
then we get Prp_ = —BP_P, = 0and P_p, = —3PyP_ = 0. Moreover, as Pro_ + P_p; =
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tyu + Ai}m[g], we have that txyu = —Ai,m[g]- "

Proof of Proposition 3.1.3. For z € p(Zr), we have the following estimate

Q2 Q
Heﬂi Ryp(2)ras + eq, Ryrp(2)ra, — RL(Z)’ L2(R3)4

QF Q Q_ Q_
< Heﬁi Rypr(2)ras + €Q+RMJIrT(Z)TQ+ +eq_Rypr(2)ra_ —ea_ Rypp(2)ra_ — RL(Z')‘

Q° Q_
< HeﬂiRMIT(z)rQi - eﬂ—RMIT(Z)TQ_’

L2 (R3)4

LQ(R3)4
o Q.
‘€Q+RMIT(2)TQ+ +ea Rypp(2)ra_ — RL(Z)‘ 2R3
Then, Proposition 3.4.1 and Lemma 3.4.2 yield the statement (1.22). |
Remark 3.4.1. Forall f € L*(R®)*, g € P, L*(X)* the following convergence holds
Her_E;(z) [Te] - engT;(Z)HLZ(E)AL*)LQ(RS)AL = O(e), (3.65)

where E. is the lifting operator associated with the boundary value problem (D, — z)U = 0 in Q_
with P,U = 0on X.

Proof. Now, let me show la convergence considered in (3.65). To this end, let g := T.g € PJrLz(E6 )4,
then we have

(e B2, (2)[Teg), f) 2@oys — (ea_ Ern(2)g, f)ra@oy
= ‘(69, (ﬁ‘TjR%T(E)rQs_ - F+RK/HT(5)7“§L) Pz

— ~ Q_ z
(7' T5ras ez Ripp(2)ras —ira_eq_ RMIT(Z)TQ—)JC’

< |lgllrzes)s L2

_ Qs - Q- = - Q- -
S| (71 eor Rype(2)ras = To ' Tras e Rypp(B)ra. + T 'Toro: ea_ Ry (2)ra.

Q-
_ F—Q—T'Q,-QQ,RMIT(Z)TQ,)JC‘ L2y

ST T res

Qs Q-
|L2(E)4 eQiRMIT(z)TQif_eQ—RMIT(Z)TQ—f‘ L2 (R34

+|

T 'Torqe —Tyra_ ’

Q_ _
L2(x) ’ ’eQ—RMITTQ— (Z)f‘ ‘LQ (R3)4°

Since I'%. is bounded form L?(Q°)* to L?(X)* for £ small enough, then 7.7'T'S ro- is bounded in

L?(X)*. Thus, together with the boundedness of eq _ Rﬁ}T in L2(R3)?* and the convergence established
in Proposition 3.1.3, we get

’<€QiE5n(z)[7Z L Fyremsy — lea En(2)g, fremsy| Se, forall fe LR

Since this is true for all g € L?(X)*, by duality arguments it follows that

HeQiEim(Z)[,E‘] - leE;w(z)HL2(2)4_>L2(R3)4 = O(e).
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3.4. Resolvent convergence to the Dirac operator with Lorentz scalar.

Lemma 3.4.3. Let K C C be a compact set. Then, there exists My > 0 such that for all M > My, for
e €(0,e0), K C p(D1p(m + M), and for =z € K the following estimates hold:

|ewss R&fer (=) f| EIE [P~ v fe DR,

L2(R3)4 N

V f e AR,

HP Sirr (2)rue f‘

Ir:

—+R%{41T(Z)TUEfH

.- F\mm R

HfHL2(R3 vV fe PR,

H- 1/2(81/{5)4 N

- 1
HeusngrM (2)(1% %@)HLQ(R%‘* S \/M |’1/}H[,2(X))4 HSDHLZ(ZJ)‘L
Y (4, Tep) € PLIA(S) & PIA(SE)Y,

||€usgfn+M(Z)(7/)a HL2 R3)4 S ||¢||H1/2 ||90||H1/2(2)
Y (¢, Tep) € PLHYA(R)* @ P_HY2(59).

Proof. Using the same arguments as in the proof of [ , Lemma 6.1], we can show the above estimates
with respect to M. First, I want to show the claimed estimates for ey« R§j;(2)ry and T2 R¥1p (2) e
For this, fix a compact set KX C C, and note that for z € K and M; > sup,cx{|Re(z)| — m} it holds
that K C p(Dyy a1, ), and hence K C p(D¥;p) for all M > M;. Let f € L?(R3)*. We have that

llewe R¥Grr (2)rue fll 2 ey = || RS (2)70e Fll L2 ey

Now, for rye f € L2(U)* and p € dom(D¥y), then a straightforward application of the Green’s
formula yields that

Dol =@ D)lEaueys + (m+ M2 [l Eagis + o+ ) [P o],

with P4 tge = P_ty + Py ts-. Using this and the Cauchy-Schwarz inequality we obtain that

I(Dfrr — 2)¢ 1% 2oyt = I DXirrellTe ey + \Z|2||s0|!%2<ue>4 — 2Re(2)(Dfur e, ) r2 (et

>||DM1T<P”L2(us)4 + ’Z\2H<P||%2(us)4 - HDMITQOH%? ue)t — 2|Re(z)|2||90H%2 ue)*
(m + M)? 2 2 2
> (T +1m(2)P — [Re(2)P ) llplagueys + - || P2 tors| o

Therefore, taking R¥;r(2)rus f = p and M > My > sup,¢ g {v/[Re(2)[2 — [Im(2)[2 — m} we obtain
the inequality

i ]+ 0 B 5 o it =205
Thus
e B e g S 3 Wl and [0 e | g S I ey
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Since T¢ | := (I'_,T%) is bounded from L?(U?)* into H~1/2(5U%)* for & € (0, 20) with ¢ sufficiently
small, it follows from the above inequality that

‘ri

R%{/IEIT(Z)Tuff

+RZI\J/IEIT(Z)TUEf"H,l/g(auEy; S Hrg—-ﬁ-"L2(L15)4—>H—1/2(8L{5)4 L2(Ue)4

1
S 37 1 r2mays
for any f € L?(R3)%, which gives the last inequality.

Let us now turn to the proof of the claimed estimates for e;=EZ, | 1, (2). Let f, 1 belong to L*(R*)* and
L?(X)*, respectively, and consider the transformation operator 7. defined in (3.1.2). For ¢ € L?(X)%,
we set . = T € L?(X°). We mention that 3(I'_,T% )R () is the adjoint of the oper-
ator £5,,,,(z) + PrL*(2)* @ P_L*(¥°)* — L?(U°)*. Using this and the estimate fulfilled by

(r_,re )RMIT( )rye we obtain that

‘<fa st (2) (W, 0)) r2ways| = (T, T T R (B) 1w f B, ) 12(xys
<[ 7S B (=) e

g2y Nl 2y

< HwHLQ(E)‘l ||90HL2(2)4 7;71‘ L2(9Ue)A— L2 (D) +RMIT( Tus f’ L2(oue)4
1
S NiTi Lf 1| L2 msya 101 2 (sya 1l L2y
So, we get
£ < 1
|‘eu55m+M(Z)<wa 7;90)”L2(R3)4 ~ \/_M ‘WHLZ(E)4 H‘PHL2(2)4
Similarly, we established the last inequality of the lemma andthis finishes the proof of the lemma. |

The last ingredient to prove Theorem 3.1.5 is to show that the second term in the ride hand side of
the resolvent formula (3.57) converges to zero when M converges to oo, (i.e., h = =M -1 0).

Proof of Proposition 3.1.4. Recall the following notations: DMIT = DMIT <) DMIT and RMIT =

QF
Ry @ RMIT, with Q5 = Q, UQS. Let 2 € p(D5,) N p(Dyfip) and f € L*(R3)*. From the
resolvent formula (3.57) and Remark 3.3.1, together give us the following

1R5(2) — eas_Rygiz (2)ras_l2@ayioremey < e Birr (2)rue 1] a oy
| B (225 (2) S TS Rygir (2 2ray_fll2s
1B (025 O B (e ] e e
+|Emn (2)Z5 ()52 RMIT( )TQE_fHL2(ue)4
+ (1€ n (2B (2)m Wi TS R (2)rue f
=S+ Jo+ I3+ s+ Js.

’Lz(U5)4
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3.4. Resolvent convergence to the Dirac operator with Lorentz scalar.

We start with J;. From the second item of Lemma 3.4.3, we get that J; < M —1. Now, thanks to the

~

uniform bound (with respect to M) of = i$ , see Corollary 3.3.1, J3, J3, J4, J5 become as follows

Q° QE
J2 S HEm+ HLz Qs 4” +MHH 1/2(2)4@H 1/2 25)4HFE M-I_T( TQfHHl/2(E)4€BH1/2(ES)47

QE _ B
J3 S, ||Em Z ||H71/2(2)4@H71/2(25)4~>L2(Q‘5 B 4’|F5+RMIT(2)TZ/[E.)C||H71/2(E)4@H71/2(E€)47

J4 5 ||576n+M ||H1/2(E)4@H1/2(2e)4ﬁL2 Ue) 4||FE —RMIT( erHHl/Q(E)‘LGBHl/?(EE)‘*’
Js5 5 ||851+M z ||L2(us)4||«5ym+* HLQ( A 2(xe)4 HF +RMIT(Z)TZ/{8f||L2(E)4€BL2(EE)4'

. Qé‘ -~ QE -~ QE B
Notice that the terms E,,", <%, , and I'. _R, {1 (2) are bounded operators for all ¢ € (0,¢),
everywhere defined and do not depend on M. Now, thanks to Lemma 3.4.3, I'® | R{1.(2)rye and
ey, 4 (2) hold the following estimate

Ir:

—+RIL\I4€1T(2)7"uff’

1
L2 (o) S NiTi 1] 223y

and |1, B0 (2) e 1] 77 1l

H—1/2(oue)4 S
let€ 11 (2) (8, Teo) | ooy < %_ 16112y 11l 2y
|lev=Ern (2) (%, Te)|| o gays S \|¢|\H1/2 1 [1@ll g1z (sys -
Thus, from the above estimates, we deduce that
Je S M7l 2oy, Yk € {3,4,5}.

Moreover, the following lower bound of A7, ,,, see Corollary (3.59),
"-AfnJrM"H1/2(2)4EBH1/2(Z‘5)4—>H*1/2(E)4@H*1/2(28)4 S Mt
yields that Jo < M~1|| ]| £2(r3)4- Thus, we obtain the estimate
Q5 _ _
||R§\4 (Z) - eQi,RM}-T (Z)Tgi—||L2(R3)4—>L2(]R{3)4 SM 1Hf||L2(IR{3)4

And this achieves the proof of the proposition. |

Thus, Theorem 3.1.5 is then obtained by a simple combination of Propositions 3.1.3, 3.1.4.

* * * * * *
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3.5 Appendix

For a better understanding of the construction of the approximation of the solutions A;(y, &, 7) and
the order of the coefficients B; (y, &) as well as the proof of Proposition 3.2.4, an explicit calculation is
presented in this appendix, which aims to obtain an exact form of the solutions A;(y,&, ) for j = 1,2.

For j = 1, we define A (y, &, 7) inductively by

{haTAl(yi,r) = Lo(y, ) A1(y.&.7) + (L1 + (o Pes) Lo — Lo - 9y ) Aoy, &, 7). (3.66)

P+A1(y7§7€) = 07

we have 0¢ Lo (y,&) - Oy = io- R (- Oy) = aop(y) (o - 0y), with ag(y) = ia - n¥. The solution of the
differential system (3.66) is

Ai(y,&,7) = el T Ay (y, € e)
+ eh—lLOT/ e—irlLo(y,E)s (Ll + (a - 7Pe3) Lo — i@gLo(y,ﬁ) . ay)Ao(y,é,T)ds
1>
- ehilLO(T_a)Al(ya 57 5)

+ ehile/ e 0%y (y) (= 2+ e & —iesLo — e By ) Ao(y, €, T)ds
€

= Il + IQ)
where I and I have the following quantity:
I = (6(776)9—(y,E)H_ + 6(7*5)9—(9,5)]_’_[_’_) Ay(y, & ¢),

-
I — ehflLo(y{)T-/ e—hflLo(yf)sao(y)( 4 € —iesly—ia- 8y>z40(y, ¢, s)ds.
3
Now, to obtain an explicit form of I, let’s decompose the quantity e~h'Lo(W:6)s To do this, we have

/ e—hflLo(y,é)sao(y)( —z+c-€&—icsLy —ia- 8y> Ao(y, €, s)ds

£

“hTlse- O 4 e_h%s“(y’g)mr) aO(y)( —z+c-§—icslo —ia- 8y)Ao(y, €, s)ds

k?

