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Abstract
In the field of Plant Health Epidemiological Surveillance, accurately analyzing written

reports of events affecting agriculture is crucial. This master’s thesis in Natural Language
Processing leverages the power of Automatic Text Classification, specifically focusing on

its application in monitoring plant health. Conducted as part of the TIERS-ESV project,
this work is a joint effort between the Bibliome team at the INRAE MaIAGE Laboratory

and the VSI team at the PESV Plant Health Surveillance Platform. Central to our
research is a dataset curated and annotated by the VSI team, consisting of reports
extracted from online sources. This diverse, multilingual dataset was subjected to

thorough preprocessing, applying methods for noise elimination, error message removal,
and addressing scrapping errors and annotation discrepancies. We employed various

BERT models for Text Classification, tailored to our dataset via Fine-tuning and
pattern-based training method. After extensive classifier training, we selected the

top-performing models. The efficacy of the models obtained as a result of this work will
result in the deployment of BERT-based classifiers, poised to assist the VSI experts in

their monitoring mission.
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Laburpena
Landare Osasunaren Zaintza Epidemiologikoaren arloan, funtsezkoa da nekazaritzari

eragiten dioten gertaeren idatzizko txostenak zehaztasunez aztertzea. Hizkuntza
Prozesamendurako master-tesi honek testu sailkapenaren ahalmena aprobetxatzen du,

bereziki landareen osasuna kontrolatzeko duen aplikazioan zentratuz. Masterreko tesi hau
TIERS-ESV proiektuaren barne garatu da eta INRAE MaIAGE Laborategia eta PESV

Landare Osasuneko Zaintza Plataformaren VSI taldearen arteko ahalegina da. Gure
ikerketan funtsezkoa da VSI taldeak eskuz etiketatutako datu-multzo bat, Internet-en

iturrietatik ateratako txostenez osatua. Datu-multzo anitz eta eleaniztun honi
aurreprozesamendu sakona egin zitzaion, zarata kentzeko metodoak aplikatuz,

errore-mezuak kentzeko eta scrapping akatsak eta anotazioen desadostasunak zuzentzeko.
Testu sailkapenerako hainbat BERT eredu mota erabili ditugu, gure datu multzora

egokitutako fine-tuning-en eta PET-en oinarritutako metodoaren bidez. Sailkatzaileen
entrenamendu anitz egin ondoren, errendimendurik handiena duten ereduak aukeratu
ditugu. Lan honen ondorioz lortutako eredu eraginkorrenak hedatzea ekarriko du, VSI

adituei beren jarraipen-misioan laguntzeko prest.

Resumen
En el área de la Vigilancia Epidemiológica de la Salud de las Plantas, el análisis preciso

de reportes escritos sobre eventos que afectan a la agricultura es crucial. Este Trabajo de
Fin de Máster en Análisis y Procesamiento del Lenguaje aprovecha las capacidades de la

Clasificación Automática de Textos, específicamente, enfocándose en su aplicación al
monitoreo la salud de las plantas. Realizado en el marco del proyecto TIERS-ESV, este

trabajo es el resultado de una colaboración entre el equipo Bibliome de la unidad
MaIAGE del laboratorio INRAE y el equipo VSI de la Plataforma de Vigilancia de la
Salud de las Plantas PESV. Nuestra investigación se apoya en un conjunto de datos
curados y anotados por el equipo VSI, que consiste en reportes extraídos de fuentes
recopiladas en línea. Este conjunto diverso y multilingüe de datos fue sometido a un

preprocesamiento exhaustivo, aplicando métodos para la eliminación de ruido, la
supresión de mensajes de error y el tratamiento de errores de recopilación y discrepancias

en las anotaciones. Utilizamos diversos modelos BERT para la Clasificación de Textos,
adaptados a nuestro conjunto de datos mediante Fine-tuning y un método de

entrenamiento basado en plantillas. Después de un entrenamiento intensivo de los
clasificadores, seleccionamos los modelos de mejor rendimiento. La eficacia de los modelos
obtenidos como resultado de este trabajo conducirá a la implementación de clasificadores
basados en BERT, preparados para asistir a los expertos del equipo VSI en su misión de

monitoreo.
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1 Introduction

1.1 Motivation
Natural Language Processing (NLP) is a subfield of Artificial Intelligence (AI) that focuses
on the interaction between computers and humans through natural language. Its primary
aim is to enable computers to understand, interpret, and generate human language in
a way that is both meaningful and useful. Recently, NLP has been revolutionized by
the widespread adoption of Neural Networks. As in many domains, AI and NLP have
been starting to be adopted for Biomedical purposes, with promising results (Alrowili and
Shanker, 2021; Hakala and Pyysalo, 2019).

In this thesis, we present an application of Text Classification to Plant Health Surveil-
lance, which refers to the systematic observation, detection, and analysis of plant diseases
and pests to prevent their spread and ensure the health and productivity of plants. It
involves tracking disease patterns, assessing risks, and implementing measures to protect
plant ecosystems and agricultural systems.

1.2 Hosting Institution : INRAE Laboratory
INRAE 1 (Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environ-
nement) is a French research institute dedicated to agriculture, food, and the environment.

INRAE conducts scientific research and innovation activities to address various chal-
lenges related to sustainable agriculture, food production, and environmental conservation.
Its research efforts span a wide range of disciplines, including agronomy, biology, ecology,
genetics, forestry, hydrology, and applied mathematics and computer science.

Through its multidisciplinary approach and emphasis on sustainability, INRAE plays
a crucial role in driving scientific progress, innovation, and policy development in France
and beyond, with the ultimate aim of ensuring sustainable and resilient agricultural and
environmental systems.

Within INRAE, the Mathematics and Numerics division (MathNum2) focuses on ad-
vancing research in various fields including applied mathematics, statistics, bioinformat-
ics, AI, and information technology. The division’s research units engage in theoretical,
methodological, and applied research. They actively collaborate with teams from different
divisions within INRAE and external organizations, fostering interdisciplinary partner-
ships. MaiAGE3, one of these research units, is associated to the Paris-Saclay University,
and brings together mathematicians, computer scientists, bioinformaticians, and biologists
to address challenges in the fields of biology, agronomy, and ecology. This project was
carried out with alongside the Bibliome4 team, which specializes in the advancement and

1https://www.inrae.fr/
2https://www.inrae.fr/departements/mathnum
3https://maiage.mathnum.inrae.fr
4https://maiage.mathnum.inrae.fr/fr/bibliome
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adaptation of NLP and Machine Learning (ML) techniques tailored for textual data within
the fields of biology and agronomy.

1.3 Overarching Project: TIERS-ESV
The Bibliome team, as part of the Traitement de l’Information et Expertise des Risques
Sanitaires pour l’Epidémiosurveillance en Santé Végétal (TIERS-ESV) project5 (Process-
ing of Health Risk Information and Knowledge for Epidemiological Surveillance in Plant
Health), collaborates frequently with the Plateforme d’Epidémiosurveillance en Santé Végé-
tale (PESV)6 (Plant Health Epidemiological Surveillance Platform), and it is within this
collaboration that we conducted this work.

The PESV Platform was created in 2018 by 7 French national public and private actors
(INRAE, the Anses Laboratory7, the French Ministry of Agriculture, the Cirad Center8,
the Acta reseach association 9, the French Chamber of Agriculture 10, and the FREDON
Network11) with the objective to ensure the efficiency of epidemiological surveillance in
plant health (Ministère de L’Agriculture et de L’Alimentation, 2018).

According to its mission statement, ‘the PESV Platform leverages its scientific and
technical expertise to engage in three key areas: monitoring, analysis, and advisory services.
Its services cater to both public policies and all professionals within the plant health sector’.

As an integral part of its monitoring endeavors, the PESV Platform includes the Veille
Sanitaire Internationale (VSI)12 (International Health Monitoring) project. The main fo-
cus of the VSI team is “to address potential threats that may impact plant health by
engaging in monitoring activities on a global scale”. Its responsibilities encompass ongo-
ing surveillance of events like notifications, reports, and changes in surveillance strategies
across the globe. Furthermore, it conducts scientific monitoring on diverse subjects, in-
cluding phylogeography, spatial distributions of species, habitat suitability assessments,
innovative disease prevention measures, as well as surveillance and control methodologies.

1.4 Objective
Our objective is to leverage AI to support the Plant Health Monitoring efforts of the PESV
Platform.

The primary objective of this project is to facilitate and enhance the monitoring of Plant
Health at the PESV Platform by introducing a degree of automation to the traditionally
manual processes. Recognizing the critical importance of timely and accurate Plant Health

5https://plateforme-esv.fr/node/24638 and https://maiage.inrae.fr/index.php/fr/node/
2111

6https://plateforme-esv.fr/
7https://www.anses.fr/fr
8https://www.cirad.fr/
9https://www.acta.asso.fr/

10https://chambres-agriculture.fr/
11https://fredon.fr/
12https://plateforme-esv.fr/thematiques/GTVSI
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monitoring, our aim is to harness the data provided to us by experts at the VSI team in
order to develop a detection system based on AI. By doing so, we aspire to offer a more
efficient, data-driven approach to detect early signs of plant diseases, pests, or any other
anomalies. This would not only ensure a faster response and intervention but also alleviates
the workload of professionals in the field. This endeavor is not merely about replacing
human intervention but assisting it. By automating certain repetitive and time-consuming
tasks, we aim to alleviate experts to focus on more nuanced and complex aspects of plant
health, ensuring that their expertise is utilized where it is most needed.

This thesis has led to the development of a Text Classification system designed to
support the VSI experts. We have carefully picked six different BERT models based on
their respective characteristics. Moreover, we’ve explored two training techniques: fine-
tuning and few-shot learning with PET, a prompt-based approach. After undergoing two
rounds of training, we generated a considerable number of candidate classifiers. These
classifiers then underwent a filtering process, resulting in the selection of a limited set of
the most high-performing ones, which will be deployed for use by the VSI experts in their
Plant Health Surveillance mission.

1.5 Structure of this Thesis
After this Introduction, Section 2 provides foundational knowledge and context for under-
standing our work. Section 3 offers a review of existing literature, highlighting previous
methodologies and their gaps. In Section 4 we delve into the Dataset, detailing its sources
and characteristics, and then continue to Section 5, which elucidates the preprocessing
techniques employed. Section 6 outlines the research methods and tools used, leading to
Section 7, where our findings are presented and analyzed. Section 8 sheds light on the real-
world relevance of the findings, and the study culminates with Section 9, summarizing key
takeaways. Additionally, an Appendix is provided, rich with tables and detailed statistics,
serving as a valuable resource for reference.

This thesis is submitted in fulfillment of the requirements for the Erasmus Mundus
Language And Communication Technology13 from the European Union, as a student as-
signed to the University of Lorraine (France), and the University of the Basque Country
(Spain).

13https://lct-master.org/
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2 Background
This Section introduces the conceptual tools necessary to understand our project, our
methodology, and our results.

2.1 Text Classification
Text Classification is a fundamental task in NLP that involves automatically assigning
predefined categories or labels to text documents based on their content. The goal of Text
Classification is to develop computational models that can accurately classify text docu-
ments into predefined categories, enabling automated organization, retrieval, and analysis
of large volumes of textual data.

Formally, given a set V called the Vocabulary, and a set C of categories, a Text Classi-
fication System is a function

f : V ∗ × C 7→ {True, False}

where V ∗ is the set of finite sequences of elements of V , that is, the set of documents.
While the general definition of Text Classification accommodates multi-label classification
scenarios, the specific focus of this project is on Binary Text Classification. In this par-
ticular case, the classification task involves assigning documents to one of two mutually
exclusive categories (Shen, 2009; da Costa et al., 2023).

In our particular scenario, we will be handling entire documents for analysis rather
than, for example, individual words or proper names. Thus, the task is termed Document
Classification. In the context of Document Classification, the fundamental objective is to
leverage a training set, comprising a collection of training documents (di, ci), and employ
a learning method or algorithm to derive a Classifier γ. The primary purpose of this
classifier is to establish a mapping from documents to two classes. Here, for simplicity, we
refer to them as the positive and negative classes. This is denoted as

γ : V ∗ 7→ {Positive,Negative}

2.2 Neural Networks
Neural Networks are essential tools in ML and NLP. Given their complexity, this section
introduces core concepts. Starting with a practical example, we introduce the concept
of ‘neuron’, and then we proceed to explain neural ‘training’ based on data, its common
challenges, and the solutions used in our work. Subsequently, our exposition continues to
the organization and interconnection of neurons within a structure or architecture referred
to as a Neural Network. Finally, the use of Neural Networks in NLP is also examined. We
draw on the Open Access material from Zhang et al. (2023) and Wolfram (2023).

______________________________________________________
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2.2.1 Motivating Example

To understand the rationale behind using Neural Networks, let’s consider a scenario where
we aim to determine how the temperature and humidity of a place relate to the perceived
temperature by living beings, such as humans. In other words, given these two metrics
across various locations, our goal is to forecast the felt temperature or Heat Index for each
site. A simplified version of the model from Steadman (1979), can provide us with an
equation for the Heat Index (HI).

HI = wTempT + wHumH + c

The main idea behind this model is that the heat index, our target, can be calculated
as a weighted sum of the temperature T and the humidity H. The influence of T on the
HI is given by wTemp and that of H by wHum, and we correct by a constant value c.

In this model, H and T are termed the features of a location, serving as its defining
characteristics. Essentially, locations with identical features will yield the same output.
The terms wTemp and wHum are referred to as weights or parameters. They signify the
relevance of the features to the model. For instance, if wHum is zero, the HI would solely
be influenced by T . Additionally, c is labeled as the bias or offset, representing the output
value when the features are null. The equation’s right-hand side, wTempT +wHumH + c, is
recognized as the model’s output or prediction.

In practice, the values for the weights and bias of this model have been determined to
be:

wTemp = 1.1

wHum = 0.047F ◦

c = −10.3F ◦

Yet, this basic representation has its limitations. Interestingly, by introducing an ad-
ditional computational step, we can achieve more accurate results. Let’s consider incor-
porating a minor squared term through the function f(u) = u+ 0.0002u2. With this, our
model evolves to:

HI = f(wTempT + wHumH + c)

In this enhanced model, f is termed the activation function. The model’s prediction
or output is derived by applying f to the weighted sum. This added computation step
allows for a more authentic representation of how living beings respond to significant shifts
in temperature and humidity. In general, this kind of model allows us to use numerical
features, to obtain a prediction for a variable of interest.

______________________________________________________
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2.2.2 Neurons

When dealing with increasingly complex phenomena, it becomes challenging to explicitly
define the parameters for a model. This requires a broader approach. In the realm of
Machine Learning, the concept of neurons serves as a generalization of the model described
earlier.

Input Output

(a) Neuron overview

Input f

x1
w1

x2
w2

x3

w3

z Output

(b) Neuron with weights

Figure 1: Basic Neuron

Consider a model where the inputs encompass n distinct features, represented as
(x1, x2, . . . , xn). The diagram depicted in Figure 1 represents the following equation:

z = f(w1x1 + w2x2 + . . .+ wdxd + b)

Here, w1, w2, . . . , wn denote the weights, b signifies the bias, f is the activation function,
and z stands for the prediction.

One of the main insights in ML is that one does not need to manually define the
parameters (w1, w2, . . . , wn, b) for this kind of model. Instead, with ample data comprising
input features and observed target values, it is feasible to determine the best parameter
values. This ensures the model’s predictions closely align with the observed target values.
Once established, this model can be applied to new data. The process of finding the
optimal parameters is called training.

In order to find the optimal parameters, we first need to decide how to produce our
final predictions, how to measure how well the model is performing, and how to update
the model’s parameters.

2.2.3 Activation functions

The method used to derive our final predictions is contingent on the specific problem to
be addressed. Various activation functions cater to different problems. For instance, in
regression, where our objective is to compute a continuous quantity, like in the example in
Section 2.2.1, we may handle values that can range from extremely small to exceedingly
large. On the other hand, classification tasks aim to predict a categorical label, either by
taking a final decision or by producing probabilities for each category.

Table 1 and Figure 2 enumerate some of the most common activation functions.
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Activation Func-
tion

Description

Identity Returns input as-is
Rectified Linear Unit
(ReLU)

Retains positive values, sets negatives to zero

Logistic function (σ) Maps input to a value between 0 and 1
Soft-ArgMax
(SoftMax)

Converts input into a probability distribu-
tion over multiple classes

Hyperbolic Tangent
(tanh)

Maps input to a value between -1 and 1

Table 1: Common activation functions

(a) Identity (b) ReLU (c) Sigmoid (d) Tanh

Figure 2: Common activation functions

2.2.4 Loss Functions

Loss functions quantify the deviation of predicted values from actual target values. The
goal during training is to adjust the parameters to minimize this deviation. The process
of inputting data into the neuron to compute the loss is termed the forward pass.

For regression tasks, the squared error is frequently employed. It calculates the squared
difference between the predicted and actual values:

lossSE(x,w, b) =
1

2
(zpred(x,w, b)− zreal)

2 (1)

where zpred = f(xw + b).
In classification tasks, the cross-entropy loss is common. The essence of cross-entropy

is to maximize the model’s confidence in its category assignments14. Given features
x = x1, x2, . . . , xn and predicted probabilities p1, p2, . . . , pk for categories c1, c2, . . . , ck, and
representing actual categories as (q1, q2, . . . , qk) where qj = 1 for category j and qj = 0
otherwise, cross entropy is:

lossCE(x,w, b) = −
∑
j

qj(x) log (pj(x,w, b)) (2)

For datasets with uneven category distribution, or unbalanced datasets, a modified
version called weighted cross-entropy can be used. It adjusts the cross-entropy based on
category representation. If category j has a weight of rj, then:

14Deducing the formula for Cross-Entropy is outside the scope of this work
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Figure 3: Gradient descent illustration

lossWCE(x,w, b) = −
∑
j

rjqj(x) log (pj(x,w, b)) (3)

2.2.5 Backpropagation

After measuring the performance of a neuron through the loss, our aim is to adjust its
parameters to reduce this loss. The process of updating the weights to achieve this reduction
is termed backpropagation. A common optimization technique to achieve this is gradient
descent. For illustrative purposes, let’s assume that the neuron has just one weight, and
thus, there’s just one weight influencing the loss (as depicted in Figure 3). The key insight
is that moving against the slope of the loss curve brings us closer to its minimum. This
slope is the derivative or the gradient of the loss function. Through several iterative steps,
updating the weight each time, we eventually reach the ideal weight that minimizes the
loss.

