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TITLE : SPECTRAL PROPERTIES OF DIRAC OPERATORS ON CERTAIN DOMAINS.

Abstract

This thesis mainly focused on the spectral analysis of perturbation models of the free Dirac operator,
in 2-D and 3-D space. More precisely, this thesis is divided into two parts : Dirac operator with MIT bag
conditions (Chapters 2, 3) and Dirac operator coupled with delta shell interactions (Chapters 4, 5). Most of
these studies are conducted through the analysis of the resolvents of these operators.

The rst chapter of this thesis examines perturbation of the Dirac operator by a large massM , supported
on a domain. Our main objective is to establish, under the condition of suciently large mass M , the
convergence of the perturbed operator, towards the Dirac operator with the MIT bag condition, in the norm
resolvent sense. To this end, we introduce what we refer to the Poincaré-Steklov (PS) operators (as an analogue
of the Dirichlet-to-Neumann operators for the Laplace operator) and analyze them from the microlocal point
of view, in order to understand precisely the convergence rate of the resolvent. On one hand, we show that
the PS operators t into the framework of pseudodierential operators and we determine their principal
symbols. On the other hand, since we are mainly concerned with large masses, we treat our problem from
the semiclassical point of view, where the semiclassical parameter is h = M−1. Finally, by establishing a
Krein formula relating the resolvent of the perturbed operator to that of the MIT bag operator, and using
the pseudodierential properties of the PS operators combined with the matrix structures of the principal
symbols, we establish the required convergence with a convergence rate of O(M−1).

In the second chapter, we dene a tubular neighborhood of the boundary of a given regular domain. We
consider perturbation of the free Dirac operator by a large mass M , within this neighborhood of thickness
ε := M−1. Our primary objective is to study the convergence of the perturbed Dirac operator when M

tends to +∞. Comparing with the rst part, we get here two MIT bag limit operators, which act outside the
boundary. It’s worth noting that the decoupling of these two MIT bag operators can be considered as the
conning version of the Lorentz scalar delta interaction of Dirac operator, supported on a closed surface.
The methodology followed, as in the previous problem study the pseudodierential properties of Poincaré-
Steklov operators. However, the novelty in this problem lies in the control of these operators by tracking the
dependence on the parameter ε, and consequently, in the convergence as ε goes to 0 and M goes to +∞.
With these ingredients, we prove that the perturbed operator converges in the norm resolvent sense to the
Dirac operator coupled with Lorentz scalar δ-shell interaction.

In the third chapter, we investigate the generalization of an approximation of the three-dimensional Dirac
operator coupled with a singular combination of electrostatic and Lorentz scalar δ-interactions supported on
a closed surface, by a Dirac operator with a regular potential localized in a thin layer containing the surface.
In the non-critical and non-conning cases, we show that the regular perturbed Dirac operator converges in
the strong resolvent sense to the singular δ-interaction of the Dirac operator. Moreover, we deduce that the
coupling constants of the limit operator depend nonlinearly on those of the potential under consideration.

In the last chapter, our study focuses on the two-dimensional Dirac operator coupled with the electrostatic
and Lorentz scalar δ-interactions. We treat in low regularity Sobolev spaces (H1◁2) the self-adjointness of
certain realizations of these operators in various curve settings. The most important case in this chapter arises
when the curves under consideration are curvilinear polygons, with smooth, dierentiable edges and without
cusps. Under certain conditions on the coupling constants, using the Fredholm property of certain boundary
integral operators, and exploiting the explicit form of the Cauchy transform on non-smooth curves, we achieve
the self-adjointness of the perturbed operator.

Keywords : Spectral analysis, Dirac operators, self-adjoint extensions, δ-shell interactions, quantum
connement, Poincaré-Steklov operators, the MIT bag model, h-Pseudodierential operators, large coupling
limits.
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TITRE : PROPRIÉTÉS SPECTRALES DES OPÉRATEURS DE DIRAC SUR CERTAINS
DOMAINES.

Résumé

Cette thèse se focalise sur l’étude spectrale des modèles de perturbations de l’opérateur de Dirac libre
en dimensions 2 et 3. Plus précisément, cette thèse est divisée en deux parties : opérateur de Dirac avec
conditions aux bords MIT bag (Chapitres 2, 3) et opérateur de Dirac couplé à une delta interaction (Chapitres
4, 5). La plupart de ces études sont réalisées à travers l’analyse des résolvantes de ces opérateurs.

Le premier chapitre de cette thèse étudie la perturbation de l’opérateur de Dirac par une grande masse
M , supportée sur un domaine. Notre objectif principal est d’établir, sous la condition d’une masse M

susamment grande, la convergence de l’opérateur perturbé vers l’opérateur de Dirac avec la condition
au bord MIT bag, au sens de la norme de la résolvante. Pour se faire, nous introduisons ce que nous
appelons les opérateurs Poincaré-Steklov (PS) (comme un analogue des opérateurs Dirichlet-to-Neumann
pour l’opérateur de Laplace) et les analysons d’un point de vue microlocal, an de comprendre précisément
le taux de convergence de la résolvante. D’une part, nous montrons que les opérateurs PS s’intègrent dans
le cadre des opérateurs pseudodiérentiels et nous déterminons leurs symboles principaux. D’autre part,
comme nous nous intéressons principalement aux grandes masses, nous traitons notre problème du point
de vue semiclassique, où le paramètre semiclassique est h = M−1. Enn, en établissant une formule de
Krein reliant la résolvante de l’opérateur perturbé à celle de l’opérateur MIT bag, et en utilisant les propriétés
pseudodiérentielles des opérateurs PS combinées aux structures matricielles des symboles principaux, nous
établissons la convergence requise avec un taux de convergence de O(M−1).

Dans le deuxième chapitre, nous dénissons un voisinage tubulaire de la frontière d’un domaine régulier
donné. Nous considérons la perturbation de l’opérateur de Dirac libre par une grande masse M , supportée
dans ce voisinage d’épaisseur ε := M−1. Notre objectif principal est d’étudier la convergence de l’opérateur
de Dirac perturbé lorsqueM tend vers +∞. En comparaison avec la première partie, nous obtenons ici deux
opérateurs limites MIT bag, qui agissent en dehors de la frontière. Il est intéressant de noter que le découplage
de ces deux opérateurs MIT bag peut être considéré comme la version connée de δ-interaction scalaire
de Lorentz de l’opérateur de Dirac, supportée sur une surface fermée. La méthodologie suivie, comme au
problème précédent, porte sur l’étude des propriétés pseudodiérentielles des opérateurs de Poincaré-Steklov.
Cependant, la nouveauté de ce problème réside dans le contrôle de ces opérateurs en suivant la dépendance
du paramètre ε, et par conséquent, dans la convergence lorsque ε tend vers 0 et M tend vers +∞. Avec
ces ingrédients, nous prouvons que l’opérateur perturbé converge au sens de la norme de la résolvante vers
l’opérateur de Dirac couplé à une δ-interaction scalaire de Lorentz.

Dans le troisième chapitre, nous généralisation une approximation de l’opérateur de Dirac tridimensionnel
couplé à une combinaison singulière de δ-interactions électrostatiques et scalaires de Lorentz supportée sur
une surface fermée, par un opérateur de Dirac avec un potentiel régulier localisé dans une couche mince
contenant la surface. Dans les cas non-critiques et non-connants, nous montrons que l’opérateur de Dirac
perturbé régulier converge au sens de la résolvante forte vers la δ-interaction singulière de l’opérateur de
Dirac. De plus, nous déduisons que les constantes de couplage de l’opérateur limite dépendent de manière
non-linéaire de celles du potentiel considéré.

Dans le dernier chapitre de cette thèse, notre étude porte sur l’opérateur de Dirac bidimensionnel couplé
à une δ-interaction électrostatique et scalaire de Lorentz. Nous traitons dans des espaces de Sobolev de
faible régularité (H1◁2) l’auto-adjonction de certaines réalisations de ces opérateurs dans divers contextes
de courbes. Le cas le plus important dans ce chapitre se présente lorsque les courbes considérées sont des
polygones curvilignes, avec des bords lisses et diérentiables et sans cuspides. Sous certaines conditions sur
les constantes de couplage, en utilisant la propriété de Fredholm de certains opérateurs intégraux de frontière,
et en exploitant la forme explicite de la transformée de Cauchy sur des courbes non lisses, nous établissons
l’auto-adjonction de l’opérateur perturbé.

Mots-clés : Analyse spectrale, opérateurs de Dirac, extensions auto-adjointes, δ-shell interactions, opé-
rateurs de Poincaré-Steklov, le modèle MIT bag, opérateurs h-Pseudodierentiel, couplage fort.
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TITULO : PROPIEDADES ESPECTRALES DE OPERADORES DE DIRAC EN ALGUNOS
DOMINIOS.

Resumen

Esta tesis aborda el análisis espectral de modelos de perturbación del operador libre de Dirac en dimen-
siones 2 y 3. Más concretamente, esta tesis se divide en dos partes : Operador de Dirac con condiciones
de borde MIT bag (Capítulo 2, 3) y Operador de Dirac acoplado a delta interacciones (Capítulo 4, 5). La
mayoría de estos estudios se realizan mediante el análisis de los resolventes de estos operadores.

El primer capítulo de esta tesis estudia la perturbación del operador de Dirac por una masa grande
M , soportada en un dominio. Nuestro principal objetivo es establecer, bajo la condición de una masa M

sucientemente grande, la convergencia del operador perturbado al operador de Dirac con la condición de
borde MIT bag, en el sentido de la norma del resolvente. Para ello, introducimos lo que llamamos los ope-
radores de Poincaré-Steklov (PS) (es decir, un análogo al mapa de Dirichlet-Neumann para el operador de
Laplace) y los analizamos desde un punto de vista microlocal, con el n de comprender con precisión la
tasa de convergencia del resolvente. Por un lado, mostramos que los operadores PS encajan en el marco de
los operadores pseudodiferenciales y determinamos sus símbolos principales. En segundo lugar, como nos
interesan principalmente las masas grandes, tratamos nuestro problema desde el punto de vista semiclásicos,
donde el parámetro semiclásicos es h = M−1. Finalmente, estableciendo una fórmula de Krein que relaciona
el resolvente del operador perturbado con el del operador MIT bag, y utilizando las propiedades pseudo-
diferenciales de los operadores PS combinadas con las estructuras matriciales de los símbolos principales,
establecemos la convergencia requerida con una tasa de convergencia de O(M−1).

En el segundo capítulo, denimos una vecindad tubular de la frontera de un dominio regular dado.
Consideramos la perturbación del operador de Dirac por una gran masa M , soportada en esta vecindad de
espesor ε := M−1. Nuestro principal objetivo es estudiar la convergencia del operador de Dirac perturbado
cuando M tiende a +∞. En comparación con la primera parte, obtenemos aquí dos operadores límite
MIT bag, que actúan fuera de la frontera. Curiosamente, el desacoplamiento de estos dos operadores MIT
bag puede verse como la versión de δ interacción escalar de Lorentz connada del operador de Dirac,
apoyado en una supercie cerrada. La metodología seguida en este problema en realidad entra en contacto
con el problema anterior tratado por analogía con el estudio de las propiedades pseudodiferenciales de los
operadores de Poincaré-Steklov. Sin embargo, la novedad de este problema radica en el control de estos
operadores siguiendo la dependencia del parámetro ε, y en consecuencia, en la convergencia cuando ε tiende
a 0 yM tiende a+∞. Con estos ingredientes, demostramos que el operador perturbado converge en el sentido
de la norma del resolvente al operador de Dirac acoplado con la δ-interacción de shell escalar de Lorentz.

En el tercer capítulo, generalizamos una aproximación del operador de Dirac tridimensional acoplado
a una combinación singular de δ-interacciones electrostáticas y escalares de Lorentz soportadas sobre una
supercie cerrada, por un operador de Dirac con un potencial regular localizado en una capa delgada que
contiene la supercie. En los casos no críticos y no nitos, mostramos que el operador de Dirac perturbado
regular converge euertemente en el sentido del resolvente a la δ-interacción singular del operador de Dirac.
Además, deducimos que las constantes de acoplamiento del operador límite dependen no linealmente de las
del potencial considerado.

En el último capítulo de esta tesis, estudiamos el operador de Dirac bidimensional acoplado con las δ-
interacciones electrostática y escalar de Lorentz. Tratamos en espacios de Sobolev de baja regularidad (H1◁2)
la autounión de ciertas realizaciones de estos operadores en varios contextos de curvas. El caso más impor-
tante de este capítulo surge cuando las curvas consideradas son polígonos curvilíneos, con bordes suaves,
diferenciables y sin cúspides. Bajo ciertas condiciones sobre las constantes de acoplamiento, utilizando la
propiedad de Fredholm de ciertos operadores integrales de frontera, y explotando la forma explícita de la
transformada de Cauchy en curvas no suaves, establecemos la auto-unión del operador perturbado.

Palabras clave : Análisis espectral, operadores de Dirac, extensiones autoadjuntas, δ-shell inter-
acciones, operadores de Poincaré-Steklov, el modelo del MIT bag, acoplamiento fuerte, operadores h-
Pseudodiferenciales.
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Chapter 1

General Introduction

1.1 Physical and mathematical motivations

The Dirac equation is of profound and multifaceted importance in both physics and mathematics.
Its introduction by Paul Dirac in the 1920s marked a decisive moment in the development of theoretical
physics, as it successfully reconciled the principles of quantum mechanics and special relativity. The
mathematical formalism of the Dirac’s equation, based on the theory of matrices and spinors, not only pro-
vided a comprehensive framework for describing the behavior of relativistic electrons, but also stimulated
profound mathematical investigations and advances. In many applications in science and technology, it is
not possible to solve the underlying mathematical models exactly. Therefore, suitable parameters in these
mathematical models are replaced by idealized ones. The parameters should be chosen in such a way
that the idealized model is more accessible from a mathematical point of view and still reects physical
reality to a reasonable degree of accuracy. To verify that the idealized models have similar properties
as the original ones coming from applications is a dicult mathematical problem which is unsolved in
many cases.

The free Dirac equation

i∂tΨ(t, x) = DΨ(t, x), for all (t, x) ∈ R× R
n, with ∂t =

∂

∂t
▷ (1.1)

The equation introduced a set of mathematical operators known as free Dirac operators, which are
denoted by D. The free Dirac operators are represented by matrices acting on wave functions Ψ(t, x),
which depending on time t and a position x. The n-dimensional Dirac operator D acts on a vector

function f : Ω→ C
N (where Ω ⊂ R

n is an open set and N := 2[
n+1
2

]) as

Df = −i
n

k=1

αk
∂f

∂xk
+ αn+1f,

with some special N × N matrices αk (the so-called Dirac-Pauli matrices), so that one formally has
D2 = −∆ + I4, where ∆ is the n-dimensional Laplacian, and I4 is the 4 × 4 identity matrix. These
operators play a crucial role in describing the behavior of spin-1◁2 particles, such as electrons. In the
context of free Dirac operators, the term "free" implies that the particles under consideration are not
subject to external forces or interactions. This simplication allows physicists and mathematicians to
focus on understanding the intrinsic properties and characteristics of the Dirac operators. Studying free
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Chapter 1 – General Introduction

Dirac operators provides valuable insights into the fundamental nature of relativistic quantum systems
and serves as a foundation for more complex quantum eld theories.

In mathematical physics, researchers delve into the spectral analysis of free Dirac operators, exam-
ining the eigenvalues and eigenvectors associated with these operators. This analysis provides a deeper
understanding of the mathematical structure underlying relativistic quantum systems and contributes to
the development of mathematical tools applicable in various branches of physics.

The motivation behind the study of free Dirac operators lies at the intersection of quantummechanics,
quantum eld theory, and mathematical physics. This motivation can be explored through several key
aspects, e.g., Integration of relativity into quantum mechanics, Introduction of Spinors and Cliord
Algebras, etc. On one hand, the primary motivation for the Dirac equation arises from the need to
formulate a relativistically correct description of quantum-mechanical systems, particularly electrons.
The Schrödinger equation, which successfully describes non-relativistic quantum mechanics, fails to
account for eects associated with high speeds and energies. The Dirac equation, combining quantum
mechanics with special relativity, emerged as a solution to this limitation, providing a more accurate
description of the behavior of relativistic electrons moving at speeds close to the speed of light. Moreover,
free Dirac operators have applications beyond particle physics, extending into areas such as condensed
matter physics and materials science. The study of Dirac materials, which exhibit unique electronic
properties governed by the principles of relativistic quantum mechanics, has gained signicant attention.
Graphene, for instance, is a well-known example of a material where the behavior of charge carriers
can be eectively described by the Dirac equation in the absence of external forces. On the other hand,
unlike the Schrödinger equation, the Dirac equation involves spinors, mathematical entities that extend
the notion of vectors to include intrinsic angular momentum or spin. The need to account for intrinsic
angular momentum and the observed magnetic properties of electrons led to the development of spinors
and the utilization of Cliord algebras. The study of Cliord algebras and spinors became a rich area of
mathematical investigation with applications in geometry and representation theory.

1.2 Dirac’s approach to deriving the equation (1.1) in R
3

Let m be the positive mass of a free particle and denote by p the momentum of this particle. We
consider the classical relativistic energy-momentum relation E =


c2p2 + c4m2 (with c the velocity of

light). Then, the operators associated with the energy and the momentum, i.e.,

E → iℏ∂t, p→ −iℏ∇, with ℏ = Planck’s constant and ∇ the gradient in R
3 (1.2)

yield the Klein-Gordon equation

−ℏ2∂2
tΨ(t, x) = (−c2ℏ2∆+ c4m2)Ψ(t, x), t ∈ R, x ∈ R

3,

where ∆ is the Laplace operator and Ψ is the wave function. However, the Klein-Gordon equation
lacks consistency with a quantum mechanical interpretation due to the inclusion of a second order time
derivative and the absence of an L2-conservation law. To do so, it is necessary to establish an equation
that conserves the L2 norm of the solution, ensuring that the wave function at time t = 0 determines
the wave function at all subsequent times. In response to this challenge, Paul Dirac sought to modify
the Klein-Gordon equation to derive an equation that incorporated a rst-order time derivative, similar
to the Schrödinger equation, while adhering to the principles of covariance in the context of special
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1.2. Dirac’s approach to deriving the equation (1.1) in R
3

relativity. The initial step in his approach is to reexamine the energy-momentum relationE and, before to
its translation into the language of quantum mechanics using (1.2), he linearized the expression through
a written formulation. Taking these factors into account, the resulting equation takes the following form

iℏ∂tΨ(t, x) = −iℏc(α1∂x1 + α2∂x2 + α3∂x3)Ψ(t, x) + βmc2Ψ(t, x)

≡ −iℏcα ·∇Ψ(t, x) + βmc2Ψ(t, x), with ∂xj
=

∂

∂xj
, t ∈ R, x ∈ R

3,

where∇ is the gradient inR3, and β, α = (α1,α2,α3) have to be determined from the energy-momentum
relation E. The quantities α and β are anticommuting which are most naturally represented by 4 × 4-
Hermitian and unitary matrices, called "Dirac matrices". More precisely, αj and β are satisfying the
following anticommutation relationship

{αj ,αk} = 2δjkI4, {αj ,β} = 04, β2 = I4, j, k ∈ {1, 2, 3}, (1.3)

where, {·, ·} denotes the anticommutator bracket, δjk denotes the Kronecker symbol (δjk = 1 if j = k;
δjk = 0 if j ̸= k), and I4 resp. 04 are the 4-dimensional unit and zero matrices.

Paul Dirac introduced the standard representation

β =


I2 02
02 −I2


, αj =


02 σj
σj 02


for j = 1, 2, 3, (1.4)

with σ = (σ1, σ2,σ3) the 2× 2-Hermitian Pauli matrices dened by

σ1 =


0 1
1 0


, σ2 =


0 −i
i 0


, σ3 =


1 0
0 −1


, I2 =


1 0
0 1


▷ (1.5)

The anticommutation relations

{σj ,σk} = σjσk + σkσj = 2δjkI2 for all j, k ∈ {1, 2, 3} (1.6)

are well known. Using the above matrices α1, α2, α3 and β, for m be the mass of a relativistic particle,
Dirac proposed the equation known as the Dirac equation given by

i∂tΨ(t, x) = DmΨ(t, x), for all (t, x) ∈ R× R
3,

with Dm (from now on, we use the units c = ℏ = 1) the three-dimensional free Dirac operators having
the following matrix form

Dm = −iα ·∇+mβ := −i
3

j=1

αj∂j +mβ

=




m 0 −i∂3 −i∂1 − ∂2
0 m −i∂1 + ∂2 i∂3
−i∂3 −i∂1 − ∂2 −m 0

−i∂1 + ∂2 i∂3 0 −m


 ▷

(1.7)

Dm acts onC4-valued functions of x ∈ R
3, which are denoted byψ(x) =


ψ1(x),ψ2(x),ψ3(x),ψ4(x)

t
,
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and belong to the following rst order Sobolev space

H1(R3)⊕H1(R3)⊕H1(R3)⊕H1(R3) ≡ H1(R3)4 = H1(R3,C4) = H1(R3)⊗ C
4▷

Thus, we dene the free Dirac operator by

Dmψ := (−iα ·∇+mβ)ψ, for all ψ ∈ Dom(Dm) := H1(R3)4▷

The free Dirac operator is essentially self-adjoint on the dense domain C∞
0 (R3\{0})4 and self-adjoint

on his domain Dom(Dm) = H1

R
3
4

▷

Its spectrum is purely continuous and given by

Sp(Dm) = Spcont(Dm) = (−∞,−m] ∪ [m,+∞)▷

Since in this thesis we are concerned with analyzing perturbations of Dirac operators, we gather be-
low some spectral contributions regarding of the self-adjointness and the spectrum of a perturbed operator.

We mention that this manuscript is devoted to the analysis of self-adjoint Dirac operators. It is
important to point out that several spectral studies have been carried out on non-self-adjoint Dirac
operators (including discrete Dirac operators), see for example [KND22, DFKS22, CIKS20, FK19].

Denition 1.2.1. Let T be self-adjoint operator. We say that V is T -bounded (or relatively bounded with
respect to T ), if Dom(V ) ⊃ Dom(T ) and ∃ a, b ⩾ 0 such that

∥V ξ∥ ⩽ a∥T ξ∥+ b∥ξ∥, ∀ξ ∈ Dom(T )▷

We denote by NT (V ) the inmum of such an a.

Theorem 1.2.2. (Kato-Rellich Theorem). Let T be self-adjoint operator, and V is symmetric. If V is
T -bounded such thatNT (V ) < 1, then the operator (T +V )u := Tu+V u is self-adjoint in the domain
Dom(T )▷

Remark 1.2.1. If we take a multiplication operator V with a hermitian 4 × 4 matrix such that each
component Vik is a function satisfying the estimate

|Vik(x)| ⩽ a
c

2|x|
+ b, ∀x ∈ R

3\{0}, i, k = 1, 2, 3, 4,

for some constant b > 0, a < 1. Then, for the free Dirac operator, we have the same result as in the
previous theorem, see [Tha92, Theorem 4.2].

Theorem 1.2.3. (Weyl’s essential spectrum theorem). Let A be a self-adjoint operator and let B be a
closed operator with Dom(A) = Dom(B), so that:

1) For some (and hence all) z ∈ ρ(A) ∩ ρ(B), (A− z)−1 − (B − z)−1 is compact.
and let

2) Sp(A) ̸= R and ρ(B) ̸= ∅▷
Then Spess(A) = Spess(B)▷

Denition 1.2.4. (Relatively compact.) LetA be self-adjoint. An operatorC withDom(A) ⊂ Dom(C)
is called relatively compact with respect to A if and only if C(A+ i)−1 is compact.
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Corollary 1.2.5. Let A be a self-adjoint operator and let C be a relatively compact perturbation of A.
Let B = A+ C, then Spess(B) = Spess(A)▷

1.3 Sobolev and Dirac-Sobolev spaces

Denition 1.3.1 (Function space). Let Ω be a non-empty open subset of Rd. For an integer k > 0, we let

Ck(Ω) := {u : Ω→ C : ∂αu exists and is continuous in Ω for |α| ⩽ k},

Ck
0 (Ω) := {u ∈ Ck(Ω) : supp(u) ⊂ K ⊂ Ω, for a compact set K},

where,

∂αu =
∂|α|u

∂α1
x1 ∂

α2
x2 · · · ∂αd

xd

, with |α| =
d

j=1

αj and x = x1 · · · xd, x ∈ R
d, α ∈ N

d▷

We denote by

C∞(Ω) =


k⩾0

Ck(Ω) the usual space of innitely dierentiable functions.

Denition 1.3.2 (Lipschitz domain). A open connected set Ω ⊂ R
d is a κ-Lipschitz domain if for every

x ∈ Ω there exist r > 0 and an isometric coordinate system with origin x = x0 such that

C ∩ Ω = C ∩ {(ỹ, t) : ỹ ∈ R
d−1 and g(ỹ) < t},

for C = {y ∈ R
d : |x − y|∞ < r}, and for a Lipschitz continuous function g : Rd−1 → R, with

g(x0) = x0 and ||g
′
||∞ ⩽ κ. Then, we say a domain is a Lipschitz domain if it is a κ-Lipschitz domain

for some κ ⩾ 0▷

Denition 1.3.3 (Hölder space). Let Ω ⊂ R
d be a open bounded domain, k ⩾ 0 be an integer, and

ω ∈ (0, 1]▷ For u ∈ Ck(Ω) dene the Hölder norm

||u||Ck,ω(Ω) :=


|α|⩽k

||∂αu||C0(Ω) +


|α=k|

[∂αu]ω, with [∂αu]ω := sup
x,y∈Ω,x ̸=y

|∂αu(x)− ∂αu(y)|

|x− y|ω
▷

The function space

Ck,ω(Ω) = {u ∈ Ck(Ω) : ||u||Ck,ω(Ω) <∞}

is called the Hölder space with exponent ω.

For a bounded or unbounded Lipschitz domain Ω ⊂ R
3, we write ∂Ω for its boundary and we

denote by n and σ the outward pointing normal to Ω and the surface measure on ∂Ω, respectively. By
L2(R3)4 := L2(R3;C4) (resp. L2(Ω)4 := L2(Ω,C4)) we denote the usual L2-space over R3 (resp. Ω),
and we let rΩ : L2(R3)4 → L2(Ω)4 be the restriction operator on Ω and eΩ : L2(Ω)4 → L2(R3)4 its
adjoint operator, i.e., the extension by 0 outside of Ω.
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We dene the unitary Fourier transform F : S (Rd) −→ S (Rd) as follows:

û(ξ) := F [u](ξ) = (2π)−d◁2


Rd
e−ix·ξu(x)dx, ∀ξ ∈ R

d,

and by F−1 we denote the inverse Fourier transform F−1 : S (Rd) −→ S (Rd), given by

[û]−1(x) := F
−1[u](x) = (2π)−d◁2



Rd
eiξ·xu(ξ)dξ, ∀x ∈ R

d▷

The Fourier transform denes a continuous linear operator from the Schwartz classS (Rd) into itself. By
duality, we can also extend F to the space of tempered distributions S

′
(Rd). In particular, the Fourier

transform can be extended into an isometry in L2(Rd).

For s ∈ [0, 1], we dene the usual Sobolev space H s(Rd)4 as

H s(Rd)4 := {u ∈ L2(Rd)4 :



Rd
(1 + |ξ|2)s |û(ξ)|2 dξ <∞},

and we shall designate by H s(Ω)4 the standard L2-based Sobolev space of order s. By H0(Rd)4 =
L2(∂Ω)4 := L2(∂Ω, dσ)4 we denote the usual L2-space over ∂Ω. If Ω is a C 2-smooth domain with
a compact boundary ∂Ω, then the Sobolev space of order s ∈ (0, 1] along the boundary, H s(∂Ω)4, is
dened using local coordinates representation on the surface ∂Ω. As usual, we use the symbolH−s(∂Ω)4

to denote the dual space of H s(∂Ω)4. In particular, the rst order Sobolev space is

H 1(Ω)4 = {φ ∈ L2(Ω)4 : there exists φ̃ ∈ H 1(R3)4 such that φ̃|Ω = φ}▷

The Sobolev space of order 1◁2 along the boundary, H 1◁2(∂Ω)4, consists of all functions g ∈ L2(∂Ω)4

for which

∥g∥2
H1◁2(∂Ω)4 :=



∂Ω
|g(x)|2dσ(x) +



∂Ω



∂Ω

|g(x)− g(y)|2

|x− y|3
dσ(y)dσ(x) <∞,

andH−1◁2(∂Ω)4 is the dual space ofH 1◁2(Σ)4. We denote by t∂Ω : H 1(Ω)4 → H 1◁2(∂Ω)4 the classical
trace operator, and by EΩ : H 1◁2(∂Ω)4 → H 1(Ω)4 the extension operator, that is

t∂ΩEΩ[f ] = f, ∀f ∈ H 1◁2(∂Ω)4▷

Throughout the current manuscript, we denote by P± the orthogonal projections dened by

P± :=
1

2
(I4 ∓ iβ(α · n(x))) , x ∈ ∂Ω▷ (1.8)

We use the symbol H (α,Ω) for the Dirac-Sobolev space on a smooth domain Ω dened as

H (α,Ω) = {φ ∈ L2(Ω)4 : (α ·∇)φ ∈ L2(Ω)4}, (1.9)

which is a Hilbert space (see [OBV18, Section 2.3]) endowed with the following scalar product

⟨φ,ψ⟩H (α,Ω) = ⟨φ,ψ⟩L2(Ω)4 + ⟨(α ·∇)φ, (α ·∇)ψ⟩L2(Ω)4 , φ,ψ ∈ H (α,Ω)▷
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We also recall that the trace operator t∂Ω extends into a continuous map t∂Ω : H (α,Ω)→ H−1◁2(∂Ω)4.
Moreover, if v ∈ H (α,Ω) and t∂Ωv ∈ H 1◁2(∂Ω)4, then v ∈ H 1(Ω)4, cf. [OBV18, Proposition 2.1 &
Proposition 2.16].

Proposition 1.3.4. Let Ω be a Lipschitz domain. Then, for all ϕ, ψ ∈ H1(Ω)4, we have the Green’s
formula

⟨(−iα ·∇)φ,ψ⟩L2(Ω)4 − ⟨φ, (−iα ·∇)ψ⟩L2(Ω)4 = ⟨(−iα · n)t∂Ωφ, t∂Ωψ⟩L2(∂Ω)4 ▷

1.4 The resolvent kernel of the free Dirac operator

Let us denote by Rm(z) the resolvent of the free Dirac operator. From [Tha92, Section 1.E], it is
known that

(Rm(z)f) (x) := (Dm − z)−1f(x) :=



R3
ϕz
m(x− y)f(y) dy, ∀ z ∈ C \ Sp(Dm),

where,

ϕz
m(x) =

eik(z)|x|

4π|x|


z +mβ + (1− ik(z)|x|)iα ·

x

|x|2


, ∀x ∈ R

3 \ {0}, (1.10)

is the kernel of the free Dirac operator.

Let us recall how we obtain this integral kernel. On one hand, we have

(Dm − z)−1 = (Dm + z)(D2
m − z2)−1

= (Dm + z)(−∆+m2 − z2)−1

= (Dm + z)

p2 − (z2 −m2)

−1
▷

On the other hand, if we let u(x) =

p2 − k2(z)

−1
f(x), with k(z) =

√
z2 −m2 the branch of the

square root xed by the condition Im
√
λ ⩾ 0, then by Fourier transform, we get that

F (f)(ξ) =

ξ2 − (z2 −m2)


F (u)(ξ)

⇒ u(x) = F
−1


1

ξ2 − k2(z)


∗ f(x)▷

From the well known formula F−1


1

ξ2 − k2(z)


(x) =

eik(z)|x|

4π|x|
, we obtain

(Dm − z)−1f(x) = (Dm + z)


eik(z)|x|

4π|x|
∗ f


(x)

=


(−iα ·∇+ βm+ z)


eik(z)|x|

4π|x|


∗ f(x)▷
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In addition, for x ̸= 0, we have

∂

∂x1


eik(z)|x|

|x|


=

ik(z)|x|eik(z)|x| · x1 −
x1

|x|
eik(z)|x|

|x|2

= ik(z)eik(z)|x|
x1

|x|2
− x1

|x|3
eik(z)|x|

=


ik(z)

x1

|x|2
− x1

|x|3


eik(z)|x|▷

Consequently,

α ·∇ = α ·


ik(z)

x

|x|2
− x

|x|3


eik(z)|x| =


i
α · x

|x|
k(z)− α · x

|x|2


eik(z)|x|

|x|

yields that


(Dm − z)−1f


(x) =


(−iα ·∇+ βm+ z)

eik(z)|x|

4π|x|



  

i
α · x

|x|2
+k(z)

α · x

|x|
+mβ+z


eik(z)|x|

4π|x|

∗ f(x) =


R3
ϕz
m(x− y, z)f(y) dy

  
=ϕz

m(·)∗f(x)

▷

By comparing the two quantities, we deduce (1.10).

1.5 Boundary integral operators associated with the free Dirac operators

The aim of this part is to introduce boundary integral operators associated with the fundamental
solution of the free Dirac operator Dm and to summarize some of their well-known properties.

For z ∈ ρ(Dm) (i.e., the resolvent set of Dm), with the convention that Im
√
z2 −m2 > 0, the

fundamental solution of (Dm − z) is given by

ϕz
m(x) =

ei
√
z2−m2|x|

4π|x|


z +mβ + (1− i


z2 −m2|x|)iα ·

x

|x|2


, ∀x ∈ R

3 \ {0}▷ (1.11)

We dene the potential operator ΦΩ
z,m : L2(∂Ω)4 −→ L2(Ω)4 by

Φ
Ω

z,m[g](x) =



∂Ω
ϕz
m(x− y)g(y)dσ(y), for all x ∈ Ω, (1.12)

and the Cauchy operators Cz,m : L2(∂Ω)4 −→ L2(∂Ω)4 as the singular integral operator acting as

Cz,m[f ](x) = lim
ρ↘0



|x−y|>ρ
ϕz
m(x− y)f(y)dσ(y), for σ-a.e. x ∈ ∂Ω, f ∈ L2(∂Ω)4▷ (1.13)

Finally, we dene the following operator C z
±,m : L2(Σ)4 −→ L2(Σ)4 as follows:

C z
±,m[f ](x) := lim

Ω±∋y nt→ x

Φ
z
m[f ](y),
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where Ω± ∋ y
nt→ x means that y tends to x non-tangentially from Ω+ and Ω−, respectively, i.e.,

for y ∈ Ω±, we get |x − y| < (1 + a)dist(y,Σ) for a > 0 and x ∈ Σ. Moreover, the following
Plemelj-Sokhotski jump formula holds:

C z
±,m = ∓ i

2
(α · n) + Cz,m▷ (1.14)

It is well known that ΦΩ
z,m, Cz,m, and C z

±,m are bounded and everywhere dened (see, for instance,
[AMV14, Section. 2]), and that

((α · n)Cz,m)2 = (Cz,m(α · n))2 = −1◁4, ∀z ∈ ρ(Dm), (1.15)

holds in L2(∂Ω)4, cf. [AMV15, Lemma 2.2]. In particular, the inverse C−1
z,m = −4(α · n)Cz,m(α · n)

exists and is bounded and everywhere dened. Since we haveϕz
m(y−x)∗ = ϕz

m(x−y) for all z ∈ ρ(Dm),
it follows that C ∗

z,m = Cz,m as operators in L2(∂Ω)4. In particular, Cz,m is self-adjoint in L2(∂Ω)4 for
all z ∈ (−m,m).

Next, recall that the trace of the single layer operator (1.12), Sz , associated with the Helmholtz
operator (−∆+m2 − z2)I4 is dened, for every f ∈ L2(∂Ω)4 and z ∈ ρ(Dm), by

Sz[f ](x) :=



∂Ω

ei
√
z2−m2|x−y|

4π|x− y|
f(y)dσ(y), for x ∈ ∂Ω▷

It is well-known that Sz is bounded from L2(∂Ω)4 into H 1◁2(∂Ω)4, and it is a positive operator in
L2(∂Ω)4 for all z ∈ (−m,m), cf. [AMV15, Lemma 4.2]. Now we dene the operator Λz

m by

Λ
z
m =

1

2
β + Cz,m, for all z ∈ ρ(Dm),

which is clearly a bounded operator from L2(∂Ω)4 into itself.

In the next lemma we collect the main properties of the operators ΦΩ
z,m, Cz,m and Λz

m.

Lemma 1.5.1. Assume that Ω is C 2-smooth. Given z ∈ ρ(Dm) and let ΦΩ
z,m, Cz,m and Λz

m be as above.
Then the following hold true:

(i) The operator ΦΩ
z,m is bounded from H 1◁2(∂Ω)4 to H 1(Ω)4, and extends into a bounded operator

from H−1◁2(∂Ω)4 to H (α,Ω). Moreover, it holds that

t∂ΩΦ
Ω

z,m[f ] =


− i

2
(α · n) + Cz,m


[f ], ∀f ∈ H 1◁2(∂Ω)4▷ (1.16)

(ii) The operator Cz,m gives rise to a bounded operator Cz,m : H 1◁2(∂Ω)4 −→ H 1◁2(∂Ω)4.
(iii) The operator Λz

m : H 1◁2(∂Ω)4 −→ H 1◁2(∂Ω)4 is bounded invertible for all z ∈ ρ(Dm).

Proof. (i) The proof of the boundedness of ΦΩ
z,m from H 1◁2(∂Ω)4 into H 1(Ω)4 is contained in [BH20,

Proposition 4.2], and the jump formula (1.16) is proved in [AMV14, Lemma 3.3] in terms of non-
tangential limit which coincides (almost everywhere in ∂Ω) with the trace operator for functions in
H 1(Ω)4. The boundedness of ΦΩ

z,m from H−1◁2(∂Ω)4 to H (α,Ω) is established in [OBV18, Theorem
2.2].
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Since n is smooth, it is clear from (i) that Cz,m is bounded from H 1◁2(∂Ω)4 into itself, which proves
(ii). As consequence we also obtain thatΛz

m is bounded fromH 1◁2(∂Ω)4 into itself. Now, the invertibility
of Λz

m in H 1◁2(∂Ω)4 for z ∈ C \ R is shown in [BEHL19, Lemma 3.3 (iii)], see also [BHM20, Lemma
3.12]. To complete the proof of (iii), note that if f ∈ L2(∂Ω)4 is such that Λz

m[f ] ∈ H 1◁2(∂Ω)4, then a
simple computation shows that

H 1◁2(∂Ω)4 ∋ (Λz
m)2[f ] =


1◁4 + (Cz,m)2 + (m+ zβ)Sz


[f ],

which means that f ∈ H 1◁2(∂Ω)4. From the above computation we see that Λz
m is invertible from

H 1◁2(∂Ω)4 into itself for all z ∈ (−m,m), since ((Cz,m)2 + (m + zβ)Sz) is a positive operator. This
completes the proof of the lemma. ■

Remark 1.5.1. Note that if Ω is a Lipschitz domain with a compact boundary, then for all z ∈ ρ(Dm)
the operators Cz,m and Λz

m are bounded from L2(∂Ω)4 into itself (see, e.g, [AMV14, Lemma 3.3]), and
since Λz

m is an injective Fredholm operator (see the proof of [Ben22a, Theorem 4.5]) it follows that it is
also invertible in L2(∂Ω)4. Note also that, thanks to [BHSS24, Lemma 5.1 and Lemma 5.2], we know
that the mapping ΦΩ

z,m dened by (1.12) is bounded from L2(∂Ω)4 to H 1◁2(Ω)4, t∂ΩΦΩ
z,m[g] ∈ L2(∂Ω)4

and the formula (1.16) still holds true for all g ∈ L2(∂Ω)4.

At the end of this section, we recall a denition of geometrical quantities on the surface Σ := ∂Ω,
with Ω ⊂ R

3 a bounded domain:

Denition 1.5.2. [Weingarten map]. Let Σ be parametrized by the family {ϕj , Uj , Vj , }j∈J wich J is a
nite set, Uj ⊂ R

2, Vj ⊂ R
3, Σ ⊂ 

j∈J Vj and ϕj(Uj) = Vj ∩Σ for all j ∈ J▷ For x = ϕj(u) ∈ Σ∩Vj

with u ∈ Uj , one denes theWeingartenmap (arising from the second fundamental form) as the following
linear operator

Wx := W (x) : Tx → Tx

∂iϕj(u) → W (x)[∂iϕj ](u) := −∂in(ϕj(u)),
(1.17)

where Tx denotes the tangent space of Σ on x and {∂iϕj(u)}i=1,2 is a basis vector of Tx.
The eigenvalues k1(x), ▷▷▷▷, kn(x) of the Weingarten map Wx are called principal curvatures of Σ at x.
Then, we have the following proposition:

Proposition 1.5.3. [[Tho79], Chapter 9 (Theorem 2), 12 (Theorem 2)]. Let Σ be an n−surface in Rn+1,
oriented by the unit normal vector eld n, and let x ∈ Σ. The principal curvatures are uniformly bounded
on Σ.

In quantum mechanics, one is usually concerned with the study of operators Dm + V in the Hilbert
space L2(Rn,CN ), where V is a potential perturbation, or, more recently, in L2(Ω,CN ) with various
boundary conditions. The main attention is paid to the most physically interesting cases n = 2 and n = 3.
In many cases, the potential V depends on some parameters, so one is interested in the study of spectra
(in particular, eigenvalues) under various variations of parameters in V as well their dependence on the
parameter m (mass) and the underlying geometric object Ω.

In order to provide more context, the paragraphs below contain a brief presentation of my scientic
papers. These paragraphs come as a summary of our results, as well as some ingredients of their proofs.
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1.6 Chapter summaries

My doctoral research is mainly focused on the spectral analysis of Dirac operators. A large part of
my thesis deals with an approximation for the Dirac operator on a domain (with boundary conditions) or
coupled with δ-shell interactions. More precisely, the current manuscript studies two types of perturbation
for Dirac operators: The three-dimensional Dirac operators with large mass limits and the Dirac operators
coupled with singular delta interactions of electrostatic and Lorentz scalar. On one hand, the majority
of the studies carried out in this thesis are established through the study of their resolvents. Then, in the
rst part of this thesis, we introduce the Poincaré-Steklov (PS) operators, which appear naturally in the
study of Dirac operators with MIT bag boundary conditions (Chapters 2 and 3), and analyze them from
a microlocal point of view (classical and semiclassical). On the other hand, our study focuses on Dirac

operators coupled with a singular combination of electrostatic and Lorentz scalar delta interactions

(Chapters 4 and 5). In three-dimension, we generalize an approximation of this operator with regular
local interaction. Besides, in two-dimension, we develop a new technique that allows us to prove, for
combinations of interactions, the self-adjointness of the realization of the operator under consideration,
in low-regularity Sobolev spaces.

1.6.1 Dirac operator with MIT bag boundary conditions

The MIT bag Dirac operator was introduced by Bogoliubov in the 1970s as a simplied model
of connement of quarks in hadrons. Moreover, as far as we know, the MIT bag Dirac operators are
considered as a model of general relativity, see e.g., [BL01, BC05]. For a bounded smooth domain
Ω ⊂ R

n, the MIT bag operator HMIT(m) is the realization of Dm in L2(Ω)4 corresponding to the
boundary conditions P−t∂Ωv = 0 on ∂Ω with some explicit matrices P− (1.18) depending on the outer
unit normal n and t∂Ω being the Dirichlet trace operator (restriction to the boundary). Several researchers
(e.g., [ALTMR19, MOBP20]), have found that the eigenvalues ofHMIT(m) are the limit (in the sense of
resolvent) of the eigenvalues of the Dirac operator in the whole space Rn when the mass becomes large
outside of Ω (so that the MIT bag boundary condition represents a kind of relativistic hard wall at the
boundary). Moreover, various resolvent convergence results were established as well see, for example
[BCLTS19].

For a bounded smooth domain Ω ⊂ R
3, the MIT bag operator is dened on the domain

Dom(HMIT(m)) := {v ∈ H1(Ω,C4) : P−t∂Ωv = 0 on ∂Ω},

by HMIT(m)v = Dmv, for all v ∈ Dom(HMIT(m)), and where the boundary condition holds in
H1◁2(∂Ω,C4)▷ Here t∂Ω : H1(Ω,C4)→ H1◁2(∂Ω,C4) denotes the classical trace operator.
It is well known [OBV18] that the spectrum ofHMIT is purely discrete and is contained in R \ [−m,m].
Also, it is known that HMIT(m) arises as the limit (in the sense of resolvent) of the self-adjoint Dirac
operator DM := Dm +Mβ1

R3\Ω when M tends to∞.

In the following two parts of this introduction, we will describe our main results from Chapters 2 and
3 on the study of Dirac operators with MIT bag boundary conditions, which correspond to the results
obtained in [BBZ37] and [Zre84], respectively.
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1.6.1.1 Summary of Chapter 2: A Poincaré-Steklov map for the MIT bag model

Boundary integral operators have played a key role in the study of many boundary value problems
for partial dierential equations arising in various areas of mathematical physics, such as electromag-
netism, elasticity, and potential theory. In particular, they are used as a tool for proving the exis-
tence of solutions as well as for their construction by means of integral equation methods, see, e.g.,
[FJJR78, JK81a, JK81b, Ver84].

The study of boundary integral operators has also been the motivation for the development of various
tools and branches of mathematics, e.g., Fredholm theory, Singular integral and Pseudodierential
operators. Moreover, it turned out that functional analytic and spectral properties of some of these
operators are strongly related to the regularity and geometric properties of surfaces, see for example
[HMT10, HMOM+09]. A typical and well-known example which occurs in many applications is the
Dirichlet-to-Neumann (DtN) operator. In the classical setting of a bounded domain Ω ⊂ R

d with a
smooth boundary, the DtN operator, N , is dened by

N : H 1◁2(∂Ω) −→ H−1◁2(∂Ω), g −→ N g = ΓNU(g),

where U(g) is the harmonic extension of g (i.e., ∆U(g) = 0 in Ω and ΓDU = g on ∂Ω). Here ΓD and
ΓN denote the Dirichlet and the Neumann traces, respectively. In this setting, it is well known that the
DtN operator ts into the framework of pseudodierential operators, see e.g., [Tay96]. Moreover, from
the viewpoint of the spectral theory, several geometric properties of the eigenvalue problem for the DtN
operator (such as isoperimetric inequalities, spectral asymptotics and geometric invariants) are closely
related to the theory of minimal surfaces [FS16], as well as the problem of determining a complete
Riemannian manifold with boundary from the Cauchy data of harmonic functions, see [LTU03] (see also
the survey [GP17] for further details).

A motivation of this chapter is to introduce a Poincaré-Steklov map for the Dirac operator (i.e., an
analogue of the DtN map for the Laplace operator) and to study its pseudodierential properties. Our
main motivation for considering this operator is that it arises naturally in the study of the well-known
Dirac operator with the MIT bag boundary condition, HMIT(m), which will be rigorously dened in
(1.21). Let Ω ⊂ R

3 be a domain with a compact smooth boundary ∂Ω, let n be the outward unit normal
to Ω, and let Γ± and P± be the trace mappings and the orthogonal projections, respectively, dened by

Γ± = P±ΓD : H 1(Ω)4 −→ P±H
1◁2(∂Ω)4 and P± :=

1

2
(I4 ∓ iβ(α · n(x))) , x ∈ ∂Ω▷ (1.18)

In Chapter 2, we investigate the specic case of the Poincaré-Steklov (PS for short) operator,Am, dened
for z ∈ ρ(HMIT(m)) by

Am : P−H
1◁2(∂Ω)4 −→ P+H

1◁2(∂Ω)4, g −→ Am(g) = Γ+Uz,

where Uz ∈ H 1(Ω)4 is the unique solution to the following elliptic boundary problem:


(Dm − z)Uz = 0, in Ω,

Γ−Uz = g, on ∂Ω▷
(1.19)

We point out that in the R-matrix theory and the embedding method for the Dirac equation, similar
operators linking on ∂Ω values of the upper and lower components of the spinor wave functions have
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been studied in [Szm98, Agr01, AR05, BS06]. It corresponds to a dierent boundary condition (the trace
of the upper/lower components) which is not necessarily elliptic. As far as we know, such operators for
the MIT bag boundary condition have not been studied yet.

Our results are mainly concerned with the pseudodierential properties ofAm and their applications.
Thus, our rst goal is to show thatAm ts into the framework of pseudodierential operators. In Section
2.3, we show that when the massm is xed and z ∈ ρ(Dm), then the Poincaré-Steklov operator Am is a
classical homogeneous pseudodierential operator of order 0, and that

Am = S ·

∇∂Ω ∧ n√
−∆∂Ω


P− modOpS−1(∂Ω),

where S = i(α ∧ α)◁2 is the spin angular momentum, ∇∂Ω and ∆∂Ω are, respectively, the surface
gradient and the Laplace-Beltrami operator on ∂Ω (equipped with the Riemann metric induced by the
euclidian one in R

3) and OpS−1 is the classical class of pseudodierential operators of order −1 (see
Theorem 2.3.3 for details). ForD∂Ω, the extrinsically dened Dirac operator introduced in Section 2.1.2,
we also have:

Am = D∂Ω (−∆∂Ω)
− 1

2 P− modOpS−1(∂Ω)▷

The proof of the above result is based on the fact that we have an explicit solution of the system (1.19)
for any z ∈ ρ(Dm), and in this case the PS operator takes the following layer potential form:

Am = −P+β (β◁2 + Cz,m)−1 P−, (1.20)

where Cz,m is the Cauchy operator associated with (Dm − z) dened on ∂Ω in the principal value
sense (see Subsection 1.5 for the precise denition). So the starting point of the proof is to analyze the
pseudodierential properties of the Cauchy operator. In this sense, we show that 2Cz,m is equal, modulo
OpS−1(∂Ω), to α · (∇∂Ω(−∆∂Ω)

−1◁2). Using this, the explicit layer potential description of Am, and
the symbol calculus, we then prove thatAm is a pseudodierential operator and catch its principal symbol
(see Theorem 2.3.3).

While the above strategy allows us to capture the pseudodierential character ofAm, but unfortunately
it does not allow us to trace the dependence on the parameter m, and it also imposes a restriction on the
spectral parameter z (i.e., z ∈ ρ(Dm)), whereasAm is well-dened for any z ∈ ρ(HMIT(m)). In Section
2.4, we address the m-dependence of the pseudodierential properties of Am for any z ∈ ρ(HMIT(m)).
Since we are mainly concerned with large masses m in our application, we treat this problem from the
semiclassical point of view, where h = 1◁m ∈ (0, 1] is the semiclassical parameter. In fact, we show the
following result:

The proof of the following result is presented in Theorem 2.4.1 in Chapter 2.

Theorem 1.6.1. Let h ∈ (0, 1] and z ∈ ρ(HMIT(m)), and let A h := Am with m = h−1. Then for
any N ∈ N, there exists a h-pseudodierential operator of order 0, A h

N ∈ OphS0(Σ) such that for h
suciently small, and any 0 ⩽ l ⩽ N + 1

2

∥A h −A
h
N∥H 1

2 (Σ)→H
N+3

2−l(Σ)
= O(hN+ 1

2
+l),

27



Chapter 1 – General Introduction

and

A
h
N =

hDΣ
−h2∆Σ + I+ I

P− mod hOphS−1(Σ)▷

The main idea of the proof is to use the system (1.19) instead of the explicit formula (1.20), and it
is based on the following two steps. The rst step is to construct a local approximate solution for the
pushforward of the system (1.19) of the form

Uh(x̃, x3) = Oph(Ah(·, ·, x3))g =
1

2π



R2
Ah(x̃, hξ, x3)e

iy·ξ ĝ(ξ)dξ, (x̃, x3) ∈ R
2 × [0,∞),

where Ah belongs to a specic symbol class and has the following asymptotic expansion

Ah(x̃, ξ, x3) ∼


j⩾0

hjAj(x̃, ξ, x3)▷

The second step is to show that when applying the trace mapping Γ+ to the pull-back of Uh(·, 0) it
coincides locally with A1◁h modulo a regularizing and negligible operator. At this point, the properties
of the MIT bag operator become crucial, in particular, the regularization property of its resolvent which
allows us to achieve this second step, as we will see in Section 2.4. The MIT bag operator on Ω is the
Dirac operator on L2(Ω)4 dened by

HMIT(m)ψ = Dmψ, ∀ψ ∈ Dom(HMIT(m)) :=

ψ ∈ H 1(Ω)4 : Γ−ψ = 0 on ∂Ω


▷ (1.21)

In Section 2.2, we briey discuss the basic spectral properties ofHMIT(m) when Ω is a domain with
compact Lipschitz boundary (see Theorem 2.2.1). We mention that direct proofs of the self-adjointness
of HMIT(m) have been established in [ALTMR17, ALTR20]. Moreover, in Theorem 2.2.2 we establish
regularity results concerning the regularization property of the resolvent and the Sobolev regularity of
the eigenfunctions ofHMIT. In particular, we prove that (HMIT(m)− z)−1 is bounded from Hn(Ω)4 into
Hn+1(Ω)4 ∩Dom(HMIT(m)), for all n ⩾ 1. Indeed, we prove the following result:

Theorem 1.6.2. Let k ⩾ 1 be an integer and assume that U is C 2+k-smooth. Then the following
statements hold true:

(i) The mapping (HMIT(m)− z)−1 : H k(U)4 −→ H k+1(U)4∩Dom(HMIT(m)) is well-dened and
bounded for all m > 0 and all z ∈ ρ(HMIT(m)). Moreover, for any compact set K ⊂ C there
exist m0, C > 0 such that for all m ⩾ m0 and z ∈ K, there holds

∥(HMIT(m)− z)−1∥Hk−1(U)4−→Hk(U)4 ⩽ Cmk−1▷

(ii) If ϕ is an eigenfunction associated with an eigenvalue z ∈ Sp(HMIT(m)), i.e., (HMIT(m)−z)ϕ =
0, then ϕ ∈ H 1+k(U)4. In particular, if U is C∞-smooth, then ϕ ∈ C∞(U)4.

Motivated by the natural way in which the PS operator is related to the MIT bag operator, and to
illustrate its usefulness, we consider in Section 2.5 the large mass problem for the self-adjoint Dirac
operator HM = Dm + Mβ1U , where U = R

3 \ Ω. Indeed, it is known that, in the limit M → ∞,
every eigenvalue of HMIT(m) is a limit of eigenvalues of HM , cf. [ALTMR19, MOBP20] (see also
[BCLTS19, Ben19, SV19] for the two-dimensional setting). Moreover, it is shown in [BCLTS19, Ben19]
that the two-dimensional analogue of HM convergences to the two-dimensional analogue of HMIT(m)
in the norm resolvent sense with a convergence rate of O(M−1◁2). It is worth noting that we have the
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following easy consequence contribution of Kato-Rellich theorem and Weyl theorem: By Kato-Rellich
theorem, we have thatHM is self-adjoint onDom(HM ) := H1(R3)4, and by Weyl theorem we have that

Spess(HM ) = (−∞,−(m+M)] ∪ [m+M,+∞),

Sp(HM ) ∩ (−(m+M),m+M) is purely discrete.

In [ALTMR19, MOBP20], it was shown that any eigenvalue of HMIT(m) is a limit of eigenvalues
of HM , when M → +∞. Moreover, in the two-dimensional setting, the authors of [BCLTS19] have
shown, in the norm resolvent sense, that the bidimensional analogue of HM converges to the bidimen-
sional HMIT(0), with a convergence rate of O(M−1◁2).

For the physists, it is well known that for M = +∞, we recover thatHM = HMIT(m). Then, before
M = +∞, it seems reasonable to ask some questions about the intermediate values of M . In Section
2.5 we address the following question:

Let M0 > 0 be large enough and x M ⩾ M0 and z ∈ ρ(HMIT(m)) ∩ ρ(HM ). Given f ∈ L2(R3)4

such that f = 0 in R
3 \ Ω, and U ∈ H 1(R3)4, what is the boundary value problem on Ω whose

solutions closely approximate those of (Dm +Mβ1
R3\Ω − z)U = f?

It is worth noting that the answer to this question becomes trivial if one establishes an explicit formula for
the resolvent ofHM . Having in mind the connection between the Dirac operatorsHM andHMIT(m), this
leads us to address the following question: for M suciently large, is it possible to relate the resolvents
of HM and HMIT via a Krein-type resolvent formula? In Theorem 2.5.2, which is the main result of
Section 2.5, we establish a Krein-type resolvent formula for HM in terms of the resolvent of HMIT(m).

The key point to establish this result is to treat the elliptic problem (HM − z)U = f ∈ L2(R3)4

as a transmission problem (where Γ±U|Ω = Γ±U|R3\Ω are the transmission conditions) and to use the
semiclassical properties of the Poincaré-Steklov operators in order to invert an auxiliary operatorΨM (z)
acting on the boundary ∂Ω (see Theorem 2.5.2 for the precise denition). In addition, we prove an
adapted Birman-Schwinger principle relating the eigenvalues of HM in the gap (−(m +M),m +M)
with a spectral property of ΨM (z). With their help, we show in Corollary 2.5.4 that the restriction of U
on Ω satises the elliptic problem





(Dm − z)U|Ω = f in Ω,

Γ−U|Ω = BMΓ+RMIT (z)f on ∂Ω,

Γ+U|Ω = Γ+RMIT (z)f +AmΓ−v on ∂Ω,

where BM is a semiclassical pseudodierential operators of order 0. Here, the semiclassical parameter
is 1◁M . Moreover, we show that the convergence of HM to HMIT in the norm-resolvent sense indeed
holds with a convergence rate of O(M−1), which improves previous works. Then, the result reads as
follows:

The proof of this result is presented in Proposition [Chapter 2, 2.5.6].

Theorem 1.6.3. Let rΩ be the restriction operator on Ω and eΩ be the extension operator by 0 outside of
Ω. For any compact set K ⊂ ρ(HMIT(m)) there is M0 > 0 such that for all M > M0: K ⊂ ρ(HM ),
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and for all z ∈ K the resolvent RM admits an asymptotic expansion in L(L2(R3)4) of the form:

(HM − z)−1 = eΩ(HMIT(m)− z)−1rΩ +
1

M
(KM (z) + LM (z)) ,

where KM (z), LM (z) : L2(R3)4 −→ L2(R3)4 are uniformly bounded with respect to M and satisfy

rΩLM (z)eΩ = 0 = rUKM (z)eU ▷

In particular, it holds that


(HM − z)−1 − eΩ(HMIT(m)− z)−1rΩ



L2(R3)4→L2(R3)4

= O


1

M


▷

The most important ingredient in proving these results is the use of the Krein formula relating the
resolvents ofHM andHMIT(m), as well as regularity estimates for the PS operators (see Theorem 2.5.3)
and layer potential operators (see Lemma 2.5.7 for details).

