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Abstract: The mean stress effect remains a critical aspect in multiaxial fatigue analysis. This work
presents a new criterion that, based on the classical Findley criterion, applies a material-dependent
exponent to the mean normal stress term and includes the ultimate tensile stress as a fitting parameter.
This way of considering the non-linear effect of the mean stress, with a material-dependent rather than
a fixed exponent, is totally innovative among the multiaxial fatigue criteria found in the literature. In
order to verify its accuracy, the new criterion has been checked against an extended version of the
Papuga database of multiaxial experimental tests with 485 results, and compared with the criteria
by Findley, Robert, and Papuga. The new criterion provides outstanding results for pure uniaxial
cases, with multiaxial performance similar to the Robert criterion with a smaller range of error and a
conservative trend, even surpassing the popular Papuga method in several relevant loading scenarios.
These features enhance the applicability and versatility of the criterion for its use in the fatigue design
of structural components.

Keywords: multiaxial fatigue; structural components; metals; fatigue failure prediction; critical plane
criterion; mean stress effect; experimental database

1. Introduction

Despite the enormous advances in the last decades, multiaxial fatigue remains an
unsolved problem. Issues such as the effect of mean axial and torsion stresses and the effect
of out-of-phase loads are under study, with continuous enhancements in modeling. New
multiaxial fatigue methods are continuously being published in the specialized literature [1],
and no criterion has proved to indisputably prevail over the others for any material or
multiaxial load case [2,3].

Multiaxial fatigue problems were first studied by Gough and Pollard almost a century
ago [4]. They developed a criterion for bending and torsion combined loads without mean
stress components. In 1942, Smith [5] presented an extended guide to deal with mean axial
and torsional stresses for a variety of materials collected from the literature. It was not
until 1956, in the context of the first International Conference on Fatigue, that theories able
to deal with complex loading cases with mean stresses were introduced. The theories of
Marin [6] and Crossland [7], based on stress invariants, and the Findley critical plane [8]
criterion were presented.

The development of multiaxial fatigue criteria has progressed in parallel with the
available data. Marin used a great database from the literature as a benchmark, and
inferred that static stresses have a great influence on the performance of the multiaxial
fatigue criteria. Findley’s criterion was devised for the loading cases considered as the
most important ones: uniaxial with mean stresses, torsion with mean shear stresses, and
combined bending and torsion [9]. Nevertheless, Findley expressed concerns regarding the
lack of experimental results for other load cases. In the 1970s and 1980s, multiaxial fatigue
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campaigns with complex loadings including mean stresses and out-of-phase loadings were
performed by German and French researchers [10–13]. Considering those experimental
results, the theories of Zenner [14], Grubisic [15], and Froustey [16], based on the integral
approach, and the criterion by Robert [17], based on the critical plane, were devised.

In a paper by Papuga in 2011 [3], a number of criteria were tested against a database
of 407 experiments. It was concluded that mean stress effects are of paramount importance,
as the method of dealing with these mean stresses is the most critical aspect of a multiaxial
fatigue criterion. In this sense, it is shown that the differences between current criteria are
not so pronounced without the mean stress effect. Consequently, Papuga states that any
newly introduced criterion should check this factor. In a more recent paper examining
new criteria [1], Papuga remarked on the idea of comparing the predictions of multiaxial
criteria with experimental results including high mean stresses. These experimental results
should also include pure uniaxial load cases, which are very important cases of multiaxial
loading since uniaxial stress states are very common in structural applications. In this sense,
multiaxial fatigue criteria should also reproduce accurately pure uniaxial cases with high
mean stresses [1,3,18–20].

The present work examines and compares critical plane criteria using the Papuga
database, which has been further expanded with experimental results that include mean
stresses collected from the literature. The objective of the present work is to develop a
multiaxial fatigue criterion able to deal with mean stresses, including uniaxial loading
cases. As will be explained, the non-linear effect of the mean stress is considered by
applying a material-dependent exponent instead of using a fixed value as state-of-the-art
multiaxial fatigue criteria do. For validation purposes, the theoretical predictions of the
new criterion are finally compared with the experimental results and the predictions of
other criteria in order to check its global accuracy and its suitability to fit uniaxial cases and
consider mean stress effects. The experimental database comprises 485 test results from
48 different ferrous materials and aluminum and titanium alloys under a wide variety of
biaxial load conditions.

2. Materials and Methods
2.1. Critical Plane Methods

Multiaxial fatigue tests with mean stresses started in the late 1940s. Gough [21] and
Hanley [22] tested steels under bending torsion, whereas Sauer [23] and Findley [24] tested
aluminum alloys. Thus, a wide variety of engineering metals, covering a wide ductility
range, had been already tested by the mid-1950s under both uniaxial and multiaxial
loading conditions: aeronautical aluminums, carbon and low-alloy steels with different
heat treatments, and cast irons [5]. This relatively extensive experimental database set the
foundation for the development of more complex and generalist multiaxial fatigue criteria,
which could also consider the effect of mean stresses.