Having identified the direction of adjustment, it’s also crucial to regulate the magni-
tude of this adjustment. This is achieved using the learning rate η, which moderates the
gradient’s impact on weight updates. That is, our weight updating process is calculated in
the following way:

wnew = wold − η∇loss(x,wold) (4)

2.2.6 Training

Up to this point, we’ve discussed using just one feature vector as input for a neuron.
But for a comprehensive representation of our task, multiple examples are essential. This
means, for effective training, we require multiple data points, or in other words, a Dataset

______________________________________________________
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Figure 4: Neuron Training Process

comprising both features and their corresponding observed target values (x, zreal). If our
Dataset D contains N items, our goal becomes minimizing the average loss across the
dataset:

Loss(w, b) =
1

N

∑
x∈D

loss(x,w, b) (5)

The entire process of executing the forward pass, determining the loss, and updating
weights through backpropagation is termed an epoch (as illustrated in Figure 4).

In most cases, our computing resources might not possess the capacity to process the
entire Dataset in one run. A common workaround is segmenting the Dataset into equally
sized batches. The forward pass and loss computation are then executed batch by batch
until the entire dataset is covered. Subsequently, the losses from each batch are combined
to determine the final loss, followed by backpropagation. Typical batch sizes include powers
of 2: 2, 4, 8, 16, 32, 64, . . . , 2n, . . .

Often, a single epoch doesn’t suffice to yield satisfactory outcomes. Hence, it’s a stan-
dard practice to train a neuron over multiple epochs. With each epoch, the loss typically
reduces (as depicted in Figure 5).

2.2.7 Overfitting

As we progressively reduce our loss, we encounter a challenge. There are instances when
the neuron will produce excellent predictions for the data it was trained on, but performs
poorly on entirely new data, rendering the neuron useless for real-world applications. This
issue is termed overfitting.

A prevalent strategy to counteract overfitting is to divide the dataset into three distinct
portions:

______________________________________________________
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Figure 5: Evolution of loss during training

1. The training split, which constitutes a portion of the dataset dedicated to the core
training processes, including the forward pass, loss evaluation, and crucially, back-
propagation.

2. The development split, a portion of the dataset designated for tracking potential
overfitting. For this split, we execute the forward pass and compute the loss, and
occasionally other metrics, but refrain from backpropagation. Recognizing the be-
ginning of overfitting allows us to adjust our setup for the optimal number of epochs.

3. The test split, a portion of the dataset reserved for assessing the efficacy of the chosen
training setup, especially since this subset wasn’t involved in its selection.

When monitoring the trajectory of the loss across the training and development splits, a
pattern emerges. After a specific number of epochs, the loss on the training split continues
to drop, but the development split’s loss starts to climb. This shift marks the beginning
of overfitting (depicted in Figure 6).

Other techniques for avoiding overfitting, like cross-validation, neuron dropout, gradient
clipping, etc., are beyond the scope of this work.

2.2.8 Optimizers

We may generalize Gradient Descent (Equation 4), by noticing that we only need to cal-
culate some way to update our weights:

wnew = wold − Update(x,wold) (6)
Different optimization methods calculate the Update in different ways. Software imple-

mentations of these optimization methods are called optimizers. Some common methods
are listed in Table 2, listed by increasing performance.
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Figure 6: Evolution of loss on the training and development splits

Optimization method Description
Gradient Descent Classical Gradient Descent
Stochastic Gradient De-
scent (SGD)

Estimates the gradient by only using a randomly se-
lected subset of the data

SGD with Momentum Uses the estimated gradient and the previous value of
Update

Averaged SGD Takes into account several past values of Update and
averages them while giving less importance to older
values

Adaptive Gradient (Ada-
Grad)

A version of SGD where each weight is updated with
its own learning rate, instead of all weights using the
same one. It calculates Update by averaging and nor-
malizing over the history of updates

Adam AdaGrad + Momentum
AdamW Extension of Adam, controlling for the magnitude of

each weight

Table 2: Common optimization methods for backpropagation
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Figure 7: A Feed-Forward Neural Network

2.2.9 Feed-Forward Neural Networks

As we have seen, an individual neuron may take several inputs to give an output, and this
provides us with a model useful for some applications. One of the groundbreaking insights
in ML was the idea of linking neurons together. This involves using the output of one
neuron as the input for others. By organizing neurons into linear layers and interconnecting
them, we create a Feed-Forward Neural Network (FFNN) (Refer to Figure 7)15.

When performing the forward pass, input features are fed into the FFNN via the input
layer, they traverse through intermediate layers until they reach the output layer. As the
FFNN undergoes training, every intermediate layer crafts new features for the subsequent
layers. This mechanism enables the FFNN to learn new representations for the data.
These in-between, or hidden, features detect and leverage patterns from earlier features to
determine the final output of the Neural Network. A Neural Network with just one hidden
layer is termed shallow, whereas those with several hidden layers are called deep.

For classification tasks, the SoftMax activation function is typically employed in the
output layer since it yields a probability distribution across various categories. Such a
layer is termed a SoftMax layer or a classification layer. The inputs to this layer are
often referred to as logits. Given that we’re working with probabilities, the objective is
to minimize the cross-entropy loss between the predictions of the Neural Network and the
true labels. (Refer to Figure 8)

2.2.10 Hyperparameters

When training a Neural Network, the goal is to progressively adapt its parameters or
weights to minimize the loss. However, several critical choices need to be made by the
designers of the Neural Network.

Some decisions concern the architecture of the Neural Network, such as:
15All diagrams of Neural Network were made with the NN − SV G tool by LeNail (2019)
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Figure 8: Neural Networks for Classification Tasks

• Number of layers
• Number of Neurons per layer
• Activation functions for each layer
• Dimension of output features
• Loss function
• Optimizer

There are also decisions about specific numerical values that affect the training method,
such as:

• Number of epochs
• Learning rate
• Batch size
• Sizes for the dataset splits

All these are known as hyperparameters. Unfortunately, there is no one-size-fits-all an-
swer to the question of which hyperparameters to use because the optimal hyperparameters
can vary depending on the specific dataset, model architecture, and task at hand. The
search space for hyperparameters can be vast, and finding the best combination can be
computationally expensive and time-consuming. As a result, the choice of hyperparame-
ters is often determined through trial and error, experimentation, and a combination of
domain knowledge and experience.

2.2.11 Neural Networks for NLP tasks

For Neural Networks to handle NLP tasks, textual data must be transformed into numerical
features to feed to the network. A significant advancement in NLP came when experts
discovered that instead of handcrafting algorithms for feature generation, they could train
Neural Networks to produce these features for subsequent Neural Networks. The next
section elaborates on this approach.
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Figure 9: Naive tokenization

2.3 Tokenization and Embeddings
Most NLP tasks for text start with a corpus of documents. The documents may have been
manually collected by humans; automatically collected, for example, using web scrapping
tools, generating text from templates, or, most recently, sampling outputs from AI tools
like GPT-3 (Wang et al., 2021) and ChatGPT (Huang et al., 2023); or constructed using
a mixture of human and automatic input.

Considering the ever-changing nature of natural language, the initial phase in Text
Classification involves defining the system’s Vocabulary. Tokenization refers to the act
of segmenting text into smaller units, known as tokens. As a first approach, one may
use the intuitive idea of word for tokens, in languages with a morphosyntax similar to
English (Figure 9). The collection of unique tokens derived from a text corpus forms the
Vocabulary.

However, naive word tokenization16 can lead to challenges with out-of-vocabulary (OOV)
words when presented with new data. A more modern tokenization approach involves using
subword units. This strategy addresses OOV words by breaking words down into smaller
segments. In English, for instance, one might consider prefixes and suffixes as subwords
(like pre-, -ing, -ed, and so on), enhancing the NLP system’s ability to understand mor-
phology. Nevertheless, instead of manually defining rules to divide words into subwords,
there are two widely-used algorithms based on character distribution to create such tok-
enizers:

• Byte-Pair Encoding (BPE) (Sennrich et al., 2016) builds a vocabulary by iteratively
merging the most frequent pair of characters or character sequences in a given text
corpus. It starts with a character-level vocabulary and merges the most frequent pair
of tokens until a desired vocabulary size is reached.

16Another simple tokenization technique is character-level tokenization, where text is simply divided
into individual characters. This tokenization technique falls outside the scope of this work.

______________________________________________________
Language Analysis and Processing



Document Classification for Plant Health Surveillance 15/104

Figure 10: Different tokenization approaches:naive, Byte-Pair Encoding, and Word Piece

• Word Piece (WP) (Wu et al., 2016) begins by creating a vocabulary that consists of all
the characters found in the training data. It then proceeds to learn a specific number
of merge rules. Unlike BPE, Word Piece Tokenization selects symbol pairs that
maximize their frequency relative to its constituent symbols, rather than choosing
the most frequent symbol pair.

Typically, these algorithms result in different tokenizations for the same text, leading
to different vocabularies. Figure 10 displays a sample output from the WP method in
Devlin et al. (2019) and the BPE method in Liu et al. (2019) for English content.

Even though there are Text Classification approaches which only consider the distribu-
tion of tokens in a corpus, like Naive Bayes Classification (Manning and Schutze, 1999),
recent breakthroughs in NLP have been enabled by text embeddings, which are vector
representations of text in high-dimensional space.

Embeddings are intended to capture the semantic relationships between texts, al-
lowing computational models to understand and manipulate textual data. Typically,
embeddings serve as input features for textual data, which are then fed into ML al-
gorithms (Figure 12).

Word embeddings are a type of text embedding that assign a vector representation to
each token in a text. Within Text Classification, while word embeddings are prevalent,
Document Classification especially benefits from Document embeddings. These embeddings
provide a unique vector representation for an entire document, enabling a holistic under-
standing and categorization of texts based on their full content and context. Essentially,
text embeddings ensure that texts with analogous meanings are closely aligned, while those
with divergent meanings are distinctly separated (Figure 11).

Text embeddings have undergone significant evolution over the years, with several tech-
niques and models contributing to their development. We present a brief overview of the
key milestones in the evolution of word embeddings:

• Early approaches focused on frequency-based representations, such as Bag-of-Words
(BOW) one-hot encoding17 and term frequency-inverse document frequency (TF-
IDF). These methods assigned weights or binary values to words based on their
occurrence in the corpus, without capturing semantics.

17A one-hot vector has all its components null, except one which has value one
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Figure 11: Word and Document embeddings

Figure 12: Using Embeddings to train Neural Networks for Classification
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• Word2Vec (Mikolov et al., 2013) popularized the concept of word embeddings trained
using unsupervised learning. These models utilized shallow neural networks to learn
word embeddings by predicting neighboring words or contexts.

• Recurrent Neural Network (RNN) architectures, such as GRU (Gated Recurrent
Unit), LSTM (Long Short-Term Memory), and Bi-LSTM (bidirectional LSTM),
provided a breakthrough by processing sentences sequentially. For example, with
InferSent document embeddings (Conneau et al., 2017). However, they faced chal-
lenges with long-term dependencies and were computationally expensive for longer
sentences.

• Contextualized word embeddings introduced the idea of generating word representa-
tions that varied depending on the context in which the tokens appeared. Models like
ElMo (Embeddings from Language Models) (Peters et al., 2018) and OpenAI’s GPT
(Generative Pre-trained Transformer) (Radford et al., 2018) were able to produce
dynamic word embeddings.

• Transformer models, including Google’s Bidirectional Encoder Representations from
Transformers (BERT) (Devlin et al., 2019), OpenAI’s GPT-2 (Radford et al., 2019)
and GPT-3 (Brown et al., 2020), revolutionized the field by leveraging attention
mechanisms and large-scale pre-training. These models introduced contextualized
word embeddings on a larger scale and achieved state-of-the-art performance across
various NLP tasks.

In this work, our primary focus is on employing the BERT family of models for Text
Classification. The details of these models will be explored in the next section.

2.4 BERT Models for Text Classification
A Language Model is a Neural Network that can be used for predicting the distribution of
tokens, given a corpus. The main goal of a Language Model is to capture the underlying
patterns and structure of tokens in the corpus. The architecture for the BERT (Bidi-
rectional Encoder Representations from Transformers) family of models was introduced
Devlin et al. (2019) as one capable of learning embeddings aware of the left and right
context for each token18.

The BERT family of models has gained significant popularity due to its ability to
efficiently generate contextualized embeddings for both individual tokens and entire
documents at a low cost (Koroteev, 2021).

While the original BERT is a general-purpose model, many tasks benefit from domain-
specific knowledge. The multitude of BERT models arises from the need to cater to different
languages, domains, tasks, and computational constraints, combined with ongoing research
efforts to improve model performance and efficiency.

18Hence the name “Bidirectional”.
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Figure 13: Attention Mechanism for Machine Translation, from Olah and Carter (2016)

Many BERT models are freely and readily accessible and set for deployment across a
range of NLP tasks. Given this availability, they will serve as primary tools for this work.

2.4.1 Attention and Transformers

For many years, NLP methods faced challenges with understanding distant relationships
within texts. For example, consider the sentence, “The cat, which was adopted from
the shelter last month, loves to play.”. Here, the subject (cat) and the verb (loves) are
spaced apart by several words, making it tricky for systems identifying grammatical roles.
Similarly, when translating from, say, Japanese to English, it’s crucial to recognize that
the Japanese verb typically appears at the end of the sentence.

Initially introduced in NLP for Machine Translation (Bahdanau et al., 2015), the At-
tention mechanism enables the Neural Network to focus on particular words or phrases
crucial for grasping the context. It achieves this by employing trainable parameters to
determine coefficients between 0 and 1, indicating the significance of each input token to
each output token (Figure 13). The part of the network responsible for determining these
attention coefficients is termed an Attention Head.

Interestingly, attention can be computed between a sentence and itself to evaluate the
significance of its various components relative to one another; this process is called Self-
Attention. The outcome of the Self-Attention mechanism for a text comprising n tokens is
an n × n matrix A = (aij), where aij is a value between 0 and 1, denoting the influence
of token j on token i (typically, pij 6= pji). In the original architecture, which we employ
in this work, the time and memory usage for Self-Attention grow in a quadratic manner
on the text’s length (O(n2)). More recent Self-Attention designs aim to reduce computing
time Dao et al. (2022).

Attention mechanisms are a fundamental component of Transformer models, a type of
deep learning architecture that has revolutionized NLP tasks. The original Transformer
model, introduced in the “Attention is All You Need” paper by Vaswani et al. (2017), uses
multiple Self-Attention Heads, and is primarily used for sequence-to-sequence tasks, such
as Machine Translation.

A classical Transformer architecture consists of two main neural modules, the Encoder
and the Decoder. The encoder module takes embeddings as input features, computes self-
attention, and produces attention-enriched embeddings. These enhanced embeddings are
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Figure 14: Classical Transformer Architecture

then channeled to the decoder, which outputs the logits of the probabilities of the next
token. Notably, the decoder also incorporates its prior outputs as inputs, applies self-
attention to them, and then calculates ”cross” attention between these and the attention-
augmented embeddings from the encoder. The design of this architecture is depicted in
Figure 14.

After successful training, the encoder learns the optimal way to generate embeddings
for each token considering all the other tokens in the input. At the same time, the decoder
learns to produce tokens in a manner informed by the input and its own output. Due to
the quadratic complexity of Self-Attention, Transformer architectures have a limited input
size.

2.4.2 The training of BERT

The architecture for BERT essentially a series of encoder modules from the traditional
Transformer design, layered sequentially19. Two distinct versions were introduced by the
original auhors for English text: a base model with 12 encoder layers and 12 attention
heads, yielding 768-dimensional embeddings, and a large model with 24 encoder layers and
16 attention heads, resulting in 1024-dimensional embeddings. The basic BERT architec-
ture employs a WP tokenizer and can handle up to 512 tokens as input.

For training BERT to generate context-aware embeddings for individual tokens as well
as entire sentences, it was subjected to two specific tasks. The datasets utilized for this
purpose were Google’s BookCorpus and the English portion of Wikipedia.

19Hence the name “Encoder Representations from Transformers”.
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Figure 15: Self-Attention for MLM

Masked Language Modeling To learn embeddings for tokens, the authors introduce
the Masked Language Modelling (MLM) task. At its core, the MLM task aims for the model
to “fill-in the blank” or to “guess the missing word”. For MLM, once a text is tokenized, 15%
of the tokens are randomly substituted with a unique [MASK] token, symbolizing a blank
space. This modified sequence is then processed by the encoder layers, relying on the self-
attention mechanisms to provide sufficient contextual understanding (as depicted in Figure
15). To determine the omitted word, the final embedding corresponding to the [MASK]
token is passed through a SoftMax activation function, yielding a probability distribution
over all the tokens in the vocabulary. By contrasting these probabilities with the known
token, the cross-entropy loss is computed, which serves as the loss to be minimized. This
procedure enables BERT to learn about the token distribution.

