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Frontostriatal salience network expansion in 
individuals in depression
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Nicola Manfredi1, Megan Johnson1, Megan Chang1, Jolin Chou1, Indira Summerville1, 
Claire Ho1, Maximilian Lueckel2,3, Hussain Bukhari1, Derrick Buchanan4, Lindsay W. Victoria1, 
Nili Solomonov1, Eric Goldwaser1, Stefano Moia5,6,7, Cesar Caballero-Gaudes7, 
Jonathan Downar8, Fidel Vila-Rodriguez9, Zafiris J. Daskalakis10, Daniel M. Blumberger8,11,12, 
Kendrick Kay13, Amy Aloysi14, Evan M. Gordon15, Mahendra T. Bhati4, Nolan Williams4, 
Jonathan D. Power1, Benjamin Zebley1, Logan Grosenick1, Faith M. Gunning1 & Conor Liston1 ✉

Decades of neuroimaging studies have shown modest differences in brain structure  
and connectivity in depression, hindering mechanistic insights or the identification  
of risk factors for disease onset1. Furthermore, whereas depression is episodic, few 
longitudinal neuroimaging studies exist, limiting understanding of mechanisms that 
drive mood-state transitions. The emerging field of precision functional mapping  
has used densely sampled longitudinal neuroimaging data to show behaviourally 
meaningful differences in brain network topography and connectivity between and  
in healthy individuals2–4, but this approach has not been applied in depression.  
Here, using precision functional mapping and several samples of deeply sampled 
individuals, we found that the frontostriatal salience network is expanded nearly 
twofold in the cortex of most individuals with depression. This effect was replicable  
in several samples and caused primarily by network border shifts, with three distinct 
modes of encroachment occurring in different individuals. Salience network 
expansion was stable over time, unaffected by mood state and detectable in children 
before the onset of depression later in adolescence. Longitudinal analyses of 
individuals scanned up to 62 times over 1.5 years identified connectivity changes in 
frontostriatal circuits that tracked fluctuations in specific symptoms and predicted 
future anhedonia symptoms. Together, these findings identify a trait-like brain 
network topology that may confer risk for depression and mood-state-dependent 
connectivity changes in frontostriatal circuits that predict the emergence and 
remission of depressive symptoms over time.

Depression is a heterogeneous and episodic neuropsychiatric syn-
drome associated with synapse loss5,6 and connectivity alterations 
in frontostriatal networks7–9 and a leading cause of disability world-
wide10. The neurobiological mechanisms that give rise to specific 
depressive symptom domains or to changes in mood over time are 
not well understood, especially at the neural systems level. So far, 
most functional magnetic resonance imaging (fMRI) studies have 
tested for differences in functional connectivity in cross-sectional 
comparisons between groups of depressed individuals and healthy, 
never-depressed controls using group-average (one-size-fits-all) 
parcellations to define functional brain areas and networks. More 

recently, pioneering work in systems neuroscience has given rise to 
the field of precision functional mapping, which refers to a suite of 
new approaches for delineating functional networks entirely in indi-
viduals2–4,11–14. Precision mapping studies have shown that the topology 
(size, shape and spatial location) of functional areas and networks in 
individuals deviates markedly from group-average descriptions3,15,16 and 
that individual differences in network topology are stable2,3,17,18, herit-
able19,20 and associated with cognitive abilities and behaviour3–5,13,21–23. 
Apart from a recent case study involving a single individual who sus-
tained bilateral perinatal strokes24, these tools have not yet been widely 
applied in clinical populations, including depression. Thus, whether 
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functional network topology differs in individuals with depression  
is unknown.

Depression is a fundamentally episodic neuropsychiatric condition 
defined by discrete periods of low mood interposed between periods 
of euthymia but our understanding of the mechanisms that mediate 
mood transitions over time is limited. This is due in part to the fact 
that most studies until now have been cross-sectional, involving data 
acquired at a single time point or, in some cases, two or three scans 
acquired before and after an intervention25–27—an approach that is 
not designed for meaningful statistical inferences at the individual 
level21. Understanding the neurobiological mechanisms that mediate 
transitions in and out of depressive mood states may require studying 
individual patients over many months22. Indeed, densely sampled n-of-1 
studies involving intracranial EEG recordings and other assessments 
have begun to show mechanisms that regulate mood-state transitions 
in individual patients receiving deep brain stimulation for depres-
sion23,28,29 but these approaches have not yet been deployed at scale in 
fMRI studies. Without such datasets, it is unknown whether changes 
in brain network connectivity predict the emergence of anhedonia, 
anxiety and dysfunction in other depressive symptom domains or 
the subsequent remission of these symptoms after a recovery from an 
episode. In the same way, it is unclear whether atypical network topol-
ogy measures fluctuate with mood state in individuals with depres-
sion or remain stable over time—key questions for understanding 
cause-and-effect relationships in clinical neuroimaging, for defining 
potential therapeutic targets in neuromodulation interventions or 
identifying at-risk individuals. Until recently, technical limitations 
have posed significant obstacles to performing precision functional 
mapping and longitudinal neuroimaging in clinical samples, including 
depression. Conventional fMRI measurements at the single subject level 
are often noisy and have limited reliability, in part because they are sen-
sitive to a variety of imaging artefacts30. However, recent studies have 
taken significant steps towards developing solutions to these problems, 
by either acquiring large quantities of data in each subject2,3,14 or by 
using multi-echo fMRI18,31. Together, these approaches can generate 
highly reliable functional connectivity measures and network maps at 
the level of individual subjects, an important step towards developing 
and deploying fMRI for clinical translational purposes.

Here we used state-of-the-art precision functional mapping tools 
to delineate topology of functional brain networks in individuals with 
depression, leveraging several resting-state fMRI datasets of deeply 
sampled individuals. We found that the frontostriatal salience network 
is expanded by nearly twofold in most individuals with depression—an 
effect we replicated thrice using independent samples of repeatedly 
sampled individuals with depression (total n = 135) and in large-scale 
group-average data (n = 299 individuals with depression, n = 932 healthy 
controls), with three distinct types of encroachment displacing neigh-
bouring functional systems occurring across individuals. Salience 
network expansion was stable over time and unaffected by changes in 
mood state. It was also present in children scanned before the onset of 
depression symptoms that emerged later in adolescence. Longitudinal 
analyses of densely sampled individuals showed mood-state-dependent 
changes in striatal connectivity with anterior cingulate and anterior 
insular nodes of the salience network which tracked fluctuations in 
anhedonia and anxiety, respectively, and predicted the subsequent 
emergence of anhedonic symptoms at future study visits.

Salience network expansion in depression
Numerous neuroimaging studies involving large cohorts of patients 
with depression have identified differences in functional connectivity 
and brain structure32–36, often involving the anterior cingulate cortex, 
orbitofrontal cortex, insular cortex and subgenual cingulate cortex—a 
therapeutic target for deep brain stimulation37,38—but the effect sizes in 
large-scale meta-analyses are modest (for example, Cohen’s d = 0.1–0.15 

for structural measures36 and d = 0.13–0.26 for functional connectivity 
measures1). Whether the topological features of large-scale functional 
brain networks—their shape, spatial location and size—are altered in 
depression is unknown.

We used precision functional mapping to delineate the topology of 
functional brain networks in six highly sampled individuals with unipolar 
major depression who underwent on average 621.5 min of multi-echo 
fMRI scanning (range 58–1,792 min) across 22 sessions (range 2–62  
sessions). We refer to this dataset as the serial imaging of major depres-
sion (SIMD) dataset (study design and aims in Extended Data Fig. 1). To 
contextualize the severity of depressive symptoms in these individuals, 
the mean 17-item39 Hamilton depression rating scale (HDRS17) score 
(averaged across study visits, excluding those when these individuals 
were in remission) was 15.7 ± 3.7 (range 10.5–22.2), indicating a range of 
severity levels from mild to severe. The same precision mapping proce-
dures were applied to 37 highly sampled healthy controls with an average 
of 327.49 min of fMRI data per subject (range 43.36–841.2 min) across 12 
sessions (range 2–84 sessions). The healthy controls did not receive any 
intervention or treatment. See the Methods for more details.

It was immediately apparent on visual inspection that the salience 
network, which is involved in reward processing and conscious inte-
gration of autonomic feedback and responses with internal goals and 
environmental demands30,40,41, was markedly larger in these individuals 
with depression (Fig. 1a,b). In four of the six individuals, the salience 
network was expanded more than twofold, outside the range observed 
in all 37 healthy controls (Fig. 1c, left). On average, the salience net-
work occupied 73% more of the cortical surface relative to the mean in 
healthy controls (5.49% ± 0.76% of cortex in SIMD versus 3.17% ± 0.85% 
of cortex in healthy controls), giving rise to a large group-level effect 
(Cohen’s d = 1.99). This effect was replicated using an alternative net-
work parcellation algorithm42 (Supplementary Fig. 1) and without use 
of global signal regression (Supplementary Fig. 2), indicating that it is 
robust to methodological variation and was not explained by group 
differences in brain anatomy or structure (Supplementary Fig. 3) or 
head motion (independent sample t-test comparing mean framewise 
displacement, T = 0.73, P = 0.47, claims about equivalence are based 
on an absence of evidence).

To further validate this finding, we repeated this procedure in three 
samples (n = 48 and n = 45 from Weill Cornell Medicine and n = 42 from 
Stanford University) of individuals with depression. Detailed imaging, 
demographic and clinical information for these samples are available 
in Supplementary Table 1 and Supplementary Fig. 4. The effect was 
replicated thrice (Fig. 1c, right), again with medium to large effect sizes 
(Cohen’s d = 0.77–0.84), remained statistically significant when control-
ling for the sex ratio imbalance in our samples (56.7% of individuals with 
depression were female, versus 31% of the healthy controls; Supplemen-
tary Fig. 4 and Extended Data Fig. 2) and with or without correction for 
potential site- or scanner-induced biases (Supplementary Fig. 5). We 
also evaluated if representation of the salience network was similarly 
increased in the striatum, which is thought to relate to anatomically 
well-defined, interconnected loops in which the cortex projects to the 
striatum and the striatum projects back to cortex indirectly through 
the thalamus43,44 but found that the difference in group means was not 
statistically significant (Fig. 1d).

Salience network expansion in depression was also evident in density 
maps (Fig. 1e), which convey the percentage of individuals with salience 
network representation at each cortical vertex or striatal voxel. These 
maps confirmed a similar overall pattern of cortical and subcortical 
representation in both groups, consistent with descriptions in previous 
reports3,45,46 but also showed that the borders of the salience network 
frequently extended further outwards from their centroids in each 
cortical zone in depressed individuals. For example, in the anterior 
cingulate cortex, network borders shifted more anteriorly into the 
pregenual cortex and, in lateral prefrontal cortex, network borders 
shifted more anteriorly towards the frontal pole (red boxes in Fig. 1e).  
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Accordingly, expansion of the salience network in cortex was accom-
panied by contraction of neighbouring functional systems in the 
SIMD sample (Extended Data Fig. 3). However, the specific patterns 
of contraction did not replicate in all datasets—a finding we return 
to in the following section. Otherwise, consistent and reproducible 
group differences in network size were specific to the salience network  
(no significant differences in the size of any other network after cor-
recting for several comparisons).

To better understand whether this effect was also detectable in large, 
previously published samples involving conventional single-echo fMRI 
data, we identified the salience network in group-average functional 
connectivity data from two large datasets involving n = 812 (ref. 47) and 
n = 120 (ref. 45) healthy controls, respectively, and in a third dataset 

involving n = 299 individuals with treatment-resistant depression 
scanned in association with a neuromodulation intervention study48. 
The cortical representation of the salience network was more than 70% 
larger in the 299-subject depression sample compared to two healthy 
control samples (Extended Data Fig. 4). Furthermore, highly similar 
patterns of salience network topology and functional connectivity were 
produced in split-half analyses of each SIMD dataset (Extended Data 
Fig. 5), indicating that salience network expansion was a robust and 
reproducible feature of the brains of these highly sampled individuals.