. - I_P
ISQ_H_ao(y)(_ZJrC,g_ic?’LO _Z-a,ay) (eh Hs—e)o- k¢+> ds

h
(1)
h

/ (¢
€
i ( —h~lso_ —hils‘g_,'_ . . hil(s—a)g_ H_P+
e II_+e H+)ao(y)(—z—i—cf—263L0—za-3y) e ——— | ds

&€

/ <

&€
/ ‘

&€

- - II_P.
- 1SQ+H+GU(3/)( —zZ+c- f —ic3Lg — i - 8@/) <€h H(s—e)o- +> ds.

(2)
(3.67)
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First of all, note that the quantity
(—z+c-&—icsLy— i - 0y) (ehilg‘(T*E)fm) = ehle-(m2) (a+b-&—ih (1 —e)a- D0 )M,

with 9 € .#4(C) and

a=—-z+c3a-nf—ia-0y and b=c+cza-nfa (3.68)

In_pP
belong to .#4(C). Note also the term « - J, in the quantity a is applies to X2 * in the following

calculation. Now, we want to explain the quantities (1) and (2) given in (3.67). Let’; start with (1):

. . _P
(1) :/6 el 139—11_(1()(@/)(—erCf—Z’CgLo —ia'ay> <eh Hemde- k“"+> ds

= /T e ag(y) (a+ (b-€) —ih (7 —2)a- dy0- ) H_—?ds

- - - Oyo—
= (1 —e)e h 1Q*H_ao(y) (a +b- f) Boo —ih ™Y1 —¢)%e™c" 1Q*H_ao(y)(%)Bo,o,

. II_P
with Boo(y,€) = — 5

Similarly, for (2) we get

e SY.

(2) :/ e_h7159+1'[+a0(y)( —z+4+c-&—icgly —ia- 8y) (ehil(S_E)Q*BQO) ds
&€
= e ch7le- / ehils("*_L’*)HJrag(y) (a +b-E—ih Y s—¢e)a- 8yg,>BO,0ds
€

= e~ h(p_ — 04) M ag(y) (eh_l(gf_ggT B eh_l(gi_m)g) (a to- 5) Boo (370

—i(T —€)a - Oyo— hia-ayg}

+ 5 | £0,0
o- — o+ (o- —o04)

—hio - Oyo—

(0- — 04)?

Putting the formula of (1) and (2) as in (3.69) and (3.70), respectively, in I5. Together, with I;, we obtain
that

+e—chle- eh‘1(97—9+)7H+a0(y) {

et €h71(9‘_g+)aﬂ+ao(y) { 0,0-

Al (ya 67 T) = (ehil(T_E)g_H— + ehil(T_a)ng H—i—) Al (y7 57 E)

LT (y) {<T —e)(a+ (b-€)Bog —ih\(r — &) (MTyQ—)Bo,o}
h
(e~ —o1)

e

+ Meag(y)e" e~ (a+ (b-€)) Boo

—i(T —€)a - Oyo— hia-ayg}
+ 0,0

0— — 0+ (0- —04)?
_ ha-dy0_ - h 11
+ e AL, ag(y) {_iﬁ By — " 1g+(rs)(g+—%;i/)) (aBo,o +b- 53070),
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Thanks to the properties of g4 given in (3.15), and the fact that eh_1(7_5)9+ﬂ+ao(y) is unbounded in
L?({T > €}), then we look A (7, &, ) such that

11 Loy - _
H+A1(y7§,€):h;“0<a+b.§+w

)Boo. (3.71)
00— — 0+

00— — 0+

Thus, we obtain

i ia - Oyo—
Ay, &, 7) =€ TEe {H—Al(y7§75) +h Ilyao(y)(o- — o04) |[a+b-&+ ( _y5+)] 0,0
i - Oyo—
+(r—¢)|II_ap(y)(a+b-&) — H+a0(y)—yg} By o
(0- —o+)
—ia - Oyo—
+h7Y (7 — &) _ag(y) (M)BM}.
2
(3.72)

Calculate of II_ A4 (y, &, €). From (3.72), we get that

h1l,ia i - Oy0—

A 6.0 = TP+ Py &)+ 00 [y gy 000 gy

(0— —o+) (0- —o+)
From (3.66) we have P A;(y,&, ) = 0, then

h 11 - Oy0—

PoAV,€2) = PIL P Ay(y,€,2) + e [y gy T 00 |

(0- —o+) (0- —o+)

Thanks to the relations (3.16), we obtain
hIl_agP4+ o io - Oyo—
I_P_Ay(y,§,¢) = —— (11 ——) {a+b-§+—y Bo,o,
1l ) (0 —0p) \' k¥~ (0- —o4)] ™

and so (3.72) becomes as follows

B P, O¥ b- Oy 0—
Ay &7) = l“‘g’g‘x{h o (P = ) o] [ 255+ 72205
— — O+ -
i - Oyo—
+ (7 —€) |T_ao(y) (a + b~ €) — Maao(y) 2= | Byg
(0- —oy)
-0 0
N — )T ao(y) (%)qu}.

Consequently, we get that

Ar(. &) =" Bio(y, &) + (07 (7 = 2)(0- = 04)) Bua(y, )

+ (A7 = &)(o- — 04)) Bia(y,€) } (3.73)
2

=l e N (h‘l(T —e)(o- — Q+))kBl,k(y’§)’

k=0
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where,

P, o¥ +b- o Oy o—
BLO(y’{) = h [H_ag <P_|_ — -&];—90) +H+a;| |:(CL 5 + (104 yg@ ] BO,O;

(a+b-¢)

Bia(y,§) =h [H—ao(y) (o —ov)

v - Oy0—
Bi2(y,§) = —h H_ao(y)(ﬁ)&w,

with o_ — o4 = —2)\(y,€) € S and 9,0_ € S! identified with (), then By € hS° for k = 0, 1, and
Bl’g S hS~1.
Let’s look at the form of A; for j = 2. To do it, we define A2 (y, {, 7) inductively by

ho- Aa(y,&,7) = Lo(y, ) Aa(y,&,7) + (L1(y,€) — i0eLo(y,€) - 9y ) A (y, €, 7)
+ ((a- APes)La(y,€) — 0 L1y, €) - 0,) Aoy, &, 7).
Py As(y,&,€) =0,
where,
(L1 — ieLo - 9y) (" "o~ =m) = " "o Dag(y) (a+ b- € — b~ (7 — £)a- Do )M,
(= 0Ly -0y + (- n¥eg)Ly) ("o =2am) = (3.74)
et ag(y)(d+ e € —ih (7 —€) f - Do )M,
with 9, a, b were noted in (3.68), d, e, f belong to .#4(C), where d, e and f are the following

d = (cza- 1%)*B — cza- 0Pz —i(c+ cza - w¥a) - 9y, (3.75)
e = (cza- 1P+ (cza- %)) -€ and  f =c+ cza- nPa. '

Then, after a many calculation, we arrive at the following formula
As(y, &) = e (7 (7 = €)(€)) "B (9, €) + (' (r = £)(€))  Baa (v, €)
+ (17 = )(€)  Ban(y, &) + (B (7 = )(€)* Baa(y,€) + (W1 (1 — €)(€)) " Boa(y, ©) }

4
—. phlo-(r—¢) > (h_l(r — 5)<€>)k31,k(ya§)a
k=0

(3.76)
where,

32,4(%5) =h H,ao(y) [%]
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aBip . bB1 o n (- Byo—)Bia

Baalu) = h Toag(y) | G + 2512 + (S0

+h T a(y) [(a ' 81’@_)(31’2)]

(0- —04)(8)

P, 6¢ Bio+ (b-€)Bio+dB OB
Boo(y,§) =h [H_ao <P+— J};(p >+H+a0 [a 10+ (6-¢) (;,OJ:QJr)o,oJr(e €)Bo o

~ (a-0yo-)Bio+ (§)aBii + (§)(b-§) B + f - 8yo-Bop
(Q— - Q+)2
2(&)ar- Byo_B11+2(6)(b-§)Bro+2()*(b-)Bra  6(6)*a-dyo_Biy
_l’_ —
(0— —o04)? (0- — 04)*

i

aB1 + dBo,o

Bas(3:.€) = h Tan(y) | 222

+ bBl,O + BB[)yo

f-0yo-Boo+aBi1+({)B11 | a-9y0-Bip

+ h I ao(y) [

(- —o+) (- —0+)(&)
20 9yo-Bi + (2(€)a + 2(£)*) B n 6($)or - 8yQ—Bl,2]
(0- —0+)? (- —0+)® |
Baa(y,€) = h T_ag(y) [2(;3_1,1&) b321’1 + (g‘(‘fyﬁgigﬂ + (g (-Q@ygg)ioéo
(-9yo-)B11  aBip (b-§)Bi2  3(a-0yo-)Bis
o H*‘“’(y)l (o —0)® (-0 (o—0r) (o -or? ]

with o — o, = —2A(y,€) € St and Oyo— € S'. Then By, € hS%fork =0,1,2, By 3 € h?S~1, and
B274 € h?S2. |

Remark 3.5.1. Using (3.14) and (3.16), then the boundary condition associated with A3 (y, &, ) is the
following

aByo+ (£-0)B1o+ dBoo + (e-&)Boo

H+A2(y7§7 6) - hH+a0 [

(0- — o4)
. (- any)Bl,O + <£>aBl,1 + (& (- g)Bl,l +f- 8yQ7BO7O
(0- —0+)?
L 28a-0y0 Bui + 20 OB+ 26)°(0- OBz 6()°a 940 Bis
(0- —o04)? (o— —o0p)* |
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Chapter e

On the approximation of the o-shell interaction for
the 3-D Dirac operator.

The results presented in this chapter have been the subject of the paper [ J I

Abstract

We consider the three-dimensional Dirac operator coupled with a combination of electrostatic
and Lorentz scalar -shell interactions. We approximate this operator with general local in-
teractions V. Without any hypotheses of smallness on the potential V', we show convergence
in the strong resolvent sense to the Dirac Hamiltonian coupled with a d-shell potential sup-
ported on 3, a bounded smooth surface. However, the coupling constant depends nonlinearly
on the potential V.

Résumé

Nous considérons I’opérateur de Dirac tridimensionnel couplé a une combinaison de J-shell
interactions électrostatiques et scalaires de Lorentz. Nous approximons cet opérateur avec
des interactions locales générales V. Sans aucune hypothése de petitesse sur le potentiel
V', nous montrons la convergence dans le sens de la résolvante forte vers I’hamiltonien de
Dirac couplé a un potentiel d-shell supporté sur 3, une surface lisse bornée. Cependant, la
constante de couplage dépend de fagcon non-linéaire du potentiel V.
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4.1 Introduction

Dirac Hamiltonians of the type D,,,+V, where V is a suitable perturbation, are used in many problems
where the implications of special relativity play an important role. This is the case, for example, in the
description of elementary particles such as quarks, or in the analysis of graphene, which is used in research
for batteries, water filters, or photovoltaic cells. For these problems, mathematical investigations are still
in their infancy. The present work studies the three-dimensional Dirac operator with a singular interaction
on a closed surface . Mathematically, the Hamiltonian we are interested in can be formulated as follows

Dyr = D + By70s = D, + (77]14 + 75)527 1)

where B, ; is the combination of the electrostatic and Lorentz scalar potentials of strengths 7 and T,
respectively. Physically, the Hamiltonian I, - is used as an idealized model for Dirac operators with
strongly localized electric and massive potential near the interface X (e.g., an annulus), i.e., it replaces a
Hamiltonian of the form

H; 7 = D, + Biiz = Dy + (7714 + 78)Bs, (4.2)

where Py is a regular potential localized in a thin layer containing the interface .