⋆ ⋆ ⋆ ⋆ ⋆ ⋆
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1.6.1.2 Summary of Chapter 3: On the approximation of the Dirac operator coupled

with conning Lorentz scalar δ-shell interactions

The aim of this chapter is to study the behavior of a perturbed Dirac operator, dened within a
tubular neighborhood of thickness ε > 0, as ε and the mass tends to 0 and∞, respectively. We consider
perturbations of the free Dirac operator Dm in the whole space by a large mass M term living in an
ε-neighborhood Uε of a surface Σ := ∂Ω+, with Ω+ a bounded set in R

3. Working with this type of
massive potential leads to the appearance of what we’ve seen in Chapter 2, called Dirac operators with
MIT bag boundary conditions, when the massM becomes large. Indeed, in this chapter we interested in
establishing the convergence (for suitable relation between ε andM : ε = M−1) of such perturbations to
a direct sum of two MIT bag operators, which we denote by D

Ω+

MIT(m) and D
Ω−

MIT(m), acting in Ω+ and
Ω− := R

3 \Ω+, respectively. This decoupling of these MIT bag Dirac operators can be linked (as ε goes
to 0) to the conning version (i.e., when η = 0 and µ = ±2 in (1.25), below, for µ instead of τ ) of the
Dirac operator coupled with purely Lorentz scalar delta interaction supported on the surface Σ, which
will be discussed briey in the second part of this introduction, Section 1.6.2.

Our main goal in this part of the thesis is to establish an approximation of the Dirac operator
coupled with Lorentz scalar δ-shell interactions by the perturbed Dirac operator, which we denote by
Dε

M = Dm +Mβ1Uε . We would like to point out that the convergence of Dε
M to the MIT bag operator

was established in the previous chapter, in the norm resolvent sense, when M tends to +∞, and ε xed.
However, in that previous chapter, the massM is supported on an unbounded domain, which has only one
boundary. Whereas, in the present chapter, M is supported on a bounded domain with two boundaries,
whose distance between them is the thickness ε, as shown in Figure 1.1. Thus, it is then natural to address
the following question in this chapter:

Let M be a large mass supported on a tubular vicinity of surface Σ. What happens when the

thickness of the tubular tends to zero with M−1?

The methodology followed, as in the previous problem (of Chapter 2) study the pseudodierential
properties of the Poincaré-Steklov (PS) operators. The complexity in the current problem is that these
operators take a pair of functions with respect to ∂Uε := Σ ∪ Σε such that for all xΣ ∈ Σ, we have
Σε ∋ x = xΣ + εn(xΣ), where n is the unit normal to the surface Σ pointing outside Ω. So, we will
control these operators by tracking the dependence on the parameter ε, and consequently, the convergence
when ε goes to 0 and M goes to +∞.

Now, to give a rigorous denition of the operator we are dealing within this chapter and to go into
more details, we need to introduce some notations. Let Ω+ be a bounded smooth domain in R

3. For
(η, µ) ∈ R

2, the three-dimensional Dirac operator coupled with delta interactions is dened formally by
(1.25), with µ instead of τ . If η = 0, physicists in particular have been aware of this phenomenon since
the 1970s, when they considered connement in hadrons with a model (see [CJJ+74] and [Joh75]). The
mathematical model describing this using the Dirac operator with MIT boundary conditions has been
extensively studied in mathematical papers such as those mentioned in [BHM20]. At the end of this
paragraph, the Dirac operator coupled with purely Lorentz scalar delta shell interaction, is the operator
D0,µ dened in (1.25). Besides, D0,+2 is called the Dirac operator coupled with conning Lorentz scalar
δ-shell interactions, and in this chapter, this operator is the direct sum of both MIT bag Dirac operators,
i.e., D0,+2 = D

Ω+

MIT ⊕D
Ω−

MIT.
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In this chapter, Ω+ is a open bounded set in R
3 with a compact smooth boundary Σ := ∂Ω+, and n

is the outward unit normal to Ω+. We denote by Ωε
− = R

3 \ Ω+ ∪ Uε, Ωε
+− := Ω+ ∪ Ωε

−, and by N ε

the outward unit normal with respect to Ωε
−. More precisely, for ε0 suciently small, we assume that Σ,

Ωε
−, Σ

ε and Uε satised

Σ
ε := {x ∈ R

3, x = xΣ + εn(xΣ) : xΣ ∈ Σ},

Ω
ε
− = {x ∈ R

3, dist(x,Σ) > ε},

Uε := {x ∈ R
3, x = xΣ + t n(xΣ) : xΣ ∈ Σ and t ∈ (0, ε)}, with ε ∈ (0, ε0)▷

In other words, the Euclidean space is divided as follows:

R
3 = Ω

ε
− ∪ Σ

ε ∪ Uε ∪ Σ ∪ Ω+▷

Figure 1.1 – Domain

Description of main results.

The perturbed Dirac operator we are interesting on is Dε
M := Dm + Mβ1Uε , where 1Uε is the

characteristic function of Uε. The results of the present chapter are presented as follows:
To establish the main result outlined in Theorem 1.6.6, we will show the following approximations given
by Propositions 1.6.4 and 1.6.5:

The following propositions are Propositions 3.1.3 and 3.1.4 of Chapter 3.

Proposition 1.6.4. We consider the conning version of the Dirac operator coupled with a purely Lorentz
scalar δ-shell interaction, denoted by DL := Dm + 2βδΣ. Then, for any z ∈ ρ(DL) and ε suciently
small, the following estimate holds:


eΩε

+−


D

Ωε
+−

MIT − z
−1

rΩε
+−
− (DL − z)−1



L2(R3)4→L2(R3)4

= O(ε) as ε→ 0▷ (1.22)

where D
Ωε

+−

MIT is the direct sum of both MIT bag operators, acting in DΩ+

MIT and D
Ωε

−

MIT, refer to

D
Ωε

+−

MIT (m) := D
Ω+

MIT(m)⊕D
Ωε

−

MIT(m), (see Section 3.1.1 for the exact notations).

32



1.6. Chapter summaries

Proposition 1.6.5. Let K ⊂ C \ R be a compact set. Then, there is M0 > 0 such that for all M > M0

and ε = M−1: K ⊂ ρ(Dε
M ) and for all z ∈ K, the following estimate holds on the whole space

(Dε
M − z)−1 − eΩε

+−


D

Ωε
+−

MIT − z
−1

rΩε
+−


L2(R3)4→L2(R3)4

= O(M−1)▷

The latter proposition means that the Dirac operator Dε
M is approximated, in the norm resolvent

sense, by both MIT bag Dirac operators, acting in Ω+ and Ωε
− with a rate of O(M−1) when M tends to

∞.

By combining Propositions 1.6.4 and 1.6.5, we arrive at the following main result:

Theorem 1.6.6. Let z ∈ ρ(DL), then for M suciently large, z ∈ ρ(Dε
M ), and ε = M−1, the following

holds:

(Dε

M − z)−1 − (DL − z)−1


L2(R3)4

= O

M−1


▷

Proof ideas

The most important ingredient in proving these results is the use of the Krein formula relating the
resolvents of Dε

M and the MIT bag operators (dependent on M or/and ε), examining the convergence of
the terms dependent on ε and independent ofM , in order to connect them with the xed boundary surface
Σ (namely, Propositions 1.6.4 and 1.6.5). Moreover, the methodology followed in this MIT problem
treated in analogy with the study of the pseudodierential properties (classical and semiclassical) of the
Poincaré-Steklov operators. Indeed, we prove in Corollary 3.2.9 thatA ε

m is a zero-order pseudodierential
operator, and that

A
ε
m = S ·

∇Σε ∧N ε(x)√
−∆Σε

P ε
− + εOp(bp0(xΣ, ξ)) +Op(bp−1(xΣ, ξ)),

where ∇Σε is the surface gradient along Σε, −∆Σε is the Laplace-Beltrami operator, and b
p
0(xΣ, ξ) :=

b0


p(xΣ),


∇p(xΣ)−1

t

ξ


(similarly for bp−1), with b

p
0 resp. b

p
−1 the symbols of order 0 resp. −1, and

Σ ∋ xΣ → p(xΣ) = xΣ + εn(xΣ) := x ∈ Σε a dieomorphism.

Since, we are interested in large mass coupling, we verify in Proposition 3.2.7 that the PS operator,
Ah, ts well within the framework of h-pseudodierential operators, where h = ε = M−1 is the
semiclassical parameter. Moreover, we obtain the following estimate:

||Ah −Ah
N ||

H1◁2(Σε)→H
3
2−l(Σε)

= O(h2l+
1
2 ), for any l ∈ [0,

1

2
], N ∈ N▷

Now, Proposition 1.6.4 can be proved as follows: using the Krein formula of the resolvents ofDL and both

MIT bag operators, DΩ+

MIT and D
Ωε

−

MIT (see Section 3.3.2), acting in L2(Ω+)
4 and L2(Ωε

−)
4, respectively.

Besides, we prove in Section 3.4 that following proposition:

Proposition 1.6.7. Let ε0 > 0 be small enough, and let z ∈ C\R. We set by Ω− := R
3 \Ω+ the exterior

33



Chapter 1 – General Introduction

xed domain and by Σ = ∂Ω− = ∂Ω+ its boundary. Then, for any ε ∈ (0, ε0) the following holds:


eΩε

−


D

Ωε
−

MIT − z
−1

rΩε
−
− eΩ−


D

Ω−

MIT − z
−1

rΩ−



L2(R3)4→L2(R3)4

= O(ε), (1.23)

where DΩ−

MIT is the MIT bag Dirac operator acting in the xed domain Ω−▷

By combining the above proposition with Lemma 3.4.2, we then obtain, in the norm resolvent sense,

the convergence of D
Ωε

+−

MIT := D
Ω+

MIT ⊕D
Ωε

−

MIT to DL = D
Ω+

MIT ⊕D
Ω−

MIT.

In order to prove Proposition 1.6.5, we need to use the following ingredients:

On one hand, the key point to establish this result is to treat the elliptic problem (Dε
M − z)U = f ∈

L2(R3)4 as a transmission problem with the transmission conditions





(Dm − z)U|Ω+
= f in Ω+,

(Dm − z)U|Ωε
−

= f in Ω
ε
−,

(Dm+M − z)U|Uε = f in Uε,

P±tΣU|Ω+
= P±tΣU|Uε on Σ,

P ε
∓tΣεU|Ωε

−

= P ε
∓tΣεU|Uε on Σ

ε▷

HereP± from (1.18) are the orthogonal projectionswith respect ton andP ε
± are the orthogonal projections

with respect to N ε, dened by

P ε
± := (I4 ∓ iβα ·N ε)◁2▷ (1.24)

Then in Section 3.3.2, we establish a Krein resolvent formula that relates the resolvent of the perturbed

Dirac operator, Dε
M , in terms of those of the MIT operators bag, D

Ωε
+−

MIT (m) and DUε

MIT(m+M), acting
in L2(Ωε

+−)
4 and L2(Uε)4, respectively.

On the other hand, we use the semiclassical properties of the Poincaré-Steklov operators in order
to invert the auxiliary operator Υε

M (z) acting on the boundary ∂Uε = Σ ∪ Σε, and which appears in
Krein’s formula (see (3.57) for the exact notation). Unlike the application of Chapter 2, we remark that
in this problem the operator Υε

M (which is constructed by the Poincaré-Steklov operators) takes a pair
of functions with respect to ∂Uε. With the semiclassical properties veried by the Poincaré-Steklov
operators, and subsequently by Υε

M , as well as regularity estimates for the PS operators (see Corollary
3.3.1) and layer potential operators (see Lemma 3.4.3 for more details), we prove the convergence of
Proposition 1.6.5. Consequently, using these ingredients, a kind of convergence can be established in
Theorem 1.6.6 for ε = M−1.

⋆ ⋆ ⋆ ⋆ ⋆ ⋆
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1.6.2 Dirac operator coupled with delta shell interactions

A delta shell (δ-shell) interaction, or delta potential, is a mathematical construction used to model a
potential energy that acts as an innitely narrow and innitely high "spike" at a hypersurface (e.g., curve
or surface). The Dirac operators coupled with δ-shell interactions have been studied in detail recently.
Mathematically, the Hamiltonian is formally written as

Dη,τ := Dm +Bη,τδ∂Ω = Dm +

ηI4 + τβ


δ∂Ω, (1.25)

where Ω ⊂ R
3 is a bounded smooth open set, β is the Dirac matrix, and Bη,τ is a bounded invertible,

self-adjoint operator in L2(∂Ω)4. Namely, Dη,τ is called the Dirac operator with a combination of
electrostatic (strength η) and Lorentz scalar (strength τ ) δ-shell interactions, with η, τ ∈ R▷

The initial direct study on the spectral analysis of these Hamiltonian can be traced back to Ref.
[DEv89] and [DA90], in which the authors of [DEv89] treated the case that the surface is a sphere,
assuming η2 − τ2 = −4▷ This specic phenomenon, known as the connement case in physics, signies
the stability of a particle (for example, an electron) in its initial region during time evolution. In other
words, if the particle is conned to a region Ω ⊂ R

3 at time t = 0, it remains unable to cross the surface
∂Ω and enter the regionR3 \Ω for all subsequent times t > 0. Mathematically, this implies that the Dirac
operator under consideration can be decomposed into a direct sum of two Dirac operators acting onΩ and
R
3 \Ω, respectively, each with appropriate boundary conditions, as we have already seen in the previous

chapter. Subsequently, spectral analyses involving Schrödinger operators coupled to δ-shell interactions
have developed considerably [KK13, BLL13, AKMN13, EP12,MS12, KM10, EK08, EN03, EI01], while
research into the spectral aspects of δ-shell interactions associated with Dirac operators were compara-
tively inactive. However, Dirac operators with δ-interactions supported on general hypersurfaces have
been actively studied since the appearance of the paper [AMV14]. In 2014, a resurgence in the spec-
tral study of these Hamiltonian occurred by N. Arrizabalaga, A. Mas and L. Vega in [AMV14], where
the authors developed a new technique to characterize the self-adjointness of the free Dirac operator
coupled to a δ-shell potential. In a special case, they treated pure electrostatic δ-shell interactions (i.e.,
τ = 0) supported on the boundary of a bounded regular domain and proved that the perturbed operator is
self-adjoint. The same authors continued their investigation into the spectral analysis of the electrostatic
case, exploring the existence of a point spectrum and associated issues in works such as [AMV15] and
[AMV16].

Due to the presence of distribution coecients, the self-adjointness of such operators continues to at-
tract special attention, and it was seen by many authors (primarily for the three-dimensional case) that the
self-adjointness domain can be dependent on the coupling constants and the smoothness properties of the
hypersurface and that it may lead to unusual spectral properties [BEHL19, BH20, Ben22b, Ben22a, BP24].
Furthermore, J. Behrndt, P. Exner, M. Holzmann and V. Lotoreichik proposed in [BEHL18] the quasi
boundary triples theory and their Weyl functions in order to study the spectral properties of the Dirac
operators with purely electrostatic δ-shell interactions. Indeed, they were able to conrm the results
of [AMV14] about the self-adjointness of Dη,0 for all η ̸= ±2 (called as the non-critical interaction
strengths). In the two-dimensional case, the paper [BHOBP20] initiated the study of the Dirac operator
coupled with delta shell interactions, and for the case of smooth curves a very complete spectral picture
could be found, which was extended in [CLMT23] to a more general class of interactions. Much less
attention was given to the case of non-smooth surfaces and curves.

35



Chapter 1 – General Introduction

Apart from the self-adjointness of these operators, another area of interest that has been enriched
by the contributions of several authors is the approximation of Dirac operators coupled with a singular
combination electrostatic and Lorentz scalar, by a Dirac operator coupled with a regular potential. Several
progresses have been made in this area, and we present them in the following. The approximation of the
Dirac operator Dη,τ by Dirac operators with regular potentials with shrinking support (i.e., of the form
(1.26)) provides a justication of the considered idealized model. In the one-dimensional framework, the
analysis is carried out in [Š89], where Šeba showed that convergence in the sense of norm resolvent is
true. Subsequently, Hughes and Tušek established strong resolvent convergence and norm resolvent con-
vergence for Dirac operators with general point interactions in [Hug97, Hug99] and [Tǔ20], respectively.
In the two-dimensional case, [CLMT23, Section 8] considered the approximation of Dirac operators with
electrostatic, Lorentz scalar, and anomalous magnetic δ-shell potentials on closed and bounded curves,
in the non-critical and non-connement cases. Additionally, in [BHT23] the authors examined a similar
question to [CLMT23], but on a straight line. More precisely, taking parameters (η, τ) ∈ R

2 in (1.25)
and a regular potential Bε

Σ
that converges to δΣ when ε tends to 0 (in the sense of distributions), then

Dm + Bη,τB
ε
Σ
converges to the Dirac operator Dη̂,τ̂ with dierent coupling constants (η̂, τ̂) ∈ R

2▷ In
particular, these constants depend nonlinearly on the potential Bε

Σ
.

In the three-dimensional case, the situation seems to be even more complex, as recently shown in
[MP18]. There, too, the authors were able to show convergence in the norm resolvent sense in the
non-conning case, however, a smallness assumption on the potential Bε

Σ
was required to achieve such

a result. On the other hand, this assumption unfortunately prevents us from obtaining an approximation
of the operator Dη,τ with the physically or mathematically more relevant parameters η and τ . Recogniz-
ing this limitation, the authors of the recent paper [BHS23] delved into and veried the approximation
problem for two- and three-dimensional Dirac operators with delta-shell potential in the norm resolvent
sense. Without the smallness assumption of the potential Bε

Σ
no results could be obtained here either.

In the following two parts of this introduction, we will describe our main results from Chapters 4 and
5 on the study of Dirac operators with MIT bag conditions, which correspond to the results obtained in
[Zre11] and [BPZ72], respectively.
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1.6.2.1 Summary of Chapter 4: On the approximation of the δ-shell interaction for the

3-D Dirac operator

Intuitively, the δ-potential on ∂Ω corresponds to a potential localized in a small vicinity of ∂Ω. The
aim of this chapter is to make this intuition rigorous.

The primary goal of this part is to extend the approximation result explored in [CLMT23, Section
8] to the three-dimensional case. We seek to verify whether the methodologies employed in the two-
dimensional context allow us to establish a comparable approximation in terms of strong resolvent.
Specically, we aim to achieve this in the non-critical and non-connement cases (i.e., when η2−τ2 ̸= ±4)
without relying on the smallness assumption as stipulated in [MP18]. Mathematically, the Hamiltonian
we are interested in is formally written as (1.25). Physically, the Hamiltonian Dη,τ is used as an idealized
model for Dirac operators with strongly localized electric and massive potential near the interfaceΣ (e.g.,
an annulus), i.e., it replaces a Hamiltonian of the form

Eη,τ,ε = Dm + Vη,τ,ε, (1.26)

where Vη,τ,ε are a regular potential localized in a thin layer containing the interface Σ and explicitly
dened below.

This chapter answers the following question:

Given the regular approximation achieved in the two-dimensional case in [CLMT23], can we

extend this approximation to the three-dimensional case and obtain information on the coupling

constant?

In order to answer to this question, wewill introduce some additional notations. For a smooth bounded
domain Ω ⊂ R

3, we consider an interaction supported on the boundary Σ := ∂Ω of Ω. The surface Σ
divides the Euclidean space into disjoint unionR3 = Ω+∪Σ∪Ω−, whereΩ+ := Ω is a bounded domain
and Ω− = R

3 \ Ω+▷ We denote by n the unit outward pointing normal to Ω. We construct a regular
symmetric potential Vη,τ,ε ∈ L∞(R3;C4×4) supported on a tubular ε-neighbourhood of Σ and such that

Vη,τ,ε −−−→
ε→0

(η I4 + τβ)δΣ in the sense of distributions.

Now, for γ > 0, we dene Σγ := {x ∈ R
3, dist(x,Σ) < γ} a tubular neighborhood of Σ with width γ.

And for γ > 0 small enough, Σγ is parametrized as

Σγ = {xΣ + pn(xΣ), xΣ ∈ Σ and p ∈ (−γ, γ)}▷

For 0 < ε < γ, let hε(p) :=
1

ε
h


p

ε


, for all p ∈ R, with the function h verifying the following

h ∈ L∞(R,R), supph ⊂ (−1, 1) and
 1

−1
h(t) dt = 1▷

Thus, we have: supphε ⊂ (−ε, ε),
 ε

−ε
hε(t) dt = 1, and lim

ε→0
hε = δ0 in the sense of the distributions,

where δ0 is the Dirac δ-function supported at the origin. Finally, for any ε ∈ (0, γ), we dene the
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symmetric approximate potentials Vη,τ,ε ∈ L∞(R3,C4×4), as follows:

Vη,τ,ε(x) :=


Bη,τ hε(p), if x = xΣ + pn(xΣ) ∈ Σγ ,

0, if x ∈ R
3 \ Σγ ▷

with Bη,τ = (η I4+ τβ)▷ It is easy to see that limε→0 Vη,τ,ε = Bη,τ δΣ, inD
′
(R3)4▷ Then, for ε ∈ (0, γ),

we dene the family of Dirac operator {Eη,τ,ε}ε as follows:

Eη,τ,εψ = Dmψ + Vη,τ,εψ, for all ψ ∈ Dom(Eη,τ,ε) := Dom(Dm) = H1(R3)4▷ (1.27)

Then, in [Chapter 4, Section 4.3] we prove the following result:

Theorem 1.6.8. Let (η, τ) ∈ R
2, and denote by d = η2 − τ2. Let (η̂, τ̂) ∈ R

2 be dened as follows:

• if d < 0, then (η̂, τ̂) =
tanh(

√
−d◁2)

(
√
−d◁2) (η, τ),

• if d = 0, then (η̂, τ̂) = (η, τ),

• if d > 0 such that d ̸= (2k + 1)2π2, k ∈ N ∪ {0}, then (η̂, τ̂) =
tan(
√
d◁2)

(
√
d◁2)

(η, τ)▷

Let Eη,τ,ε be dened as in (1.27) and Dη̂,τ̂ as in (1.25) for (η̂, τ̂). Then,

Eη,τ,ε −−−→
ε→0

Dη̂,τ̂ in the strong resolvent sense.

The proof of this result is to establish the above convergence in the strong graph limit sense. More
precisely, the self-adjointness of the limiting operators and the limit operator gives the equivalence
between convergence in the strong resolvent and convergence in the strong graph limit sense. The latter
means that, for all ψ ∈ Dom(Dη̂,τ̂ ), there exists a family of vectors {ψε}ε∈(0,γ) ⊂ Dom(Eη,τ,ε) such that

lim
ε→0

ψε = ψ and lim
ε→0

Eη,τ,εψε = Dη̂,τ̂ψ in L2(R3,C4)▷

⋆ ⋆ ⋆ ⋆ ⋆ ⋆
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1.6.2.2 Summary of Chapter 5: On the self-adjointness of two-dimensional relativistic

shell interactions

This chapter is devoted to presenting the results of the article [BPZ72]. First and only in this chapter
of the thesis, we mention that Dm is the free Dirac operator in R

2, and that our studies are therefore
carried out in 2-D space. Let m ∈ R. The two-dimensional Dirac operator with mass m is the formally
self-adjoint dierential expression

Dm : C∞
0 (R2,C2) ∋ f → −i(σ1∂1f + σ2∂2f) +mσ3f ∈ C∞

0 (R2,C2),

and it naturally extends to a continuous linear map in the space of distributions D′(Ω,C2) for any open
Ω ⊂ R

2. Here σ1, σ2, and σ3 are the family of Pauli matrices from (1.5). It is well known that the free
two-dimensional Dirac operator

A : f → Dmf, Dom(A) = H1(R2,C2), (1.28)

is self-adjoint in L2(R2,C2) and has the absolutely continuous spectrum

Sp(A) =
−∞,−|m|

 ∪ 
|m|,+∞

▷

We will be interested in the study of some special perturbations of A. Namely, let Ω+ ⊂ R
2 be a

non-empty bounded open set with Lipschitz boundary. Denote

Σ := ∂Ω+, Ω− := R
2 \ Ω+▷

For (ε, µ) ∈ R
2, we would like to discuss self-adjoint realizations in L2(R2,C2) of operators given

formally by
f → Dmf + (εI2 + µσ3)δΣf▷ (1.29)

More specially, we have developed a new technique to prove self-adjointness in low-regularity Sobolev
spaces


i.e., domain contained in H1◁2


namely for general curvilinear polygons Σ. The last sum (1.29)

can be considered as an idealized model of a relativistic potential concentrated on Σ, and the constant ε
resp. µ measures the strength of the electrostatic resp. Lorentz scalar part of the interaction.

The formal expression (1.29) can be given a more rigorous meaning as follows. First, for any non-
empty open set Ω ⊂ R

2 consider the two-dimensional Dirac-Sobolev space (i.e., an analogue of the
Dirac-Sobolev space in three-dimension (1.9))

H(σ,Ω) :=

f ∈ L2(Ω,C2) : Dmf ∈ L2(Ω,C2)


,

which is just the domain of the maximal realization of Dm in L2(Ω,C2) and becomes a Hilbert space if
equipped with the scalar product

⟨f, g⟩H(σ,Ω) := ⟨f, g⟩L2(Ω,C2) + ⟨Dmf,Dmg⟩L2(Ω,C2)▷

For s > 0, letHs(Ω,C2) be the usual fractional Sobolev spaces of order s on Ω (consisting of C2-valued
functions), and we set

Hs(σ,Ω) := H(σ,Ω) ∩Hs(Ω,C2),

39



Chapter 1 – General Introduction

which is a Hilbert space with the scalar product

⟨f, g⟩Hs(σ,Ω) := ⟨f, g⟩H(σ,Ω) + ⟨f, g⟩Hs(Ω,C2)▷

For what follows it will be convenient to use the identication

H(σ,R2 \ Σ) ≃ H(σ,Ω+)⊕H(σ,Ω−), f ≃ (f+, f−),

with f± being the restriction of f on Ω±, as well as the analogous identications forHs(R2 \Σ,C2) and
Hs(σ,R2 \ Σ). We will also use the shorthand notation

σ · x := x1σ1 + x2σ2, x = (x1, x2) ∈ R
2;

from the anticommutation relations (1.6) one easily obtains (σ · x)2 = |x|2I2 for all x ∈ R
2.

It is known that for any f ∈ H(σ,R2 \ Σ) the boundary traces (σ · ν)f± on Σ are well-dened as

functions inH− 1
2 (Σ); remark that we keep the same symbols for the boundary traces for better readability.

Denote by δΣf the distribution

⟨δΣf,φ⟩ :=


Σ

f+ + f−
2

φ ds, φ ∈ C∞
c (R2),

where ds means the integration with respect to the arclength. An application of the jump formula
(distributional derivative for functions with discontinuities along Σ) for a function fshows the identity

Dmf = (Dmf+)⊕ (Dmf−) + i(σ · ν)(f+ − f−)δΣ,

where ν = (ν1, ν2) is the unit normal on Σ pointing to Ω−. Then it follows that the right-hand side of
(1.29) belongs to L2(R2,C2) if and only if f satises the transmission condition

(εI2 + µσ3)
f+ + f−

2
+ i(σ · ν)(f+ − f−) = 0 on Σ▷ (1.30)

Therefore, as a rst attempt, it is natural to consider the following operator realizations of the
expression (1.29) in L2(R2,C2):

— the maximal realization Bmax with the domain

Dom(Bmax) :=

f ∈ H(σ,R2 \ Σ) : f satises (1.30)


,

— the minimal realization Bmin with the domain

Dom(Bmin) := Dom(Bmax) ∩H1(R2 \ Σ,C2)

≡ 
f ∈ H1(R2 \ Σ,C2) : f satises (1.30)


▷

It is standard to see that Bmin is symmetric with B∗
min = Bmax, therefore, Bmin ⊂ B ⊂ Bmax for any

self-adjoint realization B of (1.29). Nevertheless, an explicit description of the self-adjoint realizations
turns out to be an involved problem depending on both (ε, µ) and the regularity of Σ.

The most attention was given to the case of C2-smooth Σ, see [BHSS24] and references therein.
Namely, if ε2− µ2 ̸= 4, then Bmin = Bmax =: B, and the spectrum of B consists of the spectrum of the
free Dirac operator A and at most nitely many discrete eigenvalues in (−|m|, |m|). For ε2 − µ2 = 4
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the operator Bmin is not closed, but Bmin = Bmax, so Bmin is at least essentially self-adjoint (so there
is a unique self-adjoint realization), but the loss of regularity leads to peculiar spectral eects (e.g., new
pieces of the essential spectrum), see [BHOBP20, BHSS24, BP24]. Remark that [BHSS24, CLMT23]
actually consider more general interactions by admitting so-called anomalous magnetic couplings which
are not covered by the above framework.

If Σ has corners, one has, in general, Bmin ⊊ Bmax, which means that there are innitely many

self-adjoint realizations [OBP18]. The work [OBP18] suggested that the H
1
2 regularity should be more

natural for the case of non-smooth Σ. Namely, let

B ≡ Bε,µ

be the restriction of Bmax to Dom(Bmax) ∩H
1
2 (R2 \ Σ,C2), i.e.,

B : f ≃ (f+, f−) → (Dmf+, Dmf−),

Dom(B) :=

f ∈ H

1
2 (σ,R2 \ Σ) : f satises (1.30)


▷

(1.31)

Due to the standard Sobolev traces theorem, the one-sided traces of functions from Dom(B) on Σ

belong to L2(Σ,C2), so the integration by parts shows that B is a symmetric operator. The main result
of [PVDB21] reads as follows: if Σ is a curvilinear polygon (a piecewise C2-smooth closed curve, with
nitely many corners and without cusps), ε = 0 and |µ| < 2, then B is self-adjoint. The recent work
[BHSS24] presents an extensive study of the case of general compact Lipschitz curves Σ by reducing the
self-adjointness to the Fredholmness of some boundary integral operator (see also [AMV14, Ben22a] for
the three-dimensional case): we summarize the essential components of the constructions in Section 5.2.
Nevertheless, the self-adjoint conditions obtained in [BHSS24] for our case are quite implicit as they
depend on the (unknown) spectra of some boundary integral operators.

Presentation of results

Our results in this chapter complement those obtained in the recent papers [BHSS24] and [PVDB21]
by providing new very explicit conditions for the self-adjointness of B in terms of the parameters (ε, µ)
and the geometry of Σ. The results on the self-adjointness of B are established in several cases, and can
be read as follows:

(A) In the case where the curve Σ is Lipschitz, we obtain the following results:

Theorem 1.6.9.

[Chapter 5, Theorems 5.3.1, 5.4.2, and Corollary 5.4.3]


. The operator B is

self-adjoint for any (ε, µ) with |ε| ≤ |µ|.

(B) In the case where the curve Σ is C1-smooth, we have that

Theorem 1.6.10. If ε2 − µ2 ̸= 4, then B is self-adjoint.

[Chapter 5, Theorem 5.4.4]



(C) In the case where the curve Σ is a curvilinear polygon (with C1-smooth edges and without
cusps), we prove the following:
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Theorem 1.6.11. Denote by ω the smallest angle of Σ, dened by

ω := min
j∈{1,▷▷▷,n}

min{θj , 2π − θj} ∈ (0,π)▷

If

ε2 − µ2 <
1

m(ω)
or ε2 − µ2 > 16m(ω), (1.32)

then the operator B is self-adjoint.

[Chapter 5, Theorem 5.5.3]



Here the constantm(ω) only depends on the sharpest corner ω of Σ. Moreover, the value ofm(ω) is not
known explicitly for all ω, but some bounds can be obtained (see Proposition 5.5.2 for more details), and
each of the conditions

(i) ε2 − µ2 < 2 or ε2 − µ2 > 8 (without additional geometric assumptions),
(ii) ε2 − µ2 ̸= 4 if each angle θ of Σ (measured inside Ω+) satises

π

2
≤ θ ≤ 3π

2
,

guarantees the self-adjointness of B

[Chapter 5, Corollary 5.5.4]


.

Proof ideas

The proofs of these results, all rely on Fredholm properties of boundary integral operators. In fact, we
employ two new technical ingredients: The explicit use of the Cauchy transform on non-smooth curvesΣ
and a characterization of the Fredholmness for boundary integral operators using the approach of [She91].

We would like to describe certain details to demonstrate the results in cases (A), (B) and (C) .

For the results of case (A):

Since the operatorB is symmetric, to prove Theorem 1.6.9, it is sucient to show that ran(B− z) =
L2(R2,C2) for any z ∈ C \ R. To do so, in Section 5.3 we construct an explicit inverse of (B − z) by
exploiting the Fredholm property of the boundary integral operator, Λz , dened below.

To describe the proof of Theorem 1.6.9, we need to add some notations. Let Λz be dened by

Λz :=
1

ε2 − µ2
(εI2 − µσ3) + Cz,

with Cz : L2(Σ,C2) −→ L2(Σ,C2) the singular integral operator given by

Czg(x) = p▷ v▷



Σ

ϕz(x− y)g(y) ds(y), for allz ∈ C \ Sp(A) and for any x ∈ Σ,

where A is the 2D free Dirac operator dened in (1.28), and ϕz : R2 →M2(C) is the function given by

ϕz(x) :=
1

2π
K0


m2 − z2|x|


mσ3 + zI2


+ i

√
m2 − z2

2π|x|
K1


m2 − z2|x|


(σ · x),
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with Kj the modied Bessel functions of order j.

We also dene the layer potentials Φz for Dm − z (with z ∈ C \ Sp(A))

Φz : L2(Σ,C2) −→ L2(R2,C2),

Φzg(x) =



Σ

ϕz(x− y)g(y) ds(y), x ∈ R
2 \ Σ,

where we recall that ds means the integration with respect to the arclength.

For z ∈ (C \ Sp(A)) ∪ {m}, consider the bounded linear operator

Θz := I+ (εI2 + µσ3)Cz : L2(Σ,C2)→ L2(Σ,C2),

which is closely related to the operator B from (1.31) as follows:

Lemma 1.6.12. For any z ∈ C\Sp(A) there holds ker(B−z) = Φz kerΘz , in particular, dim ker(B−
z) = dim kerΘz .

Thanks to the latter and the following relation between Θz and Λz

Θz ≡ (εI2 + µσ3)Λz▷ (1.33)

We observe that the self-adjointness of the operator B can be established if the Fredholmness of Λz is
conrmed.

Since B is symmetric, then we get that ker(B − z) = {0}, for any non-real z. Then, for |ε| ̸= |µ|
such that the operator Λa is Fredholm for some a ∈ (C \ Sp(A))∪ {m}, Lemma 1.6.12 and (1.33) imply
kerΛz = {0}, and we deduce that Λz is surjective and ranΛz = L2(Σ,C2). Thanks to this surjectivity,
we can construct the inverse of (B − z) as follows:

(B − z)−1 = (A− z)−1 − ΦzΛ
−1
z Φ

∗
z : L2(R2,C2)→ L2(R2,C2)

gives the surjectivity of B − z for any non-real z, and then we get ran(B − z) = L2(R2,C2). This
complete Theorem 1.6.9.

It is worth noting that if we introduce the tangent vector eld

τ = (τ1, τ2) := (−ν2, ν1) = ν

on Σ and denote
t := the operator of multiplcation by τ1 + iτ2 in L2(Σ),

the operator (ε2 − µ2)Λm can then be represented as the following:

(ε2 − µ2)Λm = (εI2 − µσ3) + (ε2 − µ2)Cm

= (εI2 − µσ3) + (ε2 − µ2)


0 CΣt

∗

tC∗
Σ

0


,
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whereCΣ : L2(Σ) −→ L2(Σ) is the Cauchy transform onΣ, dened through the complex line integration

CΣg(x) :=
i

2π
p▷ v▷



Σ

g(y)

x− y
dy, g ∈ L2(Σ), x ∈ Σ,

and understood in the Cauchy principal value sense.

For the results of case (B):

In the scenario where the curve Σ is C1-smooth, to do the self-adjointness in the non-critical
combinations of coupling constants (i.e., if ε2 − µ2 ̸= 4), we adopt for the second time the same strategy
as employed in the proof of Theorem 1.6.9. Thus, we prove Theorem 1.6.10.

For the results of case (C):

At the end of this chapter, we prove in Section 5.5 the most important result on the self-adjointness
of the operator B when the curve Σ is a curvilinear polygon with C1-smooth edges and without cusps.
Similarly to the preceding cases, under specic assumptions of combination ε2 − µ2 ̸= 4, we establish
the self-adjointness of B relying on the Fredholmness of the integral operator (εI2 + µσ3)Λm. However,
the methodology of the proof is inspired by an algorithm employed by Shelepov [She91] to prove the
Fredholmness of a bounded integral operator dened on what is known as a Radon curve. Besides, this
methodology requires the introduction of the following concepts:

The bounded integral operator Θm ≡ (εI2 + µσ3)Λm ≡ I+ (εI2 + µσ3)Cm : L2(Σ,C2)→ L2(Σ,C2)
can be written as follows:

Θmg(x) = g −


Σ

1

|x− y|
G


x, y, ν(x), ν(y),

x− y

|x− y|


g(y)ds(y)

with g ∈ L2(Σ,C2) and the 2× 2 matrix function G dened by

G

x, y, ν(x), ν(y),

x− y

|x− y|


= − i

2π




0 (ε+ µ)
x− y

|x− y|

(ε− µ)
x− y

|x− y|
0




(1.34)

for x, y ∈ Σ, where the integral representations in (5.13) were used. Following [She91], we dene a
function ζ : R→ R and matrix-valued functions

H(j)
a : R+

i

2
→Mk, j ∈ {1, 2}, with Mk the space of k × k complex matrices.

44



1.6. Chapter summaries

by

ζ(t) =


e−

t
2 cos θ − e

t
2

τ − νe−

t
2 sin θ

et + e−t − 2 cos θ
,

H(1)
a (ξ) =

 ∞

−∞

e(iξ+1◁2)t

√
et + e−t − 2 cos θ

G

a, a, ν,−τ sin θ − ν cos θ, ζ(−t)


dt,

H(2)
a (ξ) =

 ∞

−∞

e(iξ+1◁2)t


et + e−t − 2cos(θ)

G

a, a,−τsinθ − ν cos θ, ν,−ζ(t)


dt▷

Set

∆a(ξ) = det

I2 −H(1)

a (ξ)H(2)
a (ξ)


, ξ ∈ R+

i

2
▷

The following result was shown in [She91, Theorem 2]:

Proposition 1.6.13. The operator Θm is Fredholm in L2(Σ,C2) if and only if

∆aj (ξ) ̸= 0 for all ξ ∈ R+
i

2
and corners a1, ▷▷▷, an of Σ.

Now, for our matrix function G (1.34), we obtain that

∆a(ξ) =

1− (ε2 − µ2)Mθ(2η)

2
,

where Mθ is the following function

Mθ(x) =
cosh


(π − θ)x



2

1 + cosh(π x)

 , for all x ∈ R▷

Applying Proposition 1.6.13, we deduce that the condition ∆a(ξ) ̸= 0 for all ξ is equivalent to

Mθ(x) ̸=
1

ε2 − µ2
for all x ∈ R▷ (1.35)

Here θ be the non-oriented interior angle of Σ at the point a measured inside Ω+. Remark that for any
θ ∈ (0, 2π) one has

Mθ(x) ≥ 0 for all x ∈ R, lim
x→±∞

Mθ(x) = 0,

then the condition (1.35) is satised if any only if

ε2 − µ2 < 0 or
1

ε2 − µ2
> m(θ) := sup

x∈R
Mθ(x),

which can be summarized in the single condition ε2 − µ2 < 1
m(θ) .

Under these conditions on ε2 − µ2, we deduce that Θz is Fredhom. This means that Λz is Fredholm and
B therefore is self-adjoint.

⋆ ⋆ ⋆ ⋆ ⋆ ⋆
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In the following sections, we discuss the dierent perspectives and questions raised by this thesis.

1.7 Perspectives

1.7.1 Extensions to other dimensions.

The results of Chapters 2–5 are established for specic dimensions only. It is natural to understand
the problems for arbitrary dimensions (and at least cover all problems setting for the dimensions two
and three). It is clear that a language of Cliord algebras can be used. The analysis of singular integral
operators on curves in Chapter 5 could be extended to some rotationally invariant surfaces in R

3 using a
separation of variables and the analysis in lower dimensions.

1.7.2 Scattering properties of Dirac operator.

The aim of this section is to study the spectral properties of the Dirac operator in the context of the
Spectral Shift Function (SSF). The SSF was introduced by Lifshits and Krein as a generalization of the
eigenvalues counting function, and it provides a spectral quantity which makes it possible to compare a
self-adjoint perturbed operator to the reference one and it can often be related to physical quantities like
the Scattering Phase and the Average Time Delay. Let (H,H0) be a pair of two bounded self-adjoint
operators on a Hilbert spaceH such thatH −H0 belongs to the trace class. Then, the general denition
of the SSF which I denoted by ξ(H,H0; ·) is the following integral

Tr(f(H)− f(H0)) =



R

ξ(H,H0; ·)f
′

(λ)dλ, with f ∈ C∞
0 (R)▷

However, since the perturbations considered in our study are not in trace class, some adaptations are
needed, and it reasonable to start with the dierence of the resolvents. If one manages to show that

(HM + z)−k − (Dm + z)−k ∈ S1(H)

holds for some k > 0 and z ∈ ρ(HM )∩ρ(Dm), then there is a SSF, ξ(HM , Dm; ·) of the pair (HM , Dm).
As was observed in the application of the Poincaré-Steklov operators in Chapter 2, we was able to prove
the convergence of the perturbed Dirac operatorHM in the norm resolvent sense to the MIT bag operator
HMIT whenM goes to∞, and with a convergence rate of O(M−1)▷ The main objective we can study is
therefore as follows:

• Investigate the convergence of ξ(HM , Dm; ·) to ξ(HMIT, Dm; ·) when M tends to∞.

We note that it is possible to study the same questions again for the convergence results (in the
strong/norm resolvent sense) obtained in Chapters 3 and 4. It is also worth noting that to the best of our
knowledge, there is no result dealing with the study of the SSF for Dirac operators in the limit of large
coupling constants. In this sense, we have to start from scratch and develop several technical tools to
tackle the problem we will consider. Another question that can be studied in the context of the scattering
phase is to nd a high-energy asymptotic (i.e., λ → ∞) of the spectral shift function ξ(HMIT, Dm;λ)
where the operatorHMIT in this case, acts in an unbounded domain. In our case, we can do the following:
For the MIT bag Dirac operator presented in the rst part of the summary acting in R3 \Ω, where Ω is a
bounded domain, we can set up an asymptotic expansion for the scattering phase (spectral shift function)
ξ(HMIT, Dm;λ) when λ tends to innity. We note that the geometry of the domain can play a role
in the evolution of the asymptotic behavior of the scattering phase. We also mention that, in a tubular

46



1.8. How to read this thesis

neighborhood (as in Chapter 3), it is possible to study other kinds of approximations for any dimension,
for example, the approximation of the Dirac operator with a magnetic potential, as has already been done
for the magnetic Laplacian in [KRT15].

1.7.3 SSF, Resonances, and non-self-adjoint problems.

When working in the SSF framework, it is important to keep in mind the connection to resonances.
In general, a resonancew is a complex number u+ iv that describes an unstable quantum state oscillating
with a frequency u and a lifetime proportional to 1◁v. In particular, the knowledge that the presence
of positive resonances signicantly inuences the asymptotic completeness of wave operators. The
connection between the SSF and the resonance is known as the Breit-Wigner approximation, which
states that when λ is close to the real part of resonance w, then an approximation of the derivative of
the SSF, ξ

′
(λ) can be found when λ tends to u, the real part of the resonance w▷ Thanks to the latter,

another question can be investigated: Establishing the Breit-Wigner approximation between the SSF
and the resonances of the Dirac operators and then to study the existence/presence of the resonances as
well as their distribution in the complex plane and the asymptotics in certain regimes, for example, the
(semiclassical) Dirac operator with MIT bag boundary conditions on unbounded smooth domains and the
Dirac operators with electrostatic and Lorentz scalar δ-shell interactions. We mention that, as resonances
are strongly related to non-self-adjoint operators, we nd it interesting to study the spectral properties of
non-self-adjoint Dirac operators.

1.7.4 Inverse Problems.

The introduction of the Poincaré-Steklov map for the Dirac operator (i.e., an analogue of the Dirichlet-
to-Neumann application for the Laplace operator) naturally raises questions about solving Inverse Prob-
lems. In the case of Schrödinger, the inverse (boundary value or scattering) problem is whether knowledge
of theDirichlet-to-Neumannmap on a particular subset of the boundary determines a potentialV uniquely.
Indeed, the inverse problems of determining the potential V from the Dirichlet-to-Neumann map have
been studied extensively, e.g., for electromagnetic and time-dependent electromagnetic potentials (see,
[Esk03, Esk08, BJY08]). From a physical point of view, the inverse problem consists in determining
the properties, e.g., a dispersion term of an inhomogeneous medium by probing it with perturbations
generated on the boundary. Our goal here is to investigate the inverse problem of determining a potential
of the Dirac operator from nite measurements on the boundary, via the Poincaré-Steklov map. We
remark that some results for analytic domains can be expected from the computation of the complete
symbol on the Poincaré-Steklov map similarly to the known studies for the Dirichlet-to-Neumann maps
[LU89].

⋆ ⋆ ⋆ ⋆ ⋆ ⋆

1.8 How to read this thesis

Chapter 1 contains a complete introduction to the boundary integral operators associated with the
free Dirac operator, which are used throughout this thesis.

The body of this thesis is then organised into two parts:

Part 1.6.1 (Chapters 2 and 3) contains our results on three-dimensional Dirac operators with the MIT
bag boundary conditions, leading to the introduction of the Poincaré-Steklov (PS) operators. This part
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corresponds to our papers [BBZ37, Zre84].

Part 1.6.2 (Chapters 4 and 5) deals with Dirac operators coupled with a singular combination of
electrostatic and Lorentz scalar delta interactions in three- and two-dimensional setting, respectively,
which corresponds to both papers [Zre11] and [BPZ72].

⋆ ⋆ ⋆ ⋆ ⋆ ⋆
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Chapter 2

A Poincaré-Steklov map for the MIT bag model.

In this chapter, we describe the results obtained in article [BBZ37] in collaboration with
Badreddine Benhellal and Vincent Bruneau.

Abstract

The purpose of this chapter is to introduce and study Poincaré-Steklov (PS) operators associ-
ated to the Dirac operator Dm with the so-called MIT bag boundary condition. In a domain
Ω ⊂ R

3, for a complex number z and for Uz a solution of (Dm − z)Uz = 0, the associated
PS operator maps the value of Γ−Uz , the MIT bag boundary value of Uz , to Γ+Uz , where
Γ± are projections along the boundary ∂Ω and (Γ− + Γ+) = t∂Ω is the trace operator on
∂Ω. Firstly, we show that the PS operator is a zero-order pseudodierential operator and
give its principal symbol. Subsequently, we study the PS operator when the mass m is
large, and we prove that it ts into the framework of 1◁m-pseudodierential operators, and
we derive some important properties, especially its semiclassical principal symbol. Then,
we apply these results to establish a Krein-type resolvent formula for the Dirac operator
HM = Dm +Mβ1

R3\Ω for large masses M > 0, in terms of the resolvent of the MIT bag
operator on Ω. With its help, the large coupling convergence with a convergence rate of
O(M−1) is shown.

Résumé

Le but de cet chapitre est d’introduire et d’étudier les opérateurs de Poincaré-Steklov (PS)
associés à l’opérateur de Dirac Dm avec la condition frontière dite "MIT bag". Dans un
domaine Ω ⊂ R

3, pour un nombre complexe z et pour Uz une solution de (Dm− z)Uz = 0,
l’opérateur PS associé fait correspondre la valeur de Γ−Uz , la condition au bord MIT de
Uz , à Γ+Uz , où Γ± sont des projections le long de la frontière ∂Ω et (Γ− + Γ+) = t∂Ω
est l’opérateur de trace sur ∂Ω. Premièrement, nous montrons que l’opérateur PS est un
opérateur pseudodiérentiel d’ordre zéro et nous donnons son symbole principal. Par la
suite, nous étudions l’opérateur PS lorsque la masse m est grande, et nous prouvons qu’il
s’intègre dans le cadre des opérateurs 1◁m-pseudodiérentiels, et nous en déduisons quelques
propriétés importantes, en particulier son symbole principal semiclassique. Ensuite, nous
appliquons ces résultats pour établir une formule de résolvant de type Krein pour l’opérateur
de Dirac HM = Dm +Mβ1

R3\Ω pour les grandes masses M > 0, en termes de résolvant
de l’opérateur MIT bag sur Ω. Avec son aide, la convergence des grands couplages avec un
taux de convergence de O(M−1) est démontrée.
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2.1 Introduction

The main goal of this Chapter is to introduce a Poincaré-Steklov map for the Dirac operator (i.e., an
analogue of the Dirichlet-to-Neumann map for the Laplace operator) and to study its pseudodierential
properties. Our main motivation for considering this operator is that it arises naturally in the study of the
well-known Dirac operator with the MIT bag boundary condition, HMIT(m), which will be rigorously
dened below.

For a bounded smooth domain Ω ⊂ R
3, the MIT bag operator HMIT(m) is the realization of Dm in

L2(Ω,C4) corresponding to the boundary conditions P−t∂Ωv = 0 on ∂Ω with some explicit matrices
P− depending on the outer unit normal ν and t∂Ω being the Dirichlet trace operator (restriction to the
boundary). Several researchers, e.g., [MOBP20], have found that the eigenvalues of HMIT(m) arises
as the limit (in the sense of resolvent) of the eigenvalues of the Dirac operator in the whole space R

3

when the mass becomes large outside of Ω (so that the MIT bag boundary condition represents a kind of
relativistic hard wall at the boundary). Moreover, various resolvent convergence results were established
as well.

The main motivation for the current chapter is to understand the precise rate of the resolvent con-
vergence. For that, we introduce the Poincaré-Steklov operators (PS) AM for the Dirac operator with
mass M (as an analogue of the Dirichlet-to-Neumann application for the Laplace operator) and studied
its microlocal properties. This operator appears naturally in the study of the MIT bag Dirac operator. We
show that AM ts into the framework of h-pseudodierential operators (with h = M−1) and computed
its principal semiclassical symbol.

In the application of this chapter (Section 2.5), based on the pseudodierential properties of PS, we
study the following problem in order to better understand the convergence of HM to HMIT.

For large M and z ∈ ρ(DMIT(m)) ∩ ρ(DM ), given f ∈ L2(R3,C4) such that f = 0 outside Ω, we
ask ourselves, what is the boundary condition on Ω that models the solutions U for (HM − z)U = f in
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the whole space? We show that the boundary condition takes the form

P−t∂Ωṽ = BMP+t∂ΩRMIT(z)f|Ω on ∂Ω,

where matrix function P− are explicitly given, BM a semiclassical (with respect to 1◁M ) pseudodier-
ential operators of order 0 on ∂Ω, and RMIT is the resolvent of the MIT bag operator HMIT(m). This
implies the resolvent convergence of DM to HMIT(m) with the rate O(M−1).

The proof of the above results involves many techniques including the resolvent analysis, pseudodier-
ential properties of boundary layer potentials, and the construction of a parametrix (i.e., pseudodierential
calculus on ∂Ω) for an inside-outside boundary problem.

In the following section, we recall some properties of symbol classes and their associated pseudodif-
ferential operators.

2.1.1 Symbol classes and Pseudodierential operators

We recall here the basic facts concerning the classes of pseudodierential operators that will serve in
the rest of the chapter.

LetM4(C) be the set of 4×4matrices overC. For d ∈ N
∗ we letSm(Rd×R

d) be the standard symbol
class of orderm ∈ R whose elements are matrix-valued functions a in the space C∞(Rd ×R

d;M4(C))
such that

|∂α
x ∂

β
ξ a(x, ξ)| ⩽ Cαβ(1 + |ξ|2)m−|β|, ∀(x, ξ) ∈ R

d × R
d, ∀α ∈ N

d, ∀β ∈ N
d▷

Let S (Rd) be the Schwartz class of functions. Then, for each a ∈ Sm(Rd × R
d) and any h ∈ (0, 1],

we associate a semiclassical pseudodierential operator Oph(a) : S (Rd)4 → S (Rd)4 via the standard
formula

Oph(a)u(x) =
1

(2π)d



Rd
eiξ·xa(x, hξ)û(ξ)dξ, ∀u ∈ S (Rd)4▷

If a ∈ S0(Rd×R
d), then Calderón-Vaillancourt theorem’s (see, e.g., [CV72]) yields thatOph(a) extends

to a bounded operator from L2(Rd)4 into itself, and there exists C,NC > 0 such that


Oph(a)



L2→L2

⩽ C max
|α+β|⩽NC


∂α

x ∂
β
ξ a



L∞

▷ (2.1)

By denition, a semiclassical pseudodierential operator Oph(a), with a ∈ S0(Rd × R
d), can also be

considered as a classical pseudodierential operatorOp1(ah) with ah = a(x, hξ) which is bounded with
respect to h ∈ (0, h0), where h0 > 0 is xed. Thus the Calderón-Vaillancourt theorem also provides the
boundedness of these operators in Sobolev spacesH s(Rd)4 = ⟨Dx⟩−sL2(Rd)4where ⟨Dx⟩ =

√
−∆+ I.

Indeed, we have

Op1(ah)



Hs→Hs

=

⟨Dx⟩sOp1(ah)⟨Dx⟩−s



L2→L2

, (2.2)

and since ⟨Dx⟩sOp1(ah)⟨Dx⟩−s is a classical pseudodierential operator with a uniformly bounded
symbol in S0, we deduce that Oph(a) is uniformly bounded with respect to h from H s into itself.

Given a C∞-smooth domain Ω ⊂ R
3 with a compact boundary Σ = ∂Ω. Then Σ is a 2-dimensional

parameterized surface, which in the sense of dierential geometry, can also be viewed as a smooth
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2-dimensional manifold immersed into R
3. Thus, Σ can be covered by an atlas A = {(Uj , Vj ,φj)|j ∈

{1, · · · , N}} (i.e., a collection of smooth charts) where N ∈ N
∗. That is

Σ =
N

j=1

Uj ,

and for each j ∈ {1, · · · , N}, Uj is an open set of Σ, Vj ⊂ R
2 is an open set of the parametric space

R
2, and φj : Uj → Vj is a C∞- dieormorphism. Moreover, by denition of a smooth manifold, if

Uj ∩ Uk ̸= ∅ then
φk ◦ (φj)

−1 ∈ C∞

φj(Uj ∩ Uk); φk(Uj ∩ Uk)


▷

As usual, the pull-back (φ−1
j )∗ and the pushforward φ∗

j are dened by

(φ−1
j )∗u = u ◦ φ−1

j and φ∗
jv = v ◦ φj ,

for u and v functions on Uj and Vj , respectively. We also recall that a function u on Σ is said to be in the
class C k(Σ) if for every chart the pushforward has the property (φ−1

j )∗u ∈ C k(Vj).
Following Zworski [Zwo12, Part 4.], we dene pseudodierential operators on the boundary Σ as

follows:

Denition 2.1.1. Let A : C∞(Σ)4 → C∞(Σ)4 be a continuous linear operator. Then A is said to be a
h-pseudodierential operator of order m ∈ R on Σ, and we write A ∈ OphSm(Σ), if

(1) for every chart (Uj , Vj ,φj) there exists a symbol a ∈ Sm such that

ψ1A (ψ2u) = ψ1φ
∗
jOph(a)(φ−1

j )∗(ψ2u),

for any ψ1,ψ2 ∈ C∞
0 (Uj) and u ∈ C∞(Σ)4.

(2) for all ψ1,ψ2 ∈ C∞(Σ) such that supp(ψ1) ∩ supp(ψ2) = ∅ and for all N ∈ N we have

∥ψ1A ψ2∥H−N (Σ)4→HN (Σ)4 = O(h∞)▷

For h xed (for example h = 1), A is called a pseudodierential operator.

Since the study of a given pseudodierential operator on Σ reduces to a local study on local charts,
we will recall below the specic local coordinates and surface geometry notations we will use in the rest
of the chapter.

We always x an open set U ⊂ Σ, and we let χ : V → R to be a C∞-function (where V ⊂ R
2 is

open) such that its graph coincides with U . Here and in the following, we omit the possible composition
with a rotation that allows this, since changes of variables take h-pseudodierential operators to h-
pseudodierential operators modulo smoothing operators, and leave the principal symbol invariant. Set
φ(x̃) = (x̃,χ(x̃)), then for x ∈ U we write x = φ(x̃) with x̃ ∈ V . Here and also in what follows, ∂1χ
and ∂2χ stand for the partial derivatives ∂x̃1χ and ∂x̃2χ, respectively. Recall that the rst fundamental
form, I, and the metric tensor G(x̃) = (gjk(x̃)), have the following forms:

I = g11dx̃
2
1 + 2g12dx̃1dx̃2 + g22dx̃

2
2,

G(x̃) = (gjk(x̃)) =


g11 g12
g21 g22


(x̃) :=


1 + |∂1χ|

2 ∂1χ∂2χ
∂1χ∂2χ 1 + |∂2χ|

2


(x̃)▷
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As G(x̃) is symmetric, it follows that it is diagonalizable by an orthogonal matrix. Indeed, let

Q(x̃) :=




|∂2χ|
|∇χ|

∂1χ∂2χ
|∂2χ||∇χ|

− ∂1χ∂2χ
|∂2χ||∇χ|

|∂2χ|
|∇χ| ,





1 0

0 g−1◁2


(x̃)▷ (2.3)

where g stands for the determinant of G. Then, it is straightforward to check that

QtGQ(x̃) = I2, QQt(x̃) = G(x̃)−1 =:

gjk(x̃)


, det(Q) = det(Qt) = g−1◁2▷ (2.4)

2.1.2 Operators on the boundary Σ = ∂Ω

As above, we consider Σ = ∂Ω the boundary of a smooth bounded domain Ω. On Σ equipped with
the Riemann metric induced by the Euclidian one inR3, we consider the Laplace-Beltrami operator−∆Σ

and the surface gradient ∇Σ = ∇− n(n ·∇) where n is the unit normal to the surface pointing outside
Ω. Note that for (e1, e2) an orthonormal basis of the tangent space, ∇Σ = e1∇e1 + e2∇e2 , where ∇ej

stands for the tangential derivative in the direction ej . With the notation of the previous section, in local
coordinates, −∆Σ and ∇Σ are pseudodierential operators with respective principal symbols

p−∆Σ
(x̃, ξ) = ⟨G(x̃)−1ξ, ξ⟩, p∇Σ

(x̃, ξ) = ξG :=


G(x̃)−1ξ

⟨∇χ(x̃), G(x̃)−1ξ⟩


▷ (2.5)

Let us now introduce DΣ, the extrinsically dened Dirac operator. To any x ∈ R
3 we associate the

matrix α(x) = α ·x, where α = (α1,α2,α3). ForH1 the mean curvature of Σ,DΣ is given by (for more
details see Appendix B of [MOBP20]):

DΣ = −α(n)α(∇Σ) +
H1

2
▷

It is a pseudodierential operator with principal symbol:

pDΣ
(x̃, ξ) = −iα(nφ(x̃))α(ξG),

where nφ = φ∗n. We now dene the spin angular momentum S as follows

S ·X = −γ5(α ·X), ∀X ∈ R
3, where γ5 := −iα1α2α3 =


0 I2

I2 0


▷ (2.6)

Using the properties (1.3) and (2.74) and the fact that n · ξG = 0, we then have:

pDΣ
(x̃, ξ) = −iα · nφ(x̃)α · ξG = S · (ξG ∧ nφ(x̃))▷

Moreover for ξ :=


ξ
0


, we have: ξ = ξG + (ξ ·nφ)nφ. Thus, in local coordinates, the principal symbol

of DΣ is also:
pDΣ

(x̃, ξ) = S · (ξ ∧ nφ(x̃))▷ (2.7)

Let us also point out the relationship between the principal symbols of ∆Σ and DΣ:

|ξ ∧ nφ(x̃)|2 = ⟨G(x̃)−1ξ, ξ⟩▷ (2.8)
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2.2 Basic properties of the MIT bag model

In this section, we give a brief review of the basic spectral properties of the Dirac operator with the
MIT bag boundary condition on Lipschitz domains. Then, we establish some results concerning the
regularization properties of the resolvent and the Sobolev regularity of the eigenfunctions in the case of
smooth domains.