Next Sentence Prediction To learn embeddings for sentences, the Next Sentence Pre-
diction task used by the authors involves joining two sentences or phrases and training the
model to determine if they appeared consecutively in the training dataset. Specifically, for
each example with sentences A and B, there’s a 50% chance that B is the actual subse-
quent sentence to A, and a 50% chance it’s a random sentence from the dataset. In order
to do this, the authors introduce two special tokens, the [CLS] token, for classification,
and the [SEP] token to separate the texts.

During training, the [CLS] token is placed at the start of the text, and the [SEP] token
is positioned between the two sentences. After processing by the encoders, the [CLS]
token’s embedding undergoes further refinement via a Pooling Layer20, resulting in what’s
termed the aggregated or pooled output. This pooled output aims to encapsulate the entire
text’s meaning. Ultimately, this output is fed into a classification layer, and the generated
probabilities are matched against the known sentence distribution to compute the cross-
entropy (as illustrated in Figure 2.4.2). Through this process, BERT is trained to generate
embeddings that represent whole sentences.

20This layer comprises a linear layer with a tanh activation function
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Figure 16: Next Sentence Prediction Task for BERT

2.4.3 Using BERT for Text Classification

The training process for BERT doesn’t require the texts to be labeled or categorized,
making it an unsupervised approach. This approach allowed BERT to learn general text
representations that encompass a variety of syntactic and semantic patterns across diverse
contexts.

Once the BERT model is trained, the conventional method for Document Classifica-
tion using BERT involves feeding the text to the modela. Then, the pooled output
serves as the document’s embedding. This embedding is then fed to a classification
layer, which is further trained for the specific task at hand (as illustrated in Figure
17).

akeeping the second sentence empty after the [SEP] token

Finally, the parameters of BERT models may be adapted to new data and tasks. In
Section 6, we detail the techniques used for fitting BERT to our task.

2.5 Evaluation Metrics for Classification
After training a classifier for a Classification task, including Text Classification, the subse-
quent phase is to assess its performance. This involves leveraging a dataset with predefined
class labels and contrasting the classifier’s predicted with these true labels.

Appendix A contains the motivations and definitions for five classic metrics for evalu-
ating binary classifiers: accuracy, precision, recall, F1, and AUC. In this section, we take a
step further and discuss the Fβ score. The Fβ score extends the concept of F1 by introduc-
ing a parameter β, which allows us to control the trade-off between precision and recall. A
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Figure 17: Using BERT Embeddings for Document Classification

higher value of beta emphasizes recall, while a lower value emphasizes precision. The F1

score is a special case of the Fβ score when β is set to 1.

Fβ = (1 + β2)
P ∗R

β2 ∗ P +R
(7)

Example: If β is set to 2, the F2 score will give more two times more weight to recall
than precision, making it suitable for tasks where recall is more important than precision,
such as ours.
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Our task involves distinguishing between events representing health risks and impact-
ing agriculture (the positive class, “Relevant”) from harmless events (the negative
class, “Irrelevant”). In this context, it becomes vital to identify as many true posi-
tive cases as possible, as they represent actual risks with potential consequences for
agriculture.

Once our system flags a potential risk, subject experts will be notified to make the
final assessment. A low precision would indicate that only a small fraction of the
documents presented to the experts are actually relevant. Conversely, a low recall
would imply that many actually relevant documents would be overlooked by the
system, requiring experts to reexamine and asses the original data, a costly and time
consuming task.

As a result, our focus leans more towards improving recall over precision. Therefore,
we choose to assess our system using the F2 score.
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3 Related Work

As in almost all industries, Neural Networks-based AI is being adopted in Agriculture
(Javaid et al., 2023). Some of the most prominent uses of AI and Deep Learning have
been the automatization of decisions or alerts produced by sensors (Wongchai et al., 2022);
and the use of the Internet of Things21 to integrate sensors and software, in order to warn
farmers of possible issues with their crops (Bu and Wang, 2019).

On the other hand, the application of NLP to Agriculture, and especially to Epidemi-
ological Surveillance, has been rather timid. A popular approach has been to use data
mining from social media to gather textual data (Turenne et al., 2015). Twitter has been
used as a source of crowdsourced knowledge about ecological events (Aramaki et al., 2011;
Charles-Smith et al., 2015). However, there have been concerns about the reliability of so-
cial media data for Epidemiological Surveillance, as the public and the agricultural workers
may lack the specialized knowledge to accurately assess risks (Welvaert et al., 2017).

Moreover, until recently, the advancements in Neural Network-based Language Models
didn’t significantly influence NLP applications in Epidemiological Surveillance (Alrowili
and Shanker, 2021; Hakala and Pyysalo, 2019). This landscape shifted during the COVID-
19 Pandemic when both computer vision and NLP emerged as vital tools for diagnosis,
prevention, and notably for our work, monitoring the spread of the disease. Still, these
technological strides haven’t been extensively applied in the field of Plant Health Surveil-
lance.

Shankar et al. (2020) introduced the idea of using social media data to monitor crop
health. They collected a corpus of 5530 Tweets and used Binary Text Classification to
detect “agriculturally relevant tweets”, using embeddings and a Support Vector Machine
Classifier, and obtained an accuracy of 86.5%. Even though the authors used established
embedding techniques, namely Word2Vec and Doc2Vec, nowadays, far more powerful Neu-
ral Networks exist. Based on their provided confusion matrix, additional metrics for their
results can be deduced as: Precision at 72.4%, Recall at 21.1%, F1 at 32.7%, and F2 at
24.6%. The stark contrast between their reported accuracy and the other metrics likely
stems from the skewed nature of their dataset, which consists of 24% relevant tweets and
76% that are not. Our research offers a marked improvement over these findings.

To the best of our knowledge, the research most aligned with ours is by Jiang et al.
(2022), who introduce ChouBERT, a BERT model tailored for Plant Health Surveillance.
ChouBERT emerges from adapting the French BERT model, CamemBERT (Martin et al.,
2020), to fit a custom Plant Health Dataset. This dataset comprises Tweets and French
French Plant Health Bulletins22. Notably, the authors only disclosed the Precision metric
for ChouBERT, which stands at 88.7%. However, since ChouBERT is designed exclusively
for French content, its applicability to International Plant Health Monitoring remains
limited.

21https://en.wikipedia.org/wiki/Internet_of_things
22https://agriculture.gouv.fr/bulletins-de-sante-du-vegetal
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4 The VSI Dataset
Within this Section, we provide a detailed description of the VSI Dataset. As mentioned
in Section 1.3, the PESV Platform collects information on risks to Plant Health or events
that could potentially affect agriculture. The VSI experts achieve this by surveying online
documents, which they subsequently screen and collect into the VSI dataset.

4.1 Dataset Collection

Figure 18: VSI Data Collection Pipeline

The main tool for collecting documents is the web scrapping tool ScaleSERP23. Every
week, several queries are sent to various services, including the Google Search Engine, using
the keywords and key phrases related to pathogens of interest (Table 27).

As part of the VSI pipeline, shown in Figure 18, the websites corresponding to the
URLs obtained from ScaleSERP are downloaded using a Python script. For each website,
its source (in HTML) is downloaded, and the tool Trafilatura (Barbaresi, 2021) parses it
to XML/TEI, while attempting to discard “non-contents”, such as menus, headings, ads,
etc. Then, Trafilatura takes the XML/TEI and attempts to extract a title and an abstract
from the metadata24 and the full text from the XML body.

Given that these articles are extracted from public websites, they remain in their orig-
inal language. The Google Translate API is used to assist the annotators with foreign-
language articles. This API also automatically detects the document’s language. Due to
budget constraints, only the Title is translated into English.

Since documents are added each week, the VSI database is in constant construction.
For our work, we utilized with the documents collected from the 11th of July 2022 to the
16th of April 2023, that is, the data collected over 39 weeks, comprising approximately
35,000 documents, which corresponds to more than 800 documents per week. We focus
on a subset of the VSI database, specifically its textual data, to obtain the VSI dataset
(Table 3).

23https://www.scaleserp.com/
24The title and the abstract are extracted from the metadata.title and metadata.description fields,

respectively.
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Content Source Tool
Title Trafilatura

Abstract Trafilatura
Full text Trafilatura

Translated Title Google Translate

Table 3: Sources of text content in the VSI Dataset

4.2 Dataset Annotation

There are four VSI experts dedicated to annotating the dataset. Regrettably, while
constructing the dataset, there was no record maintained to track the identity of the
annotator responsible for labelling each document. For this reason, we are not able
to provide any inter-annotator agreement measures on this dataset (Artstein and
Poesio, 2008).

For annotation, the results of the VSI pipeline mentioned above are shared with the
VSI experts. They utilize the interface shown in Figure 19 to inspect the results for various
fields, including the Date de publication (publication date), Auteurs (authors), Organism
nuisible (pathogen), etc. Additionally, they manually input information in other fields such
as Sujet (subject), Fiabilité (reliability), and come up with a Titre (title). It is important
to note that the title written by the VSI experts is usually different from the one extracted
by Trafilatura (for example, the wording may vary).

After inspection, we found that that annotators exclusively provide titles for articles
they find relevant, that is, there are no titles for irrelevant articles. Since our objective is
to automate the process of identifying relevant articles, we disregard the titles provided by
the annotators. Instead, we rely solely on the titles generated by Trafilatura and Google
Translate, which are stored even in the case of the documents being rejected.

Special attention must be given to the Sujet (subject), as this field will be crucial for
preprocessing the dataset (see Section 5.3).

When the VSI experts encounter an event that catches their attention (that is, that
they consider relevant), they assign a subject to the respective document and
utilize the interface presented in Figure 20 to allocate a subject ID and description
to the document. Each subject corresponds to a specific health risk event that
was reported during the weeks before the experts reviewed the documents. It is
possible for multiple documents to share the same subject. In the case of documents
considered irrelevant to the monitoring of plant health, the subject field for the
document is left empty.

Subsequently, after a document is deemed relevant by the VSI experts, it is officially
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published in the bulletin of the PESV Platform25 and can be accessed through the VSI
Document Search Engine26. Some sample entries containing all sources of content can be
found in Table 4.

25https://plateforme-esv.fr/bulletins_et_points_sur_VSI
26https://plateforme-esv.fr/moteur-de-recherche-vsi
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Figure 21: Distribution of subjects in the VSI dataset without preprocessing

4.3 Dataset Statistics
There are 34,587 entries in the dataset, out of which 3,715 have an assigned subject and
30,872 do not, producing a highly unbalanced dataset (Figure 21).

The language automatically detected by the Google Translate API on the Title can
be used to approximately study the distribution of the entries in the dataset. In Figure
22 it can be seen that around one third of the entries are in English, followed by Italian,
Spanish, and French. There is a considerable amount of failed translation attempts, for
around one fifth of the entries. The complete data on documents per language is available
in Appendix B.3.

The presence of some Latin documents is surprising. Upon inspecting the data, we
discovered that this occurrence was due to scrapped Titles with several scientific names
(Table 28 in the Appendix).

Often, the Trafilatura scrapper is not able to retrieve content for the Title, Abstract,
and Full text of a website, or the Google Translate API fails. Thus, there are several entries
without content for all fields. If we check the unique entries for each source of content, we
can see that there are numerous duplicate entries, since there are at least around 20,000
unique entries per source of content (Figure 23).

As theTranslated Title is derived from the Translated Title, and due to the possibility
of failure in the Google Translate API, the number of unique entries for the Translated
Title is lower than that for the Title. At the same time, the Abstract field has fewer unique
entries than all the other Content Sources, while the Full text has the most. This may be
explained by the fact that, usually, the creators of a website omit filling the metadata, and
when they do, they frequently include only a title and not a description, while most times,
the body of the website will be available.

Using naive tokenization (splitting on whitespace), we can study the distribution of the
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Figure 22: Language distribution of entries in the VSI dataset

Figure 23: Unique entries per source of content in the VSI dataset
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tokens for all sources of content. In the histograms in Figure 24 the longest documents have
been grouped together to facilitate plotting 27. As one can see, the Title and Translated
Title have a very similar distribution, both are shorter than the Abstract, while the content
from the Full text is the longest.

(a) Title (b) Abstract

(c) Full text (d) Translated Title

Figure 24: Length (in n. of tokens) of the Content Sources in the VSI dataset

4.4 Dataset Issues

Upon examining the data, we encountered numerous issues that we proceed to describe
and which will be addressed during preprocessing (Section 5).

27This explains the long bars at the end of the right tails of the histograms.
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4.4.1 Duplicate Entries

As mentioned in Section 4.3, there are some duplicate entries in the dataset (Figure
21 VS Figure 23). According to the VSI experts, often the Google Search for a query will
return the same results from one week to the next, and this introduces duplicate entries.

4.4.2 Scrapping Failures

On some instances, the Trafilatura scrapper either fails or is blocked by website servers
that do not allow bots. This introduces error messages to the dataset, some samples of
which can be seen in Table 5.

Error Message
Not Found

404
Page Not Found

Your data. Your experience.
Loading...

None
nan

JavaScript n’est pas disponible.
JavaScript is not available.
Please update your browser

Do you accept cookies ?
Verify you are not a robot
Discuz! Database Error

Table 5: Some error messages in the VSI dataset

4.4.3 Scrapping errors

In some other instances, the web scraper successfully extracts content from the website,
but the parsing algorithm performs poorly, retrieving only the headers or the website’s
name (Tables 6 and 7).

This type of scrapping error introduces inconsistencies into the VSI dataset, as multiple
documents end up having the same text for several Content Sources, as in Table 828.

28X-MOL is a Chinese search engine for scholars.
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Header
Search results

Welcome
Advance articles

shop
Green Blog

Pesquisa (Query)
Link Diretti (Direct Links)

Búsqueda (Query)
Actualidad (Current events)

Browsing
Project Listing

Research articles
Pagamenti Online (Online Payments)

Notícias (News)
Category: events

News

Table 6: Some headers parsed by Trafi-
latura

Website name
Wall Street Journal

Bloomberg
TikTok

Facebook
Portal Embrapa
Argentina.gob.ar

Notizie dal Comune (Town News)
zmianynaziemi.pl

Pakistan Journal of Zoology
SAARC Journal of Agriculture

MONTSAME News Agency
ORCID

Table 7: Some website names parsed by
Trafilatura
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4.4.4 Data Noise

Even in those cases when Trafilatura is able to retrieve content from the website, there
are some expected types of noise in the data, considering it comes from the internet.
Namely, the following (Table 9) :

• URLs
• HTML Tags
• Emojis
• Encoding errors
• Generic noise (different quotation or division characters, strings containing only

dates, etc…)
Furthermore, there exists a source of noise that may not be immediately apparent:

occasionally, the content concludes with the website’s name, leading to different entries
that vary by only a few tokens as a suffix (Table 10).

4.4.5 Annotation Inconsistencies

Finally, human error also introduces inconsistencies into the VSI dataset. In some
cases, there are entries with the exact same content, with different or no assigned subjects
(Table 11). After consulting with the VSI experts, they explained that this is due to two
factors:

• Different annotators labeling the same content.
• After a subject loses relevance (see Section 4.1), the annotators usually ignore articles

related to it, which is effectively equivalent to assigning no subject.

Due to all the issues mentioned, one must take the statistics in Section 4.3 with
a grain of salt. In particular, naively checking the entries for the presence of an
assigned subject (as in Figure 21) may lead to very similar or exactly equal content
labelled in two different categories, thus rendering the classification task significantly
more challenging. These issues will addressed during preprocessing (Section 5).
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URLs
Regione attiva piano anti Popillia japonica - www.lombardianotizie.online - Conflombardia
SciELO Argentina - www.scielo.org.ar
https://twitter.com/julia_lopez9/status/1601582135923863553/photo/1
Ornitho.it homepage - www.ornitho.it
Dzienna porcja warzyw - Nasza Rola - www.naszarola.pl

HTML Tags
<strong>Fall armyworm in Europe: how can we use biocontrol? </strong>
<strong>Xylella, CIA Puglia: </strong>«<strong>Presidente Emiliano se ci sei batti un
colpo</strong>»
Japankäfer <i>Popillia japonica</i>
Categoría: <span>Revista</span>
Corteva Agriscience introduces seed treatment product Dermacor<sup>®</sup> in Brazil
Current Research on <em>Fusarium</em>
[Other] Highly Sensitive and Rapid Detection of Citrus Huanglongbing Pathogen
(<i>Candidatus</i> Liberibacter asiaticus’) Using Cas12a-Based Methods

Emojis
Esther Ogunbayo on LinkedIn: https://lnkd.in/dEwvQD_A Adeoye Opeyemi kindly like,
follow and repost
[ ] on TikTok
“#Leonardo #italy #puglia #taranto #volgopuglia #volgoitalia | Lion sculpture,
Sculpture, Taranto”

Gen L de resistencia al Virus Rugoso del Tomate (ToBRFV) | Agrocultivos TV
innovando

Encoding Errors
<º°Ç¥ 3> ¹®Àå(Á¦6Á¶°ü·Ã).
âç½çº¢âé³éé³éâå ¨å½å´æâ é²æ²»ä¸è½âä¸æäºäºâ
æµè¥¿ä¹¡ææºåå¤æ ç®¡æ¤ è¶ åç¾æ£µç¾å¹´å¤æ âèææä¾â
çå±±äººé¿åºâç§æç¿¼â æ¹åå²³é³å¿âçº¢è¢ç« âå®æ¤âæ£®æç»¿â
Î¤Î¿ ÎÎÎ©Î¤ÎÎ ÎÏÎ®ÏÎ·Ï Î´Î¯Î½ÎµÎ¹ ÏÏÏÏÎ¿Ï Ï Î±Î½ÏÎ¹Î¼ÎµÏÏÏÎ¹ÏÎ·Ï ÏÎ¿Ï Î´Î¬ÎºÎ¿Ï ÏÎ·Ï
ÎµÎ»Î¹Î¬Ï - §Î±Î½Î¹ÏÏÎ¹ÎºÎ± ÎÎÎ±
å®¢æ·åè¡¨æç®