Given the magnitude of the effect reported in Fig. 1c, we went on to 
test whether individuals with depression could be distinguished algo-
rithmically from healthy controls using only the size of each functional 
network as predictive features. Thus, we trained a linear support vector 
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Fig. 1 | Frontostriatal salience network is expanded nearly twofold in the 
cortex of highly sampled individuals with depression. a, The salience 
network (black) has representation in LPFC, ACC and AI. b, The salience 
network in three representative individuals from the dataset referred to  
here as serial imaging of major depression (SIMD). c, The salience network was  
73% larger on average in the SIMD dataset (significance assessed using a 
permutation test, *P = 0.001, Bonferroni correction, Z-score = 6.19). This effect 
was replicated thrice (two-tailed independent sample t-tests, n = 48 from Weill 
Cornell Medicine, MDD-1: T = 3.54, *P = 0.01, Bonferroni correction, Cohen’s 
d = 0.72; another sample of n = 45 from Weill Cornell Medicine, MDD-2: T = 4.17, 
*P = 0.002, Bonferroni correction, Cohen’s d = 0.84; n = 42 from Stanford 
University, MDD-3: T = 3.68, *P = 0.008, Bonferroni correction, Cohen’s d = 0.77). 
Data are presented as mean ± s.d. d, No significant group differences in 
salience network representation in the striatum were observed in either the 
discovery (two-tailed permutation test, P = 0.07, uncorrected) or replication 

datasets (two-tailed independent sample t-tests, all P > 0.43, uncorrected). 
Data are presented as mean ± s.d. e, Density maps confirm that spatial 
locations of salience network nodes were similar in healthy controls and 
individuals with depression but that network borders extended further 
outwards from their centroids in each cortical zone in depression (red boxes).  
f, An SVM classifier distinguished individuals with depression from healthy 
controls above chance (accuracy 78.4%, significance assessed using a 
permutation test, P = 0.001) using the size of each functional network as 
features. g, Linear predictor coefficients (β) associated with the trained model. 
h, Change in model accuracy after exclusion of each network. Both g and h 
indicate that salience network size was the most important feature. ACC, 
anterior cingulate; AI, anterior insular cortex; Cd, caudate; HC, healthy 
controls; LPFC, lateral prefrontal; NAc, nucleus accumbens; PU, putamen;  
SAL, salience network; SVM, support vector machine.
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machine classifier to differentiate individuals with depression from 
healthy control individuals on the basis of the size of all 20 functional 
networks, pooling data from n = 37 healthy controls acquired from five 
different scanners and n = 141 individuals with depression acquired from 
two different scanners from two different manufacturers (that is, all 
the data in Fig. 1c). The Methods and Supplementary Fig. 6 give details 
about classifier training. Overall, support vector machine classifiers 
correctly differentiated depression cases from healthy controls with 
78.4% accuracy (permutation test, P = 0.001; Fig. 1f), correctly identify-
ing 82.5% of depression cases, for a positive predictive value of 89.5%. 
Feature importance was evaluated by examining the linear predictor 
coefficients and calculating the change in accuracy after exclusion 
(Fig. 1g,h). As expected, salience network size was the most distinguish-
ing feature. Together, these analyses indicate that the salience network 
is markedly expanded in most individuals with depression, with large 
effect sizes that are reproducible in several samples involving different 
data acquisition and analysis procedures, and sufficient in magnitude 
to support individual classifications with high accuracy rates.

Three salience network expansion modes
Individual differences in functional brain organization occur in two 
forms: ectopic intrusions, in which isolated pieces of a functional net-
work are observed in an atypical location, and border shifts, in which 
the boundary of a network expands (or contracts) and encroaches on 
its neighbours15. Border shifts are heritable49 and associated with known 
mechanisms of cortical expansion controlled by genetic programs that 
refine boundaries between functional areas during development and 
with experience or in response to environmental influences50. Further-
more, macroscale networks in both humans and non-human primates 
are organized in a hierarchy associated with cortical gradients in gene 
expression and functional properties51, with unimodal sensorimotor 
areas at the base and heteromodal association areas such as the default 
mode network at the apex52. Thus, as a step towards understanding the 
mechanisms that give rise to cortical expansion of the salience network 
in depression, we tested whether it was driven primarily by border 
shifts or ectopic intrusions and whether it tended to affect lower-level, 
unimodal sensorimotor networks or heteromodal association areas 
positioned higher in this hierarchy. To this end, we first generated a 
central tendency functional network map for the 37 healthy controls 
(Fig. 2a). Second, we identified parts of the salience network in each of 
the 141 individuals with depression that did not overlap with the salience 
network in the group-average map for healthy controls and classified 
them as either ectopic intrusions or border shifts (Fig. 2b,c). Next, we 
calculated an encroachment profile for each subject, by quantifying the 
degree of encroachment on every other functional network, defined 
as the relative contribution of each functional network to the total sur-
face area of the encroaching portion of the salience network (Fig. 2c).

This analysis confirmed that salience network expansion was not ran-
domly distributed—instead, it was due primarily to border shifts affecting 
three neighbouring higher-order functional systems, with three distinct 
encroachment profiles occurring in different individuals. Although sali-
ence network expansion involved both ectopic intrusions and border 
shifts, the latter were more common (Fig. 2d) and both tended to result 
in encroachment on the default, frontoparietal or cingulo-opercular 
networks (Fig. 2e), not unimodal sensorimotor networks. Comparison 
to 73 independent molecular, microstructural, electrophysiological, 
developmental and functional brain maps from neuromaps toolbox53 
showed that salience network expansion frequently occurred in brain 
regions with less intracortical myelin and thus greater capacity for 
synaptic plasticity54 and for which individual differences in functional 
connectivity55 and the concentration of particular neurotransmitter 
receptors (μ-opioid56 and histamine H3 receptors57) are most pronounced 
(Extended Data Fig. 6). Further comparisons to maps of FC test–retest 
reliability and temporal signal-to-noise confirmed that these brain 

regions were not more susceptible to noise than chance (Supplementary 
Fig. 7). It was also evident that the salience network tended to encroach 
on specific functional networks in different cortical zones (Fig. 2f). For 
example, in the lateral prefrontal cortex, the salience network expanded 
rostrally and tended to displace the frontoparietal network. By contrast, 
in the anterior cingulate and anterior insular cortex, the default mode 
and cingulo-opercular networks were disproportionately affected, 
respectively. Clustering individuals by their encroachment profiles 
showed three distinct modes (Fig. 2g), involving predominantly the 
default mode network, the frontoparietal network or a combination of 
the frontoparietal and cingulo-opercular networks. This heterogeneity 
may partly explain our observation that the salience network was consist-
ently expanded in all three datasets but corresponding contractions of 
other functional networks were more variable.

The results above indicate that salience network expansion is driven 
primarily by encroachment on the frontoparietal, cingulo-opercular 
and default mode networks and suggest that cortical space at the 
boundary between networks may be allocated to different functional 
systems in individuals with depression. To test this, and to further vali-
date our findings, we compared the strength of functional connectivity 
between encroaching nodes of the salience network (dark grey vertices 
in the left part of Fig. 2c) and the functional networks that typically 
occupy that space in healthy controls. This analysis was performed 
using split halves of each individual’s resting-state fMRI dataset to 
assess the stability of the salience network assignment associated with 
the encroaching vertices relative to the runner-up assignments (most 
often either the default mode, frontoparietal or cingulo-opercular net-
work). As expected, the functional connectivity of encroaching salience 
network nodes with the rest of the salience network was significantly 
stronger (mean Z(r) = 0.26) than with the displaced networks (all mean 
Z(r) < 0.12), consistent with weakened connectivity between encroach-
ing nodes and the functional networks that typically occupy that space 
in healthy controls (Extended Data Fig. 7). Together, these results show 
that frontostriatal salience network expansion is driven primarily by 
network border shifts that affect three specific higher-order functional 
systems and spare others, with distinct modes of encroachment occur-
ring in three subgroups of patients.

Salience network topology is trait-like
Major depressive disorder is a fundamentally episodic condition 
defined by discrete periods of low mood interposed between periods 
of euthymia58,59. We evaluated if changes in salience network topology 
accompany changes in the overall severity of depression symptoms that 
occur during mood-state transitions—an hypothesis that our longitudi-
nal SIMD dataset was well-suited to test. However, and consistent with 
previous work describing functional network topography in healthy 
adults as very stable features affected very little by cognitive state 
or daily variation17,20, we found that salience network topology was 
stable over time in individuals with and without depression (Fig. 3a). 
Furthermore, within-subject analyses showed no significant correla-
tion between fluctuations in depression symptoms (HDRS6, a more 
sensitive measure of changes on shorter timescales) and changes in 
salience network size over time in any of the densely sampled indi-
viduals in our SIMD dataset (Fig. 3b). To address the same question, 
we asked whether salience network size changed after a rapid acting 
antidepressant treatment, leveraging samples of patients scanned 
before and after a conventional 6-week course of repetitive transcranial 
magnetic stimulation (rTMS; n = 90) or an accelerated, 1-week intensive 
course of rTMS (n = 45). There was no significant pre-to-post change in 
salience network size in either sample (Fig. 3d). In addition, neither the 
severity of symptoms during the current episode (Fig. 3e) nor the total 
number of depressive episodes individuals reported experiencing dur-
ing their lifetime (Fig. 3f) explained individual differences in salience 
network size. Collectively, these findings indicate that salience network 
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expansion is a stable feature of individuals with major depressive dis-
order but not a marker of depressive episodes and unrelated to the 
severity of their symptom severity or to the chronicity of their illness.

These observations led us to propose that instead of driving changes 
in depressive symptoms over time, salience network expansion may be  
a stable marker of risk for developing depression. To test this hypoth-
esis, we asked whether salience network expansion was present earlier 
in life, before the onset of depressive symptoms in individuals. Using 
data from the adolescent brain cognitive development (ABCD) study60, 
we identified n = 57 children who did not have significant depressive 
symptoms when they were scanned at ages 10 and 12 years but then went 
on to develop clinically significant depressive symptoms at either age 13 
or 14 years (Fig. 3g). An equal number of children from the ABCD study 
with no depressive symptoms at any time point were also identified as  

a control sample. Precision functional mapping showed that, on average, 
the salience network occupied 35.93% more of cortex in children with no 
current or previous symptoms of depression at the time of their fMRI 
scans but who subsequently developed clinically significant symptoms 
of depression, relative to children with no depressive symptoms at any 
study time point (Fig. 3g, 3.81% ± 1.58% of cortex in ABCD-MDD versus 
2.80% ± 1.48% of cortex in ABCD-HC). There was no significant change 
in salience network size in the 2 years between the baseline and 2-year 
follow-up visits in either sample (Supplementary Fig. 8). A similar effect 
was observed in adults with late-onset depression (Extended Data Fig. 8). 
Together, these results show that cortical expansion of the salience 
network is a trait-like feature of brain network organization that is stable 
over weeks, months and years, unaffected by mood state and detectable 
in children before the onset of depression symptoms in adolescence.
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Fig. 2 | Three modes of salience network expansion in depression. a, Mode 
functional brain network assignments in cortex and striatum in HC. b, Salience 
network in a representative individual (SIMD-4) with depression. c, The parts  
of the salience network of each individual with depression that did and did  
not overlap with the HC are referred to as non-encroaching and encroaching, 
respectively. d, Salience network expansion more often due to shifts in 
network borders than ectopic intrusions—isolated patches of salience network 
in atypical locations (two-tailed paired sample t-test, *P < 0.001, n = 141). Data 
are presented as mean ± s.d. e, The parietal subnetwork of the DMN (red),  
FP (yellow) and CO (purple) networks were most frequently displaced by 
salience network expansion. f, Salience network expansion affected different 
functional networks in different cortical zones. In the AI, the FP (T = 5.94, 