In the three-dimensional case, the authors of [ ] were able to show the convergence in the norm
resolvent sense in the non-confining case, however, a smallness assumption for the potential ‘B§, was
required to achieve such a result. On the other hand, this assumption, unfortunately, prevents us from
obtaining an approximation of the operator I, - with the parameters 1) and 7 which are more relevant from
the physical or mathematical point of view. Believing this to be the case, the authors of the recent paper
[ ] have studied and confirmed the approximation problem for two- and three-dimensional Dirac
operators with delta-shell potential in norm resolvent sense. Without the smallness assumption of the po-
tential 5335, no results could be obtained here either. Finally, we note that in the two- and three-dimensional
setting a renormalization of the interaction strength was observed in [ , , 1.

The primary aim of our work is to extend the approximation result explored in [ , Section 8] to the
three-dimensional case. We seek to verify whether the methodologies employed in the two-dimensional
context allow us to establish a comparable approximation in terms of strong resolvent. Specifically, we
aim to achieve this in the non-critical and non-confinement cases (i.e., when 1? — 72 # +4) without rely-
ing on the smallness assumption as stipulated in [ ]. Finally, we also give the Dirac operator coupled
with a combination of electrostatic, Lorentz scalar §-shell interactions of strength 1 and 7, respectively,
which we will denote ID;, ;- in what follows.
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4.2. Model and Main results

Throughout this chapter, for 2 C R? a bounded smooth domain with boundary ¥ := 952, we refer to
HY(Q,C*) := H'(Q2)* as the first order Sobolev space

HY Q) = {p € L*(Q)* : there exists ¢ € H'(R*)? such that ¢|q = ¢}.

Recall that H/2(X,C*) := HY?(X)* is the Sobolev space of order 1/2 along the boundary ¥, and
ty : HY(Q)* — H'/2(X)* is the classical trace operator.

Definition 4.1.1. Let  be a bounded domain in R? with a boundary ¥ = 9. Let (n,7) € R?. Then,
Dy, = Dy, + By 05 := Dy, + (nly + 73)0x; acting in L?(R?)* and defined as follows:

Dyrf = Difr ® Dpf—, forall f € Dom(D,, ) :={f = f+ ® f- € H'(Q)* @ H'(R3\ Q)*:
the transmission condition (T.C) below holds in H'/?(x)*}.

1
Transmission condition : i« - n(tx f1 — tuf-) + 5(17 Iy +78)(tsfy +tuf-) =0, (4.3)
where n is the outward pointing normal to ). |

Recall that for n* — 72 # 0, 4, the Dirac operator (D, -, Dom(D, ;)) is self-adjoint and verifies the
following assertions (see, e.g., [ , Theorem 3.4, 4.1])
(i) Spess(Dy,r) = (=00, m] U [m, +00).

(ii) Spais(Dy,,~) is finite.

4.2 Model and Main results

For a smooth bounded domain 0 C R3, we consider an interaction supported on the boundary
¥ := 09 of Q. The surface ¥ divides the Euclidean space into disjoint union R?* = Q. U X U Q_,
where 0, :=  is a bounded domain and Q_ = R3\ Q. We denote by n and do the unit outward
pointing normal to €2 and the surface measure on 3, respectively. We also denote by fi := f | Q4 be
the restriction of f in Q4 , for all C?—valued function f defined on R3. Then, we define the distribution

s f by
1
(0 f, g) = B / (tsfy +tsf )gdo, forany test function ¢ € C5°(R3)%,
)
where ty, f4 is the classical trace operator defined below in Definition 4.1.1. Now, we explicitly construct
regular symmetric potentials V,, - . € L>®(R3; C***) supported on a tubular e-neighbourhood of ¥ and

such that

Ve m (nly 4+ 78)dx  in the sense of distributions.
To explicitly describe the approximate potentials V;, - ., we will introduce an additional notation. For

v > 0, we define &, := {x € R3, dist(x,X) < v} a tubular neighborhood of 3> with width ~. For v > 0
small enough, >, is parametrized as

Yy ={zz +pn(rx), zx €X and pe (—v,7)} (4.4)
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1
For 0 < e < 7, let he(p) := —h <1—9>, for all p € R, with the function h verifies the following
e \e

1
heL®R,R), supphC (—1,1)and / h(t)dt = 1.
-1
Thus, we have:

€
supp he C (—¢,¢), he(t)dt =1, and i1_r}r(1] he = 0o in the sense of the distributions,  (4.5)

—&
where 0 is the Dirac J-function supported at the origin. Finally, for any ¢ € (0,), we define the
symmetric approximate potentials V;, ;. € L (R3, C**%), as follows:
By he(p), if xz=uzx+pn(zy) e,

4.6
0, if zeR\%,. (46)

VT],T,E (:L') = {

It is easy to see that lim._,o V;, . = B, 0%, in D’ (R3)4. For 0 < ¢ < ~, we define the family of Dirac
operator { &, - } as follows:

Dom(&), ;) := Dom(Dy,) = H'(R*)*,

477
Enre) = Ditp + V- op,  forall p € Dom(&, 7). “.7)

The main purpose of the present chapter is to study the strong resolvent limit of &), ;. at ¢ — 0. The
following theorem is the main result of this chapter.

Theorem 4.2.1. Let (n,7) € R?, and denote by d = n?> — 72. Let (), 7) € R? be defined as follows:

tanh(v/—d/2)

[ ) lfd < 0, then (77,’?') = (\/__—d/2)(7’],7')7
o ifd=0, then (7,7) = (n,7), (4.8)
e ifd > 0 such that d # (2k + 1)*7, k € NU {0}, then (7},7) = M(n,r).

(Vd/2)
Now, let &, ;- be defined as in (4.7) and Dy > as in Definition 4.1.1. Then,

Enre g Dp 7 in the strong resolvent sense. 4.9)

Remark 4.2.1. We mention that in this work we find approximations by regular potentials in the strong
resolvent sense for the Dirac operator with §-shell potentials &, ;. in the non-critical case (i.e., when
d # 4) and non-confining case, (i.e., when d # —4) everywhere on 3. This is what we shall prove in the
proof of Theorem 4.2.1.

4.2.1 Tubular neighborhood of X

Let Q) C R3beabounded domain with smooth boundary ¥ parametrized by the family {0;,U;,Vj, Yies
with J a finite set, Uy C R?, V; C R, X C Ujey Vjand ¢;(U;) = V;NE C £ C R* forall j € J. We
set s = ¢; (zx) forany xy; € ¥. We set ng = no¢: ¥ — R? the unit normal vector field which

points outwards of ).
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For v > 0, X, (4.4) is a tubular neighborhood of Y of width . We define the diffeomorphism @,
by:

Dy Upy x (—7,7) — R?
(s,p) = Py(s,p) = &(s) + pn(e(s)).

For ~ be small enough, ®4 is a smooth parametrization of X. Moreover, the matrix of the differential
d® of @4 in the canonical basis of R3 is

dDy(s,p) = (016(5) + pdn(@19)(s)  Dae(s) + pdn(a0)(s) ns(s)). (4.10)
Thus, the differential on Uy, and the differential on (—, y) of ®4 are respectively given by

ds®y(s,p) = 0;0j(s) — pW(xx)0;¢;(s) fori=1,2and xy € 3,

4.11)
dp(I)¢>(S7 p) = 77,(;5(8)7

where 0;¢, ng should be understood as column vectors, and W (xy;) is the Weingarten map defined as in
Definition 1.5.2. Next, we define

Pyi=(2,1) 18y — Usy CR% 2y(0(s) +pn(0(s)) = s € B, s = 6(s),
P1= (251), 05, (1) Pu6ls) +pldls) =

Using the inverse function theorem and thanks to (4.10), then we have for x = ¢(s) + pn(¢(s)) € X,
the following differential

VP(x) = (1—pW(s)) 'ts(s) and V2, ()= ng(s), (4.13)

with t¢(8) = 0;p(s),i=1,2.

4.2.2 Preparations for proof

Before presenting the tools for the proof of Theorem 4.2.1, let us state some properties verified by
the operator D, .

Lemma 4.2.2. Let (1,7) € R?, and let D, ; be as in Definition 4.1.1. Then, the following hold:
(i) If n? — 72 # —4, then there exists an invertible matrix Ry, + such that a function f = fL @ f_ €
HY(Q)* @ HY(Q_)* belongs to Dom (D, ;) if and only if ts f+ = Ry stsf—, with R, . given
by

QN

2

QN

-1
Ry = (L - (nL+78) (L+ (nls+ 7). (4.14)
(ii) Ifn* — 72 = —A4, then a function f = f+ & f— € H'(Q4)* & HY(Q_)* belongs to Dom (D, ;)

if and only if

(u4—i0‘2'”<nﬂ4+m>)tzf+=o and (H4+m%<nﬂ4+ﬁ7>)t2f-:°~
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Proof. Using the transmission condition introduced in (4.3), then for assertion (i): forall f = f. @ f_ €
Dom(ID,, ), we have that

_ 1 _ 1
(W 5 (s Tﬁ))t2f+ = (104 =5l 75))t2f—-
Thanks to properties in (1.3) and the fact that (ia. - n) ™! = —ia - n, we get that

(]I4—M)tgf+: (H4+M>tgf_, (4.15)

with M a4 x 4 matrix has the following form

M =" L 4 pr),
thus (4.14) is established.
Furthermore, as
di=n?—12# -4, M?= —%]L;,
and (I, — M)(I; + M) = #h,
then (I, — M) is invertible and (I — M)~! = 1 i d(]I4 + M).

Consequently, using (4.15) we obtain that ¢ty fy = R, ts f_ which R, ; has the following explicit
form

4 4—d )
R"%"’ = m( 1 ]I4 + - n(nh + Tﬁ)) . (416)

For assertion (ii), one just has to multiply (4.15) by (I + M) we get

(Is + M)*tsf- =0 and (I4 — M)*tsfs =0.

This achieves the proof of Lemma 4.2.2. |

4.3 Proof of Theorem 4.2.1

Let {&)) ¢} c€(0,y) and D 7 be as defined in (4.7) and Definition 4.1.1, respectively. Since the singular
interaction V;, - . are bounded and symmetric, then by the Kato-Rellich theorem, the operators &, . are
self-adjoint in L?(R?)%. Moreover, we know that D;, ; are self-adjoint and Dom(D; 7) C H(R?\ £)%.
Although the limiting operators and the limit operator are self-adjoint, it has been shown in [ ,
Theorem VIIL.26] that {&), - }.¢(0,) converges in the strong resolvent sense to D4 » as ¢ — 0 if and only
if it converges in the strong graph limit sense. The latter means that, for all 1) € Dom(IDj +), there exists
a family of vectors {c }.¢(0,4) C Dom(&), - ) such that

() im¢e = and  (b) lim & - ctpe = Dys¢p in LA(R)™. (4.17)
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Let ¢ =14 ®v¢_ € Dom(D; ;). From (4.8), we have that
d=7?— %2 = —4tanh®(vV—d/2), if d<O0,
d=1?—+2 = 4tan®(Vd/2), if d >0,

d=n>—%2=0, if d=0.

>

In all cases, we have that d > —4 (in particular d # —4). Then, by Lemma 4.2.2 (i),

tsy = Ry ststp—, (4.18)

where R ; are given in (4.16).
Using the Definition 4.1.1, we get that tx¢)1 € H1/2(2)4.

o Show that

el nBnr = Ry +. (4.19)

Recall the definition of the family &, ; . and V, ; . defined in (4.7) and (4.6), respectively. We have that
(i -nBy ) = (ia-n(nly + 76))* = —(n? — 7%) = D?,  with D = /—(n? — 72) = V—d.

Using this equality, we can write: e’ ™51 = ¢e=PII_ 4 ePII1, with £D the eigenvalues of ic - nBy -;
and II. the eigenprojections are given by:

i - nBy - )

1
I = -(I4 £
+ 2(4 D

Therefore,

e(ia-an,r) — e’ + e P Iy + i nB??ﬂ' el —e P
2 D 2

sinh(D)

= cosh(D)Iy + (i - n(nlly + 75)).