Findley analyzed 6 different classic theories and their experimental agreement in [25],
and concluded that none of them were able to explain the different κ = σ−1/τ−1 ratios (the
ratio between fully reversed axial and torsional fatigue limits, σ−1 and τ−1, respectively).
Moreover, the mean stress effect was at that time represented for uniaxial cases by the
empirical lines of Goodman, Soderberg, or Gerber, amongst others. In a subsequent
discussion, Findley remarked on the importance of the critical plane of failure in [26],
speculating that “perhaps the basic mechanism remains the same for all materials but the
effect of certain influencing factors changes with material”.

Stulen and Cummings [8] developed the first multiaxial fatigue criterion according to
which fatigue damage is caused primarily by the shear stress amplitude, in combination
with the maximum normal stresses. Later, Findley applied this formulation to the plane of
maximum damage, giving rise to Findley’s critical plane method [9], where the no failure
condition is:

τnt,a + aF · (σnn,a + σnn,m) ≤ dF (1)
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where aF and dF are material parameters that can be identified from endurance fatigue
limits, usually σ−1 and τ−1. Being a maximum damage criterion, the equation must be
evaluated in several planes so that no fatigue failure will occur if the condition is fulfilled
in the most damaged plane, known as the critical plane. Thus, τnt and σnn are, respectively,
the shear and normal stresses acting on that critical plane. As remarked literally in [27],
“this theory explains the fact that the influence of mean stress is small for torsion and
stronger for bending of ductile materials but strong for torsion and bending of cast irons”.
The Findley criterion was praised because of its ability to deal with mean shear stresses;
nevertheless, Findley himself considered his theory as “tentative” [27] and hypothesized
that the effect of the normal stress is probably non-linear, even though the linear addition
in Equation (1) adequately adjusted the experimental results available at that time. A later
development included a parabolic influence of the normal stress on the critical plane, but
the prediction capability hardly improved with respect to Equation (1).

Robert’s critical plane criterion [17] is another maximum damage critical plane cri-
terion. It is an evolution of the Findley criterion, with a separate treatment of mean and
alternating normal stresses to the critical plane, based on the premise that each component
provokes a different damage:

τnt,a + aR · σnn,a + bR · σnn,m ≤ dR (2)

The 3 material parameters aR, bR, and dR for Robert’s criterion can be adjusted with
3 fatigue tests, generally by means of the axial and reverse torsional fatigue strengths (σ−1
and τ−1) as in Findley’s criterion, and additionally a third test such as the fatigue limit in
repeated axial loading σ0.

In the comparison carried out by Papuga [28], the Robert criterion obtained an overall
better experimental agreement than the criterion by Findley, showing a more centered
distribution with less scatter. However, one set of experimental results of the database
had a great impact on the performance of the Robert criterion: the experimental results
of Bomas et al. [29] on SAE 52100 steel, which is very common in bearings as well as in
automotive and aircraft parts, offered over-conservative predictions for the Robert criterion,
dramatically increasing the range of error. Figure 1 shows the Haigh diagram with these
experiments, together with the theoretical predictions by the Findley and Robert criteria.
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Figure 1. Experimental uniaxial results of Bomas et al. [29] on SAE 52100 steel and theoretical
predictions by Findley, Robert, and Papuga criteria.

Papuga’s critical plane criterion was first defined in [28] and later optimized in [30].
Papuga developed his criterion from a great database collected from the literature [31]
and used a semi-empirical approach. This criterion shares similarities with Robert’s,
as it is a maximum damage criterion and analyzes the mean normal and amplitude
stresses separately: √

aP · τnt,a2 + bP · (σnn,a + cP · σnn,m) ≤ dP (3)
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where aP and bP are two material constants that are defined in two branches depending
on the value of κ, being the boundary value defined at 1.155 (extra-brittle materials). As
with the Robert criterion, it also needs 3 parameters: σ−1, τ−1, and σ0. The criterion
provided outstanding results for the 407 experiments of the database analyzed in [3], but
the predictions for SAE 52100 steel in Figure 1 are not accurate.

There are many other multiaxial fatigue theories [32–37], such as the Maximum Shear
Stress Range (MSSR) critical plane methods, which are not dependent on mean shear
stresses in pure torsional fatigue loadings, which is a valuable feature for multiaxial fatigue
methods [3,38]. It requires a double optimization process for evaluating the damage
function in planes taking a value higher than 99% of the shear stress amplitude [31]. The
Integral Analysis methods are computationally expensive, and contrary to the critical plane
methods, do not offer the expected crack angle. The Maximum Damage (MD) critical plane
methods are able to take into account the influence of high mean stresses on the inclination
of the critical plane and require simple optimization, contrary to the MSSR methods [3,38].