Table 9: Noise in the VSI dataset
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Title
Cousin of crop-killing bacteria mutating rapidly
Cousin of crop-killing bacteria mutating rapidly - MixPoint
Cousin of crop-killing bacteria mutating rapidly - My Droll
Cousin of crop-killing bacteria mutating rapidly - Newsprepare
Cousin of crop-killing bacteria mutating rapidly - Sky News: The Latest News from the
World
Cousin of crop-killing bacteria mutating rapidly - timetotimes.com
A look at 2023’s new garden plants
A look at 2023’s new garden plants | Times News Online
Modeling climate change impacts on potential global distribution of Tamarixia radiata
Modeling climate change impacts on potential global distribution of Tamarixia radiata -
PubMed
Portugal detecta Xylella en cítricos por primera vez en la UE y en Italia se consolida el
foco de ‘Mosca oriental’
Portugal detecta Xylella en cítricos por primera vez en la UE y en Italia se consolida el
foco de ‘Mosca oriental’ - Agrodigital
Portugal detecta Xylella en 75 especies vegetales
Portugal detecta Xylella en 75 especies vegetales - FruitToday
Tornano le Giornate Fai di Primavera: 750 luoghi aperti in tutta Italia
Tornano le Giornate Fai di Primavera: 750 luoghi aperti in tutta Italia - LegnanoNews
Giornate Fai di Primavera. I segreti dell’edizione 2023. Da Bolzano alla Sardegna, 750
luoghi da scoprire
Giornate Fai di Primavera. I segreti dell’edizione 2023. Da Bolzano alla Sardegna, 750
luoghi da scoprire - Notizie italiane in tempo reale!
Milleproroghe, soddisfazione di Confagricoltura per gli emendamenti a favore del settore
primario - Agricolae
Milleproroghe, soddisfazione di Confagricoltura per gli emendamenti a favore del settore
primario - Comunicati | Confagricoltura

Table 10: Similar entries with website names as a suffix
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Entry ID Title Subject
4662 Cousin of crop-killing bacteria mutating rapidly None
5885 Cousin of crop-killing bacteria mutating rapidly 4472
58 Danger pour les végétaux : première détection de la

bactérie Xylella fastidiosa dans le Gard
None

850 Danger pour les végétaux : première détection de la
bactérie Xylella fastidiosa dans le Gard

4259

26873 Commodity risk assessment of ash logs from the US
treated with sulfuryl fluoride to prevent the entry of
the emerald ash borer Agrilus planipennis

5524

27196 Commodity risk assessment of ash logs from the US
treated with sulfuryl fluoride to prevent the entry of
the emerald ash borer Agrilus planipennis

5530

322 Anche a Varese l’invasione della Popillia Japonica, l’in-
setto devastatore di campi e giardini

None

335 Anche a Varese l’invasione della Popillia Japonica, l’in-
setto devastatore di campi e giardini

4286

343 Anche a Varese l’invasione della Popillia Japonica, l’in-
setto devastatore di campi e giardini

4286

Entry ID Abstract Subject
13997 A CABI-led study involving 57 scientists from 46 dif-

ferent institutions …
4829

24902 A CABI-led study involving 57 scientists from 46 dif-
ferent institutions …

None

4662 A bacterial species closely related to deadly citrus
greening disease …

4472

5388 A bacterial species closely related to deadly citrus
greening disease …

None

22658 Ministry of Agriculture activated batteries in the fight
against xylella.…

5245

24067 Ministry of Agriculture activated batteries in the fight
against xylella.…

5331

Entry ID Full text Subject
32437 Altre 23 piante infette dal batterio Xylella fastidiosa

subsp. pauca ceppo ST53 sono state individuate tra
Fasano (Brindisi) e Castellana Grotte (Bari), …

5781

32712 Altre 23 piante infette dal batterio Xylella fastidiosa
subsp. pauca ceppo ST53 sono state individuate tra
Fasano (Brindisi) e Castellana Grotte (Bari),…

5820

Table 11: Annotation inconsistencies in the VSI dataset
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Figure 25: Extracting phrases with Keywords

5 Preprocessing the VSI dataset
In this Section, we outline the approaches taken to resolve the challenges found in the VSI
Dataset. After reviewing the problems described in Section 4.4, we adopted various tactics
to achieve a preprocessed dataset suitable for Text Classification.

5.1 Leveraging Keywords
Leveraging the available keywords and key phrases used for the Search Engine queries used
to construct the dataset (Table 27), we obtained four more sources of content.

Using the Python package NLTK (Bird and Loper, 2004), we divided each document
into phrases and selected those containing at least one of the keywords or key phrases.
This process was carried out for both the Abstract and Full text sources of content (Figure
25). However, considering the diverse range of languages in the documents, it was not
always apparent whether we should discard the content entirely or retain it. For example,
even if the keyword is not present in the text, maybe its translation is; or we could be
facing a language written in a non-Latin script. Consequently, we pursued two different
approaches: in one case, we discarded the original content (O.C.), and in the other, we
retained it, resulting in four new sources of content (Table 12).

Figure 26 offers a comparison of the number of unique entries per content source. In
both cases, keeping only the phrases containing keywords dramatically reduces the size
of the data, especially for the Abstract. Possible reasons for this will be explained in
Section 5.2. Note that, in the case of keeping the original content, there are slightly
fewer unique entries for both the Abstract and the Full text (19, 939 − 19, 798 = 141 and
26, 346−24, 447 = 1, 899, respectively). This may be explained by the fact that some data
noise may be removed by the sentence extraction process, especially those cases where
several entries differ by a small amount of tokens (see Table 10).
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Content Source Origin
Title Trafilatura

Abstract Trafilatura
Full text Trafilatura

Translated Title Google Translate
Phrases with Keywords (Abstract) Preprocessing

Phrases with Keywords + O.C (Abstract) Preprocessing
Phrases with Keywords (Full text) Preprocessing

Phrases with Keywords + O.C (Full text) Preprocessing

Table 12: Sources of text content in the VSI Dataset after preprocessing

Figure 26: Unique entries per source of content in the VSI dataset
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Figure 27: Removing noise from multilingual strings

5.2 Data Cleaning
5.2.1 Noise Removal

To address the text noise mentioned in Section 4.4.4, we use regular expressions to:

1. Remove characters not in any human alphabet. This handles encoding errors.

2. Remove emojis, URLs, HTML tags, hours, dates, extra white spaces.

3. Remove punctuation at beginning and end of the string.

4. Remove digits at beginning and end of the string.

5. Standardize quotation characters into the ASCII simple quotation character (’).

6. Standardize hyphen-like characters into the ASCII hyphen (-).

7. Remove sentence suffixes that may be the name of the website, by deleting short text
(≤ 3 tokens) that follow an ASCII hyphen or bar (|) near the end of the string.

See Table 31 in the Appendix for some examples of the regular expressions used to
clean the multilingual strings. Figure 27 shows the effect of string cleaning on an example
text.

5.2.2 Deleting Error Messages

Fortunately, error messages in the dataset are very consistent. Given that they do not
provide information on the relevance of a document, we may delete them using regular
expressions. See Table 30 in the Appendix for some examples of the regular expressions
used to remove the error messages.

In Table 13, we present the number of error messages identified using our regular
expressions. Notably, the proportion of error messages generally hovers around one-fifth of
all entries. In 18.50% (≈ 20%) of cases Trafilatura completely fails to obtain any content
from the website. This proportion almost doubles (36.50 ≈ 40%) for the Abstract. This
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Content Source Error Count Percentage of Raw dataset
Title 7224 20.89%
Abstract 12624 36.50%
Full text 6609 19.11%
Translated Title 7232 20.91%
All Content Sources 6399 18.50%

Table 13: Error Message Count per Content Source in the VSI dataset

discrepancy in the Abstract could be attributed to the common occurrence of missing
metadata, as discussed in Section 4.3.

5.2.3 Handling scrapping errors

In order to handle scraping errors from Trafilatura, such as obtaining the name of the
website or certain HTML headers, our first approach was to use regular expressions to filter
them out. After removing the error messages from all sources of content, we proceeded to
count the occurrences of each entry and ranked them in descending order. Given that our
dataset contains approximately 35,000 documents, we focused on entries that appeared at
least twice.

Although we attempted to identify common patterns and create regular expressions
to match frequent entries, this approach proved unsuccessful. It only filtered around 500
unique entries, accounting for a mere 2% of all unique entries in the best case (Abstract).
Consequently, it became apparent that several scraping errors likely appeared only once in
the dataset, rendering our previous strategy ineffective.

Nevertheless, along this examination, we noticed that scraping errors tend to be short
in length (see Tables 6 and 7). As a result, we devised a new filtering strategy based
on the length of the entries. However, simply counting naive tokens was insufficient, as
languages like Chinese often lack whitespace in their text. Therefore, we needed a more
robust algorithm to determine when a string is considered suspiciously “too short.”

Our heuristic to filter by length consists in:

1. First, the string is split on white spaces.

2. Then, if there is only one token, and the string has less than 20 characters, it is
considered “too short”.

3. Next, if there are less than four tokens, the string is considered “too short”

4. Finally, in all other cases, we keep the string.

Upon removing error messages, we observed that parsing errors occur in entries for the
Title and the Translated Title approximately 1 in 7 times (≈ 16%), as can be seen in Table
14. The Abstract and Full text are rarely short (≤ 3%), and very few entries have more
than one content source that is too brief (≤ 3%).
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Content Source Short Message Count Percentage of Raw dataset
Title 5691 16.45%
Abstract 1023 2.96%
Full text 181 0.52%
Translated Title 5306 15.34%
All Content Sources 17 0.05%
Title & Abstract 589 1.70%
Title & Full text 141 0.41%
Full text & Abstract 50 0.06%

Table 14: Short Message Count per Content Source in the VSI dataset

5.3 Resolving Inconsistencies and Duplicate Documents
The initial preprocessing steps focused solely on cleaning the textual content of the dataset.
Now, our attention turns to addressing the labeling challenges, specifically, instances where
entries have identical content but differ in subject assignment or lack a subject (as in Tables
8 and 11).

Considering our main goal is to automate the identification of articles relevant to the
VSI experts, where subject assignment signifies their interest, we propose the following
strategy:

For each of the eight content sources, we group the dataset based on the text content.
If a particular text has been assigned a subject at least once, we categorize it as
relevant. Conversely, if no subject has been assigned to a text, we consider it
irrelevant.

We believe this strategy reflects the intention of the annotators as they labeled the
documents (see Section 4.2). Additionally, by design, this strategy eliminates duplicate
content. Table 15 illustrates this process for the content from the Title.
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Entry ID Title Subject
4662 Cousin of crop-killing bacteria mutating rapidly None
5885 Cousin of crop-killing bacteria mutating rapidly 4472
19661 Modeling climate change impacts on potential … None
19361 Modeling climate change impacts on potential …-

PubMed
None

58 Danger pour les végétaux : première détection de … None
850 Danger pour les végétaux : première détection de … 4259

26873 Commodity risk assessment of ash logs from the US … 5524
27196 Commodity risk assessment of ash logs from the US … 5530
29896 Tornano le Giornate Fai di Primavera … None
29899 Tornano le Giornate Fai di Primavera …- LegnanoNews None

... ... ...

⇓
Title Relevance
Cousin of crop-killing bacteria mutating rapidly 1
Modeling climate change impacts on potential … 0
Danger pour les végétaux : première détection de … 1
Commodity risk assessment of ash logs from the US … 1
Tornano le Giornate Fai di Primavera … 0
... ...

Table 15: Determining Relevance for Title

______________________________________________________
Language Analysis and Processing



Document Classification for Plant Health Surveillance 47/104

Figure 28: Unique Entries per content source before and after preprocessing

5.4 Preprocessing Results
In this section, we present the outcomes of our preprocessing techniques, yielding refined
datasets suitable for text classification. Additional numerical results can be found in Ap-
pendix D.1.

Figure 28 demonstrates that preprocessing leads to a reduction in the number of unique
entries. For the majority of Content Sources, approximately 5 out of 6 unique entries are
retained after the filtering process (≈ 85%), except for the Title and Abstract, where
approximately 4 out of 6 unique entries are preserved (≈ 67%).

Unique entries per Content Source Percentage left
Title 67.49%
Abstract 85.13%
Full text 85.53%
Translated Title 68.65%
Phrases with Keywords (Abstract) 85.95%
Phrases with Keywords + O.C (Abstract) 85.02%
Phrases with Keywords (Full text) 87.17%
Phrases with Keywords + O.C (Full text) 85.41%

Table 16: Unique Entries per content source before and after preprocessing

Regarding the average token count of the content, the histograms in Figure 29 show that
distributions across the four original Content Sources align with the original observations
in Figure 24. The same trend is observed for the Phrases with Keywords as well. Upon
comparing the means before and after preprocessing (Table 17), we observe that the means
are higher for all the original content sources, except for the Full text.

The higher means can be attributed to the filtering of error messages, which tend to be
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short in length, and short entries that may correspond to scrapping errors. As for the Full
text, upon closer inspection of the filtered-out long texts identified as error messages, it was
observed that they often pertain to topics such as website cookies or terms and conditions.
These texts tend to be quite lengthy and are not typically found in website metadata (from
where the Title and the Abstract are extracted). This observation explains the lower mean
for the Full text after preprocessing, which we interpret as a positive indication of our
filtering approach.

When analyzing the Phrases with Keywords, a significant decrease in the mean is
noted, particularly for the Phrases with Keywords extracted from the Full text. This
reduction can be attributed to the fact that only a few sentences in an article usually
contain the exact keywords used for locating them through a Search Engine. Consequently,
after preprocessing, the mean of the Phrases with Keywords decreases substantially when
compared to their original sources.

Overall, these observations highlight the effectiveness of our preprocessing in removing
undesirable content while retaining relevant information.

Content Source Before preprocessing After preprocessing
Title 11.29 12.46
Abstract 50.02 50.55
Full text 1102.29 1097.76
Translated Title 11.66 12.82
Phrases with Keywords (Abstract) (50.02) 34.92
Phrases with Keywords + O.C (Abstract) (50.02) 35.77
Phrases with Keywords (Full text) (1102.29) 115.66
Phrases with Keywords + O.C (Full text) (1102.29) 217.71

Table 17: Mean token counts before and after preprocessing the VSI dataset

By applying our preprocessing approach, we construct eight labelled datasets for
binary Text Classification (Figure 30). These datasets exhibit a balance of positives
and negatives ranging from 12 to 14% positives, and from 86 to 88% negativesa,
representing a slight improvement compared to the original dataset, which had a
balance of 10% positives to 90% negatives (Figure 21).

aFor more details, see Table 34 in Appendix D

The only exception are the Phrases with Keywords from the Abstract discarding Orig-
inal Content (“Phrases with Keywords (Abstract)”). This specific dataset displays a 27%
positive and 73% negative balance. The reasons behind this imbalance can be attributed
to the factors previously explained. As the metadata required for extracting the Abstract
may be empty or uninformative; and few entries may contain the exact search keywords we
are looking for; the dataset is substantially reduced, resulting in only 4,050 unique entries
for the Phrases with Keywords (Abstract) as opposed to the original 19,939 unique entries
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for the Abstract (≈ 20% left). Consequently, the significantly smaller dataset size has led
to a noticeable change in the balance of the labels.
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(a) Title (b) Abstract

(c) Full text (d) Translated Title

(e) Phrases with Keywords (Ab-
stract)

(f) Phrases with Keywords + O.C
(Abstract)

(g) Phrases with Keywords (Full
text)

(h) Phrases with Keywords + O.C
(Full text)

Figure 29: Length (in n. of tokens) of the Content Sources in the VSI dataset after
preprocessing

______________________________________________________
Language Analysis and Processing



Document Classification for Plant Health Surveillance 51/104

(a) Title (b) Abstract

(c) Full text (d) Translated Title

(e) Phrases with Keywords (Abstract) (f) Phrases with Keywords + O.C (Ab-
stract)

(g) Phrases with Keywords (Full text) (h) Phrases with Keywords + O.C (Full
text)

Figure 30: Positive/Negative balance after preprocessing the VSI dataset
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Model Languages Tokenization Encoder Layers Attention Heads Vocabulary Parameters
BERT-base 1 WordPiece 12 12 30k 110M
mBERT 104 WordPiece 12 12 110k 172M
Bio-Link-BERT 1 WordPiece 12 12 30k 110M
SciBERT 1 WordPiece 12 12 30k 110M
RoBERTa-base 1 BPE 12 8 50k 125M
XLM-RoBERTa 100 SentencePiece 12 12 250k 270M

Table 18: Sizes of BERT models used for this project. Adapted from Conneau et al. (2020)

6 Methodology
In this Section, we delve into the techniques we used to train BERT for Document Classifi-
cation. We first introduce different pre-trained BERT models, and then proceed to explain
the training approaches used for this work.

6.1 BERT Models
As previously mentioned in Section 2.4, the BERT architecture from Devlin et al. (2019)
has been customized for various tasks, resulting in a wide array of models to select from. For
our project, we have opted to employ six different BERT models, based on their specialized
task and the characteristics of our data. Since our data is in different languages, we utilize
BERT models that differentiate between upper case and lower case characters (cased
versions). Additionally, due to computational constraints, we opt for the basic (base)
versions of the models rather than the large ones (Table 18).

6.1.1 BERT-base

The original BERT model developed by Google in Devlin et al. (2019). It was trained on
a large corpus of English text from Wikipedia and Google’s BooksCorpus dataset, using a
WP tokenizer.

6.1.2 mBERT

The Multilingual BERT (Devlin et al., 2019) is a version of the original BERT model that
is designed to handle text in multiple languages. It was trained on the top 104 languages
with the biggest Wikipedia sizes by number of articles, using a WP tokenizer.