Now, the idea is to show (4.19), i.e., it remains to show

4 (4—d_ sinh(D)
o I -n(nl T — cosh(D)Iy — . I =0. 4.20
4—|—d< 1 4+ ia n(n4+rﬁ)) cosh(D)Iy 5 (it - n(nly + 76)) (4.20)
4—d 4 inh(D
To this end, set U = =~ — cosh(D) and U = o (D) . If we apply (4.20) to the unit vector
44d 4+d D

e1 = (1 0 0 0)%, then we get that $f = U = 0. Hence, (4.20) makes sense if and only if

SO

4 —
cosh(D) = and
4+

sinh(D) 4
,T) = (7, T).
o 7) 4+d(n )

S
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Consequently, we have Ry » = glanBy, -

inh(D
Moreover, dividing sinh(D) by (1 4 cosh(D)) we get that
. ., sinh(D) 1
(T}, T) - 1 _|_ COSh(D) D/2 (777 7—)'
) . 0 sinh(#) ,
Now, applying the elementary identity tanh(=) = —————, forall € C\ {i(2k + 1)7, k € Z}.

27 7 1+ cosh(0)
We conclude that
tanh(v/—d/2)

\/__—d/Q(n,T) = (n,7), ifd<0,

1
and so, for d > 0 we apply the elementary identity —itanh(if) = tan(6) forall§ € (C\{7r(k:+§), keZ},
then we get that

tanh(y/—d/2) _ tan(v/d/2)

V—d/2 Vdi2 o
t d/2
Hence, we obtain that %\//_2/)(17, 7) = (#,7) ifd > 0 such that d # (2k + 1)?>72. Consequently,
the equality e’ "Bn.r = Ry > is shown such that the following parameters verify:
tanh(v/—d/2) )
——(n,7) = (9,7), ifd <0,
w17 (n,7) = (7, 7)
tan(v/d/2) . (4.21)
o ———“(n,7)=(n,7), ifd >0,
N (n,7) = (A,7)
b (7777):(777%)7 ifd=0.

Moreover, the fact that ff 2 he (t)dt = 1 (see, (4.5)) with the statement (4.19) make it possible to write

exp l( —1 _i he(t) dt) (- an,T)] ts) = exp l(z /06 he(t)dt) (- nBy, ;) | tsth—. (4.22)

e Construction of the family {1be }.c(0,y)- Forall 0 < & < -y, we define the function H. : R\ {0} — R
such that

&€
/ he(t)dt, if 0<p<e,
p
— 4
He)=9 _ [T p.yat, if —e<p<o, (4.23)
—&
0, if |p[ > e.

Clearly, H. € L*°(R) and supported in (—¢,¢). The fact that ||H.||r~ < [||h]|1, we get {H.}c is
bounded uniformly in €. For all £ € (0, ), the restrictions of H. to R are uniformly continuous, so
finite limits at p = 0 exist, and differentiable a.e., with derivative being bounded, since h. € L>(R,R).
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Using these function, we set the matrix functions U, : R3 \ ¥ — C**% such that

eiomBnr He(Z1(2)) if g e¥,\ 3%,

e L®(R3, C%), (4.24)
Iy, if zeR?\ X, ( )

U (z) := {

where the mappings &, is defined as in (4.12), and X is a tubular neighborhood of ¥ of width . As
the functions U, are bounded, uniformly in &, and uniformly continuous in ), with a jump discontinuity
across X, then Vry € ¥ and y+ € )4, we get

Unlog) o=, lim Te(y-) = exp [Z(/O he(t) dt) (o - n(es)) By
0 (4.25)
Uo(as) == lim Ue(yy) = exp| —i( _Ehg(t)dt)(a-n(xg))BmT}.

Y+ —ITx

Thus, we construct ¥ by ¥ = . + ® Y — := Ugp € L2(R3)*%,

Since U, are bounded, uniformly in ¢, using the construction of ). we get that 1. — ¢ := (Us — I4)1.
Then, by the dominated convergence theorem and the fact that supp (U. — 1) C |X.| with [X.] — 0 as
e — 0, it is easy to show that

e — ¢ in LA(R?)%. (4.26)
e—0
This achieves assertion (a).

e Show that 1. € Dom(&, ,.) = H(R3)* This means that we must show, forall 0 < ¢ < v,
() Yoz € H'(Qx)! and (i) totpe 4 = tu - € H'2(D)

Let us show point (i). By construction of 1., we have ¢. € L?(R3)*. It remains to have 0;U, € L2(R3)4,
for j = 1,2,3. To do so, recall the parametrization ¢ : U — ¥ C R? of X defined at the beginning of
Section 4.2.1 and let A a 4 x 4 matrix such that A(s) := ic - n(¢(s)) By, for s = (s1,s2) € U C R2
Thus, the matrix functions U, in (4.24) can be written

A(Zy(z)He (P 1 () if AN

e , if ze ,

Ue(z) = g\ € L®(R3,CPY), (4.27)
Iy, if zeR’\ X,

where &, is defined as in (4.12).

For j = 1,2,3, suppd;U. C X.. Furthermore, it was mentioned in [ , Eq.(4.1)] that for all

x € 3.\ ¥, 0;U. can be written as follows

0U.(z) = / 1 [exp(zA%(x))Hs(%(x)))aj (A(Z4(@) Ho(2 1 (x))) x
(4.28)

exp((1 - z)A(%(az))HE(%(x)))] de.
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Letx = ¢(s) +pn(¢(s)) € X, and recall the definition of the mappings 4 (z) and &, (x) introduced
in (4.12). Based on the quantities (4.13) (with s = P4 () and p = & (x)), we get that

0;(A(Po(a) Ho(21(x))) = 0.A() (1 — pW ()~ (t0(5));Ho(p) — Als)he(p) (n(5));. (4.29)
Therefore, 0;U. has the following form

9jUs(x) = —A(s)he(p)(14(s));Ue (2)

1 (4.30)
+ [ AO 9, A()(1 = PV ()7 (t4(5)); H (p)] - AOHD) gz
0
Set by K, ; the second term of the right part of equality (4.30), i.e.,
1
E.; = / AP 9 A(s)(1 — pW (s)) " (ty(s));He(p)] et AH®) gz, (4.31)
0

Then, thanks to Proposition 1.5.3, the matrix-valued functions [, ; are bounded, uniformly for0 < ¢ < 7,
and supp E. ; C X.. Moreover, we have U, and 0;U. € L>(Q4, C**4). Hence, for all 1o € H'(Qy)*
we have that 1. + = U.hy € H!(Q4)* and statement (i) is proved.

Now, we show point (ii). As 1.+ € H'(Q4)* we get that txth. + € HY/?(X)% On the other hand, it

have been showed in [ , Chapter 4 (p.133)], for a.e., xx, € X and r > 0, that
bty s(s) = lim —— boly) dy = lim —— U.(y)v(y)d
ry) = lim ——— =lm —— )
PR T B B s 0 Jasosasn T 0 [Blas, )] Josnnss

and so, similarly,

. 1
Ue(25)tsts (z5) = Lim Bl Jouns )Ua(x@w(y) dy.
) xry,T

As U. is continuous in O, we get txt). 4 (r5) = Uc(23)tst)s (vs). Consequently, (4.22) with (4.25)
give us that txt. | =t — € HY?(X)%. With this, (ii) is valid and v. € Dom(&), ;).

To complete the proof of Theorem 4.2.1, it remains to show the property (b), mentioned in (4.17).
Since (&, .- — Dy +¢) belongs to L*(R?)4, it suffices to prove the following:

Enretes —Dpstpe —= 0 in L2(Q4)2 (4.32)
To do this, let ¢ = ¢ @ ¢_ € Dom(ID; 7) and 9. = Y. + ® Ve — € Dom(&), 7). We have

@@77,7',81/}8,:& - Dﬁ,?l/}:t = —ia - v1/15,:|: + mﬂ¢a,:|: + Vn,r,ewe,:t + i - VI/J:I: - mﬁibi
= —ia - V(Uaf‘p:l:) + 1o - V"lp:l: + mﬁ([Ue - ]14)%: + Vn,r,ews,:l:

3
= —i 3" o5 [(OUe)x + (Us — L)0jz] + mB(Ue — La)vs + Vi rethe .
= (4.33)
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Using the form of 9;U. given in (4.30), the quantity —i Z;’:l a;(0;Uc )14 yields
3 3
—1 Z aj(ajUs)wi = —1 Z Oéj [ — o - n‘/:,%—[-’g njUg¢i + Es,jwi]

——(a-n) nTswsi Zzaj ,ﬂ/’i

= _Vn,T,ewe,:l: + Rewﬂ:y

where E. ; is given in (4.31) and R, = —i Z?Zl o;E. ;, a matrix-valued functions in L™ (R3, CH4),
verifies the same property of [E. ; given in (4.31), for € € (0, ). Thus, (4.33) becomes

3
Epretet — Distbs = —i Y o [(Us — 1)dh+] + mB(Ue — Iy)hs + Reth.
=

Since ¢+ € H'(Q4)*, (U, — 1) and R, are bounded, uniformly in e € (0,~) and supported in ¥, and
|X¢| tends to 0 as € — 0. By the dominated convergence theorem, we conclude that

Epretes —Dyszte —> 0, holdsin L3(Q4)4, (4.34)
E—
and this achieves the assertion (4.32).

Thus, both conditions mentioned in (4.17) (i.e., (a) and (b)) of the convergence in the strong graph
limit sense are proved (see, (4.26) and (4.34)). Also, note that the latter remains stable with respect to
bounded symmetric perturbations (in our case m3(U, — Iy) with m > 0, so we can assume m = 0).
Hence, the family {& }.¢ (o ,) converges in the strong resolvent sense to Dy + as € — 0. The proof of the
Theorem 4.2.1 is complete. |
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Chapter

On the self-adjointness of two-dimensional relativis-
tic shell interactions.

In this chapter, we describe the results obtained in article [ | in collaboration with
Badreddine Benhellal and Konstantin Pankrashkin.

Abstract

In this chapter, we discuss the self-adjointness of the two-dimensional Dirac operator with
a transmission condition along a closed Lipschitz curve. The main new ingredients are
an explicit use of the Cauchy transform on non-smooth curves and a direct link with the
Fredholmness of a singular boundary integral operator. This results in a proof of self-
adjointness for a new range of coupling constants, which includes and extends all previous
results for this class of problems. The study is particularly precise for the case of curvilinear
polygons, as the angles can be taken into account in an explicit way. In particular, if the curve
is a curvilinear polygon with obtuse angles, then there is a unique self-adjoint realization
with domain contained in H 2 for the full range of non-critical coefficients in the transmission
condition.

Résumé

Dans ce chapitre, nous discutons de 1’auto-adjonction de I’opérateur de Dirac bidimensionnel
avec une condition de transmission le long d’une courbe de Lipschitz fermée. Les principaux
nouveaux ingrédients sont une utilisation explicite de la transformée de Cauchy sur des
courbes non lisses et un lien direct avec le caractere de Fredholm d’un opérateur intégral de
frontiere singulier. Il en résulte une preuve de 1’auto-adjonction pour une nouvelle gamme
de constantes de couplage, qui inclut et étend tous les résultats précédents pour cette classe
de problemes. L’ étude est particulierement précise dans le cas des polygones curvilignes, car
les angles peuvent étre pris en compte de maniere explicite. En particulier, si la courbe est un
polygone curviligne avec des angles obtus, alors il existe une réalisation unique auto-adjointe
avec un domaine contenu dans F pour toute la gamme des coeflicients non critiques dans
la condition de transmission.
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5.1 Introduction

Dirac operators with J-interactions supported on general hypersurfaces have been actively studied
since the appearance of the paper [ ]. Due to the presence of distributional coefficients, the
self-adjointness of such operators requires special attention, and it was seen by many authors (primar-
ily for the three-dimensional case) that the self-adjointness domain can be dependent on the coupling
constants and the smoothness properties of the hypersurface and that it may lead to unusual spectral

properties [ , , , , ]. The paper [ ] initiated the study of
the two-dimensional case, and for the case of smooth curves a very complete spectral picture could
be found, which was extended in [ ] to a more general class of interactions. Much less atten-

tion was given to the case of non-smooth surfaces and curves. In the present work, we discuss the
self-adjointness of two-dimensional Dirac operators with J-interactions supported on closed Lipschitz
curves (in particular, on curvilinear polygons). Our results complement those obtained in the recent
papers [ , ] and provide precise ranges of coupling constants and corner openings for
which the domain of self-adjointness can be given explicitly. Compared to the preceding works, we
employ two new technical ingredients: the explicit use of the Cauchy transform on non-smooth curves
and a characterization of the Fredholmness for boundary integral operators using the approach of [ 1.