In this section, the Maximum Damage critical plane methods of the Findley, Robert,
and Papuga criteria were recalled because they are similar to each other, and they also
share similarities with the new criterion proposed in this work, which will be presented in
the following section. The proposed criterion is an evolution of the Findley criterion where,
as a first step, the mean and alternating normal stresses are separated as already done by
Robert, as described in the previous section. Analyzing the results of the Findley criterion,
Papuga in his review work [3] stated that a mean stress effect revision of the criterion
should improve the accuracy. Indeed, Robert’s linear proposal significantly improves the
overall performance of the criterion against the database of 407 experiments. However,
especially for high mean uniaxial stress cases such as the ones in Figure 1, the results are
not good. In this sense, Papuga and Findley hypothesized that linear combination of the
mean stress may not be the best approach. Based on this, the new model developed in
the current work further evolves Findley’s criterion by applying a material-dependent
exponent to the mean normal stress component. The idea of applying exponentials to
stress components is not innovative, since many multiaxial methods, the Papuga criterion
amongst them, apply exponents to different components of stress or to combinations of
them. Nevertheless, in the new criterion, the exponent is not a fixed value but a parameter
to be fitted with the strength properties of the material. The idea comes from observing
that, for pure uniaxial load cases, different materials are fitted using different classical
equations (Goodman, Gerber, Marin, etc.) that use different exponents for the mean and
alternating stresses [17], so these exponents can in fact be considered as material properties.
Similarly, the Walker equation uses an exponent γ, whose value must be empirically fitted
for the material under study, always resulting in a concave upwards shape for the Haigh
diagram [39]:

Goodman : σa
σ−1

+ σm
σu

≤ 1

Gerber : σa
σ−1

+
(

σm
σu

)2
≤ 1

Marin :
(

σa
σ−1

)2
+

(
σm
σu

)2
≤ 1

Walker : (σm + σa)
1−γσa

γ ≤ σ−1

(4)

2.2. New Critical Plane Method

As mentioned in the previous section, the new method evolves the Findley criterion
by applying an exponent to the mean stress term to account for the non-linear effect of the
mean stress. There are several well-known fatigue methods, which have been developed
by adding an extra parameter to a previous one. Amongst them, we can cite the Robert
method [17], which adds an additional parameter to the Findley method [8], and the Walker
method [39], which adds an additional parameter to the Smith–Watson–Topper method in
the form of a material-dependent exponent instead of a fixed value of 0.5.
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Table 1 summarizes the equations and parameters of the Findley, Robert, Papuga, and
the new Abasolo criteria, where the new exponent cA and its material-dependent nature
are observed.

Table 1. Expressions and parameters of Findley, Robert, Papuga, and Abasolo criteria.

Criterion Equation (No Failure Condition) Parameter Values

Findley (F) [9] τnt,a + aF(σnn,a + σnn,m) < dF
aF =

1− κ
2√

κ−1

dF = σ−1

2
√

κ−1

Robert (R) [17] τnt,a + aRσnn,a + bRσnn,m < dF

aR = aF

bR =

σ−1
σ0

− σ0
4σ−1

(κ−1)+ κ
2 −1

√
κ−1

dR = dF

Papuga (P) [28]
√

aP · τnt,a2 + bP · (σnn,a + cP · σnn,m)
< dP

aP = 1
2

(
κ2 +

√
κ4 − κ2

)
;

for κ ≤ 1.155

aP =
(

4κ2

4+κ2

)2
for κ > 1.155

bP = σ−1; for κ ≤ 1.155

bP =
8σ−1κ2(4−κ2)

(4+κ2)
2 ; for κ > 1.155

cP = τ−1
σ0

dP = σ−1

Abasolo (A) *
τnt,a + aAσnn,a +

sign(σnn,m)bA|σnn,m|cA < dA

aA = aF

bA = dA
σu

cA

cA =

max
(

log(1− σ0
4d (a(1+cos2θ)+|sin2θ|))

log( σ0
4σu (1+cos2θ))

)
for 0 ≤ θ < π/2

dA = dF
* See Appendix A for the derivation of the parameters.

The expressions of the parameters of the new model are developed in Appendix A.
Comparing the Findley, Robert, and Abasolo equations in Table 1, it is observed that
parameters a and d are the same for all the criteria. The reason is that these parameters are
fitted from alternating torsion and alternating axial tests, where σnn,m = 0. Therefore, the
three equations are the same, with parameters a and d depending on the fully reversed axial
and torsional fatigue limits σ−1 and τ−1. Parameter b in the Robert criterion is obtained
from the repeated axial loading test (therefore depending on σ0), while b and d in the
Abasolo criterion are obtained from the static tensile test and the repeated axial loading test;
therefore, they depend on the corresponding strengths σu and σ0. Finally, the parameter
cA is obtained as the maximum value of the expression in the range 0 ≤ θ < π/2, so it can
be easily worked out by sweeping the whole range of θ in a spreadsheet. For illustrative
purposes, Figure 2 shows the values of cA for different κ ratios. Note also that in the third
term of the Abasolo equation, the absolute value of the mean stress is used, adding or
subtracting it depending on the sign of the mean stress, thus making this expression valid
also for compressive mean stresses.