Let U ⊂ R
3 be a Lipschitz domain with a compact boundary ∂U . Then, for m > 0, the Dirac

operator with the MIT bag boundary condition on U , (HMIT(m),Dom(HMIT(m))), or simply the MIT
bag operator, is dened on the domain

Dom(HMIT(m)) :=

ψ ∈ H 1◁2(U)4 : (α ·∇)ψ ∈ L2(U)4 and P−t∂Uψ = 0 on ∂U


,

by HMIT(m)ψ = Dmψ, for all ψ ∈ Dom(HMIT(m)), and where the boundary condition holds in
L2(∂U)4. Here P± are the orthogonal projections dened in (1.8).

The following theorem gathers the basic properties of the MIT bag operator. We mention that some
of these properties are well-known in the case of smooth domains, see, e.g., [ALTMR19, ALTMR17,
AMSPV23, BHM20, OBV18].

Theorem 2.2.1. The operator (HMIT(m),Dom(HMIT(m))) is self-adjoint and we have

(HMIT(m)− z)−1 = rU (Dm − z)−1eU − Φ
U
z,m(Λz

m)−1t∂U (Dm − z)−1eU , ∀z ∈ ρ(Dm)▷ (2.9)

Moreover, the following statements hold true:

(i) If U is bounded, then Sp(HMIT(m)) = Spdisc(HMIT(m)) ⊂ R \ [−m,m].
(ii) If U is unbounded, then Sp(HMIT(m)) = Spess(HMIT(m)) = (−∞,−m]∪ [m,+∞). Moreover,

if U is connected then Sp(HMIT(m)) is purely continuous.
(iii) Let z ∈ ρ(HMIT(m)) be such that 2|z| < m, then for all f ∈ L2(U)4 it holds that

(HMIT(m)− z)−1f

L2(U)4

≲
1

m
∥f∥

L2(U)4 ▷

Proof. Let φ,ψ ∈ Dom(HMIT(m)), then by density arguments we get the Green’s formula

⟨(−iα ·∇)φ,ψ⟩L2(U)4 − ⟨φ, (−iα ·∇)ψ⟩L2(U)4 = ⟨(−iα · n)t∂Uφ, t∂Uψ⟩L2(∂U)4 ▷ (2.10)

Since P−t∂Uφ = P−t∂Uψ = 0 and P±(α · n) = (α · n)P∓ (see Lemma 2.6.3), it follows that

⟨(−iα ·∇)φ,ψ⟩L2(U)4 − ⟨φ, (−iα ·∇)ψ⟩L2(U)4 = ⟨P+(−iα · n)P+t∂Uφ, P+t∂Uψ⟩L2(∂U)4 = 0▷

Consequently, we obtain

⟨HMIT(m)φ,ψ⟩L2(U)4 − ⟨φ, HMIT(m)ψ⟩L2(U)4 = ⟨Dmφ,ψ⟩L2(U)4 − ⟨φ, Dmψ⟩L2(U)4

= ⟨(−iα ·∇)φ,ψ⟩L2(U)4 − ⟨φ, (−iα ·∇)ψ⟩L2(U)4 = 0▷

Therefore (HMIT(m),Dom(HMIT(m))) is symmetric. Now, thanks to [Ben22a, Proposition 4.3] we
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know that the MIT bag operator dened on the domain

D =

ψ = u+ Φ

U
0,m[g], u ∈ H 1(U)4, g ∈ L2(∂U)4 : P−t∂Uψ = 0 on ∂U


, (2.11)

by HMIT(m)(u + ΦU
0,m[g]) = Dmu, for all (u + ΦU

0,m[g]) ∈ D , is a self-adjoint operator. As HMIT(m)
is symmetric on Dom(HMIT(m)) we deduce that Dom(HMIT(m)) ⊂ D . Now, by Remark 1.5.1
we also get that D ⊂ Dom(HMIT(m)) which proves the equality D = Dom(HMIT(m)), and thus
(HMIT(m),Dom(HMIT(m))) is self-adjoint. Next, we check the resolvent formula (2.9). So let f ∈
L2(U)4, z ∈ ρ(Dm) and set

ψ = rU (Dm − z)−1eUf − Φ
U
z,m(Λz

m)−1t∂U (Dm − z)−1eUf▷

Since (Dm − z)−1eU is bounded from L2(U)4 into H 1(R3)4 and (Λz
m)−1 is well-dened by Remark

1.5.1, it follows that

u := rU (Dm − z)−1eUf ∈ H 1(U)4 and g := −(Λz
m)−1t∂U (Dm − z)−1eUf ∈ L2(∂U)4,

which entails that ψ ∈ H 1◁2(U)4 and that (α ·∇)ψ ∈ L2(U)4. Next, using Lemma 1.5.1-(i) and Remark
1.5.1 we easily get

t∂Uψ = t∂U (Dm − z)−1eUf + (
i

2
(α · n)− Cz,m)(

1

2
β + Cz,m)−1t∂U (Dm − z)−1eUf

= P+β(Λ
z
m)−1t∂U (Dm − z)−1eUf,

thus P−t∂Uψ = 0 on ∂U , which means that ψ ∈ Dom(HMIT(m)). Since (Dm − z)ΦU
z,m[g] = 0 holds

in U , it follows that (HMIT(m)− z)ψ = f and the formula (2.9) is proved.

Now, we are going to prove assertions (i) and (ii). First, note that for ψ ∈ Dom(HMIT(m)) a
straightforward application of the Green formula (2.10) yields that

∥HMIT(m)ψ∥2
L2(U)4 = ∥(α ·∇)ψ∥2

L2(U)4 +m2 ∥ψ∥2
L2(U)4 +m ∥P+t∂Uψ∥2L2(∂U)4 ▷ (2.12)

Thus ∥HMIT(m)ψ∥2
L2(U)4 ⩾ m2 ∥ψ∥2

L2(U)4 which yields that Sp(HMIT(m)) ⊂ (−∞,−m] ∪ [m,+∞).
Note that this fact can be seen immediately from the formula (2.9). Next, we show that {−m,m} ◁∈
Spdisc(HMIT(m)). Assume that there is 0 ̸= ψ ∈ Dom(HMIT(m)) such that (HMIT(m) −m)ψ = 0 in
U . Then, from (2.12) we have that

∥(−iα ·∇)ψ∥2
L2(U)4 +m ∥P+t∂Uψ∥2L2(∂U)4 = 0▷

Since m > 0 it follows that P+t∂Uψ = 0, and thus t∂Uψ = 0. Using this and the above equation, an
integration by parts (using density arguments) gives

∥∇ψ∥
L2(U)4 = ∥(−iα ·∇)ψ∥

L2(U)4 = 0▷

From this we conclude that ψ vanishes identically, which contradicts the fact that ψ ̸= 0, and thus
m ◁∈ Spdisc(HMIT(m)). Following the same lines as above we also get that −m ◁∈ Spdisc(HMIT(m)).
Thus, if U is bounded, then the above considerations and the fact that Dom(HMIT(m)) ⊂ H 1◁2(U)4 is
compactly embedded in L2(U)4 yield that Sp(HMIT(m)) = Spdisc(HMIT(m)) ⊂ R \ [−m,m], which
shows the assertion (i).
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Let us now complete the proof of (ii), so suppose that U is unbounded. We rst show that (−∞,−m] ∪
[m,+∞) ⊂ Spess(HMIT(m)) by constructing Weyl sequences as in the case of half-space, see [Ben22b,
Theorem 4.1]. As U is unbounded it follows that there is R1 > 0 such that the half-space {x =
(x1, x2, x3) ∈ R

3 : x3 > R1} is strictly contained in U and R
3 \ U ⊂ B(0, R1). Fix λ ∈ (−∞,−m) ∪

(m,+∞) and let ξ = (ξ1, ξ2) be such that |ξ|2 = λ2 −m2. We dene the function φ : R3 −→ C
4 by

φ(x, x3) =


ξ1 − iξ2
λ−m

, 0, 0, 1

t

eiξ·x, with x = (x1, x2)▷

Clearly we have (Dm − λ)φ = 0. Now, x R2 > R1 and let η ∈ C∞
0 (R2,R) and χ ∈ C∞

0 (R,R) be
such that supp(χ) ⊂ [R1, R2]. For n ∈ N

⋆, we dene the sequences of functions

φn(x, x3) = n− 3
2φ(x, x3)η(x◁n)χ(x3◁n), for (x, x3) ∈ U ▷

Then, it is easy to check that φn ∈ H 1
0 (U) ⊂ Dom(HMIT(m)), (φn)n∈N⋆ converges weakly to zero, and

that

∥φn∥2L2(U)4 =
2λ

λ−m
∥η∥2

L2(R2)∥χ∥2L2(R) > 0,
∥ (Dm − λ)φn∥L2(U)4

∥φn∥L2(U)4
−−−→
n→∞

0,

for more details see the proof of [Ben22b, Theorem 4.1]. Therefore, Weyl’s criterion yields that

(−∞,−m) ∪ (m,+∞) ⊂ Spess(HMIT(m))▷

Since the spectrum of a self-adjoint operator is closed, we then get the rst statement of (ii). Now, if
we assume in addition that U is connected, then using the same arguments as in the proof of [AMV15,
Theorem 3.7] (i.e., using Rellich’s lemma and the unique continuation property) one can verify that
HMIT(m) has no eigenvalues inR\ [−m,m]. As {−m,m} ◁∈ Spdisc(HMIT(m)) it follows thatHMIT(m)
has a purely continuous spectrum.

Now, we prove (iii). Let ψ ∈ Dom(HMIT(m)), then (2.12) yields that ∥HMIT(m)ψ∥2
L2(Ω)4 ⩾

m2 ∥ψ∥2
L2(Ω)4 , and thus

m ∥ψ∥
L2(U)4 ⩽ ∥HMIT(m)ψ∥

L2(U)4 ⩽ ∥(HMIT(m)− z)ψ∥
L2(U)4 + |z| ∥ψ∥

L2(U)4 ▷

Therefore, for 2|z| < mwith z ∈ ρ(HMIT(m)), we get that ∥ψ∥
L2(U)4 ⩽ 2m−1 ∥(HMIT(m)− z)ψ∥

L2(U)4 .

Thus, (iii) follows by taking ψ = (HMIT(m)− z)−1f . ■

Remark 2.2.1. We mention that the above statement on the self-adjointness can also be deduced from
[BHSS24, Theorem 5.4]. We also mention that the MIT bag operator dened on the domain D given by
(2.11) is still self-adjoint for less regular domains, cf. [Ben22a] for more details.

Remark 2.2.2. Note that if U is in the class of Hölder’s domains C 1,ω, with ω ∈ (1◁2, 1), thenHMIT(m)
is self-adjoint and Dom(HMIT(m)) :=


ψ ∈ H 1(U)4 : P−t∂Uψ = 0 on ∂U


, see [Ben22a, Theorem

4.3] for example.

Now we establish regularity results concerning the regularization property of the resolvent and the
Sobolev regularity of the eigenfunctions of HMIT(m). The rst statement of the following theorem will
be crucial in Section 2.4 when studying the semiclassical pseudodierential properties of the Poincaré-
Steklov operator.
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Theorem 2.2.2. Let k ⩾ 1 be an integer and assume that U is C 2+k-smooth. Then the following
statements hold true:

(i) The mapping (HMIT(m)− z)−1 : H k(U)4 −→ H k+1(U)4∩Dom(HMIT(m)) is well-dened and
bounded for all m > 0 and all z ∈ ρ(HMIT(m)). Moreover, for any compact set K ⊂ C there
exist m0, C > 0 such that for all m ⩾ m0 and z ∈ K, there holds

∥(HMIT(m)− z)−1∥Hk−1(U)4−→Hk(U)4 ⩽ Cmk−1▷

(ii) If ϕ is an eigenfunction associated with an eigenvalue z ∈ Sp(HMIT(m)), i.e., (HMIT(m)−z)ϕ =
0, then ϕ ∈ H 1+k(U)4. In particular, if U is C∞-smooth, then ϕ ∈ C∞(U)4.

To prove this theorem we need the following classical regularity result.

Proposition 2.2.3. Let k be a nonnegative integer. Assume that U is C 3+k-smooth and u ∈ H 1(U). If u
solves the Neumann problem

−∆u = f ∈ H k(U) and ∂nu = g ∈ H 1◁2+k(∂U),

then u ∈ H 2+k(U).

Proof. First, assume that k = 0. As U is C 3-smooth we know that the Neumann trace ∂n : H 2(U) →
H 1◁2(∂U) is surjective. Thus, there is G ∈ H 2(U) such that ∂nG = g in ∂U . Note that the function
ũ = u−G satises the homogeneous Neumann problem

−∆ũ = f +∆G in U and ∂nũ = 0 on ∂U ▷

Therefore, ũ ∈ H 2(U) by [Mik78, Theorem 5, p. 217], which implies that u ∈ H 2(U) and this proves
the result for k = 0. If k ⩾ 1, then the result follows by [Gri85, Theorem 2.5.1.1]. ■

Proof of Theorem 2.2.2. The theorem will be proved by induction on k. First, we show (i), so
x z ∈ ρ(HMIT(m)) and assume that k = 1. Let ϕ = (ϕ1,ϕ2)

⊤ ∈ Dom(HMIT(m)) be such that
(Dm − z)ϕ = f in U , with f = (f1, f2)

⊤ ∈ H 1(U)4. By assumption we have (∆ + m2 − z2)ϕ =
(Dm + z)f in D′(U)4, and then in L2(U)4. We next prove that ∂nϕ ∈ H 1◁2(∂U)4. To this end, consider
Uϵ := {x ∈ R

3 : dist(x, ∂U) < ϵ} for ϵ > 0. Then, for δ > 0 small enough and 0 < ϵ ⩽ δ the mapping
Ψ : ∂U × (−ϵ, ϵ)→ Uϵ, dened by

Ψ(x∂U , t) = x∂U + tn(x∂U ), x∂U ∈ ∂U , t ∈ (−ϵ, ϵ) (2.13)

is a C 2-dieomorphism and Uϵ := {x+ tn(x) : x ∈ ∂U , t ∈ (−ϵ, ϵ)}.

Let P− : L2(Uϵ ∩ U)4 → L2(Uϵ ∩ U)4 be the bounded operator dened by

P−φ(Ψ(x, t)) =
1

2
(1 + iβ(α · n(x)))φ(Ψ(x, t)), Ψ(x, t) ∈ Uϵ ∩ U ▷

Let x0∂U be an arbitrary point on the boundary ∂U , x 0 < r < ϵ◁2, and let ζ : R3 → [0, 1] be a C∞-
smooth and compactly supported function such that ζ = 1 on B(x0∂U , r) and ζ = 0 on R3 \B(x0∂U , 2r).

We claim that P−ζϕ satises the elliptic problem



−∆(P−ζϕ) = g in U ,

t∂U (P−ζϕ) = 0 on ∂U ,
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with g ∈ L2(U)4. Indeed, set B(x) = iβ(α · n(x)) for x ∈ ∂U , and observe that

(Dm − z)(P−ζϕ) =


P−ζf +
1

2
[Dm, ζ]ϕ


+

1

2
[Dm, ζB]ϕ =: I(ϕ, f) +

1

2
[Dm, ζB]ϕ▷

Since n is C 2-smooth, ζ is an innitely dierentiable scalar function and ϕ, f ∈ H 1(U)4, it is clear that
I(ϕ, f) ∈ H 1(U)4 and [Dm, ζB]ϕ ∈ L2(U)4. Now, applying (Dm + z) to the above equation yields that
−∆(P−ζϕ) = g with

g := (z2 −m2)P−ζϕ+ (Dm + z)I(ϕ, f) +
z

2
[Dm, ζB]ϕ+

1

2
Dm[Dm, ζB]ϕ▷

As before, it is clear that the rst three terms are square integrable. Next, observe that

D0[D0, ζB]ϕ = {D0, [D0, ζB]}ϕ− [D0, ζB]D0ϕ

= [−∆, ζB]ϕ− [D0, ζB]((Dm − z)ϕ− (mβ − z)ϕ),

where {A,B} =: AB + BA is the anticommutator bracket. Using this, the smoothness assumption on
n, the fact that (Dm − z)ϕ = f ∈ H 1(U)4 and that [D0, ζB] and [−∆, ζB] are rst order dierential
operators, we easily see that D0[D0, ζB]ϕ ∈ L2(U)4. Hence, Dm[Dm, ζB]ϕ is square integrable, which
means that g ∈ L2(U)4. As P−t∂Uϕ = 0 and t∂U (P−ζϕ) = t∂UζP−t∂Uϕ = 0 on ∂U , by [GT01,
Theorem 8.12 ] it follows that P−ζϕ ∈ H 2(Uϵ ∩ U)4, which implies that

ζ(ϕ1 + i(σ · n)ϕ2) ∈ H 2(B(x0∂U , 2r) ∩ U)2 and ζ(−i(σ · n)ϕ1 + ϕ2) ∈ H 2(B(x0∂U , 2r) ∩ U)2▷

Consequently, we get

ϕ1 + i(σ · n)ϕ2 ∈ H 2(B(x0∂U , r) ∩ U)2 and − i(σ · n)ϕ1 + ϕ2 ∈ H 2(B(x0∂U , r) ∩ U)2▷ (2.14)

Since −i(σ ·∇)ϕ2 = (z −m)ϕ1 + f1 and −i(σ ·∇)ϕ1 = (z +m)ϕ2 + f2 hold in H 1(U)2, it follows
from (2.14) that

(σ ·∇)ϕj ∈ H 1(B(x0∂U , r))
2 and (σ ·∇)(σ · n)ϕj ∈ H 1(B(x0∂U , r))

2, j = 1, 2▷

Using this and the fact that n is C 2-smooth, we easily get that

(σ · n)(σ ·∇)ϕj + (σ ·∇)(σ · n)ϕj = (n ·∇)ϕj + Fj ∈ H 1(B(x0∂U , r))
2,

with Fj ∈ H 1(B(x0∂U , r) ∩ U)2. As a consequence, we get that (n · ∇)ϕj ∈ H 1(B(x0∂U , r) ∩ U)2.
Since this holds true for all x0∂U ∈ ∂U , using the compactness of ∂U it follows that ∂nϕ ∈ H 1◁2(∂U)4.
Therefore, Propositions 2.2.3 yields that ϕ ∈ H 2(U)4.

Next, assume k ⩾ 2, U is C 2+k-smooth and ϕ, f ∈ H k(U)4. Since n is C 1+k-smooth and Ψ

dened by (2.13) is a C 1+k-dieomorphism, following the same arguments as above we then conclude
that ∂nϕ ∈ H k−1◁2(∂U)4. Note also that −∆ϕ = (z2 −m2)ϕ + (Dm − z)f ∈ H k−1(U)4. Therefore,
thanks to Proposition 2.2.3, we conclude that ϕ ∈ H k+1(U)4, which proves the rst statement of (i).

Now, the second statement of (i) is a consequence of the rst one, Theorem 2.2.1-(iii) and the
following Gårding-type inequality

∥φ∥2
Hk+1(U)4 ≲ ∥φ∥2

Hk(U)4 + ∥D0φ∥2Hk(U)4 , (2.15)
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which holds for any φ ∈ Dom(HMIT(m)) ∩ H k+1(U)4, k ∈ N. Indeed, suppose for instance that (2.15)
holds true. Fix a compact setK ⊂ C and let z ∈ K. Note that if z ∈ ρ(HMIT(m)) then for ψ ∈ H k(U)4,
k ⩾ 0, we have

∥D0(HMIT(m)− z)−1ψ∥Hk(U)4 ⩽ ∥ψ∥Hk(U)4 + (m+ |z|)∥(HMIT(m)− z)−1ψ∥Hk(U)4 ▷ (2.16)

Let us also remark that Theorem 2.2.1-(iii) entails that there is m0 > 0 such that z ∈ ρ(HMIT(m)) for
any m ⩾ m0, and for any ψ ∈ H k(U)4, k ⩾ 0, there holds

∥D0(HMIT(m)− z)−1ψ∥L2(U)4 ≲ ∥ψ∥L2(U)4 ⩽ ∥ψ∥Hk(U)4 ▷ (2.17)

Hence, by iterating the Gårding inequality and taking into account (2.16) and (2.17) we get that

∥D0(HMIT(m)− z)−1ψ∥Hk(U)4 ≲ mk∥ψ∥Hk(U)4 ,

and the conclusion follows by applying again Gårding inequality. We now return to the proof of (2.15).

So let φ ∈ Dom(HMIT(m)), then [ALTMR17, Theorem 1.5] yields

∥D0φ∥2L2(U)4 = ∥∇φ∥2
L2(U)4 +



∂U
H1|t∂Uφ|

2dσ, (2.18)

where we recall thatH1(x) is the mean curvature at x ∈ ∂U , and σ is the surface measure on ∂U . Recall
that for any ϵ > 0 there is Cϵ > 0 such that

∥t∂Uφ∥L2(∂U)4 ⩽ ϵ∥∇φ∥2
L2(U)4 + Cϵ∥φ∥2L2(U)4 , ∀φ ∈ H 1(U)4,

see [BCLTS19, Remark 1]. Using this inequality with ϵ suciently small and estimating equation (2.18)
we get, for all φ ∈ H 1(U)4,

∥φ∥2
H1(U)4 = ∥φ∥2

L2(U)4 + ∥∇φ∥2L2(U)4 ≲ ∥φ∥2
L2(U)4 + ∥D0φ∥2L2(U)4 ,

which shows (2.15) for k = 0. Note that by local arguments one has ∥φ∥2
Hk+1(U)4

≲ ∥φ∥2
L2(U)4 +


j ∥∂jφ∥2Hk(U)4

, and since [∂j , D0] = 0, (2.15) easily follows by induction for any k ⩾ 1.

Finally, the proof of the rst statement of (ii) follows the same lines as the one of (i). In particular, if U
is C∞-smooth, we then get ϕ ∈ H k+1(U)4 for any k ⩾ 0, which implies that ϕ is innitely dierentiable
in U , and the theorem is proved. ■

Remark 2.2.3. Note that the estimate in Theorem 2.2.2-(i) is certainly not sharp but it will be enough
for our purposes.

2.3 Poincaré-Steklov operators as pseudodierential operators

The main purpose of this section is to introduce the Poincaré-Steklov operator Am associated with
the MIT bag operator and to prove that it ts into the framework of pseudodierential operators.

Throughout this section, let Ω be a smooth domain with a compact boundary Σ, and let P± be as in
(1.8). Let us start by giving the rigorous denition of the Poincaré-Steklov operator, which is the main
subject of this chapter.
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Denition 2.3.1. (PS operator) Let z ∈ ρ(HMIT(m)) and g ∈ P−H 1◁2(Σ)4. We denote by EΩ
m(z) :

P−H 1◁2(Σ)4 → H 1(Ω)4 the lifting operator associated with the elliptic problem


(Dm − z)Uz = 0 in Ω,

P−tΣUz = g on Σ▷
(2.19)

That is, EΩ
m(z)g is the unique function in H 1(Ω)4 satisfying (Dm − z)EΩ

m(z)g = 0 in Ω, and
P−tΣEΩ

m(z)g = g onΣ. Then, the Poincaré-Steklov (PS) operatorAm : P−H 1◁2(Σ)4 −→ P+H
1◁2(Σ)4

associated with the system (2.19) is dened by

Am(g) = P+tΣE
Ω

m(z)g,

Recall the denitions of ΦΩ
z,m and Λz

m from Subsection 1.5. Then, the following proposition justies
the existence and the uniqueness of the solution to the elliptic problem (2.19), and gives in particular
the explicit formula of the PS operator in terms of the operator (Λz

m)−1 when z ∈ ρ(Dm). The second
assertion of the proposition will be particularly important in Section 2.4 when studying the PS operator
from the semiclassical point of view. In the last statement, we use the notations Am(z) to highlight the
dependence on the parameter z ∈ ρ(HMIT(m)).

Proposition 2.3.2. For any z ∈ ρ(HMIT(m)) and g ∈ P−H 1◁2(Σ)4, the elliptic problem (2.19) has a
unique solution EΩ

m(z)[g] ∈ H 1(Ω)4. Moreover, the following hold true:

(i)

EΩ

m(z)
∗

= −βP+tΣ(HMIT(m)− z)−1.

(ii) For any compact set K ⊂ C, there is m0 > 0 such that for all m ⩾ m0 it holds that
K ⊂ ρ(HMIT(m)), and for all z ∈ K we have


EΩ

m(z)g


L2(Ω)4

≲
1√
m

||g||
L2(Σ)4 , ∀g ∈ P−H

1◁2(Σ)4▷

(iii) If z ∈ ρ(Dm), then EΩ
m(z) and Am are explicitly given by

EΩ

m(z) = Φ
Ω

z,m(Λz
m)−1P− and Am = −P+β(Λ

z
m)−1P−, (2.20)

where the boundary integral operators, ΦΩ
z,m and Λz

m, are introduced in Section 1.5.

(iv) Let z ∈ ρ(HMIT(m)) and let EΩ
m(z) be as above. Then, for any ξ ∈ ρ(HMIT(m)), the operator

EΩ
m(ξ) has the following representation

EΩ

m(ξ) = (I4 + (ξ − z)(HMIT(m)− ξ)−1)EΩ

m(z)▷ (2.21)

In particular, we have

Am(ξ)−Am(z) = (z − ξ)β

EΩ

m(ξ)
∗

EΩ

m(z)▷ (2.22)

(v) For any z ∈ ρ(HMIT(m)) the operatorEΩ
m(z) extends into a bounded operator fromP−H−1◁2(Σ)4

to H (α,Ω).

Proof. We rst show that the boundary value problem (2.19) has a unique solution. For this, assume that
u1 and u2 are both solutions of (2.19), then (Dm− z)(u1−u2) = 0 in Ω, and P−tΣ(u1−u2) = 0 on Σ.
Thus, (u1 − u2) ∈ Dom(HMIT(m)) holds by Remark 2.2.2, and sinceHMIT(m) is injective by Theorem
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2.2.1 it follows that u1 = u2, which proves the uniqueness. Next, observe that the function

vg = EΩ(P−g)− (HMIT(m)− z)−1(Dm − z)EΩ(P−g)

is a solution to (2.19). Indeed, we have EΩ(P−g) ∈ H 1(Ω)4 and thus vg ∈ H 1(Ω)4, moreover, we clearly
have that P−tΣvg = g and (Dm− z)vg = 0. Since we already know that the solution to (2.19) is unique,
it follows that vg is independent of the extension operator EΩ, and hence there is a unique solution in
H 1(Ω)4 to the elliptic problem (2.19).

Let us show the assertion (i). Let ψ ∈ P−H 1◁2(Σ)4 and f ∈ L2(Ω)4, then using the Green’s formula
and the fact that P+(−iα · n) = (−iα · n)P− = −βP− we get that

⟨EΩ

m(z)ψ, f⟩L2(Ω)4 = ⟨EΩ

m(z)ψ, (HMIT(m)− z)(HMIT(m)− z)−1f⟩L2(Ω)4

= ⟨EΩ

m(z)ψ, (Dm − z)(HMIT(m)− z)−1f⟩L2(Ω)4

= ⟨(Dm − z)EΩ

m(z)ψ, (HMIT(m)− z)−1f⟩L2(Ω)4

+ ⟨(−iα · n)tΣE
Ω

m(z)ψ, tΣ(HMIT(m)− z)−1f⟩L2(Σ)4

= ⟨(−iα · n)P−tΣE
Ω

m(z)ψ, P+tΣ(HMIT(m)− z)−1f⟩L2(Σ)4

= ⟨ψ,−βP+tΣ(HMIT(m)− z)−1f⟩L2(Σ)4

which entails that −βP+tΣ(HMIT(m)− z)−1 is the adjoint of EΩ
m(z) and proves (i).

Now we are going to show the assertion (ii). So, let K be a compact set of C, and note that for all
m > sup{|Re(z)| : z ∈ K} it holds that K ⊂ ρ(Dm) ⊂ ρ(HMIT(m)). Hence, v := EΩ

m(z)g is well
dened for any z ∈ K and g ∈ P−H 1◁2(Σ)4. Then a straightforward application of the Green’s formula
yields that

0 = ||(Dm − z)v||2
L2(Ω)4 = ||(iα ·∇− z)v||2

L2(Ω)4 +m2 ||v||2
L2(Ω)4

+m

⟨−i(α · n)tΣv, βtΣv⟩L2(Σ)4 − 2Re(z)⟨v,βv⟩L2(Ω)4


▷

(2.23)

Observe that

⟨−i(α · n)tΣv, βtΣv⟩L2(Σ)4 = ⟨(P+ − P−)tΣv, tΣv⟩L2(Σ)4 = ||P+tΣv||
2
L2(Σ)4 − ||P−tΣv||

2
L2(Σ)4 ▷

Since P−tΣv = g and P+tΣv = Am(g) hold by denition, and that

−Re(z)⟨v,βv⟩L2(Ω)4 ⩾ −|Re(z)| ||v||2
L2(Ω)4

holds by Cauchy-Schwarz inequality, it follows from (2.23) that

||g||2
L2(Σ)4 ⩾ m ||v||2

L2(Ω)4 − 2|Re(z)| ||v||2
L2(Ω)4 + ||Am(g)||2

L2(Σ)4 ▷

Thus, if we take m0 ⩾ 4 sup{|Re(z)| : z ∈ K}, then

||Am(g)||2
L2(Σ)4 +

m

2
||v||2

L2(Ω)4 ⩽ ||g||2
L2(Σ)4

holds for any m ⩾ m0, which proves the desired estimate for EΩ
m(z).
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Let us now show the assertion (iii), so let z ∈ ρ(Dm) and recall that ΦΩ
z,m(Λz

m)−1 : H 1◁2(Σ)4 →
H 1(Ω)4 is well dened and bounded by Lemma 1.5.1. Since ϕz

m is a fundamental solution of (Dm − z),
it holds that

(Dm − z)ΦΩ

z,m(Λz
m)−1[g] = 0 in L2(Ω)4, ∀g ∈ H 1◁2(Σ)4▷

Now, observe that if g ∈ P−H 1◁2(Σ)4, then a direct application of the identity (1.16) yields that

tΣΦ
Ω

z,m(Λz
m)−1[g] =


− i

2
(α · n) + Cz,m


(Λz

m)−1[g] = g − P+β(Λ
z
m)−1[g]▷

Consequently, we get

P−tΣΦ
Ω

z,m(Λz
m)−1[g] = g and P+tΣΦ

Ω

z,m(Λz
m)−1[g] = −P+β(Λ

z
m)−1[g],

which means that EΩ
m(z)[g] = ΦΩ

z,m(Λz
m)−1[g] is the unique solution to the boundary value problem

(2.19), and proves the identity Am = −P+β(Λ
z
m)−1P−.

We are going to prove assertion (iv), so x z, ξ ∈ ρ(HMIT(m)) and let g ∈ P−H 1◁2(Σ)4. Then, by
denition of EΩ

m(z) we have that

(Dm − ξ)(1+(ξ − z)(HMIT(m)− ξ)−1)EΩ

m(z)g

= (Dm − z)EΩ

m(z)g − (ξ − z)EΩ

m(z)g + (ξ − z)(Dm − ξ)(HMIT(m)− ξ)−1EΩ

m(z)g,

= (ξ − z)EΩ

m(z)g − (ξ − z)EΩ

m(z)g = 0▷

Since (HMIT(m)− ξ)−1EΩ
m(z)g ∈ Dom(HMIT(m)), and hence P−tΣ(HMIT(m)− ξ)−1EΩ

m(z)g = 0, it
follows that P−tΣ(1+ (ξ− z)(HMIT(m)− ξ)−1)EΩ

m(z)g = P−tΣEΩ
m(z)g = g, which prove the identity

(2.21). Now, (2.22) follows by applying P+tΣ to the representation (2.21) and using assertion (i).

It remains to prove item (v). We rst consider the case z ∈ ρ(Dm), then the claim for z ∈
ρ(HMIT(m)) \ ρ(Dm) follows by the representation formula (2.21). Fix z ∈ ρ(Dm) and recall that
the operators Cz,m and Λz

m are bounded invertible in H 1◁2(Σ)4 by Lemma 1.5.1(ii)-(iii) and (1.15).
Since C ∗

z,m = Cz,m, by duality it follows that Λz
m admits a bounded and everywhere dened inverse in

H−1◁2(Σ)4. This together with Lemma 1.5.1(i) and item (iii) of this proposition show thatEΩ
m(z) admits

a continuous extension from P−H−1◁2(Σ)4 to H (α,Ω). This completes the proof of the proposition. ■

Remark 2.3.1. The proof above gives more, namely that for all m0 > 0, K ⊂ ρ(Dm0) a compact set
and z ∈ K, there is m1 ≫ 1 such that

sup
m⩾m1

||Am||P−H1◁2(Σ)4−→P+L2(Σ)4 ≲ 1▷

Remark 2.3.2. Thanks to Theorem 2.2.1 and Remark 1.5.1, if Ω is a Lipschitz domain, then EΩ
m(z) is

the unique solution in H 1◁2(Ω)4 to the system (2.19) for datum in L2(Σ)4. Moreover, the PS operator
Am = −P+β(Λ

z
m)−1P− is well-dened and bounded as an operator from P−L2(Σ)4 to P+L

2(Σ)4.

In the rest of this section, we will only address the case z ∈ ρ(Dm) and we show that the Poincaré-
Steklov operator Am from Denition 2.3.1 is a homogeneous pseudodierential operators of order 0
and capture its principal symbol in local coordinates. To this end, we rst study the pseudodierential

62



2.3. Poincaré-Steklov operators as pseudodierential operators

properties of the Cauchy operator Cz,m. Once this is done, we use the explicit formula of Am given by
(2.20) and the symbol calculus to obtain the principal symbol of Am.

Recall the denition of ϕz
m from (1.11), and observe that

ϕz
m(x− y) = kz(x− y) + w(x− y),

where

kz(x− y) =
ei

√
z2−m2|x−y|

4π|x− y|


z +mβ +


z2 −m2α ·

x− y

|x− y|


+ i

ei
√
z2−m2|x−y| − 1

4π|x− y|3
α · (x− y),

w(x− y) =
i

4π|x− y|3
α · (x− y)▷

Using this, it follows that

Cz,m[f ](x) = lim
ρ↘0



|x−y|>ρ
w(x− y)f(y)dσ(y) +



Σ

kz(x− y)f(y)dσ(y)

=W [f ](x) +K[f ](x)▷

(2.24)

As |kz(x − y)| = O(|x − y|−1) when |x − y| → 0, using the standard layer potential techniques (see,
e.g. [Tay00, Chap. 3, Sec. 4] and [Tay96, Chap. 7, Sec. 11]) it is not hard to prove that the integral
operator K gives rise to a pseudodierential operator of order −1, i.e. K ∈ OpS−1(Σ). Thus, we can
(formally) write

Cz,m = W modOpS−1(Σ), (2.25)

which means that the operator W encodes the main contribution in the pseudodierential character of
Cz,m. So we only need to focus on the study of the pseudodierential properties of W . The following
theorem makes this heuristic more rigorous. Its proof follows similar arguments as in [AKM17, Miy18,
MR20].

Theorem 2.3.3. Let Cz,m be as (1.13), W as in (2.24) and Am as in Denition 2.3.1. Then Cz,m, W
and Am are homogeneous pseudodierential operators of order 0, and we have

Cz,m =
1

2
α ·

∇Σ√
−∆Σ

modOpS−1(Σ),

Am =
1√
−∆Σ

S · (∇Σ ∧ n)P− modOpS−1(Σ) =
DΣ√
−∆Σ

P− modOpS−1(Σ),

where S−1 is the symbol class of order −1 given in Section 2.1.1.

Proof. We rst deal with the operator W . So, let ψk : Σ → R, k = 1, 2, be a C∞-smooth function.
Clearly, if supp(ψ2)∩ supp(ψ1) = ∅, then ψ2Wψ1 gives rise to a bounded operator from H−j(Σ)4 into
H j(Σ)4, for all j ⩾ 0.
Now, x a local chart (U, V,φ) as in Subsection 2.1.1 and recall the denition of the rst fundamental
form I and the metric tensorG(x̃). That is, up to a rotation, for all x ∈ U we have x = φ(x̃) = (x̃,χ(x̃))
with x̃ ∈ V , and where the graph of χ : V → R coincides with U . Notice that if we assume that ψk is
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compactly supported with supp(ψk) ⊂ U , then, in this setting, the operator ψ2Wψ1 has the form

ψ2W [ψ1f ](x) =ψ2(x)p▷v▷



V
iα ·

φ(x̃)− φ(ỹ)

4π|φ(x̃)− φ(ỹ)|3
ψ1(φ(ỹ))f(φ(ỹ))


g(ỹ)dỹ

=ψ2(x)

g(x̃)p▷v▷



V
iα ·

φ(x̃)− φ(ỹ)

4π|φ(x̃)− φ(ỹ)|3
ψ1(φ(ỹ))f(φ(ỹ))dỹ

+ ψ2(x)



V
iα ·

φ(x̃)− φ(ỹ)

4π|φ(x̃)− φ(ỹ)|3
f(φ(ỹ))


g(ỹ)−


g(x̃)


dỹ,

(2.26)

where g is the determinant of the metric tensor G. Since g(·) is smooth, it follows that

|

g(ỹ)−


g(x̃)| ≲ |x̃− ỹ|▷

Therefore, the last integral operator on the right-hand side of (2.26) has a non singular kernel and does
not require to write it as an integral operator in the principal value sense. Thus, a simple computation
using Taylor’s formula shows that

|x− y|2 = |φ(x̃)− φ(ỹ)|2 = ⟨x̃− ỹ, G(x̃)(x̃− ỹ)⟩(1 +O|x̃− ỹ|),

where the denition of I was used in the last equality. It follows from the above computations that

|x− y|−3 =
1

⟨x̃− ỹ, G(x̃)(x̃− ỹ)⟩3◁2 + k1(x̃, ỹ),

where the kernel k1 satises |k1(x̃, ỹ)| = O(|x̃− ỹ|−2), when |x̃− ỹ|→ 0. Consequently, we get that

xj − yj

|x− y|3
=





x̃j − ỹj

⟨x̃− ỹ, G(x̃)(x̃− ỹ)⟩3◁2 + (x̃j − ỹj)k1(x̃, ỹ), for j = 1, 2,

⟨∇χ, x̃− ỹ⟩
⟨x̃− ỹ, G(x̃)(x̃− ỹ)⟩3◁2 + k2(x̃, ỹ), for j = 3,

with |k2(x̃, ỹ)| = O(|x̃− ỹ|−1), when |x̃− ỹ|→ 0. Note that this implies

α ·


x− y

|x− y|3


= α ·

(x̃− ỹ, ⟨∇χ, x̃− ỹ⟩)
⟨x̃− ỹ, G(x̃)(x̃− ỹ)⟩3◁2 +O(|x̃− ỹ|−1)▷

Combining the above computations and (2.26), we deduce that

ψ2W [ψ1f ](x) = ψ2(x)

g(x̃)p▷v▷



V
iα

(x̃− ỹ, ⟨∇χ, x̃− ỹ⟩)
4π⟨x̃− ỹ, G(x̃)(x̃− ỹ)⟩3◁2 f(φ(ỹ))dỹ + ψ2(x)L[ψ1f ](x),

(2.27)

where L is an integral operator with a kernel l(x, y) satisfying

|l(x, y)| = O(|x− y|−1) when |x− y|→ 0▷

Thus, similar arguments as the ones in [Tay96, Chap. 7, Sec. 11] yield that L is a pseudodierential
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operator of order −1. Now, for h ∈ L2(R2) and k = 1, 2, observe that if we set

Rk[h](x̃) =
i

g(x̃)

4π



R2
rk(x̃, x̃− ỹ)h(ỹ)d(ỹ),

where for (x̃, τ) ∈ R
2 × R

2 \ {0},

rk(x̃, τ) =
τk

⟨τ, G(x̃)τ⟩3◁2 ▷

Then the standard formula connecting a pseudodierential operator and its symbol yields

Rk[h](x̃) =
1

(2π)2



R2



R2
ei(x̃−ỹ)·ξqk(x̃, ξ)h(ỹ)dξdỹ,

where

qk(x̃, ξ) =
i

g(x̃)

4π



R2
e−iω·ξrk(x̃,ω)dω▷

Recall the denition of Q from (2.3) and set ω = Q(x̃)τ . Also recall that



R2
e−iω·ξ ωk

|ω|3
dω = −2πi ξk

|ξ|
, k = 1, 2▷ (2.28)

Thus, the above change of variables together with the properties (2.4) and (2.28) yield that

qk(x̃, ξ) =
i

4π



R2
e−i(Q(x̃)τ)·ξ (Q(x̃)τ )k

|τ |3
dτ =

(G−1(x̃)ξ)k
2⟨G−1(x̃)ξ, ξ⟩1◁2 =

gk1ξ1 + gk2ξ2
2⟨G−1(x̃)ξ, ξ⟩1◁2 ,

which means that qk(x̃, ξ) is homogeneous of degree 0 in ξ. Therefore, Rk is a homogeneous pseudodif-
ferential operators of degree 0. From the above observation and (2.27) if follows that

ψ2Wψ1 = ψ2α · (R1, R2, ∂1χ(x̃)R1 + ∂2χ(x̃)R2)ψ1 + ψ2Lψ1▷

Since L is a pseudodierential operator of order −1, we deduce that W is a homogeneous pseudodier-
ential operators of order 0, and exploiting (2.5), we obtain that

W =
1

2
α ·

∇Σ√
−∆Σ

modOpS−1(Σ)▷ (2.29)

Thanks to (2.25) and (2.29), we deduce that the Cauchy operator Cz,m has the same principal symbol as
the operator W .

Now we are going to deal with the operator Am. Note that we have

1

2


β + α ·

∇Σ√
−∆Σ

2

= I4, (2.30)

and as Am is given by the formula

Am = −P+β


1

2
β + Cz,m

−1

P−,
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using (2.30) and the standard mollication arguments, it follows from the product formula for calculus of
pseudodierential operators that, in local coordinates, the symbol of Am denoted by qAm

has the form

qAm
(x̃, ξ) = −P+β


β + α ·


ξG

⟨G−1ξ, ξ⟩1◁2


P− + p(x̃, ξ),

where p ∈ S−1(Σ) and ξG dened in (2.5) is the principal symbol of ∇Σ. Therefore, we get

qAm
(x̃, ξ) = −P+ β α · ξG ⟨G−1ξ, ξ⟩−1◁2 P− + p(x̃, ξ)▷

Hence, using the fact that P± are projectors, and Lemma 2.6.3, we obtain

qAm
(x̃, ξ) = −iα · nφ(x̃)α · ξG ⟨G−1ξ, ξ⟩−1◁2 P− + p(x̃, ξ)▷

Finally, from results of Section 2.1.2 we deduce

qAm
(x̃, ξ) = S ·


ξG ∧ nφ(x̃)

⟨G−1ξ, ξ⟩


P− + p(x̃, ξ),

and

Am =
DΣ√
−∆Σ

P− modOpS−1(Σ) =
1√
−∆Σ

S · (∇Σ ∧ n)P− modOpS−1(Σ)▷

It justies that Am is a homogeneous pseudodierential operators of order 0 and completes the proof of
the theorem. ■

2.4 Approximation of the Poincaré-Steklov operators for large masses

The technique used in the last section allows us to treat the layer potential operator Am as pseu-
dodierential operator and to derive its principal symbol. However, it does not allow us to capture the
dependence on m. The main goal of this section is to study the Poincaré-Steklov operator, Am, as a m-
dependent pseudodierential operator when m is large enough. For this purpose, we consider h = 1◁m
as a semiclassical parameter (form≫ 1) and use the system (2.19) instead of the layer potential formula
of Am. Roughly speaking, we will look for a local approximate formula for the solution of (2.19). Once
this is done, we use the regularization property of the resolvent of the MIT bag operator to catch the
semiclassical principal symbol of Am.

Throughout this section, we assume that m > 1, z ∈ ρ(HMIT(m)) and that Ω is smooth with a
compact boundary Σ := ∂Ω. Next, we introduce the semiclassical parameter h = m−1 ∈ (0, 1], and we
set A h := Am. Then, the following theorem is the main result of this section, it ensures that A h is a
h-pseudodierential operator of order 0 and gives its semiclassical principal symbol.

Theorem 2.4.1. Let h ∈ (0, 1] and z ∈ ρ(HMIT(m)), and letA h be as above. Then for anyN ∈ N, there
exists a h-pseudodierential operator of order 0,A h

N ∈ OphS0(Σ) such that for h suciently small, and
any 0 ⩽ l ⩽ N + 1

2

∥A h −A
h
N∥H 1

2 (Σ)→H
N+3

2−l(Σ)
= O(hN+ 1

2
+l),
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and

A
h
N =

hDΣ
−h2∆Σ + I+ I

P− mod hOphS−1(Σ)▷

Let us consider A = {(Uφj
, Vφj

,φj) : j ∈ {1, · · · , N}} an atlas of Σ and (Uφ, Vφ,φ) ∈ A. As in
Section 2.2 we consider the case where Uφ is the graph of a smooth function χ, and we assume that Ω
corresponds locally to the side x3 > χ(x1, x2). Then, for

Uφ ={(x1, x2,χ(x1, x2)); (x1, x2) ∈ Vφ}; φ((x1, x2,χ(x1, x2)) = (x1, x2)

Vφ,ε :={(y1, y2, y3 + χ(y1, y2)); (y1, y2, y3) ∈ Vφ × (0, ε)} ⊂ Ω,

with ε suciently small, we have the following homeomorphism:

ϕ : Vφ,ε −→ Vφ × (0, ε)

(x1, x2, x3) → (x1, x2, x3 − χ(x1, x2))▷

Then the pull-back is

ϕ∗ : C∞(Vφ × (0, ε)) −→ C∞(Vφ,ε)

v → ϕ∗v := v ◦ ϕ▷

We write the change of variables as y = ϕ(x) and we assume it is of the form, possibly after a rotation,
translation and relabeling: 

yj = xj , j = 1, 2

y3 = x3 − χ(x1, x2)▷
(2.31)

Proposition 2.4.2. By the well-known change of coordinates formula, we can transform the dierential
operator Dm restricted on Vφ,ε into the following operator on Vφ × (0, ε):

Dφ
m : = (ϕ−1)∗Dm(ϕ)∗

= −i (α1∂y1 + α2∂y2 − (α1∂x1χ+ α2∂x2χ− α3)∂y3) +mβ

= −i(α1∂y1 + α2∂y2) +

1 + |∇χ|2(iα · nφ)(ỹ)∂y3 +mβ,

where ỹ = (y1, y2) and nφ = (φ−1)∗n is the pull-back of the outward pointing normal to Ω restricted
on Vφ:

nφ(ỹ) =
1

1 + |∇χ|2



∂x1χ
∂x2χ
−1


 (y1, y2)▷

Proof. Noted by
y = ϕ(x)

x = ϕ−1(y)

f̃(y) = f(ϕ−1(y))

f(x) = f̃(ϕ(x)) = f̃(y) = f̃ (ϕ1(x1, x2, x3),ϕ2(x1, x2, x3),ϕ3(x1, x2, x3)) ▷
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so, we get

y = (y1, y2, y3) = ϕ(x1, x2, x3) = (x1, x2, x3 − χ(x1, x2))

= (ϕ1(x1, x2, x3),ϕ2(x1, x2, x3),ϕ3(x1, x2, x3)) ,

⇔ ϕ−1(y1, y2, y3) = (y1, y2, y3 − χ(y1, y2))▷

Now, we have





∂ϕ1

∂x1
= 1;

∂ϕ1

∂x2
= 0;

∂ϕ1

∂x3
= 0;

∂ϕ2

∂x1
= 0;

∂ϕ2

∂x2
= 1;

∂ϕ3

∂x3
= 0;

∂ϕ3

∂x1
= −∂χ(x1, x2)

∂x1
= ∂1χ;

∂ϕ3

∂x2
= −∂χ(x1, x2)

∂x2
= ∂2χ;

∂ϕ3

∂x3
= 1▷

then, we obtain 



∂f

∂x1
=

∂f̃

∂y1
− ∂1χ

∂f̃

∂y3
,

∂f

∂x2
=

∂f̃

∂y2
− ∂2χ

∂f̃

∂y3
,

∂f

∂x1
=

∂f̃

∂y3
▷

Hence, for all f ∈ L2(R3)4

Dφ
mf = −iα ·∇f +mβf

= −iα1
∂f̃

∂y1
− iα2

∂f̃

∂y2
+ i


α1

∂χ

∂x1
+ α2

∂χ

∂x2
− α3


∂f̃

∂y3
+mβf̃ ▷

This achieves the proof of the proposition. ■

For the projectors P±, we have:

P
φ
± := (φ−1)∗P±(φ)

∗ =
1

2


I4 ∓ iβ α · nφ(ỹ)


▷

Thus, in the variable y ∈ Vφ × (0, ε), the equation (2.19) becomes:


( Dφ

m − z)u = 0, in Vφ × (0, ε),

Γ
φ
−u = gφ = g ◦ φ−1, on Vφ × {0},

(2.32)

where Γφ
± = P

φ
±t{y3=0}.
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Figure 2.1 – Change of coordinates

By isolating the derivative with respect to y3, and using that (iα · nφ)−1 = −iα · nφ, the system
(2.32) becomes:




∂y3u =

iα · nφ(ỹ)
1 + |∇χ(ỹ)|2


− iα1∂y1 − iα2∂y2 +mβ − z


u, in Vφ × (0, ε),

Γ
φ
−u = gφ, on Vφ × {0}▷

(2.33)

Let us now introduce the matrices-valued symbols

L0(ỹ, ξ) :=
iα · nφ(ỹ)
1 + |∇χ(ỹ)|2


α · ξ + β


; L1(ỹ) :=

−izα · nφ(ỹ)
1 + |∇χ(ỹ)|2 , (2.34)

with ξ = (ξ1, ξ2) identied with (ξ1, ξ2, 0). Then (2.33) is equivalent to


h∂y3u = L0(ỹ, hDỹ)u+ hL1(ỹ)u, in Vφ × (0, ε),

Γ
φ
−u = gφ, on Vφ × {0}▷

(2.35)

Before constructing an approximate solution of the system (2.35), let us give some properties of L0.

2.4.1 Properties of L0

The following proposition will be used in the sequel, it gathers some useful spectral properties of the
matrix-valued symbolL0(ỹ, ξ) introduced in (2.34). The spectral properties of l0(n, ξ) = i(α·n)


α·ξ+β



given in Proposition 2.6.2 (from Appendix 2.6) provides the following properties for

L0(ỹ, ξ) =
1

1 + |∇χ(ỹ)|2 l0

nφ(ỹ), ξ


▷
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Proposition 2.4.3. Let L0(ỹ, ξ) be as in (2.34), then we have

L0(ỹ, ξ) =
1

1 + |∇χ(ỹ)|2

iξ · nφ(ỹ) + S · (nφ(ỹ) ∧ ξ)− iβ(α · nφ(ỹ))


,

= iξ · ñφ(ỹ) +
λ(ỹ, ξ)

1 + |∇χ(ỹ)|2Π+(ỹ, ξ)−
λ(ỹ, ξ)

1 + |∇χ(ỹ)|2Π−(ỹ, ξ)

where

λ(ỹ, ξ) :=

|nφ(ỹ) ∧ ξ|2 + 1 =


⟨G(ỹ)−1ξ, ξ⟩+ 1,

ñφ(ỹ) :=
1

1 + |∇χ|2n
φ(ỹ),

Π±(ỹ, ξ) :=
1

2


I4 ±

S · (nφ(ỹ) ∧ ξ)− iβ(α · nφ(ỹ))

λ(ỹ, ξ)


,

(2.36)

with G the induced metric dened in Section 2.1.1.

In particular, the symbol L0(ỹ, ξ) is elliptic in S1 and it admits two eigenvalues ρ±(·, ·) ∈ S1 of
multiplicity 2 which are given by

ρ±(ỹ, ξ) =
inφ(ỹ) · ξ ± λ(ỹ, ξ)

1 + |∇χ|2 , (2.37)

and for which there exists c > 0 such that

(ρ+ − ρ−)(ỹ, ξ)
2

= ±ℜρ±(ỹ, ξ) > c⟨ξ⟩, (2.38)

uniformly with respect to ỹ. Moreover, Π±(ỹ, ξ), the projections ontoKr(L0(ỹ, ξ)− ρ±(ỹ, ξ)I4), belong
to the symbol class S0 and satisfy:

P
φ
± Π±(ỹ, ξ)P

φ
± = k

φ
+(ỹ, ξ)P

φ
± and P

φ
± Π∓(ỹ, ξ)P

φ
∓ = ∓Θφ(ỹ, ξ)Pφ

∓ , (2.39)

with

k
φ
±(ỹ, ξ) =

1

2


1±

1

λ(ỹ, ξ)


, Θ

φ(ỹ, ξ) =
1

2λ(ỹ, ξ)
(S · (nφ(ỹ) ∧ ξ)) ▷ (2.40)

That is, kφ+ is a positive function of S0, (kφ+)
−1 ∈ S0 and Θφ ∈ S0.

Remark 2.4.1. Thanks to the property (2.39) a 4×4-matrixA is uniquely determined by Pφ
−A andΠ+A

and we have:

A = P
φ
−A+ P

φ
+A = P

φ
−A+

1

k
φ
+

P
φ
+Π+P

φ
+A =


I− P

φ
+Π+

k
φ
+


P

φ
−A+

P
φ
+

k
φ
+

Π+A▷

Proof of Proposition 2.4.3. By denition it is clear that L0(ỹ, ξ) belongs to the symbol class S1,
and all the formulas follows for whose for l0(n, ξ) proved in the Appendix 2.6 (see Proposition 2.6.2 and
Lemma 2.6.3 ), mainly taking n = nφ(ỹ) and multiplying by 1√

1+|∇χ(ỹ)|2
. Next, using (2.8) we get for
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some c > 0 independent of ỹ that

±ℜρ±(ỹ, ξ) =

|nφ ∧ ξ|2 + 1
1 + |∇χ|2 =


⟨G(ỹ)−1ξ, ξ⟩+ 1

1 + |∇χ|2 ⩾ c(1 + |ξ|),

which gives (2.38) and shows that ρ± are elliptic in S1. Consequently, we also get that L0(ỹ, ξ) is elliptic
in S1 and that the functions Π±, k

φ
+, (k

φ
+)

−1 and Θφ belong to the symbol class S0. ■

2.4.2 Semiclassical parametrix for the boundary problem

In this section, we construct the approximate solution of the system (1.19) mentioned in the introduc-
tion. For simplicity of notation, in the sequel we will use y and P± instead of ỹ and P

φ
± , respectively.

We are going to construct a local approximate solution of the following rst order system:


h∂τu

h = L0(y, hDy)u
h + hL1(y)u

h, in R
2 × (0,+∞),

P−u
h = f, on R

2 × {0}▷

To be precise, we will look for a solution uh in the following form:

uh(y, τ) = Oph(Ah(·, ·, τ))f =
1

(2π)2



R2
Ah(y, hξ, τ)eiy·ξ f̂(ξ)dξ, (2.41)

with Ah(·, ·, τ) ∈ S0 for any τ > 0 constructed inductively in the form:

Ah(y, ξ, τ) ∼


j⩾0

hjAj(y, ξ, τ)▷

The action of h∂τ − L0(y, hDy)− hL1(y) on Ah(y, hDy, τ)f is given by T h(y, hDy, τ)f , with

T h(y, ξ, τ) = h(∂τA)(y, ξ, τ)−L0(y, ξ)A(y, ξ, τ)− h

L1(y)A(y, ξ, τ)− i∂ξL0(y, ξ) · ∂yA(y, ξ, τ)


▷

Here we exploited the particular form of L1 (independent of ξ) and of L0 (rst order polynomial in ξ).

Then we look for A0 satisfying:


h∂τA0(y, ξ, τ) = L0(y, ξ)A0(y, ξ, τ),

P−(y)A0(y, ξ, τ) = P−(y),
(2.42)

and for j ⩾ 1,


h∂τAj(y, ξ, τ) = L0(y, ξ)Aj(y, ξ, τ) + L1(y)Aj−1(y, ξ, τ)− i∂ξL0(y, ξ) · ∂yAj−1(y, ξ, τ),

P−(y)Aj(y, ξ, τ) = 0▷
(2.43)

Let us introduce a class of parametrized symbols, in which we will construct the family Aj :

Pm
h := {b(·, ·, τ) ∈ Sm; ∀(k, l) ∈ N

2, τk∂l
τ b(·, ·, τ) ∈ hk−lSm−k+l}; m ∈ Z▷

More precisely, b ∈ Pm
h means that for all (k, l) ∈ N

2, the function (τ, h) → (h−1τ)k(h∂τ )
lb(·, ·, τ) is

uniformly bounded with respect to (τ, h) ∈ (0,+∞)× (0, 1) in Sm−k+l.
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Proposition 2.4.4. There exists A0 ∈ P0
h solution of (2.42) given by:

A0(y, ξ, τ) =
Π−(y, ξ)P−(y)

k
φ
+(y, ξ)

eh
−1τρ−(y,ξ)▷

Proof. The solutions of the dierential system h∂τA0 = L0A0 areA0(y, ξ, τ) = eh
−1τL0(y,ξ)A0(y, ξ, 0).

By denition of ρ± and Π±, we have:

eh
−1τL0(y,ξ) = eh

−1τρ−(y,ξ)
Π−(y, ξ) + eh

−1τρ+(y,ξ)
Π+(y, ξ)▷ (2.44)

It follows from (2.38) that A0 belongs to S0 for any τ > 0 if and only if Π+(y, ξ)A0(y, ξ, 0) = 0.
Moreover, the boundary condition P−A0 = P− implies P−(y)A0(y, ξ, 0) = P−(y). Thus, thanks to
Remark 2.4.1, we deduce that

A0(y, ξ, 0) = P−(y)−
P+Π+P−

k
φ
+

(y, ξ) = P−(y) +
P+Π−P−

k
φ
+

(y, ξ) =
Π−P−
k
φ
+

(y, ξ)▷

The properties of ρ−, Π−, P− and k+ given in Proposition 2.4.3, imply that (kφ+)
−1Π−P− ∈ S0 and that

eh
−1τρ−(y,ξ) ∈ P0

h. This concludes the proof of Proposition 2.4.4. ■

For the other terms Aj , j ⩾ 1, we have:

Proposition 2.4.5. Let A0 be dened by Proposition 2.4.4. Then for any j ⩾ 1, there exists Aj ∈ hjP−j
h

solution of (2.43) which has the form:

Aj(y, ξ, τ) = eh
−1τρ−(y,ξ)

2j

k=0

(h−1τ⟨ξ⟩)kBj,k(y, ξ), (2.45)

with Bj,k ∈ hjS−j .