Now let us pass to precise formulations. Through the text we use the Pauli matrices

(01 (0 =i (1 0
A= 1 0 27 o) 7 o0 21

and denote by I the 2 x 2 identity matrix. Let m € R. The two-dimensional Dirac operator with mass
m is the formally self-adjoint differential expression

Dy i CP(R%2,CYH 5 f = —i(0101f 4 090af) + mosf € C(R?, C?),

and it naturally extends to a continuous linear map in the space of distributions D’({2, C?) for any open
set Q C R2. It is well known that the operator

A: f Dnf, Dom(A)=H'(R? C?), 5.1

(the free two-dimensional Dirac operator), is self-adjoint in L?(IR?, C?) and has the absolutely continuous
spectrum
Sp(A) = Speont (A) = (=00, =|m|] U [|m], +-00),

and it occupies a central place in relativistic quantum mechanics [ ]. We will be interested in the
study of some special perturbations of A.
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Namely, let 2, C R? be a non-empty bounded open set with Lipschitz boundary. Denote
Yi=00,, Q_ :=R?\Q,.

For (g, 1) € R? we would like to discuss self-adjoint realizations in L?(R? C?) of operators given
formally by

[+ D f + (ela + pos)is f, (5.2)

where dy; is the Dirac -distribution supported on 3. The last summand can be considered as an idealized
model of a relativistic potential concentrated on %), and the constant € resp. p measures the strength of
the electrostatic resp. Lorentz scalar part of the interaction. The formal expression (5.2) can be given a
more rigorous meaning as follows. First, for any non-empty open set 2 C R? consider the space

H(o,Q) := {f € L*(Q,C?) : Dpf € LX(Q,CY)},

which is just the domain of the maximal realization of D, in L?(£2, C?) and becomes a Hilbert space if
equipped with the scalar product

<f79>H = (f, >L2 Q,C2) + (D f, Dmg) 12 (Q,C2)-

For s > 0 let H*(§2, C?) be the usual fractional Sobolev spaces of order s on 2 (consisting of C2-valued
functions), and we set
H%(0,Q) := H(o,Q) N H(Q,C?),

which is a Hilbert space with the scalar product

(fs D) 50,0 = {f, D H@0 T ([ 9) 1 (0,02)-

For what follows it will be convenient to use the identification

H(UaRQ\E)ZH(UaQ-i-)@H(JvQ—)? f':(f—&-,f—)a

with fi being the restriction of f on §), as well as the analogous identifications for H*(R?\ ¥, C?) and
H*(0,R?\ ¥). We will also use the shorthand notation

2
0T =101 + 202, x = (x1,12) € R

from the anticommutation relations (1.6) one easily obtains (o - )2 = |z|?I; for all z € R

It is known that for any f € H (o, R?\ X) the boundary traces (o - v) f+ on ¥ are well-defined as

functions in H~ 3 (X); remark that we keep the same symbols for the boundary traces for better readability.
Denote by dx: f the distribution

(0sf, ) :—/E%cpds, p € CZ(R?),

where ds means the integration with respect to the arclength. An application of the jump formula
(distributional derivative for functions with discontinuities along ) for a function fshows the identity

Dpf = (Dinfy) ® (D f-) +i(o-v)(fy — f-)ds, (5.3)
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where v = (v, 1/2) is the unit normal on ¥ pointing to €2_. Then it follows that the right-hand side of
(5.2) belongs to L?(R?,C2) if and only if f satisfies the transmission condition

J+ + /-

(el + pos) =

+i(oc-v)(f+ —f-)=0 onX. (5.4)
Therefore, as a first attempt, it is natural to consider the following operator realizations of the
expression (5.2) in L?(R?, C?):

e the maximal realization By, with the domain
Dom(Bpax) := {f € H(0,R*\ X)) : f satisfies (5.4)},
e the minimal realization By,;, with the domain

Dom(Bmin) := Dom(Bpay) N HY(R? \ , C?)

={fe H' (R*\X,C? : fsatisfies (5.4)}.
It is standard to see that By, is symmetric with B}, = Bnax, therefore, Bpin C B C Bpax for any
self-adjoint realization B of (5.2). Nevertheless, an explicit description of the self-adjoint realizations
turns out to be an involved problem depending on both (e, 1) and the regularity of X.

The most attention was given to the case of C2-smooth X, see [ ] and references therein.
Namely, if g2 — uQ # 4, then By = Bmax =: B, and the spectrum of B consists of the spectrum of the
free Dirac operator A and at most finitely many discrete eigenvalues in (—|m|, |m|). For e — p? = 4
the operator By, is not closed, but Buin = Bmax, S0 Bmin is at least essentially self-adjoint (so there
is a unique self-adjoint realization), but the loss of regularity leads to peculiar spectral effects (e.g. new
pieces of the essential spectrum), see [ , , ]. Remark that [ , ]
actually consider more general interactions by admitting so-called anomalous magnetic couplings which
are not covered by the above framework.

=

If 3 has corners, one has, in general, Bnin & Bmax, which means that there are infinitely many
self-adjoint realizations [ ]. The work [ ] suggested that the H 3 regularity should be more

natural for the case of non-smooth X.. Namely, let
B =B,
be the restriction of Byax to Dom(Bmax) N H2 (R2\ ,C?), ie.,

B: f~(fy,f-) = (Dmfs, D f-),

1 5.5
Dom(B) = {f € H2(0,R*\ %)) : f satisfies (5.4) }.

Due to the standard Sobolev traces theorem, the one-sided traces of functions from Dom(B) on ¥ belong
to L?(3, C?), so the integration by parts shows that B is a symmetric operator. The main result of
[ ] reads as follows: if ¥ is a curvilinear polygon (a piecewise C-smooth closed curve, with
finitely many corners and without cusps), ¢ = 0 and |u| < 2, then B is self-adjoint. The recent work
[ ] presents an extensive study of the case of general compact Lipschitz curves ¥ by reducing the
self-adjointness to the Fredholmness of some boundary integral operator (see also [ , ] for
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the three-dimensional case): we summarize the essential components of the constructions in Section 5.2.
Nevertheless, the self-adjoint conditions obtained in [ ] for our case are quite implicit as they

depend on the (unknown) spectra of some boundary integral operators.

In the present work we extend the results of both [ ]and [

Namely, we show that B is self-adjoint in the following cases:

(A) The curve ¥ is Lipschitz and |e| < || (Corollary 5.4.3),
(B) The curve X is C'-smooth and €2 — ;2 # 4 (Theorem 5.4.4),

] by providing new very
explicit conditions for the self-adjointness of B in terms of the parameters (&, 1) and the geometry of 3.

(C) The curve ¥ is a curvilinear polygon (with C''-smooth edges and without cusps) and

1
2 —pt<—— or & —pu’>16mw),
m(w)

where the constant m(w) only depends on the sharpest corner w of 3 (Theorem 5.5.3).
The value of m(w) is not known explicitly for all w, but some bounds can be obtained, and each

of the conditions

(i) €% — ,u2 <2ore?— u2 > 8 (without additional geometric assumptions),

(i) €% — p? # 4 if each angle € of > (measured inside €2 ) satisfies

3T

<h< =,
- T 2

N

guarantees the self-adjointness of B (Corollary 5.5.4).

The case (B) is formally contained in (C.ii), but the proofs are very different, so we prefer to consider

these two situations separately.

Remark 5.1.1. If the operator B is self-adjoint, a standard analysis shows that its essential spectrum
coincides with the spectrum of the free Dirac operator A and that the discrete spectrum is at most finite
[ , Proposition 3.8]. While all constructions of [ ] are formally for smooth %, the
proof of this specific result only uses the compact embedding of H*(Q) to L*(Q) for s > 0 and bounded

open sets Q C R? with Lipschitz boundaries.

Remark 5.1.2. An additional useful property is that for any (e, i) with || # |u| the operator B, is
unitarily equivalent to B4« EVEp Namely, a simple direct computation shows that

e2—pu2’ 2y

B.yU=UB 4

220 22

for the unitary linear map U : L*(R?,C?) — L?(R?, C?) defined by

U: (f4, f-) = (f+,—f-),

see [ , Propositon 4.8]. In particular, the self-adjointness of B_ 4 ap
P R

the self-adjoitness of B, which will be used in the last proof steps.
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5.2 Preparations for the proof

We will need some constructions related to the free Dirac operator A in (5.1). Most of these required
results were already obtained in [ , ] and we simply present them in an adapted form.

First of all, we recall the Cauchy transform on ¥, i.e., the linear operator Cy, : L*(X) — L?(X)
defined through the complex line integration

Csg(x) = 5. P

v./ I 4 germ), wes, (5.6)

ST —Y

and understood in the Cauchy principal value sense. It is a classical result that C's; is well-defined and
bounded [ ]. Moreover, if one considers the analytic function

Fg:C\EERQ\EBLUI—)Lp.V. W) dy, g€ L*%),
2 nT—Yy

then Plemelj-Sokhotski formulas are valid:

Fy(x) = i@ + Cxg(x) forae. x € 3,
where the value on the left-hand side is understood as the non-tangential limit [ , p- 108].

Denote by K; the modified Bessel functions of order j. For z € C\ Sp(A) consider the function
¢ : R?2 — #5(C) given by

b, (z) = %Ko(\/mQ—zﬂm\)(mag + z2Ip) + iﬂKl(\/mQ—zQ\xD(a - z).

27 |x|

It will be convenient to admit the additional value z = m by setting

1
b T +ix
Pm(z) = o 1 ! 0 2
Tr1 — i.%‘g
Using the asymptotic expansions of /; one obtains
¢.(x) = dm () + hi(x)log |z| + ha(z). (5.7)
with continuous functions A, see [ , Lemma 3.3] for details.

For all admissible z the function ¢, is a fundamental solution of D,,, — z, and it gives rise to several
(singular) integral operators.
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Namely, consider the layer potentials @, for D,,, — z (with z € C \ Sp(A))
®, : L*(%,C?) — L*(R?,C?),

P.g(x) = /E bz — y)g(y) ds(y), = R\,

where we recall that ds means the integration with respect to the arclength. Observe that ¢,(z)* =
¢z(—x) for all x. Let vy : H%(a, R2 C?) — L?(X,C?) be the Sobolev trace operator (which is a
bounded linear operator), then for any u € L?(R? C?) and g € L?(X,C?) one has, using Fubini’s
theorem,

(Pzg, u)r2r2,c2) = /]R2 </Z¢z($ —4)9(y) Ols(y)vu(ﬂv)>(C2 dz
= [ (o). [, 0@ = pul)az) , ds)
= (g, 7(A = 2)7'u) 12 5y 02
This shows that ®; = (y(A— z)_l) " is bounded, and by replacing z with Z one obtains the useful identity
Pr=~(A—-2)"', 2eC\SpA). (5.8)
Now let ¢ € C§°(R?,C?) and h € L?(X, C?), then
(®h, (D — 5)<P>L2(R27(c2) = (h, ®Z(Dy, — 5)<P>L2(z7(c2)
= <h, Y(Dm — Z)71(Dm - 2)90>L2(E,<C2)
= <h’ 790>L2(2,62)7
and it follows that (D,,, — z)®,h = 0 in D'(R? \ ¥). In particular,
ran @, C ker(Bpyax — 2) C Dom(Bax)-
In fact, for any z € C \ Sp(A) one has the stronger property [ , Lemma 4.2]:
o, : L2(%,C%) — H2(0,R?\ %) is bounded. (5.9
For all admissible z consider the singular integral operator
C.: L*(%,C?) — L*(%,C?)

given by

C.g(x) =p.v. /E ¢-(x —y)g(y)ds(y), =z €X.

To summarize its properties we introduce the tangent vector field

7= (11,72) = (—v2, 1)
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on ¥ and denote
t := the operator of multiplcation by 7, + i7y in L?(X).