The Abasolo criterion is indeed a generalization of Findley’s criterion, since the Findley
criterion is a particular case of the Abasolo criterion when bA = aA = aF and cA = 1. By
imposing these equalities, the following conditions are obtained (which correspond to the
points marked with an asterisk in Figure 2):
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σ−1
σu

= 2 − κ

σ0
2σ−1

= 1
2−κ+

√
κ2+3(1−κ)

(5)

Furthermore, the Robert criterion is also a particular case of the Abasolo criterion
when cA = 1 and bA = bR, with the next condition being fulfilled (which corresponds to the
curve cA = 1 in Figure 2):

σ0

2σu
= 1 −

(
σ0

2σ−1

)2

(κ − 1) +
σ0

2σ−1
(κ − 2) (6)

As summarized in Table 1, the Findley equation only uses two parameters (typically
σ−1 and τ−1) as input data to characterize the material. Additionally, the Robert and
Papuga criteria use a third parameter, σ0. The new criterion developed in this work has
four parameters: σ−1, τ−1, σ0, and σu. The value of σu is commonly available for many
materials, or otherwise can be easily measured in a static tensile test. Consequently, being
a direct evolution of Findley and Robert, the new criterion is expected to provide more
accurate results in general, and in particular for high mean stress cases because σu stands
for the high mean stress resistance of the material. The improvement is expected to be
especially relevant for uniaxial load cases because σu is a uniaxial resistance property.
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Thus, exclusively for validation purposes, the criteria were programmed and applied
to an extensive experimental database in order to verify their accuracy in a wide variety
of load cases, both uniaxial and multiaxial. The Papuga criterion was also included in the
comparison since, apart from having a similar formulation and being a leading criterion as
mentioned, the database of the present work is an expansion of Papuga’s one [3].
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2.3. Experimental Database and Numerical Implementation

In order to test the multiaxial fatigue methods, the Papuga database presented in [3]
was used. It contains 407 test results of 23 different materials, with different types of mate-
rials: aluminum alloys, ferrous materials (steels, cast irons, etc.) and Ti-6Al-4V titanium.
Therefore, the database contains brittle, semi-ductile, ductile, and extra-ductile materials,
which have been tested under a wide variety of biaxial load conditions that include mean
tensile and torsional stress components.

Nevertheless, in spite of its extensiveness, the database has some limitations, such as
the absence of compressive mean loads because the FatLim version used in [3] zeroed the
values of the static stresses to calculate the results, and 15 experiments were dismissed.
In the present work, those results were also included in the database and additional tests
that deal with mean axial or bending mean loads, including high values of the stress ratio,
and in some cases with compressive mean loads, were also added. Table 2 summarizes
this new data. As a result, the new extended database has a total of 485 test results from
48 different materials.

The numerical calculations were performed with the multiaxial fatigue tool developed
by one of the authors in a previous work [38] and validated against FatLim. In order to
calculate the Shear Stress Amplitude τnt,a in Table 1, the Minimum Circumscribed Ellipse
method [40] was implemented.

Table 2. Additional experimental results added to the Papuga database [3] in the present work.

Reference Number of
Data Items Material Reason for the Selection

Papuga [3] 15 Various Mean compressive loads applied

Sauer [23] 8 14S-T
aluminium Static bending or static torsion stresses

O’Connor [41],
Chodorowski [42] 10 NiCrMo steel High values of mean axial tension and

compressive loads

Ukrainetz [43] 6 0.1 C steel Mean axial tension loads. Static shear
stresses on torsional fatigue loading

Grün et al. [44] 5 25CrMo4 steel High values of mean axial tension and
compression loads

Lüpfert et al. [45] 8 20MnCr steel High values of static compressive loads.
Only biaxial loadings considered.

Rausch [46] 14 EN-GJV-450
cast iron

High values of mean axial tension and
compression loads. Static shear stresses

on torsional fatigue loading

Tovo [47] 6
EN-GJS-400-

18 ductile cast
iron

Mean axial tensile and
compressive loads.

Static shear stresses on torsional
fatigue loading

Pallarés-
Santasmartas [48,49] 6 34CrMo6 steel

Mean axial tensile and
compressive loads.

Static shear stresses on torsional
fatigue loading

3. Results and Discussion

In this section, different error indicators are offered in error charts in a similar way
to the work of Weber [50] to ease the interpretation of the results for the reader. The error
is defined as in [3]. According to it, the equations are rewritten to define an alternating
equivalent alternating uniaxial stress in such a form that the no failure condition is defined
with respect to the experimental fatigue limit of the material σ−1. Thus, the fatigue index
error will be:

Error (%) =
σeq(load)− σ−1(material)

σ−1(material)
·100 (7)
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Positive values of Equation (7) will result in conservative predictions, whereas negative
values involve non-conservative results.