6.1.3 Bio-Link-BERT

This model was introduced in Yasunaga et al. (2022) as the result of training a classical
BERT architecture while enriching the context of the documents by using two corpora
of documents linked to one another by hyperlinks. For documents doc1, doc2 linked by a
hyperlink doc1 → doc2, during the training phase, the sections of doc2 that are reachable by
the hyperlink will be concatenated to their corresponding sections from doc1 for the Next
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Sentence Prediction task (See Section 2.4.2). This process increases the context available
for the model to learn embeddings.

The authors present a model for the general domain (Link-BERT), trained on the
English Wikipedia with hyperlinks; and a model for the biomedical domain (Bio-Link-
BERT), trained on PubMed29 abstracts (in English) containing hyperlinks, and used a
WP tokenizer. As of the culmination of our work, Bio-Link-BERT is still one of the
top performing BERT models in the Biomedical Language Understanding and Reasoning
Benchmark (BLURB) (Gu et al., 2021).

6.1.4 SciBERT

This model was introduced in Beltagy et al. (2019) as a specialized model for scientific
texts. It was trained with the classical BERT architecture using 1.14 million papers in
English from Semantic Scholar30, 82% of which belong to the biomedical domain. The
authors use the full text from the papers.

6.1.5 RoBERTa-base

This model was introduced in Liu et al. (2019) and is an extension and improvement of
the original BERT model. RoBERTa-base follows the same architecture as BERT but un-
dergoes a more extensive pre-training process, specifically, it uses much larger batch sizes,
longer sequences, and removes the Next Sentence Prediction” task used in BERT. Addition-
ally, it is trained on 10 times more data than BERT, by merging five datasets: Google’s
BooksCorpus, the English Wikipedia, Common-Crawl31 English News (Hamborg et al.,
2017), OpenWebText (Gokaslan et al., 2019), and the “Stories” subset of the Common-
Crawl (Trinh and Le, 2018). It uses a BPE tokenizer.

6.1.6 XLM-RoBERTa

This model was introduced in Conneau et al. (2020) as the multilingual version of RoBERTa-
base. For training, the authors constructed the 100-CC corpus for training XLM-RoBERTa,
which consists of monolingual data in 100 languages from the Common-Crawl, and used
a SentencePiece tokenizer (Kudo and Richardson, 2018), which extends the classical BPE
tokenization algorithm.

6.1.7 Excluded Models

Initially, we considered three other BERT models; however, after careful consideration, we
decided not to include them due to various reasons.

29https://pubmed.ncbi.nlm.nih.gov/
30https://www.semanticscholar.org/
31https://commoncrawl.org/
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ChouBERT This model was introduced in Jiang et al. (2022) as a specialized model
for Plant Health Monitoring. However, it was trained exclusively on French texts, which
raises strong concerns about its ability to generalize to our linguistically and thematically
diverse dataset.

DistilBERT This model was introduced in Sanh et al. (2019) as a smaller version of the
original BERT model. It uses a process called “distillation”, which compresses the knowl-
edge of a larger BERT model into a smaller one, while still retaining decent performance.

During our preliminary training experiments with the BERT models mentioned above,
DistilBERT consistently underperformed. Regardless of the configurations used, it de-
faulted to predicting the majority class. Therefore, we chose to omit DistilBERT from our
final model selection.

BioBERT This model was introduced in Lee et al. (2020) as a BERT variant specifically
designed for biomedical text and tasks. Once again, this model uses the classical BERT
architecture on PubMed abstracts in English. Since it has been vastly outperformed by
Bio-Link-BERT in several NLP tasks (Yasunaga et al., 2022), we decided not to include it
in our final model selection.

6.2 Fine-tuning
Finetuning, in the context of NLP, refers to the process of taking a pre-trained language
model and further training it on a specific task or dataset. At the outset, we use a pre-
trained model, which has undergone training on a vast dataset, enabling it to grasp general
features and patterns applicable to a broad spectrum of tasks. Fine-tuning allows us to
adapt the pre-trained model to a more specific domain by updating its parameters using
task-specific data.

In our scenario, BERT embeddings are used for document classification. To tailor the
model to our particular task, we enable the backpropagation process to adjust not only the
classification layer but also the weights of the BERT model (refer to Figure 31 in contrast to
Figure 17). This technique allows us to make the BERT model adapt the way it produces
embeddings and learn a representation of our documents which is more convenient for our
task.

Given the imbalance in our datasets, we employ weighted cross-entropy as the loss.
Yet, our initial experiments revealed that artificially balancing the dataset enhanced per-
formance. Further details can be found in Section 6.4.

6.3 Pattern-Exploiting Training
Few-shot learning is a ML set of techniques that aim to train models to generalize and
perform well on tasks with very limited labeled data. Pattern-Exploiting Training (PET)
was introduced by Schick and Schütze (2021) as a technique for Few-shot learning in NLP
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Figure 31: Fine-tuning BERT for Document Classification

using basic prompt engineering, and has provided improvements over standard training
approaches.

The intuition behind PET is to use task descriptions to improve the model’s perfor-
mance in Text Classification. Leveraging BERT’s MLM feature, we design a pattern, which
takes a document and produces a text with one concealed token (using the [MASK] token).
The model then tries to “fill-in the blank” by estimating the likelihood of all tokens. The
pattern is intended to guide the model towards specific predictions. Next, we use a ver-
balizer, a list of words tied to a category. We then combine these predictions to determine
the final likelihood for each category, as illustrated in Figure 32. Finally, we aggregate
the probabilities for the relevant tokens into artificial or synthetic scores for each category
(Figure 32).

Implementing PET is more intricate. It requires creating multiple patterns, with each
pattern aimed at guiding the model’s token predictions by emphasizing a different aspect
of the task. Additionally, each category requires its own verbalizer. It’s important to
remember that the model’s vocabulary is tied to its tokenization method. For instance, in
Figure 32, while we use terms like “Definitely”, in reality it might be tokenized differently,
like “Definite-ly”. We’re generally limited to concealing a single token, even though there
are ways to expand this32.

In our case, we aim to determine if a document is relevant to Plant Health Surveil-
lance using the BERT models discussed in Section 6.1. Each BERT model has a unique
vocabulary and tokenization technique, so we had to pick words that would be consistently
tokenized across models. As our task is Binary Classification, we opted to create patterns

32The PET paper’s authors suggest a method for multiple tokens, however, the trade-off is that the
training time increases significantly
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Figure 32: Intuition behind PET

Pattern Verbalizers
Is this about plant health? [___] < document > Relevant → yes
Is this relevant? [___] < document > Irrelevant → no
Is this about epidemic surveillance? [___] < document >

Table 19: Patterns and Verbalizers used for PET

using polar questions33. Given the 512-token input limit of BERT models and the length of
some documents, we ensured the masked token was positioned early in the input, avoiding
patterns like the following:

< document > < question > [___]

< document >[___] < question >

After initial tests revealed that PET training took much longer than Fine-tuning, we
settled on just three patterns. The specific patterns and verbalizers we used are detailed
in Table 19.

The PET method involves two steps: first training multiple models to generate synthetic
labels, followed by fine-tuning a model for classification.

Unlike conventional training approaches, PET requires dividing the dataset into four
distinct splits: training, development, testing, and an additional split of unlabeled doc-
uments known as the unlabeled split. The rationale behind this will become clear as we

33Polar questions typically have a “yes/no” answer

______________________________________________________
Language Analysis and Processing



Document Classification for Plant Health Surveillance 57/104

Figure 33: Training a PET Ensemble

delve deeper into the method. Given that this technique is designed for Few-shot learning,
the training split typically has only few entries per category.

The first phase involves training a set, or ensemble, of models. For every pattern, we
take a copy of a BERT model, such as mBERT, and prompt it to predict the concealed
token for a specific document in the training segment. Each ensemble model yields different
probability estimates for the tokens in the vocabulary.

These probabilities are then combined by averaging their logits for each token34 and
using SoftMax to determine a probability for every vocabulary token. Subsequently, the
verbalizers transform the probabilities of pertinent tokens into category label probabilities.
These synthetic label probabilities are then compared against the true labels in order to
calculate a cross entropy loss. This procedure is depicted in Figure 3335.

Simultaneously, during this phase, the ensemble models undergo training for MLM on
our dataset to learn the typical contexts for our task. This method of training an ensemble
for both synthetic annotation and MLM on a dataset requires a custom loss function, which
the authors define as a weighted sum of the cross-entropy loss and the MLM loss.

The second phase of PET involves utilizing the trained PET ensemble to generate
synthetic labels for the unlabeled documents. This synthetically labelled dataset is then
employed to fine-tune a new copy of the BERT model (mBERT in our example) for Doc-
ument Classification, as detailed in Section 6.2 above. The fine-tuned model, along with
its trained classification layer, will act as our Document Classifier (See Figure 34).

It’s worth noting that each phase in PET could, in principle, have distinct hyper-
parameters. Yet, mirroring the original authors’ approach, we opted to use the same

34Meaning, the aggregated logit for a token is the average of the logits generated by the ensemble models.
35This approach bears some similarity to the ”distillation” method introduced by Sanh et al. (2019)
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Figure 34: Creating a Synthetically Labeled Dataset with the PET Ensemble, and subse-
quently Fine-tuning

hyperparameters across both phases for our experiments.
In this work, we opted to utilize PET with varying training sizes, including 50, 100,

200, 500, and 1000 documents per category.
Next, we detail the method we used to divide the dataset for Fine-tuning and PET.

6.4 Splitting the Dataset
As mentioned at the end of Section 5.4, after preprocessing, we obtain eight datasets for
Binary Text Classification. For each dataset, we produce seven splits, two for training
using Fine-tuning and five for training using PET.

The most straightforward splitting method is for Fine-tuning on an unbalanced dataset.
For each Content Source, such as the Translated Title, we randomly split the dataset into
80%-10%-10% for training, development, and testing, maintaining the original dataset’s
category distribution.

For Fine-tuning on a balanced dataset, we retain the split sizes and replicate the test
split from the previous step. We then create balanced development and training segments
by oversampling the positive category and randomly discarding from the negative category.
Considering the original distribution was 90% negatives to 10% positives, we believe there
will still be a sufficient representation of the negative category.

For PET, we select a specific number of documents per category, for instance, 50. We
then replicate the test and development splits from the balanced Fine-tuning split. From
the balanced Fine-tuning training split, we select the first 50 documents from both the
positive and negative categories to form the PET training split (keeping in mind that
PET was first proposed for Few-shot learning). The remaining documents are used to
construct the unlabeled split, by discarding their labels. Likewise for 100, 200, 500, and
1000 documents per category.

A detailed breakdown of the split sizes can be found in Appendix E.2.
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Figure 35: Strategies for Dataset Splitting

Repository URL
Preprocessing and Training GitLab Repository

Original PET GitHub Repository
PET for PESV GitLab Repository

Table 20: Code repositories for this work

This approach guarantees that for every Content Source, the test split remains con-
sistent across all training methods. Maintaining the same test split for different
training techniques ensures the comparability of our results. This is crucial, as
performance on the test split assesses the classifier’s effectiveness in real-world situ-
ations.

6.5 Implementation, Hyperparameters, and Hardware
For this work, we worked in Python 3.9.2 and implemented a package for preprocess-
ing the datasets and training BERT language models. This package is built around the
Transformers library from the HuggingFace company for Fine-tuning (Wolf et al.,
2020), Scikit-learn for metrics and statistics (Pedregosa et al., 2011), pandas for han-
dling the datasets (Team, 2020), BeautifulSoup4 for parsing XML (Richardson, 2019),
among others. We also modified the code repository for PET to include our own task-
specific patterns and verbalizers. Our implementation is designed to run on one GPU.

During training, we keep track of the accuracy, precision, recall, F1, and F2 on the
training and development splits per epoch. For the final models, we calculate all these
metrics along with the Area Under the Curve (AUC) on the development and test splits.
Memory constraints prevented us from saving model checkpoints during training. There-
fore, we conducted two training rounds: one to determine the best number of epochs and
another to train only up to those identified optimal epochs.
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Hyperparameter Value
Input size 300 tokens
Batch size 32
Optimizer AdamW

Train-dev-test splits 80%-10%-10%
Epochs for Fine-tuning 10

Learning rate for Fine-tuning 5e-5
Epochs for PET Ensemble 5

Epochs for PET Document Classifier 5
Learning rate for PET 1e-5

Table 21: Hyperparameters

We performed some experiments on the MaiAGE local computers, but the bulk of the
training was performed on the Lab-IA cluster36. This is a computing platform associated
to the University of Paris-Saclay, and serves researchers in the Paris region. For our
experiments, we conducted various tests and executed our code, but the GPU selection
was beyond our control, contingent on the availability of GPUs. Table 35 shows the
specifications of this cluster.

After several preliminary experiments, it became clear that the size of our datasets and
the implementations of our training methods (specifically, PET) would pose a challenge
for the available hardware. These preliminary tests also shed light on certain patterns in
the training results, which informed our hyperparameter choices. We found that Fine-
tuning was faster than PET, that larger batch sizes maxed out our GPU memory, and
that extremely high or low learning rates led to erratic learning. Table 21 lists the hyper-
parameters we used for our final setup. For any hyperparameters not highlighted in this
table, we relied on the default settings offered by the Transformers and the original PET
implementations.

6.6 Methodology Summary
To summarize, we have eight Content Sources (each one has a labeled dataset), seven
training setups (two for Fine-tuning and five for PET), and six different BERT models.
This gives us 8× 7× 6 = 336 training scenarios.

Table 22 shows the approximate training times for each Content Source for single
instances of Fine-tuning and PET. Since there are two Fine-tuning setups and five PET
setups, the total training time was approximately 2 × 41 + 5 × 102 = 594 GPU hours, or
about 3.5 GPU weeks. Factoring in the two training cycles, the total comes to about 7
GPU weeks.

36http://hebergement.universite-paris-saclay.fr/lab-ia/

______________________________________________________
Language Analysis and Processing

http://hebergement.universite-paris-saclay.fr/lab-ia/
http://hebergement.universite-paris-saclay.fr/lab-ia/


Document Classification for Plant Health Surveillance 61/104

Content Source Fine-tuning Time PET Time
Title 3 10
Abstract 4 11
Full text 12 24
Translated Title 3 10
Phrases with Keywords (Abstract) 1 4
Phrases with Keywords + O.C (Abstract) 4 11
Phrases with Keywords (Full text) 3 12
Phrases with Keywords + O.C (Full text) 11 20
Total 41 102

Table 22: Approximate Training times per Content Source, in GPU hours
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7 Results and Discussion
In this Section, we present the results of our training experiments, and provide insights on
them.

Comprehensive training plots and logs can be found in our GitLab repository. For a
glimpse into the results from our initial training round, refer to Figures 36 and 37. In
the first figure, we can see that the optimal epoch to avoid overfitting in that particular
scenario is the fourth epoch, which coincidentally also maximizes the F2. In contrast, in
the second image, the first epoch is optimal, while it does not have the best F2.

(a) Training Loss (b) Development Loss (c) Development F2

Figure 36: Unbalanced Fine-tuning - Losses and Development F2 evolution for mBERT on
the Title

(a) Training Loss (b) Development Loss (c) Development F2

Figure 37: PET 1000 - Losses and Development F2 evolution for RoBERTa-base on the
Title

The optimal epochs for each training scenario are detailed in Appendix F.1. It’s evident
that Unbalanced Fine-tuning takes the longest to reach the optimal epoch, especially when
compared to the other methods, where the majority reach the optimum within the first
or second epoch. The disparity between the two fine-tuning techniques is significant, with
Balanced Fine-tuning often reaching its peak performance in just one epoch. When it comes
to PET, all five scenarios exhibit a consistent pattern, typically achieving their optimal
epoch before the fourth one. This suggests that any variations in the rate of convergence
might occur during the training of the PET ensembles. Given that all ensembles undergo
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training for five epochs, it must be that this sufficient for achieving satisfactory results.
Unfortunately, we did not record the evolution of the custom losses used to train the PET
ensembles.

Figure 38: Development F2 for mBERT at the optimal epochs, across all the training
methods

Based on these findings, we moved forward to the second round, trained models up
to their optimal epochs, and evaluated their final performance. The metrics for the best
classifiers across each training scenario and for every BERT model are detailed in Appendix
F.2. A direct comparison of the Development F2 outcomes reveals that Unbalanced Fine-
tuning consistently underperforms compared to other training techniques 37 (See Figure
38 for sample results for mBERT). In fact, Balanced Fine-tuning outperforms Unbalanced
Fine-tuning in nearly all instances, with only one exception38.

When examining PET, a noticeable trend emerges: performance improves as the doc-
ument count per category grows. Specifically, the Development F2 for PET 50 generally
lags behind other PET variants and seldom matches their levels. Conversely, both PET
500 and PET 1000 consistently register superior results.

Given the high number of training scenarios (totaling 336), we may impose a stringent
performance threshold, focusing only on classifiers that achieve a Development F2 of at
least 80%. Out of all the scenarios, only 72 classifiers meet this criterion, which is roughly
one-fifth of the total. A summary of these top-performing classifiers is provided in Table
62. It’s evident from the table that PET training typically surpasses Fine-tuning39, and
that Unbalanced Fine-tuning never makes it to the list. Among the PET configurations,
both PET 500 and PET 1000 consistently exceed the set threshold.

When ranking the BERT models based on the number of top-performing classifiers,
XLM-RoBERTa leads with 22, followed closely by mBERT and Bio-Link-BERT, each with
16. This suggests that the multilingual nature of our dataset might play a more pivotal role
in determining relevance than its biomedical aspect. This aligns with the fact that only

37A F2 score of 0% indicates the model defaulted to predict the predominant class (negative)
38This specific instance pertains to BERT-base on the Title, showing a marginal difference of about 3%
39The sole exception being XLM-RoBERTa on the Full text
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4 top classifiers are associated with SciBERT, and a mere 3 with BERT-base. RoBERTa-
base, with its 11 top classifiers, occupies a middle ground, possibly indicating its superior
capabilities compared to BERT-base and SciBERT. However, its training exclusively on
English text might be a limiting factor.