With an arc-length parametrization y of ¥ and = = (r),y = 7(s) it follows that the Cauchy transform
Cy. from (5.6) acts as

i /Z (i (s) +ina(s)uly(s)
o (n(r '

Csg(y(r)) = 5-p-v ) +1i72(r)) — (n1(s) +iv2(s))

Using the notation t(y) := t1(y) + ita(y) = v (s) + iv5(s). We shall also view y — t(y) as a function
on ¥ or s — t(y(s)) as a function on [0, ¢]. The same holds for the function t*(y) := t1(y) — it2(y) =
1 (8) —iv4(s), and we will also denote the corresponding multiplication operators by ¢ and t*. With this
we see for g € C*°(X¥) and x = y(r) € ¥ that

(g = Loy fFn(s) +19(s) (i(s) — 1a(s)g(v(s) |
R 9(y) .
~ o /2 (z1 +iz2) — (11 +iy2)d ).
In our considerations also the formal dual C%, of Cs; in L?(3), which acts as
. _i (71 (r) = ir5(r))g(v(s)) .
G000 = 322 |, Gy ) - a0 ey

for g € C*°(X¥) and x = ~(r) € X will play an important role. Note that C5; is the operator which
satisfies (Cxg, f)r2(x) = (9, O5.f)12(x) forall g, f € C*°(X). Similarly as in (5.10) we have

(tCxg)(z) = %P-V /(f (%((7?(:) ij%(yz)(l();iyim(i;ég’ )i)vzg)()s» e (5.12)
= %p"’/z (21 — ixz)g(j/)(yl - iyz)ds(y)
Then
Cst*g(r) = % P-V/E (21 — yl)giyz?(xz —12) ds(w) (5.13)
Coola) % o /E — yl)gJ(ryZ)(x2 — W) TEex,
and . (t 82 Cétj | (5.14)

Therefore, the boundedness of C'y; implies the boundedness of C,,,. In addition, the expansion (5.7) shows
that C, — C,, is an integral operator with a Hilbert-Schmidt kernel, in particular,

C.—Cpm: L*(%,C? — L%*(%,C?) is compact for any z € C\ Sp(A),

which also shows the well-definedness and boundedness of C,, for all admissible z.
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Letvyy : H 2 (0,9+) — L%(X) be the Sobolev trace operators, and for any f € H 2 (R2\ X) we set

Y+ =2 S+,
then one has the so-called jump formula
viP.g = (%a v cz) g9, g€L*,C. (5.15)
In[ , Proposition 3.5] the jump formula was proved under the formal assumption that 3. is C'*°

smooth, but the same proof applies to our case as well, as the Plemelj-Sokhotski formula used in the
proof also holds for closed Lipschitz curves. From the jump formula (5.15) one obtains

g=ilo-v)|11 0.0 -1 .g], g€ L}(D,CY),
which shows the injectivity of ®,. Further direct consequences of the jump formula are the identities

Y4P.g —y-P.g9 = —i(o - v)g,

) P (5.16)
S J2r =29 g, ge LX(s.CY).

For z € (C\ Sp(A)) U {m} consider the bounded linear operator
0, =T+ (el + po3)C, : L*(2,C?) — L*(%,C?),

which is closely related to the operator B from (5.5) as follows:

Lemma 5.2.1. Forany z € C\ Sp(A) there holds ker(B — z) = ®, ker ©, in particular, dim ker(B —
z) = dimker O,.

Proof. Remark that the last assertion follows from the injectivity of ®,.

Let z € C\ Sp(A) and g € ker ©,. Denote f := ®,g, then f € ker(Bmax — z) due to the above

properties of ®,. We need to show f € Dom(B). By (5.9) we have already f € H%(a, R2\ ¥). By
(5.16) we have

)'Y+(I)z9 +7-P.g
2

= (ely + po3)Cg +i(o-v)(—i(o-v))g
= (el + po3)C.g+ g = 0.9 = 0.

(ely + pos +i(o-v) (14 P29 — 7-P.9)

Hence, f € ker(B — z). This shows the inclusion @, ker O, C ker(B — z).
Now let z € C\ Sp(A) and f € ker(B — z). Due to (5.3) we have

(Dm —2)f = (B —2)f +i(o-v)(f+ — [-)0s. (5.17)
Let F : §'(R?) — S’(R?) be the Fourier transform. For any ¢ € S'(R?) we have
F(Dp — 2)1p = (0 - &+ mos — zIa) Fp.

The matrix o - £ + mos — 2zl is invertible for any ¢ € R? and has polynomial entries, which shows
that D,,, — z : S’(R?) — S’(R?) is injective. As the function ¢, € S’(R?) is a fundamental solution of
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D,,, — z, from (5.17) one obtains
f=¢zxi(o-v)(fs - f-)ox].
Due to f € Dom(B) we have f1 € H%(Qi, C?), and, hence
g:=i(o-v)(v4f —1-f) € L*(Z,C%).

Then
f=¢.xg= /2¢z(' —y)g(y)ds(y) = ®.g.

With the help of (5.16) we obtain

s )

= (el 4 po3)C.g + g = O.g,

0 = (elly + pos

which implies g € ker ©,. Hence, ker(B — z) C &, ker ©,. |

For the sake of completeness, we include the proof of the following important statement (which is
based on similar ideas):

Lemma 5.2.2. The operator CZ — % is compact in L*(%, C?).

Proof. Let h € L?(X,C?) and z € C \ Sp(A). Consider f := ®,h, then (D,, — 2z)f = 0 in Q.
Consider further the function

ra ) € Q )
f:R2sz— f@), @ +
0, otherwise.

One has 74 f = v, f and 7_ f = 0, with (D, — 2)f = 0 in 4, and (5.3) gives
(Do — 2)F = i(o - 1) (v f — v s = i(o - v}y, f b5 in D/ (R2),
which implies f = ¢, x [i(o - V)4 f o] = Pi(o - v)y4 f. In particular,
S i(o-v)yef=f=P.hin Q. (5.18)
Remark that by the construction of f we have

i(o-v)

Y+f = <— T+Cz)h'

Use this last equality in (5.18) and then apply ~ on the both parts, then one arrives at

(- i("z' V) +C.)io - v)( - i(UQ' V) +C)h= (- i<02' v) +C:)h,

which after a simple algebra takes the form




5.3. Case || = |y

and results in the identity
2 1
(cz(a-u)) =L (5.19)

The identities are well-known for the three-dimensional case [ , Lemma 3.3], but we gave a
complete argument to stay self-contained. Further remark that

'_On*
cv=|_ 4l

where n is the operator of multiplication by v; + iv. Using (5.14) we write

(0 owrr
CZ‘(t(J; 0 )*MO

with a compact operator My. We have t*n = —il, so the substitution into (5.19) gives, with some
compact operators M,

2
1. |[-iCs 0 _ [—C& 0
1= K 0 tcgn*>+Ml _< 0 (tC5n*)? + Mz,

and the upper left block gives the sought result. |

5.3 Case || = |p|
We first consider the self-adjointness of B for |¢| = |u|.
Theorem 5.3.1. The operator B in (5.5) is self-adjoint for |e| = |p|.
Proof. In the case € = 4 = 0 we obviously have B = A. From now on let
1= Fe with € # 0.

Consider the following maps

P, L*(%)> f

f
0) e L3(%,C?),

P:L2(2)9f|—><0

f) e L3(%,C?),

and their adjoints

+“2

L3(%,C?%) 5 (ﬁ) — f1 € LA(%),

P*L*(%,C% 5 <f1
f2

) — fa € L*(3).

We set
P := P, fore = £u.
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As the operator B is symmetric, it is sufficient to show that ran(B — z) = L?(R2?,C?) for any

z € C\ R. For that, we will explicitly construct the inverse (B — z)~!.

Let z € C\ R. As B is symmetric, ker(B — z) = {0}, and Lemma 5.2.1 implies ker ©, = {0}.
Remark that in the present case, we have

O, =1+2sPP*C,, ©,P=P+2cPP*C,P =2eP)\,
1 1
for X = - T+ P*C.P: L*(%,C?) — L*(%,C% = 5o I+ (z+m)S,

with the operator S, : L?(X) — L?(X) given by

(8:0)0) = o= [ Ko(ViZ = 2o —yllgl) ds(y), v €%, g€ IS

The integral kernel of S, has a logarithmic singularity on the diagonal, therefore, S, is Hilbert-Schmidt
(in particular, compact). It follows that A, is a Fredholm operator of index zero. From the injectivity of
O, and P one obtains the injectivity of )., and it follows that A, : L?(X) — L%(X) is bijective.
Now we are going to show that the operator
R(z):= (A —2)"' — &, PX\; ' P*®L,
is the inverse of B — z. Let v € L?(R2,C?). Due to (5.8) one has
fi=R(z)v € H2(R?\ 2, C2).
Using the jump formulas (5.16) we obtain

Y+f +-f
2
vif =v-f=i(o-v)PA; P 0L,

= (A - 2)"lv = C.PA\J'P*®tv = dtv — C.PA ' P*®lu,

We have then

WL it ) -2 p)

(elly + pos)

+i(o-v) (v —7-f)

= 2ePP*(®%v — C,PA; ' P*®%0) +i(0 - v)i(o - v)PA; ' P*®%
= 26 PP*(®%v — C,P\;' P*®%v) — P\ P*®%v

= P(2el — 2e P*C,PA;t — A\ 1) P* i,

while

1
2e = 2eP"C.PA;T = M1 = 2el - 2¢(P*C.P + o )7
= 2el — 2,01 = 0.

This shows that f satisfies the transmission condition (5.4) and, therefore, f € Dom(B).
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Further, in D'(R? \ X, C?) we have (D,,, — 2)®, P\, P*®%v = 0, therefore,
(B=2)f=Dm—2)f=Dn—-2)(A=2)"v=(A=2)(A=2)" o=,

which shows R(z) = (B — 2)~%. [

5.4 Case || # |y

For |e| # |u| the matrix €lly + pos is invertible, with

_ 1
(5H2 + IUO-?J) b= 2 2 (‘5H2 - IUO-?))a
e — i
and it will be more convenient to consider the auxiliary bounded linear operators

1 _
A, = —M?(ﬂz — po3) +C; = (elz + po3) 'O,

g2

for z € (C\ Sp(A4)) U {m}. The symmetry property ¢.(y — z)* = ¢z(x — y) entails that both C, and
A, are self-adjoint for real admissible z.

The following assertion can be viewed as a simplified version of the results of [ ], and this is
the entry point for the subsequent analysis:

Theorem 5.4.1. Let |e| # |p| such that the operator A, is Fredholm for some a € (C\ Sp(A)) U {m},
then the operator B in (5.5) is self-adjoint.

Proof. Let A, be Fredholm. As noted above, for any z € C \ Sp(A) the difference A, — A, =C, — C,
is a compact operator, and it follows that A, is also Fredholm and has the same index as A,.

Now let z € ( — |m|,|m|) U {m}, then A, is self-adjoint. From the Fredholmness and the self-
adjointness, it follows that the index of A, is zero. We have just seen above that the index is independent
of z, so A is Fredholm of index zero for all z € C \ Sp(A).

As B is symmetric, and in order to show its self-adjointness it is sufficient to show that ran(B — z) =
L?(R?,C?) for all z € C\ R. We will do it by constructing explicitly the inverse (B — z)~! defined on
L?(R2,C?).

Let z € C\ R. As B is symmetric, there holds ker(B — z) = {0}. By Lemma 5.2.1 one obtains

ker A, = {0}. As A, is Fredholm of index zero, one has ran A, = L?(%,C?), so A, : L*(3,C?) —
L?(%, C?) is bijective with a bounded inverse. Consider the bounded linear operator

R(z) = (A= 2)~ = 2.A710L: LX(R?,C?) — L*(R%, CP).

We are going to show that R(z) = (B — z)~ 1.
Let v € L?(R?, C?). Due to (5.8) one has

fi=R(z)v € H2(R?\ &, C2).
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Using (5.16) we obtain

PSS 4 AT Bt — a2 CAT B,
Vif —y-f=i(o-v)(A:) " L.
Then
(5H2+u03)wg—7_f +i(o-v)(v+f —7-f)
= [(€L + pos) (1 - C:AZY) — A @k,
while

(el + pog) (T = C.AZY) = AZ? = [(el + pog)(As — C.) — T A

1 -1
= {(5]12 + ;103)62 — (ellp — posg) — ]I} A7
=T-DA; ' =o0.