Proof. Let us prove the result by induction. Thanks to Proposition 2.4.4, the claimed property holds
for j = 0. Now, assume that there exists Aj ∈ hjP−j

h solution of (2.43) satisfying the above property
and let us prove that the same holds for Aj+1. In order to be a solution of the dierential system
h∂τAj+1 = L0Aj+1 + L1Aj − i∂ξL0 · ∂yAj , for Aj+1 we have:

Aj+1 = eh
−1τL0Aj+1|τ=0 + eh

−1τL0

 τ

0
e−h−1sL0(L1Aj − i∂ξL0 · ∂yAj)ds, (2.46)

where L1Aj has still the form (2.45), and we have

∂yAj = eh
−1τρ−


h−1τ∂yρ− + ∂y

 2j

k=0

(h−1τ⟨ξ⟩)kBj,k▷

Thus, thanks to the properties ρ− and Bj,k, the quantity (L1Aj − i∂ξL0 · ∂yAj)(y, ξ, s) has the form:

eh
−1sρ−(y,ξ)

2j+1

k=0

(h−1s⟨ξ⟩)kB̃j,k(y, ξ), (2.47)

with B̃j,k ∈ hjS−j . So, by using the decomposition (2.44), for the second term of the r.h.s. of (2.46) we
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have:

eh
−1τL0

 τ

0
e−h−1sL0(L1Aj − i∂ξL0 · ∂yAj)ds = eh

−1τρ−Π−I
j
−(τ ) + eh

−1τρ+Π+I
j
+(τ ), (2.48)

with

I
j
±(τ ) =

 τ

0
eh

−1s(ρ−−ρ±)
2j+1

k=0

(h−1s⟨ξ⟩)kB̃j,kds▷

For Ij−, the exponential term is equal to 1 and by integration of sk, we obtain:

I
j
−(τ ) =

2j+1

k=0

(h−1τ⟨ξ⟩)k+1h⟨ξ⟩−1

k + 1
B̃j,k▷ (2.49)

For Ij+, let us introduce Pk the polynomial of degree k such that

 τ

0
eλsskds =

1

λk+1
(eτλPk(τλ)− Pk(0)), for any λ ∈ C

∗▷

With this notation in hand, we easily see that the term eτ
hρ+Π+I

j
+(τ ) has the following form:

eτ
hρ+Π+I

j
+(τ ) = Π+

2j+1

k=0

h⟨ξ⟩k
(ρ− − ρ+)k+1

B̃j,k


eτ

hρ−Pk(τ
h(ρ− − ρ+))− eτ

hρ+Pk(0)

, (2.50)

where τh := h−1τ .

Thus, combining (2.49) and (2.50) with (2.46), (2.48) and (2.44), yields that

Aj+1 = eh
−1τρ+


Π+Aj+1|τ=0 −B+

j+1


+ eh

−1τρ−

Π−Aj+1|τ=0 +

2(j+1)

k=0

(h−1τ⟨ξ⟩)k B−
j+1,k


,

where

B+
j+1 = Π+

2j+1

k=0

h⟨ξ⟩k
(ρ− − ρ+)k+1

Pk(0)B̃j,k ∈ hj+1S−j−1,

and B−
j+1,k ∈ hj+1S−j−1 as a linear combination of products of Π− ∈ S0, h⟨ξ⟩−1 (or h⟨ξ⟩k(ρ− −

ρ+)
−k−1) belonging to hS−1, and of B̃j,k ∈ hjS−j .

Now, in order to have Aj+1 ∈ S0, we let the contribution of the exponentially growing term vanish
by choosing

Π+Aj+1(y, ξ, 0) =
B+
j+1(y, ξ)▷

Then, thanks to Remark 2.4.1, the boundary condition P−(y)Aj+1(y, ξ, 0) = 0 gives

Aj+1(y, ξ, 0) =
P+Π+

k
φ
+

B+
j+1(y, ξ)▷

73



Chapter 2 – A Poincaré-Steklov map for the MIT bag model.

Finally, we have

Aj+1(y, ξ, τ) = eh
−1τρ−(y,ξ)

Π−P+Π+

k
φ
+

B+
j+1(y, ξ) +

2(j+1)

k=0

(h−1τ⟨ξ⟩)k B−
j+1,k(y, ξ)


,

and Proposition 2.4.5 is proven with

Bj+1,0 =
Π−P+Π+

k
φ
+

B+
j+1 +

B−
j+1,0,

and for k ⩾ 1, Bj+1,k = B−
j+1,k. ■

Remark 2.4.2. The computation of each termBj,0 can be done recursively, but this leads to complicated
calculations. For example B1,0 has the following form

B1,0(y, ξ) = h


Π+a0 +

Π−P+Π+a0

k
φ
+

 
(z + iα · ∂y)

2λ
+

iα · ∂yρ−
4λ2


Π−A0(y, ξ),

with a0(ỹ) = iα · ñφ(ỹ).

Thanks to the relation (2.41), to any Ah ∈ P0
h we associate a bounded operator from L2(R2)

into L2(R2 × (0,+∞)). The boundedness in the variable y ∈ R
2 is a consequence of the Calderon-

Vaillancourt theorem (see (2.1)), and in the variable τ ∈ (0,+∞) it is essentially the multiplication by
an L∞-function. Moreover, for Aj of the form (2.45), we have the following mapping property which
captures the Sobolev space regularity.

Proposition 2.4.6. Let Aj , j ⩾ 0, be of the form (2.45). Then, for any s ⩾ −j − 1
2 , the operator Aj

dened by

Aj : f −→ (Ajf)(y, y3) =
1

(2π)2



R2
Aj(y, hξ, y3)e

iy·ξ f̂(ξ)dξ

gives rise to a bounded operator from H s(R2) into H s+j+ 1
2 (R2 × (0,+∞)). Moreover, for any l ∈

[0, j + 1
2 ] we have:

∥Aj∥
Hs→H

s+j+1
2−l = O(hl−|s|)▷ (2.51)

Proof. First, let us prove the result for s = k − j − 1
2 , k ∈ N, between the semiclassical Sobolev spaces

H s
scl(R

2) := ⟨hDy⟩−sL2(R2),

H k
scl(R

2 × (0,+∞)) := {u ∈ L2; ⟨hDy⟩k1(h∂y3)k2u ∈ L2 for (k1, k2) ∈ N
2, k1 + k2 = k},

where ⟨hDy⟩ =

−h2∆R2 + I . Then, for f ∈ H s(R2)4, we have:

∥Ajf∥2Hk
scl(R

2×(0,+∞))
=



k1+k2=k

∥⟨hDy⟩k1(h∂y3)k2Ajf∥2L2(R2×(0,+∞))

=


k1+k2=k

 +∞

0
∥⟨hDy⟩k1(h∂y3)k2(Ajf)(·, y3)∥2L2(R2)dy3▷

(2.52)
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Thanks to the ellipticity property (2.38), for Aj given by Proposition 2.4.5 we have:

(h∂y3)
k2Aj(y, ξ, y3) = hjbj(y, ξ; y3)e

−h−1y3
c
2
⟨ξ⟩⟨ξ⟩k2−j ,

with bj satisfying, for any (α,β) ∈ N
2 × N

2 there exists Cα,β > 0 such that:

|∂α
y ∂

β
ξ bj(y, ξ; y3)| ⩽ Cα,β , ∀(y, ξ; y3) ∈ R

2 × R
2 × (0,+∞)▷

Consequently, thanks to the Calderón-Vaillancourt theorem (see (2.1)), we can write:

⟨hDy⟩k1(h∂y3)k2Aj = hjBj(y3)⟨hDy⟩k1+k2−je−h−1y3
c
2
⟨hDy⟩,

with (Bj(y3))y3>0 a family of bounded operators on L2(R2), and uniformly bounded with respect to
y3 > 0. Then, for f ∈ H s(R2)4, we have:

∥⟨hDy⟩k1(h∂y3)k2(Ajf)(·, y3)∥2L2(R2) ≲ hj∥⟨hDy⟩k1+k2−je−h−1y3
c
2
⟨hDy⟩f∥2

L2(R2),

and from (2.52) we deduce that

∥Ajf∥2Hk
scl(R

2×(0,+∞))
≲ h2j+1∥⟨hDy⟩k−j− 1

2 f∥2
L2(R2) = h2j+1∥f∥2

H
k−j− 1

2
scl (R2)

,

where we used that for any l ∈ N, f ∈ H
l− 1

2
scl (R2),

∥⟨hDy⟩le−h−1y3
c
2
⟨hDy⟩f∥2

L2(R2) = ⟨e−h−1y3c⟨hDy⟩⟨hDy⟩lf , ⟨hDy⟩lf⟩L2

= −h

c

∂

∂y3
⟨e−h−1y3c⟨hDy⟩⟨hDy⟩l−1f , ⟨hDy⟩lf⟩L2 ▷

By interpolation arguments we thus deduce that for any j ∈ N, s ⩾ −j − 1
2 , it holds that

∥Aj∥
H

s
scl→H

s+j+1
2

scl

= O(hj+
1
2 )▷

This means that for y := (y, y3)

∥⟨hDy⟩s+j+ 1
2Aj⟨hDy⟩−s∥L2(R2)→L2(R2×(0,+∞)) = O(hj+

1
2 )▷ (2.53)

In order to prove (2.51) (in classical Sobolev spaces) let us estimate ⟨Dy⟩s+j+ 1
2
−lAj⟨Dy⟩−s fromL2(R2)

into L2(R2 × (0,+∞)). The inequalities, for all ξ ∈ R
d, d = 2, 3 and h ∈ (0, 1),

1 ⩽ ⟨ξ⟩ ⩽ h−1⟨hξ⟩; ⟨ξ⟩−1 ⩽ ⟨hξ⟩−1; ⟨ξ⟩−1 ⩽ 1;

imply for j + 1
2 ⩾ l, s+ = max(s, 0) and s− = s− s+, the estimates:

⟨ξ⟩s+j+ 1
2
−l ⩽ h−j− 1

2
+l h−s+ ⟨hξ⟩s+j+ 1

2 ; ⟨ξ⟩−s ⩽ hs−⟨hξ⟩−s▷

We deduce

∥⟨Dy⟩s+j+ 1
2
−lAj⟨Dy⟩−s∥L2→L2 ≲ h−j− 1

2
+l h−s+hs− ∥⟨hDy⟩s+j+ 1

2Aj⟨hDy⟩−s∥L2→L2 ▷
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Then the estimate (2.51) follows from (2.53) using that s+ − s− = |s|.

Proposition 2.4.7. Let f ∈ Hs(R2) and Aj , j ⩾ 0, be as in Propositions 2.4.4 and 2.4.5. Then for any
N ⩾ −s− 1

2 , the function uhN =
N

j=0 h
jAjf satises:


h∂τu

h
N − L0(y, hDy)u

h
N − hL1(y)u

h
N = hN+1Rh

Nf, in R
2 × (0,+∞),

P−u
h
N = f, on R

2 × {0},
(2.54)

with

Rh
N : f −→ −1

(2π)2



R2


L1AN − i∂ξL0 · ∂yAN


(y, hξ, τ)eiy·ξ f̂(ξ)dξ,

a bounded operator from Hs(R2) into Hs+N+ 1
2 (R2 × (0,+∞)) satisfying for any l ∈ [0, N + 1

2 ]:

∥Rh
N∥

Hs→H
s+N+1

2−l = O(hl−|s|)▷ (2.55)

Proof. By construction of the sequence (Aj)j∈{0,··· ,N−1} we have the system (2.54) with Rh
N =

Oph(rhN (·, ·, τ)),

rhN (y, ξ, τ) = −

L1AN − i∂ξL0 · ∂yAN


(y, ξ, τ),

(see the beginning of Section 2.4.2). As in the proof of Proposition 2.4.5, rhN has the form (2.47) (with
j = N ). Then, as in the proof of Proposition 2.4.6 we obtain the estimate (2.55). ■

2.4.3 Proof of Theorem 2.4.1

In this section, we apply the above construction in order to prove Theorem 2.4.1.
Let g ∈ P−H 1◁2(∂Ω)4, (Uφ, Vφ,φ) a chart of the atlas A and ψ1,ψ2 ∈ C∞

0 (Uφ). Then f :=
(φ−1)∗(ψ2g) is a function of H 1◁2(Vφ)

4 which can be extended by 0 to a function of H 1◁2(R2)4. Then
for h = 1◁m and any N ∈ N, the previous construction provides a function uhN ∈ H 1(R2 × (0,+∞))4

satisfying 
( Dφ

m − z)uhN =hN+1Rh
Nf, in R

2 × (0, ε),

Γ−u
h
N =f, on R

2 × {0},

with uhN =
N

j=0 h
jAjf (see Proposition 2.4.6) andRh

Nf ∈ HN+1(R2× (0, ε)) with norm inHN+1−l,

l ∈ [0, N + 1
2 ], bounded by O(hl−

1
2 ). Consequently, vhN := ϕ∗uhN , dened on Vφ,ε, satises:


(Dm − z)vhN =hN+1ϕ∗(Rh

Nf), in Vφ,ε,

Γ−v
h
N =ψ2g, on Uφ▷

Now, let EΩ
m(z)[ψ2g] ∈ H 1(Ω)4 be as in Denition 2.3.1. Since Γ−vhN = Γ−EΩ

m(z)[ψ2g] = ψ2g, then
the following equality holds in Vφ,ε:

vhN − EΩ

m(z)[ψ2g] = hN+1(HMIT(m)− z)−1ϕ∗

Rh

N (φ−1)∗(ψ2g)

▷

From this, we deduce that

ψ1Amψ2(g) := ψ1Γ+E
Ω

m(z)[ψ2g] = ψ1Γ+v
h
N − hN+1ψ1Γ+(HMIT − z)−1ϕ∗


Rh

N (φ−1)∗(ψ2g)

▷
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Since ϕ ⇂Uφ= φ, for any u ∈ H 1(Vφ × (0, ε))4, we have that

Γ+ϕ
∗(u) = φ∗(P+u ⇂Vφ×{0}), ψ1Γ+v

h
N = ψ1φ

∗Oph(ahN )(φ−1)∗ψ2g,

with

ahN (ỹ, ξ) =
N

j=0

hjP+Aj(y, ξ, 0) =
N

j=0

hjP+Bj,0(y, ξ),

where Bj,0 ∈ hjS−j are introduced in Proposition 2.4.5. Thus, from Proposition 2.4.4, in local coordi-
nates, the principal semiclassical symbol of Am is given by

P+B0,0(y, ξ) = P+A0(y, ξ, 0) =
P+Π−P−

k
φ
+

(y, ξ)▷

Thanks to the property (2.39) it is equal to

−ΘφP−(y, ξ) =
S · (ξ ∧ nφ(y))
⟨G(y)−1ξ, ξ⟩+ 1 + 1

P−(y, ξ)▷

We conclude the proof of Theorem 2.4.1 from results of Section 2.1.2 and by proving the following
Lemma which is a consequence of the above considerations, the regularity estimates from Theorem
2.2.1-(iii), Theorem 2.2.2-(i) and Proposition 2.3.2.

Lemma 2.4.8. Let ψ1,ψ2 ∈ C∞(Σ) such that supp(ψ1)∩ supp(ψ2) = ∅. Then, form0 > 0 suciently
large, m ⩾ m0, and for any (k,N) ∈ N

∗ × N
∗ it holds that

∥ψ1Amψ2∥P−H1◁2(Σ)4→P+Hk(Σ)4 = O(m−N )▷

Proof. Let ψ1,ψ2 ∈ C∞(Σ) with disjoint supports. Thanks to Theorem 2.2.1-(iii) and Theorem 2.2.2-
(i), to prove the lemma it suces to show that for any (N1, N2) ∈ N

2, there exists CN1,N2 such that for
g ∈ P−H 1◁2(Σ)4,

∥(ψ1Amψ2)g∥
P+H

N2+
1
2 (Σ)4

⩽
CN1,N2√

m


Π

N2
i=0∥(HMIT(m)− z)−1∥H i(Ω)4→H i+1(Ω)4



× ∥(HMIT(m)− z)−1∥N1

L2(Ω)4→L2(Ω)4∥g∥P−H1◁2(Σ)4 ▷

(2.56)

For this, let us introduce Φ1 ∈ C∞
0 (Ω) such that Φ1 = 1 near supp(ψ1) and Φ1 = 0 near supp(ψ2).

Thus for g ∈ P−H 1◁2(Σ)4 and EΩ
m(z)[ψ2g] ∈ H 1(Ω) as in Denition 2.3.1, the function u1,2 :=

Φ1E
Ω
m(z)[ψ2g] satises:


(Dm − z)u1,2 =[D0 , Φ1]E

Ω

m(z)[ψ2g], in Ω,

Γ−u1,2 =Φ1⇂Σψ2g = 0, on Σ▷

Then, u1,2 = (HMIT(m) − z)−1[D0 , Φ1]E
Ω
m(z)[ψ2g], and for any Φ1 ∈ C∞

0 (Ω) equals to 1 near
supp(ψ1) we have:

ψ1Amψ2(g) = ψ1Γ+
Φ1(HMIT(m)− z)−1[D0 , Φ1]E

Ω

m(z)[ψ2g]▷

Moreover, by choosing Φ1 such that Φ1 ≺ Φ1, that is Φ1 = 1 on supp(Φ1), both functions Φ1 and
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[D0 , Φ1] have disjoint supports, and we can then apply the following telescopic formula:

Φ1(HMIT(m)− z)−1(1− χ1) =Φ1(HMIT(m)− z)−1[D0,χJ ] · · · (HMIT(m)− z)−1[D0,χ2]

(HMIT(m)− z)−1(1− χ1),

for (χi)1⩽i⩽J a family of compactly supported smooth functions such that Φ1 ≺ χJ ≺ χJ−1 ≺ · · · ≺
χ1 ≺ Φ1, J = N1 +N2. Since [D0 , Φ1] = (1 − χ1)[D0 , Φ1], the above telescopic formula allows us
to write ψ1Amψ2(g) as a product of J cuto resolvents ofHMIT(m). Now, by Proposition 2.3.2 we have


EΩ

m(z)[ψ2g]


L2(Ω)4

≲
1√
m

||g||
L2(Σ)4 ▷

Thus, using the continuity of Γ+ from HN2+1(Ω) to HN2+
1
2 (Σ), we then get the estimation (2.56),

nishing the proof of the lemma taking N2 = k and N1 such that for N1 ⩾ N +N2(N2 − 1)◁2. ■

Remark 2.4.3. Note that for any m > 0 and z ∈ ρ(HMIT(m)), the parametrix we have constructed for
Am is valid from the classical pseudodierentiel point of view. Actually, Lemma 2.4.8 is the only result
where the assumption that m is big enough has been assumed, and it is exclusively required to ensures
that away from the diagonal the operator Am is negligible in 1◁m. In the same vein, if m is xed then
the proof of Lemma 2.4.8 still ensures that away from the diagonalAm is regularizing. Consequently, we
deduce that for any m > 0 and z ∈ ρ(HMIT(m)), the operator Am is a homogeneous pseudodierential
operator of order 0, and that

Am =
DΣ√
−∆Σ

P− modOpS−1(Σ),

which is in accordance with Theorem 2.3.3.

am(ξ) = − iα3(α · ξ − z)
|ξ|2 +m2 +m

P−▷

2.5 Resolvent convergence to the MIT bag model

In the whole section, Ω ⊂ R
3 denotes a bounded smooth domain, we set

Ωi = Ω, Ωe = R
3 \ Ω and Σ = ∂Ω,

and we let n be the outward (with respect to Ωi) unit normal vector eld on Σ.
Fix m > 0 and let M > 0. Consider the perturbed Dirac operator

HMφ = (Dm +Mβ1Ωe)φ, ∀φ ∈ Dom(HM ) := H 1(R3)4,

where 1Ωe is the characteristic function of Ωe. Using Kato-Rellich theorem and Weyl’s theorem, it is
easy to see that (HM ,Dom(HM )) is self-adjoint and that

Spess(HM ) = (−∞,−(m+M)] ∪ [m+M,+∞),

Sp(HM ) ∩ (−(m+M),m+M) is purely discrete▷
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Now, let HMIT(m) be the MIT bag operator acting on L2(Ωi)
4, that is

HMIT(m)v = Dmv, ∀v ∈ Dom(HMIT(m)) :=

v ∈ H 1(Ωi)

4 : P−tΣv = 0 on Σ


,

where tΣ and P± are the trace operator and the orthogonal projection from Section 1.3.

The aim of this section is to use the properties of the Poincaré-Steklov operators carried out in the
previous sections to study the resolvent of HM when M is large enough. Namely, we give a Krein-type
resolvent formula in terms of the resolvent ofHMIT(m), and we show that the convergence ofHM toward
HMIT(m) holds in the norm resolvent sense with a convergence rate of O(1◁M), which improves the
result of [BCLTS19].

Before stating the main results of this section, we need to introduce some notations and denitions.
First, we introduce the following Dirac auxiliary operator

HMu = Dm+Mu, ∀u ∈ Dom( HM ) :=

u ∈ H 1(Ωe)

4 : P+tΣu = 0 on Σ


▷

Notice that HM is the MIT bag operator on Ωe (the boundary condition is with P+ because the normal
n is incoming for Ωe). Since Ωe is unbounded, Theorem 2.2.1 together with Remark 2.2.1 imply that
( HM ,Dom( HM )) is self-adjoint and that

Sp( HM ) = Spess(
HM ) = (−∞,−(m+M)] ∪ [m+M,+∞)▷

In particular, ρ(HM ) ⊂ ρ( HM )). Let z ∈ ρ(HMIT(m)) ∩ ρ( HM ), g ∈ P−H 1◁2(Σ)4 and h ∈
P+H

1◁2(Σ)4. We denote by EΩi
m (z) : P−H 1◁2(Σ)4 → H 1(Ωi)

4 the unique solution of the bound-
ary value problem: 

(Dm − z)v = 0, in Ωi,

P−tΣv = g, in Σ▷
(2.57)

Similarly, we denote byEΩe

m+M (z) : P+H
1◁2(Σ)4 → H 1(Ωe)

4 the unique solution of the boundary value
problem: 

(Dm+M − z)u = 0, in Ωe,

P+tΣu = h, in Σ▷
(2.58)

Dene the Poincaré-Steklov operators associated to the above problems by

A
i
m = P+tΣE

Ωi
m (z)P− and A

e
m+M = P−tΣE

Ωe

m+M (z)P+▷

Notation 2.5.1. In the sequel we shall denote byRM (z), RM (z) andRMIT(z) the resolvent ofHM , HM

and HMIT(m), respectively. We also use the notations:

• Γ± = P±tΣ and Γ = Γ+rΩi
+ Γ−rΩe , with r• the restriction operator in •.

• EM (z) = eΩi
EΩi

m (z)P− + eΩeE
Ωe

m+M (z)P+, with e• the extension by 0 outside of •.

• RMIT(z) = eΩi
RMIT(z)rΩi

+ eΩe
RM (z)rΩe .

With these notations in hand, we can state the main results of this section. The following theorem is
the main tool to show the large coupling convergence with a rate of convergence of O(1◁M).

Theorem 2.5.2. There is M0 > 0 such that for all M > M0 and all z ∈ ρ(HMIT(m)) ∩ ρ(HM ), the
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operator ΨM (z) :=

I−A i

m −A e
m+M


is bounded invertible in H 1◁2(Σ)4, and the inverse is given by

Ψ
−1
M (z) =


I4 −A

i
mA

e
m+M −A

e
m+MA

i
m

−1 
I+A

i
m +A

e
m+M


,

and the following resolvent formula holds:

RM (z) = RMIT(z) + EM (z)Ψ−1
M (z)Γ RMIT(z)▷ (2.59)

Remark 2.5.1. By Proposition 2.3.2 (i) we have that


EΩi

m (z)
∗

= −βΓ+RMIT(z) and

EΩe

m+M (z)
∗

= −βΓ− RM (z),

for any z ∈ ρ(HMIT(m)) ∩ ρ(HM ). Thus, the resolvent formula (2.59) can be written in the form

RM (z) = RMIT(z)− (βΓ RMIT(z))
∗
Ψ

−1
M (z)Γ RMIT(z)▷

Before going through the proof of Theorem 2.5.2 we rst establish a regularity result that will play a
crucial role in the rest of this section. It concerns the dependence on the parameter M of the norm of an
auxiliary operator which involves the composition of the operators A i

m and A e
m+M .

Proposition 2.5.3. LetA i
m andA e

m+M be as above. Then, there isM0 > 0 such that for everyM > M0

and all z ∈ ρ(HMIT(m)) ∩ ρ(HM ) the following hold true:
(i) For any s ∈ R the operator ΞM (z) : H s(Σ)4 −→ H s(Σ)4 dened by

ΞM (z) =

I4 −A

i
mA

e
m+M −A

e
m+MA

i
m

−1
, (2.60)

is everywhere dened and uniformly bounded with respect to M .
(ii) The Poincaré-Steklov operator, A e

m+M , satises the estimate

A e
m+M


P+Hs+1(Σ)4→P−Hs(Σ)4

≲ M−1, ∀s ∈ R▷

Proof. (i) Set τ := (m + M), then the result essentially follows from the fact that ΞM (z) is a 1◁τ -
pseudodierential operator of order 0. Indeed, x z ∈ ρ(HMIT(m)) ∩ ρ(HM ) and set h = τ−1. Then,
from Theorem 2.3.3 and Remark 2.4.3 we know that A i

m is a homogeneous pseudodierential operator
of order 0. Thus A i

m can also be viewed as a h-pseudodierential operators of order 0. That is,
A i

m ∈ OphS0(Σ), and in local coordinates, its semiclassical principal symbol is given by

ph,A i
m
(x, ξ) =

S · (ξ ∧ n(x))P−
|ξ ∧ n(x)|

,

where we identify ξ ∈ R
2 with ξ = (ξ1, ξ2, 0)

t ∈ R
3, and for x = φ(x̃) ∈ Σ, n(x) stands for nφ(x̃).

Similarly, thanks to Theorem 2.4.1, we also know that for h0 suciently small (and henceM0 big enough)
and all h < h0, A e

m+M is a h-pseudodierential operator and that

A
e
m+M ∈ OphS0(Σ), ph,A e

m+M
(x, ξ) = − S · (ξ ∧ n(x))P+

|ξ ∧ n(x)|2 + 1 + 1
▷

Therefore, the symbol calculus yields for all h < h0 that

I4 −A i

mA e
m+M −A e

m+MA i
m


is a 1◁τ -
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pseudodierential operator of order 0. Now, Lemmas 2.6.3 and 2.6.1 yield

S · (ξ ∧ n(x))P±S · (ξ ∧ n(x))P∓
|ξ ∧ n(x)|(


|ξ ∧ n(x)|2 + 1 + 1)

=
|ξ ∧ n(x)|P∓

|ξ ∧ n(x)|2 + 1 + 1
▷

Thus

I4 − ph,A i
m
(x, ξ)ph,A e

m+M
(x, ξ)− ph,A e

m+M
(x, ξ)ph,A i

m
(x, ξ) = I4 +

|ξ ∧ n(x)|
|ξ ∧ n(x)|2 + 1 + 1

=


|ξ ∧ n(x)|2 + 1 + 1 + |ξ ∧ n(x)|

|ξ ∧ n(x)|2 + 1 + 1
≳ 1▷

From this, we deduce that

I4 −A i

mA e
m+M −A e

m+MA i
m


is elliptic in OphS0(Σ). Thus, ΞM (z) ∈

OphS0(Σ), and in local coordinates, its semiclassical principal symbol is given by

ph,ΞM (z)(x, ξ) =


|ξ ∧ n(x)|2 + 1 + 1

|ξ ∧ n(x)|2 + 1 + 1 + |ξ ∧ n(x)|
▷

As ΞM (z) is a h-pseudodierential operators of order 0, it follows from the Calderón-Vaillancourt theo-
rem (see (2.2)), that ΞM (z) : H s(Σ)4 → H s(Σ)4 is well-dened and uniformly bounded with respect to
M , for any s ∈ R, proving the statement (i) of the theorem.

The proof of the statement (ii) exploits also the Calderón-Vaillancourt theorem which shows that for
any s ∈ R, any operator in hOphS0(Σ) is uniformly bounded byO(h), with respect to h = τ−1 ∈ (0, 1),
from H s+1(Σ)4 into H s+1(Σ)4 −→ H s(Σ)4 (see (2.2)). Thus for any s ∈ R,


A

e
τ −

1

τ
DΣ(


−τ−2∆Σ + I+ I)−1 P+



Hs+1(Σ)4→Hs(Σ)4

≲ τ−1,

uniformly with respect to τ large enough.

Then we conclude the proof of the statement (ii) by using that (

−τ−2∆Σ + I+ I)−1 is uniformly

bounded from H s+1(Σ)4 into itself and thatDΣ is bounded from H s+1(Σ)4 into H s(Σ)4 (as a rst order
dierential operator). ■

We can now give the proof of Theorem 2.5.2.

Proof of Theorem 2.5.2. Let M0 be as in Proposition 2.5.3 and M > M0, x z ∈ ρ(HMIT(m)) ∩
ρ(HM ) and let f ∈ L2(R3)4. We set

v = rΩi
RM (z)f and u = rΩeRM (z)f▷

Then u and v satisfy the following system





(Dm − z)v = f in Ωi,

(Dm+M − z)u = f in Ωe,

P−tΣv = P−tΣu on Σ,

P+tΣv = P+tΣu on Σ▷
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Since EΩi
m (z) (resp. EΩe

m+M (z)) gives the unique solution to the boundary value problem (2.57) (resp.
(2.58)), and

Γ−RMIT(z)rΩi
f = 0 and Γ+

RM (z)rΩef = 0,

if we let

φ = Γ−u and ψ = Γ+v,

then it is easy to check that 
v = RMIT(z)rΩi

f + EΩi
m (z)φ,

u = RM (z)rΩef + EΩe

m+M (z)ψ▷
(2.61)

Hence, to get an explicit formula for RM (z) it remains to nd the unknowns φ and ψ. For this, note that
from (2.61) we have


ψ = Γ+rΩi

RM (z)f = Γ+RMIT(z)rΩi
f + Γ+E

Ωi
m (z)[φ],

φ = Γ−rΩeRM (z)f = Γ− RM (z)rΩef + Γ−E
Ωe

m+M (z)[ψ]▷
(2.62)

Substituting the values of ψ and φ (from (2.62)) into the system (2.61), we obtain

RM (z) =eΩi
RMIT(z)rΩi

+ eΩe
RM (z)rΩe

+

eΩi

EΩi
m (z)Γ−rΩe + eΩeE

Ωe

m+M (z)Γ+rΩi


RM (z)

= RMIT(z) + EM (z)ΓRM (z)▷

(2.63)

Note that, by denition of the Poincaré-Steklov operators, (2.62) is equivalent to


ψ = Γ+RMIT(z)rΩi

f +A
i
m(φ),

φ = Γ− RM (z)rΩef +A
e
m+M (ψ)▷

(2.64)

Thus, applying Γ to the identity (2.63) yields that

Γ RMIT(z) =

I−A

i
m −A

e
m+M


ΓRM (z) = ΨM (z)ΓRM (z)▷

Now, we apply (I +A i
m +A e

m+M ) to the last identity and we get


I+A

i
m +A

e
m+M


Γ RMIT(z) =


I4 −A

i
mA

e
m+M −A

e
m+MA

i
m


ΓRM (z) =: (ΞM (z))−1

ΓRM (z),

where ΞM (z) is given by (2.60). Then, thanks to Proposition 2.5.3 we know that for M > M0 the
operator (ΞM (z))−1 is bounded invertible from H 1◁2(Σ)4 into itself, which actually means that ΨM is
bounded invertible from H 1◁2(Σ)4 into itself, and that

Ψ
−1
M = ΞM (z)


I+A

i
m +A

e
m+M


▷

From this, it follows that
ΓRM (z) = Ψ

−1
M (z)Γ RMIT(z)▷
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Substituting this into formula (2.63) yields that

RM (z) = RMIT(z) + EM (z)Ψ−1
M (z)Γ RMIT(z),

which achieves the proof of the theorem. ■

As an immediate consequence of Theorem 2.5.2 and Proposition 2.5.3 we have:

Corollary 2.5.4. There is M0 > 0 such that for every M > M0 and all z ∈ ρ(HMIT(m)) ∩ ρ(HM ), the
operators Ξ±

M (z) : P±H
s(Σ)4 → P±H

s(Σ)4 dened by

Ξ
+
M (z) =


I−A

i
mA

e
m+M

−1
and Ξ

−
M (z) =


I−A

e
m+MA

i
m

−1
,

are everywhere dened and bounded for any s ∈ R, and it holds that

Ξ±

M (z)


P±Hs(Σ)4→P±Hs(Σ)4

≲ 1,

uniformly with respect to M > M0.

Moreover, if v ∈ H 1(R3)4 solves (Dm +Mβ1Ωe − z)v = eΩi
f , for some f ∈ L2(Ωi)

4. Then, rΩi
v

satises the following boundary value problem




(Dm − z)rΩi
v = f in Ωi,

Γ−v = Ξ
−
M (z)A e

m+MΓ+RMIT(z)f on Σ,

Γ+v = Γ+RMIT(z)f +A
i
mΓ−v on Σ▷

(2.65)

Proof. We rst note that Ξ±
M (z) = P±ΞM (z)P±. Thus, the rst statement follows immediately from

Proposition 2.5.3 . Now, let f ∈ L2(Ωi)
4, and suppose that v ∈ H 1(R3)4 solves (Dm+Mβ1Ωe − z)v =

eΩi
f . Thus (Dm − z)rΩi

v = f in Ωi, and if we set

φ = P−tΣv and ψ = P+tΣv,

then, from (2.64) we easily get

φ = Ξ
−
M (z)A e

m+MΓ+RMIT(z)f and ψ = Γ+RMIT(z)f +A
i
mφ,

which means that rΩi
v satises (2.65), and this completes the proof of the corollary. ■

Remark 2.5.2. Notice that from (2.64) and Corollary 2.5.4 we have that


Γ+rΩi

RM (z)f
Γ−rΩeRM (z)f


=


Ξ
+
M (z) 0
0 Ξ

−
M (z)

 
I4 A i

m

A e
m+M I4

 
Γ+RMIT(z)rΩi

f

Γ− RM (z)rΩef


▷

With this observation, we remark that the resolvent formula (2.59) can also be written in the following
matrix form


rΩi

RM (z)
rΩeRM (z)


=


RMIT(z)rΩi

RM (z)rΩe


+


EΩi

m (z)Ξ−
M (z)A e

m+M EΩi
m (z)Ξ−

M (z)

EΩe

m+M (z)Ξ+
M (z) EΩe

m+M (z)Ξ+
M (z)A i

m

 
Γ+RMIT(z)rΩi

Γ− RM (z)rΩe


▷
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An inspection of the proof of Theorem 2.5.2 shows that, for anyM > 0, z ∈ ρ(HMIT(m)) ∩ ρ(HM )
and f ∈ L2(R3)4, one has

Γ RMIT(z)f = ΨM (z)ΓRM (z)f▷ (2.66)

When f runs through the whole space L2(R3)4, then the values of Γ RMIT(z)f and ΓRM (z)f cover
the whole space H 1◁2(Σ)4, which means that Rn(ΨM (z)) = H 1◁2(Σ)4. Hence, if one proves that
Kr(ΨM (z)) = {0}, then ΨM (z) would be boundedly invertible in H 1◁2(Σ)4, and thus (2.59) holds
without restriction on M > 0. The following theorem provides a Birman-Schwinger-type principle
relating Kr(HM − z) with Kr(ΨM (z)) and allows us to recover the resolvent formula (2.59) for any
M > 0.

Theorem 2.5.5. Let M > 0 and let ΨM be as in Theorem 2.5.2. Then, the following hold:
(i) For any a ∈ (−(m+M),m+M)∩ ρ(HMIT(m)) we have a ∈ Spp(HM )⇔ 0 ∈ Spp(ΨM (a)),

and it holds that

Kr(HM − a) = {EM (a)g : g ∈ Kr(ΨM (a))}▷

In particular, dimKr(HM − a) = dimKr(ΨM (a)) holds for all a ∈ (−(m + M),m + M) ∩
ρ(HMIT(m)).

(ii) The operator ΨM (z) is boundedly invertible in H 1◁2(Σ)4 for all z ∈ ρ(HMIT(m)) ∩ ρ(HM ),
and the following resolvent formula holds:

RM (z) = RMIT(z) + EM (z)Ψ−1
M (z)Γ RMIT(z)▷ (2.67)

Proof. (i) Let us rst prove the implication (=⇒). Let a ∈ (−(m + M),m + M) ∩ ρ(HMIT(m)) be
such that (HM − a)φ = 0 for some 0 ̸= φ ∈ H 1(R3)4. Set φ+ = φ|Ωi

and φ− = φ|Ωe
. Then, it is

clear that φ+ solves the system (2.57) for z = a with g = Γ−φ, and φ− solves the system (2.58) with
h = Γ+φ. Thus, φ+ = EΩi

m (a)Γ−φ and φ− = EΩe

m+M (a)Γ+φ. Hence, φ = EM (a)tΣφ and Γ±φ ̸= 0,
as otherwise φ would be zero. Using this and the denition of the Poincaré-Steklov operators, we obtain
that

(I4 +A
i
m)Γ−φ =: tΣφ+ = tΣφ = tΣφ− := (I4 +A

e
m+M )Γ+φ,

and since tΣφ ̸= 0 it follows that

ΨM (a)tΣφ = (I4 −A
i
m −A

e
m+M )tΣφ = 0,

which means that 0 ∈ Spp(ΨM (a)) and proves the inclusion Kr(HM − a) ⊂ {EM (a)g : g ∈
Kr(ΨM (a))}.

Now, we turn to the proof of the implication (⇐=). Let a ∈ (−(m +M),m +M) ∩ ρ(HMIT(m))
and assume that 0 is an eigenvalue of ΨM (a). Then, there is g ∈ H 1◁2(Σ)4 \ {0} such thatΨM (a)g = 0
on Σ. Note that this is equivalent to

(P− +A
i
m)g = (P+ +A

e
m+M )g▷ (2.68)

Since a ∈ (−(m+M),m+M) ∩ ρ(HMIT(m)), the operators EΩi
m (a) : P−H 1◁2(Σ)4 → H 1(Ωi)

4 and
EΩe

m+M (a) : P+H
1◁2(Σ)4 → H 1(Ωe)

4 are well-dened and bounded. Thus, if we let φ = EM (a)g =
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(EΩi
m (a)P−g, E

Ωe

m+M (a)P+g), then φ ̸= 0 and we have that (Dm − a)φ = 0 in Ωi, and that (Dm+M −
a)φ = 0 in Ωe. Hence, it remains to show that φ ∈ H 1(R3)4. For this, observe that by (2.68) we have

tΣE
Ωi
m (a)P−g = (P− +A

i
m)g = (P+ +A

e
m+M )g = tΣE

Ωe

m+M (a)P+g▷

Thanks to the boundedness properties of EΩi
m (a) and EΩe

m+M (a), it follows from the above computations
thatφ = EM (a)g ∈ H 1(R3)4\{0} and satises the equation (HM−a)φ = 0. Therefore, a ∈ Spp(HM )
and the inclusion {EM (a)g : g ∈ Kr(ΨM (a))} ⊂ Kr(HM − a) holds, which completes the proof of (i).

(ii): Let z ∈ ρ(HMIT(m))∩ ρ(HM ) and note that the self-adjointness ofHM together with assertion
(i) imply that Kr(ΨM (z)) = {0}, as otherwise Kr(HM − z) ̸= {0}. Since Rn(ΨM (z)) = H 1◁2(Σ)4

holds for all z ∈ ρ(HMIT(m))∩ρ(HM ), it follows thatΨM (z) admits a bounded and everywhere dened
inverse in H 1◁2(Σ)4. Therefore, (2.66) yields that ΓRM (z) = Ψ

−1
M (z)Γ RMIT(z), and the resolvent

formula (2.67) follows from this and (2.63). ■

Remark 2.5.3. Note the dierent nature of Theorems 2.5.2 and 2.5.5, since the second one ensures the
invertibility ofΨM and yields the resolvent formula (2.67)without assumption, while the rst one is based
on a largeness assumption that allows us (thanks to the semiclassical properties of the PS operators) to
obtain the explicit formula of the operator (ΨM )−1. Besides, note that in Theorem 2.5.5 we do not know
a priori whether (ΨM )−1 is uniformly bounded when M is large, and hence (2.67) is not suitable for
studying the large coupling convergence.

In the next proposition we prove the norm convergence of RM (z) toward RMIT(z) and estimate the
rate of convergence.

Proposition 2.5.6. For any compact set K ⊂ ρ(HMIT(m)) there is M0 > 0 such that for all M > M0:
K ⊂ ρ(HM ), and for all z ∈ K the resolvent RM admits an asymptotic expansion in L(L2(R3)4) of the
form:

RM (z) = eΩi
RMIT(z)rΩi

+
1

M
(KM (z) + LM (z)) , (2.69)

where KM (z), LM (z) : L2(R3)4 −→ L2(R3)4 are uniformly bounded with respect to M and satisfy

rΩi
LM (z)eΩi

= 0 = rΩeKM (z)eΩe ▷

In particular, it holds that

||RM (z)− eΩi
RMIT(z)rΩi

||
L2(R3)4→L2(R3)4 = O


1

M


▷ (2.70)

Before giving the proof, we need the following estimates.

Lemma 2.5.7. Let K ⊂ C be a compact set. Then, there is M0 > 0 such that for all M > M0:
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K ⊂ ρ( HM ) and for every z ∈ K the following estimates hold:


 RM (z)f



L2(Ωe)4

+
1√
M


Γ− RM (z)f



L2(Σ)4

≲
1

M
||f ||

L2(Ωe)4
, ∀f ∈ L2(Ωe)

4,


Γ− RM (z)f



H−1◁2(Σ)4

≲
1

M
||f ||

L2(Ωe)4
, ∀f ∈ L2(Ωe)

4,


EΩe

m+M (z)ψ


L2(Ωe)4

≲
1√
M

||ψ||
L2(Σ)4 , ∀ψ ∈ P+L

2(Σ)4,


EΩe

m+M (z)ψ


L2(Ωe)4

≲
1

M
||ψ||

H1◁2(Σ)4 , ∀ψ ∈ P+H
1◁2(Σ)4▷

Proof. Fix a compact set K ⊂ C, and note that for M1 > supz∈K{|Re(z)| − m} it holds that
K ⊂ ρ(Dm+M1), and hence K ⊂ ρ( HM ) for all M > M1.

We next show the claimed estimates for RM (z) and Γ− RM (z). For this, let z ∈ K and assume that
M > M1. Let φ ∈ Dom( HM ), then a straightforward application of the Green’s formula yields that

∥ HMφ∥2
L2(Ωe)4

=∥(α ·∇)φ∥2
L2(Ωe)4

+ (m+M)2 ||φ||2
L2(Ωe)4

+ (m+M) ||P−tΣφ||
2
L2(Σ)4 ▷

Using this and the Cauchy-Schwarz inequality we obtain that

∥( HM − z)φ∥2
L2(Ωe)4

=∥ HMφ∥2
L2(Ωe)4

+ |z|2∥φ∥2
L2(Ωe)4

− 2Re(z)⟨ HMφ,φ⟩L2(Ωe)4

⩾∥ HMφ∥2
L2(Ωe)4

+ |z|2∥φ∥2
L2(Ωe)4

− 1

2
∥ HMφ∥2

L2(Ωe)4
− 2|Re(z)|2∥φ∥2

L2(Ωe)4

⩾


(m+M)2

2
+ |Im(z)|2 − |Re(z)|2


||φ||2

L2(Ωe)4
+

M

2
||P−tΣφ||

2
L2(Σ)4 ▷

Therefore, taking RM (z)f = φ and M ⩾ M2 ⩾ supz∈K{

|Re(z)|2 − |Im(z)|2 −m} we obtain the

inequality


 RM (z)f



L2(Ωe)4

+
1√
M


Γ− RM (z)f



L2(Σ)4

≲
1

M
||f ||

L2(Ωe)4
▷

Since Γ− is bounded from L2(Ωe)
4 into H−1◁2(Σ)4, it follows from the above inequality that


Γ− RM (z)f



H−1◁2(Σ)4

≲ ||Γ−||L2(Ωe)4→H−1◁2(Σ)4


 RM (z)f



L2(Ωe)4

≲
1

M
||f ||

L2(Ωe)4
,

for any f ∈ L2(Ωe)
4, which gives the second inequality.

Let us now turn to the proof of the claimed estimates for EΩe

m+M (z). Let ψ ∈ P+L
2(Σ)4, then from

the proof of Proposition 2.3.2 we have

||ψ||2
L2(Σ)4 ⩾ (m+M)


EΩe

m+M (z)ψ


2

L2(Ωe)4
− 2|Re(z)|


EΩe

m+M (z)ψ


2

L2(Ωe)4
▷

Thus, for any M ⩾ M3 ⩾ supz∈K{4|Re(z)|−m}, we get that

M

EΩe

m+M (z)ψ


2

L2(Ωe)4
⩽ 2 ||ψ||2

L2(Σ)4 ,
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and this proves the rst estimate for EΩe

m+M (z). Finally, the last inequality is a consequence of the rst

one and Proposition 2.3.2. Indeed, from Proposition 2.3.2 (ii) we know that βΓ− RM (z) is the adjoint of
the operator EΩe

m+M (z) : P+H
1◁2(Σ)4 −→ L2(Ωe)

4. Using this and the estimate fullled by Γ− RM (z)
we obtain that

⟨f, EΩe

m+M (z)ψ⟩L2(Ωe)4

 =
⟨Γ− RM (z)f,βψ⟩

H−1◁2(Σ)4,H1◁2(Σ)4



⩽

Γ− RM (z)f



H−1◁2(Σ)4

||ψ||
H1◁2(Σ)4

≲
1

M
||f ||

L2(Ωe)4
||ψ||

H1◁2(Σ)4 ▷

Since this is true for all f ∈ L2(Ωe)
4, by duality arguments it follows that


EΩe

m+M (z)ψ


L2(Ωe)4

≲
1

M
||ψ||

H1◁2(Σ)4 , ∀ψ ∈ P+H
1◁2(Σ)4,

which proves the last inequality. Hence, the lemma follows by taking M0 = max{M1,M2,M3}. ■

Proof of Proposition 2.5.6. We rst show (2.70) for some M ′
0 > 0 and any z ∈ C \ R. So, let us x

such a z and let f ∈ L2(R3)4. Then, it is clear that z ∈ ρ(HMIT(m))∩ ρ(HM ), and from Theorem 2.5.2
and Remark 2.5.2 we know that there is M ′

0 > 0 such that for all M > M ′
0 it holds that

||(RM (z)− eΩi
RMIT(z)rΩi

)f ||
L2(R3)4 ⩽


EΩi

m (z)Ξ−
M (z)A e

m+MΓ+RMIT(z)rΩi
f


L2(Ωi)4

+

EΩi

m (z)Ξ−
M (z)Γ− RM (z)rΩef



L2(Ωi)4

+

EΩe

m+M (z)Ξ+
M (z)Γ+RMIT(z)rΩi

f


L2(Ωe)4

+

EΩe

m+M (z)Ξ+
M (z)A i

mΓ− RM (z)rΩef


L2(Ωe)4

+

 RM (z)rΩef



L2(Ωe)4

=: J1 + J2 + J3 + J4 + J5▷

From Lemma 2.5.7 we immediately get that J5 ≲ M−1 ||f ||. Next, notice that Γ+RMIT(z) : L
2(Ωi)

4 →
H 1◁2(Σ)4, A i

m : H 1◁2(Σ)4 → H 1◁2(Σ)4 and EΩi
m (z) : H−1◁2(Σ)4 → H(α,Ωi) ⊂ L2(Ωi)

4 (where
H(α,Ωi) is dened by (1.9)) are bounded operators and do not depend on M . Moreover, thanks to
Corollary 2.5.4 we know that for all s ∈ R there is C > 0 independent of M such that


Ξ±

M (z)


P±Hs(Σ)4→P±Hs(Σ)4

⩽ C▷

Using this and the above observation, for j ∈ {1, 2, 3, 4}, we can estimate Jk as follows

J1 ≲

EΩi

m (z)


P−H−1◁2(Σ)4→L2(Ωi)4

A e
m+M


H1◁2(Σ)4→H−1◁2(Σ)4

||Γ+RMIT(z)rΩi
f ||

H1◁2(Σ)4 ,

J2 ≲

EΩi

m (z)


H−1◁2(Σ)4→L2(Ωi)4


Γ− RM (z)rΩef



H−1◁2(Σ)4

,

J3 ≲

EΩe

m+M (z)


H1◁2(Σ)4→L2(Ωe)4

||Γ+RMIT(z)rΩi
f ||

H1◁2(Σ)4 ,

J4 ≲

EΩe

m+M (z)


L2(Σ)4→L2(Ωe)4


A i

m



L2(Σ)4→L2(Σ)4


Γ− RM (z)rΩef



L2(Σ)4

▷
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Therefore, Proposition 2.5.3-(ii) together with Lemma 2.5.7 yield that

Jk ≲
1

M
||f ||

L2(R3)4 , for any j ∈ {1, 2, 3, 4}▷

Thus, we obtain the estimate

||(RM (z)− eΩi
RMIT(z)rΩi

)f ||
L2(R3)4 ⩽

C

M
||f ||

L2(R3)4 ▷ (2.71)

Moreover, the asymptotic expansion (2.69) holds with

LM (z) =M(eΩe
RM (z)rΩe + eΩi

EΩi
m (z)Ξ−

M (z)A e
m+MΓ+RMIT(z)rΩi

+ eΩeE
Ωe

m+M (z)Ξ+
M (z)A i

mΓ− RM (z)rΩe),

and

KM (z) = M

eΩi

EΩi
m (z)Ξ−

M (z)Γ− RM (z)rΩe + eΩeE
Ωe

m+M (z)Ξ+
M (z)Γ+RMIT(z)rΩi


,

and we clearly see that rΩi
KM (z)eΩi

= 0 = rΩeKM (z)eΩe .

Finally, since (2.71) holds true for every z ∈ C \R, for any xed compact subsetK ⊂ ρ(HMIT(m)),
one can show by arguments similar to those in the proof of [BCLTS19, LemmaA.1] that there isM0 > M ′

0

such that K ⊂ ρ(HM ). Therefore, the proposition follows with the same arguments as before. ■

2.5.1 Comments and further remarks at the end of this chapter

In this part we discuss possible generalizations of our results and comment on the usefulness of the
pseudodierential properties of the Poincaré-Steklov operators.

(1) First note that all the results in this article which are proved without the use of the (semi)
classical properties of the Poincaré-Steklov operator are valid when Σ is just C 1,ω-smooth with
ω ∈ (1◁2, 1), and can also be generalized without diculty to the case of local deformation
of the plane R2 × {0} (see [Ben22b] where the self-adjointness of HMIT(m) and the regularity
properties of ΦΩ

z,m, Cz,m and Λz
m were shown for this case). We mention, however, that in the

latter case the spectrum of the MIT bag operator is equal to that of the free Dirac operator, cf.
[Ben22b, Theorem 4.1].

(2) It should also be noted that there are several boundary conditions that lead to self-adjoint re-
alizations of the Dirac operator on domains (see, e.g., [AMSPV23, BHM20, Ben22a]) and for
which the associated PS operators can be analyzed in a similar way as for the MIT bag model. In
particular, one can consider the PS operatorBm(z) associated with the self-adjoint Dirac operator

HMIT (m)v = Dmv, ∀v ∈ Dom( HMIT (m)) :=

v ∈ H 1(Ωi)

4 : P+tΣv = 0 on Σ


▷

According to the previous considerations, this operator can be viewed as an analogue of the
Neumann-to-Dirichlet map for the Dirac operator. Moreover, the same arguments as in the proof
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of Theorem 2.3.3 show that

Bm(z) =
1√
−∆Σ

S · (∇Σ ∧ n)P+ modOpS−1(Σ) =
DΣ√
−∆Σ

P+ modOpS−1(Σ),

for all z ∈ ρ(Dm) ∩ ρ( HMIT (m)).

(3) As alreadymentioned in the introduction, in [BCLTS19] it was shown that (in the two-dimensional
massless case) the norm resolvent convergence ofHM toHMIT(m) holds with a convergence rate
of M−1◁2. Their proof is based on two main ingredients: The rst is a resolvent identity (see
[BCLTS19, Lemma 2.2] for the exact formula), and the second is the following inequality

||Γ−RM (z)f ||
L2(Σ)4 ≲

1√
M

||f ||
L2(R3)4 , (2.72)

which is a consequence of the lower bound

||∇ψ||2
L2(Ωe)4

+M2 ||ψ||2
L2(Ωe)4

⩾ (M − C) ||tΣψ||
2
L2(Σ)4 ,

which holds for all ψ ∈ H 1(R3)4 andM large enough (see [SV19, Lemma 4] for the proof in the
2D-case and [ALTMR19, Proposition 2.1 (i)] for the 3D-case). Note that the resolvent formula
(2.63) together with (2.72) yield the same result. Indeed, from (2.62) and (2.72) we easily get the
inequality

||Γ+RM (z)f ||
L2(Σ)4 ≲ ||f ||

L2(R3)4 ▷

This together with (2.63) and Lemma 2.5.7 yield

||(RM (z)− eΩi
RMIT(z)rΩi

)f ||L2(R3)4 ⩽

EΩi

m (z)Γ−rΩeRM (z)f


L2(Ωi)4

+

 RM (z)rΩef



L2(Ωe)4

+

EΩe

m+M (z)Γ+rΩi
RM (z)f



L2(Ωe)4

≲
1√
M

||f ||
L2(R3)4 ▷

(4) Finally, let us point out that a rst order asymptotic expansion of the eigenvalues ofHM in terms
of the eigenvalues of HMIT(m) was established in [ALTMR19] when M → ∞. In their proof
the authors used the min-max characterization and optimization techniques. Note that it is also
possible to obtain such a result using the properties of the PS operator, the Krein formula from
Theorem 2.5.2 and the nite-dimensional perturbation theory (cf. Kato [Kat66] for example),
see, e.g., [Ben19, BC02] for similar arguments.

Note also that the asymptotic expansion of the eigenvalues of HM depends only on the term
EΩi

m (z)Ξ−
M (z)A e

m+MΓ+RMIT(z)rΩi
. Indeed, let λMIT be an eigenvalue of HMIT(m) with

multiplicity l, and let (f1, · · · , fl) be an L2(Ωi)
4-orthonormal basis ofKr(HMIT(m)−λMIT I4).
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Then, using the explicit resolvent formula from Remark 2.5.2 we see that

⟨RM (z)eΩi
fk, eΩi

fj⟩L2(R3)4 = ⟨EΩi
m (z)Ξ−

M (z)A e
m+MΓ+RMIT(z)fk, fj⟩L2(Ωi)4

= ⟨Ξ−
M (z)A e

m+MΓ+RMIT(z)fk,−βΓ+RMIT(z)fj⟩L2(Σ)4

=
1

(z − λMIT )2
⟨Ξ−

M (z)A e
m+MΓ+fk,−βΓ+fj⟩L2(Σ)4 ,

which means that EΩi
m (z)Ξ−

M (z)A e
m+MΓ+RMIT(z)rΩi

is the only term that intervenes in the
asymptotic expansion of the eigenvalues of HM . Besides, recall that the principal symbol of
Ξ
−
M (z)A e

m+M is given by

qM (x, ξ) = − S · (ξ ∧ n(x))P+
|ξ ∧ n(x)|2 + (m+M)2 + |ξ ∧ n(x)|+ (m+M)

,

and for M > 0 large enough one has

qM (x, ξ) = − 1

2M
S · (ξ ∧ n(x))P+

∞

l=1

1

M l+1
pl(x, ξ)P+, pl ∈ S−l▷

Using this, we formally deduce that for suciently large M , HM has exactly l eigenval-
ues (λM

k )1⩽k⩽l counted according to their multiplicities (in B(λMIT , η) with B(λMIT , η) ∩
Sp(HMIT(m)) = {λMIT }) and these eigenvalues admit an asymptotic expansion of the form

λM
k = λMIT +

1

M
µk +

N

j=2

1

M j
µ
j
k + O


M−(N+1)


▷ (2.73)

where (µk)1⩽k⩽l are the eigenvalues of the matrix M with coecients:

mkj =
1

2
⟨βOp(S · (ξ ∧ n(x)))Γ+fk,Γ+fj⟩L2(Σ)4 ▷

⋆ ⋆ ⋆ ⋆ ⋆ ⋆
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2.6 Appendix A: Dirac algebra and applications

In this appendix, we recall the anticommutation relations of Dirac matrices and give formulas used
in the current manuscript. Let us consider the 4 × 4-Hermitian Dirac matrices αj , j = 1, 2, 3, and β,
whose possible representation is given at the beginning of this thesis, see (1.4).

Recall the denition of the spin angular momentum S and the matrix γ5 (see (2.6)), and note that by
(1.3) we have S = (iα2α3, −iα1α3, iα1α2).

Using the anticommutation relations (1.3) we easily get the following identities, for all X, Y ∈ R
3,

i(α ·X)(α · Y ) = iX · Y + S · (X ∧ Y ), [γ5,α ·X] = 0,

{S ·X,α · Y } = −2(X · Y )γ5, [S ·X, β] = 0▷
(2.74)

Let us now give some relations we have used for n a normal vector eld to a smooth domain Ω ⊂ R
3,

and for τ , a tangent vector, in particular for τ = n ∧ ξ, where ξ is a Fourier variable.