*P < 0.001) and CO (T = 6.42, *P < 0.001), networks were more affected than the 
default mode network. In the ACC, the DMN was more affected than either the 
FP (T = 17.53, *P < 0.001) or CO/action-mode (T = 15.25, *P < 0.001) networks. 
Finally, in LPFC, the FP was more affected than either the DMN (T = 9.31, 
*P < 0.001) or CO (T = 6.33, *P < 0.001). Statistical significance was assessed 
using two-tailed two-sample t-tests; all P values are Bonferroni corrected, 
n = 141. Data are presented as mean ± s.d. g, Individuals with depression 
clustered using their encroachment profiles (the relative contribution of each 
functional network to the total surface area of the encroaching portion of their 
salience network) revealed three distinct modes of encroachment across 
individuals. CO, cingulo-opercular; DMN, default mode; FP, frontoparietal.
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Connectivity state predicts anhedonia
The results above indicate that topological features of the salience 
network, such as its size, shape and spatial location are stable over 
time and do not fluctuate with mood state. However, this observa-
tion does not preclude the possibility that functional connectivity 
between specific salience network nodes fluctuate in strength and that 
such fluctuations contribute to the emergence of depressive episodes 
and their subsequent remission. To test this, we first asked whether 
changes in functional connectivity strength between nodes of the sali-
ence network either co-occur with or predict fluctuations in symptom 
severity over time in individuals, focusing initially on hedonic function, 

a core feature of depression that is associated with frontostriatal cir-
cuits61–66 and is aligned with the putative role of salience network40,41,46 
and accumbens–anterior cingulate circuits more specifically67–69, in 
reward processing and goal-oriented effortful behaviour61,70–72. Our 
analyses focused on two of the patients from the SIMD dataset (SIMD-4 
and SIMD-6) who were repeatedly scanned and assessed by clinicians 
longitudinally over 8–18 months, providing sufficient data for this 
analysis. This afforded an opportunity to ask for the first time at the 
level of single densely sampled individuals—whose data effectively 
served as independent, well-powered n-of-1 experiments14,73—how vari-
ability in brain network functional connectivity relates to fluctuations 
in specific symptom domains.
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Fig. 3 | Salience network expansion is stable over time and present before 
symptom onset. a, Cortical representation of the salience network was stable 
in repeatedly scanned healthy controls (left) and individuals with depression 
(right). The first ten study visits for each individual are shown for visualization 
purposes. b, Salience network in a representative individual with depression 
that was scanned longitudinally to sample different mood states. c, No 
significant correlation between the severity of depressive symptoms (HDRS6) 
and salience network size in any repeatedly sampled individual with depression 
from the SIMD sample (Pearson correlation, all P > 0.63, two-tail test). d, No 
significant change in salience network size after a course of either a traditional 
6-week (two-tailed paired sample t-test, T = 0.58, P = 0.55, uncorrected, n = 90) 
or accelerated 1-week (two-tailed paired sample t-test, T = 0.58, P = 0.56, 
uncorrected, n = 45) course of repetitive transcranial magnetic stimulation 
(rTMS). Data are plotted as mean ± s.d. e, Individual differences in salience 

network size were not significantly correlated with depression severity 
(HDRS6, Pearson correlation, r = 0.04, P = 0.63, uncorrected, two-tailed test). 
f, The number of depressive episodes experienced (inferred from the 
Mini-International Neuropsychiatric Interview) in each individual’s lifetime  
in relation to the size of their salience network. Data are plotted as mean ± s.d. 
g, Children from the ABCD study scanned before the onset of elevated 
depression symptoms were identified (ABCD-MDD). Depression symptoms 
were operationalized using the DSM-oriented scale for depression from the 
CBCL (T-scores ≥70 are in the clinical range). The salience network was 
significantly larger in children who later developed clinically elevated 
symptoms of depression compared to children who did not (two-tailed 
independent sample t-test, T = 3.50, *P < 0.001, Cohen’s d = 0.62, n = 114). Data 
are plotted as mean ± s.d. NS, not significant; Sx,  symptom; Tx, treatment.



630 | Nature | Vol 633 | 19 September 2024

Article

We began with SIMD-4 because this individual was studied over the 
longest period of time (62 study visits over 1.5 years) and had the most 
fMRI data (29.96 h of fMRI data in total) and reserved SIMD-6 as a repli-
cation dataset (57 study visits over 12 months, the initial 39 study visits 
had fMRI data before DBS implantation, 18.85 h of fMRI data in total). 
During a period spanning 1.5 years, we observed significant fluctuations 

in ten anhedonia-related measures (Fig. 4a), which were derived from 
five standardized depressive symptom scales and identified by a con-
sensus clinical decision by three study co-authors (Supplementary 
Fig. 9), ranging from mild or negligible to severe. We tested whether 
changes in functional connectivity between nodes of the salience 
network were correlated with changes in anhedonia in this individual 
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Fig. 4 | Frontostriatal salience network connectivity predicts fluctuations 
in anhedonia and anxiety symptoms in deeply sampled individuals with 
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items selected from a variety of clinical interviews and self-report scales 
related to anhedonia symptoms in a deeply sampled individual with depression 
(SIMD-4). Clinical data were resampled to days for visualization purposes 
(black dots mark the study visits). b, Frontostriatal nodes of the salience 
network in SIMD-4. c, Correlation matrices summarizing the association 
between FC strength between different cortico-striatal salience network 
nodes and fluctuations in the severity of anhedonia-related symptoms in  
both SIMD-4 and SIMD-6. d, FC between salience network nodes in the NAc  
and ACC most closely tracked fluctuations in the severity of anhedonia-related 
symptoms in both SIMD-4 (Pearson correlation, r = −0.37, P = 0.003) and 
SIMD-6 (Pearson correlation, r = −0.49, P = 0.001) across study visits. Statistical 
significance was assessed using two-tailed permutation tests with circular 

rotation to preserve temporal autocorrelation. e, Cross-correlation analyses 
indicated NAc ←→ ACC FC also predicted the severity of anhedonia-related 
symptoms at the following study visit in SIMD-4 (Pearson correlation, 
significance tested by means of permutation test, r = −0.32, *P = 0.004) but  
not in SIMD-6. f, No significant correlation between individual differences in 
salience network NAc ←→ ACC FC strength and the severity of anhedonia-related 
symptoms across individuals (assessed using SHAPS, Pearson correlation, 
r = 0.09, P = 0.41). g, In SIMD-4 and SIMD-6, salience network NAc ←→ ACC FC 
was not significantly related to fluctuations in the severity of other depressive 
symptoms, such as anxiety. h, In contrast, FC between the NAc and AI was most 
closely related to fluctuations in the severity of anxiety-related symptoms 
(Pearson correlations, SIMD-4: r = −0.29, P = 0.02; SIMD-6: r = −0.45, P = 0.004, 
two-tailed tests), indicating different patterns of functional connectivity  
relate to different symptoms. FC, functional connectivity. AI, anterior insula; 
NAc, nucleus accumbens.
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over time, as measured by a principal component analysis of the ten 
anhedonia-related measures in Fig. 4a and summarized by the first com-
ponent score. We found that functional connectivity between several 
cortical and striatal salience network nodes was correlated with changes 
in anhedonia over time (Fig. 4c,d), with the strongest effects observed 
for connectivity between the nucleus accumbens and anterior cingulate 
cortex. An identical analysis in SIMD-6, involving 39 study visits with 
clinical and fMRI data over 8 months, replicated this effect (Fig. 4c,d 
and Extended Data Fig. 9a,b). This finding remained significant in both 
individuals when including head motion at each study visit as a covariate.

Next, we asked whether salience network functional connectivity 
was predictive of symptom severity at future study visits and whether 
the effect was specific to anhedonia or extended to other symptom 
domains. Notably, a cross-correlation analysis examining correlations 
with symptoms in past, present and future study visits showed that 
functional connectivity between the salience network nodes in the 
nucleus accumbens and anterior cingulate was not only correlated 
with current anhedonia symptoms but also predicted the future emer-
gence or remission of anhedonia symptoms in the next study visit in 
SIMD-4 (Fig. 4e, top), typically with a lag of approximately 1 week. The 
significance of this effect was confirmed using permutation tests with 
circular rotation to preserve temporal autocorrelation, indicating that 
accumbens–anterior cingulate connectivity at a given visit predicted 
future anhedonia approximately 1 week later, even after controlling 
for correlations in anhedonia measures over time. Of note, salience 
network connectivity correlations were replicated in SIMD-6 for cur-
rent symptoms but not for future symptoms (Fig. 4e, bottom), which 
may relate to differences in their antidepressant treatments in this 
observational setting (SIMD-6 was undergoing maintenance electro-
convulsive treatment unrelated to this study).

To determine whether changes in nucleus accumbens–anterior cin-
gulate functional connectivity not only predicted changes in anhedonia 
in individual subjects over time but also explained individual differ-
ences in anhedonia at a given point in time, we repeated this analysis 
cross-sectionally using the entire n = 135 cohort of replication subjects 
using a standardized self-report measure of anhedonia. However, this 
analysis did not show a significant correlation between individual dif-
ferences in functional connectivity between the anterior cingulate 
and nucleus accumbens and anhedonia across individuals (Fig. 4f), 
underscoring the value of within-subject analyses.

Finally, to evaluate the specificity of this effect, we asked whether 
nucleus accumbens–anterior cingulate connectivity was also associ-
ated with anxiety, a symptom domain that co-occurs with depression 
but is often dissociable from anhedonia (see Extended Data Fig. 10 for 
stacked anhedonia and anxiety symptom heatmaps). For example, 
‘dysphoric’ (sadness and anhedonia) and ‘anxiosomatic’ (anxiety and 
somatic) symptoms were dissociable from one another in a recent study 
mapping response to rTMS intervention to different stimulation sites74.  
We did not observe a significant correlation between accumbens– 
anterior cingulate connectivity and anxiety in either individual (Fig. 4g), 
indicating a more important role for this circuit in anhedonia. Of 
note, there are several neuroimaging and circuit physiology studies 
implicating the insula in the expression of anxiety and the process-
ing of aversive states75–79. Motivated by this work, we performed an 
analogous analysis asking whether changes in striatal connectivity 
with the anterior insula area of the salience network were correlated 
with fluctuations in anxiety symptoms over time in each subject. In 
accord with our prediction, we found that striatal connectivity with 
anterior insula was significantly correlated with anxiety symptoms in 
SIMD-4 and replicated this effect in SIMD-6 (Fig. 4h). An exploratory 
whole-brain analysis evaluating how salience network connectivity 
strength to the rest of the cortex relates to fluctuations in the severity of  
anhedonia and anxiety symptoms is summarized in Supplementary 
Fig. 10. Collectively, these findings show that, although the salience 
network is stably expanded in individuals with depression and that this 

expansion seems to occur early in life, frontostriatal connectivity in this 
network also fluctuates over time, and changes in striatal connectivity 
with the anterior cingulate and anterior insula track the emergence and 
remission of anhedonia and anxiety symptoms, respectively.

Interpreting differences in topology
In this work, precision functional mapping in deeply sampled individuals 
with depression showed a marked expansion of the salience network that 
was robust and reproducible in several samples, with medium to large 
effect sizes relative to previously reported neuroimaging abnormalities 
in depression. This effect was driven primarily by network border shifts 
that encroached on three specific functional systems—the frontopari-
etal, cingulo-opercular and default mode networks—with three distinct 
modes of encroachment in different individuals. This effect was stable 
over time, not sensitive to mood state or a marker of depressive episodes 
and emerged early in life in children who went on to develop depressive 
symptoms later in adolescence. At the same time, changes in striatal 
connectivity with anterior cingulate and anterior insula nodes of the 
salience network tracked the emergence and remission of anhedonia 
and anxiety, respectively, and predicted future changes in hedonic 
function in one individual. Of note, our analysis benefited from the use 
of precision functional mapping in combination with large quantities 
of high-quality, densely sampled multi-echo fMRI data, which may be 
critical for mapping individual differences in network topology precisely 
(Supplementary Fig. 12) and this might in part explain why these findings 
have not been reported in the literature previously.

Although more work will be required to elucidate the mechanisms 
underlying salience network expansion in depression, key results from 
this report and other studies point to at least two hypotheses. First, 
converging evidence from several sources indicates that individual 
differences in network topology are regulated by activity-dependent 
mechanisms and related to the extent to which a given network is 
actively used. So far, most studies evaluating variability in the size of 
functional areas or networks across individual humans or other animals 
have focused primarily on the motor and visual systems. These studies 
have shown how different body parts have distinct representations in 
the primary motor cortex (M1) that differ in size and cortical repre-
sentation is closely related to the dexterity of the corresponding limb, 
such that the upper limbs occupy more cortical surface area than the 
lower limbs, as one example80. Motor training can increase the rep-
resentation of the trained muscle or limb in M1 (refs. 81,82), whereas 
limb amputation, casting and congenital limb defects all decrease the 
representation of the disused limb and increase the representation of 
other body parts83–85. The total surface area of primary visual cortex (V1) 
can vary up to threefold in healthy young adults and is correlated with 
individual differences in visual awareness86 and contrast sensitivity87. 
Likewise, total cortical representation of the frontoparietal network 
was found to be positively correlated with executive function abilities 
in children88. Together, these reports suggest that salience network 
expansion—accompanied by a corresponding contraction of the fron-
toparietal, cingulo-opercular or default mode networks—may reflect a 
reallocation of cortical territory and information processing priorities 
in individuals with depression, which could in turn contribute to altera-
tions in salience network functions such as interoceptive awareness, 
reward learning, autonomic signal processing and effort valuation30,40,41.