3.1. General Results for the Complete Database

In order to give a general view of the performance of the criteria under study, Table 3
lists the results of the Findley, Robert, Papuga, and Abasolo criteria when their predictions
are compared with the complete database of 485 experimental results. It can be observed
that the Robert and Abasolo criteria significantly outperform Findley in all aspects. The
Robert criterion has a smaller mean error but a higher standard deviation than the Abasolo
criterion, while the latter is slightly more conservative. Finally, in this global comparison,
the Abasolo criterion has the smallest range of error amongst the four criteria analyzed,
whereas Papuga is found to be the most accurate criterion.

Table 3. Comparison of the predictions of the criteria against the complete experimental database.

Complete Database: 485 Experiments Findley Robert Abasolo Papuga

Mean value of the error 8.4 3.5 3.9 −0.6
Standard deviation 17.6 10.3 9.7 7.4

Maximum value of the error 147.0 77.3 43.9 42.6
Minimum value of the error −38.7 −36.4 −32.1 −36.4

Range of the error 185.7 113.7 76.0 78.9
Mean absolute value of the error 12.4 7.0 7.2 5.2

“Accurate” results (error range ± 5%) 40.5 49.6 49.6 63.4
“Acceptable” results (error range ± 15%) 70.0 87.4 86.0 94.4

Conservative results (error range + 5% + 40%) 41.6 36.0 36.8 17.1
Non-conservative results (error range − 5%

− 40%) 12.6 13.8 13.4 19.3

3.2. Results for Uniaxial Load Cases

As previously stated, pure uniaxial loading is of utmost importance in engineering
applications, and the criteria of Goodman, Gerber, and Marin are widely used. Table 4
summarizes the results for the pure uniaxial cases within the database. The classic uniaxial
criteria such as Goodman, Gerber, and the elliptical relationship of Marin are compared
together with the multiaxial fatigue methods. The Goodman and Gerber methods show
high ranges of error when compared to the critical plane criteria.

Table 4. Comparison of the predictions of the methods against experimental pure axial cases.

Pure Axial Cases:
76 Experiments Goodman Gerber Marin Findley Robert Abasolo Papuga

Mean value of the error 50.3 9.5 −8.4 8.3 4.1 2.6 −2.6
Standard deviation 109.4 52.0 23.2 28.0 16.6 10.4 10.7

Maximum value of the error 596.0 268.4 68.3 147.0 77.3 38.9 42.6
Minimum value of the error −39.1 −52.9 −57.5 −38.7 −27.4 −25.9 −36.4

Range of the error 635.2 321.3 125.9 185.7 104.6 64.7 78.9
Mean absolute value of the error 58.9 25.5 17.6 19.0 8.8 6.6 7.7

“Accurate” results
(error range ± 5%) 5.3 26.3 21.1 30.3 61.8 56.6 46.1

“Acceptable” results
(error range ± 15%) 26.3 59.2 67.1 50.0 84.2 86.8 89.5

Conservative results
(error range + 5% + 40%) 42.1 28.9 13.2 31.6 22.4 31.6 17.1

Non-conservative results
(error range − 5% − 40%) 21.1 34.2 50.0 26.3 11.8 11.8 35.5

The Abasolo criterion shows an enhanced experimental agreement, with both the low-
est range of error and mean absolute value of the error, providing conservative predictions.
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This improvement is even more remarkable for high mean axial stresses (with load ratio
0.05 ≤ R < 1), as proved in Table 5. The proposed method offers the most reduced range of
error, and a shift towards the conservative side, contrary to the Papuga method.

Table 5. Comparison of the predictions of the methods against experimental pure axial cases with
high mean stress (0.05 ≤ R < 1).

Pure Axial Cases with High
Mean Stress (0.05 ≤ R < 1):

35 Experiments
Goodman Gerber Marin Findley Robert Abasolo Papuga

Mean value of the error 94.8 18.2 −14.9 18.4 10.8 8.0 −2.0
Standard deviation 147.6 73.5 27.7 35.3 21.4 11.2 14.5

Maximum value of the error 596.0 268.4 68.3 147.0 77.3 38.9 42.6
Minimum value of the error −32.6 −52.9 −57.5 −38.7 −14.9 −9.7 −36.4

Range of the error 628.6 321.3 125.9 185.7 92.1 48.6 78.9
Mean absolute value of the error 100.4 41.2 24.9 27.3 14.0 9.4 10.8
“Accurate” results (error range

± 5%) 2.9 11.4 11.4 25.7 45.7 37.1 25.7

“Acceptable” results (error range
± 15%) 20.0 40.0 48.6 34.3 74.3 80.0 80.0

Conservative results (error range
+ 5% + 40%) 22.9 31.4 5.7 28.6 37.1 57.1 25.7

Non-conservative results (error
range − 5% − 40%) 14.3 37.1 51.4 20.0 8.6 5.7 45.7