Lemma 2.6.1. Let n ∈ R
3 and let τ ∈ R

3 such that τ ⊥ n. Then the following identity holds:

(S · τ + i(α · n)β)2 =

|τ |2 + |n|2


I4▷

Proof. Using the relations (1.3) and (2.74) we get

(S · τ)2 = γ5(α · τ)γ5(α · τ) = (γ5)
2(α · τ)2 = |τ |2I4▷

Then we have

(S · τ + i(α · n)β)2 = |τ |2I4− ((α · n)β)2+ i {S · τ, (α · n)β} = (|τ |2+ |n|2)I4+ i {S · τ, (α · n)β} ,

and since τ · n = 0, by (2.74) we obtain

{S · τ, (α · n)β} = {S · τ,α · n} β + α · n[S · τ,β] = 0,

and the conclusion follows. ■

Proposition 2.6.2. Given n ∈ R
3 such that |n| = 1, let ξ ∈ R

3, and dene the matrix-valued function

l0(n, ξ) = i(α · n)

α · ξ + β


▷

Then l0(n, ξ) has two eigenvalues given by

ρ±(n, ξ) := i n · ξ ± λ(n, ξ), with λ(n, ξ) =

|n ∧ ξ|2 + 1▷

The associated eigenprojections (onto Kr(l0(n, ξ)− ρ±(n, ξ)I4)) are given by

Π±(n, ξ) :=
1

2


I4 ±

S · (n ∧ ξ) + i(α · n)β

λ(n, ξ)


▷
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Proof. By applying (2.74) for (X,Y ) = (n, ξ), we get

l0(n, ξ) = i n · ξ I4 + S · (n ∧ ξ) + i(α · n)β▷

Thanks to Lemma 2.6.1, the Hermitian matrix h(n, ξ) := S · (n ∧ ξ) + i(α · n)β satises:

h(n, ξ)2 = (|n ∧ ξ|2 + 1)I4 = λ(n, ξ)2I4▷

Therefore, h(n, ξ) has the eigenvalues ±λ(n, ξ) and the associated eigenprojections are given by

Π±(n, ξ) =
1

2


I4 ±

h(n, ξ)

λ(n, ξ)


,

which proves the claimed results since l0(n, ξ) = i n · ξ I4 + h(n, ξ). ■

Lemma 2.6.3. Given n ∈ R
3 such that |n| = 1, let P± = Π±(n, 0) = 1

2


I4 ± i(α · n)β


be the

eigenprojections onto Kr(i(α · n)β ∓ I4). The following properties hold true.
(i) For any τ ∈ R

3 such that τ ⊥ n, we have

P±(S · τ) = (S · τ)P∓ , P±(α · n) = (α · n)P∓ and P±β = βP∓▷

(ii) For any ξ ∈ R
3, the projections Π±(n, ξ) dened in Proposition 2.6.2 satisfy

P±Π± P± = k+P± , P∓Π± P∓ = k−P± and P±Π∓ P∓ = ∓ΘP∓, (2.75)

with

k±(n, ξ) =
1

2


1±

1

λ(n, ξ)


, Θ(n, ξ) =

1

2λ(n, ξ)
S · (n ∧ ξ)▷ (2.76)

Proof. The relations of (i) follow from (2.74). For the proof of (ii), let us write Π±(n, ξ) as

Π±(n, ξ) = P± ±
1

2λ(x, ξ)
S · (n ∧ ξ)P∓ ±

i

2
(α · n)β


1

λ(n, ξ)
− 1


▷

Then, using item (i) if this lemma (with τ = n ∧ ξ) and the fact that P± i(α · n)β = ±P±, we get

P±Π± = P± ±
1

2λ
S · (n ∧ ξ)P∓ +

1

2


1

λ
− 1


P± = k+P± ±ΘP∓,

P∓Π± = ±
1

2λ
S · (n ∧ ξ)P± −

1

2


1

λ
− 1


P∓ = k−P∓ ±ΘP±,

with k± and Θ as in (2.76). Hence, (2.75) directly follows from the above formulas and the fact that P±

are orthogonal projections. ■

2.7 Appendix B: Poincaré-Steklov operators in half-space

This appendix focuses on the examination of the Poincaré-Steklov operators introduced in this chapter,
where we simplify the perturbation domain of the Dirac operator. On a smooth bar C∞ of innite size
dividing space into two parts Ω− and Ω+, we consider the perturbation of the Dirac operator with a
potential that aects the lower zone of the bar, HM = Dm +Mβ1Ω−

. The simplicity of the domain in
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this problem allows us to derive an explicit form of the Poincaré-Steklov operators and their symbolic
formulas. Moreover, Poincaré-Steklov operators are simply zeroth-order Fourier multipliers. Let N be
the outward unit normal with respect to Ω+.

Figure 2.2 – Half-plane domain

Proposition 2.7.1. Let the projection operators given by

Π
•
±(ξ) :=

1

2


I4 ±

d•(ξ)

λ•(ξ)


, with • = m or κ := (m+M)▷ (2.77)

Let ϕ ∈ P−H1◁2(Σ)4 and ψ ∈ P+H
1◁2(Σ)4▷ We consider the system (2.57) resp. (2.58). Then, the

solution of this system is respectively given by:





v̂ (ξ1, ξ2, x3) = e−λm(ξ)x3 Πm
− (ξ)


I4 +

iα3(α · ξ − z)

λm(ξ) +m


ϕ̂(ξ1, ξ2) in Ω+ (i▷e▷, x3 > 0),

û (ξ1, ξ2, x3) = eλκ(ξ)x3 Πκ
+(ξ)


I4 −

iα3(α · ξ − z)

λκ(ξ) + κ


ψ̂(ξ1, ξ2) in Ω− (i▷e▷, x3 < 0),

(2.78)

where d•(ξ) = −iα3(α · ξ + •β − z) and λ•(ξ) =

|ξ|2 + •2 − z2, with α · ξ = α1ξ1 + α2ξ2.

Proof. We consider the system


(Dm − z)v (x1, x2, x3) = 0, in Ω+,

P−tΣv (x1, x2, x3) = ϕ, on Σ,
(2.79)


(Dκ − z)u (x1, x2, x3) = 0, in Ω−,

P+tΣu (x1, x2, x3) = ψ, on Σ▷
(2.80)

Recall that, the unique solution of the boundary value problem (2.79) resp. (2.80) is v = E
Ω+
m ϕ resp.

u = E
Ω−
κ ψ, bounded from P−H1◁2(Σ)4 resp. P+H

1◁2(Σ)4 into H1(Ω+)
4 resp. H1(Ω−)4.

By Fourier, F(x1,x2)−→(ξ1,ξ2) we get
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∂x3 û (ξ1, ξ2, x3) = −iα3(α · ξ + κβ − z)û (ξ1, ξ2, x3) , in Ω−,

∂x3 v̂ (ξ1, ξ2, x3) = −iα3(α · ξ +mβ − z)v̂ (ξ1, ξ2, x3) , in Ω+,

P+û (ξ1, ξ2, 0) = ψ̂(ξ1, ξ2), on Σ,

P−v̂ (ξ1, ξ2, 0) = ϕ̂(ξ1, ξ2), on Σ,

(2.81)

Then, the solution of the system (2.81) is the following:




û (ξ1, ξ2, x3) = edκ(ξ)x3 û (ξ1, ξ2, 0) , in Ω−,

v̂ (ξ1, ξ2, x3) = edm(ξ)x3 v̂ (ξ1, ξ2, 0) , in Ω+

P+û (ξ1, ξ2, 0) = ψ̂(ξ1, ξ2), on Σ,

P−v̂ (ξ1, ξ2, 0) = ϕ̂(ξ1, ξ2), on Σ▷

(2.82)

Now, we can write ed•(ξ)x3 by

ed•(ξ)x3 = eλ•(ξ)x3Π
•
+(ξ) + e−λ•(ξ)x3Π

•
−(ξ),

thus, we obtain the following





û (ξ1, ξ2, x3) =

eλ(ξ)x3Πκ

+(ξ) + e−λκ(ξ)x3Πκ
−(ξ)


(P+ + P−)û (ξ1, ξ2, 0) , in Ω−,

v̂ (ξ1, ξ2, x3) =

eλm(ξ)x3Πm

+ (ξ) + e−λm(ξ)x3Πm
− (ξ)


(P+ + P−)v̂ (ξ1, ξ2, 0) , in Ω+,

P+û (ξ1, ξ2, 0) = ψ̂(ξ1, ξ2), on Σ,

P−v̂ (ξ1, ξ2, 0) = ϕ̂(ξ1, ξ2), on Σ▷

(2.83)

Now, calculate the expression of P+v̂ (ξ1, ξ2, 0) and P−û (ξ1, ξ2, 0).

In Ω−, e−λκ(ξ)x3 ◁∈ L2({x3 < 0}),

⇒ Π
κ
−(ξ)û (ξ1, ξ2, 0) = 0⇔ Π

κ
+(ξ)v̂ (ξ1, ξ2, 0) = û (ξ1, ξ2, 0)

⇔ P−û (ξ1, ξ2, 0)− P−Π
κ
+P−û (ξ1, ξ2, 0) = P−Π

κ
+P+ψ̂(ξ1, ξ2)▷

(2.84)

In Ω+, eλm(ξ)x3 ◁∈ L2({x3 > 0}),

⇒ Π
m
+ (ξ)v̂ (ξ1, ξ2, 0) = 0⇔ Π

m
− (ξ)v̂ (ξ1, ξ2, 0) = v̂ (ξ1, ξ2, 0)

⇔ P+v̂ (ξ1, ξ2, 0)− P+Π
m
−P+v̂ (ξ1, ξ2, 0) = P+Π

m
−P−ϕ̂(ξ1, ξ2)▷

(2.85)

Using Lemma 2.6.3-(ii), we express (2.84) and (2.85) in terms of P+Π
m
− (ξ) and P−Πκ

+(ξ) as follows:

From (2.84), we get

P−û (ξ1, ξ2, 0) = −
iα3(α · ξ − z)

λκ(ξ) + κ
ψ̂(ξ1, ξ2)▷

From (2.85), we get

P+v̂ (ξ1, ξ2, 0) =
iα3(α · ξ − z)

λm(ξ) +m
ϕ̂(ξ1, ξ2)▷
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Combining the above formulas with system (2.83), we deduce that





v̂ (ξ1, ξ2, x3) = e−λm(ξ)x3Πm
− (ξ)


I4 +

iα3(α · ξ − z)

λm(ξ) +m


ϕ̂(ξ1, ξ2), in Ω+,

û (ξ1, ξ2, x3) = eλκ(ξ)x3Πκ
+(ξ)


I4 −

iα3(α · ξ − z)

λκ(ξ) + κ


ψ̂(ξ1, ξ2), in Ω−▷

(2.86)

■

Theorem 2.7.2. We denote by Am resp. Aκ the Poincaré-Steklov operators associated with (2.79) resp.
(2.80). Then, we can write the operator Am resp. Aκ (in which am(ξ) resp. aκ(ξ) is the symbols of Am

resp. Aκ) as the following

AmP−ϕ = F
−1


P+

iα3(α · ξ − z)

λm(ξ) +m
P−



  
am(ξ)

Fϕ,
(2.87)

and

AκP+ψ = F
−1


P−
−iα3(α · ξ − z)

λκ(ξ) + κ
P+



  
aκ(ξ)

Fψ▷
(2.88)

Proof. Recall that, for all z ∈ ρ(Dm), we have the following explicit formula for Am(z) and Aκ(z):

Am = P+tΣE
Ω+
m (z)P− = −P+β (Λz

m)−1 P−,

Aκ = P−tΣE
Ω−
κ (z)P+ = −P−β (Λz

κ)
−1 P+,

Now, we consider the system (2.79) resp. (2.80), we get

AmP−ϕ = P+v⇂(x3=0)
⇔ F (Amϕ) =


P+

iα3(α · ξ − z)

λm(ξ) +m
P−


Fϕ,

⇒ Amϕ = F
−1


P+

iα3(α · ξ − z)

λm(ξ) +m
P−


Fϕ▷

Aκψ = P−u⇂(x3=0)
⇔ F (Aκψ) =


P−
−iα3(α · ξ − z)

λ(ξ) + κ
P+


Fψ▷

⇒ Aκψ = F
−1


P−
−iα3(α · ξ − z)

λ(ξ) + κ
P+


Fψ,

■

Corollary 2.7.3. The operator ΨM (z) = (I − Am − Aκ) (associated with the current Appendix)
introduced in Theorem 2.5.2 is bounded invertible in H1◁2(Σ), and has the following inverse:

Ψ
−1
M (z) = (I4 −AmAκ −AκAm)−1 (I+Am +Aκ)
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= F
−1





I4 +

|ξ|2 − z2

(λm(ξ) +m)(λκ(ξ) + κ)

−1 
I+

iα3P−(α · ξ − z)

λm(ξ) +m
− iα3P+(α · ξ − z)

λκ(ξ) + κ


F ▷

Consequently, the resolvent formula (2.59) becomes

RM (z) = RMIT(z) + EM (z)F−1


I4 +

|ξ|2 − z2

(λm(ξ) +m)(λκ(ξ) + κ)

−1

×


I+

iα3P−(α · ξ − z)

λm(ξ) +m
− iα3P+(α · ξ − z)

λκ(ξ) + κ


FΓ RMIT(z)▷

(2.89)

Proof. Firstly, we will calculate the symbols of AmAκ and AκAm. We have

AmAκ = F
−1amaκF , (2.90)

AκAm = F
−1aκamF , (2.91)

It is easy to check that, for am(ξ) resp. aκ(ξ) as in (2.87) resp. (2.88),





am(ξ)aκ(ξ) = − (|ξ|2 − z2)P+

(λm(ξ) +m)(λκ(ξ) + κ)
,

aκ(ξ)am(ξ) = − (|ξ|2 − z2)P−
(λm(ξ) +m)(λκ(ξ) + κ)

▷

Using the above quantities, we get that

Ψ
−1
M (z) = F

−1 (I4 − am(ξ)aκ(ξ)− aκ(ξ)am(ξ))−1 (I+ am(ξ) + aκ(ξ))

F ,

and then we get the explicit formula of resolvent (2.89). ■

Proposition 2.7.4. Let thePoincaré-Steklov operatorsA Ω+
m = Γ+E

Ω+
m (z)P− andA Ω−

κ = Γ−E
Ω−
κ (z)P+.

Then, we easily obtain that A Ω+
m and A

Ω−
κ are a Fourier multiplier with symbols

am(ξ) = − iα3(α · ξ − z)

λm +m
P− and aκ(ξ) =

iα3(α · ξ − z)

λκ + κ
P+▷
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Chapter 3

On the approximation of the Dirac operator coupled

with conning Lorentz scalar δ-shell interactions.

In this chapter, we present the results obtained in article [Zre84].

Abstract

LetΩ+ ⊂ R
3 be a xed bounded domain with boundaryΣ = ∂Ω+. We considerUε a tubular

neighborhood of the surfaceΣwith a thickness parameter ε > 0, and we dene the perturbed
Dirac operator Dε

M = Dm + Mβ1Uε , with Dm the free Dirac operator, M > 0, and 1Uε

the characteristic function of Uε. Then, in the norm resolvent sense, the Dirac operator Dε
M

converges to the Dirac operator coupled with Lorentz scalar δ-shell interactions as ε = M−1

tends to 0, with a convergence rate of O(M−1).

Résumé

Soit Ω+ ⊂ R
3 un domaine borné xe, et désignons sa frontière par Σ = ∂Ω+. Nous

considérons Uε comme un voisinage tubulaire de la surface Σ avec un paramètre d’épaisseur
ε > 0, et nous dénissons l’opérateur de Dirac perturbé Dε

M = Dm + Mβ1Uε , avec Dm

l’opérateur de Dirac libre, M > 0, et 1Uε la fonction caractéristique de Uε. Alors, au sens
de la norme de la résolvante, l’opérateur de Dirac Dε

M converge vers l’opérateur de Dirac
couplé aux interactions scalaires de Lorentz δ-shell lorsque ε = M−1 tend vers 0, avec un
taux de convergence de O(M−1).
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3.1 Introduction

The aim of this chapter is to approximate the Dirac operator coupled with a singular δ-interactions,
supported on a closed surface. More precisely, our main goal in this chapter is to approximate the Dirac
operator coupled with conning Lorentz scalar δ-shell interactions (i.e., when η = 0 and µ = ±2 in
(3.1)) by a perturbed Dirac operator Dε

M = Dm + Mβ1Uε , where M is a large mass supported on a
tubular neighborhood, Uε, with thickness ε > 0.

Let Ω+ be a bounded smooth domain in R
3, and Σ := ∂Ω+ for its boundary. For (η, µ) ∈ R

2, the
three-dimensional Dirac operator coupled with delta interactions is dened formally by

Dη,µ : f → Dmf + Vη,µδΣf := Dmf + (ηI4 + µβ)δΣf, (3.1)

where δΣ is the Dirac delta distribution supported onΣ, and the constant η (resp. µ) measures the strength
of the electrostatic (resp. Lorentz scalar) part of the interaction. In this case, the operator in (3.1) is
called by Dirac operator coupled with electrostatic and Lorentz scalar δ-shell interactions.

Denition 3.1.1. Let µ ∈ R \ {0}. The Dirac operator coupled with purely Lorentz scalar δ-shell
interaction of strength µ, is the operator D0,µ := Dm + VL (i.e., when η = 0 in (3.1)), acting in L2(R3)4

and dened on the following domain

Dom(D0,µ) := {φ = u+ Φ
z
m[g], u ∈ H1(R3)4, g ∈ L2(Σ)4, tΣu = −Λz

+,m[g] on Σ}, (3.2)

where

VL(φ) =
µβ

2
(φ+ + φ−)δΣ, with φ± = tΣu+ Cz

±,m[g]▷

Hence, D0,µ acts in the sense of distributions as D0,µ(φ) = Dmu, for all φ = u+Φz
m[g] ∈ Dom(D0,µ)▷

Consequently, we can identify D0,µ as

D0,µφ = D
Ω−

0,µφ− ⊕ D
Ω+

0,µφ+ = Dmφ− ⊕Dmφ+,

Dom(D0,µ) = {w± + Φ
z
m,±[g], w± ∈ H1(Ω±)

4, g ∈ L2(Σ)4,

P±(tΣw± + Cz
±,m[g]) = 0, with tΣw± = −Λz

±,m[g] on Σ},
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where Φz
m,±[g] : L

2(Σ)4 −→ L2(Ω±)
4 is the operator dened by Φz

m,±[g](x) = Φz
m|Ω±

[g](x), for
g ∈ L2(Σ)4 and x ∈ Ω±▷ Here Φz

m, Λz
m, and Cz

±,m are dened in Section 1.5.

Moreover, recall that D0,µ is self-adjoint operator on H1(R3)4 for all µ ∈ R (see, [AMV15, Section
5.1]), and for all z ∈ C \ R the following resolvent formula holds [Ben19, Proposition 4.1]

(D0,µ − z) = (Dm − z)−1 − Φ
z
m(Λz

+,m)−1tΣ(Dm − z)−1▷

Finally, we recall that the version of D0,µ for µ = ±2 is called by the conning version of the
Dirac operator coupled with Lorentz scalar δ-shell interactions. Throughout the current chapter, Ω+ is
a bounded smooth domain in R

3 with a compact smooth boundary Σ := ∂Ω+, and let n resp. dσ is
the outward unit normal to Ω+ resp. the surface measure on Σ. We shall work on the Hilbert space
L2(R3)4


resp. L2(Ωε

±)
4 withΩε

+ = Ω+∪Uε andΩε
− = R

3 \Ωε
+, where U

ε is an ε-neighborhood of the
surface Σ


with respect to the Lebesgue measure, and we will make use of the orthogonal decomposition

L2(R3)4 = L2(Ωε
−)

4 ⊕ L2(Ωε
+)

4. We denote by N ε the outward unit normal with respect to Ωε
−. More

precisely, for ε0 suciently small, we assume that Σ, Ωε
−, Σ

ε and Uε satised

Σ
ε := {x ∈ R

3, x = xΣ + εn(xΣ) : xΣ ∈ Σ},

Ω
ε
− = {x ∈ R

3, dist(x,Σ) > ε},

Uε := {x ∈ R
3, x = xΣ + t n(xΣ) : xΣ ∈ Σ and t ∈ (0, ε)}, with ε ∈ (0, ε0)▷

(3.3)

In other words, the Euclidean space is divided as follows: R3 = Ωε
− ∪ Σε ∪ Uε ∪ Σ ∪ Ω+▷

Figure 3.1 – Domain

Denition 3.1.2. [Transformation operator]. LetΣ,Σε ⊂ R
3 be as above. We dene the dieomorphism

p : Σ −→ Σε such that for all xΣ ∈ Σ, we get p(xΣ) := xΣ+εn(xΣ), ε ∈ (0, ε0)▷ Then for ε0 suciently
small, we dene the transformation operator as an unitary and invertible operator as follows

Tε : L
2(Σ)4 → L2(Σε)4,

ψ → Tε[ψ](x) =
1

det(1− εW (xΣ))
(ψ ◦ p−1)(x), x = p(xΣ),

(3.4)
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with W (xΣ) the Weingarten dened in Denition 1.5.2. Its inverse, T −1
ε , is given by

T −1
ε : L2(Σε)4 → L2(Σ)4,

φ → T −1
ε [φ](xΣ) = det(1− εW (xΣ))(φ ◦ p)(xΣ)▷

We consider perturbations of the free Dirac operator Dm in the whole space by a large mass M

term living in an ε-neighborhood Uε of Σ. The perturbed Dirac operator where interesting on is
Dε

M := Dm+Mβ1Uε , where 1Uε is the characteristic function of Uε and ε is the thickness of the tubular
region Uε▷ The results of this chapter are the following:

Proposition 3.1.3. We consider the conning version of the Dirac operator coupled with a purely Lorentz
scalar δ-shell interaction, denoted by DL := D0,+2. Then, for any z ∈ ρ(DL) and ε suciently small,
the following estimate holds:


eΩε

+−
R

Ωε
+−

MIT (z)rΩε
+−
−RL(z)



L2(R3)4→L2(R3)4

= O(ε), as ε→ 0, (3.5)

where R
Ωε

+−

MIT is the resolvent of the direct sum of both MIT bag operators, refer to D
Ωε

+−

MIT (m) and which
will be dened rigorously in Section 3.1.1, RL is the resolvent of the Dirac operator coupled with purely
Lorentz scalar δ-shell interactions, DL, and rΩε

+−
resp. eΩε

+−
is the restriction operator in Ωε

+− resp. its
adjoint operator, i.e., the extension by 0 outside of Ωε

+−.

Remark 3.1.1. We mention that the proof of Proposition 3.1.3 is not dicult to realize. Indeed, we
establish the above approximation by tracking the dependence on the thickness ε, when ε goes to 0.
However, what is important to achieve is the proof of the following proposition, for which studies and
estimates are required by tracking the dependence on the parameters ε andM , in order to establish such
a relationship between the parameters, and prove therefore the main result of Theorem 3.1.5.

Proposition 3.1.4. Let K ⊂ C \ R be a compact set. Then, there is M0 > 0 such that for all M > M0

and ε = M−1: K ⊂ ρ(Dε
M ) and for all z ∈ K, the following estimate holds on the whole space

Rε
M (z)− eΩε

+−
R

Ωε
+−

MIT (z)rΩε
+−


L2(R3)4→L2(R3)4

= O(M−1)▷

The latter proposition means that the Dirac operator Dε
M is approximated, in the norm resolvent

sense, by both MIT Dirac operators, acting in Ω+ and Ωε
− with a rate of O(M−1) when M tends to∞

and ε ∈ (0, ε0)▷

By combining Propositions 3.1.3, 3.1.4, we arrive at the following main result:

Theorem 3.1.5. Let z ∈ ρ(DL), then for M suciently large, z ∈ ρ(Dε
M ), and ε = M−1, the following

holds:

||Rε
M (z)−RL(z)||L2(R3)4 = O


M−1


▷

The methodology followed, as in the previous problem of

Chapter 2, Section 2.5


study the pseu-

dodierential properties of Poincaré-Steklov (PS) operators. The complexity in the current problem is
that these operators take a pair of functions with respect to ∂Uε := Σ ∪ Σε such that for all xΣ ∈ Σ,

we have Σε ∋ x = xΣ + εn(xΣ), where n is the unit normal to the surface Σ pointing outside Ω+ (see
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3.1. Introduction

Figure 3.1). However, this complication becomes trivial if we x the parameter ε, and consequently, the
results of this chapter become equivalent to those of Chapter 2.

The most important ingredient in proving Proposition 3.1.3 is the use of the Krein formula of the

resolvents of DL and both MIT bag operators, DΩ+

MIT and D
Ωε

−

MIT (see Section 3.3.2), acting in L2(Ω+)
4

and L2(Ωε
−)

4, respectively. Then, in Proposition 3.4.1, we establish that the convergence (D
Ωε

−

MIT − z)−1

toward (D
Ω−

MIT − z)−1 holds for any non-real z, when ε goes to 0, and we then obtain, in the norm

resolvent sense, the convergence of D
Ωε

+−

MIT := D
Ω+

MIT ⊕D
Ωε

−

MIT to DL = D
Ω+

MIT ⊕D
Ω−

MIT.

The key point to establish the result of Proposition 3.1.4 is to treat the elliptic problem (Dε
M − z)U =

f ∈ L2(R3)4 as a transmission problem (where P±tΣU|Ω+
= P±tΣU|Uε and P ε

±tΣεU|Ωε
−

= P ε
±tΣεU|Uε

are the transmission conditions) and to use the semiclassical properties of the auxiliary operator Υε
M (z)

acting on the boundary ∂Uε = Σ∪Σε, which is constructed by the Poincaré-Steklov operators (see (3.57)
for the exact notation). Indeed, in Section 3.4, we show convergence of the Dirac operator, Dε

M , to both

MIT bag operators, DΩ+

MIT and D
Ωε

−

MIT, with a convergence rate of O(M−1) for M = ε−1 suciently
large. Consequently, using these ingredients, a kind of convergence can be established in Theorem 3.1.5
for ε = M−1.

Unlike the application in [Chapter 2, Theorem 2.5.2], we mention that in this problem the operator
Υε

M (which is constructed by the Poincaré-Steklov operators) takes a pair of functions with respect to
∂Uε.

We recall, P ε
± and P± are the orthogonal projections with respect to N ε and n, respectively, dened

by

P ε
± := (I4 ∓ iβα ·N ε)◁2 and P± := (I4 ∓ iβα · n)◁2▷ (3.6)

We end this part with the following remark on the projections P± and P ε
±:

Remark 3.1.2. We dene the dieomorphism p : Σ −→ Σε such that for all xΣ ∈ Σ, we get p(xΣ) :=
xΣ + εn(xΣ) = x. Then, we have

N ε(x) = −(n ◦ p−1)(x) = −n(xΣ),

with

P ε
±(x) =

1

2


I4 ∓ iβα ·N ε

+(x)

=

1

2
(I4 ± iβα · n(xΣ)) := P∓ ◦ p−1(x) = P∓(xΣ)▷

3.1.1 Denition and some properties of the MIT bag operator.

Recall the denition of the perturbed Dirac operator Dε
M := Dm + Mβ1Uε , where 1Uε is the

characteristic function of Uε. Then, we consider the MIT bag operator,DΩ+

MIT(m) andD
Ωε

−

MIT(m), acting
in Ω+ and Ωε

−, respectively, and dened on the following domains

D
Ω+

MIT(m)v+ = Dmv+, ∀v+ ∈ Dom(D
Ω+

MIT(m)) = {v+ ∈ H1(Ω+)
4, P−tΣv+ = 0 on Σ},
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D
Ωε

−

MIT(m)vε = Dmvε, ∀vε ∈ Dom(D
Ωε

−

MIT(m)) = {vε ∈ H1(Ωε
−)

4, P ε
−tΣεvε− = 0 on Σ

ε}▷

Then, let the MIT Dirac operator, D
Ωε

+−

MIT = D
Ω+

MIT ⊕D
Ωε

−

MIT, acts in Ωε
+− := Ω+ ∪ Ωε

−, and dened
on the following domain

Dom(D
Ωε

+−

MIT ) = {vε = (vε−, v+) ∈ H1(Ωε
−)

4 ⊕H1(Ω+)
4, P ε

−tΣεvε− = 0 = P−tΣv+},

withD
Ωε

+−

MIT vε = (D+ ⊕D−)vε ; D+ = D− = Dm for all vε ∈ Dom(D
Ωε

+−

MIT ), and where the boundary
condition holds in H1◁2(Σε)4 and H1◁2(Σ)4, respectively. Here P± and P ε

± are the projections given in
(3.6).

Finally, on Uε, we introduce the following Dirac auxiliary operator

DUε

MIT(m+M)uε = Dm+Muε,

uε ∈ dom

DUε

MIT(m+M)

= {uε ∈ H1(Uε)4, P ε

+tΣεuε = 0 = P+tΣu
ε on ∂Uε := Σ ∪ Σ

ε},

withDm+M = Dm +Mβ = −iα ·∇+ (m+M)β▷We note thatDUε

MIT is the MIT bag operator on Uε.

Theorem 3.1.6. The operators (DΩ+

MIT,Dom(D
Ω+

MIT))

resp. (D

Ωε
−

MIT,Dom(D
Ωε

−

MIT)) and

(DUε

MIT,Dom(DUε

MIT))

are self-adjoint and we have

(D
Ω+

MIT − z)−1 = rΩ+(Dm − z)−1eΩ+ − Φ
z
m,+(Λ

z
+,m)−1tΣ(Dm − z)−1eΩ+ , ∀z ∈ ρ(Dm)▷

Moreover, the following statements hold true:

(i) Sp(D
Ω+

MIT) = Spdisc(D
Ω+

MIT) ⊂ R \ [−m,m].

Similarly for DUε

MIT for (m+M) instead of m

.

(ii) Sp(D
Ωε

−

MIT) = Spess(D
Ωε

−

MIT) = (−∞,−m] ∪ [m,+∞). Moreover, if Ωε
− is connected then

Sp(D
Ωε

−

MIT) is purely continuous.

(iii) Let z ∈ ρ(D
Ωε

−

MIT) be such that 2|z| < (m+M), then for all f ∈ L2(Uε)4 it holds that

(DUε

MIT − z)−1f

L2(Uε)4

≲ M−1 ∥f∥
L2(Uε)4 ,

uniformly with respect to ε▷

Proof. The proof of this theorem follows the same arguments as the proof of

Chapter 2 , Theorem 2.2.1


,

where the estimates are valid uniformly with respect to ε. ■

Denition 3.1.7. Let z ∈ ρ(Dm) ∩ ρ(DUε

MIT)), g
ε ∈ P ε

−H
1◁2(Σε)4, g+ ∈ P−H 1◁2(Σ)4 and (hε, h+) ∈

P ε
+H

1◁2(Σε)4⊕P+H
1◁2(Σ)4. We denote by Em(z) : P−H 1◁2(Σ)4 → H 1(Ω+)4, respectively, Eε

m(z) :
P ε
−H

1◁2(Σε)4 → H 1(Ωε
−)

4 the unique solution of the boundary value problem:


(Dm − z)v+ = 0, in Ω+,

P−tΣv+ = g+, on Σ,
(3.7)


(Dm − z)vε− = 0, in Ω

ε
−,

P ε
−tΣε

−
vε− = gε, on Σ

ε▷
(3.8)
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Similarly, we denote by Eε
m+M (z) : P ε

+H
1◁2(Σε)4 ⊕ P+H

1◁2(Σ)4 → H 1(Uε)4 the unique solution of
the boundary value problem: 




(Dm+M − z)uε = 0, in Uε,

P ε
+tΣεuε = hε, on Σ

ε,

P+tΣu
ε = h+, on Σ▷

(3.9)

Dene the Poincaré-Steklov operators associated with the above problems by

Am(z) : P−H1◁2(Σ)4 → P+H
1◁2(Σ)4

g+ → Am(z)g+ := P+tΣEm(z)P−g+,

A ε
m(z) : P ε

−H
1◁2(Σε)4 → P ε

+H
1◁2(Σε)4

gε− → A ε
m(z)gε := P ε

+tΣEm(z)P ε
−g

ε,

Aε
m+M (z) : P+H

1◁2(Σ)4 ⊕ P ε
+H

1◁2(Σε)4 → P−H
1◁2(Σ)4 ⊕ P ε

−H
1◁2(Σε)4, with

Aε
m+M (h+, h

ε) :=

P−tΣEε

m+M (z)P+, P
ε
−tΣεEε

m+M (z)P ε
+


.

In particular, for z ∈ ρ(Dm) we have the following explicit formulas

Am(z) = −P+β(β◁2 + Cz,m)−1P−, A
ε
m(z) = −P ε

+β(β◁2 + C
ε
z,m)−1P ε

−▷

where Cz,m resp. C ε
z,m are the Cauchy operators associated with Σ resp. Σε.

Remark 3.1.3. We dene the Poincaré-Steklov operator, Aεm+M , as a part of the operatorAε
m+M , which

is only associated with Σε as follows:

A
ε
m+M (z) : P ε

+H
1◁2(Σε)4 → P ε

−H
1◁2(Σε)4

hε → A
ε
m+M (z)hε := P ε

−tΣεEε
m+M (z)P ε

+▷

In particular, Aεm+M will be used to establish the approximation in Section 3.2.

3.2 Parametrix for the Poincaré-Steklov operators (large mass limit)

Set κ := (M + m). This section is devoted to study the (classical and semiclassical) pseudodif-
ferential properties of the Poincaré-Steklov operator, Aε

κ, in order to use it in the application of Section
3.3. The main goal of this section is to study the Poincaré-Steklov operator, Aε

κ, as a κ-dependent
pseudodierential operator when κ is large enough. Roughly speaking, we will look for a local approxi-
mate formula for the solution of (3.9). The approximation in this section follows the steps of the one in
[Chapter 2, Section 2.4], but since our elliptic problem (3.9), dened on the domain Uε, has two dierent
boundary (∂Uε = Σ ∪ Σε), and we have to take into account the dependence in ε, so we prefer to study
rigorously the construction of the approximation. Once this is done, we use the regularization property
of the resolvent of the MIT bag operator to catch the semiclassical principal symbol of Aε

κ. Throughout
this section, we assume that z ∈ ρ(DUε

MIT(κ)).

We see that Uε has two boundaries, Σ and Σε. Since the approximation with respect to Σ has already
been established in [BBZ37, Section 4], and we therefore have this result in the present problem, it is
then sucient to establish the approximation of Aε

κ just with respect to Σε. For this purpose, and for
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simplicity of notation, we set Ah := A
ε
κ with ε ≡ h := κ−1 ∈ (0, 1] as the semiclassical parameter,

where Aεκ is dened in Remark 3.1.3.

3.2.1 Reduction to local coordinates

Let us consider A = {(Uφj
, Vφj

,φj) : j ∈ {1, · · · , N}} an atlas of Σ and (Uφ, Vφ,φ) ∈ A. We
consider also the case where Uφ is the graph of a smooth function χ, and we assume that Ωε

− corresponds
locally to the side x3 > χ(x1, x2). Then, for

Uφ ={(x1Σ, x
2
Σ,χ(x

1
Σ, x

2
Σ)); (x

1
Σ, x

2
Σ) ∈ Vφ}; φ((x1Σ, x

2
Σ,χ(x

1
Σ, x

2
Σ)) = (x1Σ, x

2
Σ),

Vφ,η :={(y1, y2, y3 + χ(y1, y2)); (y1, y2, y3) ∈ Vφ × (0, η)} ⊂ Ω+,

with η suciently small, we have the following homeomorphism:

ϕ : Vφ,η −→ Vφ × (ε, η)

(x1Σ, x
2
Σ, x

3
Σ) → (x1Σ, x

2
Σ, x

3
Σ − χ(x1Σ, x

2
Σ)),

and the pull-back

ϕ∗ : C∞(Vφ × (ε, η)) −→ C∞(Vφ,η)

v → ϕ∗v := v ◦ ϕ▷

Now, using the coordinates in (3.3), we let the dieomorphism ϕε : C∞(Vφ,η) −→ (Vε
φ,η) dened by

follows:

ϕε(x1, x2, x3) := ϕ(x1Σ, x
2
Σ, x

3
Σ) + εn(ϕ(xΣ)) =


x1Σ + εn1, x

2
Σ + εn2, x

3
Σ + εn3 − χ(x1Σ, x

2
Σ)


,

with ỹ = (y1, y2) and n the outward pointing normal to Ω+. Now, let nφ = (φ−1)∗ n be the pull-back
of the outward pointing normal to Ω+ restricted on Vφ:

nφ(ỹ) =
1

1 + |∇χ|2



−∂x1χ
−∂x2χ

1


 (y1, y2) =:



n
φ
1

n
φ
2

n
φ
3


 ▷

Then, the pull-back (ϕ−1
ε )∗ transforms the dierential operator Dm restricted on Vφ,η into the following

operator on Vφ × (0, η):

Dφ
m := (ϕ−1

ε )∗Dm(ϕε)
∗

= −i (α1∂y1 + α2∂y2 − (−α1∂x1χ− α2∂x2χ+ α3)∂y3) +mβ − iε [c1∂y1 + c2∂y2 + c3∂y3 ]

= −i(α1∂y1 + α2∂y2) +

1 + |∇χ|2(iα · nφ)(ỹ)∂y3 − iε [c1∂y1 + c2∂y2 + c3∂y3 ] +mβ,

where c• are 4× 4 matrices having the form c• = (α1∂x1 + α2∂x2)n
φ
• , for • = 1, 2,3▷

Thus, in the variable y ∈ Vφ × (ε, η) for 0 < ε < η, the system (3.9) becomes:


( Dφ

κ − z)u = 0, in Vφ × (ε,+∞),

Γ
φ
−u = gφ = g ◦ φ−1, on Vφ × {ε},

(3.10)
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where Γφ
± = P

φ
±t{y3=ε}.

By isolating the derivative with respect to y3, and using that (iα · nφ)−1 = −iα · nφ, we get

∂y3u =


I4 −

ε(α · nφc3)
1 + |∇χ|2

−1
iα · nφ(ỹ)
1 + |∇χ(ỹ)|2


− iα1∂y1 − iα2∂y2 +mβ − z − iεc1∂y1 − iεc2∂y2


u▷

Since,
(α · nφc3)
1 + |∇χ|2 is a bounded linear operator, then for ε ∈ (0, ε0) with ε0 suciently small, the

following Neumann series converges


I4 −

ε(α · nφc3)
1 + |∇χ|2

−1

=
+∞

k=0

εk


α · nφc3
1 + |∇χ(ỹ)|2

k

,

and we obtain




∂y3u =
+∞

k=0

εk


α · nφc3
1 + |∇χ(ỹ)|2

k+1
− iα1∂y1 − iα2∂y2 + κβ − iεc1∂y1 − iεc2∂y2 − z


u,

in Vφ × (ε,+∞),

Γ
φ
−u = gφ, on Vφ × {ε}▷

Let us now introduce the matrices-valued symbols

L0(ỹ, ξ) :=
iα · nφ(ỹ)
1 + |∇χ(ỹ)|2


α · ξ + β


, and L1(ỹ) :=

iα · nφ(ỹ)
1 + |∇χ(ỹ)|2


c · ξ − z


, (3.11)

with ξ = (ξ1, ξ2) ∈ R
2 identied with (ξ1, ξ2, 0) ∈ R

3 and c = (c1, c2). Then for ε = h := 1◁m, the
system (3.10) becomes:





h∂y3u
h = L0(ỹ, hDỹ)u

h + hL1(ỹ, hDỹ)u
h

+
+∞

k=1

hk
(α · nφc3)

k

(1 + |∇χ|2)k◁2

L0(ỹ, hDỹ)u

h + hL1(ỹ, hDỹ)

uh, in R

2 × (ε,+∞),

P
φ
+t{y3=ε}u

h = gφ, on R
2 × {ε}▷

(3.12)

Remark 3.2.1. In this remark, we clarify the rst dierence in the approximation of this section compared
to that of [BBZ37, Section 5]. Indeed, according to the formula of L1 from (3.11), we observe that the
term c · ξ appears in our case, whereas it was absent in the case of [BBZ37]. Moreover, we mention that
this dierence plays an important role in the subsequent progression of this approximation, exerting a
signicant impact on the symbol class of the solution uh.

Before constructing an approximate solution of the system (3.12), let us give some properties of L0.
Besides, we mention that L1 also veries these properties.
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Lemma 3.2.1. Recall the projections Pφ
± := (I4 ∓ iβ α · nφ(ỹ))◁2, and set

γ5 := −iα1α2α3 =


0 I2

I2 0


and S ·X = −γ5(α ·X), ∀X ∈ R

3▷ (3.13)

Using the anticommutation relations of the Dirac’s matrices we easily get the following identities

i(α ·X)(α · Y ) = iX · Y + S · (X ∧ Y ),

{S ·X,α · Y } = −(X · Y )γ5, [S ·X,β] = 0, ∀X, Y ∈ R
3▷

Let nφ and ξ be as above. Then, for any z ∈ C and any τ ∈ R
3 such that τ ⊥ nφ, the following identities

hold:

(S · τ − imβ(α · nφ(ỹ)))2 =

|τ |2 +m2


I4,

P
φ
±(S · τ) = (S · τ)Pφ

∓ and P
φ
±(iα · nφ) = (iα · nφ)Pφ

∓ ▷

The next proposition gathers the main properties of the operator L0.

Proposition 3.2.2. [BBZ37, Proposition 5.1]. Let L0(ỹ, ξ) be as in (3.11), then we have

L0(ỹ, ξ) =
1

1 + |∇χ(ỹ)|2

iξ · nφ(ỹ) + S · (nφ(ỹ) ∧ ξ)− iβ(α · nφ(ỹ))



= iξ · ñφ(ỹ) +
λ(ỹ, ξ)

1 + |∇χ(ỹ)|2Π+(ỹ, ξ)−
λ(ỹ, ξ)

1 + |∇χ(ỹ)|2Π−(ỹ, ξ),

where

λ(ỹ, ξ) :=

|nφ(ỹ) ∧ ξ|2 + 1,

ñφ(ỹ) :=
1

1 + |∇χ|2 n
φ(ỹ),

Π±(ỹ, ξ) :=
1

2


I4 ±

S · (nφ(ỹ) ∧ ξ)− iβ(α · nφ(ỹ))

λ(ỹ, ξ)


▷

(3.14)

In particular, the symbol L0(ỹ, ξ) is elliptic in symbol class S1 (dened in Section 2.1.1) and it admits
two eigenvalues ϱ±(·, ·) ∈ S1 of multiplicity 2 which are given by

ϱ±(ỹ, ξ) =
i nφ(ỹ) · ξ ± λ(ỹ, ξ)

1 + |∇χ|2 ,

and for which there exists c > 0 such that

±ℜϱ±(ỹ, ξ) > c⟨ξ⟩, (3.15)

uniformly with respect to ỹ. Moreover, Π±(ỹ, ξ) are the projections onto Kr(L0(ỹ, ξ) − ϱ±(ỹ, ξ)I4),
belong to the symbol class S0 and satisfy:

P
φ
± Π±(ỹ, ξ)P

φ
± = k

φ
+(ỹ, ξ)P

φ
± and P

φ
± Π∓(ỹ, ξ)P

φ
∓ = ∓Θφ(ỹ, ξ)Pφ

∓ , (3.16)
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with

k
φ
±(ỹ, ξ) =

1

2


1±

1

λ(ỹ, ξ)


, Θ

φ(ỹ, ξ) =
1

2λ(ỹ, ξ)
(S · (nφ(ỹ) ∧ ξ)) ▷

Now, using Lemma 3.2.1 and the properties (3.14), a simple computation shows that

P
φ
+Π± = k

φ
±P

φ
+ ±

1

2λ
(S · (nφ(ỹ) ∧ ξ)) Pφ

− ,

P
φ
−Π± = k

φ
∓P

φ
− ±

1

2λ
(S · (nφ(ỹ) ∧ ξ)) Pφ

+ ▷

That is, kφ+ is a positive function of S0, (kφ+)
−1 ∈ S0 and Θφ ∈ S0 where S0 is zero-order symbol class

dened in Section 2.1.1.

3.2.2 Semiclassical parametrix for the boundary problem

In this section, we construct the approximate solution of the system (3.12). For simplicity of notation,
in the sequel we will use y, τ , and P± instead of ỹ, y3, and P

φ
± , respectively. We are going to construct a

local approximate solution of the following rst order system:





h∂y3u
h = L0(y, hDy)u

h + hL1(y, hDy)u
h

+
+∞

k=1

hk
(α · nφc3)

k

(1 + |∇χ|2)k◁2

L0(y, hDy)u

h + hL1(y, hDy)

uh, in R

2 × (ε,+∞),

P+t{τ=ε}u
h = gφ, on R

2 × {ε}▷

This system is equivalent to





h∂y3u
h = L0(y, hDy)u

h +
+∞

k=1

hk
(α · nφc3)

k−1

(1 + |∇χ|2) k−1
2

L1(y, hDy)u
h, in R

2 × (ε,+∞),

P+t{τ=ε}u
h = gφ, on R

2 × {ε},

(3.17)

with L1(y, ξ) = L1(y, ξ) + (α · ñφc3)L0(y, ξ)▷

To be precise, we will look for a solution uh in the following form:

uh(y, τ) = Oph(Ah(·, ·, τ))f =



R2
Ah(y, hξ, τ)eiy·ξ f̂(ξ)dξ,

with Ah(·, ·, τ) ∈ S0 for any τ > 0 constructed inductively in the form:

Ah(y, ξ, τ) ∼


j⩾0

hjAj(y, ξ, τ)▷

The action of h∂y3 −L0−
+∞

k=1 h
k (α · nφc3)

k−1

(1 + |∇χ|2) k−1
2

L1 onAh(y, hDy, τ)f is given by T h(y, hDy, τ)f ,
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with

T h(y, ξ, τ) = h(∂τA
h)(y, ξ, τ)− L0(y, ξ)A

h(y, ξ, τ)

− h


L1(y, ξ)A
h(y, ξ, τ)− i∂ξL0(y, ξ) · ∂yA

h(y, ξ, τ)


− h2

L0A

h + L1(y, ξ)A
h + ∂ξL0 · ∂yA

h − i∂ξ L1 · ∂yA
h + (α · ñφc3)L1(y, ξ)A

h

+ ▷▷▷▷

Then, by identications of the coecients of j, j ⩾ 0, we look for A0 satisfying:


h∂τA0(y, ξ, τ) = L0(y, ξ)A0(y, ξ, τ),

P+(y)A0(y, ξ, ε) = P+(y),
(3.18)

and for j ⩾ 1,





h∂τAj(y, ξ, τ) = L0(y, ξ)Aj(y, ξ, τ) +


L1(y, ξ)− i∂ξL0(y, ξ) · ∂y

Aj−1(y, ξ, τ)

+
l=j

l⩾2

(α · ñφc3)
j−l


(α · ñφc3)L1(y, ξ)− i∂ξ L1(y, ξ) · ∂y


Al−2(y, ξ, τ),

P+(y)Aj(y, ξ, ε) = 0▷

(3.19)

Let us introduce a class of parametrized symbols, in which we will construct the family Aj :

Pm
h := {b(·, ·, τ) ∈ Sm; ∀(k, l) ∈ N

2, τk∂l
τ b(·, ·, τ) ∈ hk−lSm−k+l}; m ∈ Z▷

Proposition 3.2.3. There exists A0 ∈ P0
h solution of (3.18) given by:

A0(y, ξ, τ) = eh
−1(τ−ε)ϱ−(y,ξ) Π−(y, ξ)P+(y)A0(y, ξ, ε)

k
φ
−(y, ξ)

= eh
−1(τ−ε)ϱ−(y,ξ)Π−(y, ξ)P+(y)

k
φ
−(y, ξ)

= eh
−1(τ−ε)ϱ−(y,ξ)


I4 −

Θφ

k
φ
−


P+▷

Proof. The proof follows the same argument as [BBZ37, Proposition 5.2]. The solution of the dierential
system h∂τA0 = L0A0 is A0(y, ξ, τ) = eh

−1(τ−ε)L0A0(y, ξ, ε). By denition of ϱ± and Π±, we have:

eh
−1τL0 = eh

−1(τ−ε)ϱ−Π−(y, ξ) + eh
−1(τ−ε)ϱ+Π+(y, ξ)▷ (3.20)

It follows from (3.15) that A0 belongs to S0 for any τ > ε if and only if Π+(y, ξ)A0(y, ξ, ε) = 0.
Moreover, the boundary condition P+A0 = P+ implies P+(y)A0(y, ξ, ε) = P+(y). Thus, we deduce
that

A0(y, ξ, ε) = P+(y)−
P−Π+P+

k
φ
−

(y, ξ) = P+(y) +
P−Π−P+

k
φ
−

(y, ξ) =
Π−P+

k
φ
−

(y, ξ)▷

The properties of ϱ−, Π−, P− and k+ given in Proposition 3.2.2, imply that (kφ+)
−1Π−P− ∈ S0 and that

eh
−1τϱ−(y,ξ) ∈ P0

h. This concludes the proof of Proposition 3.2.3. ■
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Proposition 3.2.4. Let A0 be dened by Proposition 3.2.3. Then for any j ⩾ 1, there exists Aj solution
of (3.19) which has the form:

Aj(y, ξ, τ) = eh
−1(τ−ε)ϱ−(y,ξ)

2j

k=0

(h−1(τ − ε)⟨ξ⟩)kBj,k(y, ξ), with Bj,k ∈ hS0▷ (3.21)

Remark 3.2.2. An important dierence in the approximation between the solution Aj resulting from this
work and the solution presented in the work [BBZ37, Proposition 5.3] lies in the order of the standard
symbol class Sm. Indeed, by referring to the form of A2 (see (3.76) from Appendix 3.5) one can deduce

that the optimal order of the term Π−a0

P+ −

P+Θ
φ

k
φ
−

+ Π+a0


in B2,0 is in hS0, and this property is

reected in the construction of Aj for j ⩾ 3. However, in [BBZ37, Proposition 5.3], it was possible to
obtain all Aj in hjS−j . This discrepancy leads us to deduce the following propositions concerning the
solutions Aj .

Remark 3.2.3. We mention that this dierence in the symbol class of terms Bj,k with that obtained in
[BBZ37] is mainly due to the dierence discussed in Remark 3.2.1, i.e., to the inuence of c ·ξ as presented
in the formula of L1 in system (3.12), and subsequently to that mentioned in Remark 3.2.2.

Proof of Proposition 3.2.4. For initialization and calculation of A1 and A2, see Appendix 3.5. So,
for Aj with j ⩾ 1, it is sucient to prove the induction step. Thus, assume that the Aj solution of (3.19)
satises the above property and let us prove that the same holds for Aj+1. In order to be a solution to the
dierential system

h∂τAj+1(y, ξ, τ) = L0(y, ξ)Aj+1(y, ξ, τ) +


L1(y, ξ)− i∂ξL0(y, ξ) · ∂y

Aj(y, ξ, τ)

+
l=j+1

l=2

(α · ñφc3)
j+1−l


(α · ñφc3)L1(y, ξ)− i∂ξ L1(y, ξ) · ∂y


Al−2(y, ξ, τ),

then, for Aj+1 we have:

Aj+1 = eh
−1L0(τ−ε)Aj+1|τ=ε + eh

−1τL0

 τ

ε
e−h−1sL0


L1 − i∂ξL0 · ∂y


Aj(y, ξ, τ)

  
(a)

ds

+ eh
−1τL0

 τ

ε
e−h−1sL0

l=j+1

l=2

(α · ñφc3)
j+1−l


(α · ñφc3)L1 − i∂ξ L1 · ∂y


Al−2(y, ξ, τ))

  
(b)

ds

:= eh
−1L0(τ−ε)Aj+1|τ=ε + eh

−1τL0

 τ

ε
eh

−1sL0


(a) + (b)


ds▷

(3.22)
In order to know the form of (a) and (b), let us consider the formula (3.74). Then for the quantity (a),
we have

∂yAj = eh
−1(τ−ε)ϱ−


h−1(τ − ε)∂yϱ− + ∂y

 2j

k=0


h−1(τ − ε)⟨ξ⟩

k

Bj,k▷

109



Chapter 3 – On the approximation of the Dirac operator coupled with conning Lorentz scalar δ-shell interactions.

Now, applying
L1 − i∂ξL0 · ∂y


to Aj(y, ξ, τ):

L1 − i∂ξL0 · ∂y

Aj = a0(y)

− z + c · ξ − ic3L0 − iα · ∂y

eh

−1(τ−ε)ϱ−
2j

k=0


h−1(τ − ε)⟨ξ⟩

k

Bj,k

:= eh
−1(τ−ε)ϱ−a0(y)


− z + c3α · ñφβ − iα · ∂y

 2j

k=0


h−1(τ − ε)⟨ξ⟩

k

Bj,k

  
(i)

+ eh
−1(τ−ε)ϱ−a0(y)


c+ c3α · ñφα


· ξ

2j

k=0


h−1(τ − ε)⟨ξ⟩

k

Bj,k

  
(ii)

+ eh
−1(τ−ε)ϱ−a0(y)


− ih−1(τ − ε)α · ∂yϱ−

 2j

k=0


h−1(τ − ε)⟨ξ⟩

k

Bj,k

  
(iii)

▷

Thanks to the properties of ϱ− and Bj,k, (i), (ii) and (iii) have respectively the form:

(i) = eh
−1(τ−ε)ϱ−

2j

k=0

(h−1(τ − ε)⟨ξ⟩)kB′

j,k(y, ξ), (3.23)

(ii) = eh
−1(τ−ε)ϱ−

2j

k=0

(h−1(τ − ε)⟨ξ⟩)k ⟨ξ⟩ Bj,k(y, ξ), (3.24)

(iii) = eh
−1(τ−ε)ϱ−

2j

k=0

(h−1(τ − ε)⟨ξ⟩)k+1B
′′

j,k(y, ξ), (3.25)

with B
′

j,k and B
′′

j,k verifying the properties of Bj,k, and ⟨ξ⟩ Bj,k ∈ hS1. Therefore, toghether (3.23),
(3.24) and (3.25) give that

(a) = eh
−1(τ−ε)ϱ−

2j+1

k=0

(h−1(τ − ε)⟨ξ⟩)k Bj,k(y, ξ), (3.26)

where Bj,k veries

Bj,k ∈ hS1 for k = 0, ▷▷▷, 2j, and Bj,2j+1 ∈ hS0▷

Similarly, to calculate (b), applying
 − i∂ξ L1 · ∂y + (α · ñφc3)L1


(see (3.74)) to the identity (3.21)

yields that

− i∂ξ L1 · ∂y + (α · ñφc3)L1


Aj =

eh
−1(τ−ε)ϱ−a0(y)


d+ e · ξ − ih−1(y3 − ε)f · ∂yϱ−

 2j

k=0


h−1(τ − ε)⟨ξ⟩

k

Bj,k,

(3.27)
with d, e and f dened in (3.75). Let us decompose (b) as the following
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l=j+1

l=2

(α · ñφc3)
j+1−l


− i∂ξ L1 · ∂y + (α · ñφc3)L1


Al−2(y, ξ, τ)) :=

(α · ñφc3)
j−1


− i∂ξ L1 · ∂y + (α · ñφc3)L1


A0(y, ξ))

  
(m1)

+
l=j+1

l⩾3

(α · ñφc3)
j+1−l


− i∂ξ L1 · ∂y + (α · ñφc3)L1


Al−2(y, ξ, τ))

  
(m2)

▷

Since A0 ∈ S0, this gives that

(m1) = ξ · Ḃ0,0 + B0,0 + (−ih−1(τ − ε)f · ∂yϱ−)B0,0, (3.28)

where Ḃ0,0, B0,0 ∈ S0 are respectively the constants obtained by applying d and e to
Π−P+

k
φ
−

and

f · ∂yϱ− ∈ S1. Thus, (m1) ∈ S1, ∀j ⩾ 1.
In the other hand, and for all l ⩾ 3 (i.e., l − 2 ⩾ 1), Al−2 has the form

Al−2(y, ξ, τ) = eh
−1(τ−ε)ϱ−

2(l−2)

k=0

(h−1(τ − ε)⟨ξ⟩)kBl−2,k(y, ξ), (3.29)

with Bl−2,k ∈ hS0. Applying (3.27) to the identity (3.29) we get

(m2) = eh
−1(τ−ε)ϱ−

l=j+1

l⩾3

2(l−2)+1

k=0

(h−1(τ − ε)⟨ξ⟩)kB̈j,k(y, ξ), (3.30)

with B̈j,k ∈ hS1 and B̈j,2(l−2)+1 ∈ hS0. Therefore, for i = (l − 2) ⩾ 1 and j ⩾ 2, toghether (3.28),
(3.30) with (3.26) give that

(a) + (b) = eh
−1(τ−ε)ϱ−

 2j+1

k=0

(h−1(τ − ε)⟨ξ⟩)k Bj,k +
l=j+1

l⩾3

2(l−2)+1

k=0

(h−1(τ − ε)⟨ξ⟩)kB̈l−2,k +m1



= eh
−1(τ−ε)ϱ−

 2j+1

k=0

(h−1(τ − ε)⟨ξ⟩)k Bj,k +
i=j−1

i⩾1

2i+1

k=0

(h−1(τ − ε)⟨ξ⟩)kB̈i,k +m1



= eh
−1(τ−ε)ϱ−


2i+1

k=0

(h−1(τ − ε)⟨ξ⟩)k


Bi,k +
i=j−1

i⩾1

B̈i,k



  
Ci,j,k

+m1


,

(3.31)
with Ci,j,k ∈ hS1, and Ci,j,k ∈ hS0 for k = 2i+ 1▷

So, using the decomposition (3.20), for the second term of the r.h.s. of (3.22) we have:

eh
−1τL0

 τ

ε
e−h−1sL0


(a)+ (b)


ds = eh

−1τϱ−Π−I
j
−(τ ) + eh

−1τϱ+Π+I
j
+(τ ), (3.32)
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with

I
j
±(τ ) = e−h−1εϱ−

 τ

ε
eh

−1s(ϱ−−ϱ±)


2i+1

k=0

(h−1(s− ε)⟨ξ⟩)kCi,j,k + m1


ds▷

For Ij−, the exponential term is equal to 1 and by integration of sk, we obtain:

I
j
−(τ ) = e−h−1εϱ−


2i+1

k=0

(h−1(τ − ε)⟨ξ⟩)k+1h⟨ξ⟩−1

k + 1
Ci,j,k

+

(τ − ε)(ξ · Ḃ0,0 + B0,0


− ih−1(τ − ε)2

f · ∂yϱ−
2

B0,0



= e−h−1εϱ−
2i+1

k=0

(h−1(τ − ε)⟨ξ⟩)k+1h⟨ξ⟩−1

k + 1
Ci,j,k

+ e−h−1εϱ−


(h−1(τ − ε)⟨ξ⟩)


h⟨ξ⟩−1ξ · Ḃ0,0 + h⟨ξ⟩−1 B0,0



− i


h−1(τ − ε)⟨ξ⟩

2
h⟨ξ⟩−1f · ∂yϱ−

2
B0,0


,

then eh
−1τϱ−Π−I

j
−(τ ) has the following form:

eh
−1τϱ−Π−I

j
−(τ ) = eh

−1(τ−ε)ϱ−Pi−
2i+1

k=0


h−1(τ − ε)⟨ξ⟩

k+1h⟨ξ⟩−1

k + 1
Ci,j,k +

eh
−1(τ−ε)ϱ−Π−


(h−1(τ − ε)⟨ξ⟩)


h⟨ξ⟩−1ξ · Ḃ0,0 + h⟨ξ⟩−1 B0,0



− i


h−1(τ − ε)⟨ξ⟩

2
h⟨ξ⟩−1f · ∂yϱ−

2
B0,0


▷

(3.33)

For Ij+, let us introduce Pk the polynomial of degree k such that

 τ

ε
eλsskds =

1

λk+1
(eτλPk(τλ)− eελPk(0)), for any λ ∈ C

∗▷

Using the above formula, then we obtain:

I
j
+(τ ) = e−h−1εϱ−

 τ

ε
eh

−1s(ϱ−−ϱ+)


2i+1

k=0

(h−1(s− ε)⟨ξ⟩)kCi,j,k + m1


ds

= e−h−1εϱ−
2j+1

k=0

h⟨ξ⟩k
(ϱ− − ϱ+)k+1


eh

−1τ(ϱ−−ϱ+)
Pk


h−1(τ − ε)(ϱ− − ϱ+)



− eh
−1ε(ϱ−−ϱ+)

Pk(0)

Ci,j,k
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+ e−h−1εϱ−eh
−1(ϱ−−ϱ+)τ


h
ξ · Ḃ0,0 + B0,0

ϱ− − ϱ+


+ i

(τ − ε)

ϱ− − ϱ+
f · ∂yϱ−B0,0

− i
εh

(ϱ− − ϱ+)2
f · ∂yϱ−B0,0



− e−h−1εϱ−eh
−1(ϱ−−ϱ+)ε


h
ξ · Ḃ0,0 + B0,0

ϱ− − ϱ+


− i

εh

(ϱ− − ϱ+)2
f · ∂yϱ−B0,0


▷

With this notation in hand, we easily see that the term eh
−1τϱ+Π+I

j
+(τ ) has the following form:

eh
−1τϱ+Π+I

j
+(τ ) =

Π+

2i+1

k=0

h⟨ξ⟩k
(ϱ− − ϱ+)k+1

Ci,j,k


eh

−1(τ−ε)ϱ−Pk


h−1(τ − ε)(ϱ− − ϱ+)

− eh
−1(τ−ε)ϱ+Pk(0)



+ eh
−1(τ−ε)ϱ−Π+


h
ξ · Ḃ0,0 + B0,0

ϱ− − ϱ+


+ i

(τ − ε)

ϱ− − ϱ+
f · ∂yϱ−B0,0 − i

εh

(ϱ− − ϱ+)2
f · ∂yϱ−B0,0



− eh
−1(τ−ε)ϱ+Π+


h
ξ · Ḃ0,0 + B0,0

ϱ− − ϱ+


− i

εh

(ϱ− − ϱ+)2
f · ∂yϱ−B0,0


▷

(3.34)
Thus, combining (3.33) and (3.34) with (3.22), (3.32) and (3.20), yield that

Aj+1 = eh
−1(τ−ε)ϱ−


Π−Aj+1|τ=ε + Π−

2i+1

k=0


h−1(τ − ε)⟨ξ⟩

k+1h⟨ξ⟩−1

k + 1
Ci,j,k

+ Π−



h−1(τ − ε)⟨ξ⟩


h⟨ξ⟩−1ξ · Ḃ0,0 + h⟨ξ⟩−1 B0,0


− i


h−1(τ − ε)⟨ξ⟩

2
h⟨ξ⟩−1f · ∂yϱ−

2
B0,0



+ Π+

2i+1

k=0

h⟨ξ⟩k
(ϱ− − ϱ+)k+1

Ci,j,k


Pk


h−1(τ − ε)(ϱ− − ϱ+)




+ eh
−1(τ−ε)ϱ−Π+


h
ξ · Ḃ0,0 + B0,0

ϱ− − ϱ+


− i


h−1(τ − ε)⟨ξ⟩h⟨ξ⟩

−1f · ∂yϱ−B0,0

ϱ− − ϱ+

− i
εh

(ϱ− − ϱ+)2
f · ∂yϱ−B0,0



+ eh
−1(τ−ε)ϱ+


Π+Aj+1|τ=ε − Π+

2i+1

k=0

h⟨ξ⟩k
(ϱ− − ϱ+)k+1

Ci,j,k


Pk(0)



+ eh
−1(τ−ε)ϱ+Π+


h
ξ · Ḃ0,0 + B0,0

ϱ− − ϱ+


− i

εh

(ϱ− − ϱ+)2
f · ∂yϱ−B0,0


▷

(3.35)
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We set

B+
j+1 := Π+

2i+1

k=0

h⟨ξ⟩k
(ϱ− − ϱ+)k+1

Ci,j,kPk(0)− Π+


h
ξ · Ḃ0,0 + B0,0

ϱ− − ϱ+



− i
εh

(ϱ− − ϱ+)2
f · ∂yϱ−B0,0



(3.36)
belongs to hS0 as a linear combination of products of Π+ ∈ S0, h⟨ξ⟩k(ϱ− − ϱ+)

−k−1 ∈ hS−1, and of
Ci,j,k which verify the properties as in (3.31).
Now, in order to have Aj+1 ∈ S0, we let the contribution of the exponentially growing term vanish by
choosing

Π+Aj+1(y, ξ, ε) =
B+
j+1,k(y, ξ)▷

Then, we obtain

Aj+1 = eh
−1(τ−ε)ϱ−


Π−Aj+1|τ=ε + Π−

2i+1

k=0


h−1(τ − ε)⟨ξ⟩

k+1h⟨ξ⟩−1

k + 1
Ci,j,k

+ Π−



h−1(τ − ε)⟨ξ⟩


h⟨ξ⟩−1ξ · Ḃ0,0 + h⟨ξ⟩−1 B0,0


− i


h−1(τ − ε)⟨ξ⟩

2
h⟨ξ⟩−1f · ∂yϱ−

2
B0,0



+ Π+

2i+1

k=0

h⟨ξ⟩k
(ϱ− − ϱ+)k+1

Ci,j,k


Pk


h−1(τ − ε)(ϱ− − ϱ+)




+ eh
−1(τ−ε)ϱ−Π+


h
ξ · Ḃ0,0 + B0,0

ϱ− − ϱ+


− i


h−1(τ − ε)⟨ξ⟩h⟨ξ⟩

−1f · ∂yϱ−B0,0

ϱ− − ϱ+

− i
εh

(ϱ− − ϱ+)2
f · ∂yϱ−B0,0


,

(3.37)
since the boundary condition P+(y)Aj+1(y, ξ, ε) = 0, gives

Π−Aj+1(y, ξ, ε) = Π−(P+ + P−)Aj+1(y, ξ, ε) = Π−P−Aj+1(y, ξ, ε),

using the formula of Aj+1(y, ξ, τ) above, we get that

P−Aj+1(y, ξ, ε) =
P−Π+

k
φ
−

B+
j+1,k,

therefore

Π−Aj+1(y, ξ, ε) =
Π−P−Π+

k
φ
−

B+
j+1,k▷ (3.38)

In the other hand, regarding the following two series mentioned in (3.35)

Π−
2i+1

k=0


h−1(τ − ε)⟨ξ⟩

k+1h⟨ξ⟩−1

k + 1
Ci,j,k + Π+

2i+1

k=0

h⟨ξ⟩k
(ϱ− − ϱ+)k+1

Ci,j,k


Pk


h−1(τ − ε)(ϱ− − ϱ+)


,

(3.39)
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by calculation, it is easy to verify that for all j ⩾ 2 (i.e., i ⩾ 1), this quantity can be written as follows

2(j+1)

k=0


h−1(τ − ε)⟨ξ⟩k B−

j+1,k, (3.40)

such that B−
j+1,k, as a linear combination, belong to h2S0 for k = 0, ▷▷▷, 2j+1 and B−

j+1,2(j+1) ∈ h2S−1 .