Second, converging data indicate that cortical network topology 
is strongly influenced not only by externally modulated, activity- 
dependent mechanisms but also by intrinsic genetic programs50,89. 
Numerous transcription factors regulate cell adhesion molecules, 
exhibit strong expression gradients across the cortical sheet during 
development and covary with aspects of cortical organization, includ-
ing the size or location of functional areas89,90. Deletion of these pat-
terning factors can result in contraction or expansion of functional 
areas90. Conversely, increased expression of Emx2 increases the size 
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of V1 and decreases the size of somatomotor areas91,92. Although our 
findings do not speak directly to this question, at least three observa-
tions are consistent with a role for intrinsic developmental genetic 
programs as opposed to exclusively activity-dependent mechanisms. 
First, salience network expansion was highly stable, irrespective of an 
individual’s current mood state, indicating that acute mood-related 
changes in network activity did not influence network size. Second, 
salience network expansion emerged early in life, consistent with a 
developmentally regulated mechanism. And third, salience network 
expansion was driven by spatially organized border shifts, which are 
known to be heritable19,93 and which tended to encroach on neighbour-
ing networks in specific directions, expanding anteriorly and dispro-
portionately targeting higher-order heteromodal association cortex 
although sparing unimodal sensorimotor areas.

Trait versus state effects in depression
Our findings may also open new avenues to addressing two fundamen-
tal challenges to using insights from clinical neuroimaging research 
to rethink our approach to diagnosing and treating depression. First, 
as noted above, MRI studies spanning two decades have identified 
anatomical and functional connectivity alterations that are robust and 
reproducible in large-scale meta-analyses but are highly variable across 
subjects with modest effect sizes (typically Cohen’s d = 0.10–0.35), 
which complicates effects to leverage these effects for clinical pur-
poses. By contrast, salience network expansion was observed in most 
individuals with depression in our sample, readily apparent on visual 
inspection and associated with medium to large effect sizes (Cohen’s d =  
0.77–1.99). This effect was detected without corrections for site- or 
scanner-induced biases—which can be a significant confound for mul-
tisite neuroimaging data.

Biomarkers in several areas of medicine come in different forms, 
some of which are sensitive to current symptoms, whereas others are 
stable trait-like markers of disease or a marker of risk for developing 
symptoms. Our study was not designed to comprehensively validate a 
neuroimaging biomarker for depression and future work will be needed 
to assess the specificity of our findings with respect to other forms of 
psychopathology or evaluate its potential clinical utility. A preliminary 
analysis indicated that the salience network is also larger than normal 
in two individuals with bipolar II disorder but not autism spectrum 
disorder or obsessive compulsive disorder (Supplementary Fig. 11), 
which might reflect common deficits in behavioural domains, such as 
reward processing94, that are also linked to salience network function. 
However, our results do indicate that salience network expansion has 
the potential to help predict susceptibility to depression symptoms 
and could have important implications for designing therapeutic neu-
romodulation interventions, which could have widely varying effects 
due to individual differences in network topology95,96. Another caveat 
to keep in mind is that precise and reliable mapping of the salience 
network and consistent detection of salience network expansion in 
individuals with depression may require 1.5–2 h of high-quality fMRI 
data per subject (Supplementary Fig. 12), which may be an obstacle for 
retrospective analysis of traditional fMRI datasets not optimized for 
precision functional mapping at the individual level. It is also notewor-
thy that the brain network that we and others3,41,45,46 have referred to 
as the salience network is sometimes called other names (Control C in 
ref. 97) or combined with the parietal memory network98, whereas the 
brain network we refer to as cingulo-opercular/action-mode network41 
is sometimes called the salience/ventral attention network97 (Supple-
mentary Fig. 13). Developing a standardized functional brain network 
nomenclature99 will improve the interpretability of insights gleaned 
from precision functional mapping such as in the present study.

Finally, our study provides proof-of-principle data to support the 
use of precision functional mapping and deep, longitudinal sampling 
for understanding cause and effect in clinical neuroimaging studies of 

depression. Our analyses show stable, trait-like differences in salience 
network topology that are not only associated with depression but also 
emerge early in life in children with no history of depression and predict 
the subsequent emergence of depressive symptoms in adolescence. 
At the same time, they show how changes in functional connectivity 
strength between specific salience network nodes track the emer-
gence and remission of dysfunction in specific symptom domains in 
individuals over time and, in at least one individual, predict the future 
emergence of anhedonia symptoms at least 1 week before they occur. In 
this way, they show how dense sampling and longitudinal designs will 
open new avenues for understanding cause and effect and for design-
ing personalized, prophylactic treatments.
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Methods

Datasets
The datasets used in this paper are described briefly below, with more 
demographic and clinical information provided in the Supplemen-
tary Information. No statistical tests were used to predetermine the 
sample sizes. Overall, the depression sample collectively consisted 
of 141 individuals (mean age 40.71 ± 13.82 years, 56.7% female) with 
a diagnosis of major depression (based on DSM-IV-TR criteria and 
confirmed by the Mini-International Neuropsychiatric Interview 
administered by a trained clinician) drawn from five sources—SIMD, 
mean age 29.47 ± 8.28 years, 3 female (F)/3 male (M), Weill Cornell 
rTMS 1 (conventional 6-week rTMS, mean age 40.89 ± 12.73 years, 
27 F/21 M), Weill Cornell rTMS 2 (accelerated, 1-week rTMS, mean age 
40.89 ± 12.73 years, 21 F/24 M), Stanford University rTMS (conventional 
6-week rTMS, mean age 38.09 ± 12.77 years, 29 F/13 M) and Weill Cornell 
late-onset depression datasets (mean age 66.60 ± 5.31 years, 5 F/0 M). 
The healthy control sample collectively consisted of 37 healthy adults 
(mean age 31.72 ± 7.08 years, 11 F) drawn from six sources—the Weill  
Cornell multi-echo (mean age 33.42 ± 9.10 years, 0 F/7 M)18,41, MyCon-
nectome (a single 45-year-old male)12, Midnight Scan Club (MSC; mean 
age 29.1 ± 3.3 years, 5 F/5 M)3, cast-induced plasticity (a single 27-year-old 
male)100, natural scenes dataset (NSD; mean age 26.50 ± 4.24 years, 
6 F/2 M)101 and Eskalibur datasets (mean age 31.4 ± 5.4 years, 5 F/5 M)102. 
We note that the MSC, MyConnectome and cast-induced plasticity 
study were obtained online (https://openneuro.org/) in a preprocessed, 
fully denoised and surface-registered format, and no further preproc-
essing or denoising was performed for the present study.

MRI acquisition
Serial imaging of major depression dataset. Data were acquired on 
a Siemens Magnetom Prisma 3 T scanner at the Citigroup Biomedi-
cal Imaging Center of Weill Cornell medical campus using a Siemens 
32-channel head coil. Two multi-echo, multi-band resting-state fMRI 
scans were collected using a T2*-weighted echo-planar sequence cover-
ing the full brain (TR 1,355 ms; TE1 13.40 ms, TE2 31.11 ms, TE3 48.82 ms, 
TE4 66.53 ms and TE5 84.24 ms; FOV 216 mm; flip angle 68° (the Ernst 
angle for grey matter assuming a T1 value of 1,400 ms); 2.4 mm isotropic 
voxels; 72 slices; AP phase encoding direction; in-plane acceleration fac-
tor 2; and multi-band acceleration factor 6) with 640 volumes acquired 
per scan for a total acquisition time of 14 min and 27 s. Spin echo EPI  
images with opposite phase encoding directions (AP and PA) but iden-
tical geometrical parameters and echo spacing were acquired before 
each resting-state scan. Multi-echo T1-weighted (TR/TI 2,500/1,000 ms; 
TE1 1.7 ms, TE2 3.6 ms, TE3 5.5 ms and TE4 7.4 ms; FOV 256 mm; flip angle 
8° and 208 sagittal slices with a 0.8 mm slice thickness) and T2-weighted 
anatomical images (TR 3,200 ms; TE 563 ms; FOV 256; flip angle 8° and 
208 sagittal slices with a 0.8 mm slice thickness) were acquired at the 
end of each session.

Weill Cornell rTMS 1 and 2 datasets. MRI data were acquired on a Sie-
mens Magnetom Prisma 3 T machine at the Citigroup Biomedical Imag-
ing Center of Weill Cornell medical campus using a Siemens 32-channel 
head coil. Two multi-echo, multi-band resting-state fMRI scans were 
collected at each study visit using a T2*-weighted echo-planar sequence 
covering the full brain (TR 1,300 ms; TE1 12.60 ms, TE2 29.51 ms, TE3 
46.42 ms and TE4 63.33 ms; FOV 216 mm; flip angle 67° (the Ernst angle 
for grey matter assuming a T1 value of 1,400 ms); 2.5 mm isotropic voxels; 
60 slices; AP phase encoding direction; in-plane acceleration factor 2;  
and multi-band acceleration factor 4) with 650 volumes acquired per 
scan for a total acquisition time of 14 min and 5 s. Spin echo EPI images 
with opposite phase encoding directions (AP and PA) but identical 
geometrical parameters and echo spacing were acquired before each 
resting-state scan. Multi-echo T1-weighted (TR/TI 2,500/1,000 ms; TE1 
1.7 ms, TE2 3.6 ms, TE3 5.5 ms and TE4 7.4 ms; FOV 256 mm; flip angle 8° 

and 208 sagittal slices with a 0.8 mm slice thickness) and T2-weighted 
anatomical images (TR 3,200 ms; TE 563 ms; FOV 256 mm; flip angle 
8° and 208 sagittal slices with a 0.8 mm slice thickness) were acquired 
at the end of each session.

Stanford University rTMS dataset. MRI data were acquired on a GE 
SIGNA 3 T machine at the Center for Neurobiological Imaging on Stan-
ford University campus using a Nova Medical 32-channel head coil. 
Four multi-echo, multi-band resting-state fMRI scans were collected 
using a T2*-weighted echo-planar sequence covering the full brain  
(TR 1,330 ms; TE1 13.7 ms, TE2, 31.60 ms, TE3 49.50 ms and TE4 67.40 ms; 
flip angle 67° (the Ernst angle for grey matter assuming a T1 value of 
1,400 ms); 3 mm isotropic voxels; 52 slices; AP phase encoding direction; 
in-plane acceleration factor 2; and multi-band acceleration factor 4)  
with 338 volumes acquired per scan for a total acquisition time of 
7 min and 30 s. Spin echo EPI images with opposite phase encoding 
directions (AP and PA) but identical geometrical parameters and echo 
spacing were acquired before each resting-state scan. T1-weighted 
and T2-weighted anatomical images were acquired at the end of each 
session.

Weill Cornell late-onset depression dataset. MRI data were  
acquired on a Siemens Magnetom Prisma 3 T machine at the Citigroup 
Biomedical Imaging Center of Weill Cornell medical campus using  
a Siemens 32-channel head coil. Two multi-echo, multi-band 
resting-state fMRI scans were collected at each study visit using 
a T2*-weighted echo-planar sequence covering the full brain (TR 
1,300 ms; TE1 12.60 ms, TE2 29.51 ms, TE3 46.42 ms and TE4 63.33 ms; 
FOV 216 mm; flip angle 67° (the Ernst angle for grey matter assuming 
a T1 value of 1,400 ms); 2.5 mm isotropic voxels; 60 slices; AP phase 
encoding direction; in-plane acceleration factor 2; and multi-band 
acceleration factor 4) with 480 volumes acquired per scan for a total 
acquisition time of 10 min and 38 s. Spin echo EPI images with oppo-
site phase encoding directions (AP and PA) but identical geometrical 
parameters and echo spacing were acquired before each resting-state 
scan. Multi-echo T1-weighted (TR/TI 2,500/1,000 ms; TE1 1.7 ms, TE2 
3.6 ms, TE3 5.5 ms and TE4 7.4 ms; FOV 256 mm; flip angle 8° and 208 
sagittal slices with a 0.8 mm slice thickness) and T2-weighted anatomi-
cal images (TR 3,200 ms; TE 563 ms; FOV 256 mm; flip angle 8° and 208 
sagittal slices with a 0.8 mm slice thickness) were acquired at the end of  
each session.

Anatomical preprocessing and cortical surface generation
Anatomical data were preprocessed and cortical surfaces generated 
using the Human Connectome Project (HCP) PreFreeSurfer, FreeSurfer 
and PostFreeSurfer pipelines (v.4.3).