At the same time, it’s concerning to observe that several top classifiers exhibit worry-
ingly low Development AUC values, ranging between 60% and 80% (Figure 39). A low
AUC indicates challenges faced by these models in differentiating between positive and
negative instances. Yet, their high F2 scores suggest a pronounced recall relative to preci-
sion. Piecing these insights together, it’s plausible that these models achieve elevated F2

scores by predominantly categorizing most documents as positive.

(a) Bio-Link-BERT with PET 50
on the Title

(b) RoBERTa-base with PET 200
on the Full text

(c) XLM-RoBERTa with PET
1000 on the Full text

Figure 39: Sample AUCs for some classifiers

Prioritizing models that genuinely grasp the concept of relevance rather than indis-
criminately marking everything as positive, we set a threshold of 80% for the Development
AUC. By doing so, we narrow down to 49 classifiers, detailed in Table 63. Interestingly,
the Content Source with the highest number of top-performing classifiers is the Full text,
exhibiting 15 top classifiers across all BERT models. This indicates that the Full text,
typically longer than other Content Sources, offers ample content, enabling all models to
effectively learn the task.

Conversely, it’s worth noting that the Phrases with Keywords (Abstract) doesn’t feature
on the list. As discussed in Section 5, this dataset undergoes significant reduction during
preprocessing, potentially leaving it with insufficient content. Given that we still have four
top-performing classifiers for the Abstract, we opt to exclude the Phrases with Keywords
(Abstract) as a Content Source.

To avoid classifiers that flag almost everything as a positive, we impose a 75% threshold
on the Development F1. This criterion narrows our selection to 17 classifiers. Table
64 presents the Development and Test metrics for these classifiers, emphasizing the top-
performing metrics. Once more, the Full text dominates with the most classifiers on this
list (9), and its best three metrics are highlighted.

Predictably, the Test metrics are lower than the Development metrics. Yet, it’s striking
to see a significant drop in the F1 and precision, with most falling below the 50% mark.
This trend can be attributed to our emphasis on the F2, which leans towards Recall at the
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expense of Precision. At the same time, the highest Test Recalls hover around or exceed
80%.

Observe that the Phrases with Keywords (Full text) is absent from the list. This can be
attributed to the significant reduction in dataset content when only sentences containing
keywords are considered. Additionally, the peak metrics for Phrases with Keywords +
O.C (Abstract) and Phrases with Keywords + O.C (Full text) consistently fall short of
those for Abstract and Full text, respectively. These findings suggest that incorporating
Phrases with Keywords as Content Sources does not enhance performance, contrary to
our hypothesis in Section 5.1. Consequently, we opt to exclude these sources of content
moving forward, and thus, we are left with the four original Content Sources.

Considering the best performing classifiers (Table 23), it’s noteworthy that, except for
one, all top classifiers are derived from PET 1000. Moreover, the best classifiers are consis-
tently obtained by training multilingual BERT models. This highlights the significance of
the multilingual nature of our dataset in determining relevance over its biomedical aspect.

Content Source Title Abstract Full text Full text Full text Translated Title
Model mBERT XLM-RoBERTa mBERT XLM-RoBERTa XLM-RoBERTa mBERT
Training Method PET 1000 PET 1000 PET 1000 Balanced Fine-tuning PET 1000 PET 1000
Development F2 82.44 % 82.34 % 82.75 % 83.62 % 85.73 % 82.87 %
Development AUC 83.46 % 84.15 % 88.82 % 90.57 % 88.85 % 85.27 %
Development F1 77.55 % 77.41 % 81.52 % 83.95 % 81.6 % 78.81 %
Development Accuracy 75.09 % 74.91 % 81.06 % 84.06 % 79.99 % 76.92 %
Development Precision 70.58 % 70.4 % 79.56 % 84.52 % 75.53 % 72.86 %
Development Recall 86.06 % 85.98 % 83.58 % 83.39 % 88.73 % 85.82 %
Test F2 60.56 % 60.57 % 66.97 % 63.72 % 63.79 % 63.81 %
Test AUC 82.5 % 84.6 % 89.61 % 87.22 % 89.66 % 84.2 %
Test Precision 27.83 % 28.74 % 50.21 % 51.1 % 44.34 % 31.86 %
Test Recall 85.78 % 83.76 % 79.24 % 82.24 % 72.49 % 85.15 %
Test F1 42.03 % 42.79 % 35.44 % 38.42 % 29.4 % 46.37 %
Test Accuracy 66.73 % 69.14 % 86.13 % 76.28 % 90.15 % 72.9 %

Table 23: Best classifiers by Content Source

In summary, among all the training methods examined in our work, Unbalanced Fine-
tuning yields the least favorable performance, while PET demonstrates increasingly
improved performance as more documents per category are introduced. In terms of
Content Sources, incorporating keywords from the documents does not enhance per-
formance, whereas utilizing the Full text proves to be the most effective in providing
substantial content for the models to learn from, with the Title, Translated Title
and Abstract lagging behind. Additionally, the multilingual aspect of our dataset
appears to hold greater significance than their biomedical content, as evidenced by
the superior performance of classifiers trained with multilingual BERT models.

Finally, we put forward a reason for the enhanced performance of PET compared to
Fine-tuning. We theorize that the use of task descriptions in PET enables the model to
have a clearer comprehension of the task. To illustrate this idea, we reference an example
from the foundational PET paper by Schick and Schütze (2021).
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Take into account the next three statements: the first two have labels, and our challenge
is to assign a label to the third.

1. Category A: This was the best pizza I’ve ever had.
2. Category B: You can get better sushi for half the price.
3. Category ?: Pizza was average. Not worth the price.
Based solely on this data, determining a label is challenging: Is the focus on pizza or

price? Or is it about identifying verb tenses (Past vs. Present)? Yet, if we’re informed
that the objective is to identify sentences discussing pizza, we’d promptly label the third
sentence in category A. Conversely, if it’s about prices, category B would be the appropriate
label.

For our task, consider the three following (artificial) sentences:
1. Relevant: Oriental Fruit fly (Bactrocera dorsalis) detected in a new location in Cen-

tral Asia.
2. Irrelevant: Check out the best decorative plants for your garden this summer, and

beware of insects!
3. Category ?: What to do if you find fruit flies plaguing your field - Agriculture News

Online.
For the task of identifying document relevance for Plant Health Surveillance, we cate-

gorize the third sentence as ’Irrelevant’. However, such subtleties might be overlooked by
a language model without additional context.

Indeed, referring to Table 23, it’s evident that Fine-tuning yields one of the top clas-
sifiers only when applied to the Full text. Throughout our analysis, we’ve observed that
many top-performing classifiers were also trained on the Full text. This suggests that due
to its length (averaging 1102 tokens, but cut at 300 input tokens), the Full text provides
ample content, enabling any BERT model to grasp the task effectively. In contrast, other
Content Sources, being much shorter than the Full text, might not offer sufficient context
for the models. For instance, the Title averages 11 tokens, the Abstract 50 tokens, and the
Translated Title 12 tokens. As a result, classifiers benefit from the added context given by
PET patterns.

Furthermore, it’s worth noting that all other best classifiers predominantly use PET
1000. This suggests that exposing the model to more document examples combined with
task-specific knowledge enhances its performance. However, the performance improvement
stales over time, as the incremental gains from transitioning from PET 500 to PET 1000
are marginal, as seen in Tables 50-55.

In conclusion, by employing PET and its patterns, we inject task-specific knowledge,
thereby guiding the model.
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8 Practical Implications and Future Work
In this Section, we discuss the real-world impact of our research, detailing its application,
updates, and the effects it will have on the work of the VSI experts.

8.1 Overview
Upon determining the optimal hyperparameters for the most effective classifiers (as seen in
Table 23), the PESV team plans to integrate our findings into their data collection pipeline
as a component of the TIERS-ESV initiative.

For the TIERS-ESV project, we have developed two key services:
• A service for inference.
• A service for training.

8.2 Inference Service

Figure 40: Our classifiers added to the VSI Data Collection Pipeline

Our Document Classification system will be integrated into the VSI data collection
pipeline, as depicted in Figure 40. This system is composed of two primary components:

1. Heuristic methods

2. Neural-based Text Classification

The heuristic component is designed to eliminate entries that lack substantial content.
For those documents that do contain content, the Text Classification component of the
system applies our trained models. The results produced by this filter will be fed into
the VSI database. Overall, we anticipate that this addition will significantly reduce the
manual effort required by the VSI experts.

The implementation of this filter will utilize the Python package developed during this
thesis.

1. First, the results from web scraping, as an XML/TEI file, are processed using our
tool to extract the Title, the Abstract, the Full text, and the Translated Title.
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2. Subsequently, any noise such as HTML tags, URLs, website names, and the like are
filtered out from the text for each Content Source.

3. The heuristic module then employs the tools we developed for preprocessing. By
using functions that identify error messages and scraping issues, one can eliminate
document that lack substantial content.

4. Then, for each Content Source, the cleaned text is given as input for the Text Clas-
sification model.

5. Finally, the output of the filter for a particular document consists of
• A boolean flag indicating whether the document was kept.
• The cleaned text
• The prediction: Relevant VS Irrelevant
• The label probabilities

Given our observations on addressing error messages and managing scraping errors (as
discussed in Sections 5.2.2 and 5.2.3), we anticipate that the heuristic model will exclude
between 20% to 30% of unique documents, depending on the Content Source.

This filtering system will be applied to the documents scraped weekly by the PESV
Platform. For user convenience, it will be encapsulated within a REST API, hosted on the
MaiAGE servers, and integrated into the AlvisNLP-ML40 toolkit of the Bibliome group
(Ba and Bossy, 2016). Lastly, when publishing selected documents in the official bulletin
of the PESV Platform, they will be arranged in order of decreasing relevance.

8.3 Training Service
As the VSI Database expands with new entries, there will be a need to update the models
utilized for Text Classification. This responsibility falls on the training service, which
implements the entire pipeline to train the best performing classifiers from Table 23.

The frequency and data selection for training will be at the discretion of the VSI experts.
They must determine whether training should occur weekly, bi-weekly, etc. Additionally,
as their priorities and interests evolve, they might find it beneficial to limit the training
data, perhaps only focusing on data from recent months.

The training service is designed to run on the Lab-IA cluster. All scripts related to
this service can be found in our GitLab repository.

8.4 Consequences for Plant Health Surveillance
Until now, the VSI experts at the PESV Platform have been meticulously reviewing every
scraped document. Integrating Text Classification into the annotation process will signifi-
cantly reduce the burden on the VSI experts, ultimately aiding in long-term Plant Health
Surveillance.

40https://bibliome.github.io/alvisnlp/
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By incorporating the Heuristics module, the VSI experts can identify which queries and
websites pose challenges for their scraping tools.

Given that the VSI experts will review documents marked as Relevant by our system,
we decided to calculate the positive ratio for the top classifiers on their respective test
splits. Moreover, we aim for a reduced rate of false negatives, meaning the percentage
of genuinely Relevant documents that our system mistakenly labels as Irrelevant (refer to
Table 24). The rationale behind this is that overlooking an event that poses a risk to
Plant Health (a positive) is more dangerous than mistakenly identifying a harmless event
(a negative) as Relevant.

Content Source Model Training Method Positives/Total FN/Total
Title mBERT PET 1000 43.33% 2.0%

Abstract XLM-RoBERTa PET 1000 40.16% 2.23%
Full text mBERT PET 1000 26.55% 1.66%
Full text XLM-RoBERTa Balanced Fine-tuning 24.16% 2.89%
Full text XLM-RoBERTa PET 1000 37.27% 1.20%

Translated Title mBERT PET 1000 34.62% 1.69%

Table 24: Positives and FN ratios for the best classifiers

The minimal False Negative rates indicate that our systems will overlook only around
2 out of every 100 Relevant (unique) documents, which we view as an impressive outcome.
As mentioned in Section 5.4, the actual proportions in the VSI Dataset fluctuate between
12% and 14% positives. The closer our classifiers approach to this balance, the fewer
documents the VSI experts will need to review manually.

In the most favorable scenario, with a Positive ratio of 24%, the VSI experts will
encounter roughly 76% ≈ 3/4 fewer documents than they currently do. Conversely, in the
least favorable scenario, with a Positive ratio of 43%, they will see about 57% ≈ 1/2 fewer
documents.

This demonstrates that integrating our system into their monitoring mission will
significantly decrease the number of documents requiring manual review. This will
allow the VSI experts to either assess the same volume of documents more quickly,
allocate the same time to evaluate a larger set of documents, or broaden their surveil-
lance to additional pathogens. We consider this outcome to be satisfactory and a
fitting conclusion to our work.
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8.5 Future Work
There are some ways for improving our work, here, we highlight three.

Translating the Full text One significant improvement could involve translating the
Full text of the documents. Our findings indicate that using the Full text provides the
most substantial content for training our models. Considering that the most advanced
language models are typically developed initially for English text, creating a new Content
Source by translating the Full text into English seems like a logical step.

However, this approach comes with its own set of challenges:
• Using the Google Translate API for extensive content could become costly.
• Determining whether a particular species is associated to an agricultural event is

important to determine its relevant to Plant Health Surveillance. Given that agricul-
tural reports tend to use the common names of species, using automatic translation
carries the risk of inaccurately rendering the common names of various organisms.
For instance, the Coccinellidae beetle is referred to as ’ladybug’ in English, while in
French, it is known as ’Bête à bon Dieu’ (literally, ’god’s creature’). Such discrepan-
cies present a substantial challenge for general-purpose translation systems.

Leveraging Metadata As mentioned in Section 4, the VSI Database also contains
metadata for each article, which presents an opportunity to enhance our results.

For instance, considering that the interests of the VSI experts evolve over time, we
could leverage the publication and annotation dates associated with each article to craft
additional features for Machine Learning. This could potentially allow the model to adapt
more effectively to the shifting focus of the VSI experts.

Additionally, we could parse the URL of each article and use it to help determine which
sources are the most trustworthy.

Clustering instead of Classification A final suggestion is to complement Text Clas-
sification with Clustering techniques. This approach would enable us to analyze the simi-
larities between documents and understand their distribution more comprehensively.

For instance, we could investigate how documents are related across different subjects,
or assess whether one subject is encompassed within another. This could provide valu-
able insights into the structure and relationships within the dataset, and to improve the
efficiency of the VSI experts.

9 Conclusions
This master thesis has explored an application of NLP in the field of Plant Health Surveil-
lance, a critical area that impacts agriculture, food security, and environmental sustain-
ability. Conducted at the INRAE Laboratory, a renowned French research institute, and
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in collaboration with the PESV Platform this work stands at the intersection of advanced
computational methods and biological research.

The research was aimed at automating the process of determining the relevance of
documents for Plant Health Surveillance, thereby significantly reducing the manual effort
required by the experts of the VSI team at the PESV Platform. The thesis thoroughly
studies the properties and statistics of the data on phytosanitary events collected and
annotated by the VSI experts and develops methods to preprocess it for NLP applications.

Furthermore, the thesis outlines the development of a Document Classification system,
which is intended to be integrated into the VSI data collection pipeline. This system com-
prises two primary components: Heuristic methods and Neural-based Text Classification.
The heuristic component is designed to filter out entries that lack substantial content.
For documents that do contain content, the Text Classification component of the system
applies trained models to categorize the documents as ’Relevant’ or ’Irrelevant’ for Plant
Health Surveillance. The results produced by this filter are intended to be fed into the VSI
database.

The thesis provides a detailed analysis of the performance of various BERT models, with
mBERT and XLM-RoBERTa producing the best results, due to the multilingual nature
of the data. The Pattern Exploiting Training (PET) method, which was used extensively
in this research, proved to be effective, especially when numerous examples (from 500 to
1,000 per category) were provided to the model during training. The thesis shows that
using the document’s Full text, due to its length and richness, allows the models to grasp
the task effectively, highlighting the importance of context in Text Classification tasks.

As the VSI Database expands with new entries, there will be a need to update the
models used for Text Classification. The thesis outlines a training service that is designed
to be flexible and adaptive to the evolving needs and priorities of the VSI experts.

In summary, this thesis makes a contribution to the field of Text Classification in the
context of Plant Health Surveillance. It not only provides a robust and automated solution
to a real-world problem but also offers insights into the effectiveness of various training
strategies and the importance of context in Text Classification tasks. The work presented
in this thesis holds promise for significantly reducing the manual workload of the VSI
experts, thus aiding long-term Plant Health Surveillance.
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A Evaluation Metrics for Classification
In Binary Classification, we deal with two classes. Our primary concern is to measure
how well the positive class is predicted. The content of this section is an adaptation of
Van Rijsbergen (1979).

When the classifier is applied to an item, there are four potential outcomes, contingent
on the classifier’s predictions and the true class labels. These four cases constitute a
Confusion Matrix (as depicted in Table 26).

Case Description
True Positives (TP) The item is in the positive class, and the classifier predicts the positive class.
True Negatives (TN) The item is in the negative class, and the classifier predicts the negative class.
False Negative (FN) The item is in the positive class, and the classifier predicts the negative class.
False Positive (FP) The item is in the negative class, and the classifier predicts the positive class.

Table 25: Classification Outcomes

Actual Class/Predicted Class Predicted Positive Predicted Negative
Actual Positive TP FN
Actual Negative FP TN

Table 26: Confusion Matrix for Binary Classification

There are four classic metrics for evaluating classifiers:
• Accuracy: Accuracy measures the overall correctness of a classification model. It

is the ratio of correctly predicted instances to the total number of instances in the
dataset.