Finally, the fact that we have the other terms (rst and last) of the equality (3.37) of order hS0 and
admit the same structure as that of the terms in (3.39), then thanks to (3.38), and (3.36), (3.40), together
with (3.37) give that

Aj+1(y, ξ, τ) = eh
−1(τ−ε)ϱ−(y,ξ)


Π−P−Π+

k
φ
−

B+
j+1(y, ξ) +

2(j+1)

k=0

(h−1(τ − ε)⟨ξ⟩)k B−
j+1,k(y, ξ)


,

where B+
j+1(y, ξ),

B−
j+1,k(y, ξ) belong to hS0, and Proposition 3.2.4 is proven with

Bj+1,0 =
Π−P+Π+

k
φ
+

B+
j+1+

B−
j+1,0, and for k ⩾ 1, Bj+1,k = B−

j+1,k▷ ■

Proposition 3.2.5. Let Aj , j ⩾ 0, be of the form (3.21). Then, for any s ⩾ −1
2 , the operator Aj dened

by

Aj : f −→ (Ajf)(y, y3) =
1

(2π)2



R2
Aj(y, hξ, y3)e

iy·ξ f̂(ξ)dξ

gives rise to a bounded operator from H s(R2) into H s+ 1
2 (R2 × (ε,+∞)). Moreover, for any l ∈ [0, 12 ]

we have:
∥Aj∥

Hs→H
s+1

2−l = O(hl−|s|+1)▷

Proof. The proof of this proposition follows exactly the arguments of [BBZ37, Proposition 5.4]. However,
this dierence obtained at the rate level on h is because of the presence of a parameter h in the termsBj,k

of the solution Aj . ■

Proposition 3.2.6. Let f ∈ Hs(R2) and Aj , j ⩾ 0, be as in Propositions 3.2.3, 3.2.4. Then for any
N ∈ N, the function uhN =

N
j=0 h

jAjf satises:





hN+1Rh
Nf =h∂τu

h
N − L0(y, hDy)u

h
N

− h

+∞

k=1

hk−1 (α · nφc3)
k−1

(1 + |∇χ|2) k−1
2

L1(y, hDy)u
h
N , in R

2 × (ε,+∞),

P+u
h
N = f, on R

2 × {ε},
(3.41)

with

Rh
Nf =

−1
(2π)2



R2


+∞

k=1

hk
(α · nφc3)

k−1

(1 + |∇χ|2) k−1
2


h−1 L1AN − i∂ξ L1 · ∂yAN


− i∂ξL0 · ∂yAN


eiy·ξ f̂(ξ)dξ,
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a bounded operator from Hs(R2) into Hs+ 1
2 (R2 × (ε,+∞)) satisfying for any l ∈ [0, 12 ]:

∥Rh
N∥

Hs→H
s+1

2−l = O(hl−|s|+1)▷ (3.42)

Proof. By construction of the sequence (Aj)j∈{0,··· ,N−1} as in (3.17), we have the system (3.41) with

Rh
N = Oph(rhN (·, ·, τ)), such that

rhN (y, ξ, τ) = −


+∞

k=1

hk
(α · nφc3)

k−1

(1 + |∇χ|2) k−1
2


h−1 L1AN − i∂ξ L1 · ∂yAN


− i∂ξL0 · ∂yAN


(y, hξ, τ)▷

As in the proof of Proposition 3.2.4, L1AN has the form (3.24), and ∂ξ L1 · ∂yAN and ∂ξL0 · ∂yAN have
the form (3.25). Then, rhN has the form (3.26) (with j = N ). Therefore, as in the proof of Proposition
3.2.5, we obtain the estimate (3.42). ■

Proposition 3.2.7. Let us consider the Poincaré-Steklov operator Ah introduced at the beginning of
Section 3.2. For h = ε ∈ (0, 1] and for all N ∈ N, there is a h-pseudodierential operator of order 0,
Ah

N such that for h suciently small, we have the following estimate:

||Ah −Ah
N ||

H1◁2(Σε)→H
3
2−l(Σε)

= O(h2l+
1
2 ), for any l ∈ [0,

1

2
]▷ (3.43)

Proof. The proof of this proposition follows the same argument of [BBZ37, Theorem 5.1]. That is
a consequence of the above Proposition 3.2.5 and 3.2.6, combined with the regularity estimates from
Theorem 2.2.1-(iii). More precisely, let (U ε

φ, V
ε
φ ,φ

ε) a chart of an atlasAε ofΣε, and ψ1,ψ2 ∈ C∞
0 (U ε

φ).

Let also hε ∈ P−H1◁2(Σε) be such that f ε := (φ−1
ε )∗[ψ2h

ε] ∈ H1◁2(V ε
φ )

4, which can be extended by

0 to a function of H1◁2(R2)4. Then, for ε = h = κ−1 and N ∈ N, the previous construction provides a
function uhN ∈ H1(R2 × (ε,+∞))4 which veries the following system


( Dφ

κ − z)uhN = hN+1Rh
Nf ε, in R

2 × (ε,+∞),

P
φ
−tΣεuhN = f ε, on R

2 × {ε},

where uhN , Rh
N are dened in Proposition 3.2.6. Moreover, from the latter, we know that Rh

N ∈
HN+1(R2× (ε,+∞))with norm inH 1−l, l ∈ [0, 12 ], bounded byO(hl+

1
2 )▷ Consequently, vhN := ϕ∗

εu
h
N ,

dened on Vε
φ,η satises


(Dκ − z)vhN = hN+1(ϕ−1

ε )∗

Rh

Nf ε, in Vε
φ,η,

P−tΣεvhN = ψ2h
ε, on U ε

φ▷

Recall the denition of the lifting operator Eε
κ, given in Denition 3.1.7. We have for hε ∈ P−H1◁2(Σε)4,

Eε
κ[ψ2h

ε] ∈ H1(Uε)4. Since P−tΣεvhN = P−tΣεEε
κ[ψ2h

ε] = ψ2h
ε, it follows that

vhN − Eε
κ[ψ2h

ε] = hN+1(Dε
MIT(κ)− 1)−1(ϕ−1

ε )∗

Rh

N (φ−1
ε )∗[ψ2h

ε]

▷

Thanks to the estimation of [BBZ37, Theorem 3.2-(i)], and also by continuing the steps of the proof
of Theorem 5.1 in [BBZ37], we obtain that Ah

N ∈ hOphS0(Σε) and the estimate (3.43) holds for any
l ∈ [0, 12 ]. ■
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At the end of this section, let’s give some pseudodierential properties of the Poincaré-Steklov
operators, Am and A ε

m, introduced in Denition 3.1.7, in order to use it in Section 3.3.

Remark 3.2.4. Wemention that the xed Poincaré-Steklov operatorAm have been introduced and studied
in details in [Chapter 2, Theorem 2.3.3]. Moreover, it is a pseudodierential operator of order 0, which
can be considered as a h-pseudodierential operator, and whose semiclassical principal symbol (in local
coordinate) is given by

Ph,Am
(xΣ, ξ) =

S · (ξ ∧ n(xΣ))

|ξ ∧ n(xΣ)|
P−, for any xΣ ∈ Σ▷

For A ε
m, we have the following results:

Theorem 3.2.8. Let z ∈ ρ(Dm) and xΣ ∈ Σ and recall the denition of Tε from Denition 3.1.2. We
dene the Cauchy operator C z,ε

m : L2(Σε)4 −→ L2(Σε)4 as the singular integral operator acting as

C
z,ε
m [g](x) := lim

ρ↘0



|x−y|>ρ
ϕz
m(x− y)g(y)dσ(y), for dσ-a.e.,x = xΣ + εn(xΣ) ∈ Σ

ε, g ∈ L2(Σε)4▷

Also, we consider the Poincaré-Steklov operator A ε
m given in Denition 3.1.7. Then, T −1

ε C ε
z,mTε and

T −1
ε A ε

mTε are homogeneous pseudodierential operators of order 0, and we have

T −1
ε C

ε
z,mTε = det(1− εW (xΣ))

1
2
α ·

∇Σ√
−∆Σ

+ εOp(b0(xΣ, ξ)) +Op(b−1(xΣ, εξ))

,

T −1
ε A

ε
mTε = det(1− εW (xΣ))


S ·

(∇Σ ∧ n)√
−∆Σ

P ε
− + εOp(b

′

0(xΣ, ξ)) +Op(b
′

−1(xΣ, εξ))

,

where∇Σ = ∇− n(n ·∇) is the surface gradient along Σ, and−∆Σ is the Laplace-Beltrami operator,
with b0, b

′

0, resp. b−1, b
′

−1 the symbols of order 0, resp. −1.

Proof. The proof follows similar arguments as in [BBZ37, Theorem 4.1]. Let f ∈ L2(Σ)4 and consider
the operator T −1

ε C ε
z,mTεf▷ Using the explicit formula of A ε

m, we have the following connection

L2(Σ)4 ∋ T −1
ε A

ε
mTεf = −P ε

+β

β◁2 + T −1

ε C
ε
z,mTεf

−1
P ε
−▷

Now, x a local chart (U, V,φ) of Σ and let ψk : Σ −→ R, k = 1, 2, be a C∞-smooth function with
supp(ψ1) ∩ supp(ψ2) = ∅. For xΣ ∈ Σ,


T −1
ε C

ε
z,mTεf


(xΣ) = det(1− εW (xΣ)) p▷v▷



|xΣ+εn(xΣ)−y|>ρ
ϕz
m(xΣ + εn(xΣ)− y)Tεf(y)dσ(y)

= det(1− εW (xΣ)) p▷v▷



|xΣ−yΣ|>ρ
′
ϕz
m(xΣ + εn(xΣ)− yΣ − εn(yΣ))f(yΣ)dσ(yΣ)

= det(1− εW (xΣ))



V
ϕz
m(xΣ − yΣ + ε


n(xΣ)− n(yΣ))


f(yΣ)dσ(yΣ)▷

(3.44)
Now, recall the denition of ϕz

m from (1.11), and observe that

ϕz
m(x− y) = k(x− y) + a(x− y),
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where

kz(x− y) =
ei

√
z2−m2|x−y|

4π|x− y|


z +mβ +


z2 −m2α ·

x− y

|x− y|


+ i

ei
√
z2−m2|x−y| − 1

4π|x− y|3
α · (x− y),

a(x− y) =
i

4π|x− y|3
α · (x− y)▷

Using this, it follows that

C
z,ε
m [g](x) = lim

ρ↘0



|x−y|>ρ
a(x− y)g(y)dσ(y) +



Σε
kz(x− y)g(y)dσ(y)

=A[g](x) +K[g](x)▷

As |kz(x − y)| = O(|x − y|−1) when |x − y| → 0, using the standard layer potential techniques (see,
e.g. [Tay00, Chap. 3, Sec. 4] and [Tay96, Chap. 7, Sec. 11]) it is not hard to prove that the integral
operator T −1

ε KTε gives rise to a pseudodierential operator of order −1, i.e., T −1
ε KTε ∈ OpS−1(Σ).

Thus, we can (formally) write

T −1
ε C

ε
z,mTε = T −1

ε ATε modOpS−1(Σ), (3.45)

which means that the operator A encodes the main contribution in the pseudodierential character of
T −1
ε C z,ε

m Tε.
For Σε ∋ x = xΣ + εn(xΣ), y = yΣ + εn(yΣ),

a

xΣ − yΣ + ε(n(xΣ)− n(yΣ))


= iα ·


xΣ − yΣ + ε(n(xΣ)− n(yΣ))


xΣ − yΣ + ε(n(xΣ)− n(yΣ))

3 ▷

Set X = xΣ − yΣ▷ Then, |xΣ − yΣ + ε(n(xΣ)− n(yΣ))| = |X + εnX |▷ And |X + εnX|−3 yields

|X + εnX|−3 = (1 + ε2)−3◁2|X|−3

1 + 2ε(1 + ε2)−1 ⟨X, nX⟩

|X |2

−3◁2
▷

By a series expansion (rst order), we get

|X + εnX|−3 = |X|−3 + ε

− 3|X|−3 ⟨X, nX⟩

|X|2


▷

For anyX ∈ U we haveX = ( X,χ( X))withX ∈ V andwhere the graph ofχ : V −→ R coincides with
U▷ With the same argument in [BBZ37, Theorem 4.1] we get that, uniformly with respect to ε ∈ (0, ε0),
with ε0 suciently small

|X + εnX|−3 =
1

⟨ X,G(xΣ) X⟩3◁2
+ k1( X),

with |k1( X)| = O(| X|−2) when | X| −→ 0,

|X + εnX|−5⟨X, nX⟩ = ⟨ X, n X⟩
⟨ X,G(xΣ) X⟩5◁2

+ ⟨ X, n X⟩k2( X),

with |k2( X)| = O(| X|−4) when | X| −→ 0,
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where G(xΣ) is the metric tensor. We deduce that

ψ2(T
−1
ε ATε[ψ1f ])(xΣ) = ψ2Op(a0(xΣ, ξ))ψ1f(xΣ) + ε ψ2Op(b0(xΣ, ξ))ψ1f(xΣ) + ψ2Lψ1,

(3.46)

withL a pseudodierential operator of order−1▷ Thus, T −1
ε ATε is a zero-order pseudodierential opera-

tor. Furthermore, thanks to (3.45) and (3.46) we get that T −1
ε C z,ε

m Tε is a homogeneous pseudodierential
operator of order 0, with principal symbol given by

T −1
ε C

ε
z,mTε = det(1− εW (xΣ))

1
2
α ·

∇Σ√
−∆Σ

+ εOp(b0(xΣ, ξ)) +Op(b−1(xΣ, εξ))

▷

Consequently, thanks to the relation between C z,ε
m and A ε

m, we have that T −1
ε A ε

mTε is a homogeneous
pseudodierential operators of order 0

T −1
ε A

ε
mTε = det(1− εW (xΣ))


S ·

(∇Σ ∧ n(xΣ))√
−∆Σ

P ε
− + εOp(b

′

0(xΣ, ξ)) +Op(b
′

−1(xΣ, εξ))

▷

■

Corollary 3.2.9. The Poincaré-Steklov operator A ε
m is a homogeneous pseudodierential operator of

order 0, and we have that

A
ε
m = S ·

(∇Σε ∧N ε(p(xΣ)))√
−∆Σε

P ε
− + εOp(bp0(xΣ, ξ)) +Op(bp−1(xΣ, εξ))

= −S ·
(∇Σε ∧ n(xΣ))√

−∆Σε

P ε
− + εOp(bp0(xΣ, ξ)) +Op(bp−1(xΣ, εξ)), with ε ∈ (0, ε0),

where ∇Σε is the surface gradient along Σε, −∆Σε is the Laplace-Beltrami operator, and b
p
j (xΣ, ξ) has

the following form

b
p
j (xΣ, ξ) = bj


p(xΣ),


∇p(xΣ)−1

t

ξ


, for j ∈ {−1, 0},

with p(xΣ) = xΣ + εn(xΣ) the dieomorphism from Denition 3.1.2, and

∇p(xΣ)−1

t

=

1− εW (xΣ)

−1
t

=

1− εW (xΣ)

−1
, where W (xΣ) is the Weingarten matrix, symmetric, given

in Denition 1.5.2.

Proof. The proof of this corollary is a consequence of Theorem 3.2.8 and the arguments of [Zwo12,
Theorem 9.3]. ■

3.3 Reduction to a MIT bag problem.

Throughout the section, we denote Ω+, Ωε
− and Uε the domains as in Figure 3.1 such that Σ = ∂Ω+,

Σε := ∂Ωε
− and ∂Uε = Σ ∪ Σε, respectively, and we let N ε be the outward pointing unit normal to Ωε

−▷
We set n the outward unit normal to the xed domain Ω+ ⊂ R

3. Fixm > 0 and letM > 0. Remember
our perturbed Dirac operator

Dε
Mφ = (Dm +Mβ1Uε)φ, ∀φ ∈ dom(Dε

M ) := H1(R3)4,
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where 1Uε is the characteristic function of Uε.

Let us now recall the denition of the MIT bag operator from Section 3.1.1 by D
Ω+

MIT, D
Ωε

−

MIT, and
DUε

MIT, which act in L2(Ω+)
4, L2(Ωε

−)
4, and L2(Uε)4 repsectively. The aim of this section is to use the

properties of the Poincaré-Steklov operators carried out in the previous sections to study the resolvent
of Dε

M when M is large enough. Namely, we give a Krein-type resolvent formula of the Dirac operator

Dε
M in terms of the resolvent of the MIT bag operatorDΩ+

MIT ⊕D
Ωε

−

MIT, and we show that the convergence
ofDε

M toward DL holds in the norm resolvent sense whenM and ε converge to∞ and 0+, respectively.

To set up Krein’s formula between the resolvent of Dε
M and the resolvent of DΩ+

MIT ⊕D
Ωε

−

MIT, we will x
n the only normal acting in our domain. Throughout this section, the projections associated with the
surface Σε (i.e., P ε

±(x), for x ∈ Σε) verify the properties of Remark 3.1.2.

3.3.1 Notations

Let z ∈ ρ(D
Ωε

−

MIT) ∩ ρ(Dε
M ). We recall Ωε

+− := Ω+ ∪ Ωε
−. We dene the resolvents associated with

the operators Dε
M , DUε

MIT, and D
Ωε

+−

MIT := D
Ω+

MIT ⊕D
Ωε

−

MIT, respectively, by

• Rε
M (z) := (Dε

M − z)−1 : L2(R3)4 → H1(R3)4.
• RUε

MIT(z) := (DUε

MIT − z)−1 : L2(Uε)4 → dom(DUε

MIT).

• R
Ωε

+−

MIT (z) := (D
Ωε

+−

MIT−z)−1 : L2(Ω+)
4⊕L2(Ωε

−)
4 → dom(D

Ω+

MIT)⊕dom(D
Ωε

−

MIT) ⊂ L2(Ω+)
4⊕

L2(Ωε
−)

4

can be read as the following matrix:

R
Ωε

+−

MIT =


R

Ω+

MITrΩ+ 0

0 R
Ωε

−

MITrΩε
−


≡ rΩε

+−
eΩ+R

Ω+

MITrΩ+ + rΩε
+−

eΩε
−
R

Ωε
−

MITrΩε
−

=

R

Ω+

MITrΩ+ , R
Ωε

−

MITrΩε
−


,

(3.47)

where RΩ+

MIT(z), R
Ωε

−

MIT(z) are the resolvents of D
Ω+

MIT, D
Ωε

−

MIT, respectively, and rΩε
+−

, eΩε
+−

are dened
below.

We dene rΩε
+−

and eΩε
+−

as the restriction operator in Ωε
+− and its adjoint operator, i.e., the extension

by 0 outside of Ωε
+−, respectively, by

rΩε
+−

: L2(R3)4 → L2(Ω+)
4 ⊕ L2(Ωε

−)
4

w → rΩε
+−

w := (rΩ+w ⊕ rΩε
−
w) ≡ (rΩ+ , rΩε

−
)w,

eΩε
+−

: L2(Ωε
−)

4 ⊕ L2(Ω+)
4 → L2(R3)4

v = (vε, v+) → eΩε
+−

(vε, v+) := eΩε
−
vε + eΩ+v+▷

(3.48)

Let us recall for z ∈ ρ(Dm), the lifting operators associated with boundary value problems (3.7), (3.8)
and (3.9) are dened respectively, by

Em(z) : P−H1◁2(Σ)4 → H1(Ω+)
4

g+ → Em(z)g+ := Φz
m(Λz

+,m)−1P−,
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Eε
m(z) : P+H

1◁2(Σε)4 → H1(Ωε
−)

4

gε → Eε
m(z)gε := Φz,ε

m (Λz,ε
+,m)−1P+,

Eε
m+M (z) : P+H

1◁2(Σ)4 ⊕ P−H
1◁2(Σε)4 → H1(Uε)4,

with Eε
m+M (z)(h+, h

ε) := Φz
m+M (Λz

+,m+M )−1P+h+ + Φ
z,ε
m+M (Λz,ε

+,m+M )−1P−hε.

In addition, we also recall the Poincaré-Steklov operators from Denition 3.1.7

Am(z) : P−H1◁2(Σ)4 → P+H
1◁2(Σ)4

g+ → Am(z)g+ := −P+β(Λ
z
+,m)−1P−g+,

A ε
m(z) : P+H

1◁2(Σε)4 → P−H1◁2(Σε)4

gε− → A ε
m(z)gε := −P−β(Λ

z,ε
+,m)−1P+g

ε,

Aε
m+M (z) : P+H

1◁2(Σ)4 ⊕ P−H
1◁2(Σε)4 → P−H

1◁2(Σ)4 ⊕ P+H
1◁2(Σε)4, with

Aε
m+M (h+, h

ε) :=
− P−β(Λz

+,m+M )−1P+h+,−P+β(Λ
z,ε
+,m+M )−1P−hε


.

3.3.2 The Krein resolvent formula of Rε

M

Let f ∈ L2(R3)4 and set

uε = rUεRε
M (z)f and v = rΩε

+−
Rε

M (z)f := (vε ⊕ v+)▷

Then uε and v satisfy the following system





(Dm − z)v+ = f in Ω+,

(Dm − z)vε = f in Ω
ε
−,

(Dm+M − z)uε = f in Uε,

P±tΣv+ = P±tΣu
ε on Σ,

P ε
∓tΣεvε = P ε

∓tΣεuε on Σ
ε▷

Using Lemma 1.5.1, it is straightforward to check that the following resolvent formulas hold:

R
Ωε

−

MIT(z) = rΩε
−
(Dm − z)−1eΩε

−
− Φ

z,ε
m,−(Λ

z,ε
+,m)−1tΣε(Dm − z)−1eΩε

−
, (3.49)

R
Ωε

+−

MIT (z) = rΩε
+−

(Dm − z)−1eΩε
+−
− rΩε

+−
eΩ+Φ

z
m,+(Λ

z
+,m)−1tΣ(Dm − z)−1rΩ+eΩε

+−

− rΩε
+−

eΩε
−
Φ
z,ε
m,−(Λ

z,ε
+,m)−1tΣε(Dm − z)−1rΩε

−
eΩε

+−
,

RUε

MIT(z) = rUε(Dm +Mβ − z)−1eUε − Φ
z,ε
m+M (Λz,ε

+,m+M )−1t∂Uε(Dm +Mβ − z)−1eUε ▷

In the whole following sections, and for simplicity, we’ll use the following notation:

(•, •) := diag(•, •) =


• 0
0 •


▷
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Now, we set Γ± := P±tΣ and Γε
± := P±tΣε ▷ Since Em(z), Eε

m(z) and Eε
m+M (z) gives the unique

solution to the boundary value problem (3.7), (3.8) and (3.9), respectively, and the fact




Γ−R

Ω+

MIT(z)rΩ+f = 0, Γ+R
Uε

MMIT(z)rUεf = 0,

Γ
ε
+R

Ωε
−

MIT(z)rΩε
−
f = 0, Γ

ε
−R

Uε

MIT(z)rUεf = 0▷

Then, if we let 
φ = Γ+rΩ+R

ε
M (z), φε = Γ

ε
−rΩε

−
Rε

M (z),

ψ = Γ−rUεRε
M (z), ψε = Γ

ε
+rUεRε

M (z),

it is easy to check that 



v+ = R
Ω+

MIT(z)rΩ+f + Em(z)ψ,

vε = R
Ωε

−

MIT(z)rΩε
−
f + Eε

m(z)ψε,

uε = RUε

MIT(z)rUεf + Eε
m+M (z)(φ,φε)▷

(3.50)

Hence, to get an explicit formula for Rε
M (z) it remains to nd the unknowns (φ,φε,ψ,ψε). To do this,

from (3.50) we get




φ = Γ+v+ = Γ+R
Ω+

MITrΩ+f +Am(z)ψ,

φε = Γ
ε
−v

ε = Γ
ε
−R

Ωε
−

MITrΩεf +A
ε
m(z)ψε,

ψ = Γ−u
ε = Γ−R

Uε

MIT(z)rUεf + Γ−E
ε
m+M (z)(φ,φε),

ψε = Γ
ε
+u

ε = Γ
ε
+R

Uε

MIT(z)rUεf + Γ+E
ε
m+M (z)(φ,φε)▷

(3.51)

Using the restriction map r• and the extension map e• given in (3.48), we get





v = eΩε
+−


R

Ω+

MIT(z), R
Ωε

−

MIT(z)

rΩε

+−
f + eΩε

+−


Em(z)P−, E

ε
m(z)P+


(Γ−,Γ

ε
+)rUεRε

M (z)f,

uε = RUε

MIT(z)rUεf + Eε
m+M (z)(P+, P−)


Γ+rΩ+ ,Γ

ε
−rΩε

−


Rε

M (z)f▷

Thus, we obtain

Rε
M (z) = eΩ+R

Ω+

MITrΩ+ + eΩε
−
R

Ωε
−

MITrΩε
−
+ eUεRUε

MIT(z)rUε

+


eΩε

+−


Em(z)P−, E

ε
m(z)P+


(Γ−,Γ

ε
+)rUε + eUεEε

m+M (z)

Γ+rΩ+ ,Γ

ε
−rΩε

−


Rε

M (z)

= eΩε
+−

R
Ωε

+−

MIT (z)rΩε
+−

+ eUεRUε

MIT(z)rUε + Eε
M (z)ΓεRε

M (z),

(3.52)

with R
Ωε

+−

MIT (z) as in (3.47).

Here Γε and Eε
M (z) are dened as follows:

Γε : H1(Ω+)
4 ⊕H1(Ωε

−)
4 ⊕H1(Uε)4 → H1◁2(Σ)4 ⊕H1◁2(Σε)4 ⊕H1◁2(Σ)4 ⊕H1◁2(Σε)4

(rΩ+ , rΩε
−
, rUε) → (Γ+rΩ+ Γε

−rΩε
−
Γ−rUε Γε

+rUε)t,
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and
Eε

M (z) = eΩε
+−

E
Ωε

+−
m (z) + eUεEε

m+M (z)(P+, P−),

with E
Ωε

+−
m (z) = rΩε

+−
eΩ+Em(z)P− + rΩε

+−
eΩε

−
Eε

m(z)P+ can be read as the following matrix:

E
Ωε

+−
m : P−H1◁2(Σ)4 ⊕ P+H

1◁2(Σε)4 → H1(Ω+)
4 ⊕H1(Ωε

−)
4

(ψ, ψε) → (EmP−ψ, Eε
mP+ψε) ≡


EmP− 0

0 Eε
mP+

 
ψ
ψε


▷

(3.53)

Now, applying Γε to the identity (3.52), it yields

Γ
εRε

MIT(z) =

I− 

Am(z)P−,A
ε
m(z)P+

−Aε
m+M (z)(P+, P−)


Γ
εRε

M (z) := Υ
ε
M (z)ΓεRε

M (z),

(3.54)

withRε
MIT(z) := eΩε

+−
R

Ωε
+−

MIT (z)+ eUεRUε

MIT(z)▷ Similarly, we mention that

Am(z),A ε

m(z)

means the

sum of both terms Am, A ε
m and can be read as the following matrix

A
Ωε

+−
m :=

Am,A ε
m


: P−H1◁2(Σ)4 ⊕ P+H

1◁2(Σε)4 → P+H
1◁2(Σ)4 ⊕H1◁2(Σε)4

(ψ, ψε) →

Am,A ε

m


(ψ, ψε) =


AmP− 0

0 A ε
mP+

 
ψ
ψε


▷

(3.55)

Using the formula of Aε
m+M , the term (Γ−,Γε

+)E
ε
m+M (z) is identied with (P−Aε

m+M , P+A
ε
m+M ) =

(P−, P+)A
ε
m+M (z) ≡ (P−, 0)Aε

m+M (z) + (0, P+)A
ε
m+M (z)▷

Now, applying also

I+A

Ωε
+−

m (z) + (P−, P+)A
ε
m+M (z)


to the identity (3.54) we get

Γ
εRε

M (z) = Ξ
ε
M (z)


I+A

Ωε
+−

m (z) + (P−, P+)A
ε
m+M (z)


Γ
εRε

MIT(z),

with Ξε
M (z) : H1◁2(Σ)4 ⊕H1◁2(Σε)4 → H1◁2(Σ)4 ⊕H1◁2(Σε)4 the following quantity

Ξ
ε
M (z) :=


I8 −A

Ωε
+−

m (z)(P−, P+)A
ε
m+M (z)−Aε

m+M (z)(P+, P−)A
Ωε

+−
m (z)

−1

▷ (3.56)

From which it follows that,

Rε
M (z) = Rε

MIT(z) + Eε
M (z)[Υε

M (z)]−1
Γ
εRε

MIT(z), (3.57)

with

[Υε
M ]−1(z) = Ξ

ε
M (z)


I+A

Ωε
+−

m (z) + (P−, P+)A
ε
m+M (z)


▷

123



Chapter 3 – On the approximation of the Dirac operator coupled with conning Lorentz scalar δ-shell interactions.

Remark 3.3.1. The identity (3.54) has the following matrix form




Γ+rΩ+R
ε
M

Γ−rΩε
−
Rε

M

Γ−rUεRε
M

Γε
+rUεRε

M


 =




Γ+R
Ω+

MITrΩ+

Γε
−R

Ωε
−

MITrΩε
−

Γ−RUε

MITrUε

Γε
+R

Uε

MITrUε




+




0 0 AmP− 0
0 0 0 A ε

mP+

Aε
m+M (P+, P−) Aε

m+M (P+, P−) 0 0
Aε

m+M (P+, P−) Aε
m+M (P+, P−) 0 0







Γ+rΩ+R
ε
M

Γε
−rΩε

−
Rε

M

Γ−rUεRε
M

Γε
+rUεRε

M


 ▷

Moreover, if we note by Γε
+− = (Γ+rΩ+ Γε

−rΩε
−
)t and Γε

−+ = (Γ−rUε Γε
+rUε)t. Then, using the

quantities of (3.51), we remark that the Krein resolvent formula 3.57 can be also written in the following
matrix

rΩε

+−
Rε

M

rUεRε
M


=


R

Ωε
+−

MIT rΩε
+−

RUε

MITrUε


+


E

Ωε
+−

m Ξ
ε,−+
M 0

0 Eε
m+MΞ

ε,+−
M

 
Aε

m+M I4

I4 A
Ωε

+−
m

 
Γε
+−R

Ωε
+−

MIT rΩε
+−

Γε
−+R

Uε

MITrUε


,

where A
Ωε

+−
m is the matrix in (3.55) and Ξ

ε,±∓
M are given in the following corollary.

Corollary 3.3.1. Consider the operator Ξε
M (z) given in (3.56). Then, there isM0 > 0 such that for every

M > M0, h ≡ ε = 1◁M and for all z ∈ ρ(D
Ωε

+−

MIT )∩ ρ(Dε
M ), the operator Ξε

M (z) is everywhere dened
and uniformly bounded with respect to M . Moreover, the operators Ξε,+−

M (z) and Ξ
ε,−+
M (z) dened by

Ξ
ε,+−
M (z) : P+H

s(Σ)4 ⊕ P−Hs(Σε)4 → P+H
s(Σ)4 ⊕ P−Hs(Σε)4,

Ξ
ε,−+
M (z) : P−Hs(Σ)4 ⊕ P+H

s(Σε)4 → P−Hs(Σ)4 ⊕ P+H
s(Σε)4,

which have the following formula

Ξ
ε,+−
M (z) =


I−A

Ωε
+−

m (z)(z)(P−, P+)A
ε
m+M (z)(P+, P−)

−1
,

Ξ
ε,−+
M (z) =


I− (P−, P+)A

ε
m+M (z)(P+, P−)A

Ωε
+−

m (z)
−1

are bounded for any s ∈ R, and it holds that

||Ξε,±∓
M (z)||P±H−1◁2(Σ)4⊕P∓H−1◁2(Σε)4→P±H−1◁2(Σ)4⊕P∓H−1◁2(Σε)4 ≲ 1, (3.58)

uniformly with respect to M > M0.
Moreover, the Poincaré-Steklov Aε

m+M , satises the following estimate

||Aε
m+M ||P+H1◁2(Σ)4⊕P−H1◁2(Σε)4→P−H−1◁2(Σ)4⊕P+H−1◁2(Σε)4 ≲ M−1▷ (3.59)

Proof. Set κ = m + M and h = κ−1. The proof of this corollary follows a similar argument as
in [BBZ37, Proposition 6.1]. It is based on the pseudodierential properties of the Poincaré-Steklov
operators A ε

m and Aε
κ. Since Am (resp. A ε

m) are a pseudodierential operators of order 0, see Remark
3.2.4 (resp. Corollary 3.2.9), we can consider it as an h-pseudodierential operator of order 0 whose
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principal symbol is given by:

Ph,Am
(xΣ, ξ) =

S · (ξ ∧ n(xΣ))ξ ∧ n(xΣ)
 P−, xΣ ∈ Σ,

Ph,A ε
m
(x, ξ) = −


1− εW (xΣ)

−1
S · (ξ ∧ n(p−1(x)))

1− εW (xΣ)
−1

ξ ∧ n(p−1(x))

P+, Σ

ε ∋ x = p(xΣ) = xΣ + εn(xΣ),

where S is the spin angular momentum given in Lemma 3.2.1, ξ ∈ R
2 can be identify with ξ̄ =

(ξ1, ξ2, 0)
t ∈ R

3, p is the dieomorphism from Remark 3.1.2, and for x = φ(x̃) stands for nφ(x̃).

On the other hand, Proposition 3.2.7 follows that Aε
κ is h-pseudodierential operator of order 0 has

the following principal symbol

Ph,Aε
κ
(x, ξ) =


1− εW (xΣ)

−1 S · (ξ ∧ n(p−1(x)))
1− εW (xΣ)

−1
ξ ∧ n(p−1(x))

2
+ 1 + 1


−P+ 0
0 P−


▷

Consequently, the symbol calculus yields for all h < h0 that


I8 −A

Ωε
+−

m (z)(P−, P+)A
ε
κ(z)−Aε

κ(z)(P+, P−)A
Ωε

+−
m (z)



is a κ−1-pseudodierential operator of order 0.

Now, using the principal symbols of Am, A ε
m, the principal symbol of A

Ωε
+−

m can be written as the
following:

P
h,A

Ωε
+−

m

(xΣ, ξ) =


Ph,Am

(xΣ, ξ) 0
0 Ph,A ε

m
(p(xΣ), ξ)



=
S · (ξ ∧ n(xΣ))ξ ∧ n(xΣ)






P− 0

0 −

1− εW (xΣ)

−1

1− εW (xΣ)
−1P+


 ▷

Using Lemma 3.2.1, we obtain

P
h,A

Ωε
+−

m

(xΣ, ξ)Ph,Aε
κ
(x, ξ) =

−

1− εW (xΣ)

−1ξ ∧ n(xΣ)



1− εW (xΣ)

−1
ξ ∧ n(p−1(x))

2
+ 1 + 1




P+ 0

0


1− εW (xΣ)

−1

1− εW (xΣ)
−1P−


 ▷

Then, it yields

I8 −P
h,A

Ωε
+−

m

(xΣ, ξ)Ph,Aε
κ
(x, ξ)−Ph,Aε

κ
(x, ξ)P

h,A
Ωε
+−

m

(xΣ, ξ) =
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I8 +


1− εW (xΣ)

−1ξ ∧ n(xΣ)



1− εW (xΣ)

−1
ξ ∧ n(p−1(x))

2
+ 1 + 1




I4 0

0


1− εW (xΣ)

−1

1− εW (xΣ)
−1I4


 ≳ 1▷

Thus, Ξε
M is a zero-order pseudoddiferential operator.

Thanks to the following relationship: Ξ
ε,±∓
M (z) = (P±, P∓)Ξε

M (z)(P±, P∓), it yields the same
properties for Ξε,±∓

M (z) and therefore (3.58) is established.

Regarding the estimate of Aε
κ, exploits also the Calderón-Vaillancourt theorem which shows that for

any operator in hOphS0(∂Uε) is uniformly bounded by O(h), with respect to h = κ−1 ∈ (0, 1), from
H1◁2(∂Uε)4 into H1◁2(∂Uε)4 → H−1◁2(∂Uε)4, see (2.2). Thus,


Aε

κ −
S · (∇∂Uε ∧ n(p−1(x)))
−κ−2∆∂Uε + I+ I

(P+, P−)


H1◁2(∂Uε)4→H−1◁2(∂Uε)4

≲ κ−1,

uniformly with respect to κ big enough and ε ∈ (0, ε0). Then we conclude the proof of the estimate by

using that

−κ−2∆∂Uε + I + I

−1
is uniformly bounded from H1◁2(∂Uε)4 into itself and (∇∂Uε ∧

n(p−1(x))) is uniformly bounded from H1◁2(∂Uε)4 into H−1◁2(∂Uε)4. ■

Remark 3.3.2. Let E
Ωε

+−
m from (3.53). Thanks to [BBZ37, Proposition 4.1 (ii)], we have that


E

Ωε
+−

m (z)

∗
= −β(Γε

+−)
tR

Ωε
+−

MIT (z) and

Eε
m+M (z)

∗
= −β(Γε

−+)
t


RUε

MIT(z)
RUε

MIT(z)


,

for any z ∈ ρ(D
Ωε

+−

MIT ) ∩ ρ(Dε
M ).

3.4 Resolvent convergence to the Dirac operator with Lorentz scalar.

In this section, we gather the necessary elements to prove themain result of this work. The components
of the proof for the main theorem (i.e., Theorem 3.1.5) are dedicated to examining the convergence of the
terms present in the resolvent formula (3.52). It is important to note that this resolvent formula includes
certain terms independent of M and ε, namely Em,Am, and R

Ω+

MITrΩ+ , which remain xed and act
within Ω+. Consequently, our focus shifts to examining the convergence of terms dependent on ε but

independent of M , namely R
Ωε

−

MITrΩε− and Eε
m (see, Proposition 3.1.3). Subsequently, we will proceed

to estimate the remaining terms in relation to M and ε (see, Proposition 3.1.4).

Proposition 3.4.1. Let ε0 > 0 be small enough, and let z ∈ C\R. We set Ω− := R
3 \ Ω+ the exterior

xed domain and by Σ = ∂Ω− = ∂Ω+ its boundary. We denote by RΩ−

MIT the resolvent of the xed MIT

bag operator, which we denote by DΩ−

MIT, acts in Ω−. Then, for any ε ∈ (0, ε0) the following holds:


eΩε

−
R

Ωε
−

MIT(z)rΩε
−
− eΩ−

R
Ω−

MIT(z)rΩ−



L2(R3)4→L2(R3)4

= O(ε)▷ (3.60)
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Proof. The Krein formula for the resolvent R
Ωε

−

MIT (from equality (3.49))

eΩε
−
R

Ωε
−

MIT(z)rΩε
−
= (Dm − z)−1 − eΩε

−
Φ
z,ε
m,−(Λ

z,ε
+,m)−1tΣε(Dm − z)−1,

eΩ−
R

Ω−

MIT(z)rΩ−
= (Dm − z)−1 − eΩ−

Φ
z
m,−(Λ

z
m,+)

−1tΣ(Dm − z)−1

yield that


eΩε

−
R

Ωε
−

MIT(z)rΩε
−
− eΩ−

R
Ω−

MIT(z)rΩ−



L2(R3)4→L2(R3)4

=

eΩ−

Φ
z
m,−(Λ

z
+,m)−1tΣ(Dm − z)−1 − eΩε

−
Φ
z,ε
m,−(Λ

z,ε
+,m)−1tΣε(Dm − z)−1



L2(R3)4→L2(R3)4

⩽

eΩ−

Φ
z
m,−(Λ

z
+,m)−1tΣ − eΩε

−
Φ
z,ε
m,−(Λ

z,ε
+,m)−1tΣε



H1(R3)4→L2(R3)4


(Dm − z)−1



L2(R3)4→H1(R3)4

≲

eΩ−

Φ
z
m,−(Λ

z
+,m)−1tΣ − eΩε

−
Φ
z,ε
m,−(Λ

z,ε
+,m)−1tΣε



H1(R3)4→L2(R3)4

(3.61)
since (Dm − z)−1 is bounded from L2(R3)4 into H 1(R3)4.

To obtain a rigorous estimate of the right-hand side of (3.61), we’ll use the unitary transformation
Tε from Denition 3.1.2 and the explicit formula for Λz

+,m (resp. Λ
z,ε
+,m). Let f, g ∈ L2(R3)4▷ Since

tΣ(Dm − z)−1 = (Φz̄
m)∗


resp. tΣε(Dm − z)−1 = (Φz̄,ε

m )∗

by duality and interpolation arguments, we

get that



eΩ−

Φ
z
m,−


β◁2 + Cz,m

−1
tΣ − eΩε

−
Φ
z,ε
m,−


β◁2 + C

ε
z,m

−1
tΣε


f, g



L2(R3)4,L2(R3)4



=


eΩ−

Φ
z
m,−


β◁2 + Cz,m

−1
tΣf, g



L2(R3)4,L2(R3)4
−


eΩε

−
Φ
z,ε
m,−


β◁2 + C

ε
z,m

−1
tΣεf, g



L2(R3)4,L2(R3)4



=



β◁2 + Cz,m

−1
tΣf, tΣ(Dm − z)−1rΩ−

g


L2(Σ)4,L2(Σ)4
−


β◁2 + C

ε
z,m

−1
TεT

−1
ε tΣεf, tΣε(Dm − z)−1rΩε

−
g


L2(Σε)4,L2(Σε)4



=



β◁2 + Cz,m

−1
tΣf, tΣ(Dm − z)−1rΩ−

g


L2(Σ)4,L2(Σ)4
−


β◁2 + TεT

−1
ε C

ε
z,mTεT

−1
ε

−1
TεT

−1
ε tΣεf, tΣε(Dm − z)−1rΩε

−
g


L2(Σε)4,L2(Σε)4



=



β◁2 + Cz,m

−1
tΣf, tΣ(Dm − z)−1rΩ−

g


L2(Σ)4,L2(Σ)4
−


β◁2 + T −1

ε C
ε
z,mTε

−1
T −1
ε tΣεf, T −1

ε tΣε(Dm − z)−1rΩε
−
g


L2(Σ)4,L2(Σ)4

▷

By adding and subtracting the term


β◁2+T −1
ε C z,ε

m Tε
−1

T −1
ε tΣεf, tΣ(Dm−z)−1rΩ−

g


L2(Σ)4,L2(Σ)4in the last quantity, we obtain that
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eΩ−

Φ
z
m,−


β◁2 + Cz,m

−1
tΣ − eΩε

−
Φ
z,ε
m,−


β◁2 + C

ε
z,m

−1
tΣε


f, g



L2(R3)4,L2(R3)4



⩽




β◁2 + Cz,m

−1
tΣ −


β◁2 + T −1

ε C
ε
z,mTε

−1
T −1
ε tΣε


f



L2(Σ)4


tΣ(Dm − z)−1rΩ−

g



L2(Σ)4

+




β◁2 + T −1

ε C
ε
z,mTε

−1
T −1
ε tΣεf



L2(Σ)4




tΣ(Dm − z)−1rΩ−

− T −1
ε tΣε(Dm − z)−1rΩε

−


g



L2(Σ)4

=: r1 + r2▷

Now, let Cz,m and T −1
ε C ε

z,mTε from (1.13) and (3.44) respectively. Then, for a xed ρ, ρ
′
> 0 such

that ρ
′′
= min{ρ, ρ

′
}, the regularity of Σ and ϕz

m, and a combination of the mean value theorem give

ϕz
m


xΣ − yΣ + ε(n(xΣ)− n(yΣ))

− ϕz
m(xΣ − yΣ)

 ⩽ ε |∂ϕz
m| ⩽ εC, with C only depending on z▷

We set fε(yΣ) := det(1−εn(xΣ))f(yΣ)▷On one hand, using the Cauchy-Schwarz inequality, we obtain
that:
Cz,mf(xΣ)−


T −1
ε C

ε
z,mTεf


(xΣ)



⩽



|xΣ−yΣ|>ρ
′′

ϕz
m


xΣ − yΣ + ε(n(xΣ)− n(yΣ))


f(yΣ)− ϕz

m(xΣ − yΣ)fε(yΣ)
dσ(yΣ)

⩽



Σ



ϕz
m


xΣ − yΣ + ε(n(xΣ)− n(yΣ))

− ϕz
m(xΣ − yΣ)


f(yΣ)

dσ(yΣ)

+



Σ

ϕz
m(xΣ − yΣ)


fε(yΣ)− f(yΣ)

dσ(yΣ)▷

On the other hand, Proposition 1.5.3 gives us

det

1− εW (xΣ)


= 1− ελ1(xΣ)− ελ2(xΣ) + ε2λ1(xΣ)λ2(xΣ),

where λ1(xΣ), λ2(xΣ) are the eigenvalues of the Weingarten map W (xΣ). Then, we get

|fε(yΣ)− f(yΣ)| = |det(1− εW (yΣ))− 1||f(yΣ)| ≲ ε||f ||L2(Σ)4 ▷

We conclude that



Cz,m − T −1

ε C
ε
z,mTε

 
L2(Σ)4→L2(Σ)4

= O(ε)▷ (3.62)

Now, we are going to establish the estimate r1. First, we have that tΣ(Dm − z)−1rΩ−
is bounded from

L2(R3)4 into L2(Σ)4. On the other hand, using triangular inequality, we get that



β

2
+ Cz,m

−1
tΣ −

β
2
+ T −1

ε C
ε
z,mTε

−1
T −1
ε tΣε


f



L2(Σ)4

⩽



β

2
+ Cz,m

−1
−

β
2
+ T −1

ε C
ε
z,mTε

−1
tΣf



L2(Σ)4

+



β
2
+ T −1

ε C
ε
z,mTε

−1
T −1
ε tΣε − tΣ


f



L2(Σ)4

⩽ q1 + q2▷
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To prove the estimate q1, we let f ∈ L2(Σ)4 and we set h =


β

2
+ Cz,m

−1

tΣf bounded from L2(Σ)4

into itself. Then, the Cauchy-Schwarz inequality and the following statement


β

2
+ T −1

ε C
ε
z,mTε

−1

−

β

2
+ Cz,m

−1

=


β

2
+ C

z,ε
m

−1 
Cz,m − T −1

ε C
ε
z,mTε

 
β

2
+ Cz,m

−1

(3.63)

yields that

q1 =






β

2
+ T −1

ε C
ε
z,mTε

−1 
Cz,m − T −1

ε C
ε
z,mTε


h




L2(Σ)4

⩽






β

2
+ T −1

ε C
ε
z,mTε

−1



L2(Σ)4→L2(Σ)4



Cz,m − T −1

ε C
ε
z,mTε


h

L2(Σ)4

⩽



Cz,m − T −1

ε C
ε
z,mTε


h

L2(Σ)4

≲



Cz,m − T −1

ε C
ε
z,mTε

 
L2(Σ)4→L2(Σ)4

h

L2(Σ)4

≲



Cz,m − T −1

ε C
ε
z,mTε

 
L2(Σ)4→L2(Σ)4

since Cz,m and T −1
ε C ε

z,mTε are bounded from L2(Σ)4 into itself. Thanks to the estimate (3.62), we get
that q1 = O(ε)▷

To prove the estimate q2, we have for x ∈ Σε, the following estimate holds in L2(Σ)4


tΣ(Dm − z)−1rΩ−

− T −1
ε tΣε(Dm − z)−1rΩε

−



L2(R3)4→L2(Σ)4

= O(ε)▷ (3.64)

Next, based on (3.44), we immediately get that T −1
ε C ε

z,mTε is uniformly bounded from L2(Σ)4 into itself.
Thus, together with (3.62), (3.64), we deduce that r2 has a convergence rate of O(ε)▷

Now, for the same reasons as those used to prove the estimate q2, subsequently, the fact that we have

we immediately deduce that

β◁2+T −1

ε C ε
z,mTε

−1
=


β◁2+Cz,m

−1
+O(ε) (see the estimate q1 for

more details), we obtain the estimate r2.

Thus, we conclude that the statement (3.60) is valid in L2(R3)4. The proof of Proposition 3.4.1 is
complete. ■

Lemma 3.4.2. If the Lorentz scalar is µ = 2 (connement case). We can identify the domain (3.2) by the
following form

dom(DL) := {(φ+,φ−) ∈ H1(Ω+)
4 ⊕H1(Ω−)

4, g ∈ H1◁2(Σ)4, P+φ− = P−φ+ = 0 on Σ},

and then,DL = D
Ω+

MIT⊕D
Ω−

MIT,whereD
Ω+

MIT resp. DΩ−

MIT is introduced in Section 3.1.1 resp. Proposition
3.4.1.