Multi-echo fMRI preprocessing
Preprocessing of multi-echo data minimized spatial interpolation and 
volumetric smoothing while preserving the alignment of echoes. The 
single-band reference (SBR) images (one per echo) for each scan were 
averaged. The resultant average SBR images were aligned, averaged, 
co-registered to the ACPC-aligned T1-weighted anatomical image and 
simultaneously corrected for spatial distortions using FSL topup and 
epi_reg programs. Freesurfer bbregister algorithm was used to refine this 
co-registration. For each scan, echoes were combined at each time point 
and a unique 6 DOF registration (one per volume) to the average SBR  
image was estimated using FSL MCFLIRT tool, using a four-stage (sinc) 
optimization. All of these steps (co-registration to the average SBR 
image, ACPC alignment and correcting for spatial distortions) were 
concatenated using FSL convertwarp tool and applied as a single 
spline warp to individual volumes of each echo after correcting for 
slice time differences using FSL slicetimer program. The functional 
images underwent a brain extraction using the co-registered brain 
extracted T1-weighted anatomical image as a mask and corrected for 
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signal intensity inhomogeneities using ANT N4BiasFieldCorrection 
tool. All denoising was performed on preprocessed, ACPC-aligned 
images.

Multi-echo fMRI denoising
Preprocessed multi-echo data were submitted to multi-echo ICA 
(ME-ICA103), which is designed to isolate spatially structured T2*- 
dependent (neurobiological; BOLD-like) and S0-dependent 
(non-neurobiological; not BOLD-like) signals and implemented using 
the tedana.py workflow104. In short, the preprocessed, ACPC-aligned 
echoes were first combined according to the average rate of T2* decay 
at each voxel across all time points by fitting the monoexponential 
decay, S(t) = S0e−t/T2*. From these T2* values, an optimally combined 
multi-echo (OC-ME) time series was obtained by combining echoes 
using a weighted average (WTE = TE × e−TE/T2*). The covariance structure 
of all voxel time courses was used to identify main signals in the OC-ME 
time series using principal component and independent component 
analysis. Components were classified as either T2*-dependent (and 
retained) or S0-dependent (and discarded), primarily according to their 
decay properties across echoes. All component classifications were 
manually reviewed by C.J.L. and revised when necessary following the 
criteria described in ref. 105. Mean grey matter time-series regression 
was performed to remove spatially diffuse noise. Temporal masks were 
generated for censoring high-motion time points using a framewise 
displacement threshold of 0.3 mm and a backward difference of two 
TRs, for an effective sampling rate comparable to historical framewise 
displacement measurements (approximately 2–4 s). Before the frame-
wise displacement calculation, head realignment parameters were 
filtered using a stopband Butterworth filter (0.2–0.35 Hz) to attenuate 
the influence of respiration106 on motion parameters.

Single-echo fMRI denoising
The following denoising procedures were applied to the NSD and ABCD 
datasets. The NSD dataset was obtained in an already preprocessed (but 
not yet denoised) format. For the ABCD data, Fast Track (unprocessed) 
neuroimaging data were obtained by means of NDA command line 
utilities (https://github.com/NDAR/nda-tools) and subjected to the 
preprocessing steps used for multi-echo fMRI data (omitting steps 
involving combination of echoes). Preprocessed single-echo data were 
then submitted to ICA-AROMA. All component classifications were 
manually reviewed by C.J.L. and revised when necessary following 
the criteria described in ref. 105. Mean grey matter time-series regres-
sion was performed to remove spatially diffuse noise. Temporal masks 
were generated for censoring high-motion time points, as done for the 
multi-echo fMRI datasets.

Surface processing and CIFTI generation of fMRI data
The denoised fMRI time series was mapped to the individual’s fsLR 32k 
midthickness surfaces with native cortical geometry preserved (using 
the -ribbon-constrained method), combined into the connectivity 
informatics technology initiative (CIFTI) format and spatially smoothed 
with geodesic (for surface data) and Euclidean (for volumetric data) 
Gaussian kernels (σ = 2.55 mm) using Connectome Workbench com-
mand line utilities107. This yielded time courses representative of the 
entire cortical surface, subcortex (accumbens, amygdala, caudate, 
hippocampus, pallidum, putamen, thalamus and brainstem) and 
cerebellum but excluding non-grey matter tissue. Spurious coupling 
between subcortical voxels and adjacent cortical tissue was mitigated 
by regressing the average time series of cortical tissue of less than 
20 mm in Euclidean space from a subcortical voxel.

Precision mapping of functional brain networks in individuals
A functional connectivity matrix summarizing the correlation between 
the time courses of all cortical vertices and subcortical voxels across 
all study visits was constructed. Correlations between nodes 10 mm 

or less apart (geodesic and Euclidean space used for cortico–cortical 
and subcortical–cortical distance, respectively) were set to zero. Cor-
relations between voxels belonging to subcortical structures were set 
to zero. Functional connectivity matrices were thresholded in such  
a way that they retained at least the strongest X% correlations (0.01%, 
0.02%, 0.05%, 0.1%, 0.2%, 0.5%, 1%, 2% and 5%) to each vertex and voxel 
and were used as inputs for the InfoMap community detection algo-
rithm108, one of the most widely used approaches for delineating func-
tional brain networks and their boundaries in individuals2,3,12,18,41,45. Free 
parameters (for example, the number of algorithm repetitions) for the 
Infomap algorithm were fixed across subjects. The total number of 
communities identified by Infomap is controlled in part by how many 
connections are retained in the functional connectivity matrix after 
thresholding. The optimal scale for further analysis across individuals 
was defined as the graph threshold producing the best size-weighted 
average homogeneity relative to the median of the size-weighted aver-
age homogeneity calculated from randomly rotated networks, as done 
in ref. 109. Size-weighted average homogeneity was maximized rela-
tive to randomly rotated communities at the 0.1% graph density and 
resulted in 89.13 ± 8.04 communities on average across individuals.

Each Infomap community was algorithmically assigned to one 
of 20 possible functional network identities (Default-Parietal, 
Default-Anterolateral, Default-Dorsolateral, Default-Retrosplenial, 
Visual-Lateral, Visual-Stream, Visual-V1, Visual-V5, Frontoparietal, 
Dorsal Attention, Premotor/Dorsal Attention II, Language, Sali-
ence, Cingulo-opercular/Action-mode41, Parietal memory, Auditory, 
Somatomotor-Hand, Somatomotor-Face, Somatomotor-Foot, Audi-
tory or Somato-Cognitive-Action) primarily according their functional 
connectivity and spatial locations relative to a specified set of priors. 
All algorithmic assignments were manually reviewed by C.J.L. and 
manually adjusted in the case of an ambiguous assignment. See Sup-
plementary Fig. 14 for more details about algorithmic assignments and 
Supplementary Figs. 15 and 16 for the visualizations of the functional 
network priors used in this study.

Functional brain networks were also mapped brain-wide using the 
multiplex version of the InfoMap community detection algorithm110. In 
a multiplex network, physical nodes (brain regions) can exist in several 
layers (study visits). A temporal network (node × node × study visit) 
summarizing the correlation between the time courses of all cortical 
vertices and subcortical voxels across study visits was constructed for 
each patient. Correlations between nodes less than 10 mm apart (geo-
desic and Euclidean space used for cortico–cortical and subcortical– 
cortical distance, respectively) were set to zero. Correlations between 
voxels belonging to subcortical structures were set to zero. Links 
between layers were generated automatically using neighbourhood 
flow coupling. The temporal distance between layers was constrained to 
1 using the --multilayer-relax-limit option to encode the temporal order 
of study visits. Multiplex functional network parcellations were used 
for the analyses performed in the section ‘Salience network topology 
is trait-like’ and Fig. 3a–e.

Calculating functional network size and spatial locations in 
individuals
We first measured the surface area (in mm2) that each vertex in the 
individual’s midthickness surface is responsible for (wb_command 
--surface-vertex-areas). Next, we calculated the relative contribution 
(size) of each functional network to the total cortical surface area by 
taking the total surface area of all network vertices in relation to the 
total cortical surface area. In the striatum, in which each voxel rep-
resents the same amount of tissue, the relative contribution of each 
functional network to the total striatal volume was calculated by taking 
the total number of network voxels in relation to the total striatal voxels. 
The statistical significances of group differences in network size were 
evaluated using permutation tests and independent sample t-tests 
(the latter implemented using Matlab ttest2.m function). Effect size 
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(Cohen’s d) was calculated as the difference in group means divided 
by pooled standard deviation. Assumptions about equal variance were 
adjusted when appropriate (based on two-sample F-tests performed 
using Matlab vartest2.m function). The relative difference between 
groups was calculated as the absolute difference divided by network 
size in healthy controls. Density maps were created by calculating the 
percentage of individuals with salience network representation at 
each cortical vertex or striatum voxel. These procedures collectively 
correspond to the analyses performed in the section ‘Connectivity 
state predicts anhedonia’ and Fig. 1c–e.

Classification analysis
Functional network size (the percentage of total cortical surface area 
occupied by each network, 20 networks/features total) were used as 
predictive features in a support vector machine classifier to distin-
guish individuals with depression and healthy controls. The model 
was trained using repeated (100 iterations) nested split-half (twofold) 
cross-validation with a grid search optimization strategy for hyperpa-
rameter tuning (box constraint and kernel size). The synthetic minority 
oversampling technique (SMOTE111) was used to prevent classifica-
tion bias in favour of the majority class and was performed on training 
data only to prevent data leakage. Classification accuracy was calcu-
lated as the percentage of correct predictions and statistical signifi-
cance assessed using permutation tests (shuffled diagnostic labels 
and 1,000 iterations). A confusion matrix was created using Matlab 
confmat.m function. Feature importance was evaluated by iteratively 
omitting each functional network and evaluating the resulting loss in 
accuracy. These procedures collectively are related to the analyses 
performed in the section ‘Salience network expansion in depression’  
and Fig. 1f–i.

Evaluating how salience network expansion displaces other 
functional systems
The parts of each depressed individual’s salience network map that 
did and did not overlap with the salience network in the group-average 
healthy control map were operationalized as ‘non-encroaching’ and 
‘encroaching’, respectively. The group-average healthy control map 
was obtained by calculating the mode assignment across healthy con-
trols at each point in the brain. Encroaching clusters were identified 
(wb_command -cifti-find-clusters) and were classified as border shifts 
if any part of the cluster was within 3.5 mm (in geodesic space) of a sali-
ence network vertex in the group-average healthy control map, and as 
ectopic intrusions if they did not, as done in ref. 41. An encroachment 
profile was calculated as the relative contribution of each functional 
network to the total surface area of the encroaching portion of the sali-
ence network. Individuals were clustered on the basis of the similarity 
of their encroachment profiles using the Louvain method (commu-
nity_louvain.m function from the Brain Connectivity Toolbox112). These 
procedures correspond to the analyses performed in the section ‘Three 
salience network expansion modes’ and Fig. 2a–g.

Assessing the stability of salience network topography across 
time
The multiplex versions of each individual’s salience network were 
used to assess the extent to which network topography (size) varied 
across study time points in highly sampled individuals with and without 
depression. Variability in salience network size was correlated with 
the overall severity of depressive symptoms (HDRS6) using Matlab 
corr.m function. In the replication samples (Weill Cornell Medicine 
rTMS 1, Weill Cornell Medicine rTMS 2 and Stanford University rTMS 
samples), we assessed pre-to-post change in salience network topog-
raphy using paired two-tailed paired sample t-tests by means of Matlab 
ttest.m function. Data were binned according to treatment duration 
(conventional 6-week rTMS or accelerated 1-week rTMS). The number 
of depressive episodes in each individual’s lifetime was inferred from 

their Mini-International Neuropsychiatric Interview. These proce-
dures collectively correspond to the analyses performed in the section  
‘Salience network topology is trait-like’ and Fig. 3.

Evaluating salience network topography early in life before 
symptom onset
We used the ABCD dataset (release 5.0) to test if atypical salience net-
work topology precedes the onset of depression symptoms. Symp-
toms of depression in the ABCD study were operationalized using the 
ASEBA DSM-oriented scale for depression (mh_p_cbcl.csv) from the 
ABCD parent child behaviour checklist (CBCL). After excluding sub-
jects with missing behavioural data or those with MRI data flagged 
internally ABCD for data quality issues, we identified n = 58 subjects 
(37 F) meeting criteria for onset of clinical depression symptoms at the 
3-year follow-up (t-score 70 or more at or after the 3-year follow-up and 
t-scores below 65 at the previous study visits). One participant’s data 
were not accessible on Fast Track, resulting in n = 57 total. An equal 
number of subjects with no clinically significant depression symptoms 
at any study time point (t-scores more than 65 at all study time points) 
were randomly selected as a control sample. The statistical significance 
of group differences in salience network size were evaluated using 
permutation tests and independent sample t-tests (the latter imple-
mented using Matlab ttest2.m function). Assumptions about equal 
variance were adjusted when appropriate (based on two-sample F-tests 
performed using Matlab vartest2.m function). These procedures col-
lectively correspond to the analyses performed in the section ‘Salience 
network topology is trait-like’ and Fig. 3g.