In order to illustrate the performance of the criteria for pure uniaxial cases, Figure 3
shows the experimental results of four materials for which high stress ratio experimental
results are available, together with the theoretical predictions. One of them is the trou-
blesome SAE 52100 steel previously analyzed in Figure 1. It can be observed that the
Abasolo criterion replicates the shape of the experimental Haigh diagram more precisely,
outperforming the rest of the criteria. Indeed, the new criterion has shown a unique
ability to adapt the exponent to the shape of the Haigh diagram, whether it is concave
or convex. As previously mentioned, this improved performance was already expected
because the Abasolo criterion uses σu as an additional fitting parameter when compared
with the other multiaxial methods under study, and it considers the mean stress effect with
a material-dependent exponent.

Of course, this superior accuracy of the new Abasolo criterion for uniaxial cases
should not be at the expense of an inferior prediction capability for multiaxial load cases.
As already seen in Table 3, the global performance of the criterion is not penalized; however,
a more detailed study is provided next, focusing on the mean stress effect.
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Figure 3. Experimental results of four materials and theoretical predictions by the Findley, Robert,
Papuga, and Abasolo criteria: (a) EN-GJV-450 cast iron [46], (b) EN25 steel [41], (c) SAE 52100
steel [29], (d) EN-GJS-400-18 ductile cast iron [47].

3.3. Results for Load Cases with No Mean Stress

In the analyzed database, a great number of the experimental tests were performed
without applying mean stresses; most cases are combined bending and torsion cases
without mean stresses, both in-phase and out-of-phase. As Papuga pointed out in a
previous review of methods [3], “no mean stress” cases do not have a great impact on the
overall performance. Table 6 shows that, obviously, no difference exists between the Findley,
Robert, and Abasolo criteria since all of them have the same formulation for these cases
according to Table 1. The Papuga criterion obtains more adjusted results by a minor margin.

3.4. Results for Load Cases with Mean Stress

The mean stress effect is considered by several authors [3,6,9,18] as the most determin-
ing effect of the performance of the criteria. Table 7 shows the results for the cases with
non-zero mean stresses. In Table 8, only high mean stress load cases with 0.05 ≤ RvM < 1
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are filtered. The multiaxial stress ratio RvM is based on the von Mises equivalent stress, and
uses the sign of the hydrostatic stress as in the Manson and McKnight criteria [51]:

RvM = sign(σxx,m + σyy,m + σzz,m)·
σvM,min

σvM,max
(8)

The conclusions are quite similar to those derived for the global results in Table 3, with
the Robert and Abasolo criteria performing similarly, and the Papuga criterion once again
in a leading position. As in the global performance summarized in Table 3, the Abasolo
criterion shows the lowest range of error among the criteria under study and tends to
be conservative.

Table 6. Comparison of the predictions of the methods against “no mean stress” cases.

No Mean Stress Cases: 172 Experiments Findley Robert Abasolo Papuga

Mean value of the error 1.6 1.6 1.6 1.1
Standard deviation 5.0 5.0 5.0 3.7

Maximum value of the error 16.1 16.1 16.1 12.4
Minimum value of the error −12.4 −12.4 −12.4 −9.7

Range of the error 28.4 28.4 28.4 22.1
Mean absolute value of the error 4.1 4.1 4.1 3.1

“Accurate” results (error range ± 5%) 70.5 70.5 70.5 81.5
“Acceptable” results (error range ± 15%) 98.8 98.8 98.8 100.0

Conservative results (error range + 5% + 40%) 21.4 21.4 21.4 13.9
Non-conservative results (error range − 5%

− 40%) 8.1 8.1 8.1 4.6

Table 7. Comparison of the predictions of the methods against mean stress cases.

Mean Stress Cases: 313 Experiments Findley Robert Abasolo Papuga

Mean value of the error 12.1 4.6 5.1 −1.5
Standard deviation 20.7 12.1 11.4 8.7

Maximum value of the error 147.0 77.3 43.9 42.6
Minimum value of the error −38.7 −36.4 −32.1 −36.4

Range of the error 185.7 113.7 76.0 78.9
Mean absolute value of the error 17.3 9.0 9.3 6.5

“Accurate” results (error range ± 5%) 24.0 38.0 38.0 53.4
“Acceptable” results (error range ± 15%) 54.0 81.2 78.9 91.4

Conservative results (error range + 5% + 40%) 52.7 44.1 45.4 18.8
Non-conservative results (error range − 5%

− 40%) 15.0 16.9 16.3 27.5

Table 8. Comparison of the predictions of the methods against experimental cases with high mean
stress (0.05 ≤ RvM < 1).