A =
TP + TN

Positives+Negatives
(8)

Example: If a model classifies 90 out of 100 samples correctly, the accuracy would
be 90%.
Example: In an unbalanced dataset containing 80% of negatives, a classifier that
flags everything as a negative would get an accuracy of 80%.

• Precision: Precision quantifies the ability of a model to correctly identify positive
instances among the ones it predicted as positive. It is the ratio of true positive
predictions to the total number of positive predictions (both true positives and false
positives).

P =
TP

PredictedPositives
(9)

=
TP

TP + FP
(10)
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Example: If a model predicts 100 instances as positive, and 80 of them are truly
positive, the precision would be 80%.
Note that, with a model that almost always predicts the negative class, there will
be minimal False Positives and True Positives (FP, TP → 0), and thus, this flawed
model would have nearly 0% precision.

• Recall (Sensitivity or True Positive Rate): Recall measures the ability of a model to
correctly identify all positive instances in the dataset. It is the ratio of true positive
predictions to the total number of actual positive instances in the dataset.

R =
TP

ActualPositives
(11)

=
TP

TP + FN
(12)

Example: If there are 100 positive instances in the dataset, and the model correctly
identifies 80 of them, the recall would be 80%.
Note that, with a model that almost always predicts the positive class, there will be
minimal False Negatives (FN → 0), and thus, this flawed model would have nearly
100% recall.

• F1 Score: The F1 score is the harmonic mean of precision and recall. It balances the
trade-off between precision and recall, penalizing disparities between these metrics,
and provides a single metric to evaluate a model’s performance.

F1 =

(
1

P
+

1

R

)−1

(13)

= 2 ∗ P ∗R
P +R

(14)

Example: If a model has a precision of 75% and recall of 80%, the F1 score would
be calculated as 2 ∗ ((0.75 ∗ 0.80)/(0.75 + 0.80)) = 77, 4%.

A.1 Evaluating Probabilistic Classifiers
A probabilistic binary classifier is a classifier that produces the probabilities of an item
belonging to the positive class, rather than giving a definitive verdict. To take a decision,
a specific threshold or cut-off is needed. For example, if a 50% threshold is chosen for
the positive class, items with probabilities above this are deemed positive, while those
below are considered as negative. Additionally, this threshold can be adjusted to be more
stringent, requiring a higher confidence level (e.g., 60%) for positive classification, or more
lenient, allowing lower confidence (e.g., 40%) for positive classification, and so on (Hanley
and McNeil, 1982).

When evaluating a probabilistic classifier using a labeled dataset, different thresholds
lead to varied confusion matrices. Using this insight, we can formulate a metric to evaluate
such classifiers. To do this, we first need to understand two key concepts:
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• The True Positive Rate (TPR) is the ratio of True Positive predictions to all actual
Positive cases. That is, it’s the recall (Equation 12). It assesses the classifier’s efficacy
with respect to the positive portion of the dataset.

TPR =
TP

TP + FN
= R (15)

• The False Positive Rate (FPR) is the ratio of False Positive predictions to all actual
Negative cases. It assesses the classifier’s efficacy concerning the negative portion of
the dataset, but in a reverse manner. That is, a higher FPR means worse perfor-
mance regarding the negatives, and lower FPR means better performance (Equation
17).

FPR =
FP

TN + FP
(16)

= 1− TN

TN + FP
(17)

The fundamental observation is that selecting a particular probability threshold gives
rise to specific values in the confusion matrix, which in turn provides a pair of values
(FPR, TPR). Plotting these points as the threshold varies creates the Receiver Operating
Characteristic (ROC) curve.

To introduce the AUC measure, let’s further explore the nuances of the ROC curve
(Refer to Figure 41):

1. A threshold of 0% implies that every item is classified as a positive, thus, there are
no False Negatives and no True Negatives, which means that the FPR and TPR are
both 1.

2. A threshold of 100% implies that every item is classified as a negative, thus, there
are no True Positives and no False Positives, which means that the FRP and TPR
are both 0.

3. Combining these two observations, if we plot the curve by decreasing the threshold
from 100% to 0%, we will obtain a curve starting from point (0, 0) and ending at
point (1, 1).

4. A perfect classification system would make no mistakes, no matter the probability
threshold41. That is, it would have no False Positives and no False Negatives. This
would make the TPR always 1, which corresponds to a horizontal line 1 unit above
the horizontal axis.

41Except for thresholds of 0% and 100%, as explained above
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Figure 41: Area Under Curve

5. A completely inaccurate classification system is always wrong, no matter the prob-
ability threshold. That is, it would never have True Positives nor True Negatives.
This would make the TPR always 0, which corresponds to a horizontal line on top
of the horizontal axis.

6. A classification system that always takes decisions at random, is equally likely to
correctly identify positive instances as it is to incorrectly label negative instances as
positive. This means, the FPR and TPR would always be equal, which corresponds
to a diagonal line.

7. A classification system that performs better than a random classifier will have a
performance tending towards a perfect classifier, which corresponds to a curve above
the diagonal.

8. A classification system that performs worse than a random classifier will have a
performance tending towards a completely inaccurate classifier, which corresponds
to a curve below the diagonal.

The AUC is simply the area under the ROC curve, and can be used to evaluate prob-
abilistic classifiers, because:

• A perfect classifier has an AUC of 1.0
• A completely inaccurate classifier has an AUC of 0.0
• A random classifier has an AUC of 0.5
• A better-than-random classifier has an AUC above 0.5
• A worse-than-random classifier has an AUC below 0.5
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Organism of interest Type of organism Search Query
Fusarium oxysporum f. sp.
cubense tropical (race 4)

Fungus fusarium oxysporum tropical

Xylella fastidiosa Bacteril xylella
Bursaphelenchus xy-
lophilus

Nematode Bursaphelenchus xylophilus

Bactrocera dorsalis Insect Bactrocera dorsalis
Candidatus Liberibacter
spp.

Bacteria huanglongbing

Popillia japonica Insect Popillia Japonica
Flavescence dorée Bacteria flavescence
Tomato brown rugose fruit
virus

Virus ToBRFV

Spodoptera frugiperda Insect spodoptera frugiperda
Bretziella fagacearum Fungus oak wilt Bretziella
Agrilus planipennis Insect Agrilus planipennis
Thaumatotibia leucotreta Insect Thaumatotibia leucotreta
Xylotrechus chinensis Insect Xylotrechus chinensis
Toumeyella parvicornis Insect Toumeyella parvicornis
Ceratocystis platani Fungus Ceratocystis platani

chancre du platane
General Plant Health first report plant disease

new plant health

Table 27: Keywords and key phrases used for the VSIdataset

B VSI Dataset samples and language statistics
This appendix presents tables and statistics to provide a deeper insight into the character-
istics of the VSI dataset.

B.1 Keywords for constructing the VSI Database
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B.2 Sample entries detected as Latin

Text
Bactrocera (Daculus) oleae (Gmelin, 1790)

resting on a leaf - Popillia japonica
La Popillia japonica devasta colture in Piemonte
Regione attiva piano anti Popillia japonica - www.lombardianotizie.online …
Popillia japonica | Libero Quoditiano.it

Lombardy: anti Popillia japonica plan activated in Milan – Lombardy
Candidatus liberibacter ç¬¬1é¡µ

Milano, area di San Siro: Regione attiva piano anti Popillia japonica
A Milano il piano anti Popillia japonica | Milano.zone
Vithal Popillia japonica Polysect Ultra SL PFnPO Le Migliori Venditori
ultime notizie su ore popillia
Meridiem Seeds presenta Yuparanà nel Lazio

Lombardia: al via piano regionale contro la Popillia japonica a San Siro (2)
Milano, area di San Siro: Regione attiva piano anti Popillia japonica
Control of Anthracnose …by Colletotrichum musae …
…on Curcuma alismatifolia Gagnep using Antagonistic Bacillus spp.
Lombardia: al via piano regionale contro la Popillia japonica a San Siro
Popillia japonica , come difendersi

Japankäfer <i> Popillia japonica </i>
RETI INSETTICIDE PER Popillia japonica - Asso Web TV
La Popillia japonica
Citrus tristeza virus …of Candidatus Liberibacter Asiaticus by Diaphorina citri
Popillia japonica
Popillia devastante nel Santhiatese - Prima Vercelli

Table 28: Sample entries detected as Latin text
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Language Entries Language Entries Language Entries
af 18 id 226 ro 77
am 2 ig 3 ru 180
ar 226 ilo 24 rw 13
az 13 is 34 sd 1
be 3 it 4788 sk 66
bg 107 iw 13 sl 51
bn 6 ja 74 sm 1
bs 33 jv 2 sn 8
ca 142 jw 1 so 4
ceb 7 ka 13 sq 18
co 121 kk 7 sr 12
cs 94 kn 4 su 1
cy 5 ko 51 sv 53
da 35 kri 5 sw 14
de 362 ku 3 ta 4
el 164 ky 1 te 9
en 12016 la 152 tg 12
eo 7 lb 28 th 31
es 3025 ln 3 tk 3
et 31 lo 4 tl 3
eu 3 lt 26 tr 83
fa 36 lv 11 ts 3
fi 25 mg 4 tt 1
fil 11 mi 5 uk 30
fr 2251 mk 1 ur 1
fy 12 mo 8 uz 11
ga 8 mr 19 vi 210
gd 3 ms 17 yi 1
gl 18 mt 6 yo 1
gn 69 ne 2 zh 41
gu 6 nl 465 zh-CN 784
ha 2 no 29 zh-TW 72
haw 3 ny 6 zu 4
hi 39 om 11 Failed 6132
hmn 2 pl 135
hr 77 ps 3
ht 4 pt 1292
hu 184 qu 4
hy 2

Table 29: Number of entries per language in the VSI Dataset

B.3 VSI Language statistics
Table 29 shows the distribution of languages (by ISO code) in the VSI dataset as auto-
matically detected by the Google Translate API.
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C Regular expressions used in this project
In this Appendix, one will find illustrative examples of the regular expressions utilized for
various tasks in this project. It is important to note that our matching algorithms are
case-insensitive.

C.1 Error Message Removal - VSI Dataset

Regular Expressions
^JavaScript is not available\.$
^Error$
^NA$
^Timeout error$
^None$
^Loading(\.)*$
^Not Found$
^Access Restricted$
^Page Not Found$
^\[\]$
^blacklisted
^'NoneType' object has no attribute 'get'?$
^PPlease Wait\.\.\.\s+ Cloudflare$
^HTTPSConnectionPool.*
^Checking your browser.*
^Please update your browser$
^JavaScript n'est pas disponible\.$
^Vos données\.% Votre expérience\.*$
^Before you continue to YouTube$
^Just a moment(\.)*
^Your data\. Your experience\.$
^Access Denied$
…

Table 30: Some Regular Expressions for Removing Errors Messages in the VSI dataset

C.2 Noise Removal - VSI Dataset
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D Preprocesing Statistics
In this Appendix, we present the full results of our preprocessing approaches, as explained
in Section 5.

D.1 Preprocessing the VSI dataset

Unique entries per Content Source Raw After preprocessing Percentage
Title 24037 16222 67.49%
Abstract 19939 16974 85.13%
Full text 26346 22535 85.53%
Translated Title 23829 16359 68.65%
Phrases with Keywords (Abstract) 4712 4050 85.95%
Phrases with Keywords + O.C (Abstract) 19798 16833 85.02%
Phrases with Keywords (Full text) 16473 14359 87.17%
Phrases with Keywords + O.C (Full text) 24447 20880 85.41%

Table 32: Unique Entries per content source before and after preprocessing

Content Source Size Mean STD Min 25% 50% 75% max
Title 16222 12.464 29.867 1 8 11 15 1565
Abstract 16974 50.549 73.982 1 19 27 46 1537
Full text 22535 1097.756 5763.482 1 187 411 800 240318
Translated Title 16359 12.821 30.943 1 8 11 15 1565
Phrases with Keywords (Abstract) 4050 34.919 33.765 1 18 25 39 537
Phrases with Keywords + O.C (Abstract) 16833 35.768 44.700 1 17 25 38 1518
Phrases with Keywords (Full text) 14359 115.655 429.369 1 26 52 114 40700
Phrases with Keywords + O.C (Full text) 20880 217.711 614.478 1 32 71 201 40700

Table 33: Token Length statistics after preprocessing the VSI dataset

Content Source Irrelevant Relevant Size % Irrelevant % Relevant
Title 13917 2305 16222 85.8% 14.2%
Abstract 14625 2349 16974 86.2% 13.8%
Full text 19794 2741 22535 87.8% 12.2%
Translated Title 14084 2275 16359 86.1% 13.9%
Phrases with Keywords (Abstract) 2962 1088 4050 73.1% 26.9%
Phrases with Keywords + O.C (Abstract) 14553 2280 16833 86.5% 13.5%
Phrases with Keywords (Full text) 12130 2229 14359 84.5% 15.5%
Phrases with Keywords + O.C (Full text) 18344 2536 20880 87.9% 12.1%

Table 34: Label Distribution after preprocessing the VSI dataset
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Node Names CPU RAM GPU
n[1-5] 2 x Intel Xeon E5-2620

v4 8 cores / 16 threads
@ 2.40 GHz (Haswell)

128 GiB 2 x NVIDIA RTX
A6000 with 48 GiB
GDDR6 (PCIe)

n[51-55] 2 x Intel Xeon Gold
5120 14 cores / 28
threads @ 2.2GHz
(Skylake)

192 GiB 3 x NVIDIA Tesla
V100 with 32 GiB of
RAM (PCIe)

n[101-102] 2 x Intel Xeon Gold
6148 20 cores / 40
threads @ 2.4 GHz
(Skylake)

384 GiB 4 x NVIDIA Tesla
V100 with 32 GiB of
RAM (NVLink)

Table 35: Specifications of Lab-IA Nodes

E Training Setup

E.1 GPU Specifications
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Content Source Train-Size Positives Negatives Dev-Size Positives Negatives Test-Size Positives Negatives
Title 12980 1845 11135 1621 230 1391 1621 230 1391
Abstract 13582 1881 11701 1696 234 1462 1696 234 1462
Full text 18031 2193 15838 2252 274 1978 2252 274 1978
Translated Title 13091 1821 11270 1634 227 1407 1634 227 1407
Phrases with Key-
words (Abstract)

3242 872 2370 404 108 296 404 108 296

Phrases with Key-
words + O.C (Ab-
stract)

13469 1826 11643 1682 227 1455 1682 227 1455

Phrases with Key-
words (Full text)

11491 1785 9706 1434 222 1212 1434 222 1212

Phrases with Key-
words + O.C (Full
text)

16706 2030 14676 2087 253 1834 2087 253 1834

Table 36: Split Statistics for Unbalanced Fine-tuning

Content Source Train-Size Positives Negatives Dev-Size Positives Negatives Test-Size Positives Negatives
Title 12976 6488 6488 1622 811 811 1621 230 1391
Abstract 13578 6789 6789 1696 848 848 1696 234 1462
Full text 18028 9014 9014 2252 1126 1126 2252 274 1978
Translated Title 13086 6543 6543 1634 817 817 1634 227 1407
Phrases with Key-
words (Abstract)

3240 1620 1620 404 202 202 404 108 296

Phrases with Key-
words + O.C (Ab-
stract)

13466 6733 6733 1682 841 841 1682 227 1455

Phrases with Key-
words (Full text)

11486 5743 5743 1434 717 717 1434 222 1212

Phrases with Key-
words + O.C (Full
text)

16704 8352 8352 2088 1044 1044 2087 253 1834

Table 37: Split Statistics for Balanced Fine-tuning

E.2 Statistics for Splits
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Content Source Train-Size Positives Negatives Dev-Size Positives Negatives Test-Size Positives Negatives Unlabeled
Title 100 47 53 1622 811 811 1621 230 1391 12876
Abstract 100 55 45 1696 848 848 1696 234 1462 13478
Full text 100 53 47 2252 1126 1126 2252 274 1978 17928
Translated Title 100 56 44 1634 817 817 1634 227 1407 12986
Phrases with Key-
words (Abstract)

100 42 58 404 202 202 404 108 296 3140

Phrases with Key-
words + O.C (Ab-
stract)

100 59 41 1682 841 841 1682 227 1455 13366

Phrases with Key-
words (Full text)

100 50 50 1434 717 717 1434 222 1212 11386

Phrases with Key-
words + O.C (Full
text)

100 51 49 2088 1044 1044 2087 253 1834 16604

Table 38: Split Statistics for PET 50

Content Source Train-Size Positives Negatives Dev-Size Positives Negatives Test-Size Positives Negatives Unlabeled
Title 200 102 98 1622 811 811 1621 230 1391 12776
Abstract 200 97 103 1696 848 848 1696 234 1462 13378
Full text 200 109 91 2252 1126 1126 2252 274 1978 17828
Translated Title 200 100 100 1634 817 817 1634 227 1407 12886
Phrases with Key-
words (Abstract)

200 78 122 404 202 202 404 108 296 3040

Phrases with Key-
words + O.C (Ab-
stract)

200 115 85 1682 841 841 1682 227 1455 13266

Phrases with Key-
words (Full text)

200 105 95 1434 717 717 1434 222 1212 11286

Phrases with Key-
words + O.C (Full
text)

200 96 104 2088 1044 1044 2087 253 1834 16504

Table 39: Split Statistics for PET 100

Content Source Train-Size Positives Negatives Dev-Size Positives Negatives Test-Size Positives Negatives Unlabeled
Title 400 201 199 1622 811 811 1621 230 1391 12576
Abstract 400 206 194 1696 848 848 1696 234 1462 13178
Full text 400 226 174 2252 1126 1126 2252 274 1978 17628
Translated Title 400 203 197 1634 817 817 1634 227 1407 12686
Phrases with Key-
words (Abstract)