Longitudinal analyses relating changes in connectivity with 
symptom severity
Composite measures of anhedonia- and anxiety-related symptoms were 
obtained instructing three clinicians (I.E., J.D.P. and N.S.) to quantify 
(on a scale of 0–3; 0, not at all; 1, somewhat; 2, largely; 3, very strongly) 
the extent to each item from the battery of clinical scales administered 
to the SIMD subjects reflects anhedonia- or anxiety-related symptoms. 
Items assigned a score of 1 or greater by all three clinicians were included 
in the composite measures (Supplementary Fig. 9). For each subject, 
separately, the consensus items were mininum–maximum normalized, 
adjusted for valence (so that higher scores reflect more severe symp-
toms across all items) and then subjected to a principal component 
analysis to extract a time course (PC1) of anhedonia or anxiety severity 
across study visits. To validate this approach, we quantified the similar-
ity to validated measures of anhedonia and anxiety using independent 
data and observed good correspondence (Pearson correlations more 
than 0.4). Functional connectivity strength between all pairs of corti-
cal (anterior cingulate, lateral prefrontal and anterior insula cortex) 
and striatal (nucleus accumbens, caudate and putamen) nodes of the 
salience network was calculated for each study visit, separately, and 
correlated with the anhedonia or anxiety PC1. This analysis was con-
strained to the three major cortical and striatal nodes of the salience 
network in part to reduce the likelihood of false positives. Correlations 
not exceeding chance (based on null distribution of correlation coef-
ficients obtained using rotated clinical data) were set to zero. Circular 
permutation tests (using Matlab circshift.m function) were used to 
preserve temporal autocorrelation. Cross-correlation analyses were 
performed using Matlab crosscorr.m function (with NumLags set to 2).  
For the cross-sectional analysis, the total Snaith–Hamilton pleasure 
scale (SHAPS113) score was calculated using baseline clinical data. These 
procedures collectively correspond to the analyses performed in the 
section ‘Connectivity state predicts anhedonia’ and Fig. 4.

Clinical trial information
A portion of the data used in this report was obtained from the 
biomarker-guided rTMS for treatment-resistant depression study 
(NCT04041479), randomized controlled trial of conventional versus 
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theta burst rTMS (HFL versus TBS) (NCT01887782) and accelerated 
TMS for depression and obsessive compulsive disorder studies 
(NCT04982757).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
An example subject (HC-1) from the Weill Cornell Multi-echo dataset 
is available in an OpenNeuro repository at https://openneuro.org/
datasets/ds005118/versions/1.0.0. Other data from the Weill Cornell 
Multi-echo and Eskalibur datasets are available on request from the 
corresponding authors of their respective publications, pending 
institutional approval of a data-sharing agreement in compliance 
with their respective IRB protocols. Data from the MyConnectome 
dataset are available on OpenNeuro repository at https://openneuro.
org/datasets/ds000031/versions/2.0.2. Data from the MSC dataset are 
available in the OpenNeuro repository at https://openneuro.org/data-
sets/ds000224/versions/1.0.4. Data from the cast-induced plasticity 
dataset is available in the OpenNeuro repository at https://openneuro.
org/datasets/ds002766/versions/3.0.0. Data from the natural scenes 
dataset are available from Amazon Web Services at https://registry.
opendata.aws/nsd/. The ABCD data used in this report are from Annual 
Release (5.0). Data from individual subjects with depression are a part 
of ongoing clinical trials and not publicly available now but will be made 
available after completion of the trials through the NIMH Data Archive 
and other clinical data repositories.

Code availability
Code for preprocessing multi-echo fMRI data is maintained in an 
online repository (https://github.com/cjl2007/Liston-Laboratory- 
MultiEchofMRI-Pipeline). Code for performing the precision functional 
mapping and network size calculations described in this manuscript 
are maintained in an online repository (https://github.com/cjl2007/
PFM-Depression). Software packages incorporated into the above 
pipelines for data analysis included: Matlab R2019a, https://www.math-
works.com/; Connectome Workbench 1.4.2, http://www.humancon-
nectome.org/software/connectome-workbench.html; Freesurfer v6, 
https://surfer.nmr.mgh.harvard.edu/; FSL 6.0, https://fsl.fmrib.ox.ac.
uk/fsl/fslwiki; and Infomap, https://www.mapequation.org.
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Extended Data Fig. 1 | Serial Imaging of Major Depression. a, The SIMD 
project involved repeated multi-echo resting-state fMRI scans (ME-rsfMRI) and 
clinical assessments of six individuals with depression over long periods of 
time. Precision functional mapping was then used to 1) investigate differences 
in functional network topology, specifically size relative to healthy controls, 
and 2) identify which atypical aspects of network topology or connectivity are 
stable versus sensitive to mood state within individuals as the severity of their 
symptoms fluctuated, and they cycled in and out of depressive episodes. 

Images created with BioRender.com. b, The relative contribution (size) of each 
functional network to the total cortical surface area was obtained by taking the 
total surface area of all network vertices in relation to the total cortical surface 
area. This approach controls for fact that each cortical vertex represents a 
different amount of surface area (SA). In the striatum, where each voxel 
represents the same amount of tissue, the relative contribution of each 
functional network to the total striatal volume was calculated by taking the 
total number of network voxels in relation to the total striatal voxels.

http://BioRender.com


Extended Data Fig. 2 | Salience network expansion in depression remains 
statistically significant when controlling for sex ratio imbalance, and 
individual differences in head motion and age. a, Salience network size was 
regressed against sex (a variable of non-interest that differs between the two 
groups) and group comparisons were repeated using the residuals (e). The 
salience network was still significant larger in the Serial Imaging of Major 
Depression (SIMD; two-tailed independent sample t-test, P < 0.001, T = 7.02, and 
Cohen’s d = 2.09) and in all three replication samples (two-tailed independent 
sample t-tests, all P < 0.001, T’s > 3.00, and Cohen’s d > 0.6) relative to healthy 

controls. b-c, This analysis was repeated when also including head motion 
(operationalized as the % of volume retained after motion censoring) and age 
(in years) as additional covariates. In all of these models, the salience network 
remained significantly larger in the SIMD (two-tailed, independent sample 
t-test, P < 0.001, T = 6.75, and Cohen’s d = 2.06) and in all three replication 
samples (two-tailed independent sample t-tests, all P ’s ≤ 0.002, T’s > 2.2, and 
Cohen’s d > 0.56) relative to healthy controls. All error bars represent standard 
deviation.



Article

Extended Data Fig. 3 | Expansion of the salience network accompanied by 
contraction of neighboring functional systems. a-b, The salience (SAL, 
black), default mode (DMN, red), frontoparietal (FP, yellow), and cingulo- 
opercular (CO, purple) networks in a group-average map of healthy controls 
versus 3 representative individuals with depression. Expansion of the salience 

network in cortex (see Fig. 1c) was accompanied in some cases by contraction 
of other functional networks — most notably the cingulo-opercular network 
(two-tailed permutation test, *P = 0.04, uncorrected, Z-score = 2.09, n = 43), but 
this effect was not observed in any of the replication samples. All error bars 
represent standard deviation.



Extended Data Fig. 4 | Evidence of salience network expansion in large  
n group-average datasets. a, Salience network mapped using two large  
n group-average data from previous studies of healthy controls occupy 1.27% 
and 1.98% of cortex. The group-average HCP functional connectivity matrix 
(which only includes subjects with resting-state fMRI data reconstructed with 
the r227 recon algorithm) was obtained from the S1200 release and subjected 
to the same precision functional mapping procedures applied to individual 
subjects in the main text. The WU120 salience network map was obtained 

online (https://balsa.wustl.edu/jNXKl). b, Salience network mapped using 
large n group-average data and previous studies of depression occupies 
between 3.28% (mode assignment of all individuals with depression in current 
study) and 3.43% of total cortical surface area. Group-averaged functional 
connectivity was calculated in the THREE-D sample using group-level PCA 
(MELODIC Incremental Group-PCA, MIGP), and the resultant group-average  
FC matrix was subjected to the same precision functional mapping procedures 
applied to individual subjects in the main text.

https://balsa.wustl.edu/jNXKl


Article

Extended Data Fig. 5 | Within-person stability of salience network topology 
and connectivity. a-b, Split-half reliability testing of salience network 
topology and functional connectivity in the least (SIMD-2, 58 min of fMRI 

scanning total) and most (SIMD-4, 29.96 hrs. of fMRI scanning total) sampled 
individuals with depression from the Serial Imaging of Major Depression 
(SIMD) dataset.



Extended Data Fig. 6 | See next page for caption.



Article
Extended Data Fig. 6 | Salience network expansion in depression 
disproportionately affects heteromodal systems neighboring it, not 
unimodal sensorimotor networks. a, On average across subjects, the majority 
of salience network expansion in depression affected either the Default-
parietal, Frontoparietal, or Cingulo-opercular networks. In contrast, Salience 
network encroachment upon unimodal sensorimotor networks (for example, 
the visual, auditory, somatomotor subnetworks) was absent. b, The average 
map of Salience network encroachment was compared to 73 canonical maps of 
the brain’s functional and structural architecture (“annotations”) obtained 
from the neuromaps toolbox53 to help identify possible biological mechanisms 

for its expansion in individuals with depression. These maps are derived from  
a variety of independent molecular, microstructural, electrophysiological, 
developmental, and functional datasets. Spatial similarity was quantified using 
Spearman rank correlation, and statistical significance evaluated via spatial 
autocorrelation preserving null models. We observed multiple significant 
associations — including with principal gradients of functional connectivity 
and gene expression, and the spatial distribution of neurotransmitter receptors 
(μ-opioid, histamine H3 receptors), intracortical myelin, and individual 
variability in functional connectivity.



Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Salience network expansion in depression is associated 
with stable patterns of atypical functional connectivity. a-b, Evaluating 
functional connectivity strength between encroaching and non-encroaching 
vertices of the Salience network relative to runner-up network assignments 
network. Strength of functional connectivity between encroaching nodes of 
the salience network and the rest of the Salience network, and the functional 
networks that typically occupy that space in healthy controls (most often 
Default, Frontoparietal, or Cingulo-opercular). This analysis was performed 
using split halves of each individual’s resting-state fMRI dataset to evaluate the 

stability of the Salience network assignment associated with the “encroaching” 
vertices relative to the runner-up assignments. Functional connectivity 
between encroaching Salience network vertices and the rest of the Salience 
network was on average 59% stronger than with the runner-up network (two-
tailed independent sample t-test, all P ’s < 0.001, Bonferroni correction, n = 141). 
This was the case when using either the first (a) or second (b) half of each 
individual’s concatenated resting-state fMRI dataset, indicating good stability. 
Error bars represent standard deviation.



Extended Data Fig. 8 | Increased cortical representation of salience 
network in adults with late-onset depression. Five individuals (mean age = 
66.60 ± 5.31 years, 5 F) with a diagnosis of major depression and met criteria for 
late-onset depression (LOD, defined here as onset of first depressive episode at 
or after the age of 60) underwent repeated clinical assessments and fMRI scans 
(6 × 10.64 min multi-echo resting-state fMRI scans, 63.84 min total per-subject) 
before, during, and after a brief evidence-based psychotherapy. Salience 
network was larger in these individuals with LOD relative to healthy controls 
(two-tailed permutation test, *P = 0.009, uncorrected, Z-score = 2.90). The 
n = 37 healthy control data are also shown in the main text Fig. 1c. Error bars 
represent standard deviation.