This shows that f satisfies the transmission condition (5.4), i.e., f € Dom(B). In addition, in D’ (R?\ ¥)
we have (D,;, — 2)®,A;1®% = 0, therefore,

(B - Z)f = (Dm - Z)f = (Dm - Z)R(Z’)U

which shows the required identity R(z) = (B — z)~ L. [ ]

The following lemma gives a precise range of (&, 1) for which B is self-adjoint without additional
assumptions on .

Theorem 5.4.2. Assume that || < |u

, then B is self-adjoint.

Proof. By Theorem 5.4.1 it is sufficient to show that (¢2 — y2)A,,, is Fredholm. Using (5.14) we represent

(€2 — ®)Ap = (ely — po3) + (€2 — p?*)Cn,

0 Cxt*
= (el — pos3) + (€2 — p?) (tC’g ?) ) =clh + T,
. — i (€2 — u?)COxt*
with I := . .
((62 — Oy, Il

Remark that I is self-adjoint and
CxCs; 0
2 — 2 2,22 Lelys _
The last term is a non-negative operator, which shows
FQ) - [M2,OO), ﬂ(_ ‘M‘v““) =0.
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Therefore, if |¢| < ||, then the operator
(e — p)Apm = +T: L*(X,C% — LA(%,C?)
is an isomorphism and, in particular, Fredholm. |

By summarizing Theorems 5.3.1 and 5.4.2 we arrive at
Corollary 5.4.3. The operator B is self-adjoint for any (g, ) with |e| < |ul.

Remark that the preceding discussion is valid without any additional assumptions on X (i.e., only
assumes that X is Lipschitz). Under stronger geometric assumptions one can indeed enlarge the range of
parameters for which the self-adjointness is guaranteed. The following result follows implicitly from the
machinery of [ ], but we prefer to give an explicit formulation with a direct argument.

Theorem 5.4.4. If Y is C'-smooth and £> — ;1> # 4, then B is self-adjoint.

Proof. The case |¢| = || is already covered by Theorem 5.3.1, so from now on assume |e| # |u|. By
Theorem 5.4.1 it is sufficient to show that A,, is Fredholm. Due to the self-adjointness of A,, this is
equivalent to

0 ¢ SPess(e? — %) Ay (5.20)
Using (5.14) we represent

(6* = 1*)Am = (el — po3) + (€% = p*)Crm

0 Cxyt*
_ _ 2 2 X _
= (ely — pos) + (e 'u)<tC’§ 0 ) elp + T,
: o —ul (e2 — u?)Cxt*
with I' := <(€2 — A)C ul .
By [ , Theorem 3.2] the operator Cy; — C%; is compact, therefore,
—p (€% — p*)COst*
= + M
((62 — p)tCy, u ‘

with some compact operator M. Using Lemma 5.2.2 we obtain, with some compact operators M; and
Ma,

2
I?=p?+(? - p?)? <CE 0 >+M1

0 tO4t*
2 _,,2)2
_ o (E=pH)* (T 0
=pu°+ — (0 )t Ms.
It follows that 2 22
g2 _
Do) = 1% + | 4M =

and the self-adjointness of I" implies

2,22 2, 2)\2
Spal € { —Wu%,\/uu%}.
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Due to the above identity (¢2 — u2)A,, = € + I the condition (5.20) is equivalent to

(82 o NQ)Q

!6!#\/#6 e N G

which reduces to €2 — p? # 4. |

5.5 Fredholmness for curvilinear polygons

From now assume that ¥ is a piecewise C''-smooth Lipschitz curve, with finitely many corner points
ai,...,ay. For each corner a;, let
0; € (0,2m) \ {m}

be the non-oriented interior angle of ¥ at the point a; measured inside {2,.. Our main goal is to give a
complete characterization of the values of ¢ and i for which the operators A, are Fredholm in L?(X, C?).
To do so, we are going to implement the technique proposed by Shelepov [ ]. Remark that some
components of the approach implicitly appear in other works [ , 1.

Actually the work [ ] also applies to the so-called Radon curves, which are more general than
curvilinear polygons, but we prefer to restrict our attention to the case of piecewise C''-smooth curves in
order to avoid a series of involved definitions. Let us describe the general scheme of [ ].

Denote
S:={zecR?: |z| =1}

and let .#;,(C) be the space of k x k complex matrices. Let
G: RxRxSxSxS— .#(C)

be a matrix-valued function whose entries G; ; are Lipschitz (with respect to all variables) and such that
for some C' > 0 one has

Gis,9,€,m, Q)] < C(|(, Q)| +|(n,€)]) (5.21)
for all (z,y,&,m, C).

Consider the bounded integral operator T : L*(X, C*) — L?(X, CF),

0 = [ G @), =)t dsto)

[z =yl
T,y EY, g¢gE€ LQ(E,(C]“).

We assume without loss of generality that each connected component of X is oriented in the anticlockwise
sense. Fix a corner point ¢ on Y with an interior angle . A small arc of > around « is separated by a
into two nonempty parts I'; and I'_ that project in one-to-one fashion on the one-sided tangents to X at
a, and denote the projections by ' and I'_ respectively. Let 7, and 7_ be the unit vectors along ', and
T'_ directed away from the corner a, and let v, (a) and v_(a) be the corresponding one-sided limits of
the inner normal to ¥ at a. We then denote by 7 = —7_ the unit vector of the left positive tangent to X
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at a and by v(a) = v_(a) the vector obtained from 7 by a counterclockwise rotation through the angle
7/2, see Figure 5.1. Finally, we will use the parameters

1
5::n+§7 UER

Figure 5.1 — Construction near a corner a.

Following [ ], we define a function ¢ : R — R and matrix-valued functions

HY) : R+ % s 5(C), je{1,2},

by
) = (672 cos — e2)T — ve 2 sinf
Vel + et —2cosf '
00 (i€+1/2)t
Mgy = € —rginf — _
H,' () = [m N =y G(a,a,l/, 7sinf — v cos @, (( t))dt,
o (i€+1/2)t
2) (e = c —reinf) — _
H,7 (&) = /_OO JE T e = 200500) G(a, a,—T1sinf —vcosb,v, Q(t))dt,
and set
Aa(§) = det (I — HO(© HP()), e R+, (5.22)
The following result was shown in [ , Theorem 2]:

Proposition 5.5.1. The operator 1 — T is Fredholm in L (%, C?) if and only if

Ay, (&) #0forall§ € R+ % and all corners aq, ..., a, of X.

We are now going to apply this machinery to our particular situation. For 6 € (0, 27) consider the

function
cosh ((m — 0)x)

2(1 + cosh(rz))

My: Ro>z— € R,
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and denote

m(0) := sup My(z).
zeR

We have the obvious symmetry
m(0) = m(2x — 0) for any 6 € (0, 27). (5.23)
The following elementary properties of m will be needed as well:

Proposition 5.5.2. For any w € (0, ) there holds

1 1
1 <m(w) < 7 (5.24)
Moreover, the function w — m(w) is non-increasing, with
lim m(w) = L (5.25)
w—07t 2
and 1 -
m(w) = forallw € [5, 7['). (5.26)

Proof. For any |a| < |b| we have cosh a < cosh b. It follows that for any € R there holds

1 cosh ((7 — w)x)

g = Mel0) < Mofo) = 2(1 4 cosh(mz)) coshir)

2(1 + cosh(mz))

1
< <,
4 - -2

which gives (5.24). For 0 < w < w’ < 7 and any = € R one has

cosh ((m —w')x) _ cosh ((m — w)x)

M) = S o)) = 20+ comh(e)

= Mw(l‘),

so taking the supremum over all z one shows m(w’) < m(w), i.e., m is non-increasing. In addition, for
any fixed x the function 6 — Mjy(x) is non-increasing too. It follows

lim m(w) = sup m(w)= sup supM,(z)
w—0t we(0,m) we(0,7) zeR
=sup sup M,(x) =sup lim M, (x)
z€R we(0,7) zcRw—0t
. cosh ((m —w)z) cosh(mz) 1
=sup lim = sup —_—

zeRw—0+ 2(1 4+ cosh(rx)) ek 2(1 + cosh(mz)) 2

We further remark that for any w € (0, ) the function My is even, and for any 2z > 0 one has
1
M/ (x) = (m — w) sinh ((m — w)z) (1 + cosh(mz)
“ 2(1+ cosh(7m:))2 { ( ! )

— mcosh ((m — w)x) sinh(wx)}

_ 7(1 + cosh(mz)) cosh ((727 — w)z) N, (2)
2(1 + cosh(mz))
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5.5. Fredholmness for curvilinear polygons

with
No(z) = 7 —w sinh ((7 — w)z) __ sinh(mz)
m  cosh ((mr —w)x) 1+ cosh(nx)
. TT
7 —w sinh ((r — w)z) sinh —-
7w cosh ((m —w)x) cosh 7%
2
=T 7% tanh ((r — w)x) — tanh .
0 2

The function [0,00) 3 a + tanha in increasing, therefore, N, (z) < 0 forall z > 0 and w € [5, ),
and then M/, () < 0 for the same x and w. Then for each w € [, 7) the function M,, is decreasing on
(0, 4+00), and by parity its maximum is located at the origin, i.e.,

1
m(w) = sup M, (z) = M, (0) = - forallw € [z,ﬂ).
xz€R 4 2

Remark 5.5.1. The condition for w in (5.26) is not expected to be optimal. A rough numerical simulation
indicates that

min {w € (0,7): m(w) = %} ~ 0.3 7.

Using the above preparations we arrive at the main result:

Theorem 5.5.3. Denote by w the smallest angle of 35, defined by

w:= min min{f;, 27 —0;} € (0, 7).
P {0; i} €(0,m)
If
1
2yt < —— or & —p?>16mw), (5.27)
m(w)

then the operator B is self-adjoint.

Proof. As the case |¢| < |p] is already covered by Corollary 5.4.3, for the rest of the proof we assume
lel > |ul.

By Theorem 5.4.1 it is sufficient to show that A,, is Fredholm, which is in turn equivalent to the
Fredholmness of the operator

Om = (ely 4 po3) Ay = 1+ (el + po3)Cr - L*(2,C?) — L3(%,C2).

Eq. (5.14) for C,, gives the representation

Ono) =g~ [ - ! 6. 0@). ). =) u)ds(v)
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with g € L?(3, C?) and the 2 x 2 matrix function G defined by

u>__i
e—yl/ o 2m

G (@, y,v(@),v(y)
r—Y 0
[z —yl

(e —p)

for x,y € X, where the integral representations in (5.13) were used. The entries of G are obviously
Lipschitz and satisfy (5.21), so the above machinery is applicable to the analysis of ©,.

Let a be a corner point of X with an interior angle 6, then

i 0 (e + w)¢(=t)
G(a,a,v,—7sinf — vcos b, ((—t)) =5 ,
(e — p)C(=t) 0
i 0 (e + m)¢(t)
G(a,a,—7sinf —vcos,v,—((t)) = 5 ,
(e — m)¢(t) 0

where one uses the usual identification R? 3 (r1,22) = ~x =z +ixg € C.

We have ]
i§+1=¢§foraugeR+%,

and one easily sees that the matrices Hél) and H(?) for this specific case have the form

0 (e+p)Asrp
H{MV(¢) = :
(e —p)Ar, 0
0 (5 + ,U/)B‘,*-’y
HP () = :
(e —p)Br, 0

where A, , and B, , are given by

A oo (it cos(0) — €6t)r — e sin(f) v &
e [oo et + e~t — 2cos(0) ’
B /+°° (et cos(0) — eigt)r — et sin(0) v &

™ e et + et —2cos(h) ’

t

Hence, applying the change of variable x = e*, we can rewrite A, , and B, , as follows

dz,

A /+°° (a:igcos(e) — %) — $igsin(9) v
e 22 + 2zcos(m — 0) + 1
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5.5. Fredholmness for curvilinear polygons

B - /JFOO (z%cos(f) — xiE)T — 2%sin() v
T,V — 0

dx.
22 + 2zcos(m —0) + 1 v

Now recall that for all b > 0, 0 < |w| < mand 0 < Re(a) < 2 one has

/+Oo ! dz = —mb* 2 ! ! sin (@ — 1)w)
0o o2+ 2bx cos(w) + b2 i sin(w) sin(a) ’

see the formula (12) in [ , p- 327]. Applying this formula with b = 1 and w = 7 — 0, one obtains
that

/OO xiZCOS(H)T do — _ mcos(0) sin(i&(r — 0))
0

22414 2cos(m—0)  sin(6)  sin(i€d)
o0 2T i 1 .
/0 22 4+ 14 2cos(m — 6) do= ~ sin(6) sin(z’E7r)Sln(Z£(7r — o,
o0 xigsin(G)I/ __sin(i€(m — 0))
/0 22 4+ 14 2cos(m — 0) do=—m sin(i€0) v

Thus, A;, and B, become as follows

o sinh (§(m — 6))  sinh (£(7 — 0))
Ay = 2sin(6) l( os(6) sinh(éw) sinh (&) >T

sinh (&(m — 0)) y]
sinh(&) ’

— sin(

—q sinh ({(m —60))  sinh (E(ﬂ- —0))
l( cos(f) Sh(er) | swh(én) )7‘

sinh(¢(r — 6)) V} .