400 170 230 404 202 202 404 108 296 2840

Phrases with Key-
words + O.C (Ab-
stract)

400 206 194 1682 841 841 1682 227 1455 13066

Phrases with Key-
words (Full text)

400 200 200 1434 717 717 1434 222 1212 11086

Phrases with Key-
words + O.C (Full
text)

400 184 216 2088 1044 1044 2087 253 1834 16304

Table 40: Split Statistics for PET 200
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Content Source Train-Size Positives Negatives Dev-Size Positives Negatives Test-Size Positives Negatives Unlabeled
Title 1000 481 519 1622 811 811 1621 230 1391 11976
Abstract 1000 512 488 1696 848 848 1696 234 1462 12578
Full text 1000 513 487 2252 1126 1126 2252 274 1978 17028
Translated Title 1000 482 518 1634 817 817 1634 227 1407 12086
Phrases with Key-
words (Abstract)

1000 481 519 404 202 202 404 108 296 2240

Phrases with Key-
words + O.C (Ab-
stract)

1000 524 476 1682 841 841 1682 227 1455 12466

Phrases with Key-
words (Full text)

1000 499 501 1434 717 717 1434 222 1212 10486

Phrases with Key-
words + O.C (Full
text)

1000 492 508 2088 1044 1044 2087 253 1834 15704

Table 41: Split Statistics for PET 500

Content Source Train-Size Positives Negatives Dev-Size Positives Negatives Test-Size Positives Negatives Unlabeled
Title 2000 956 1044 1622 811 811 1621 230 1391 10976
Abstract 2000 1000 1000 1696 848 848 1696 234 1462 11578
Full text 2000 1002 998 2252 1126 1126 2252 274 1978 16028
Translated Title 2000 975 1025 1634 817 817 1634 227 1407 11086
Phrases with Key-
words (Abstract)

2000 987 1013 404 202 202 404 108 296 1240

Phrases with Key-
words + O.C (Ab-
stract)

2000 1026 974 1682 841 841 1682 227 1455 11466

Phrases with Key-
words (Full text)

2000 963 1037 1434 717 717 1434 222 1212 9486

Phrases with Key-
words + O.C (Full
text)

2000 996 1004 2088 1044 1044 2087 253 1834 14704

Table 42: Split Statistics for PET 1000
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Model/Content Source Title Abstract Full text Translated Title Phrases with
Keywords (Ab-
stract)

Phrases with
Keywords +
O.C (Abstract)

Phrases with
Keywords (Full
text)

Phrases with
Keywords +
O.C (Full text)

BERT-base 2 2 2 2 2 2 2 2
mBERT 4 2 4 4 2 2 4 10
Bio-Link-BERT 7 10 2 3 4 6 10 4
SciBERT 2 2 2 2 2 2 2 9
RoBERTa-base 8 7 7 4 4 9 3 4
XLM-RoBERTa 5 10 6 8 4 9 9 6

Table 43: Optimal epochs for Unbalanced Fine-tuning

Model/Content Source Title Abstract Full text Translated Title Phrases with
Keywords (Ab-
stract)

Phrases with
Keywords +
O.C (Abstract)

Phrases with
Keywords (Full
text)

Phrases with
Keywords +
O.C (Full text)

BERT-base 1 1 1 1 1 1 3 1
mBERT 1 1 1 1 1 1 1 1
Bio-Link-BERT 1 1 1 2 1 1 1 1
SciBERT 1 1 1 1 1 1 1 1
RoBERTa-base 1 1 1 1 1 2 1 1
XLM-RoBERTa 3 1 1 1 2 1 1 1

Table 44: Optimal epochs for Balanced Fine-tuning

F Training Results
In this Appendix we present the numerical results and metrics from our training experi-
ments.

F.1 VSI Optimal Epochs

Model/Content Source Title Abstract Full text Translated Title Phrases with
Keywords (Ab-
stract)

Phrases with
Keywords +
O.C (Abstract)

Phrases with
Keywords (Full
text)

Phrases with
Keywords +
O.C (Full text)

BERT-base 3 1 2 3 4 1 3 2
mBERT 1 2 2 1 3 1 2 2
Bio-Link-BERT 1 1 3 2 2 1 3 3
SciBERT 2 1 2 5 3 2 1 2
RoBERTa-base 4 1 1 1 1 1 3 2
XLM-RoBERTa 2 1 1 1 1 2 2 1

Table 45: Optimal epochs for PET 50
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Model/Content Source Title Abstract Full text Translated Title Phrases with
Keywords (Ab-
stract)

Phrases with
Keywords +
O.C (Abstract)

Phrases with
Keywords (Full
text)

Phrases with
Keywords +
O.C (Full text)

BERT-base 1 1 1 1 1 1 1 1
mBERT 2 1 1 1 4 3 2 1
Bio-Link-BERT 2 4 1 4 2 3 1 1
SciBERT 2 2 3 1 3 1 1 3
RoBERTa-base 1 1 1 2 3 1 1 1
XLM-RoBERTa 3 1 1 4 3 1 1 2

Table 46: Optimal epochs for PET 100

Model/Content Source Title Abstract Full text Translated Title Phrases with
Keywords (Ab-
stract)

Phrases with
Keywords +
O.C (Abstract)

Phrases with
Keywords (Full
text)

Phrases with
Keywords +
O.C (Full text)

BERT-base 4 3 1 1 2 1 1 1
mBERT 2 1 1 3 2 1 2 2
Bio-Link-BERT 3 4 4 2 3 3 4 4
SciBERT 3 3 2 1 1 4 1 2
RoBERTa-base 2 4 2 2 1 2 2 2
XLM-RoBERTa 3 3 1 5 1 4 1 1

Table 47: Optimal epochs for PET 200

Model/Content Source Title Abstract Full text Translated Title Phrases with
Keywords (Ab-
stract)

Phrases with
Keywords +
O.C (Abstract)

Phrases with
Keywords (Full
text)

Phrases with
Keywords +
O.C (Full text)

BERT-base 4 1 3 2 1 3 2 3
mBERT 3 3 3 1 1 3 1 3
Bio-Link-BERT 3 4 2 3 1 3 3 3
SciBERT 3 2 1 1 1 2 4 2
RoBERTa-base 5 1 4 2 2 2 2 2
XLM-RoBERTa 2 2 3 2 1 1 2 1

Table 48: Optimal epochs for PET 500

Model/Content Source Title Abstract Full text Translated Title Phrases with
Keywords (Ab-
stract)

Phrases with
Keywords +
O.C (Abstract)

Phrases with
Keywords (Full
text)

Phrases with
Keywords +
O.C (Full text)

BERT-base 1 1 3 1 1 2 1 1
mBERT 1 1 5 2 1 3 1 1
Bio-Link-BERT 2 3 2 1 1 1 1 4
SciBERT 2 2 2 2 1 1 1 1
RoBERTa-base 1 5 1 1 1 4 3 1
XLM-RoBERTa 1 2 5 1 1 5 1 3

Table 49: Optimal epochs for PET 1000
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F.2 VSI Metrics at Optimal Epochs
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Model Content Source Training Method Development F2 Development AUC
BERT-base Full text PET 500 81.35% 79.66%
BERT-base Full text PET 1000 83.1% 85.09%
BERT-base Phrases with Keywords + O.C (Abstract) PET 1000 80.16% 80.2%
mBERT Abstract PET 1000 79.71% 82.81%
mBERT Full text PET 200 83.29% 80.29%
mBERT Full text PET 500 84.72% 86.75%
mBERT Full text PET 1000 82.75% 88.82%
mBERT Phrases with Keywords + O.C (Abstract) PET 100 79.35% 69.23%
mBERT Phrases with Keywords + O.C (Abstract) PET 200 81.28% 74.41%
mBERT Phrases with Keywords + O.C (Abstract) PET 500 79.34% 81.8%
mBERT Phrases with Keywords + O.C (Abstract) PET 1000 81.64% 84.51%
mBERT Phrases with Keywords (Full text) PET 1000 80.25% 82.43%
mBERT Phrases with Keywords + O.C (Full text) PET 500 79.26% 81.62%
mBERT Phrases with Keywords + O.C (Full text) PET 1000 82.29% 83.35%
mBERT Title PET 500 81.06% 80.93%
mBERT Title PET 1000 82.44% 83.46%
mBERT Translated Title PET 100 79.5% 70.19%
mBERT Translated Title PET 500 80.32% 81.88%
mBERT Translated Title PET 1000 82.87% 85.27%
Bio-Link-BERT Title Balanced Fine-tuning 79.97% 84.18%
Bio-Link-BERT Title PET 50 79.11% 63.14%
Bio-Link-BERT Title PET 500 81.94% 76.65%
Bio-Link-BERT Title PET 1000 81.2% 79.8%
Bio-Link-BERT Full text PET 500 81.94% 82.41%
Bio-Link-BERT Full text PET 1000 83.25% 85.16%
Bio-Link-BERT Translated Title PET 50 83.77% 67.29%
Bio-Link-BERT Translated Title PET 100 81.31% 71.45%
Bio-Link-BERT Translated Title PET 200 80.02% 73.33%
Bio-Link-BERT Translated Title PET 1000 80.65% 83.03%
Bio-Link-BERT Phrases with Keywords + O.C (Abstract) PET 100 81.95% 67.77%
Bio-Link-BERT Phrases with Keywords + O.C (Abstract) PET 500 81.2% 77.49%
Bio-Link-BERT Phrases with Keywords + O.C (Abstract) PET 1000 79.35% 79.01%
Bio-Link-BERT Phrases with Keywords (Full text) PET 1000 80.19% 77.69%
Bio-Link-BERT Phrases with Keywords + O.C (Full text) PET 500 79.5% 78.92%
Bio-Link-BERT Phrases with Keywords + O.C (Full text) PET 1000 79.74% 82.23%
SciBERT Title PET 1000 80.37% 80.88%
SciBERT Full text PET 500 82.43% 79.82%
SciBERT Full text PET 1000 83.95% 84.83%
SciBERT Phrases with Keywords + O.C (Full text) PET 1000 80.13% 81.2%
RoBERTa-base Abstract Balanced Fine-tuning 79.77% 85.35%
RoBERTa-base Abstract PET 1000 79.66% 81.69%
RoBERTa-base Full text Balanced Fine-tuning 79.41% 89.72%
RoBERTa-base Full text PET 200 79.01% 73.06%
RoBERTa-base Full text PET 500 82.72% 81.03%
RoBERTa-base Full text PET 1000 83.18% 84.94%
RoBERTa-base Translated Title PET 50 83.54% 64.43%
RoBERTa-base Translated Title PET 500 80.25% 82.01%
RoBERTa-base Translated Title PET 1000 81.02% 84.2%
RoBERTa-base Phrases with Keywords (Abstract) PET 1000 82.78% 63.71%
RoBERTa-base Phrases with Keywords + O.C (Abstract) PET 1000 80.51% 81.8%
XLM-RoBERTa Title PET 500 80.11% 82.48%
XLM-RoBERTa Title PET 1000 83.12% 83.55%
XLM-RoBERTa Abstract PET 1000 82.34% 84.15%
XLM-RoBERTa Full text Balanced Fine-tuning 83.62% 90.57%
XLM-RoBERTa Full text PET 100 82.62% 70%
XLM-RoBERTa Full text PET 200 80.51% 78.04%
XLM-RoBERTa Full text PET 500 85.64% 86.66%
XLM-RoBERTa Full text PET 1000 85.73% 88.85%
XLM-RoBERTa Translated Title Balanced Fine-tuning 80.16% 84.24%
XLM-RoBERTa Translated Title PET 50 82.89% 63.84%
XLM-RoBERTa Translated Title PET 100 80.27% 70.52%
XLM-RoBERTa Translated Title PET 200 81.22% 74.28%
XLM-RoBERTa Translated Title PET 1000 79.91% 84.19%
XLM-RoBERTa Phrases with Keywords (Abstract) PET 1000 82.85% 70.57%
XLM-RoBERTa Phrases with Keywords + O.C (Abstract) PET 100 81.94% 72.02%
XLM-RoBERTa Phrases with Keywords + O.C (Abstract) PET 500 80.79% 82.09%
XLM-RoBERTa Phrases with Keywords + O.C (Abstract) PET 1000 81.13% 84.82%
XLM-RoBERTa Phrases with Keywords (Full text) PET 200 80.04% 74.48%
XLM-RoBERTa Phrases with Keywords (Full text) PET 500 79.59% 79.52%
XLM-RoBERTa Phrases with Keywords (Full text) PET 1000 79% 80.14%
XLM-RoBERTa Phrases with Keywords + O.C (Full text) PET 500 82.49% 80.73%
XLM-RoBERTa Phrases with Keywords + O.C (Full text) PET 1000 80.51% 83.46%

Table 62: Development F2 and AUC of top performing classifiers by BERT Model
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Content Source Model Training Method Development F2 Development AUC Development F1

Title Bio-Link-BERT Balanced Fine-tuning 79.97 % 84.18 % 78.45 %
Title XLM-RoBERTa PET 500 80.11 % 82.48 % 76.25 %
Title SciBERT PET 1000 80.37 % 80.88 % 75.77 %
Title mBERT PET 500 81.06 % 80.93 % 74.84 %
Title Bio-Link-BERT PET 1000 81.2 % 79.8 % 74.99 %
Title mBERT PET 1000 82.44 % 83.46 % 77.55 %
Title XLM-RoBERTa PET 1000 83.12 % 83.55 % 77.3 %
Abstract RoBERTa-base PET 1000 79.66 % 81.69 % 76.12 %
Abstract mBERT PET 1000 79.71 % 82.81 % 76.53 %
Abstract RoBERTa-base Balanced Fine-tuning 79.77 % 85.35 % 79.16 %
Abstract XLM-RoBERTa PET 1000 82.34 % 84.15 % 77.41 %
Full text RoBERTa-base Balanced Fine-tuning 79.41 % 89.72 % 81.81 %
Full text BERT-base PET 500 81.35 % 79.66 % 74.28 %
Full text Bio-Link-BERT PET 500 81.94 % 82.41 % 74.62 %
Full text SciBERT PET 500 82.43 % 79.82 % 72.87 %
Full text RoBERTa-base PET 500 82.72 % 81.03 % 74.7 %
Full text mBERT PET 1000 82.75 % 88.82 % 81.52 %
Full text BERT-base PET 1000 83.1 % 85.09 % 79.13 %
Full text RoBERTa-base PET 1000 83.18 % 84.94 % 77.87 %
Full text Bio-Link-BERT PET 1000 83.25 % 85.16 % 77.82 %
Full text mBERT PET 200 83.29 % 80.29 % 74.04 %
Full text XLM-RoBERTa Balanced Fine-tuning 83.62 % 90.57 % 83.95 %
Full text SciBERT PET 1000 83.95 % 84.83 % 77.98 %
Full text mBERT PET 500 84.72 % 86.75 % 79.78 %
Full text XLM-RoBERTa PET 500 85.64 % 86.66 % 78.34 %
Full text XLM-RoBERTa PET 1000 85.73 % 88.85 % 81.6 %
Translated Title XLM-RoBERTa PET 1000 79.91 % 84.19 % 77.17 %
Translated Title XLM-RoBERTa Balanced Fine-tuning 80.16 % 84.24 % 79.23 %
Translated Title RoBERTa-base PET 500 80.25 % 82.01 % 75.93 %
Translated Title mBERT PET 500 80.32 % 81.88 % 76.1 %
Translated Title Bio-Link-BERT PET 1000 80.65 % 83.03 % 76.67 %
Translated Title RoBERTa-base PET 1000 81.02 % 84.2 % 78.47 %
Translated Title mBERT PET 1000 82.87 % 85.27 % 78.81 %
Phrases with Keywords + O.C (Abstract) mBERT PET 500 79.34 % 81.8 % 75.42 %
Phrases with Keywords + O.C (Abstract) Bio-Link-BERT PET 1000 79.35 % 79.01 % 74.14 %
Phrases with Keywords + O.C (Abstract) BERT-base PET 1000 80.16 % 80.2 % 75.63 %
Phrases with Keywords + O.C (Abstract) RoBERTa-base PET 1000 80.51 % 81.8 % 76.41 %
Phrases with Keywords + O.C (Abstract) XLM-RoBERTa PET 500 80.79 % 82.09 % 76.15 %
Phrases with Keywords + O.C (Abstract) XLM-RoBERTa PET 1000 81.13 % 84.82 % 78.3 %
Phrases with Keywords + O.C (Abstract) mBERT PET 1000 81.64 % 84.51 % 78.53 %
Phrases with Keywords (Full text) XLM-RoBERTa PET 1000 79 % 80.14 % 74.17 %
Phrases with Keywords (Full text) XLM-RoBERTa PET 500 79.59 % 79.52 % 73.32 %
Phrases with Keywords (Full text) mBERT PET 1000 80.25 % 82.43 % 76.63 %
Phrases with Keywords + O.C (Full text) mBERT PET 500 79.26 % 81.62 % 75.84 %
Phrases with Keywords + O.C (Full text) Bio-Link-BERT PET 1000 79.74 % 82.23 % 75.58 %
Phrases with Keywords + O.C (Full text) SciBERT PET 1000 80.13 % 81.2 % 75.16 %
Phrases with Keywords + O.C (Full text) XLM-RoBERTa PET 1000 80.51 % 83.46 % 77.22 %
Phrases with Keywords + O.C (Full text) mBERT PET 1000 82.29 % 83.35 % 78.19 %
Phrases with Keywords + O.C (Full text) XLM-RoBERTa PET 500 82.49 % 80.73 % 74.44 %

Table 63: Development F2, AUC, and F1 of top performing classifiers by Content Source
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