Article

Extended Data Fig. 9 | Dense-sampling of depressive symptoms and 
functional connectivity in a second individual with depression. a, A heat 
map summarizes fluctuations in individual items selected from a variety of 
clinical interviews and self-report scales related to anhedonia in an example 
individual (SIMD-6). Clinical data was resampled (using shape- preserving 
piecewise cubic interpolation) to days for visualization purposes (black and 
red dots above heat map mark the dates of study visits and ECT treatments 

received unrelated to the present study, respectively). b, Functional 
connectivity of salience network voxels in nucleus accumbens (NAc) when 
symptoms of anhedonia are low (study visits in the bottom quartile) and high 
(study visits in top quartile). c, Bootstrap resampling (iteratively selecting  
50% of all time points at random, and logging correlation between nucleus 
accumbens ←→ anterior cingulate FC and anhedonia) indicated good stability.



Extended Data Fig. 10 | Long term assessment of anhedonia and anxiety 
related symptoms in two deeply-sampled individuals with major 
depression. a-b, Heat map summarizes fluctuations in individual items related 
to anxiety (blue, 27 items total) that were selected from a variety of clinical 
interviews and self-report scales completed by two deeply-sampled individuals 
with depression (a, SIMD-4; b, SIMD-6). Head maps for anhedonia related items 
are shown in main text Fig. 4a and Extended Data Fig. 9a for SIMD-4 and 
SIMD-6, respectively. Clinical data was resampled (using shape-preserving 

piecewise cubic interpolation) to days for visualization purposes. The first 
principal component (PC1) of the anhedonia and anxiety measures were 
modestly correlated with one another within each individual over time 
(Pearson correlation, MDD04: r = 0.41, P < 0.001; MDD06: r = 0.45, P < 0.001), 
indicating that the severity of anxiety and anhedonia related symptoms can 
fluctuate independently of one another, but also that they both respond to 
global shifts in illness severity, which were primarily related to ECT in  SIMD-6).
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Statistics
For all statistical analyses, confirm that the following items are present inin the figure legend, table legend, main text, oror Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given asas a discrete number and unit ofof measurement

A statement onon whether measurements were taken from distinct samples oror whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- oror two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description ofof all covariates tested

A description ofof any assumptions oror corrections, such asas tests ofof normality and adjustment for multiple comparisons

A full description ofof the statistical parameters including central tendency (e.g. means) oror other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) oror associated estimates ofof uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees ofof freedom and P value noted
Give P values as exact values whenever suitable.

For Bayesian analysis, information onon the choice ofof priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification ofof the appropriate level for tests and full reporting ofof outcomes

Estimates ofof effect sizes (e.g. Cohen's d, Pearson's r),), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability ofof computer code

Data collection

Data analysis

For manuscripts utilizing custom algorithms oror software that are central toto the research but not yet described in published literature, software must bebe made available toto editors and
reviewers. WeWe strongly encourage code deposition inin a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Charles Lynch Ph.D.
Conor Liston M.D., Ph.D.

5/30/2024

NoNo software was used for data collection.

Code for preprocessing multi-echo fMRI data isis maintained inin anan online repository (https://github.com/cjl2007/Liston-Laboratory-
MultiEchofMRI-Pipeline).

Code for performing precision functional mapping and code specific toto the analyses performed inin this manuscript are maintained inin anan online
repository (https://github.com/cjl2007/PFM-Depression).

Software packages incorporated into the above pipelines for data analysis included: Matlab R2019a, https://www.mathworks.com/;
Connectome Workbench 1.4.2, http://www.humanconnectome.org/software/connectome-workbench.html; Freesurfer v6, https://
surfer.nmr.mgh.harvard.edu/; FSL 6.0, https://fsl.fmrib.ox.ac.uk/fsl/fslwiki; and Infomap v2.0.0, https://www.mapequation.org. Advanced
Normalization Tools (ANTS; v2.3.4).
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Research involving human participants, their data, or biological material
Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender

Reporting on race, ethnicity, or
other socially relevant groupings

Population characteristics

Recruitment

Data from the Weill Cornell Multi-echo and Eskalibur datasets are available on reasonable request from C.J.L, I.E., J.D.P, C.L., and S.M., C.C.

Data from the MyConnectome dataset is available in the openneuro repository at https://openneuro.org/datasets/ds000031/versions/2.0.2.

Data from the Midnight Scan Club dataset is available in the openneuro repository at https://openneuro.org/datasets/ds000224/versions/1.0.4. Data from the Cast-
induced plasticity dataset is available in the openneuro repository at https://openneuro.org/datasets/ds002766/versions/3.0.0.

Data from the Natural Scenes Dataset is available from Amazon Web Services (AWS) at https://registry.opendata.aws/nsd/.

The ABCD data used in this report are from Annual Release 5.0.

Data from individual subjects with depression are a part of ongoing clinical trials and not publicly available at this time.

Findings apply to all studied individuals and groups, regardless of sex.

Sex ratios:

Serial imaging of Major Depression Dataset: 3M, 3F

Weill Cornell Medicine rTMS 1 dataset: 21M, 27F

Weill Cornell Medicine rTMS 2 dataset: 24M, 21F

Stanford University rTMS dataset: 13M, 29 F

Weill Cornell Late-onset Depression dataset: 0M, 5F

Weill Cornell Multi-echo dataset: 7M, 0F

MyConnectome dataset: 1M, 0F

Midnight Scan Club: 5M, 5F

Cast-induced plasticity dataset: 1M, 0F

Natural Scenes Dataset: 2M, 6F

Eskalibur dataset: 5M, 5F

Sample selected from Adolescent Brain Cognitive Development study: 54M, 60F

No socially constructed or socially relevant categorization variables were used or are relevant for our manuscript.

Findings apply to all studied individuals and groups, regardless of age.

Age:

Serial imaging of Major Depression Dataset: mean age = 29.47 ± 8.28 years

Weill Cornell Medicine rTMS 1 dataset: mean age = 40.89 ± 12.73 years

Weill Cornell Medicine rTMS 2 dataset: mean age = 44.46 ± 15.38 years

Stanford University rTMS dataset: mean age = 38.09 ± 12.77 years

Weill Cornell Late-onset Depression dataset: mean age = 66.60 ± 5.31 years

Weill Cornell Multi-echo dataset: mean age = 33.42 ± 9 years

MyConnectome dataset: 45 years-old

Midnight Scan Club: mean age = 29.1 ± 3.3 years

Cast-induced plasticity dataset: 27 years-old

Natural Scenes Dataset: mean age = 26.50 ± 4.24 years

Eskalibur dataset: mean age = 31.4 ± 5.4 years

Adolescent Brain Cognitive Development dataset: 9.46 ± 0.50 years at baseline study visit

Serial imaging of Major Depression Dataset: Individuals with depression were recruited from the NYC metro area via flyers
and word of mouth.

Weill Cornell rTMS dataset: Individuals with depression were recruited from the NYC metro area via flyers and word of
mouth.

Stanford University rTMS dataset: Individuals with depression were recruited from the Bay area via flyers and word of mouth.
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Ethics oversight

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size

Data exclusions

Replication

Randomization

Blinding

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Weill Cornell Late-onset Depression dataset: Individuals with depression were recruited from the Bay area via flyers and word
of mouth.

Weill Cornell Multi-echo dataset: Healthy adult subjects were recruited from the Weill Cornell Medical School community via
word of mouth.

MyConnectome dataset: The subject in this dataset was also the principal investigator.

Midnight Scan Club: Healthy adult subjects were recruited from the Washington University community via flyers and word of
mouth.

Cast-induced plasticity dataset: Healthy adult subjects were recruited from the Washington University community via flyers
and word of mouth.

Natural Scenes Dataset: Participants were recruited through advertisements to the local community and were screened
based on ability to participate in a neuroimaging study.

Eskalibur dataset: Participants were recruited through advertisements to the local community.

Adolescent Brain Cognitive Development dataset: Participants were recruited from a nationally distributed set of 21 study
sites.

Serial imaging of Major Depression Dataset, Weill Cornell rTMS dataset, Stanford University rTMS dataset, Weill Cornell Late-
onset Depression dataset, and Weill Cornell Multi-echo dataset: The study was approved by the Weill Cornell Medicine
Institutional Review Board.

MyConnectome dataset: It was determined that this study did not meet requirements for human subjects research and thus
that Institutional Review Board (IRB) approval was not necessary. Subsequent data collection at Washington University was
collected under an approved IRB protocol.

Midnight Scan Club, Cast-induced plasticity dataset: These studies were approved by the Washington University School of
Medicine Human Studies Committee and Institutional Review Board.

Natural Scenes Dataset: Participants were recruited through advertisements to the local community and were screened
based on ability to participate in a neuroimaging study.

Eskalibur dataset: The study was approved by the local ethics committee.

Adolescent Brain Cognitive Development dataset: The ABCD Study obtained centralized institutional review board approval
from the university of California, San Diego, and each of the 21 study sites obtained local institutional review board approval.

This study collected large quantities of data (repeated fMRI and clinical assessments) in individual subjects, and the majority of our analyses
are conducted at the within-subject level. For these analyses, the relevant factor is having enough high quality data per-subject for reliable
and accurate inferences. We and other groups (i.e., Laumann et al., 2015, Gordon et al., 2017, Lynch et al., 2020) have shown that
approximately 30 minutes of resting-state fMRI data per-subject is necessary for reliable functional connectivity measurements, and we have
at least that much data for each subject in our study.

No subjects were excluded from analyses.

The main experimental findings (Figure 1c) were replicated (thrice) in held-out replication datasets, and in independent large n group-average
datasets (Extended Data Figure 4). Brain-behavior relationships observed in individual subjects studied longitudinally (e.g., Figure 3, Figure 4)
were replicated across multiple subjects.

Experimental groups consisted of whether or not individual subjects had a diagnosis of major depression. Therefore, randomization is not
possible.

No blinding was performed.
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Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Clinical data
Policy information about clinical studies
All manuscripts should comply with the ICMJEguidelines for publication of clinical research and a completedCONSORT checklist must be included with all submissions.

Clinical trial registration

Study protocol

Data collection

Outcomes

Magnetic resonance imaging

Experimental design

Design type

Design specifications

Behavioral performance measures

Acquisition
Imaging type(s)

Field strength

Sequence & imaging parameters

NCT04041479; NCT04982757

Study overview is available online (NCT04041479: https://clinicaltrials.gov/study/NCT04041479#study-overview; NCT04982757:
https://classic.clinicaltrials.gov/ct2/show/NCT04982757

NCT04041479: Data was collected at Weill Cornell Medicine and Stanford University starting on 9/17/2021. NCT04982757: Data was
collected at Weill Cornell Medicine starting on 7/29/2021. Data collection is ongoing as of 5/30/2024.

NCT04041479: Primary outcome is change in depression, as measured by the Hamilton Depression Rating Scale (HAMD17).
Secondary outcome is change in depression, as measured by the Quick Inventory of Depressive Symptomatology (QIDS). The trial is
ongoing, the trial's primary outcome measure was not analyzed in the present study.

NCT04982757: Primary outcome is percent change in Montgomery-Asberg Depression Rating Scale (MADRS) scores for participants
with treatment resistant depression [ Time Frame: Baseline to Treatment End: Day 5 or 10 (depending on number of 5-day treatment
courses administered) ]. The MADRS is a measure of depression symptoms and is scored on a scale of 0 to 60, with 0 being no
depressive symptoms and 60 being severe depressive symptoms. The secondary outcome measure is Percent Change in Quick
Inventory of Depressive Symptomatology (QIDS) scores for participants with OCD [ Time Frame: Baseline to Treatment End: Day 5 or
10 (depending on number of 5-day treatment courses administered) ]. The QIDS is a self-report measure of depression symptoms
and is scored on a scale of 0 to 27, with 0 being no depressive symptoms and 27 being severe depressive symptoms. The trial is
ongoing, the trial's primary outcome measure was not analyzed in the present study.

Resting-state fMRI

Resting-state fMRI: 47 to 1,792 minutes of data per-subject

Behavioral outputs were not recorded.

Structural, Functional.

3T, 7T

Serial Imaging of Major Depression dataset: MRI data were acquired on a Siemens Magnetom Prisma 3T scanner at the
Citigroup Biomedical Imaging Center of Weill Cornell's medical campus using a Siemens 32-channel head coil. Multi-
echo, multi-band resting-state fMRI scans were collected using a T2*-weighted echo-planar sequence covering the full
brain (TR: 1355 ms; TE1: 13.40 ms, TE2: 31.11 ms, TE3: 48.82 ms, TE4: 66.53 ms, and TE5: 84.24 ms; FOV: 216 mm; flip
angle: 68° (the Ernst angle for gray matter assuming a T1 value of 1400 ms); 2.4 mm isotropic voxels; 72 slices; AP phase
encoding direction; in-plane acceleration factor: 2; and multi-band acceleration factor: 6) with 640 volumes acquired
per scan for a total acquisition time of 14 minutes and 27 seconds. Spin echo EPI images with opposite phase encoding
directions (AP and PA) but identical geometrical parameters and echo spacing were acquired before each resting-state
scan. Multi-echo T1-weighted (TR/TI: 2500/1000 ms; TE1: 1.7 ms, TE2: 3.6 ms, TE3: 5.5 ms, TE4: 7.4 ms ; FOV: 256 mm;
flip angle: 8°, and 208 sagittal slices with a 0.8 mm slice thickness) and T2-weighted anatomical images (TR: 3200 ms; TE:
563 ms; FOV: 256; flip angle: 8°, and 208 sagittal slices with a 0.8 mm slice thickness) were also collected.