Proof. Using Plemelj-Sokhotski jump formula from Lemma 1.5.1-(i), and that φ± = tΣu + Cz
±,m[g],

then we get P+φ− = −βP−P+ = 0 and P−φ+ = −βP+P− = 0. Moreover, as P+φ− + P−φ+ =
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tΣu+ Λz
+,m[g], we have that tΣu = −Λz

+,m[g]. ■

Proof of Proposition 3.1.3. For z ∈ ρ(DL), we have the following estimate


eΩε

−
R

Ωε
−

MIT(z)rΩε
−
+ eΩ+R

Ω+

MIT(z)rΩ+ −RL(z)


L2(R3)4

⩽

eΩε

−
R

Ωε
−

MIT(z)rΩε
−
+ eΩ+R

Ω+

MIT(z)rΩ+ + eΩ−
R

Ω−

MIT(z)rΩ−
− eΩ−

R
Ω−

MIT(z)rΩ−
−RL(z)



L2(R3)4

⩽

eΩε

−
R

Ωε
−

MIT(z)rΩε
−
− eΩ−

R
Ω−

MIT(z)rΩ−



L2(R3)4

+

eΩ+R

Ω+

MIT(z)rΩ+ + eΩ−
R

Ω−

MIT(z)rΩ−
−RL(z)



L2(R3)4

▷

Then, Proposition 3.4.1 and Lemma 3.4.2 yield the statement (1.22). ■

Remark 3.4.1. For all f ∈ L2(R3)4, g ∈ P+L
2(Σ)4 the following convergence holds

eΩε
−
Eε

m(z)[Tε]− eΩ−
E−

m(z)

L2(Σ)4→L2(R3)4

= O(ε), (3.65)

where E−
m is the lifting operator associated with the boundary value problem (Dm − z)U = 0 in Ω−

with P+U = 0 on Σ▷

Proof. Now, let me show la convergence considered in (3.65). To this end, let g := Tεg ∈ P+L
2(Σε)4,

then we have
⟨eΩε

−
Eε

m(z)[Tεg], f⟩L2(R3)4 − ⟨eΩ−
E−

m(z)g, f⟩L2(R3)4



=
⟨βg,


T −1
ε Γ

ε
+R

Ωε
−

MIT(z̄)rΩε
−
− Γ+R

−
MIT(z̄)rΩ−


f⟩L2(Σ)4



⩽ ||g||L2(Σ)4




T −1
ε Γ

ε
+rΩε

−
eΩε

−
Rε

MIT(z̄)rΩε
−
− Γ+rΩ−

eΩ−
R

Ω−

MIT(z̄)rΩ−


f


L2(Σ)4

≲



T −1
ε Γ

ε
+rΩε

−
eΩε

−
R

Ωε
−

MIT(z̄)rΩε
−
− T −1

ε Γ
ε
+rΩε

−
eΩ−

R
Ω−

MIT(z̄)rΩ−
+ T −1

ε Γ
ε
+rΩε

−
eΩ−

R
Ω−

MIT(z̄)rΩ−

− Γ+rΩ−
eΩ−

R
Ω−

MIT(z̄)rΩ−


f


L2(Σ)4

≲
T −1

ε Γ
ε
+rΩε

−


L2(Σ)4


eΩε

−
R

Ωε
−

MIT(z̄)rΩε
−
f − eΩ−

R
Ω−

MIT(z̄)rΩ−
f


L2(R3)4

+

T −1

ε Γ
ε
+rΩε

−
− Γ+rΩ−



L2(Σ)4

eΩ−
R

Ω−

MITrΩ−
(z̄)f


L2(R3)4

▷

Since Γε
+ is bounded form L2(Ωε

−)
4 to L2(Σε)4 for ε small enough, then T −1

ε Γε
+rΩε

−
is bounded in

L2(Σ)4. Thus, together with the boundedness of eΩ−
R

Ω−

MIT in L2(R3)4 and the convergence established
in Proposition 3.1.3, we get

⟨eΩε
−
Eε

m(z)[Tεg], f⟩L2(R3)4 − ⟨eΩ−
E−

m(z)g, f⟩L2(R3)4

 ≲ ε, for all f ∈ L2(R3)4▷

Since this is true for all g ∈ L2(Σ)4, by duality arguments it follows that

eΩε
−
Eε

m(z)[Tε]− eΩ−
E−

m(z)

L2(Σ)4→L2(R3)4

= O(ε)▷

■
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Lemma 3.4.3. Let K ⊂ C be a compact set. Then, there exists M0 > 0 such that for all M > M0, for
ε ∈ (0, ε0), K ⊂ ρ(DUε

MIT(m+M)), and for z ∈ K the following estimates hold:


eUεRUε

MIT(z)rUεf


L2(R3)4

≲
1

M
||f ||

L2(R3)4 , ∀ f ∈ L2(R3)4,


Γε

−+R
Uε

MIT(z)rUεf


L2(∂Uε)4

≲
1√
M

||f ||
L2(R3)4 , ∀ f ∈ L2(R3)4,


Γε

−+R
Uε

MIT(z)rUεf


H−1◁2(∂Uε)4

≲
1

M
||f ||

L2(R3)4 , ∀ f ∈ L2(R3)4,

eUεEε
m+M (z)(ψ, Tεφ)


L2(R3)4

≲
1√
M

||ψ||
L2(Σ)4 ||φ||L2(Σ)4 ,

∀ (ψ, Tεφ) ∈ P+L
2(Σ)4 ⊕ P−L

2(Σε)4,

eUεEε
m+M (z)(ψ, Tεφ)


L2(R3)4

≲
1

M
||ψ||H1◁2(Σ)4 ||φ||H1◁2(Σ)4 ,

∀ (ψ, Tεφ) ∈ P+H
1◁2(Σ)4 ⊕ P−H

1◁2(Σε)4▷

Proof. Using the same arguments as in the proof of [BBZ37, Lemma6.1], we can show the above estimates
with respect to M . First, I want to show the claimed estimates for eUεRUε

MIT(z)rUε and Γε
−R

Uε

MIT(z)rUε .
For this, x a compact set K ⊂ C, and note that for z ∈ K and M1 > supz∈K{|Re(z)| −m} it holds
that K ⊂ ρ(Dm+M1), and hence K ⊂ ρ(DUε

MIT) for all M > M1. Let f ∈ L2(R3)4▷ We have that

||eUεRUε

MIT(z)rUεf ||L2(R3)4 = ||RUε

MIT(z)rUεf ||L2(Uε)4 ▷

Now, for rUεf ∈ L2(Uε)4 and φ ∈ dom(DUε

MIT), then a straightforward application of the Green’s
formula yields that

∥DUε

MITφ∥2L2(Uε)4 =∥(α ·∇)φ∥2
L2(Uε)4 + (m+M)2 ||φ||2

L2(Uε)4 + (m+M)

PUε

− t∂Uεφ


2

L2(∂Uε)4
,

with PUε

− t∂Uε = P−tΣ + P+tΣε . Using this and the Cauchy-Schwarz inequality we obtain that

∥(DUε

MIT − z)φ∥2L2(Uε)4 = ∥DUε

MITφ∥2L2(Uε)4 + |z|2∥φ∥2
L2(Uε)4 − 2Re(z)⟨DUε

MITφ,φ⟩L2(Uε)4

⩾∥DUε

MITφ∥2L2(Uε)4 + |z|2∥φ∥2
L2(Uε)4 −

1

2
∥DUε

MITφ∥2L2(Uε)4 − 2|Re(z)|2∥φ∥2
L2(Uε)4

⩾


(m+M)2

2
+ |Im(z)|2 − |Re(z)|2


||φ||2

L2(Uε)4 +
M

2


PUε

− t∂Uεφ


2

L2(∂Uε)4
▷

Therefore, taking RUε

MIT(z)rUεf = φ and M ⩾ M2 ⩾ supz∈K{

|Re(z)|2 − |Im(z)|2 −m} we obtain

the inequality


RUε

MIT(z)rUεf


L2(Uε)4

+
1√
M


Γε

−+R
Uε

MIT(z)rUεf


L2(∂Uε)4

≲
1

M
||f ||

L2(R3)4 , with ∂Uε = Σ ∪ Σ
ε▷

Thus


eUεRUε

MIT(z)rUεf


L2(R3)4

≲
1

M
||f ||

L2(R3)4 , and

Γε

−+R
Uε

MIT(z)rUεf


L2(∂Uε)4

≲
1√
M

||f ||
L2(R3)4 ▷
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Since Γε
−+ := (Γ−,Γε

+) is bounded from L2(Uε)4 into H−1◁2(∂Uε)4 for ε ∈ (0, ε0) with ε0 suciently
small, it follows from the above inequality that


Γε

−+R
Uε

MIT(z)rUεf


H−1◁2(∂Uε)4

≲
Γε

−+


L2(Uε)4→H−1◁2(∂Uε)4


RUε

MIT(z)rUεf


L2(Uε)4

≲
1

M
||f ||

L2(R3)4 ,

for any f ∈ L2(R3)4, which gives the last inequality.

Let us now turn to the proof of the claimed estimates for eUεEε
m+M (z)▷ Let f, ψ belong to L2(R3)4 and

L2(Σ)4, respectively, and consider the transformation operator Tε dened in (3.1.2). For φ ∈ L2(Σ)4,
we set φε = Tεφ ∈ L2(Σε). We mention that β(Γ−,Γε

+)R
Uε

MIT(z) is the adjoint of the oper-
ator Eε

m+M (z) : P+L
2(Σ)4 ⊕ P−L2(Σε)4 −→ L2(Uε)4. Using this and the estimate fullled by

(Γ−,Γε
+)R

Uε

MIT(z)rUε we obtain that

⟨f, eUεEε
m+M (z)(ψ,φε)⟩L2(R3)4

 =
⟨(Γ−, T

−1
ε Γ

ε
+)R

Uε

MIT(z)rUεf,β(ψ,φ)⟩L2(Σ)4



⩽



Γ−, T

−1
ε Γ

ε
+


RUε

MIT(z)rUεf


L2(Σ)4

||ψ||
L2(Σ)4 ||φ||L2(Σ)4

⩽ ||ψ||
L2(Σ)4 ||φ||L2(Σ)4


T −1

ε



L2(∂Uε)4→L2(Σ)4


Γε

−+R
Uε

MIT(z)rUεf


L2(∂Uε)4

≲
1√
M

||f ||L2(R3)4 ||ψ||L2(Σ)4 ||φ||L2(Σ)4 ▷

So, we get

eUεEε
m+M (z)(ψ, Tεφ)


L2(R3)4

≲
1√
M

||ψ||
L2(Σ)4 ||φ||L2(Σ)4 ▷

Similarly, we established the last inequality of the lemma andthis nishes the proof of the lemma. ■

The last ingredient to prove Theorem 3.1.5 is to show that the second term in the ride hand side of
the resolvent formula (3.57) converges to zero when M converges to∞, (i.e., h = ε = M−1 → 0)▷

Proof of Proposition 3.1.4. Recall the following notations: D
Ωε

+−

MIT = D
Ω+

MIT ⊕D
Ωε

−

MIT and R
Ωε

+−

MIT =

R
Ω+

MIT ⊕ R
Ωε

−

MIT, with Ωε
+− = Ω+ ∪ Ωε

−. Let z ∈ ρ(Dε
M ) ∩ ρ(D

Ωε
+−

MIT ) and f ∈ L2(R3)4. From the
resolvent formula (3.57) and Remark 3.3.1, together give us the following

Rε
M (z)− eΩε

+−
R

Ωε
+−

MIT (z)rΩε
+−


L2(R3)4→L2(R3)4 ⩽

eUεRUε

MIT(z)rUεf

L2(R3)4

+
EΩε

+−
m (z)Ξε,−+

M (z)A ε
m+MΓ

ε
+−R

Ωε
+−

MIT (z)rΩε
+−

f

L2(Ωε

+−)4

+
EΩε

+−
m (z)Ξε,−+

M (z)Γε
−+R

Uε

MIT(z)rUεf

L2(Ωε

+−)4

+
Eε

m+M (z)Ξε,+−
M (z)Γε

+−R
Ωε

+−

MIT (z)rΩε
+−

f

L2(Uε)4

+
Eε

m+M (z)Ξε,+−
M (z)A

Ωε
+−

m Γ
ε
−+R

Uε

MIT(z)rUεf

L2(Uε)4

=: J1 + J2 + J3 + J4 + J5▷
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We start with J1. From the second item of Lemma 3.4.3, we get that J1 ≲ M−1▷ Now, thanks to the
uniform bound (with respect to M ) of Ξε,±∓

M , see Corollary 3.3.1, J2, J3, J4, J5 become as follows

J2 ≲
EΩε

+−
m (z)


L2(Ωε

+−)4

A ε
m+M


H−1◁2(Σ)4⊕H−1◁2(Σε)4

Γε
+−R

Ωε
+−

MIT (z)rΩf

H1◁2(Σ)4⊕H1◁2(Σε)4

,

J3 ≲
EΩε

+−
m (z)


H−1◁2(Σ)4⊕H−1◁2(Σε)4→L2(Ωε

+−)4

Γε
−+R

Uε

MIT(z)rUεf

H−1◁2(Σ)4⊕H−1◁2(Σε)4

,

J4 ≲
Eε

m+M (z)

H1◁2(Σ)4⊕H1◁2(Σε)4→L2(Uε)4

Γε
+−R

Ωε
+−

MIT (z)rΩf

H1◁2(Σ)4⊕H1◁2(Σε)4

,

J5 ≲
Eε

m+M (z)

L2(Uε)4

A Ωε
+−

m


L2(Σ)4⊕L2(Σε)4

Γε
−+R

Uε

MIT(z)rUεf

L2(Σ)4⊕L2(Σε)4

▷

Notice that the terms E
Ωε

+−
m , A

Ωε
+−

m , and Γε
+−R

Ωε
+−

MIT (z) are bounded operators for all ε ∈ (0, ε0),
everywhere dened and do not depend on M▷ Now, thanks to Lemma 3.4.3, Γε

−+R
Uε

MIT(z)rUε and
eUεEε

m+M (z) hold the following estimate


Γε

−+R
Uε

MIT(z)rUεf


L2(∂Uε)4

≲
1√
M

||f ||
L2(R3)4

and

Γε

−+R
Uε

MIT(z)rUεf


H−1◁2(∂Uε)4

≲
1

M
||f ||

L2(R3)4 ,

eUεEε
m+M (z)(ψ, Tεφ)


L2(R3)4

≲
1√
M

||ψ||
L2(Σ)4 ||φ||L2(Σ)4 ,

eUεEε
m+M (z)(ψ, Tεφ)


L2(R3)4

≲
1

M
||ψ||H1◁2(Σ)4 ||φ||H1◁2(Σ)4 ▷

Thus, from the above estimates, we deduce that

Jk ≲ M−1||f ||L2(R3)4 , ∀ k ∈ {3, 4, 5}▷

Moreover, the following lower bound of Aε
m+M , see Corollary (3.59),

||Aε
m+M ||H1◁2(Σ)4⊕H1◁2(Σε)4→H−1◁2(Σ)4⊕H−1◁2(Σε)4 ≲ M−1,

yields that J2 ≲ M−1||f ||L2(R3)4 ▷ Thus, we obtain the estimate

Rε
M (z)− eΩε

+−
R

Ωε
+−

MIT (z)rΩε
+−


L2(R3)4→L2(R3)4

≲ M−1||f ||L2(R3)4 ▷

And this achieves the proof of the proposition. ■

Thus, Theorem 3.1.5 is then obtained by a simple combination of Propositions 3.1.3, 3.1.4.

⋆ ⋆ ⋆ ⋆ ⋆ ⋆

133



Chapter 3 – On the approximation of the Dirac operator coupled with conning Lorentz scalar δ-shell interactions.

3.5 Appendix

For a better understanding of the construction of the approximation of the solutions Aj(y, ξ, τ) and
the order of the coecients Bj,k(y, ξ) as well as the proof of Proposition 3.2.4, an explicit calculation is
presented in this appendix, which aims to obtain an exact form of the solutions Aj(y, ξ, τ) for j = 1, 2.

For j = 1, we dene A1(y, ξ, τ) inductively by




h∂τA1(y, ξ, τ) = L0(y, ξ)A1(y, ξ, τ) +


L1 + (α · ñφc3)L0 − i∂ξL0 · ∂y


A0(y, ξ, τ),

P+A1(y, ξ, ε) = 0,
(3.66)

we have ∂ξL0(y, ξ) · ∂y = iα · ñφ(α · ∂y) := a0(y)(α · ∂y), with a0(y) = iα · ñφ▷ The solution of the
dierential system (3.66) is

A1(y, ξ, τ) = eh
−1L0(τ−ε)A1(y, ξ, ε)

+ eh
−1L0τ

 τ

ε
e−h−1L0(y,ξ)s


L1 + (α · ñφc3)L0 − i∂ξL0(y, ξ) · ∂y


A0(y, ξ, τ)ds

= eh
−1L0(τ−ε)A1(y, ξ, ε)

+ eh
−1L0τ

 τ

ε
e−h−1L0sa0(y)


− z + c · ξ − ic3L0 − iα · ∂y


A0(y, ξ, τ)ds

:= I1 + I2,

where I1 and I2 have the following quantity:

I1 =

e(τ−ε)ϱ−(y,ξ)

Π− + e(τ−ε)ϱ−(y,ξ)
Π+


A1(y, ξ, ε),

I2 = eh
−1L0(y,ξ)τ

 τ

ε
e−h−1L0(y,ξ)sa0(y)


− z + c · ξ − ic3L0 − iα · ∂y


A0(y, ξ, s)ds▷

Now, to obtain an explicit form of I2, let’s decompose the quantity e−h−1L0(y,ξ)s▷ To do this, we have

 τ

ε
e−h−1L0(y,ξ)sa0(y)


− z + c · ξ − ic3L0 − iα · ∂y


A0(y, ξ, s)ds

=

 τ

ε


e−h−1sϱ−(y,ξ)

Π− + e−h−1sϱ+(y,ξ)
Π+


a0(y)


− z + c · ξ − ic3L0 − iα · ∂y


A0(y, ξ, s)ds

=

 τ

ε


e−h−1sϱ−Π− + e−h−1sϱ+Π+


a0(y)


− z + c · ξ − ic3L0 − iα · ∂y

 
eh

−1(s−ε)ϱ− Π−P+

k
φ
−


ds

=

 τ

ε
e−h−1sϱ−Π−a0(y)


− z + c · ξ − ic3L0 − iα · ∂y

 
eh

−1(s−ε)ϱ− Π−P+

k
φ
−


ds

  
(1)

+

 τ

ε
e−h−1sϱ+Π+a0(y)


− z + c · ξ − ic3L0 − iα · ∂y

 
eh

−1(s−ε)ϱ− Π−P+

k
φ
−


ds

  
(2)

▷

(3.67)
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First of all, note that the quantity

(−z + c · ξ − ic3L0 − iα · ∂y)

eh

−1ϱ−(τ−ε)M

= eh

−1ϱ−(τ−ε)a+ b · ξ − ih−1(τ − ε)α · ∂yϱ−

M,

with M ∈M4(C) and

a = −z + c3α · ñφβ − iα · ∂y and b = c+ c3α · ñφα (3.68)

belong to M4(C). Note also the term α · ∂y in the quantity a is applies to
Π−P+

k
φ
−

in the following

calculation. Now, we want to explain the quantities (1) and (2) given in (3.67). Let’s start with (1):

(1) =

 τ

ε
e−h−1sϱ−Π−a0(y)


− z + c · ξ − ic3L0 − iα · ∂y

 
eh

−1(s−ε)ϱ− Π−P+

k
φ
−


ds

=

 τ

ε
e−εh−1ϱ−Π−a0(y)


a+ (b · ξ)− ih−1(τ − ε)α · ∂yϱ−

Π−P+

k
φ
−

ds

= (τ − ε)e−εh−1ϱ−Π−a0(y)

a+ b · ξ


B0,0 − ih−1(τ − ε)2e−εh−1ϱ−Π−a0(y)

α · ∂yϱ−
2


B0,0,

(3.69)

with B0,0(y, ξ) =
Π−P+

k
φ
−
∈ S0.

Similarly, for (2) we get

(2) =

 τ

ε
e−h−1sϱ+Π+a0(y)


− z + c · ξ − ic3L0 − iα · ∂y

 
eh

−1(s−ε)ϱ−B0,0


ds

= e−εh−1ϱ−

 τ

ε
eh

−1s(ϱ−−ϱ+)
Π+a0(y)


a+ b · ξ − ih−1(s− ε)α · ∂yϱ−


B0,0ds

= e−εh−1ϱ−h(ϱ− − ϱ+)
−1

Π+a0(y)

eh

−1(ϱ−−ϱ+)τ − eh
−1(ϱ−−ϱ+)ε

 
a+ b · ξ


B0,0

+ e−εh−1ϱ−eh
−1(ϱ−−ϱ+)τ

Π+a0(y)

−i(τ − ε)α · ∂yϱ−
ϱ− − ϱ+

+
h iα · ∂yϱ−
(ϱ− − ϱ+)2


B0,0

+ e−εh−1ϱ−eh
−1(ϱ−−ϱ+)ε

Π+a0(y)

−h iα · ∂yϱ−
(ϱ− − ϱ+)2


B0,0▷

(3.70)

Putting the formula of (1) and (2) as in (3.69) and (3.70), respectively, in I2. Together, with I1, we obtain
that

A1(y, ξ, τ) =

eh

−1(τ−ε)ϱ−Π− + eh
−1(τ−ε)ϱ+Π+


A1(y, ξ, ε)

+ eh
−1ϱ−(τ−ε)

Π−a0(y)

(τ − ε)


a+ (b · ξ)


B0,0 − ih−1(τ − ε)2

α · ∂yϱ−
2


B0,0



+
h

(ϱ− − ϱ+)
Π+a0(y)e

h−1ϱ−(τ−ε)

a+ (b · ξ)


B0,0

+ eh
−1ϱ−(τ−ε)

Π+a0(y)

−i(τ − ε)α · ∂yϱ−
ϱ− − ϱ+

+
h iα · ∂yϱ−
(ϱ− − ϱ+)2


B0,0

+ eh
−1ϱ+(τ−ε)

Π+a0(y)


−i h α · ∂yϱ−

(ϱ− − ϱ+)2


B0,0 − eh

−1ϱ+(τ−ε)h Π+a0(y)

(ϱ− − ϱ+)


aB0,0 + b · ξB0,0


▷
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Thanks to the properties of ϱ+ given in (3.15), and the fact that eh
−1(τ−ε)ϱ+Π+a0(y) is unbounded in

L2({τ > ε}), then we look A1(ỹ, ξ, ε) such that

Π+A1(y, ξ, ε) = h
Π+a0

ϱ− − ϱ+


a+ b · ξ +

iα · ∂yϱ−
ϱ− − ϱ+


B0,0▷ (3.71)

Thus, we obtain

A1(y, ξ, τ) = eh
−1(τ−ε)ϱ− ×


Π−A1(y, ξ, ε) + h Π+a0(y)(ϱ− − ϱ+)


a+ b · ξ +

iα · ∂yϱ−
(ϱ− − ϱ+)


B0,0

+ (τ − ε)


Π−a0(y)


a+ b · ξ

− Π+a0(y)
iα · ∂yϱ−
(ϱ− − ϱ+)


B0,0

+ h−1(τ − ε)2Π−a0(y)
−iα · ∂yϱ−

2


B0,0


▷

(3.72)
Calculate of Π−A1(y, ξ, ε)▷ From (3.72), we get that

A1(y, ξ, ε) = Π−(P− + P+)A1(y, ξ, ε) +
h Π+a0(y)

(ϱ− − ϱ+)


a+ b · ξ +

iα · ∂yϱ−
(ϱ− − ϱ+)


B0,0▷

From (3.66) we have P+A1(y, ξ, ε) = 0, then

P−A1(y, ξ, ε) = P−Π−P−A1(y, ξ, ε) +
h Π+a0(y)

(ϱ− − ϱ+)


a+ b · ξ +

iα · ∂yϱ−
(ϱ− − ϱ+)


B0,0▷

Thanks to the relations (3.16), we obtain

Π−P−A1(y, ξ, ε) =
hΠ−a0P+

(ϱ− − ϱ+)


I4 −

Θφ

kφ−

 
a+ b · ξ +

iα · ∂yϱ−
(ϱ− − ϱ+)


B0,0,

and so (3.72) becomes as follows

A1(y, ξ, τ) = eh
−1(τ−ε)ϱ− ×


h


Π−a0


P+ −

P+Θφ

kφ−


+ Π+a0

 
a+ b · ξ

(ϱ− − ϱ+)
+

iα · ∂yϱ−
(ϱ− − ϱ+)2


B0,0

+ (τ − ε)


Π−a0(y)


a+ b · ξ

− Π+a0(y)
iα · ∂yϱ−
(ϱ− − ϱ+)


B0,0

+ h−1(τ − ε)2Π−a0(y)
−iα · ∂yϱ−

2


B0,0


▷

Consequently, we get that

A1(y, ξ, τ) = eh
−1ϱ−(τ−ε)


B1,0(y, ξ) +


h−1(τ − ε)(ϱ− − ϱ+)


B1,1(y, ξ)

+

h−1(τ − ε)(ϱ− − ϱ+)

2
B1,2(y, ξ)



= eh
−1(τ−ε)ϱ−

2

k=0


h−1(τ − ε)(ϱ− − ϱ+)

k

B1,k(y, ξ),

(3.73)
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where,

B1,0(y, ξ) = h


Π−a0


P+ −

P+Θφ

k
φ
−


+ Π+a0

 
a+ b · ξ

(ϱ− − ϱ+)
+

iα · ∂yϱ−
(ϱ− − ϱ+)2


B0,0,

B1,1(y, ξ) = h


Π−a0(y)


a+ b · ξ



(ϱ− − ϱ+)
− Π+a0(y)

iα · ∂yϱ−
(ϱ− − ϱ+)2


B0,0,

B1,2(y, ξ) = −h Π−a0(y)
 iα · ∂yϱ−
2(ϱ− − ϱ+)2


B0,0,

with ϱ− − ϱ+ = −2λ(y, ξ) ∈ S1 and ∂yϱ− ∈ S1 identied with ⟨ξ⟩, then B1,k ∈ hS0 for k = 0, 1, and
B1,2 ∈ hS−1▷
Let’s look at the form of Aj for j = 2. To do it, we dene A2(y, ξ, τ) inductively by





h∂τA2(y, ξ, τ) = L0(y, ξ)A2(y, ξ, τ) +


L1(y, ξ)− i∂ξL0(y, ξ) · ∂y

A1(y, ξ, τ)

+

(α · ñφc3)L1(y, ξ)− i∂ξ L1(y, ξ) · ∂y


A0(y, ξ, τ),

P+A2(y, ξ, ε) = 0,

where,

L1 − i∂ξL0 · ∂y

eh

−1ϱ−(τ−ε)M

= eh

−1ϱ−(τ−ε)a0(y)

a+ b · ξ − ih−1(τ − ε)α · ∂yϱ−


M,

− i∂ξ L1 · ∂y + (α · ñφc3)L1


eh

−1ϱ−(τ−ε)M

=

eh
−1ϱ−(τ−ε)a0(y)


d+ e · ξ − ih−1(τ − ε)f · ∂yϱ−


M,

(3.74)

with M, a, b were noted in (3.68), d, e, f belong to M4(C), where d, e and f are the following

d = (c3α · ñφ)2β − c3α · ñφz − i(c+ c3α · ñφα) · ∂y,

e =

c3α · ñφ + (c3α · ñφ)2α


· ξ and f = c+ c3α · ñφα▷

(3.75)

Then, after a many calculation, we arrive at the following formula

A2(y, ξ,τ ) = eh
−1ϱ−(τ−ε)


h−1(τ − ε)⟨ξ⟩0B2,0(y, ξ) +


h−1(τ − ε)⟨ξ⟩1B2,1(y, ξ)

+

h−1(τ − ε)⟨ξ⟩2B2,2(y, ξ) +


h−1(τ − ε)⟨ξ⟩3B2,3(y, ξ) +


h−1(τ − ε)⟨ξ⟩4B2,4(y, ξ)



=: eh
−1ϱ−(τ−ε)

4

k=0


h−1(τ − ε)⟨ξ⟩

k

B1,k(y, ξ),

(3.76)
where,

B2,4(y, ξ) = h Π−a0(y)


(α · ∂yϱ−)B1,2

4(ϱ− − ϱ+)2


,
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B2,3(y, ξ) = h Π−a0(y)

aB1,2

3⟨ξ⟩ +
bB1,2

3
+

(α · ∂yϱ−)B1,1

3(ϱ− − ϱ+)2


+ h Π+a0(y)


(α · ∂yϱ−)


B1,2



(ϱ− − ϱ+)⟨ξ⟩


,

B2,0(y, ξ) = h


Π−a0


P+ −

P+Θφ

k
φ
−


+ Π+a0


aB1,0 + (b · ξ)B1,0 + dB0,0 + (e · ξ)B0,0

(ϱ− − ϱ+)

− (α · ∂yϱ−)B1,0 + ⟨ξ⟩aB1,1 + ⟨ξ⟩(b · ξ)B1,1 + f · ∂yϱ−B0,0

(ϱ− − ϱ+)2

+
2⟨ξ⟩α · ∂yϱ−B1,1 + 2⟨ξ⟩(b · ξ)B1,0 + 2⟨ξ⟩2(b · ξ)B1,2

(ϱ− − ϱ+)3
− 6⟨ξ⟩2α · ∂yϱ−B1,2

(ϱ− − ϱ+)4


,

B2,1(y, ξ) = h Π−a0(y)

aB1,0 + dB0,0

(ϱ− − ϱ+)
+ bB1,0 + eB0,0



+ h Π+a0(y)


f · ∂yϱ−B0,0 + aB1,1 + ⟨ξ⟩B1,1

(ϱ− − ϱ+)
+

α · ∂yϱ−B1,0

(ϱ− − ϱ+)⟨ξ⟩

− 2α · ∂yϱ−B1,1 + (2⟨ξ⟩a+ 2⟨ξ⟩2)B1,2

(ϱ− − ϱ+)2
+

6⟨ξ⟩α · ∂yϱ−B1,2

(ϱ− − ϱ+)3


,

B2,2(y, ξ) = h Π−a0(y)


aB1,1

2(ϱ− − ϱ+)
+

bB1,1

2
+

(α · ∂yϱ−)B1,0

2(ϱ− − ϱ+)2
+

(f · ∂yϱ−)B0,0

2(ϱ− − ϱ+)2



+ h Π+a0(y)


(α · ∂yϱ−)B1,1

(ϱ− − ϱ+)⟨ξ⟩
− aB1,2

(ϱ− − ϱ+)
+

(b · ξ)B1,2

(ϱ− − ϱ+)
− 3(α · ∂yϱ−)B1,2

(ϱ− − ϱ+)2


,

with ϱ−− ϱ+ = −2λ(y, ξ) ∈ S1 and ∂yϱ− ∈ S1. Then B2,k ∈ hS0 for k = 0, 1, 2, B2,3 ∈ h2 S−1, and
B2,4 ∈ h2 S−2. ■

Remark 3.5.1. Using (3.14) and (3.16), then the boundary condition associated with A2(y, ξ, ε) is the
following

Π+A2(y, ξ, ε) = hΠ+a0


aB1,0 + (ξ · b)B1,0 + dB0,0 + (e · ξ)B0,0

(ϱ− − ϱ+)

− (α · ∂yϱ−)B1,0 + ⟨ξ⟩aB1,1 + ⟨ξ⟩(b · ξ)B1,1 + f · ∂yϱ−B0,0

(ϱ− − ϱ+)2

+
2⟨ξ⟩α · ∂yϱ−B1,1 + 2⟨ξ⟩(b · ξ)B1,0 + 2⟨ξ⟩2(b · ξ)B1,2

(ϱ− − ϱ+)3
− 6⟨ξ⟩2α · ∂yϱ−B1,2

(ϱ− − ϱ+)4


▷
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Chapter 4

On the approximation of the δ-shell interaction for

the 3-D Dirac operator.

The results presented in this chapter have been the subject of the paper [Zre11].

Abstract

Weconsider the three-dimensional Dirac operator coupledwith a combination of electrostatic
and Lorentz scalar δ-shell interactions. We approximate this operator with general local in-
teractions V . Without any hypotheses of smallness on the potential V , we show convergence
in the strong resolvent sense to the Dirac Hamiltonian coupled with a δ-shell potential sup-
ported onΣ, a bounded smooth surface. However, the coupling constant depends nonlinearly
on the potential V▷

Résumé

Nous considérons l’opérateur de Dirac tridimensionnel couplé à une combinaison de δ-shell
interactions électrostatiques et scalaires de Lorentz. Nous approximons cet opérateur avec
des interactions locales générales V . Sans aucune hypothèse de petitesse sur le potentiel
V , nous montrons la convergence dans le sens de la résolvante forte vers l’hamiltonien de
Dirac couplé à un potentiel δ-shell supporté sur Σ, une surface lisse bornée. Cependant, la
constante de couplage dépend de façon non-linéaire du potentiel V .

139



Chapter 4 – On the approximation of the δ-shell interaction for the 3-D Dirac operator.

Contents

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

4.2 Model and Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

4.2.1 Tubular neighborhood of Σ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

4.2.2 Preparations for proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

4.3 Proof of Theorem 4.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

4.1 Introduction

DiracHamiltonians of the typeDm+V , where V is a suitable perturbation, are used inmany problems
where the implications of special relativity play an important role. This is the case, for example, in the
description of elementary particles such as quarks, or in the analysis of graphene, which is used in research
for batteries, water lters, or photovoltaic cells. For these problems, mathematical investigations are still
in their infancy. The present work studies the three-dimensional Dirac operator with a singular interaction
on a closed surface Σ. Mathematically, the Hamiltonian we are interested in can be formulated as follows

Dη,τ = Dm +Bη,τδΣ = Dm +

η I4 + τβ


δΣ, (4.1)

where Bη,τ is the combination of the electrostatic and Lorentz scalar potentials of strengths η and τ ,
respectively. Physically, the Hamiltonian Dη,τ is used as an idealized model for Dirac operators with
strongly localized electric and massive potential near the interface Σ (e.g., an annulus), i.e., it replaces a
Hamiltonian of the form

Hη̃,τ̃ = Dm +Bη̃,τ̃ = Dm +

η̃ I4 + τ̃β


PΣ, (4.2)

where PΣ is a regular potential localized in a thin layer containing the interface Σ.

In the three-dimensional case, the authors of [MP18] were able to show the convergence in the norm
resolvent sense in the non-conning case, however, a smallness assumption for the potential Pε

Σ
was

required to achieve such a result. On the other hand, this assumption, unfortunately, prevents us from
obtaining an approximation of the operatorDη,τ with the parameters η and τ which are more relevant from
the physical or mathematical point of view. Believing this to be the case, the authors of the recent paper
[BHS23] have studied and conrmed the approximation problem for two- and three-dimensional Dirac
operators with delta-shell potential in norm resolvent sense. Without the smallness assumption of the po-
tentialPε

Σ
, no results could be obtained here either. Finally, we note that in the two- and three-dimensional

setting a renormalization of the interaction strength was observed in [CLMT23, MP18, BHS23].

The primary aim of our work is to extend the approximation result explored in [CLMT23, Section 8] to the
three-dimensional case. We seek to verify whether the methodologies employed in the two-dimensional
context allow us to establish a comparable approximation in terms of strong resolvent. Specically, we
aim to achieve this in the non-critical and non-connement cases (i.e., when η2− τ2 ̸= ±4) without rely-
ing on the smallness assumption as stipulated in [MP18]. Finally, we also give the Dirac operator coupled
with a combination of electrostatic, Lorentz scalar δ-shell interactions of strength η and τ , respectively,
which we will denote Dη,τ in what follows.
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4.2. Model and Main results

Throughout this chapter, for Ω ⊂ R
3 a bounded smooth domain with boundary Σ := ∂Ω, we refer to

H1(Ω,C4) := H1(Ω)4 as the rst order Sobolev space

H 1(Ω)4 = {φ ∈ L2(Ω)4 : there exists φ̃ ∈ H 1(R3)4 such that φ̃|Ω = φ}▷

Recall that H1◁2(Σ,C4) := H1◁2(Σ)4 is the Sobolev space of order 1◁2 along the boundary Σ, and
tΣ : H1(Ω)4 → H1◁2(Σ)4 is the classical trace operator.

Denition 4.1.1. Let Ω be a bounded domain in R
3 with a boundary Σ = ∂Ω. Let (η, τ) ∈ R

2. Then,
Dη,τ = Dm +Bη,τδΣ := Dm + (ηI4 + τβ)δΣ acting in L2(R3)4 and dened as follows:

Dη,τf = Dmf+ ⊕Dmf−, for all f ∈ Dom(Dη,τ ) := {f = f+ ⊕ f− ∈ H1(Ω)4 ⊕H1(R3 \ Ω)4 :

the transmission condition (T.C) below holds in H1◁2(Σ)4}▷

Transmission condition : iα · n(tΣf+ − tΣf−) +
1

2
(η I4 + τβ)(tΣf+ + tΣf−) = 0, (4.3)

where n is the outward pointing normal to Ω. ■

Recall that for η2 − τ2 ̸= 0, 4, the Dirac operator (Dη,τ ,Dom(Dη,τ )) is self-adjoint and veries the
following assertions (see, e.g., [BEHL19, Theorem 3.4, 4.1])

(i) Spess(Dη,τ ) = (−∞,m] ∪ [m,+∞)▷
(ii) Spdis(Dη,τ ) is nite.

4.2 Model and Main results

For a smooth bounded domain Ω ⊂ R
3, we consider an interaction supported on the boundary

Σ := ∂Ω of Ω. The surface Σ divides the Euclidean space into disjoint union R
3 = Ω+ ∪ Σ ∪ Ω−,

where Ω+ := Ω is a bounded domain and Ω− = R
3 \ Ω+▷ We denote by n and dσ the unit outward

pointing normal to Ω and the surface measure on Σ, respectively. We also denote by f± := f ⇂ Ω± be
the restriction of f in Ω±, for all C2–valued function f dened on R

3▷ Then, we dene the distribution
δΣf by

⟨δΣf, g⟩ :=
1

2



Σ

(tΣf+ + tΣf−) g dσ, for any test function g ∈ C∞
0 (R3)4,

where tΣf± is the classical trace operator dened below in Denition 4.1.1. Now, we explicitly construct
regular symmetric potentials Vη,τ,ε ∈ L∞(R3;C4×4) supported on a tubular ε-neighbourhood of Σ and
such that

Vη,τ,ε −−−→
ε→0

(η I4 + τβ)δΣ in the sense of distributions.

To explicitly describe the approximate potentials Vη,τ,ε, we will introduce an additional notation. For
γ > 0, we dene Σγ := {x ∈ R

3, dist(x,Σ) < γ} a tubular neighborhood of Σ with width γ. For γ > 0
small enough, Σγ is parametrized as

Σγ = {xΣ + p n(xΣ), xΣ ∈ Σ and p ∈ (−γ, γ)}▷ (4.4)
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For 0 < ε < γ, let hε(p) :=
1

ε
h


p

ε


, for all p ∈ R, with the function h veries the following

h ∈ L∞(R,R), supph ⊂ (−1, 1) and
 1

−1
h(t) dt = 1▷

Thus, we have:

supphε ⊂ (−ε, ε),
 ε

−ε
hε(t) dt = 1, and lim

ε→0
hε = δ0 in the sense of the distributions, (4.5)

where δ0 is the Dirac δ-function supported at the origin. Finally, for any ε ∈ (0, γ), we dene the
symmetric approximate potentials Vη,τ,ε ∈ L∞(R3,C4×4), as follows:

Vη,τ,ε(x) :=


Bη,τhε(p), if x = xΣ + p n(xΣ) ∈ Σγ ,

0, if x ∈ R
3 \ Σγ ▷

(4.6)

It is easy to see that limε→0 Vη,τ,ε = Bη,τδΣ, in D
′
(R3)4▷ For 0 < ε < γ, we dene the family of Dirac

operator {Eη,τ,ε}ε as follows:

Dom(Eη,τ,ε) := Dom(Dm) = H1(R3)4,

Eη,τ,εψ = Dmψ + Vη,τ,εψ, for all ψ ∈ Dom(Eη,τ,ε)▷
(4.7)

The main purpose of the present chapter is to study the strong resolvent limit of Eη,τ,ε at ε → 0▷ The
following theorem is the main result of this chapter.

Theorem 4.2.1. Let (η, τ) ∈ R
2, and denote by d = η2 − τ2. Let (η̂, τ̂) ∈ R

2 be dened as follows:

• if d < 0, then (η̂, τ̂) =
tanh(

√
−d◁2)

(
√
−d◁2) (η, τ),

• if d = 0, then (η̂, τ̂) = (η, τ),

• if d > 0 such that d ̸= (2k + 1)2π2, k ∈ N ∪ {0}, then (η̂, τ̂) =
tan(
√
d◁2)

(
√
d◁2)

(η, τ)▷

(4.8)

Now, let Eη,τ,ε be dened as in (4.7) and Dη̂,τ̂ as in Denition 4.1.1. Then,

Eη,τ,ε −−−→
ε→0

Dη̂,τ̂ in the strong resolvent sense. (4.9)

Remark 4.2.1. We mention that in this work we nd approximations by regular potentials in the strong
resolvent sense for the Dirac operator with δ-shell potentials Eη,τ,ε in the non-critical case (i.e., when
d ̸= 4) and non-conning case, (i.e., when d ̸= −4) everywhere on Σ▷ This is what we shall prove in the
proof of Theorem 4.2.1.

4.2.1 Tubular neighborhood of Σ

LetΩ ⊂ R
3 be a bounded domainwith smooth boundaryΣ parametrized by the family {ϕj , Uj , Vj , }j∈J

with J a nite set, Uj ⊂ R
2, Vj ⊂ R

3, Σ ⊂ 
j∈J Vj and ϕj(Uj) = Vj ∩Σ ⊂ Σ ⊂ R

3 for all j ∈ J▷We

set s = ϕ−1
j (xΣ) for any xΣ ∈ Σ▷ We set nϕ = n ◦ ϕ : Σ −→ R

3 the unit normal vector eld which
points outwards of Ω.
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For γ > 0, Σγ (4.4) is a tubular neighborhood of Σ of width γ. We dene the dieomorphism Φϕ

by:

Φϕ : UxΣ
× (−γ, γ) −→ R

3

(s, p) −→ Φϕ(s, p) = ϕ(s) + p n(ϕ(s))▷

For γ be small enough, Φϕ is a smooth parametrization of Σγ . Moreover, the matrix of the dierential
dΦϕ of Φϕ in the canonical basis of R3 is

dΦϕ(s, p) =

∂1ϕ(s) + p dn(∂1ϕ)(s) ∂2ϕ(s) + p dn(∂2ϕ)(s) nϕ(s)


▷ (4.10)

Thus, the dierential on UxΣ
and the dierential on (−γ, γ) of Φϕ are respectively given by

dsΦϕ(s, p) = ∂iϕj(s)− pW (xΣ)∂iϕj(s) for i = 1, 2 and xΣ ∈ Σ,

dpΦϕ(s, p) = nϕ(s),
(4.11)

where ∂iϕ, nϕ should be understood as column vectors, andW (xΣ) is the Weingarten map dened as in
Denition 1.5.2. Next, we dene

Pϕ :=

Φ
−1
ϕ



1
: Σγ −→ UxΣ

⊂ R
2; Pϕ


ϕ(s) + p n(ϕ(s))


= s ∈ R

2, xΣ = ϕ(s),

P⊥ :=

Φ
−1
ϕ



2
: Σγ −→ (−γ, γ); P⊥


ϕ(s) + p n(ϕ(s))


= p▷

(4.12)

Using the inverse function theorem and thanks to (4.10), then we have for x = ϕ(s) + p n(ϕ(s)) ∈ Σγ

the following dierential

∇Pϕ(x) =

1− pW (s)

−1
tϕ(s) and ∇P⊥(x) = nϕ(s), (4.13)

with tϕ(s) = ∂iϕ(s), i = 1, 2▷

4.2.2 Preparations for proof

Before presenting the tools for the proof of Theorem 4.2.1, let us state some properties veried by
the operator Dη,τ ▷

Lemma 4.2.2. Let (η, τ) ∈ R
2, and let Dη,τ be as in Denition 4.1.1. Then, the following hold:

(i) If η2 − τ2 ̸= −4, then there exists an invertible matrix Rη,τ such that a function f = f+ ⊕ f− ∈
H1(Ω+)

4 ⊕H1(Ω−)4 belongs to Dom(Dη,τ ) if and only if tΣf+ = Rη,τ tΣf−, with Rη,τ given
by

Rη,τ :=

I4 −

iα · n

2
(η I4 + τβ)

−1
I4 +

iα · n

2
(η I4 + τβ)


▷ (4.14)

(ii) If η2 − τ2 = −4, then a function f = f+ ⊕ f− ∈ H1(Ω+)
4 ⊕H1(Ω−)4 belongs to Dom(Dη,τ )

if and only if


I4 −

iα · n

2
(η I4 + βτ)


tΣf+ = 0 and


I4 +

iα · n

2
(η I4 + βτ)


tΣf− = 0▷
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Proof. Using the transmission condition introduced in (4.3), then for assertion (i): for all f = f+⊕f− ∈
Dom(Dη,τ ), we have that


iα · n+

1

2
(ηI4 + τβ)


tΣf+ =


iα · n− 1

2
(ηI4 + τβ)


tΣf−▷

Thanks to properties in (1.3) and the fact that (iα · n)−1 = −iα · n, we get that


I4 −M


tΣf+ =


I4 +M


tΣf−, (4.15)

with M a 4× 4 matrix has the following form

M =
iα · n

2
(η I4 + βτ),

thus (4.14) is established.

Furthermore, as

d := η2 − τ2 ̸= −4, M2 = −d

4
I4,

and (I4 −M)(I4 +M) =
4 + d

4
I4,

then (I4 −M) is invertible and (I4 −M)−1 =
4

4 + d
(I4 +M).

Consequently, using (4.15) we obtain that tΣf+ = Rη,τ tΣf− which Rη,τ has the following explicit
form

Rη,τ =
4

4 + d


4− d

4
I4 + iα · n(ηI4 + τβ)


▷ (4.16)

For assertion (ii), one just has to multiply (4.15) by (I4 ±M) we get

(I4 +M)2tΣf− = 0 and (I4 −M)2tΣf+ = 0▷

This achieves the proof of Lemma 4.2.2. ■

4.3 Proof of Theorem 4.2.1

Let {Eη,τ,ε}ε∈(0,γ) andDη̂,τ̂ be as dened in (4.7) and Denition 4.1.1, respectively. Since the singular
interaction Vη,τ,ε are bounded and symmetric, then by the Kato-Rellich theorem, the operators Eη,τ,ε are
self-adjoint in L2(R3)4▷ Moreover, we know that Dη̂,τ̂ are self-adjoint and Dom(Dη̂,τ̂ ) ⊂ H1(R3 \ Σ)4▷
Although the limiting operators and the limit operator are self-adjoint, it has been shown in [RS78,
Theorem VIII.26] that {Eη,τ,ε}ε∈(0,γ) converges in the strong resolvent sense toDη̂,τ̂ as ε→ 0 if and only
if it converges in the strong graph limit sense. The latter means that, for all ψ ∈ Dom(Dη̂,τ̂ ), there exists
a family of vectors {ψε}ε∈(0,γ) ⊂ Dom(Eη,τ,ε) such that

(a) lim
ε→0

ψε = ψ and (b) lim
ε→0

Eη,τ,εψε = Dη̂,τ̂ψ in L2(R3)4▷ (4.17)
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Let ψ ≡ ψ+ ⊕ ψ− ∈ Dom(Dη̂,τ̂ )▷ From (4.8), we have that

d̂ = η̂2 − τ̂2 = −4tanh2(
√
−d◁2), if d < 0,

d̂ = η̂2 − τ̂2 = 4tan2(
√
d◁2), if d > 0,

d̂ = η̂2 − τ̂2 = 0, if d = 0▷

In all cases, we have that d̂ > −4 (in particular d̂ ̸= −4). Then, by Lemma 4.2.2 (i),

tΣψ+ = Rη̂,τ̂ tΣψ−, (4.18)

where Rη̂,τ̂ are given in (4.16).

Using the Denition 4.1.1, we get that tΣψ± ∈ H1◁2(Σ)4▷

• Show that

eiα·nBη,τ = Rη̂,τ̂ ▷ (4.19)

Recall the denition of the family Eη,τ,ε and Vη,τ,ε dened in (4.7) and (4.6), respectively. We have that

(iα · nBη,τ )
2 = (iα · n(ηI4 + τβ))2 = −(η2 − τ2) =: D2, with D =


−(η2 − τ2) =

√
−d▷

Using this equality, we can write: eiα·nBη,τ = e−DΠ− + eDΠ+, with ±D the eigenvalues of iα · nBη,τ ;
and Π± the eigenprojections are given by:

Π± :=
1

2


I4 ±

iα · nBη,τ

D


▷

Therefore,

e(iα·nBη,τ ) =


eD + e−D

2


I4 +

iα · nBη,τ

D


eD − e−D

2



= cosh(D)I4 +
sinh(D)

D
(iα · n(ηI4 + τβ))▷

Now, the idea is to show (4.19), i.e., it remains to show

4

4 + d̂


4− d̂

4
I4 + iα · n(η̂I4 + τ̂β)


− cosh(D)I4 −

sinh(D)

D
(iα · n(ηI4 + τβ)) = 0▷ (4.20)

To this end, set U =
4− d̂

4 + d̂
− cosh(D) and V =

4

4 + d̂
− sinh(D)

D
. If we apply (4.20) to the unit vector

e1 = (1 0 0 0)t, then we get that U = V = 0. Hence, (4.20) makes sense if and only if

cosh(D) =
4− d̂

4 + d̂
and

sinh(D)

D
(η, τ) =

4

4 + d̂
(η̂, τ̂)▷
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Consequently, we have Rη̂,τ̂ = eiα·nBη,τ .

Moreover, dividing
sinh(D)

D
by (1 + cosh(D)) we get that

(η̂, τ̂) =
sinh(D)

1 + cosh(D)

1

D◁2
(η, τ)▷

Now, applying the elementary identity tanh(
θ

2
) =

sinh(θ)

1 + cosh(θ)
, for all θ ∈ C \ {i(2k + 1)π, k ∈ Z}.

We conclude that

tanh(
√
−d◁2)√

−d◁2 (η, τ) = (η̂, τ̂), if d < 0,

and so, ford > 0weapply the elementary identity−itanh(iθ) = tan(θ) for all θ ∈ C\{π(k+
1

2
), k ∈ Z},

then we get that

tanh(
√
−d◁2)√

−d◁2 =
tan(
√
d◁2)√

d◁2
▷

Hence, we obtain that
tan(
√
d◁2)√

d◁2
(η, τ) = (η̂, τ̂) if d > 0 such that d ̸= (2k + 1)2π2. Consequently,

the equality eiα·nBη,τ = Rη̂,τ̂ is shown such that the following parameters verify:

•
tanh(

√
−d◁2)√

−d◁2 (η, τ) = (η̂, τ̂), if d < 0,

•
tan(
√
d◁2)√

d◁2
(η, τ) = (η̂, τ̂), if d > 0,

• (η, τ) = (η̂, τ̂), if d = 0▷

(4.21)

Moreover, the fact that
 ε
−ε hε(t)dt = 1 (see, (4.5)) with the statement (4.19) make it possible to write

exp


− i

 0

−ε
hε(t) dt


(α · nBη,τ )


tΣψ+ = exp



i

 ε

0
hε(t) dt


(α · nBη,τ )


tΣψ−▷ (4.22)

• Construction of the family {ψε}ε∈(0,γ). For all 0 < ε < γ, we dene the functionHε : R \ {0}→ R

such that

Hε(p) :=





 ε

p
hε(t) dt, if 0 < p < ε,

−
 p

−ε
hε(t) dt, if − ε < p < 0,

0, if |p| ⩾ ε▷

(4.23)

Clearly, Hε ∈ L∞(R) and supported in (−ε, ε). The fact that ||Hε||L∞ ⩽ ||h||L1 , we get {Hε}ε is
bounded uniformly in ε▷ For all ε ∈ (0, γ), the restrictions of Hε to R± are uniformly continuous, so
nite limits at p = 0 exist, and dierentiable a.e., with derivative being bounded, since hε ∈ L∞(R,R).
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Using these function, we set the matrix functions Uε : R
3 \ Σ→ C

4×4 such that

Uε(x) :=


e(iα·n)Bη,τHε(P⊥(x)), if x ∈ Σε \ Σ,

I4, if x ∈ R
3 \ Σε,

∈ L∞(R3,C4×4), (4.24)

where the mappings P⊥ is dened as in (4.12), and Σε is a tubular neighborhood of Σ of width ε. As
the functions Uε are bounded, uniformly in ε, and uniformly continuous in Ω±, with a jump discontinuity
across Σ, then ∀xΣ ∈ Σ and y± ∈ Ω±, we get

Uε(x
−
Σ
) := lim

y−→xΣ

Uε(y−) = exp

i
  ε

0
hε(t) dt


(α · n(xΣ))Bη,τ


,

Uε(x
+
Σ
) := lim

y+→xΣ

Uε(y+) = exp

− i

  0

−ε
hε(t) dt


(α · n(xΣ))Bη,τ


▷

(4.25)

Thus, we construct ψε by ψε = ψε,+ ⊕ ψε,− := Uεψ ∈ L2(R3)4▷

Since Uε are bounded, uniformly in ε, using the construction of ψε we get that ψε − ψ := (Uε − I4)ψ.
Then, by the dominated convergence theorem and the fact that supp (Uε − I4) ⊂ |Σε| with |Σε|→ 0 as
ε→ 0, it is easy to show that

ψε −−−→
ε→0

ψ in L2(R3)4▷ (4.26)

This achieves assertion (a).

• Show that ψε ∈ Dom(Eη,τ,ε) = H1(R3)4. This means that we must show, for all 0 < ε < γ,

(i)ψε,± ∈ H1(Ω±)
4 and (ii) tΣψε,+ = tΣψε,− ∈ H1◁2(Σ)4▷

Let us show point (i). By construction of ψε, we have ψε ∈ L2(R3)4▷ It remains to have ∂jUε ∈ L2(R3)4,
for j = 1, 2, 3▷ To do so, recall the parametrization ϕ : U → Σ ⊂ R

3 of Σ dened at the beginning of
Section 4.2.1 and let A a 4× 4 matrix such that A(s) := iα · n(ϕ(s))Bη,τ , for s = (s1, s2) ∈ U ⊂ R

2▷
Thus, the matrix functions Uε in (4.24) can be written

Uε(x) =


eA(Pϕ(x))Hε(P⊥(x)), if x ∈ Σε \ Σ,

I4, if x ∈ R
3 \ Σε,

∈ L∞(R3,C4×4), (4.27)

where Pϕ is dened as in (4.12).

For j = 1, 2, 3, supp ∂jUε ⊂ Σε. Furthermore, it was mentioned in [WIL67, Eq.(4.1)] that for all
x ∈ Σε \ Σ, ∂jUε can be written as follows

∂jUε(x) =

 1

0


exp


zA(Pϕ(x))Hε(P⊥(x))


∂j


A(Pϕ(x))Hε(P⊥(x))


×

exp

(1− z)A(Pϕ(x))Hε(P⊥(x))


dz▷

(4.28)
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Let x = ϕ(s)+p n(ϕ(s)) ∈ Σγ , and recall the denition of the mappingsPϕ(x) andP⊥(x) introduced
in (4.12). Based on the quantities (4.13) (with s = Pϕ(x) and p = P⊥(x)), we get that

∂j

A(Pϕ(x))Hε(P⊥(x))


= ∂sA(s)(1− pW (s))−1(tϕ(s))jHε(p)− A(s)hε(p)(nϕ(s))j ▷ (4.29)

Therefore, ∂jUε has the following form

∂jUε(x) = −A(s)hε(p)(nϕ(s))jUε(x)

+

 1

0
ezA(s)Hε(p)


∂sA(s)(1− pW (s))−1(tϕ(s))jHε(p)


e(1−z)A(s)Hε(p) dz▷

(4.30)

Set by Eε,j the second term of the right part of equality (4.30), i.e.,

Eε,j =

 1

0
ezA(s)Hε(p)


∂sA(s)(1− pW (s))−1(tϕ(s))jHε(p)


e(1−z)A(s)Hε(p) dz▷ (4.31)

Then, thanks to Proposition 1.5.3, the matrix-valued functionsEε,j are bounded, uniformly for 0 < ε < γ,
and suppEε,j ⊂ Σε. Moreover, we have Uε and ∂jUε ∈ L∞(Ω±,C

4×4). Hence, for all ψ± ∈ H1(Ω±)
4

we have that ψε,± = Uεψ± ∈ H1(Ω±)
4 and statement (i) is proved.

Now, we show point (ii). As ψε,± ∈ H1(Ω±)
4, we get that tΣψε,± ∈ H1◁2(Σ)4▷ On the other hand, it

have been showed in [EG15, Chapter 4 (p.133)], for a.e., xΣ ∈ Σ and r > 0, that

tΣψε,±(xΣ) = lim
r→0

1

|B(xΣ, r)|



Ω±∩B(xΣ,r)
ψε(y) dy = lim

r→0

1

|B(xΣ, r)|



Ω±∩B(xΣ,r)
Uε(y)ψ(y) dy,

and so, similarly,

Uε(x
±
Σ
)tΣψ±(xΣ) = lim

r→0

1

|B(xΣ, r)|



Ω±∩B(xΣ,r)
Uε(x

±
Σ
)ψ(y) dy▷

As Uε is continuous in Ω±, we get tΣψε,±(xΣ) = Uε(x
±
Σ
)tΣψ±(xΣ)▷ Consequently, (4.22) with (4.25)

give us that tΣψε,+ = tΣψε,− ∈ H1◁2(Σ)4. With this, (ii) is valid and ψε ∈ Dom(Eη,τ,ε).

To complete the proof of Theorem 4.2.1, it remains to show the property (b), mentioned in (4.17).
Since (Eη,τ,εψε − Dη̂,τ̂ψ) belongs to L2(R3)4, it suces to prove the following:

Eη,τ,εψε,± − Dη̂,τ̂ψ± −−−→
ε→0

0 in L2(Ω±)
4▷ (4.32)

To do this, let ψ ≡ ψ+ ⊕ ψ− ∈ Dom(Dη̂,τ̂ ) and ψε ≡ ψε,+ ⊕ ψε,− ∈ Dom(Eη,τ,ε). We have

Eη,τ,εψε,± − Dη̂,τ̂ψ± = −iα ·∇ψε,± +mβψε,± + Vη,τ,εψε,± + iα ·∇ψ± −mβψ±

= −iα ·∇(Uεψ±) + iα ·∇ψ± +mβ(Uε − I4)ψ± + Vη,τ,εψε,±

= −i
3

j=1

αj


(∂jUε)ψ± + (Uε − I4)∂jψ±


+mβ(Uε − I4)ψ± + Vη,τ,εψε,±▷

(4.33)
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Using the form of ∂jUε given in (4.30), the quantity −i3
j=1 αj(∂jUε)ψ± yields

−i
3

j=1

αj(∂jUε)ψ± = −i
3

j=1

αj

− iα · nVη,τ,ε njUεψ± + Eε,jψ±



= −(α · n)2Vη,τ,εψε,± − i

3

j=1

αjEε,jψ±

= −Vη,τ,εψε,± + Rεψ±,

where Eε,j is given in (4.31) and Rε = −i3
j=1 αjEε,j , a matrix-valued functions in L∞(R3,C4×4),

veries the same property of Eε,j given in (4.31), for ε ∈ (0, γ)▷ Thus, (4.33) becomes

Eη,τ,εψε,± −Dη̂,τ̂ψ± = −i
3

j=1

αj


(Uε − I4)∂jψ±


+mβ(Uε − I4)ψ± + Rεψ▷

Since ψ± ∈ H1(Ω±)
4, (Uε − I4) and Rε are bounded, uniformly in ε ∈ (0, γ) and supported in Σε, and

|Σε| tends to 0 as ε→ 0. By the dominated convergence theorem, we conclude that

Eη,τ,εψε,± − Dη̂,τ̂ψ± −−−→
ε→0

0, holds in L2(Ω±)
4, (4.34)

and this achieves the assertion (4.32).

Thus, both conditions mentioned in (4.17) (i.e., (a) and (b)) of the convergence in the strong graph
limit sense are proved (see, (4.26) and (4.34)). Also, note that the latter remains stable with respect to
bounded symmetric perturbations (in our case mβ(Uε − I4) with m > 0, so we can assume m = 0).
Hence, the family {Eε}ε∈(0,γ) converges in the strong resolvent sense to Dη̂,τ̂ as ε→ 0▷ The proof of the
Theorem 4.2.1 is complete. ■
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Chapter 5

On the self-adjointness of two-dimensional relativis-

tic shell interactions.

In this chapter, we describe the results obtained in article [BPZ72] in collaboration with
Badreddine Benhellal and Konstantin Pankrashkin.

Abstract

In this chapter, we discuss the self-adjointness of the two-dimensional Dirac operator with
a transmission condition along a closed Lipschitz curve. The main new ingredients are
an explicit use of the Cauchy transform on non-smooth curves and a direct link with the
Fredholmness of a singular boundary integral operator. This results in a proof of self-
adjointness for a new range of coupling constants, which includes and extends all previous
results for this class of problems. The study is particularly precise for the case of curvilinear
polygons, as the angles can be taken into account in an explicit way. In particular, if the curve
is a curvilinear polygon with obtuse angles, then there is a unique self-adjoint realization

with domain contained inH
1
2 for the full range of non-critical coecients in the transmission

condition.

Résumé

Dans ce chapitre, nous discutons de l’auto-adjonction de l’opérateur de Dirac bidimensionnel
avec une condition de transmission le long d’une courbe de Lipschitz fermée. Les principaux
nouveaux ingrédients sont une utilisation explicite de la transformée de Cauchy sur des
courbes non lisses et un lien direct avec le caractère de Fredholm d’un opérateur intégral de
frontière singulier. Il en résulte une preuve de l’auto-adjonction pour une nouvelle gamme
de constantes de couplage, qui inclut et étend tous les résultats précédents pour cette classe
de problèmes. L’étude est particulièrement précise dans le cas des polygones curvilignes, car
les angles peuvent être pris en compte de manière explicite. En particulier, si la courbe est un
polygone curviligne avec des angles obtus, alors il existe une réalisation unique auto-adjointe

avec un domaine contenu dans H
1
2 pour toute la gamme des coecients non critiques dans

la condition de transmission.
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5.1 Introduction

Dirac operators with δ-interactions supported on general hypersurfaces have been actively studied
since the appearance of the paper [AMV14]. Due to the presence of distributional coecients, the
self-adjointness of such operators requires special attention, and it was seen by many authors (primar-
ily for the three-dimensional case) that the self-adjointness domain can be dependent on the coupling
constants and the smoothness properties of the hypersurface and that it may lead to unusual spectral
properties [BEHL19, BH20, Ben22b, Ben22a, BP24]. The paper [BHOBP20] initiated the study of
the two-dimensional case, and for the case of smooth curves a very complete spectral picture could
be found, which was extended in [CLMT23] to a more general class of interactions. Much less atten-
tion was given to the case of non-smooth surfaces and curves. In the present work, we discuss the
self-adjointness of two-dimensional Dirac operators with δ-interactions supported on closed Lipschitz
curves (in particular, on curvilinear polygons). Our results complement those obtained in the recent
papers [BHSS24, PVDB21] and provide precise ranges of coupling constants and corner openings for
which the domain of self-adjointness can be given explicitly. Compared to the preceding works, we
employ two new technical ingredients: the explicit use of the Cauchy transform on non-smooth curves
and a characterization of the Fredholmness for boundary integral operators using the approach of [She91].