—sin(6) sinh (&)

Consequently, the product H(gl) (& )HéQ) (&) yields

a(e) = (  cos(9)SR0E(T = 0))  sin(ig(m ~ e))) ( " cos(p) S0 = 0)) | sin(iE(r ~ 9))))

sin(i&m) sin (i) sin(ién) sin(i{)

B(S) = <sin(9)w> <Sm(9)w>_

sin(i&m) i3

sin(i&m)
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The trigonometric identity
sin(z) = —isinh(iz) and sinh(—z) = —sinh(z), forallz € C

yield that
2 2

A +BO) = gy * SO

where S(&) is given by

sinh (£(m — 0)) sinh ({(7 — 6))

S(&) =2

sinh(&m) sinh(&n) .
— cos(6) sinh? (¢(m — 6)) N sinh? (£(m — 6)) :
sinh? () snh2(ém) )

We want to simplify the first term on the right-hand side of the previous identity. To do this, we use the
exponential form of the function sinh

(E(r—0) _ —E(x—0)
2

(R l
f = — = —_ -
or&=n+ 2, E=n—>

sinh(&(m — 0)) =

Then, we can write

sinh ({(m — 6)) sinh (¢(7 — 0)) =

sinh(é7)sinh(ém) =

(cos(@) + cosh(2n(m — 9))>7

N~ DN -

(cosh(2nm) + 1).

Thus, we deduce

sinh (§(7 — 0)) sinh (§(m — 6)) _ 2cos(@) + cosh(2n(r — 0))
sinh (&) sinh(&n) 1 4 cosh(2n)

Now, we want to simplify the second term on the right-hand side of the identity (5.28). Using the
exponential formula of sinh and the trigonometric identity

cosh(z £ iy) = cosh(x) cos(y) + i sinh(x)sin(y), forallz,y € R,

we obtain the following computation quantities

sinh?(&(m — 0)) = —%(1 + cosh(2n(m — 6))008(«9)) +1 : ,

sinh?(&(r — 6)) = —%(1 + cosh(2n(m — 9))008(9)) —1 : ,

sinh?(¢é7) = sinh?(€n) = %(1 + cosh(2n(m — 9)))
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Hence, with a straightforward computation we transform the expression for S(&) (5.28) to

S(e) = 2 sin?(#) cosh (2n(m — 0))

1
ith { = —.
(1 + cosh(2mn)) with & =1+ 2

Thus,

2

2
cosh (277(77 - 9)) ) — (1 _ (52 — I[ﬁ)M@(QU)) y

2(1 4 cosh(27n))

Aq(§) = (1 —(* = p?)
and the condition A, (&) # 0 for all £ is equivalent to

Mp(x) #

22 for all x € R. (5.29)

Remark that for any 6 € (0, 27) one has

Mpy(xz) > 0forallz € R, lim My(z) =0,
r—+0o0

then the condition (5.29) is satisfied if any only if (recall that |¢| > || by assumption)

1 1
——— >m(0) :=sup Mp(z), ie, &*—pu?< —.
&2 — p? ®) zeR @) ST
Thus, for each corner point a; we have shown the equivalence
Ag,(€) #0forall ¢ € R+~ ifandonlyif &2 —p2 < . (5.30)
! 2 m(HJ)

Using the symmetry and monotonicity properties of m, see (5.23) and Proposition 5.5.2, we conclude
that that ©,, is Fredholm if and only if

g2 — u2 <  min L _ ! _ !
jell,.my m(0;)  maxjeq  pym(0;)  mw)’

which is a sufficient condition for the self-adjointness of B = B; , and gives the first half of (5.27).

By applying the above result to B:= B 4 , Wesee that B is self-adjoint for

22 2,

which holds for £2 — ;2 > 16m(w). As the self-adjointness of B is equivalent to the self-adjointness of
B (see Remark 5.1.2), we obtain the second half of (5.27). |

By combining Theorem 5.5.3 with Proposition 5.5.2 we obtain:

Corollary 5.5.4. Let ¥ be a curvilinear polygon (with C'-smooth edges and without cusps). Assume
that one of the following three conditions holds:

(a) g2 — u2 < 2,

(b) €% — u? > 8,
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(c) €% — p? # 4 and the interior angles 0; of . satisfy
s 3 .
5 <b; < ?forall] e{l,...,n},

then B is self-adjoint.
We finish this chapter by pointing out the following remark.

Remark 5.5.2. In the proof of Theorem 5.5.3 one sees that for 2 — p? > 16m(w) the operator B is
self-adjoint but the operators A, are not Fredholm. This shows that the converse of Theorem 5.4.1 does
not hold.

It would be interesting to understand if the quantity m(w) has any geometric meaning: the preceding
analysis does not give any indication in this direction.
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PUBLICATION

Title: "A Poincaré-Steklov map for the MIT bag model". To appear in Analysis & PDE.

Abstract: The purpose of this paper is to introduce and study Poincaré-Steklov (PS) operators associated
to the Dirac operator D,, with the so-called MIT bag boundary condition. In a domain 2 C R3, for a
complex number z and for U, a solution of (D,, — z)U, = 0, the associated PS operator maps the value
of I'_U,, the MIT bag boundary value of U,, to I' U, where ' are projections along the boundary 0f2
and (I'_ + I'y) = tyq is the trace operator on Of2.

In the first part of this paper, we show that the PS operator is a zero-order pseudodifferential operator and
give its principal symbol. In the second part, we study the PS operator when the mass m is large, and we
prove that it fits into the framework of 1/m-pseudodifferential operators, and we derive some important
properties, especially its semiclassical principal symbol. Subsequently, we apply these results to establish
a Krein-type resolvent formula for the Dirac operator Hy; = D,,, + M3 ]le\ﬁ for large masses M > 0,
in terms of the resolvent of the MIT bag operator on 2. With its help, the large coupling convergence
with a convergence rate of O(M 1) is shown.

Lien: https://doi.org/10.48550/arXiv.2206.13337.

Title: "On the approximation of the Dirac operator coupled with confining Lorentz scalar d-shell inter-
actions". To appear soon on arXiv, (2024).

Abstract: Let 0, C R? be a fixed bounded domain, and denote its boundary as ¥ = 9. Consider U/*
a tubular neighborhood of the surface > with a thickness parameter ¢ > 0. Define the perturbed Dirac
operator by 5, = D,,, + M By, with D,, the free Dirac operator, M > 0 and 1,c the characteristic
function of /¢. Then, in the norm resolvent sense, the Dirac operator ©9, converges to the Dirac operator
coupled with Lorentz scalar §-shell interactions as ¢ = M ! tends to 0, with a convergence rate of
O(M~1).

Title: "On the approximation of the §-shell interaction for the 3-D Dirac operator". Submitted, (2023).

Abstract: We consider the three-dimensional Dirac operator coupled with a combination of electrostatic
and Lorentz scalar §-shell interactions. We approximate this operator with general local interactions V.
Without any hypotheses of smallness on the potential V', converges in the strong resolvent sense to the
Dirac Hamiltonian coupled with a §-shell potential supported on ¥, a bounded smooth surface. However,
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the coupling constant depends nonlinearly on the potential V.

Lien: https://doi.org/10.48550/arXiv.2309.12911.

Title: "On the self-adjointness of two-dimensional relativistic shell interactions". Journal of Operator
Theory (JOT), in press, (2024).

Abstract: In this paper, we discuss the self-adjointness of the two-dimensional Dirac operator with a
transmission condition along a closed Lipschitz curve. The main new ingredients are an explicit use of the
Cauchy transform on non-smooth curves and a direct link with the Fredholmness of a singular boundary
integral operator. This results in a proof of self-adjointness for a new range of coupling constants, which
includes and extends all previous results for this class of problems. The study is particularly precise for
the case of curvilinear polygons, as the angles can be taken into account in an explicit way. In particular,
if the curve is a curvilinear polygon with obtuse angles, then there is a unique self-adjoint realization
with domain contained in H'/? for the full range of non-critical coefficients in the transmission condition.

Lien: http://arxiv.org/abs/2307.12772.

* * * * * *
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Title : Spectral Properties of Dirac Operators on Certain Domains.

Abstract : We are interested in spectral study of perturbations of Dirac operators on certain
domains. The majority of the studies carried out in this thesis are established through the study of
the resolvents of these operators. On one hand, we introduce Poincaré-Steklov (PS) operators, which
appear naturally in the study of Dirac operators with MIT bag boundary conditions, and analyze
them from a microlocal point of view (Chapter 2). On the other hand, our study focuses on the
three-dimensional Dirac operator coupled with a singular delta interactions: Chapter 3 is devoted to
an approximation of the confining version of Dirac operator coupled with purely Lorentz scalar delta
shell interactions. Chapters 2 and 3 deal with the large mass limit (supported on a fixed domain and
a domain whose thickness tends to zero). Chapter 4 also generalizes an approximation of the non-
confining version of Dirac operator coupled with a singular combination of electrostatic and Lorentz
scalar delta interactions by a Dirac operator with regular local interaction. Finally, in two-dimension,
we develop a new technique that allows us to prove, for combinations of delta interactions supported on
non-smooth curves, the self-adjointness of the realization of the Dirac operator under consideration,
in Sobolev space of order one-half (Chapter 5).

Keywords : Spectral analysis, Dirac operators, self-adjoint extensions, shell interactions, quantum
confinement, Poincaré-Steklov operators, the MIT bag model, h-Pseudodifferential operators, large
coupling limits.

Titre : Propriétés Spectrales des Opérateurs de Dirac sur Certains Domaines.

Résumé : Nous nous intéressons a I’études spectrale des perturbations d’opérateurs de Dirac sur
certains domaines. La majorité des études effectuées dans cette these est établie a travers 1’étude
de la résolvante de ces opérateurs. D’ une part, nous introduisons les opérateurs de Poincaré-Steklov
(PS), qui apparaissent naturellement dans 1’étude des opérateurs de Dirac avec les conditions aux
bords MIT bag, et nous les analysons d’un point de vue microlocal (Chapitre 2). D’autre part, notre
étude porte sur les opérateurs de Dirac couplés a une combinaison singuliere de delta interactions :
le Chapitre 3 se consacre a I’approximation de la version confinée de I'opérateur de Dirac couplé
avec delta interaction scalaire de Lorentz. Les Chapitres 2 et 3 traitent de la limite de grande masse
(supportée sur un domaine fixe et un domaine dont I’épaisseur tend vers zéro). Le Chapitre 4 généralise
une approximation de la version non-confinée de I’opérateur de Dirac couplé avec une combinaison
singuliere de delta interactions électrostatique et scalaire de Lorentz par un opérateur de Dirac avec
une interaction locale réguliere. Enfin, nous développons, en dimension deux, une nouvelle technique
qui nous permet de prouver, pour des combinaisons de delta interactions supportées sur des courbes
non-régulieres, 1’auto-adjonction de la réalisation de 1’opérateur considéré, et ce, dans 1’espace de
Sobolev d’ordre un-demi (Chapitre 5).

Mot clés : Analyse spectrale, opérateurs de Dirac, extensions auto-adjointes, é-interactions, opéra-
teurs de Poincaré-Steklov, le modele MIT bag, opérateurs h-Pseudodifferentiel, couplage fort.
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