Weill Cornell rTMS dataset: MRI data were acquired on a Siemens Magnetom Prisma 3T machine at the Citigroup
Biomedical Imaging Center of Weill Cornell's medical campus using a Siemens 32-channel head coil. Multi-echo, multi-



5

n
atu

re
p

o
rtfo

lio
|

rep
o

rtin
g

su
m

m
ary

A
pril2023

Area of acquisition

Diffusion MRI Used Not used

Preprocessing

Preprocessing software

Normalization

Normalization template

Noise and artifact removal

band resting-state fMRI scans were collected at each study visit using a T2*-weighted echo-planar sequence covering
the full brain (TR: 1300 ms; TE1: 12.60 ms, TE2: 29.51 ms, TE3: 46.42 ms, and TE4: 63.33 ms; FOV: 216 mm; flip angle:
67° (the Ernst angle for gray matter assuming a T1 value of 1400 ms); 2.5 mm isotropic voxels; 60 slices; AP phase
encoding direction; in-plane acceleration factor: 2; and multi-band acceleration factor: 4) with 650 volumes acquired
per scan for a total acquisition time of 14 minutes and 5 seconds. Spin echo EPI images with opposite phase encoding
directions (AP and PA) but identical geometrical parameters and echo spacing were acquired before each resting-state
scan. Multi-echo T1-weighted (TR/TI: 2500/1000 ms; TE1: 1.7 ms, TE2: 3.6 ms, TE3: 5.5 ms, TE4: 7.4 ms ; FOV: 256; flip
angle: 8°, and 208 sagittal slices with a 0.8 mm slice thickness) and T2-weighted anatomical images (TR: 3200 ms; TE:
563 ms; FOV: 256; flip angle: 8°, and 208 sagittal slices with a 0.8 mm slice thickness) were also collected.

Stanford University rTMS dataset: MRI data were acquired on a GE SIGNA 3T machine at the Center for Neurobiological
Imaging on Stanford University’s campus using a Nova Medical 32-channel head coil. Multi-echo, multi-band resting-
state fMRI scans were collected using a T2*-weighted echo-planar sequence covering the full brain (TR: 1330 ms; TE1:
13.7 ms, TE2: 31.60 ms, TE3: 49.50 ms, and TE4: 67.40 ms; flip angle: 67° (the Ernst angle for gray matter assuming a T1
value of 1400 ms); 3 mm isotropic voxels; 52 slices; AP phase encoding direction; in-plane acceleration factor: 2; and
multi-band acceleration factor: 4) with 338 volumes acquired per scan for a total acquisition time of 7 minutes and 30
seconds. Spin echo EPI images with opposite phase encoding directions (AP and PA) but identical geometrical
parameters and echo spacing were acquired before each resting-state scan.T1-weighted and T2-weighted anatomical
images were also collected.

Weill Cornell Late-onset Depression dataset: MRI data were acquired on a Siemens Magnetom Prisma 3T machine at the
Citigroup Biomedical Imaging Center of Weill Cornell's medical campus using a Siemens 32-channel head coil. Multi-
echo, multi-band resting-state fMRI scans were collected at each study visit using a T2*-weighted echo-planar sequence
covering the full brain (TR: 1300 ms; TE1: 12.60 ms, TE2: 29.51 ms, TE3: 46.42 ms, and TE4: 63.33 ms; FOV: 216 mm;
flip angle: 67° (the Ernst angle for gray matter assuming a T1 value of 1400 ms); 2.5 mm isotropic voxels; 60 slices; AP
phase encoding direction; in-plane acceleration factor: 2; and multi-band acceleration factor: 4) with 480 volumes
acquired per scan for a total acquisition time of 10 minutes and 38 seconds. Spin echo EPI images with opposite phase
encoding directions (AP and PA) but identical geometrical parameters and echo spacing were acquired before each
resting-state scan. Multi-echo T1-weighted (TR/TI: 2500/1000 ms; TE1: 1.7 ms, TE2: 3.6 ms, TE3: 5.5 ms, TE4: 7.4 ms ;
FOV: 256 mm; flip angle: 8°, and 208 sagittal slices with a 0.8 mm slice thickness) and T2-weighted anatomical images
(TR: 3200 ms; TE: 563 ms; FOV: 256; flip angle: 8°, and 208 sagittal slices with a 0.8 mm slice thickness) were also
acquired.

Whole-brain

Preprocessing of multi-echo data minimized spatial interpolation and volumetric smoothing while preserving the alignment of
echoes. The single-band reference (SBR) images (one per echo) for each scan were averaged. The resultant average SBR
images were aligned, averaged, co-registered to the ACPC aligned T1-weighted anatomical image, and simultaneously
corrected for spatial distortions using FSL’s topup and epi_reg programs. Freesurfer’s bbregister algorithm was used to refine
this co-registration. For each scan, echoes were combined at each timepoint and a unique 6 DOF registration (one per
volume) to the average SBR image was estimated using FSL’s MCFLIRT tool, using a 4-stage (sinc) optimization. All of these
steps (co-registration to the average SBR image, ACPC alignment, and correcting for spatial distortions) were concatenated
using FSL’s convertwarp tool and applied as a single spline warp to individual volumes of each echo after correcting for slice
time differences using FSL’s slicetimer program. The functional images underwent a brain extraction using the co-registered
brain extracted T1-weighted anatomical image as a mask and corrected for signal intensity inhomogeneities using ANT’s
N4BiasFieldCorrection tool.

Software packages incorporated into the preprocessing pipelines included: Matlab R2019a, https://www.mathworks.com/;
Connectome Workbench 1.4.2, http://www.humanconnectome.org/software/connectome-workbench.html; Freesurfer v6,
https://surfer.nmr.mgh.harvard.edu/; FSL 6.0, https://fsl.fmrib.ox.ac.uk/fsl/fslwiki; and Infomap, https://
www.mapequation.org.

T1w ---> atlas linear, BOLD --> atlas.

MNI

Preprocessed multi-echo data were submitted to multi-echo ICA (ME-ICA), which is designed to isolate spatially structured
T2*- (neurobiological; “BOLD-like”) and S0-dependent (non-neurobiological; “not BOLD-like”) signals and implemented using
the “tedana.py” workflow 65. In short, the preprocessed, ACPC-aligned echoes were first combined according to the average
rate of T2* decay at each voxel across all time points by fitting the monoexponential decay, S(t) = S0e -t / T2* . From these
T2* values, an optimally-combined multi-echo (OC-ME) time-series was obtained by combining echoes using a weighted
average (WTE = TE * e -TE/ T2*). The covariance structure of all voxel time-courses was used to identify major signals in the
OC-ME time-series using principal component and independent component analysis. Components were classified as either
T2*-dependent (and retained) or S0-dependent (and discarded), primarily according to their decay properties across echoes.
All component classifications were manually reviewed by author CJL and revised when necessary. Mean gray matter time-
series regression was performed to remove spatially diffuse noise. Temporal masks were generated for censoring high
motion time-points using a framewise displacement (FD) threshold of 0.3 mm and a backward difference of two TRs, for an
effective sampling rate comparable to historical FD measurements (approximately 2 to 4 seconds). Prior to the FD calculation,
head realignment parameters were filtered using a stopband Butterworth filter (0.2 - 0.35 Hz) to attenuate the influence of
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Volume censoring

Statistical modeling & inference

Model type and settings

Effect(s) tested

Specify type of analysis: Whole brain ROI-based Both

Anatomical location(s)

Statistic type for inference

(See Eklund et al. 2016)

Correction

Models & analysis

n/a Involved in the study

Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis

Functional and/or effective connectivity

Graph analysis

Multivariate modeling and predictive analysis

respiration on motion parameters. Single-echo fMRI datasets (e.g., NSD, ABCD) were subjected to the same preprocessing
procedures, except ICA-AROMA was used instead of ME-ICA.

See above.

We measured the surface area (in mm2) that each vertex in the individual’s midthickness surface is responsible for
(“wb_command --surface-vertex-areas”). Next, we calculated the relative contribution (size) of each functional network to
the total cortical surface area by taking the total surface area of all network vertices in relation to the total cortical surface
area. In the striatum, where each voxel represents the same amount of tissue, the relative contribution of each functional
network to the total striatal volume was calculated by taking the total number of network voxels in relation to the total
striatal voxels.The statistical significance of group differences in network size were evaluated using permutation tests and
independent sample t-tests (the latter implemented using Matlab’s ttest2.m function). Effect size (Cohen’s d) was calculated
as difference in group means divided by pooled standard deviation. Assumptions regarding equal variance were adjusted
when appropriate (based on two-sample F-tests performed using Matlab’s vartest2.m function). The relative difference
between groups was calculated as the absolute difference divided by network size in healthy controls.

With respect to testing differences in functional network size, permutation and independent sample t-tests tested against
null hypothesis that difference in group means is zero.

Individual-specific functional networks were created from each individual's resting-state fMRI data.

No cluster wise inferences were made.

P-values were adjusted using Bonferroni correction for multiple comparisons.

Pearson correlation.

Individual-specific (and in some cases, group-average) functional networks were identified using the
procedures described in Gordon et al., 2020 PNAS and Lynch et al., 2022 Neuron. A functional connectivity
matrix summarizing the correlation between the time-courses of all cortical vertices and subcortical voxels
across all study visits was constructed. Correlations between nodes  10 mm apart (geodesic and Euclidean
space used for cortico-cortical and subcortical-cortical distance, respectively) were set to zero. Correlations
between voxels belonging to subcortical structures were set to zero. Functional connectivity matrices were
thresholded in such a way that they retained at least the strongest X% correlations (0.01, 0.02, 0.05, 0.1, 0.2,
0.5, 1, 2, and 5%) to each vertex and voxel and were used as inputs for the InfoMap community detection
algorithm. Free parameters (for example, the number of algorithm repetitions) for the Infomap algorithm
were fixed across subjects. The optimal scale for further analysis across individuals was defined as the graph
threshold producing the best size-weighted average homogeneity relative to the median of the size-weighted
average homogeneity calculated from randomly rotated networks. Size-weighted average homogeneity was
maximized relative to randomly rotated communities at the 0.1% graph density. Each Infomap community
was algorithmically assigned to one of 20 possible functional network identities (Default-Parietal, Default-
Anterolateral, Default-Dorsolateral, Default-Retrosplenial, Visual-Lateral, Visual-Stream, Visual-V1, Visual-V5,
Frontoparietal, Dorsal Attention, Premotor / Dorsal Attention II, Language, Salience, Cingulo-opercular /
Action-mode, Parietal memory, Auditory, Somatomotor-Hand, Somatomotor-Face, Somatomotor-Foot,
Auditory, or Somato-Cognitive-Action) primarily according their functional connectivity and spatial locations
relative to a specified set of priors. This procedure is implemented using a Matlab function
(“pfm_identify_networks.m”) available on our study’s GitHub repository (https://github.com/cjl2007/PFM-
Depression). The priors used in our study (“Priors.mat”) are also available in the same repository. All
algorithmic assignments were manually reviewed by study author CJL and manually adjusted in the case of
an ambiguous assignment.

A support vector machine classifier, where class labels were diagnosis status (healthy control or depression)
and features were functional brain network size in each individual, was trained using repeated (100
iterations) nested split-half (2-fold) cross-validation with a grid search optimization strategy for
hyperparameter tuning (box constraint, kernel size). Classification accuracy was calculated as the percentage
of correct predictions, and statistical significance assessed using permutation tests. Confusion matrix was
created using Matlab’s confmat.m function. Feature importance was evaluated by iteratively omitting each
functional network and calculating the resulting loss in accuracy. The Synthetic Minority Oversampling
Technique (SMOTE) was used to prevent classification bias in favor of the majority class, and performed on
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training data only toto avoid data leakage.
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