High Mean Stress Cases (0.05 ≤ RvM < 1):
110 EXPERIMENTS Findley Robert Abasolo Papuga

Mean value of the error 19.5 6.5 8.2 −2.3
Standard deviation 27.9 15.7 13.2 11.7

Maximum value of the error 147.0 77.3 43.9 42.6
Minimum value of the error −38.7 −18.0 −16.6 −36.4

Range of the error 185.7 95.2 60.5 78.9
Mean absolute value of the error 25.8 11.7 12.1 9.0

“Accurate” results (error range ± 5%) 17.3 28.2 27.3 37.3
“Acceptable” results (error range ± 15%) 35.5 74.5 69.1 82.7

Conservative results (error range + 5% + 40%) 43.6 47.3 55.5 24.5
Non-conservative results (error range − 5%

− 40%)
17.3 21.8 16.4 37.3
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3.5. Results for Torsional Load Cases

Finally, Table 9 shows the results for mean torsional load cases, whose effect is a
controversial issue in multiaxial fatigue [2,14,49,52]. Again, the criterion developed in this
work shows a statistical trend for the distribution of error similar to the Robert criterion;
however, in this case, the results of the Papuga criterion are significantly improved. In this
particular case, all the criteria except Findley are non-conservative.

Table 9. Comparison of the predictions of the methods against the Mean Stress effect for pure
torsional loading cases.

Mean Stress Cases, Pure Torsion:
33 Experiments Findley Robert Abasolo Papuga

Mean value of the error −0.7 −4.7 −5.4 −7.5
Standard deviation 11.0 6.3 5.6 8.3

Maximum value of the error 29.1 5.8 5.4 7.7
Minimum value of the error −31.0 −18.0 −16.6 −31.3

Range of the error 60.1 23.7 22.0 39.0
Mean absolute value of the error 7.4 5.9 5.9 8.1

“Accurate” results (error range ± 5%) 54.5 51.5 45.5 45.5
“Acceptable” results (error range ± 15%) 87.9 90.9 93.9 84.8

Conservative results (error range + 5% + 40%) 24.2 3.0 3.0 3.0
Non-conservative results (error range − 5%

− 40%) 21.2 45.5 51.5 51.5

4. Conclusions

The mean stress effect is a critical aspect of multiaxial fatigue and, to a greater or
lesser extent, current multiaxial fatigue methods do not reproduce it satisfactorily. The
mean stress effect, and more particularly, the axial stress effect remains as a critical factor in
the performance of multiaxial fatigue methods, and the effect of high stress ratios is even
amplified, with large ranges of errors for current multiaxial fatigue methods.

A new multiaxial fatigue criterion has been developed in the present work. Based on
classical Findley criterion, it applies a material-dependent exponent to the mean normal
stress component. The value of the exponent can be easily determined in a spreadsheet.
The new criterion uses four fitting parameters, namely the axial and torsional fully reversed
fatigue limits σ−1 and τ−1, the fatigue limit in repeated axial loading σ0, and the ultimate
tensile strength σu. The criterion provides outstanding results for pure uniaxial cases,
reproducing the shape of the Haigh diagrams, especially for high mean axial stresses. This
is not a minor aspect because uniaxial loading is a particular case of multiaxial loading, and
therefore multiaxial fatigue methods should be accurate not only for biaxial (or triaxial)
cases but also for uniaxial cases. Moreover, uniaxial or quasi-uniaxial load cases are the
most frequent load cases in engineering applications, which makes them particularly
interesting from a practical point of view. In addition, this improvement for uniaxial load
cases does not penalize its prediction capability for general multiaxial loading, where the
new criterion performs similarly to the Robert criterion, with a reduced range of error and
a distribution of error generally shifted to the conservative side. Compared to the Papuga
method, even though the Papuga criterion gives unparalleled overall results, the Abasolo
criterion is more accurate not only for uniaxial cases, as mentioned before, but also for
torsional load cases, which are also quite common in machine elements. All these features
make the presented criterion particularly appealing due to its suitability and versatility for
practical use as a tool for the fatigue design of structural components.

As a final conclusion, the method of formulating the presented criterion opens a new
way of evolving current multiaxial fatigue methods once the influence of quantities such as
the normal stress to the critical plane appears to be non-linear, as already pointed out by
several authors, and material-dependent as hypothesized by the authors.
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Nomenclature

a, b, c, d parameters of the critical plane criteria
κ fatigue limit ratio κ = σ−1/τ−1
σ0 fatigue limit in repeated axial loading
σ−1 fully reversed axial fatigue limit
σu ultimate tensile strength
σnn,a normal stress amplitude on the critical plane
σnn,m mean normal stress on the critical plane
σeq equivalent normal stress amplitude
τ−1 fully reversed torsional fatigue limit
τnt,a alternating shear stress on the critical plane
R load ratio

Appendix A

The failure condition of the Abasolo criterion is, as pointed out in Table 1:

τnt,a + aAσnn,a + sign(σnn,m)bA|σnn,m|cA < dA (A1)