Now let us pass to precise formulations. Through the text we use the Pauli matrices

σ1 =


0 1
1 0


, σ2 =


0 −i
i 0


, σ3 =


1 0
0 −1



and denote by I2 the 2× 2 identity matrix. Let m ∈ R. The two-dimensional Dirac operator with mass
m is the formally self-adjoint dierential expression

Dm : C∞
0 (R2,C2) ∋ f → −i(σ1∂1f + σ2∂2f) +mσ3f ∈ C∞

0 (R2,C2),

and it naturally extends to a continuous linear map in the space of distributions D′(Ω,C2) for any open
set Ω ⊂ R

2. It is well known that the operator

A : f → Dmf, Dom(A) = H1(R2,C2), (5.1)

(the free two-dimensional Dirac operator), is self-adjoint inL2(R2,C2) and has the absolutely continuous
spectrum

Sp(A) = Spcont(A) =
−∞,−|m|

 ∪ 
|m|,+∞

,

and it occupies a central place in relativistic quantum mechanics [Tha92]. We will be interested in the
study of some special perturbations of A.
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Namely, let Ω+ ⊂ R
2 be a non-empty bounded open set with Lipschitz boundary. Denote

Σ := ∂Ω+, Ω− := R
2 \ Ω+▷

For (ε, µ) ∈ R
2 we would like to discuss self-adjoint realizations in L2(R2,C2) of operators given

formally by
f → Dmf + (εI2 + µσ3)δΣf, (5.2)

where δΣ is the Dirac δ-distribution supported onΣ. The last summand can be considered as an idealized
model of a relativistic potential concentrated on Σ, and the constant ε resp. µ measures the strength of
the electrostatic resp. Lorentz scalar part of the interaction. The formal expression (5.2) can be given a
more rigorous meaning as follows. First, for any non-empty open set Ω ⊂ R

2 consider the space

H(σ,Ω) :=

f ∈ L2(Ω,C2) : Dmf ∈ L2(Ω,C2)


,

which is just the domain of the maximal realization of Dm in L2(Ω,C2) and becomes a Hilbert space if
equipped with the scalar product

⟨f, g⟩H(σ,Ω) := ⟨f, g⟩L2(Ω,C2) + ⟨Dmf,Dmg⟩L2(Ω,C2)▷

For s > 0 letHs(Ω,C2) be the usual fractional Sobolev spaces of order s on Ω (consisting of C2-valued
functions), and we set

Hs(σ,Ω) := H(σ,Ω) ∩Hs(Ω,C2),

which is a Hilbert space with the scalar product

⟨f, g⟩Hs(σ,Ω) := ⟨f, g⟩H(σ,Ω) + ⟨f, g⟩Hs(Ω,C2)▷

For what follows it will be convenient to use the identication

H(σ,R2 \ Σ) ≃ H(σ,Ω+)⊕H(σ,Ω−), f ≃ (f+, f−),

with f± being the restriction of f on Ω±, as well as the analogous identications forHs(R2 \Σ,C2) and
Hs(σ,R2 \ Σ). We will also use the shorthand notation

σ · x := x1σ1 + x2σ2, x = (x1, x2) ∈ R
2;

from the anticommutation relations (1.6) one easily obtains (σ · x)2 = |x|2I2 for all x ∈ R
2.

It is known that for any f ∈ H(σ,R2 \ Σ) the boundary traces (σ · ν)f± on Σ are well-dened as

functions inH− 1
2 (Σ); remark that we keep the same symbols for the boundary traces for better readability.

Denote by δΣf the distribution

⟨δΣf,φ⟩ :=


Σ

f+ + f−
2

φ ds, φ ∈ C∞
c (R2),

where ds means the integration with respect to the arclength. An application of the jump formula
(distributional derivative for functions with discontinuities along Σ) for a function fshows the identity

Dmf = (Dmf+)⊕ (Dmf−) + i(σ · ν)(f+ − f−)δΣ, (5.3)
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where ν = (ν1, ν2) is the unit normal on Σ pointing to Ω−. Then it follows that the right-hand side of
(5.2) belongs to L2(R2,C2) if and only if f satises the transmission condition

(εI2 + µσ3)
f+ + f−

2
+ i(σ · ν)(f+ − f−) = 0 on Σ▷ (5.4)

Therefore, as a rst attempt, it is natural to consider the following operator realizations of the
expression (5.2) in L2(R2,C2):

• the maximal realization Bmax with the domain

Dom(Bmax) :=

f ∈ H(σ,R2 \ Σ) : f satises (5.4)


,

• the minimal realization Bmin with the domain

Dom(Bmin) := Dom(Bmax) ∩H1(R2 \ Σ,C2)

≡ 
f ∈ H1(R2 \ Σ,C2) : f satises (5.4)


▷

It is standard to see that Bmin is symmetric with B∗
min = Bmax, therefore, Bmin ⊂ B ⊂ Bmax for any

self-adjoint realization B of (5.2). Nevertheless, an explicit description of the self-adjoint realizations
turns out to be an involved problem depending on both (ε, µ) and the regularity of Σ.

The most attention was given to the case of C2-smooth Σ, see [BHSS24] and references therein.
Namely, if ε2− µ2 ̸= 4, then Bmin = Bmax =: B, and the spectrum of B consists of the spectrum of the
free Dirac operator A and at most nitely many discrete eigenvalues in (−|m|, |m|). For ε2 − µ2 = 4
the operator Bmin is not closed, but Bmin = Bmax, so Bmin is at least essentially self-adjoint (so there
is a unique self-adjoint realization), but the loss of regularity leads to peculiar spectral eects (e.g. new
pieces of the essential spectrum), see [BHOBP20, BHSS24, BP24]. Remark that [BHSS24, CLMT23]
actually consider more general interactions by admitting so-called anomalous magnetic couplings which
are not covered by the above framework.

If Σ has corners, one has, in general, Bmin ⊊ Bmax, which means that there are innitely many

self-adjoint realizations [OBP18]. The work [OBP18] suggested that the H
1
2 regularity should be more

natural for the case of non-smooth Σ. Namely, let

B ≡ Bε,µ

be the restriction of Bmax to Dom(Bmax) ∩H
1
2 (R2 \ Σ,C2), i.e.,

B : f ≃ (f+, f−) → (Dmf+, Dmf−),

Dom(B) :=

f ∈ H

1
2 (σ,R2 \ Σ) : f satises (5.4)


▷

(5.5)

Due to the standard Sobolev traces theorem, the one-sided traces of functions fromDom(B) onΣ belong
to L2(Σ,C2), so the integration by parts shows that B is a symmetric operator. The main result of
[PVDB21] reads as follows: if Σ is a curvilinear polygon (a piecewise C2-smooth closed curve, with
nitely many corners and without cusps), ε = 0 and |µ| < 2, then B is self-adjoint. The recent work
[BHSS24] presents an extensive study of the case of general compact Lipschitz curves Σ by reducing the
self-adjointness to the Fredholmness of some boundary integral operator (see also [AMV14, Ben22a] for
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the three-dimensional case): we summarize the essential components of the constructions in Section 5.2.
Nevertheless, the self-adjoint conditions obtained in [BHSS24] for our case are quite implicit as they
depend on the (unknown) spectra of some boundary integral operators.

In the present work we extend the results of both [BHSS24] and [PVDB21] by providing new very
explicit conditions for the self-adjointness of B in terms of the parameters (ε, µ) and the geometry of Σ.
Namely, we show that B is self-adjoint in the following cases:

(A) The curve Σ is Lipschitz and |ε| ≤ |µ| (Corollary 5.4.3),
(B) The curve Σ is C1-smooth and ε2 − µ2 ̸= 4 (Theorem 5.4.4),
(C) The curve Σ is a curvilinear polygon (with C1-smooth edges and without cusps) and

ε2 − µ2 <
1

m(ω)
or ε2 − µ2 > 16m(ω),

where the constant m(ω) only depends on the sharpest corner ω of Σ (Theorem 5.5.3).
The value of m(ω) is not known explicitly for all ω, but some bounds can be obtained, and each
of the conditions
(i) ε2 − µ2 < 2 or ε2 − µ2 > 8 (without additional geometric assumptions),
(ii) ε2 − µ2 ̸= 4 if each angle θ of Σ (measured inside Ω+) satises

π

2
≤ θ ≤ 3π

2
,

guarantees the self-adjointness of B (Corollary 5.5.4).

The case (B) is formally contained in (C.ii), but the proofs are very dierent, so we prefer to consider
these two situations separately.

Remark 5.1.1. If the operator B is self-adjoint, a standard analysis shows that its essential spectrum
coincides with the spectrum of the free Dirac operator A and that the discrete spectrum is at most nite
[BHOBP20, Proposition 3.8]. While all constructions of [BHOBP20] are formally for smooth Σ, the
proof of this specic result only uses the compact embedding ofHs(Ω) to L2(Ω) for s > 0 and bounded
open sets Ω ⊂ R

2 with Lipschitz boundaries.

Remark 5.1.2. An additional useful property is that for any (ε, µ) with |ε| ̸= |µ| the operator Bε,µ is
unitarily equivalent to B− 4ε

ε2−µ2 ,−
4µ

ε2−µ2
. Namely, a simple direct computation shows that

Bε,µU = UB− 4ε
ε2−µ2 ,−

4µ

ε2−µ2

for the unitary linear map U : L2(R2,C2)→ L2(R2,C2) dened by

U : (f+, f−) → (f+,−f−),

see [BHOBP20, Propositon 4.8]. In particular, the self-adjointness of B− 4ε
ε2−µ2 ,−

4µ

ε2−µ2
is equivalent to

the self-adjoitness of Bε,µ, which will be used in the last proof steps.
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5.2 Preparations for the proof

We will need some constructions related to the free Dirac operator A in (5.1). Most of these required
results were already obtained in [BHOBP20, BHSS24] and we simply present them in an adapted form.

First of all, we recall the Cauchy transform on Σ, i.e., the linear operator CΣ : L2(Σ) −→ L2(Σ)
dened through the complex line integration

CΣg(x) :=
i

2π
p▷ v▷



Σ

g(y)

x− y
dy, g ∈ L2(Σ), x ∈ Σ, (5.6)

and understood in the Cauchy principal value sense. It is a classical result that CΣ is well-dened and
bounded [CMM82]. Moreover, if one considers the analytic function

Fg : C \ Σ ≃ R
2 \ Σ ∋ x → i

2π
p▷ v▷



Σ

g(y)

x− y
dy, g ∈ L2(Σ),

then Plemelj-Sokhotski formulas are valid:

Fg(x) = ±
g(x)

2
+ CΣg(x) for a.e. x ∈ Σ,

where the value on the left-hand side is understood as the non-tangential limit [Jou83, p. 108].

Denote by Kj the modied Bessel functions of order j. For z ∈ C \ Sp(A) consider the function
ϕz : R2 →M2(C) given by

ϕz(x) :=
1

2π
K0


m2 − z2|x|


mσ3 + zI2


+ i

√
m2 − z2

2π|x|
K1


m2 − z2|x|


(σ · x)▷

It will be convenient to admit the additional value z = m by setting

ϕm(x) :=
i

2π




0
1

x1 + ix2
1

x1 − ix2
0


 ▷

Using the asymptotic expansions of Kj one obtains

ϕz(x) = ϕm(x) + h1(x) log |x|+ h2(x)▷ (5.7)

with continuous functions hj , see [BHOBP20, Lemma 3.3] for details.

For all admissible z the function ϕz is a fundamental solution of Dm − z, and it gives rise to several
(singular) integral operators.
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Namely, consider the layer potentials Φz for Dm − z (with z ∈ C \ Sp(A))

Φz : L2(Σ,C2) −→ L2(R2,C2),

Φzg(x) =



Σ

ϕz(x− y)g(y) ds(y), x ∈ R
2 \ Σ,

where we recall that ds means the integration with respect to the arclength. Observe that ϕz(x)
∗ =

ϕz̄(−x) for all x. Let γ : H
1
2 (σ,R2,C2) → L2(Σ,C2) be the Sobolev trace operator (which is a

bounded linear operator), then for any u ∈ L2(R2,C2) and g ∈ L2(Σ,C2) one has, using Fubini’s
theorem,

⟨Φz̄g, u⟩L2(R2,C2) =



R2

 

Σ

ϕz̄(x− y)g(y) ds(y), u(x)


C2
dx

=



Σ


g(y),



R2
ϕ∗
z̄(x− y)u(x)dx



C2
ds(y),

=

g, γ(A− z)−1u


L2(Σ,C2)

▷

This shows thatΦz̄ =

γ(A−z)−1

∗
is bounded, and by replacing z with z̄ one obtains the useful identity

Φ
∗
z = γ(A− z̄)−1, z ∈ C \ Sp(A)▷ (5.8)

Now let φ ∈ C∞
0 (R2,C2) and h ∈ L2(Σ,C2), then


Φzh, (Dm − z̄)φ


L2(R2,C2)

=

h,Φ∗

z(Dm − z̄)φ

L2(Σ,C2)

=

h, γ(Dm − z̄)−1(Dm − z̄)φ


L2(Σ,C2)

=

h, γφ


L2(Σ,C2)

,

and it follows that (Dm − z)Φzh = 0 in D′(R2 \ Σ). In particular,

ranΦz ⊂ ker(Bmax − z) ⊂ Dom(Bmax)▷

In fact, for any z ∈ C \ Sp(A) one has the stronger property [BHSS24, Lemma 4.2]:

Φz : L2(Σ,C2)→ H
1
2 (σ,R2 \ Σ) is bounded. (5.9)

For all admissible z consider the singular integral operator

Cz : L2(Σ,C2) −→ L2(Σ,C2)

given by

Czg(x) = p▷ v▷



Σ

ϕz(x− y)g(y) ds(y), x ∈ Σ▷

To summarize its properties we introduce the tangent vector eld

τ = (τ1, τ2) := (−ν2, ν1)
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on Σ and denote
t := the operator of multiplcation by τ1 + iτ2 in L2(Σ)▷

With an arc-length parametrization γ of Σ and x = γ(r), y = γ(s) it follows that the Cauchy transform
CΣ from (5.6) acts as

CΣg

γ(r)


=

i

2π
p▷v

 ℓ

0


γ′1(s) + iγ′2(s)


u

γ(s)



γ1(r) + iγ2(r)

− 
γ1(s) + iγ2(s)

ds▷

Using the notation t(y) := t1(y) + it2(y) = γ′1(s) + iγ′2(s). We shall also view y → t(y) as a function
on Σ or s → t(γ(s)) as a function on [0, ℓ]. The same holds for the function t∗(y) := t1(y) − it2(y) =
γ′1(s)− iγ′2(s), and we will also denote the corresponding multiplication operators by t and t∗. With this
we see for g ∈ C∞(Σ) and x = γ(r) ∈ Σ that

(CΣt
∗g)(x) =

i

2π
p▷v

 ℓ

0


γ′1(s) + iγ′2(s)


γ′1(s)− iγ′2(s)


g

γ(s)



γ1(r) + iγ2(r)

− 
γ1(s) + iγ2(s)

 ds

=
i

2π
p▷v



Σ

g(y)

(x1 + ix2)− (y1 + iy2)
ds(y)▷

(5.10)

In our considerations also the formal dual C∗
Σ
of CΣ in L2(Σ), which acts as

C∗
Σg(γ(r)) =

i

2π
p▷v

 ℓ

0


γ′1(r)− iγ′2(r)


g

γ(s)



γ1(r)− iγ2(r)

− 
γ1(s)− iγ2(s)

ds (5.11)

for g ∈ C∞(Σ) and x = γ(r) ∈ Σ will play an important role. Note that C∗
Σ
is the operator which

satises (CΣg, f)L2(Σ) = (g, C∗
Σ
f)L2(Σ) for all g, f ∈ C∞(Σ). Similarly as in (5.10) we have

(tC∗
Σg)(x) =

i

2π
p▷v

 ℓ

0


γ′1(r) + iγ′2(r)


γ′1(r)− iγ′2(r)


g

γ(s)



γ1(r)− iγ2(r)

− 
γ1(s)− iγ2(s)

 ds

=
i

2π
p▷v



Σ

g(y)

(x1 − ix2)− (y1 − iy2)
ds(y)▷

(5.12)

Then

CΣt
∗g(x) =

i

2π
p▷v



Σ

g(y)

(x1 − y1)− i(x2 − y2)
ds(y),

tC∗
Σg(x) =

i

2π
p▷v



Σ

g(y)

(x1 − y1) + i(x2 − y2)
ds(y), x ∈ Σ,

(5.13)

and

Cm =


0 CΣt

∗

tC∗
Σ

0


▷ (5.14)

Therefore, the boundedness ofCΣ implies the boundedness of Cm. In addition, the expansion (5.7) shows
that Cz − Cm is an integral operator with a Hilbert-Schmidt kernel, in particular,

Cz − Cm : L2(Σ,C2)→ L2(Σ,C2) is compact for any z ∈ C \ Sp(A),

which also shows the well-denedness and boundedness of Cz for all admissible z.
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Let γ± : H
1
2 (σ,Ω±)→ L2(Σ) be the Sobolev trace operators, and for any f ∈ H

1
2 (R2 \ Σ) we set

γ±f := γ±f±,

then one has the so-called jump formula

γ±Φzg =


∓ i

2
σ · ν + Cz


g, g ∈ L2(Σ,C2)▷ (5.15)

In [BHOBP20, Proposition 3.5] the jump formula was proved under the formal assumption that Σ is C∞

smooth, but the same proof applies to our case as well, as the Plemelj-Sokhotski formula used in the
proof also holds for closed Lipschitz curves. From the jump formula (5.15) one obtains

g = i(σ · ν)

γ+Φzg − γ−Φzg


, g ∈ L2(Σ,C2),

which shows the injectivity of Φz . Further direct consequences of the jump formula are the identities

γ+Φzg − γ−Φzg = −i(σ · ν)g,

γ+Φzg + γ−Φzg

2
= Czg, g ∈ L2(Σ,C2)▷

(5.16)

For z ∈ (C \ Sp(A)) ∪ {m} consider the bounded linear operator

Θz := I+ (εI2 + µσ3)Cz : L2(Σ,C2)→ L2(Σ,C2),

which is closely related to the operator B from (5.5) as follows:

Lemma 5.2.1. For any z ∈ C \ Sp(A) there holds ker(B− z) = Φz kerΘz , in particular, dim ker(B−
z) = dim kerΘz .

Proof. Remark that the last assertion follows from the injectivity of Φz .
Let z ∈ C \ Sp(A) and g ∈ kerΘz . Denote f := Φzg, then f ∈ ker(Bmax − z) due to the above

properties of Φz . We need to show f ∈ Dom(B). By (5.9) we have already f ∈ H
1
2 (σ,R2 \ Σ). By

(5.16) we have

(εI2 + µσ3)
γ+Φzg + γ−Φzg

2
+ i(σ · ν)


γ+Φzg − γ−Φzg



= (εI2 + µσ3)Czg + i(σ · ν)
− i(σ · ν)


g

= (εI2 + µσ3)Czg + g = Θzg = 0▷

Hence, f ∈ ker(B − z). This shows the inclusion Φz kerΘz ⊂ ker(B − z).
Now let z ∈ C \ Sp(A) and f ∈ ker(B − z). Due to (5.3) we have

(Dm − z)f = (B − z)f + i(σ · ν)(f+ − f−)δΣ▷ (5.17)

Let F : S ′(R2)→ S ′(R2) be the Fourier transform. For any ψ ∈ S ′(R2) we have

F(Dm − z)ψ = (σ · ξ +mσ3 − zI2)Fψ▷

The matrix σ · ξ + mσ3 − zI2 is invertible for any ξ ∈ R
2 and has polynomial entries, which shows

that Dm − z : S ′(R2)→ S ′(R2) is injective. As the function ϕz ∈ S ′(R2) is a fundamental solution of
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Dm − z, from (5.17) one obtains

f = ϕz ∗

i(σ · ν)(f+ − f−)δΣ


▷

Due to f ∈ Dom(B) we have f± ∈ H
1
2 (Ω±,C

2), and, hence

g := i(σ · ν)(γ+f − γ−f) ∈ L2(Σ,C2)▷

Then

f = ϕz ∗ g =



Σ

ϕz(·− y)g(y) ds(y) ≡ Φzg▷

With the help of (5.16) we obtain

0 = (εI2 + µσ3)
γ+f + γ−f

2
+ i(σ · ν)(γ+f − γ−f)

= (εI2 + µσ3)Czg + g = Θzg,

which implies g ∈ kerΘz . Hence, ker(B − z) ⊂ Φz kerΘz . ■

For the sake of completeness, we include the proof of the following important statement (which is
based on similar ideas):

Lemma 5.2.2. The operator C2
Σ
− 1

4 is compact in L2(Σ,C2).

Proof. Let h ∈ L2(Σ,C2) and z ∈ C \ Sp(A). Consider f := Φzh, then (Dm − z)f = 0 in Ω±.
Consider further the function

f : R
2 ∋ x →


f(x), x ∈ Ω+,

0, otherwise▷

One has γ+ f = γ+f and γ− f = 0, with (Dm − z) f = 0 in Ω±, and (5.3) gives

(Dm − z) f = i(σ · ν)(γ+ f − γ− f)δΣ ≡ i(σ · ν)γ+f δΣ in D′(R2),

which implies f = ϕz ∗

i(σ · ν)γ+f δΣ

 ≡ Φzi(σ · ν)γ+f . In particular,

Φzi(σ · ν)γ+f = f = Φzh in Ω+▷ (5.18)

Remark that by the construction of f we have

γ+f =

− i(σ · ν)

2
+ Cz


h▷

Use this last equality in (5.18) and then apply γ+ on the both parts, then one arrives at


− i(σ · ν)

2
+ Cz


i(σ · ν)


− i(σ · ν)

2
+ Cz


h =


− i(σ · ν)

2
+ Cz


h,

which after a simple algebra takes the form

Czi(σ · ν)Czh = − i(σ · ν)

4
h,
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and results in the identity 
Cz(σ · ν)

2
= −1

4
I▷ (5.19)

The identities are well-known for the three-dimensional case [AMV14, Lemma 3.3], but we gave a
complete argument to stay self-contained. Further remark that

σ · ν =


0 n∗

n 0


,

where n is the operator of multiplication by ν1 + iν2. Using (5.14) we write

Cz =


0 CΣt

∗

tC∗
Σ

0


+M0

with a compact operator M0. We have t∗n = −iI, so the substitution into (5.19) gives, with some
compact operators Mj ,

−1

4
I =


−iCΣ 0
0 tC∗

Σ
n∗


+M1

2

=


−C2

Σ
0

0 (tC∗
Σ
n∗)2


+M2,

and the upper left block gives the sought result. ■

5.3 Case |ε| = |µ|

We rst consider the self-adjointness of B for |ε| = |µ|.

Theorem 5.3.1. The operator B in (5.5) is self-adjoint for |ε| = |µ|.

Proof. In the case ε = µ = 0 we obviously have B = A. From now on let

µ = ±ε with ε ̸= 0▷

Consider the following maps

P+ : L2(Σ) ∋ f →

f

0


∈ L2(Σ,C2),

P− : L2(Σ) ∋ f →

0
f


∈ L2(Σ,C2),

and their adjoints

P ∗
+ : L2(Σ,C2) ∋


f1
f2


→ f1 ∈ L2(Σ),

P ∗
− : L2(Σ,C2) ∋


f1
f2


→ f2 ∈ L2(Σ)▷

We set
P := P± for ε = ±µ▷
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As the operator B is symmetric, it is sucient to show that ran(B − z) = L2(R2,C2) for any
z ∈ C \ R. For that, we will explicitly construct the inverse (B − z)−1.

Let z ∈ C \ R. As B is symmetric, ker(B − z) = {0}, and Lemma 5.2.1 implies kerΘz = {0}.
Remark that in the present case, we have

Θz = I+ 2εPP ∗Cz, ΘzP = P + 2εPP ∗CzP ≡ 2εPλz

for λz :=
1

2ε
I+ P ∗CzP : L2(Σ,C2)→ L2(Σ,C2) ≡ 1

2ε
I+ (z ±m)Sz

with the operator Sz : L2(Σ)→ L2(Σ) given by

(Szg)(x) :=
1

2π



Σ

K0


m2 − z2|x− y|


g(y) ds(y), x ∈ Σ, g ∈ L2(Σ)▷

The integral kernel of Sz has a logarithmic singularity on the diagonal, therefore, Sz is Hilbert-Schmidt
(in particular, compact). It follows that λz is a Fredholm operator of index zero. From the injectivity of
Θz and P one obtains the injectivity of λz , and it follows that λz : L2(Σ)→ L2(Σ) is bĳective.

Now we are going to show that the operator

R(z) := (A− z)−1 − ΦzPλ−1
z P ∗

Φ
∗
z̄,

is the inverse of B − z. Let v ∈ L2(R2,C2). Due to (5.8) one has

f := R(z)v ∈ H
1
2 (R2 \ Σ,C2)▷

Using the jump formulas (5.16) we obtain

γ+f + γ−f
2

= γ(A− z)−1v − CzPλ−1
z P ∗

Φ
∗
z̄v ≡ Φ

∗
z̄v − CzPλ−1

z P ∗
Φ
∗
z̄v,

γ+f − γ−f = i(σ · ν)Pλ−1
z P ∗

Φ
∗
z̄v▷

We have then

(εI2 + µσ3)
γ+f + γ−f

2
+ i(σ · ν)(γ+ − γ−f)

≡ 2εPP ∗ γ+f + γ−f
2

+ i(σ · ν)(γ+ − γ−f)

= 2εPP ∗
Φ
∗
z̄v − CzPλ−1

z P ∗
Φ
∗
z̄v


+ i(σ · ν)i(σ · ν)Pλ−1

z P ∗
Φ
∗
z̄v

= 2εPP ∗
Φ
∗
z̄v − CzPλ−1

z P ∗
Φ
∗
z̄v

− Pλ−1
z P ∗

Φ
∗
z̄v

= P

2εI− 2εP ∗CzPλ−1

z − λ−1
z


P ∗

Φ
∗
z̄v,

while

2ε− 2εP ∗CzPλ−1
z − λ−1

z = 2εI− 2ε

P ∗CzP +

1

2ε
I


λ−1
z

= 2εI− 2ελzλ
−1
z = 0▷

This shows that f satises the transmission condition (5.4) and, therefore, f ∈ Dom(B).
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Further, in D′(R2 \ Σ,C2) we have (Dm − z)ΦzPλ−1
z P ∗Φ∗

z̄v = 0, therefore,

(B − z)f = (Dm − z)f = (Dm − z)(A− z)−1v = (A− z)(A− z)−1v = v,

which shows R(z) = (B − z)−1. ■

5.4 Case |ε| ̸= |µ|

For |ε| ̸= |µ| the matrix εI2 + µσ3 is invertible, with

(εI2 + µσ3)
−1 =

1

ε2 − µ2
(εI2 − µσ3),

and it will be more convenient to consider the auxiliary bounded linear operators

Λz :=
1

ε2 − µ2
(εI2 − µσ3) + Cz ≡ (εI2 + µσ3)

−1
Θz

for z ∈ (C \ Sp(A)) ∪ {m}. The symmetry property ϕz(y − x)∗ = ϕz(x − y) entails that both Cz and
Λz are self-adjoint for real admissible z.

The following assertion can be viewed as a simplied version of the results of [BHSS24], and this is
the entry point for the subsequent analysis:

Theorem 5.4.1. Let |ε| ̸= |µ| such that the operator Λa is Fredholm for some a ∈ (C \ Sp(A)) ∪ {m},
then the operator B in (5.5) is self-adjoint.

Proof. Let Λa be Fredholm. As noted above, for any z ∈ C \ Sp(A) the dierence Λz − Λa ≡ Cz − Ca
is a compact operator, and it follows that Λz is also Fredholm and has the same index as Λa.

Now let z ∈  − |m|, |m|
 ∪ {m}, then Λz is self-adjoint. From the Fredholmness and the self-

adjointness, it follows that the index of Λz is zero. We have just seen above that the index is independent
of z, so Λz is Fredholm of index zero for all z ∈ C \ Sp(A).
As B is symmetric, and in order to show its self-adjointness it is sucient to show that ran(B − z) =
L2(R2,C2) for all z ∈ C \ R. We will do it by constructing explicitly the inverse (B − z)−1 dened on
L2(R2,C2).

Let z ∈ C \ R. As B is symmetric, there holds ker(B − z) = {0}. By Lemma 5.2.1 one obtains
kerΛz = {0}. As Λz is Fredholm of index zero, one has ranΛz = L2(Σ,C2), so Λz : L2(Σ,C2) →
L2(Σ,C2) is bĳective with a bounded inverse. Consider the bounded linear operator

R(z) = (A− z)−1 − ΦzΛ
−1
z Φ

∗
z : L2(R2,C2)→ L2(R2,C2)▷

We are going to show that R(z) = (B − z)−1.

Let v ∈ L2(R2,C2). Due to (5.8) one has

f := R(z)v ∈ H
1
2 (R2 \ Σ,C2)▷
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Using (5.16) we obtain

γ+f + γ−f
2

= γ(A− z)−1v − CzΛ
−1
z Φ

∗
zv = Φ

∗
zv − CzΛ

−1
z Φ

∗
zv,

γ+f − γ−f = i (σ · ν)(Λz)
−1

Φ
∗
zv▷

Then

(εI2+µσ3)
γ+f + γ−f

2
+ i(σ · ν)(γ+f − γ−f)

=

(εI2 + µσ3)(I− CzΛ

−1
z )− Λ

−1
z


Φ
∗
zv,

while

(εI2 + µσ3)(I− CzΛ
−1
z )− Λ

−1
z =


(εI2 + µσ3)(Λz − Cz)− I


Λ
−1
z

=

(εI2 + µσ3)

1

ε2 − µ2
(εI2 − µσ3)− I


Λ
−1
z

= (I− I)Λ−1
z = 0▷

This shows that f satises the transmission condition (5.4), i.e., f ∈ Dom(B). In addition, inD′(R2 \Σ)
we have (Dm − z)ΦzΛ

−1
z Φ∗

z = 0, therefore,

(B − z)f = (Dm − z)f = (Dm − z)R(z)v

= (Dm − z)(A− z)−1 = (A− z)(A− z)−1v = v,

which shows the required identity R(z) = (B − z)−1. ■

The following lemma gives a precise range of (ε, µ) for which B is self-adjoint without additional
assumptions on Σ.

Theorem 5.4.2. Assume that |ε| < |µ|, then B is self-adjoint.

Proof. By Theorem 5.4.1 it is sucient to show that (ε2−µ2)Λm is Fredholm. Using (5.14) we represent

(ε2 − µ2)Λm = (εI2 − µσ3) + (ε2 − µ2)Cm

= (εI2 − µσ3) + (ε2 − µ2)


0 CΣt

∗

tC∗
Σ

0


= εI2 + Γ,

with Γ :=


−µ (ε2 − µ2)CΣt

∗

(ε2 − µ2)tC∗
Σ

µ


▷

Remark that Γ is self-adjoint and

Γ
2 = µ2 + (ε2 − µ2)2


CΣC

∗
Σ

0
0 tC∗

Σ
CΣt

∗


▷

The last term is a non-negative operator, which shows

Γ
2) ⊂ [µ2,∞), ∩− |µ|, |µ|


= ∅▷
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Therefore, if |ε| < |µ|, then the operator

(ε2 − µ2)Λm ≡ ε+ Γ : L2(Σ,C2)→ L2(Σ,C2)

is an isomorphism and, in particular, Fredholm. ■

By summarizing Theorems 5.3.1 and 5.4.2 we arrive at

Corollary 5.4.3. The operator B is self-adjoint for any (ε, µ) with |ε| ≤ |µ|.

Remark that the preceding discussion is valid without any additional assumptions on Σ (i.e., only
assumes that Σ is Lipschitz). Under stronger geometric assumptions one can indeed enlarge the range of
parameters for which the self-adjointness is guaranteed. The following result follows implicitly from the
machinery of [BHSS24], but we prefer to give an explicit formulation with a direct argument.

Theorem 5.4.4. If Σ is C1-smooth and ε2 − µ2 ̸= 4, then B is self-adjoint.

Proof. The case |ε| = |µ| is already covered by Theorem 5.3.1, so from now on assume |ε| ̸= |µ|. By
Theorem 5.4.1 it is sucient to show that Λm is Fredholm. Due to the self-adjointness of Λm this is
equivalent to

0 ◁∈ Spess(ε
2 − µ2)Λm▷ (5.20)

Using (5.14) we represent

(ε2 − µ2)Λm = (εI2 − µσ3) + (ε2 − µ2)Cm

= (εI2 − µσ3) + (ε2 − µ2)


0 CΣt

∗

tC∗
Σ

0


= εI2 + Γ,

with Γ :=


−µI (ε2 − µ2)CΣt

∗

(ε2 − µ2)tC∗
Σ

µI


▷

By [Lan99, Theorem 3.2] the operator CΣ − C∗
Σ
is compact, therefore,

Γ =


−µ (ε2 − µ2)CΣt

∗

(ε2 − µ2)tCΣ µ


+M0

with some compact operator M0. Using Lemma 5.2.2 we obtain, with some compact operators M1 and
M2,

Γ
2 = µ2 + (ε2 − µ2)2


C2
Σ

0
0 tC2

Σ
t∗


+M1

≡ µ2 +
(ε2 − µ2)2

4


I 0
0 I


+M2▷

It follows that

Spess(Γ
2) = µ2 +

(ε2 − µ2)2

4
,

and the self-adjointness of Γ implies

SpessΓ ∈

−



µ2 +
(ε2 − µ2)2

4
,



µ2 +
(ε2 − µ2)2

4


▷
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Due to the above identity (ε2 − µ2)Λm = ε+ Γ the condition (5.20) is equivalent to

|ε| ̸=


µ2 +
(ε2 − µ2)2

4
, i.e., ε2 − µ2 ̸= (ε2 − µ2)2

4

which reduces to ε2 − µ2 ̸= 4. ■

5.5 Fredholmness for curvilinear polygons

From now assume that Σ is a piecewise C1-smooth Lipschitz curve, with nitely many corner points
a1, ▷ ▷ ▷ , an. For each corner aj , let

θj ∈ (0, 2π) \ {π}

be the non-oriented interior angle of Σ at the point aj measured inside Ω+. Our main goal is to give a
complete characterization of the values of ε and µ for which the operators Λz are Fredholm in L2(Σ,C2).
To do so, we are going to implement the technique proposed by Shelepov [She91]. Remark that some
components of the approach implicitly appear in other works [BR15, CS85].

Actually the work [She91] also applies to the so-called Radon curves, which are more general than
curvilinear polygons, but we prefer to restrict our attention to the case of piecewise C1-smooth curves in
order to avoid a series of involved denitions. Let us describe the general scheme of [She91].

Denote
S :=


x ∈ R

2 : |x| = 1


and let Mk(C) be the space of k × k complex matrices. Let

G : R× R× S× S× S→Mk(C)

be a matrix-valued function whose entries Gi,j are Lipschitz (with respect to all variables) and such that
for some C > 0 one has

Gij(x, y, ξ, η, ζ)
 ⩽ C

⟨ξ, ζ⟩
 +

⟨η, ζ⟩



(5.21)

for all (x, y, ξ, η, ζ).

Consider the bounded integral operator T : L2(Σ,Ck)→ L2(Σ,Ck),

Tg(x) =



Σ

1

|x− y|
G


x, y, ν(x), ν(y),

x− y

|x− y|


g(y) ds(y),

x, y ∈ Σ, g ∈ L2(Σ,Ck)▷

We assume without loss of generality that each connected component ofΣ is oriented in the anticlockwise
sense. Fix a corner point a on Σ with an interior angle θ. A small arc of Σ around a is separated by a

into two nonempty parts Γ+ and Γ− that project in one-to-one fashion on the one-sided tangents to Σ at
a, and denote the projections by Γ+ and Γ− respectively. Let τ+ and τ− be the unit vectors along Γ+ and
Γ− directed away from the corner a, and let ν+(a) and ν−(a) be the corresponding one-sided limits of
the inner normal to Σ at a. We then denote by τ = −τ− the unit vector of the left positive tangent to Σ
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at a and by ν(a) = ν−(a) the vector obtained from τ by a counterclockwise rotation through the angle
π◁2, see Figure 5.1. Finally, we will use the parameters

ξ := η +
i

2
, η ∈ R▷

τ+

τ−
τ

ν

θ

Ω+

Ω−

Σ

Γ−

Γ+

a

Figure 5.1 – Construction near a corner a.

Following [She91], we dene a function ζ : R→ R and matrix-valued functions

H(j)
a : R+

i

2
→M2(C), j ∈ {1, 2},

by

ζ(t) =


e−

t
2 cos θ − e

t
2

τ − νe−

t
2 sin θ

et + e−t − 2 cos θ
,

H(1)
a (ξ) =

 ∞

−∞

e(iξ+1◁2)t

√
et + e−t − 2 cos θ

G

a, a, ν,−τ sin θ − ν cos θ, ζ(−t)


dt,

H(2)
a (ξ) =

 ∞

−∞

e(iξ+1◁2)t


et + e−t − 2cos(θ)

G

a, a,−τsinθ − ν cos θ, ν,−ζ(t)


dt,

and set

∆a(ξ) = det

I2 −H(1)

a (ξ)H(2)
a (ξ)


, ξ ∈ R+

i

2
▷ (5.22)

The following result was shown in [She91, Theorem 2]:

Proposition 5.5.1. The operator I− T is Fredholm in L2(Σ,C2) if and only if

∆aj (ξ) ̸= 0 for all ξ ∈ R+
i

2
and all corners a1, ▷▷▷, an of Σ.

We are now going to apply this machinery to our particular situation. For θ ∈ (0, 2π) consider the
function

Mθ : R ∋ x → cosh

(π − θ)x



2

1 + cosh(πx)

 ∈ R,
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and denote
m(θ) := sup

x∈R
Mθ(x)▷

We have the obvious symmetry

m(θ) = m(2π − θ) for any θ ∈ (0, 2π)▷ (5.23)

The following elementary properties of m will be needed as well:

Proposition 5.5.2. For any ω ∈ (0,π) there holds

1

4
≤ m(ω) ≤ 1

2
▷ (5.24)

Moreover, the function ω → m(ω) is non-increasing, with

lim
ω→0+

m(ω) =
1

2
(5.25)

and

m(ω) =
1

4
for all ω ∈

π
2
,π


▷ (5.26)

Proof. For any |a| ≤ |b| we have cosh a ≤ cosh b. It follows that for any x ∈ R there holds

1

4
= Mω(0) ≤Mω(x) =

cosh

(π − ω)x



2

1 + cosh(πx)

 ≤ cosh(πx)

2

1 + cosh(πx)

 ≤ 1

2
,

which gives (5.24). For 0 < ω ≤ ω′ < π and any x ∈ R one has

Mω′(x) =
cosh


(π − ω′)x



2

1 + cosh(πx)

 ≤ cosh

(π − ω)x



2

1 + cosh(πx)

 = Mω(x),

so taking the supremum over all x one shows m(ω′) ≤ m(ω), i.e., m is non-increasing. In addition, for
any xed x the function θ →Mθ(x) is non-increasing too. It follows

lim
ω→0+

m(ω) = sup
ω∈(0,π)

m(ω) = sup
ω∈(0,π)

sup
x∈R

Mω(x)

= sup
x∈R

sup
ω∈(0,π)

Mω(x) = sup
x∈R

lim
ω→0+

Mω(x)

= sup
x∈R

lim
ω→0+

cosh

(π − ω)x



2

1 + cosh(πx)

 = sup
x∈R

cosh(πx)

2

1 + cosh(πx)

 =
1

2
▷

We further remark that for any ω ∈ (0,π) the function Mθ is even, and for any x ≥ 0 one has

M ′
ω(x) =

1

2

1 + cosh(πx)

2

(π − ω) sinh


(π − ω)x


1 + cosh(πx)



− π cosh

(π − ω)x


sinh(πx)



≡ π

1 + cosh(πx)


cosh


(π − ω)x



2

1 + cosh(πx)

2 Nω(x)
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with

Nω(x) :=
π − ω

π

sinh

(π − ω)x



cosh

(π − ω)x

 − sinh(πx)

1 + cosh(πx)

≡ π − ω

π

sinh

(π − ω)x



cosh

(π − ω)x

 −
sinh

πx

2

cosh
πx

2

≡ π − ω

π
tanh


(π − ω)x

− tanh
πx

2
▷

The function [0,∞) ∋ a → tanh a in increasing, therefore, Nω(x) < 0 for all x > 0 and ω ∈ 
π
2 ,π


,

and then M ′
ω(x) < 0 for the same x and ω. Then for each ω ∈ 

π
2 ,π


the function Mω is decreasing on

(0,+∞), and by parity its maximum is located at the origin, i.e.,

m(ω) = sup
x∈R

Mω(x) = Mω(0) =
1

4
for all ω ∈

π
2
,π


▷

■

Remark 5.5.1. The condition for ω in (5.26) is not expected to be optimal. A rough numerical simulation
indicates that

min

ω ∈ (0,π) : m(ω) =

1

4


≃ 0▷3π▷

Using the above preparations we arrive at the main result:

Theorem 5.5.3. Denote by ω the smallest angle of Σ, dened by

ω := min
j∈{1,▷▷▷,n}

min{θj , 2π − θj} ∈ (0,π)▷

If

ε2 − µ2 <
1

m(ω)
or ε2 − µ2 > 16m(ω), (5.27)

then the operator B is self-adjoint.

Proof. As the case |ε| ≤ |µ| is already covered by Corollary 5.4.3, for the rest of the proof we assume

|ε| > |µ|▷

By Theorem 5.4.1 it is sucient to show that Λm is Fredholm, which is in turn equivalent to the
Fredholmness of the operator

Θm ≡ (εI2 + µσ3)Λm ≡ I+ (εI2 + µσ3)Cm : L2(Σ,C2)→ L2(Σ,C2)▷

Eq. (5.14) for Cm gives the representation

Θmg(x) = g −


Σ

1

|x− y|
G


x, y, ν(x), ν(y),

x− y

|x− y|


g(y)ds(y)
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with g ∈ L2(Σ,C2) and the 2× 2 matrix function G dened by

G

x, y, ν(x), ν(y),

x− y

|x− y|


= − i

2π




0 (ε+ µ)
x− y

|x− y|

(ε− µ)
x− y

|x− y|
0




for x, y ∈ Σ, where the integral representations in (5.13) were used. The entries of G are obviously
Lipschitz and satisfy (5.21), so the above machinery is applicable to the analysis of Θm.

Let a be a corner point of Σ with an interior angle θ, then

G

a, a, ν,−τ sin θ − ν cos θ, ζ(−t) = − i

2π




0 (ε+ µ)ζ(−t)

(ε− µ)ζ(−t) 0


 ,

G(a, a,−τ sin θ − ν cos θ, ν,−ζ(t)) = i

2π




0 (ε+ µ)ζ(t)

(ε− µ)ζ(t) 0


 ,

where one uses the usual identication R
2 ∋ (x1, x2) = x ≃ x = x1 + ix2 ∈ C.

We have

iξ + 1 = iξ̄ for all ξ ∈ R+
i

2
,

and one easily sees that the matrices H(1)
a and H

(2)
a for this specic case have the form

H(1)
a (ξ) =




0 (ε+ µ)Aτ̄ ,ν̄

(ε− µ)Aτ,ν 0


 ,

H(2)
a (ξ) =




0 (ε+ µ)Bτ̄ ,ν

(ε− µ)Bτ,ν 0


 ,

where Aτ,ν and Bτ,ν are given by

Aτ,ν =

 +∞

−∞


eiξ̄t cos(θ)− eiξt


τ − eiξ̄t sin(θ) ν

et + e−t − 2cos(θ)
dt,

Bτ,ν =

 +∞

−∞


eiξt cos(θ)− eiξ̄t


τ − eiξt sin(θ) ν

et + e−t − 2 cos(θ)
dt▷

Hence, applying the change of variable x = et, we can rewrite Aτ,ν and Bτ,ν as follows

Aτ,ν =

 +∞

0

(xiξ̄cos(θ)− xiξ)τ − xiξ̄sin(θ) ν

x2 + 2xcos(π − θ) + 1
dx,
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Bτ,ν =

 +∞

0

(xiξcos(θ)− xiξ̄)τ − xiξsin(θ) ν

x2 + 2xcos(π − θ) + 1
dx▷

Now recall that for all b > 0, 0 < |ω| < π and 0 < Re(α) < 2 one has

 +∞

0

xα−1

x2 + 2bx cos(ω) + b2
dx = −πbα−2 1

sin(ω)

1

sin(απ)
sin


(α− 1)ω


,

see the formula (12) in [GR65, p. 327]. Applying this formula with b = 1 and ω = π − θ, one obtains
that

 ∞

0

xiξcos(θ)τ

x2 + 1 + 2cos(π − θ)
dx = −πcos(θ)

sin(θ)

sin(iξ(π − θ))

sin(iξθ)
τ,

 ∞

0

xiξτ

x2 + 1 + 2cos(π − θ)
dx = − π

sin(θ)

1

sin(iξπ)
sin(iξ(π − θ))τ,

 ∞

0

xiξsin(θ)ν

x2 + 1 + 2cos(π − θ)
dx = −π sin(iξ(π − θ))

sin(iξθ)
ν▷

Thus, Aτ,ν and Bτ,ν become as follows

Aτ,ν =
i

2 sin(θ)


cos(θ)

sinh

ξ(π − θ)



sinh(ξπ)
− sinh


ξ(π − θ)



sinh(ξπ)


τ

− sin(θ)
sinh


ξ(π − θ)



sinh(ξπ)
ν


,

Bτ,ν =
−i

2 sin(θ)


cos(θ)

sinh

ξ(π − θ)



sinh(ξπ)
− sinh


ξ(π − θ)



sinh(ξπ)


τ

− sin(θ)
sinh(ξ(π − θ))

sinh(ξπ)
ν


▷

Consequently, the product H(1)
a (ξ)H

(2)
a (ξ) yields

H(1)
a (ξ)H(2)

a (ξ) =
ε2 − µ2

4sin2(θ)


A(ξ) +B(ξ) 0

0 A(ξ) +B(ξ)


,

with

A(ξ) =


− cos(θ)

sin(iξ(π − θ))

sin(iξπ)
+

sin(iξ(π − θ))

sin(iξπ)


− cos(θ)

sin(iξ(π − θ))

sin(iξπ)
+

sin(iξ(π − θ))

sin(iξπ)


,

B(ξ) =


sin(θ)

sin(iξ(π − θ))

sin(iξπ)


sin(θ)

sin(iξ(π − θ))

sin(iξπ)


▷
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The trigonometric identity

sin(z) = −isinh(iz) and sinh(−z) = −sinh(z), for all z ∈ C

yield that

A(ξ) +B(ξ) :=
ε2 − µ2

4sin2(θ)
× S(ξ) I2,

where S(ξ) is given by

S(ξ) = 2
sinh


ξ̄(π − θ)



sinh(ξπ)

sinh

ξ(π − θ)



sinh(ξ̄π)

− cos(θ)


sinh2


ξ(π − θ)



sinh2(ξ̄π)
+

sinh2

ξ̄(π − θ)



sinh2(ξπ)


▷

(5.28)

We want to simplify the rst term on the right-hand side of the previous identity. To do this, we use the
exponential form of the function sinh

sinh(ξ(π − θ)) =
eξ(π−θ) − e−ξ(π−θ)

2
, for ξ = η +

i

2
, ξ = η − i

2
▷

Then, we can write

sinh

ξ̄(π − θ)


sinh


ξ(π − θ)


=

1

2


cos(θ) + cosh(2η(π − θ))


,

sinh(ξπ)sinh(ξπ) =
1

2


cosh(2ηπ) + 1


▷

Thus, we deduce

2
sinh


ξ̄(π − θ)



sinh(ξπ)

sinh

ξ(π − θ)



sinh(ξ̄π)
= 2

cos(θ) + cosh(2η(π − θ))

1 + cosh(2ηπ)

Now, we want to simplify the second term on the right-hand side of the identity (5.28). Using the
exponential formula of sinh and the trigonometric identity

cosh(x± iy) = cosh(x) cos(y)± i sinh(x) sin(y), for all x, y ∈ R,

we obtain the following computation quantities

sinh2(ξ(π − θ)) = −1

2


1 + cosh(2η(π − θ))cos(θ)


+ i

sinh(2η(π − θ))

2
,

sinh2(ξ(π − θ)) = −1

2


1 + cosh(2η(π − θ))cos(θ)


− i

sinh(2η(π − θ))

2
,

sinh2(ξπ) = sinh2(ξπ) =
1

2


1 + cosh(2η(π − θ))


▷
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Hence, with a straightforward computation we transform the expression for S(ξ) (5.28) to

S(ξ) =
2 sin2(θ) cosh


2η(π − θ)



1 + cosh(2πη)

 with ξ = η +
i

2
▷

Thus,

∆a(ξ) =


1− (ε2 − µ2)

cosh

2η(π − θ)



2

1 + cosh(2πη)


2

=

1− (ε2 − µ2)Mθ(2η)

2
,

and the condition ∆a(ξ) ̸= 0 for all ξ is equivalent to

Mθ(x) ̸=
1

ε2 − µ2
for all x ∈ R▷ (5.29)

Remark that for any θ ∈ (0, 2π) one has

Mθ(x) ≥ 0 for all x ∈ R, lim
x→±∞

Mθ(x) = 0,

then the condition (5.29) is satised if any only if (recall that |ε| > |µ| by assumption)

1

ε2 − µ2
> m(θ) := sup

x∈R
Mθ(x), i.e., ε2 − µ2 <

1

m(θ)
▷

Thus, for each corner point aj we have shown the equivalence

∆aj (ξ) ̸= 0 for all ξ ∈ R+
i

2
if and only if ε2 − µ2 <

1

m(θj)
▷ (5.30)

Using the symmetry and monotonicity properties ofm, see (5.23) and Proposition 5.5.2, we conclude
that that Θm is Fredholm if and only if

ε2 − µ2 < min
j∈{1,▷▷▷,n}

1

m(θj)
=

1

maxj∈{1,▷▷▷,n}m(θj)
=

1

m(ω)
,

which is a sucient condition for the self-adjointness of B ≡ Bε,µ and gives the rst half of (5.27).
By applying the above result to B := B− 4ε

ε2−µ2 ,−
4µ

ε2−µ2
we see that B is self-adjoint for


− 4ε

ε2 − µ2

2
−


− 4µ

ε2 − µ2

2
<

1

m(ω)
,

which holds for ε2 − µ2 > 16m(ω). As the self-adjointness of B is equivalent to the self-adjointness of
B (see Remark 5.1.2), we obtain the second half of (5.27). ■

By combining Theorem 5.5.3 with Proposition 5.5.2 we obtain:

Corollary 5.5.4. Let Σ be a curvilinear polygon (with C1-smooth edges and without cusps). Assume
that one of the following three conditions holds:

(a) ε2 − µ2 < 2,
(b) ε2 − µ2 > 8,
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(c) ε2 − µ2 ̸= 4 and the interior angles θj of Σ satisfy

π

2
≤ θj ≤

3π

2
for all j ∈ {1, ▷ ▷ ▷ , n},

then B is self-adjoint.

We nish this chapter by pointing out the following remark.

Remark 5.5.2. In the proof of Theorem 5.5.3 one sees that for ε2 − µ2 > 16m(ω) the operator B is
self-adjoint but the operators Λz are not Fredholm. This shows that the converse of Theorem 5.4.1 does
not hold.

It would be interesting to understand if the quantitym(ω) has any geometric meaning: the preceding
analysis does not give any indication in this direction.
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PUBLICATION

Title: "A Poincaré-Steklov map for the MIT bag model". To appear in Analysis & PDE.

Abstract: The purpose of this paper is to introduce and study Poincaré-Steklov (PS) operators associated
to the Dirac operator Dm with the so-called MIT bag boundary condition. In a domain Ω ⊂ R

3, for a
complex number z and for Uz a solution of (Dm − z)Uz = 0, the associated PS operator maps the value
of Γ−Uz , the MIT bag boundary value of Uz , to Γ+Uz , where Γ± are projections along the boundary ∂Ω
and (Γ− + Γ+) = t∂Ω is the trace operator on ∂Ω.
In the rst part of this paper, we show that the PS operator is a zero-order pseudodierential operator and
give its principal symbol. In the second part, we study the PS operator when the massm is large, and we
prove that it ts into the framework of 1◁m-pseudodierential operators, and we derive some important
properties, especially its semiclassical principal symbol. Subsequently, we apply these results to establish
a Krein-type resolvent formula for the Dirac operator HM = Dm +Mβ1

R3\Ω for large masses M > 0,
in terms of the resolvent of the MIT bag operator on Ω. With its help, the large coupling convergence
with a convergence rate of O(M−1) is shown.

Lien: https://doi.org/10.48550/arXiv.2206.13337.

Title: "On the approximation of the Dirac operator coupled with conning Lorentz scalar δ-shell inter-
actions". To appear soon on arXiv, (2024).

Abstract: Let Ω+ ⊂ R
3 be a xed bounded domain, and denote its boundary as Σ = ∂Ω+. Consider Uε

a tubular neighborhood of the surface Σ with a thickness parameter ε > 0. Dene the perturbed Dirac
operator by Dε

M = Dm +Mβ1Uε , with Dm the free Dirac operator, M > 0 and 1Uε the characteristic
function of Uε. Then, in the norm resolvent sense, the Dirac operatorDε

M converges to the Dirac operator
coupled with Lorentz scalar δ-shell interactions as ε = M−1 tends to 0, with a convergence rate of
O(M−1).

Title: "On the approximation of the δ-shell interaction for the 3-D Dirac operator". Submitted, (2023).

Abstract:We consider the three-dimensional Dirac operator coupled with a combination of electrostatic
and Lorentz scalar δ-shell interactions. We approximate this operator with general local interactions V .
Without any hypotheses of smallness on the potential V , converges in the strong resolvent sense to the
Dirac Hamiltonian coupled with a δ-shell potential supported onΣ, a bounded smooth surface. However,
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the coupling constant depends nonlinearly on the potential V .

Lien: https://doi.org/10.48550/arXiv.2309.12911.

Title: "On the self-adjointness of two-dimensional relativistic shell interactions". Journal of Operator
Theory (JOT), in press, (2024).

Abstract: In this paper, we discuss the self-adjointness of the two-dimensional Dirac operator with a
transmission condition along a closed Lipschitz curve. The main new ingredients are an explicit use of the
Cauchy transform on non-smooth curves and a direct link with the Fredholmness of a singular boundary
integral operator. This results in a proof of self-adjointness for a new range of coupling constants, which
includes and extends all previous results for this class of problems. The study is particularly precise for
the case of curvilinear polygons, as the angles can be taken into account in an explicit way. In particular,
if the curve is a curvilinear polygon with obtuse angles, then there is a unique self-adjoint realization
with domain contained inH1◁2 for the full range of non-critical coecients in the transmission condition.

Lien: http://arxiv.org/abs/2307.12772.

⋆ ⋆ ⋆ ⋆ ⋆ ⋆
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Title : Spectral Properties of Dirac Operators on Certain Domains.

Abstract : We are interested in spectral study of perturbations of Dirac operators on certain

domains. The majority of the studies carried out in this thesis are established through the study of

the resolvents of these operators. On one hand, we introduce Poincaré-Steklov (PS) operators, which

appear naturally in the study of Dirac operators with MIT bag boundary conditions, and analyze

them from a microlocal point of view (Chapter 2). On the other hand, our study focuses on the

three-dimensional Dirac operator coupled with a singular delta interactions: Chapter 3 is devoted to

an approximation of the conning version of Dirac operator coupled with purely Lorentz scalar delta

shell interactions. Chapters 2 and 3 deal with the large mass limit (supported on a xed domain and

a domain whose thickness tends to zero). Chapter 4 also generalizes an approximation of the non-

conning version of Dirac operator coupled with a singular combination of electrostatic and Lorentz

scalar delta interactions by a Dirac operator with regular local interaction. Finally, in two-dimension,

we develop a new technique that allows us to prove, for combinations of delta interactions supported on

non-smooth curves, the self-adjointness of the realization of the Dirac operator under consideration,

in Sobolev space of order one-half (Chapter 5).

Keywords : Spectral analysis, Dirac operators, self-adjoint extensions, shell interactions, quantum

connement, Poincaré-Steklov operators, the MIT bag model, h-Pseudodierential operators, large

coupling limits.

Titre : Propriétés Spectrales des Opérateurs de Dirac sur Certains Domaines.

Résumé : Nous nous intéressons à l’études spectrale des perturbations d’opérateurs de Dirac sur

certains domaines. La majorité des études eectuées dans cette thèse est établie à travers l’étude

de la résolvante de ces opérateurs. D’une part, nous introduisons les opérateurs de Poincaré-Steklov

(PS), qui apparaissent naturellement dans l’étude des opérateurs de Dirac avec les conditions aux

bords MIT bag, et nous les analysons d’un point de vue microlocal (Chapitre 2). D’autre part, notre

étude porte sur les opérateurs de Dirac couplés à une combinaison singulière de delta interactions :

le Chapitre 3 se consacre à l’approximation de la version connée de l’opérateur de Dirac couplé

avec delta interaction scalaire de Lorentz. Les Chapitres 2 et 3 traitent de la limite de grande masse

(supportée sur un domaine xe et un domaine dont l’épaisseur tend vers zéro). Le Chapitre 4 généralise

une approximation de la version non-connée de l’opérateur de Dirac couplé avec une combinaison

singulière de delta interactions électrostatique et scalaire de Lorentz par un opérateur de Dirac avec

une interaction locale régulière. Enn, nous développons, en dimension deux, une nouvelle technique

qui nous permet de prouver, pour des combinaisons de delta interactions supportées sur des courbes

non-régulières, l’auto-adjonction de la réalisation de l’opérateur considéré, et ce, dans l’espace de

Sobolev d’ordre un-demi (Chapitre 5).

Mot clés : Analyse spectrale, opérateurs de Dirac, extensions auto-adjointes, δ-interactions, opéra-

teurs de Poincaré-Steklov, le modèle MIT bag, opérateurs h-Pseudodierentiel, couplage fort.
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