The equation has four parameters a, b, c and d, whose values are summarized in
Table 1. This Appendix A explains the derivation of those equations. As there are four
parameters, four different tests are necessary to adjust their values: the fully reversed axial
and torsional fatigue limits σ−1 and τ−1, the fatigue limit in repeated axial loading σ0 and
the ultimate tensile strength σu. On the one hand, parameters a and d are the same as in
Findley and Robert methods (see Table 1), obtained from fully reversed axial and torsional
fatigue tests (for that reason they are a function of σ−1 and τ−1), and their derivation can be
found elsewhere [53]. On the other hand, parameters b and c in the Abasolo method are
obtained from static tensile and repeated axial loading tests, and their derivation will be
explained in this Appendix A.

In a biaxial stress state, the stress vector −⇀σn in a given plane −⇀n oriented at an angle θ,
and its normal and shear stress components in that plane, −⇀σnn and −⇀τnt respectively, can be
worked out as:

−⇀σn = [σ]·−⇀n =

[
σxx τxy
τxy σyy

]{
cosθ
sinθ

}
−⇀σnn = −⇀n T ·−⇀σn ·−⇀n
−⇀τnt =

−⇀σn −−⇀σnn

(A2)

Operating, the module of the normal stress and shear stress components, σnn and τnt
respectively, are:

σnn =
σxx+σyy

2 +
σxx−σyy

2 cos2θ + τxysin2θ

τnt = τxycos2θ − σxx−σyy
2 sin2θ

(A3)
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These expressions can also be derived from Mohr’s circle in Figure A1. As mentioned,
parameters b and c are obtained from axial load cases, where τxy = σyy = 0. Considering
this, and separating the mean and alternating components, (A3) can be rewritten as:

σnn,m = σxx,m
2 + σxx,m

2 cos2θ

σnn,a =
σxx,a

2 + σxx,a
2 cos2θ

τnt,a = − σxx,a
2 sin2θ

(A4)

τnt,m has not been included in (A4) because, as shown in (A1), it is not considered in
the Abasolo criterion. Besides, the absolute value of τnt,a must be considered in (A1).
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Appendix A.1. Static Tensile Test

Static tensile failure takes place when σxx,m = σu, being σxx,a = τxy,m = τxy,a = 0.
Thus, replacing these values in (A4), Equation (A1) is in this case:

b
(σu

2
+

σu

2
cos2θ

)c
= d (A5)

The critical plane is the one where Equation (A5) is maximum. This happens when in
the plane θ = 0:

max
(

b
(σu

2
+

σu

2
cos2θ

)c)
= bσu

c = d (A6)

And therefore the value of parameter b is:

b =
d

σuc (A7)

Appendix A.2. Repeated Axial Loading Fatigue Test

In this test, failure takes place when σxx,m = σxx,a = σ0/2, being τxy,m = τxy,a = 0.
Thus, replacing these values in (A4) and taking the absolute value of τnt,a:

σnn,m = σnn,a =
σ0
4 + σ0

4 cos2θ

τnt,a =
σ0
4 |sin2θ|

(A8)
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Substituting (A7) and (A8) in (A1):

1 − σ0

4d
(a(1 + cos2θ) + |sin2θ|)−

(
σ0

4σu
(1 + cos2θ)

)c
= 0 (A9)

Therefore:

c =
log

(
1 − σ0

4d (a(1 + cos2θ) + |sin2θ|)
)

log
(

σ0
4σu

(1 + cos2θ)
) (A10)

According to (A10), each θ value, i.e., each plane θ in the [0, π/2) range will have it
own value of c (values in the range [π/2, π ) will give the same values as in the [0, π/2)
range due to the absolute value of the term sin2θ). However, it must be recalled that (A9)
must be calculated only in the critical plane, and the value of parameter c to be used in
Abasolo criterion will be that one that corresponds to that plane. Accordingly, the value of
parameter c must be calculated from the following expression:

c = max

 log
(
1 − σ0

4d (a(1 + cos2θ) + |sin2θ|)
)

log
(

σ0
4σu

(1 + cos2θ)
)

 for 0 ≤ θ < π/2 (A11)

Thus, the parameter c can easily be worked out by sweeping the whole range of θ in
a spreadsheet and taking the maximum value. As an illustrative example, for a material
with σ−1/σu = 0.5, σ0/2σ−1 = 2/3 and σ−1/τ−1 = 1.75, the values for c in the range
0 ≤ θ < π/2 according to (A10) are the ones shown in Figure A2. Consequently, c = 0.713
as defined in (A11) and marked in Figure A2. Of course, this value agrees with the one that
can be extracted from Figure 2c, shown again as Figure A3; in this figure, the coordinates
σ0/2σu = 1/3 and σ0/2σ−1 = 2/3 that represent the properties of the material, and the
resulting value of c = 0.713 have been conveniently marked.
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